Sample records for tightly packed array

  1. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin

    PubMed Central

    Cines, Douglas B.; Lebedeva, Tatiana; Nagaswami, Chandrasekaran; Hayes, Vincent; Massefski, Walter; Litvinov, Rustem I.; Rauova, Lubica; Lowery, Thomas J.

    2014-01-01

    Contraction of blood clots is necessary for hemostasis and wound healing and to restore flow past obstructive thrombi, but little is known about the structure of contracted clots or the role of erythrocytes in contraction. We found that contracted blood clots develop a remarkable structure, with a meshwork of fibrin and platelet aggregates on the exterior of the clot and a close-packed, tessellated array of compressed polyhedral erythrocytes within. The same results were obtained after initiation of clotting with various activators and also with clots from reconstituted human blood and mouse blood. Such close-packed arrays of polyhedral erythrocytes, or polyhedrocytes, were also observed in human arterial thrombi taken from patients. The mechanical nature of this shape change was confirmed by polyhedrocyte formation from the forces of centrifugation of blood without clotting. Platelets (with their cytoskeletal motility proteins) and fibrin(ogen) (as the substrate bridging platelets for contraction) are required to generate the forces necessary to segregate platelets/fibrin from erythrocytes and to compress erythrocytes into a tightly packed array. These results demonstrate how contracted clots form an impermeable barrier important for hemostasis and wound healing and help explain how fibrinolysis is greatly retarded as clots contract. PMID:24335500

  2. Study of the effect of soil disturbance on vapor transport through integrated modeling of the atmospheric boundary layer and shallow subsurface

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.

    2014-12-01

    Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the tightly packed regions and a shorter stage 1 evaporation period.

  3. Ultratight crystal packing of a 10 kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trillo-Muyo, Sergio; Jasilionis, Andrius; Domagalski, Marcin J.

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  4. Near-resonance scattering from arrays of artificial fish swimbladders.

    PubMed

    Nero, R W; Feuillade, C; Thompson, C H; Love, R H

    2007-01-01

    The air-filled swimbladders of fish resonate like damped air bubbles, and are very efficient acoustic scatterers at low to mid frequencies (typically <20 kHz). Scattering experiments were performed on an artificial "fish school" constructed from polyethylene bubbles. A mathematical model, developed to describe near-resonance backscattering from schooling fish [J. Acoust. Soc. Am. 99, 196-208 (1996)], was used to analyze the physical behavior for three different arrays of these bubbles. The measurements gave excellent agreement with the model, showing that coupled-resonance and interference effects cause the frequency response of tightly packed arrays, with spacing corresponding to the order of a body length for fish, to differ significantly from those of more dispersed arrays. As the array spacing is increased to the equivalent of several body lengths, these effects rapidly diminish. The results of this comparison demonstrate that, at low to mid frequencies, coupled resonance and interference effects are likely in schooling fish, and need to be considered in applications of underwater acoustic methods to the study of fish populations.

  5. Fast Litho-Panspermia in Tightly-Packed Systems Around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Krijt, S.; Bowling, T. J.; Lyons, R. J.; Ciesla, F. J.

    2017-11-01

    We investigate the fate of impact ejecta in tightly-packed planetary architectures like the TRAPPIST-1 system, finding that material transfer in such configurations is many orders of magnitude faster compared to the inner solar system.

  6. Influence of Surface Roughness on Polymer Drag Reduction

    DTIC Science & Technology

    2007-11-30

    paint (High Build Semi-Gloss 97-130, Aquapon ) with glass bead grit. The particles were tightly packed producing a sand grain type roughness. Based on the... Aquapon High Build Semi-Gloss Epoxy 97-130) with glass bead grit blown into the epoxy. The particles were tightly packed giving an average roughness height

  7. Transit Duration Variations due to Secular Interactions in Systems with Tightly-packed Inner Planets

    NASA Astrophysics Data System (ADS)

    Boley, Aaron; Van Laerhoven, Christa; Granados Contreras, A. Paula

    2018-04-01

    Secular interactions among planets in multi-planet systems will lead to variations in orbital inclinations and to the precession of orbital nodes. Taking known system architectures at face value, we calculate orbital precession rates for planets in tightly-packed systems using classical second-order secular theory, in which the orientation of the orbits can be described as a vector sum of eigenmodes and the eigenstructure is determined only by the masses and semi-major axes of the planets. Using this framework, we identify systems that have fast precession frequencies, and use those systems to explore the range of transit duration variation that could occur using amplitudes that are consistent with tightly-packed planetary systems. We then further assess how transit duration variations could be used in practice.

  8. Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietri, G.

    1977-02-01

    The ability to tightly pack millions of microscopic secondary emitting channels into a two-dimensional, very thin, array known as a microchannel plate (MCP) provides excellent electrical charge or current amplification associated with an extremely short response time as well as very good spatial resolution. The ultimate performances in spatial and temporal resolutions achieved by MCP-based vacuum devices are discussed and illustrated by the description of a large range of experimental prototypes (photomultipliers, oscilloscope tubes, streak camera tubes, etc.) designed and produced at LEP, then tested in cooperation with Nuclear Research and Plasma Physics Centers in Europe and USA.

  9. The Advanced ACTPol 27/39 GHz Array

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Beall, J. A.; Cothard, N. F.; Duff, S. M.; Gallardo, P. A.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; McMahon, J. J.; Nati, F.; Niemack, M. D.; Staggs, S. T.; Vavagiakis, E. M.; Wollack, E. J.

    2018-05-01

    Advanced ACTPol (AdvACT) will observe the temperature and polarization of the cosmic microwave background (CMB) at multiple frequencies and high resolution to place improved constraints on inflation, dark matter, and dark energy. Foregrounds from synchrotron and dust radiation are a source of contamination that must be characterized and removed across a wide range of frequencies. AdvACT will thus observe at five frequency bands from 27 to 230 GHz. We discuss the design of the pixels and feedhorns for the 27/39 GHz multichroic array for AdvACT, which will target the synchrotron radiation that dominates at these frequencies. To gain 35% in mapping speed in the 39 GHz band where the foreground signals are faintest, the pixel number was increased through reducing the pixel diameter to 1.08λ at the lowest frequency, which represents a 22% decrease in size compared to our previously most tightly packed pixels.

  10. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    NASA Astrophysics Data System (ADS)

    Buzhynskyy, Nikolay; Sens, Pierre; Behar-Cohen, Francine; Scheuring, Simon

    2011-08-01

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  11. Plasmonic Biosensor Based on Vertical Arrays of Gold Nanoantennas.

    PubMed

    Klinghammer, Stephanie; Uhlig, Tino; Patrovsky, Fabian; Böhm, Matthias; Schütt, Julian; Pütz, Nils; Baraban, Larysa; Eng, Lukas M; Cuniberti, Gianaurelio

    2018-06-25

    Implementing large arrays of gold nanowires as functional elements of a plasmonic biosensor is an important task for future medical diagnostic applications. Here we present a microfluidic-channel-integrated sensor for the label-free detection of biomolecules, relying on localized surface plasmon resonances. Large arrays (∼1 cm 2 ) of vertically aligned and densely packed gold nanorods to receive, locally confine, and amplify the external optical signal are used to allow for reliable biosensing. We accomplish this by monitoring the change of the optical nanostructure resonance in the presence of biomolecules within the tight focus area above the nanoantennas, combined with a surface treatment of the nanowires for a specific binding of the target molecules. As a first application, we detect the binding kinetics of two distinct DNA strands as well as the following hybridization of two complementary strands (cDNA) with different lengths (25 and 100 bp). Upon immobilization, a redshift of 1 nm was detected; further backfilling and hybridization led to a peak shift of additional 2 and 5 nm for 25 and 100 bp, respectively. We believe that this work gives deeper insight into the functional understanding and technical implementation of a large array of gold nanowires for future medical applications.

  12. Spatial structure of kinetic energy spectra in LES simulations of flow in an offshore wind farm

    NASA Astrophysics Data System (ADS)

    Fruh, Wolf-Gerrit; Creech, Angus

    2017-04-01

    The evolution of wind turbine and wind farm wakes was investigated numerically for the case of Lillgrund wind farm consisting of a tightly packed array of 48 turbines. The simulations for a number of wind directions at a free wind speed of just under the rated wind speed in a neutrally stable atmosphere were carried out using Large-Eddy Simulations with the adaptive Finite-Element CFD solver Fluidity. The results were interpolated from the irregularly spaced mesh nodes onto a regular grid with comparable spatial resolution at horizontal slices at various heights. To investigate the development of the wake as the flow evolves through the array, spectra of the kinetic energy in sections perpendicular to the wind directions within the wake and to the sides of the array were calculated. This paper will present the key features and spectral slopes of the flow as a function of downstream distance from the front turbine through and beyond the array. The main focus will be on the modification of the spectra as the flow crosses a row of turbines followed by its decay in the run-up to the next row, but we will also present to wake decay of the wind farm wake downstream of the array.

  13. 7 CFR 51.1311 - Packing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... size and quality of the contents of the package. (b) Pears packed in any container shall be tightly...

  14. 7 CFR 51.1311 - Packing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... size and quality of the contents of the package. (b) Pears packed in any container shall be tightly...

  15. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold.

    PubMed

    Blakeney, Bryan A; Tambralli, Ajay; Anderson, Joel M; Andukuri, Adinarayana; Lim, Dong-Jin; Dean, Derrick R; Jun, Ho-Wook

    2011-02-01

    A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less-dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold that is more advantageous for highly porous interconnectivity and demonstrates great potential for tackling current challenges of electrospun scaffolds. 2010 Elsevier Ltd. All rights reserved.

  16. Sputtering-growth of seeded Au nanoparticles for nanogap-assisted surface-enhanced Raman scattering (SERS) biosensing

    NASA Astrophysics Data System (ADS)

    Fu, Chit Yaw; U. S., Dinish; Rautela, Shashi; Goh, Douglas Wenda; Olivo, Malini

    2011-12-01

    Gold-coated array patterned with tightly-packed nanospheres was developed as a substrate base for constructing SERSenriched nanogaps with Au-nanoparticles (GNPs). Using 1,2-ethanedithiol as a linker, Au-NPs (=17-40nm) were anchored covalently on the sphere-array. Thin Au layer was sputtered on the substrate to mask the citrate coating of GNPs that could demote the sensing mechanism. The negatively-charged GNP surface warrants the colloidal stability, but the resulting repulsive force keeps the immobilized NPs apart by about 40nm. The attained gap size is inadequately narrow to sustain any intense enhancement owing to the near-field nature of SERS. Minimal amount of NaCl was then added to slightly perturb the colloidal stability by reducing their surface charge. Notably, the interparticle-gap reduces at increasing amount of salt, giving rise to increased packing density of GNPs. The SERS enhancement is also found to exponentially increase at decreasing gap size. Nevertheless, the minimum gap achieved is limited to merely 7nm. Excessive addition of salt would eventually induce complete aggregation of particles, forming clustered NPs on the array. A simple sputtering-growth approach is therefore proposed to further minimize the interparticle gap by enlarging the seeded NPs based on mild sputtering. The SEM images confirm that the gap below 7nm is achievable. With advent of the colloidal chemistry, the combined salt-induced aggregation and sputtering-growth techniques can be applied to engineer interparticle gap that is crucial to realize an ultrasensitive SERS biosensor. The proposed two-step preparation can be potentially adopted to fabricate the SERS-enriched nanogaps on the microfluidics platform.

  17. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  18. Wetting behavior on hexagonally close-packed polystyrene bead arrays with different topographies.

    PubMed

    Park, Yi-Seul; Yoon, Seo Young; Lee, Jin Seok

    2016-01-21

    Herein, we investigated the wetting behavior of hexagonally close-packed polystyrene bead arrays with different bead diameters and surface flatness. The contact angle was found to be influenced by the surface roughness as well as the contact area of the polystyrene bead array with a water droplet.

  19. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    PubMed Central

    Usuki, T; Ohshima, T; Sakuma, Y; Kawabe, M; Okada, Y; Takemoto, K; Miyazawa, T; Hirose, S; Nakata, Y; Takatsu, M; Yokoyama, N

    2006-01-01

    An atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs). Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  20. Infrared fiber optic focal plane dispersers

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.

    1981-01-01

    Far infrared transmissive fiber optics as a component in the design of integrated far infrared focal plane array utilization is discussed. A tightly packed bundle of fibers is placed at the focal plane, where an array of infrared detectors would normally reside, and then fanned out in two or three dimensions to individual detectors. Subsequently, the detectors are multiplexed by cryogenic electronics for relay of the data. A second possible application is frequency up-conversion (v sub 1 + v sub 2 = v sub 3), which takes advantage of the nonlinear optical index of refraction of certain infrared transmissive materials in fiber form. Again, a fiber bundle is utilized as above, but now a laser of frequency v sub 1 is mixed with the incoming radiation of frequency v sub 1 within the nonlinear fiber material. The sum, v sub 2 is then detected by near infrared or visible detectors which are more sensitive than those available at v sub 2. Due to the geometrical size limitations of detectors such as photomultipliers, the focal plane dispersal technique is advantageous for imaging up-conversion.

  1. A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman

    2016-12-01

    The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.

  2. Vortex circulation and polarity patterns in closely packed cap arrays

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.; ...

    2016-01-25

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  3. The compression–error trade-off for large gridded data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, Jeremy D.; Zender, Charles S.

    The netCDF-4 format is widely used for large gridded scientific data sets and includes several compression methods: lossy linear scaling and the non-lossy deflate and shuffle algorithms. Many multidimensional geoscientific data sets exhibit considerable variation over one or several spatial dimensions (e.g., vertically) with less variation in the remaining dimensions (e.g., horizontally). On such data sets, linear scaling with a single pair of scale and offset parameters often entails considerable loss of precision. We introduce an alternative compression method called "layer-packing" that simultaneously exploits lossy linear scaling and lossless compression. Layer-packing stores arrays (instead of a scalar pair) of scalemore » and offset parameters. An implementation of this method is compared with lossless compression, storing data at fixed relative precision (bit-grooming) and scalar linear packing in terms of compression ratio, accuracy and speed. When viewed as a trade-off between compression and error, layer-packing yields similar results to bit-grooming (storing between 3 and 4 significant figures). Bit-grooming and layer-packing offer significantly better control of precision than scalar linear packing. Relative performance, in terms of compression and errors, of bit-groomed and layer-packed data were strongly predicted by the entropy of the exponent array, and lossless compression was well predicted by entropy of the original data array. Layer-packed data files must be "unpacked" to be readily usable. The compression and precision characteristics make layer-packing a competitive archive format for many scientific data sets.« less

  4. The compression–error trade-off for large gridded data sets

    DOE PAGES

    Silver, Jeremy D.; Zender, Charles S.

    2017-01-27

    The netCDF-4 format is widely used for large gridded scientific data sets and includes several compression methods: lossy linear scaling and the non-lossy deflate and shuffle algorithms. Many multidimensional geoscientific data sets exhibit considerable variation over one or several spatial dimensions (e.g., vertically) with less variation in the remaining dimensions (e.g., horizontally). On such data sets, linear scaling with a single pair of scale and offset parameters often entails considerable loss of precision. We introduce an alternative compression method called "layer-packing" that simultaneously exploits lossy linear scaling and lossless compression. Layer-packing stores arrays (instead of a scalar pair) of scalemore » and offset parameters. An implementation of this method is compared with lossless compression, storing data at fixed relative precision (bit-grooming) and scalar linear packing in terms of compression ratio, accuracy and speed. When viewed as a trade-off between compression and error, layer-packing yields similar results to bit-grooming (storing between 3 and 4 significant figures). Bit-grooming and layer-packing offer significantly better control of precision than scalar linear packing. Relative performance, in terms of compression and errors, of bit-groomed and layer-packed data were strongly predicted by the entropy of the exponent array, and lossless compression was well predicted by entropy of the original data array. Layer-packed data files must be "unpacked" to be readily usable. The compression and precision characteristics make layer-packing a competitive archive format for many scientific data sets.« less

  5. Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor.

    PubMed

    Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing

    2018-05-09

    Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.

  6. Animal-eyeball vs. road-sign retroreflectors.

    PubMed

    Greene, Nathaniel R; Filko, Brian J

    2010-01-01

    The retroreflective characteristics of ex-vitro cow and deer eyeballs were compared to those of man-made materials used in road signs and bicycle-style reflectors. Reflected intensities were measured using a goniometer that consists of a green He-Ne laser as the light source, and a photomultiplier tube as the detector. It was found that the best quality road-sign reflector, made from a 200-micron-scale, close-packed array of corner cubes, is approximately six times more efficient than a cow eyeball at returning light in the direction of the incoming beam. Less expensive man-made retroreflectors, utilizing 35-micron glass beads (as in mailbox decals) or millimeter-scale arrays of corner cubes (bicycle-style reflectors) are, however, less efficient than the cow eye. The high quality of animal eyeball optics is evidenced by their extremely tight angular spread (full width half maximum congruent with 1 degrees) of retroreflected intensity about the incident path. Moreover, as the reflector itself is rotated relative to the incident beam, the eyeballs preserve their efficiency of retroreflection better than the man-made materials. Interference-diffraction patterns were observed in the retroreflected beams from the small-scale corner cubes, but were not observed in eyeball retroreflection.

  7. Auxiliary Components for Kilopixel Transition Edge Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Chervenak, James A.; Chuss, David; Hilton Gene C.; Mikula, Vilem; Henry, ROss; Wollack, Edward; Zhao, Yue

    2007-01-01

    We have fabricated transition edge sensor bolometer focal plane arrays sensitive to mm-submillimeter (0.1-3 THz) radiation for the Atacama Cosmology Telescope (ACT), which will probe the cosmic microwave background at 0.147,0.215, and 0.279 GHz. Central to the performance of these bolometers is a set of auxiliary resistive components. Here we discuss shunt resistors, which allow for tight optimization of bolometer time constant and sensitivity. Our shunt resistors consist of AuPd strips grown atop of interdigitated superconducting MoN, wires. We can tailor the shunt resistance by altering the dimensions of the AuPd strips and the pitch and width of the MoN, wires and can fabricate over 1000 shunts on a single 4" wafer. By modeling the resistance dependence of these parameters, a variety of different 0.77 +I-0.13 mOhm shunt resistors have been fabricated. This variety includes different shunts possessing MoN, wires with wire width equal to 1.5 and 10 microns and pitch equal to 4.5 and 26 microns, respectively. Our ability to set the resistance of the shunts hints at the scalability of our design. We have also integrated a Si02 capping layer into our shunt resistor fabrication scheme, which inhibits metal corrosion and eventual degradation of the shunt. Consequently, their robustness coupled with their high packing density makes these resistive components attractive for future kilopixel detector arrays.

  8. Saturable inductor and transformer structures for magnetic pulse compression

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1990-01-01

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  9. Optical dipole forces: Working together

    NASA Astrophysics Data System (ADS)

    Aiello, Clarice D.

    2017-03-01

    Strength lies in numbers and in teamwork: tens of thousands of artificial atoms tightly packed in a nanodiamond act cooperatively, enhancing the optical trapping forces beyond the expected classical bulk polarizability contribution.

  10. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    PubMed

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Layout and cabling considerations for a large communications antenna array

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.

    1993-01-01

    Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.

  12. The reflection and transmission properties of a triple band dichroic surface

    NASA Technical Reports Server (NTRS)

    Schneider, S. W.; Munk, B. A.

    1990-01-01

    The development of a triple-band dichroic surface design is detailed that is reflective in the Ka-band from 22.5 to 27.3 GHz and the Ku-band from 13.7 to 15.1 GHz, yet transparent in the S-band from 2.0 to 2.3 GHz, for all planes of incidence, and for all angles of incidence out to eta = 45 deg. The design is comprised of two gangbuster whole-surfaces separated by a distance, d, that is comparable to a fraction of a wavelength in S-band, and enhanced by the addition of a dielectric matching plate. The gangbuster array is comprised of tightly packed straight skewed dipole elements referred to as half-surfaces. Two of these half-surfaces are oriented orthogonal to each other and placed an array separation distance, s, apart to form the gangbuster whole-surface which allows any arbitrary plane of incidence. Results are given for the triple-band design with and without dielectric and conduction losses. The cross polarization properties of the dichroic surface was further investigated. It is shown that the reflection cross polarized component is dominated by the geometry of the front whole surface of the design (particularly the array separation s) and is never more than -22.5 dB in the frequency band 0 to 30 GHz. The transmission cross polarization component is dependent on both whole-surfaces and is never more than -30 dB in the same frequency band.

  13. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.

    PubMed

    Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai

    2010-12-07

    We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.

  14. Exciton intrachain transport induced by interchain packing configurations in conjugated polymers.

    PubMed

    Meng, Ruixuan; Gao, Kun; Zhang, Gaiyan; Han, Shixuan; Yang, Fujiang; Li, Yuan; Xie, Shijie

    2015-07-28

    Based on a tight binding model combined with a nonadiabatic dynamics approach, we theoretically investigate the exciton intrachain transport in conjugated polymers with different interchain packing configurations. We construct two different interchain packing configurations, i.e. linear and exponential forms, and simulate the dynamical processes of the exciton transport in these systems. We find that, in both cases, there exists a distribution of driving force for exciton transport, which stems from the gradient of the exciton creation energy along the chains. This finding enriches the picture of exciton transport in polymers and provides a new idea to improve the exciton transport length in polymeric photovoltaic devices.

  15. A systematic search method for the identification of tightly packed transmembrane parallel alpha-helices.

    PubMed

    Akula, Nagaraju; Pattabiraman, Nagarajan

    2005-06-01

    Membrane proteins play a major role in number of biological processes such as signaling pathways. The determination of the three-dimensional structure of these proteins is increasingly important for our understanding of their structure-function relationships. Due to the difficulty in isolating membrane proteins for X-ray diffraction studies, computational techniques are being developed to generate the 3D structures of TM domains. Here, we present a systematic search method for the identification of energetically favorable and tightly packed transmembrane parallel alpha-helices. The first step in our systematic search method is the generation of 3D models for pairs of parallel helix bundles with all possible orientations followed by an energy-based filter to eliminate structures with severe non-bonded contacts. Then, a RMS-based filter was used to cluster these structures into families. Furthermore, these dimers were energy minimized using molecular mechanics force field. Finally, we identified the tightly packed parallel alpha-helices by using an interface surface area. To validate our search method, we compared our predicted GlycophorinA dimer structures with the reported NMR structures. With our search method, we are able to reproduce NMR structures of GPA with 0.9A RMSD. In addition, by considering the reported mutational data on GxxxG motif interactions, twenty percent of our predicted dimers are within in the 2.0A RMSD. The dimers obtained from our method were used to generate parallel trimeric and tetramer TM structures of GPA and found that the structure of GPA might exist only in a dimer form as reported earlier.

  16. Closed Small Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    ... (right)   The structure of tightly packed "closed cells" in a layer of marine stratocumulus over the southeastern Pacific Ocean ... they are bright and abundant, and reflect a large amount of solar energy toward space. They are difficult to represent in climate models ...

  17. Kepler-444 Planetary System Artist Concept

    NASA Image and Video Library

    2015-01-28

    The tightly packed system, named Kepler-444, is home to five small planets in very compact orbits. The planets were detected from the dimming that occurs when they transit the disk of their parent star, as shown in this artist conception.

  18. Teaching with Technology: The Classroom Manager. Cost-Conscious Computing.

    ERIC Educational Resources Information Center

    Smith, Rhea; And Others

    1992-01-01

    Teachers discuss how to make the most of technology in the classroom during a tight economy. Ideas include recycling computer printer ribbons, buying replacement batteries for computer power supply packs, upgrading via software, and soliciting donated computer equipment. (SM)

  19. Standard atomic volumes in double-stranded DNA and packing in protein–DNA interfaces

    PubMed Central

    Nadassy, Katalin; Tomás-Oliveira, Isabel; Alberts, Ian; Janin, Joël; Wodak, Shoshana J.

    2001-01-01

    Standard volumes for atoms in double-stranded B-DNA are derived using high resolution crystal structures from the Nucleic Acid Database (NDB) and compared with corresponding values derived from crystal structures of small organic compounds in the Cambridge Structural Database (CSD). Two different methods are used to compute these volumes: the classical Voronoi method, which does not depend on the size of atoms, and the related Radical Planes method which does. Results show that atomic groups buried in the interior of double-stranded DNA are, on average, more tightly packed than in related small molecules in the CSD. The packing efficiency of DNA atoms at the interfaces of 25 high resolution protein–DNA complexes is determined by computing the ratios between the volumes of interfacial DNA atoms and the corresponding standard volumes. These ratios are found to be close to unity, indicating that the DNA atoms at protein–DNA interfaces are as closely packed as in crystals of B-DNA. Analogous volume ratios, computed for buried protein atoms, are also near unity, confirming our earlier conclusions that the packing efficiency of these atoms is similar to that in the protein interior. In addition, we examine the number, volume and solvent occupation of cavities located at the protein–DNA interfaces and compared them with those in the protein interior. Cavities are found to be ubiquitous in the interfaces as well as inside the protein moieties. The frequency of solvent occupation of cavities is however higher in the interfaces, indicating that those are more hydrated than protein interiors. Lastly, we compare our results with those obtained using two different measures of shape complementarity of the analysed interfaces, and find that the correlation between our volume ratios and these measures, as well as between the measures themselves, is weak. Our results indicate that a tightly packed environment made up of DNA, protein and solvent atoms plays a significant role in protein–DNA recognition. PMID:11504874

  20. How coupling affects closely packed rectenna arrays used for wireless power transmission

    NASA Astrophysics Data System (ADS)

    Walls, Deidra; Choi, Sang H.; Yoon, Hargsoon; Geddis, Demetris; Song, Kyo D.

    2017-04-01

    The development of power transmission by microwave beam power harvesting attracts manufactures for use of wireless power transmission. Optimizing maximum conversion efficiency is affected by many design parameters, and has been mainly focused previously. Combining several rectennas in one array potentially aides in the amount of microwave energy that can be harvested for energy conversion. Closely packed rectenna arrays is the result of the demand to minimize size and weight for flexibility. This paper specifically focuses on the coupling effects on power; mutual coupling, comparing sparameters and gain total while varying effective parameters. This paper investigates how coupling between each dipole positively and negatively affects the microwave energy, harvesting, and the design limitations.

  1. 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro

    1996-10-01

    The 2D-crystallization method using the liquid-liquid interface between a aqueous phase (protein solution) and a thin organic liquid (dehydroabietylamine) layer has been applied to the Rhodococcus 20S proteasome. The 20S proteasome is known to be the core complex of the 26S proteasome, which is the central protease of the ubiquitin-dependent pathway. Two types of ordered arrays were obtained, both large enough for high resolution analysis by electron crystallography. The first one had a four-fold symmetry, whereas the second one was found out to be a hexagonally close-packed array. By image analysis based on a real space correlation averaging (CAV) technique, the close-packed array was found to be hexagonally packed, but the molecules had presumably rotational freedom. The four-fold array was found to be a true crystal with p4 symmetry. Lattice constants were a = b = 20.0 nm and α = 90°. The unit cell of this crystal contained two molecules. The diffraction pattern computed from the original picture showed spots up to (4, 5) that corresponds to 3.1 nm resolution. After applying an unbending procedure, the diffraction pattern showed spots extending to 1.8 nm resolution.

  2. Histological analysis of the structural composition of ankle ligaments.

    PubMed

    Rein, Susanne; Hagert, Elisabet; Schneiders, Wolfgang; Fieguth, Armin; Zwipp, Hans

    2015-02-01

    Various ankle ligaments have different structural composition. The aim of this study was to analyze the morphological structure of ankle ligaments to further understand their function in ankle stability. One hundred forty ligaments from 10 fresh-frozen cadaver ankle joints were dissected: the calcaneofibular, anterior, and posterior talofibular ligaments; the inferior extensor retinaculum, the talocalcaneal oblique ligament, the canalis tarsi ligament; the deltoid ligament; and the anterior tibiofibular ligament. Hematoxylin-eosin and Elastica van Gieson stains were used for determination of tissue morphology. Three different morphological compositions were identified: dense, mixed, and interlaced compositions. Densely packed ligaments, characterized by parallel bundles of collagen, were primarily seen in the lateral region, the canalis tarsi, and the anterior tibiofibular ligaments. Ligaments with mixed tight and loose parallel bundles of collagenous connective tissue were mainly found in the inferior extensor retinaculum and talocalcaneal oblique ligament. Densely packed and fiber-rich interlacing collagen was primarily seen in the areas of ligament insertion into bone of the deltoid ligament. Ligaments of the lateral region, the canalis tarsi, and the anterior tibiofibular ligaments have tightly packed, parallel collagen bundles and thus can resist high tensile forces. The mixed tight and loose, parallel oriented collagenous connective tissue of the inferior extensor retinaculum and the talocalcaneal oblique ligament support the dynamic positioning of the foot on the ground. The interlacing collagen bundles seen at the insertion of the deltoid ligament suggest that these insertion areas are susceptible to tension in a multitude of directions. The morphology and mechanical properties of ankle ligaments may provide an understanding of their response to the loads to which they are subjected. © The Author(s) 2015.

  3. Fabrication of close-packed TES microcalorimeter arrays using superconducting molybdenum/gold transition-edge sensors

    NASA Astrophysics Data System (ADS)

    Finkbeiner, F. M.; Brekosky, R. P.; Chervenak, J. A.; Figueroa-Feliciano, E.; Li, M. J.; Lindeman, M. A.; Stahle, C. K.; Stahle, C. M.; Tralshawala, N.

    2002-02-01

    We present an overview of our efforts in fabricating Transition-Edge Sensor (TES) microcalorimeter arrays for use in astronomical x-ray spectroscopy. Two distinct types of array schemes are currently pursued: 5×5 single pixel TES array where each pixel is a TES microcalorimeter, and Position-Sensing TES (PoST) array. In the latter, a row of 7 or 15 thermally-linked absorber pixels is read out by two TES at its ends. Both schemes employ superconducting Mo/Au bilayers as the TES. The TES are placed on silicon nitride membranes for thermal isolation from the structural frame. The silicon nitride membranes are prepared by a Deep Reactive Ion Etch (DRIE) process into a silicon wafer. In order to achieve the concept of closely packed arrays without decreasing its structural and functional integrity, we have already developed the technology to fabricate arrays of cantilevered pixel-sized absorbers and slit membranes in silicon nitride films. Furthermore, we have started to investigate ultra-low resistance through-wafer micro-vias to bring the electrical contact out to the back of a wafer. .

  4. Understanding the effects of packing and chemical terminations on the optical excitations of azobenzene-functionalized self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Cocchi, Caterina; Draxl, Claudia

    2017-10-01

    In a first-principles study based on many-body perturbation theory, we analyze the optical excitations of azobenzene-functionalized self-assembled monolayers (SAMs) with increasing packing density and different terminations, considering for comparison the corresponding gas-phase molecules and dimers. Intermolecular coupling increases with the density of the chromophores independently of the functional groups. The intense π → π* resonance that triggers photo-isomerization is present in the spectra of isolated dimers and diluted SAMs, but it is almost completely washed out in tightly packed architectures. Intermolecular coupling is partially inhibited by mixing differently functionalized azobenzene derivatives, in particular when large groups are involved. In this way, the excitation band inducing the photo-isomerization process is partially preserved and the effects of dense packing partly counterbalanced. Our results suggest that a tailored design of azobenzene-functionalized SAMs which optimizes the interplay between the packing density of the chromophores and their termination can lead to significant improvements in the photo-switching efficiency of these systems.

  5. Packing loops into annular cavities.

    PubMed

    Sobral, T A; Gomes, M A F

    2017-02-01

    The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.

  6. Packing loops into annular cavities

    NASA Astrophysics Data System (ADS)

    Sobral, T. A.; Gomes, M. A. F.

    2017-02-01

    The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.

  7. Microstructure of cotton fibrous assemblies based on computed tomography

    NASA Astrophysics Data System (ADS)

    Jing, Hui; Yu, Weidong

    2017-12-01

    This paper describes for the first time the analysis of inner microstructure of cotton fibrous assemblies using computed tomography. Microstructure parameters such as packing density, fractal dimension as well as porosity including open porosity, closed porosity and total porosity are calculated based on 2D data from computed tomography. Values of packing density and fractal dimension are stable in random oriented fibrous assemblies, and there exists a satisfactory approximate linear relationship between them. Moreover, poles analysis indicates that porosity represents the tightness of fibrous assemblies and open poles are main existence.

  8. STS-97 Mission Specialist Tanner during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Joseph Tanner gets help with his boots from suit technician Erin Canlon during check pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  9. STS-97 Mission Specialist Noriega during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Carlos Noriega gets help with his boots from suit technician Shelly Grick-Agrella during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  10. Two-Dimensional Ordering of Solute Nanoclusters at a Close-Packed Stacking Fault: Modeling and Experimental Analysis

    PubMed Central

    Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu

    2014-01-01

    Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232

  11. Tailoring the High-Q LC Filter Arrays for Readout of Kilo-Pixel TES Arrays in the SPICA-SAFARI Instrument

    NASA Astrophysics Data System (ADS)

    Bruijn, M. P.; Gottardi, L.; den Hartog, R. H.; van der Kuur, J.; van der Linden, A. J.; Jackson, B. D.

    2014-08-01

    Following earlier presentations of arrays of high quality factor (Q 10.000) superconducting resonators in the MHz regime, we report on improvement of the packing density of resonance frequencies to 160 in the 1-3 MHz band. Spread in the spacing of resonances is found to be limited to 1 kHz (1 with the present fabrication procedure. The present packing density of frequencies and chip area approaches the requirements for the SAFARI instrument on the SPICA mission (in preparation). The a-Si:H dielectric layer in the planar S-I-S capacitors shows a presently unexplained apparent negative effective series resistance, depending on operating temperature and applied testing voltage.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  13. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    NASA Astrophysics Data System (ADS)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  14. Heat Sinking, Cross Talk, and Temperature Stability for Large, Close-Packed Arrays of Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack; hide

    2007-01-01

    We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.

  15. Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Mingling; Lan, Xu; Weng, Xiaokang; Shu, Qijiang; Wang, Rongfei; Qiu, Feng; Wang, Chong; Yang, Yu

    2018-06-01

    Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.

  16. Spindt cold cathode electron gun development program

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1983-01-01

    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.

  17. The Hughes HS601HP spacecraft power subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krummann, W.; Ayvazian, H.

    1998-07-01

    The introduction of the Hughes HS 601HP (high power) spacecraft product line continuous the highly successful HS601 three axis stabilized geosynchronus spacecraft with increased power capabilities for larger payload applications. The enhanced power capabilities of the HS 601HP are built upon the heritage of 29 HS601 spacecraft presently in operation. The HS 601HP accommodates payload power ranges of 3 to 7 kilowatts and provides a smooth transition from the lower power HS 601 spacecraft to the HS 702 spacecraft, which has a payload capability up to 13 kilowatts. The HS 601HP spacecraft is designed for a 15 year life withmore » minimal operator interaction. The HS 601HP power subsystem provides a regulated power bus with a voltage range of 52 to 53 volts during all operational phases. The power subsystem is tailored to the specific needs of the spacecraft by selecting standard products from the HS 601HP power catalog. The solar arrays, battery, power control electronics and power distribution electronics are all modular and configurable to the requirements of the spacecraft. The HS 601HP solar array is the primary power source for the spacecraft. The solar array is comprised of two sets of planar solar panels (solar wings) which track the sun in a single spacecraft axis. The solar cells are selected from three different types based upon the spacecraft power generation requirements; silicon, single junction gallium arsenide or dual junction gallium arsenide. The maximum power capability at end of life (15 years, summer solstice) ranges from 4 to 7.7 kilowatts for the three types of solar cells. The HS 601HP battery is the power source for the spacecraft during eclipse and peak sunlight power periods. The battery is comprised of four individual battery packs connected in series to produce a single battery. Each battery pack can accommodate a maximum of eight battery cells with a capacity of 350 ampere-hours. The battery pack also provides for mounting of all electronics utilized by the battery, such as cell bypassing. The power electronics for the HS 601HP spacecraft provide for a tightly regulated power bus whether in sunlight or eclipse (battery discharge) operation. The bus voltage during sunlight is maintained by two bus voltage limiters (BVL), located on the yoke of each solar wing. The BVL maintains the regulated power bus at 52.9 volts by shunting excess solar wing power when not required by the spacecraft. The bus voltage during eclipse is maintained by two battery power controllers (BPC) located on the spacecraft bus shelf. The BPC maintains the regulated power bus at 52.2 volts during battery discharge and also provides for battery charging when excess solar array power is available. The power from the solar array or battery is distributed to the spacecraft by bus and payload power distribution units (PDU). The HS 601HP spacecraft product line now has three spacecraft in orbit. The first was launched in early November of 1997 with the second and third launched in late November and early December of 1997, respectively. The power systems are performing as designed and correlate well with the predicted performance calculations. Several more HS 601HP are scheduled to launch during 1998.« less

  18. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  19. STS-97 Mission Specialist Garneau with full launch and entry suit during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Commander Brent Jett gets help with his gloves from suit technician Bill Todd. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  20. STS-97 Mission Specialist Garneau during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau gets help with his boots from suit technician Tommy McDonald during pre-pack and fit check. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  1. Solar Structures Program

    DTIC Science & Technology

    2015-03-27

    Regulator Board ................................................................................. 3  Figure 4 Lithium Ion Battery ...Figure 4 Lithium Ion Battery The team used these cells and combined them into packs for environmental testing. Each pack had six cells as shown in... lithium + ion + battery ; 27 February, 2015. [9] The MMA Corporation’s High Watts per Kilogram array; accessed online: http://www.mmadesignllc.com/products

  2. Charge Stabilized Crystalline Colloidal Arrays As Templates For Fabrication of Non-Close-Packed Inverted Photonic Crystals

    PubMed Central

    Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.

    2010-01-01

    We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800

  3. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    2000-01-01

    A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.

  4. 46 CFR 160.054-2 - Type and size.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Kits, First-Aid, for Inflatable Liferafts § 160.054-2 Type and size. (a) Type. First-aid kits covered by this specification shall be of the water-tight type... special consideration. (b) Size. First-aid kits shall be of a size adequate for packing 12 standard single...

  5. 46 CFR 160.054-2 - Type and size.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Kits, First-Aid, for Inflatable Liferafts § 160.054-2 Type and size. (a) Type. First-aid kits covered by this specification shall be of the water-tight type... special consideration. (b) Size. First-aid kits shall be of a size adequate for packing 12 standard single...

  6. 46 CFR 160.054-2 - Type and size.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Kits, First-Aid, for Inflatable Liferafts § 160.054-2 Type and size. (a) Type. First-aid kits covered by this specification shall be of the water-tight type... special consideration. (b) Size. First-aid kits shall be of a size adequate for packing 12 standard single...

  7. 46 CFR 160.054-2 - Type and size.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Kits, First-Aid, for Inflatable Liferafts § 160.054-2 Type and size. (a) Type. First-aid kits covered by this specification shall be of the water-tight type... special consideration. (b) Size. First-aid kits shall be of a size adequate for packing 12 standard single...

  8. 46 CFR 160.054-2 - Type and size.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Kits, First-Aid, for Inflatable Liferafts § 160.054-2 Type and size. (a) Type. First-aid kits covered by this specification shall be of the water-tight type... special consideration. (b) Size. First-aid kits shall be of a size adequate for packing 12 standard single...

  9. Spatial arrangement of legionella colonies in intact biofilms from a model cooling water system.

    PubMed

    Taylor, Michael; Ross, Kirstin; Bentham, Richard

    2013-01-01

    There is disagreement among microbiologists about whether Legionella requires a protozoan host in order to replicate. This research sought to determine where in biofilm Legionellae are found and whether all biofilm associated Legionella would be located within protozoan hosts. While it is accepted that Legionella colonizes biofilm, its life cycle and nutritional fastidiousness suggest that Legionella employs multiple survival strategies to persist within microbial systems. Fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) demonstrated an undulating biofilm surface architecture and a roughly homogenous distribution of heterotrophic bacteria with clusters of protozoa. Legionella displayed 3 distinct spatial arrangements either contained within or directly associated with protozoa, or dispersed in loosely associated clusters or in tightly packed aggregations of cells forming dense colonial clusters. The formation of discreet clusters of tightly packed Legionella suggests that colony formation is influenced by specific environmental conditions allowing for limited extracellular replication. This work represents the first time that an environmentally representative, multispecies biofilm containing Legionella has been fluorescently tagged and Legionella colony morphology noted within a complex microbial system.

  10. A role for direct interactions in the modulation of rhodopsin by -3 polyunsaturated lipids

    NASA Astrophysics Data System (ADS)

    Grossfield, Alan; Feller, Scott E.; Pitman, Michael C.

    2006-03-01

    Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; -3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA's effects on rhodopsin stability and kinetics. cholesterol | molecular dynamics | fatty acid | protein-lipid interactions

  11. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Mahmoud A., E-mail: mmahmoud@gatech.edu

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. Themore » calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.« less

  13. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    PubMed

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.

  14. Molecular Occupancy of Nanodot Arrays.

    PubMed

    Cai, Haogang; Wolfenson, Haguy; Depoil, David; Dustin, Michael L; Sheetz, Michael P; Wind, Shalom J

    2016-04-26

    Single-molecule nanodot arrays, in which a biomolecule of choice (protein, nucleic acid, etc.) is bound to a metallic nanoparticle on a solid substrate, are becoming an increasingly important tool in the study of biomolecular and cellular interactions. We have developed an on-chip measurement protocol to monitor and control the molecular occupancy of nanodots. Arrays of widely spaced nanodots and nanodot clusters were fabricated on glass surfaces by nanolithography and functionalized with fluorescently labeled proteins. The molecular occupancy was determined by monitoring individual fluorophore bleaching events, while accounting for fluorescence quenching effects. We found that the occupancy can be interpreted as a packing problem, and depends on nanodot size and binding ligand concentration, where the latter is easily adjusted to compensate the flexibility of dimension control in nanofabrication. The results are scalable with nanodot cluster size, extending to large area close packed arrays. As an example, the nanoarray platform was used to probe the geometric requirement of T-cell activation at the single-molecule level.

  15. Towards Development of Microcalorimeter Arrays of Mo/Au Transition-Edge Sensors with Bismuth Absorbers

    NASA Technical Reports Server (NTRS)

    Tralshawala, Nilesh; Brekosky, Regis; Figueroa-Feliciano, Enectali; Li, Mary; Stahle, Carl; Stahle, Caroline

    2000-01-01

    We report on our progress towards the development of arrays of X-ray microcalorimeters as candidates for the high resolution x-ray spectrometer on the Constellation-X mission. The microcalorimeter arrays (30 x 30) with appropriate pixel sizes (0.25 mm. x 0.25 mm) and high packing fractions (greater than 96%) are being developed. Each individual pixel has a 10 micron thick Bi X-ray absorber that is shaped like a mushroom to increase the packing fraction, and a Mo/Au proximity effect superconducting transition edge sensor (TES). These are deposited on a 0.25 or 0.5 micron thick silicon nitride membrane with slits to provide a controllable weak thermal link to the sink temperature. Studies are underway to model, test and optimize the TES pixel uniformity, critical current, heat capacity and the membrane thermal conductance in the array structure. Fabrication issues and procedures, and results of our efforts based on these optimizations will be provided.

  16. [Assessment of the probability of encountering staphylococcal enterotoxins in lactic acid cheese packaged in laminates].

    PubMed

    Steinka, Izabela

    2004-01-01

    Immunoassay methods were used to identify the presence of staphylococcal enterotoxins in lactic acid cheese vacuum and non-vacuum packed. There was assessed the probability of encountering staphylococcal enterotoxin in cheese dependent on different systems of packaging, count of staphylococcal cells, intensiveness of coagulase synthesis and tightness of packaging. The presence of enterotoxin was identified in 5% of researched samples of products stored for 14 days. The influence of packaging system and tightness on presence of enterotoxin was observed. The probability of presence of staphylococcal and enterotoxin in relation to researched factors was presented by the mathematical models.

  17. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ying; Smith, Kandler; Wood, Eric

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model,more » which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.« less

  18. A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse

    NASA Astrophysics Data System (ADS)

    Arora, Shashank; Kapoor, Ajay; Shen, Weixiang

    2018-02-01

    Parasitic load, which describes electrical energy consumed by battery thermal management system (TMS), is an important design criterion for battery packs. Passive TMSs using phase change materials (PCMs) are thus generating much interest. However, PCMs suffer from low thermal conductivities. Most current thermal conductivity enhancement techniques involve addition of foreign particles to PCMs. Adding foreign particles increases effective thermal conductivity of PCM-systems but at expense of their latent heat capacity. This paper presents an alternate approach for improving thermal performance of PCM-based TMSs. The introduced technique involves placing battery cells in a vertically inverted position within the battery-pack. It is demonstrated through experiments that inverted cell-layout facilitates build-up of convection current in the pack, which in turn minimises thermal variations within the PCM matrix by enabling PCM mass transfer between the top and the bottom regions of the battery pack. The proposed system is found capable of maintaining tight control over battery cell temperature even during abusive usage, defined as high-rate repetitive cycling with minimal rest periods. In addition, this novel TMS can recover waste heat from PCM-matrix through thermoelectric devices, thereby resulting in a negative parasitic load for TMS.

  19. A Comparative Study of Inspection Techniques for Array Packages

    NASA Technical Reports Server (NTRS)

    Mohammed, Jelila; Green, Christopher

    2008-01-01

    This viewgraph presentation reviews the inspection techniques for Column Grid Array (CGA) packages. The CGA is a method of chip scale packaging using high temperature solder columns to attach part to board. It is becoming more popular over other techniques (i.e. quad flat pack (QFP) or ball grid array (BGA)). However there are environmental stresses and workmanship challenges that require good inspection techniques for these packages.

  20. An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals.

    PubMed

    Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D

    2017-02-01

    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the packs to produce pack distension and 5-tightly stretched, 'overblown' packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage. This study adds to our growing understanding of blown pack spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown pack spoilage. © 2016 The Society for Applied Microbiology.

  1. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  2. Polyhedra and packings from hyperbolic honeycombs.

    PubMed

    Pedersen, Martin Cramer; Hyde, Stephen T

    2018-06-20

    We derive more than 80 embeddings of 2D hyperbolic honeycombs in Euclidean 3 space, forming 3-periodic infinite polyhedra with cubic symmetry. All embeddings are "minimally frustrated," formed by removing just enough isometries of the (regular, but unphysical) 2D hyperbolic honeycombs [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] to allow embeddings in Euclidean 3 space. Nearly all of these triangulated "simplicial polyhedra" have symmetrically identical vertices, and most are chiral. The most symmetric examples include 10 infinite "deltahedra," with equilateral triangular faces, 6 of which were previously unknown and some of which can be described as packings of Platonic deltahedra. We describe also related cubic crystalline packings of equal hyperbolic discs in 3 space that are frustrated analogues of optimally dense hyperbolic disc packings. The 10-coordinated packings are the least "loosened" Euclidean embeddings, although frustration swells all of the hyperbolic disc packings to give less dense arrays than the flat penny-packing even though their unfrustrated analogues in [Formula: see text] are denser.

  3. Two tobacco AP1-like gene promoters with highly specific, tightly regulated and uniquely expressed activity during floral transition, initiation and development

    USDA-ARS?s Scientific Manuscript database

    Biotech engineering of agronomic traits requires an array of highly specific and tightly regulated promoters in flower or other tissues. In this study, we isolated and characterized two tobacco AP1-like promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using GUS reporter and tissue-speci...

  4. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.

    PubMed

    Gong, Maojun; Bohn, Paul W; Sweedler, Jonathan V

    2009-03-01

    Incorporation of nanofluidic elements into microfluidic channels is one approach for adding filtration and partition functionality to planar microfluidic devices, as well as providing enhanced biomolecular separations. Here we introduce a strategy to pack microfluidic channels with silica nanoparticles and microbeads, thereby indirectly producing functional nanostructures; the method allows selected channels to be packed, here demonstrated so that a separation channel is packed while keeping an injection channel unpacked. A nanocapillary array membrane is integrated between two patterned microfluidic channels that cross each other in vertically separated layers. The membrane serves both as a frit for bead packing and as a fluid communication conduit between microfluidic channels. Centrifugal force-assisted sedimentation is then used to selectively pack the microfluidic channels using an aqueous silica bead suspension loaded into the appropriate inlet reservoirs. This packing approach may be used to simultaneously pack multiple channels with silica microbeads having different sizes and surface properties. The chip design and packing method introduced here are suitable for packing silica particles in sizes ranging from nanometers to micrometers and allow rapid (approximately 10 min) packing with high quality. The liquid/analyte transport characteristics of these packed micro/nanofluidic devices have potential utility in a wide range of applications, including electroosmotic pumping, liquid chromatographic separations, and electrochromatography.

  5. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    PubMed

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  6. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    1996-01-01

    A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.

  7. What Do Cigarette Pack Colors Communicate to Smokers in the U.S.?

    PubMed Central

    Bansal-Travers, Maansi; O’Connor, Richard; Fix, Brian V.; Cummings, K. Michael

    2011-01-01

    Background New legislation in the U.S. prohibits tobacco companies from labelling cigarette packs with terms such as ‘light,’ ‘mild,’ or ‘low’ after June 2010. However, experience from countries that have removed these descriptors suggests different terms, colors, or numbers communicating the same messages may replace them. Purpose The main purpose of this study was to examine how cigarette pack colors are perceived by smokers to correspond to different descriptive terms. Methods Newspaper advertisements and craigslist.org postings directed interested current smokers to a survey website. Eligible participants were shown an array of six cigarette packages (altered to remove all descriptive terms) and asked to link package images with their corresponding descriptive terms. Participants were then asked to identify which pack in the array they would choose if they were concerned with health, tar, nicotine, image, and taste. Results A total of 193 participants completed the survey from February to March 2008 (data were analyzed from May 2008 through November 2010). Participants were more accurate in matching descriptors to pack images for Marlboro brand cigarettes than for unfamiliar Peter Jackson brand (sold in Australia). Smokers overwhelmingly chose the ‘whitest’ pack if they were concerned about health, tar, and nicotine. Conclusions Smokers in the U.S. associate brand descriptors with colors. Further, white packaging appears to most influence perceptions of safety. Removal of descriptor terms but not the associated colors will be insufficient in eliminating misperceptions about the risks from smoking communicated to smokers through packaging. PMID:21565662

  8. What do cigarette pack colors communicate to smokers in the U.S.?

    PubMed

    Bansal-Travers, Maansi; O'Connor, Richard; Fix, Brian V; Cummings, K Michael

    2011-06-01

    New legislation in the U.S. prohibits tobacco companies from labeling cigarette packs with terms such as light, mild, or low after June 2010. However, experience from countries that have removed these descriptors suggests that different terms, colors, or numbers communicating the same messages may replace them. The main purpose of this study was to examine how cigarette pack colors are perceived by smokers to correspond to different descriptive terms. Newspaper advertisements and CraigsList.org postings directed interested current smokers to a survey website. Eligible participants were shown an array of six cigarette packages (altered to remove all descriptive terms) and asked to link package images with their corresponding descriptive terms. Participants were then asked to identify which pack in the array they would choose if they were concerned with health, tar, nicotine, image, and taste. A total of 193 participants completed the survey from February to March 2008 (data were analyzed from May 2008 through November 2010). Participants were more accurate in matching descriptors to pack images for Marlboro brand cigarettes than for unfamiliar Peter Jackson brand (sold in Australia). Smokers overwhelmingly chose the "whitest" pack if they were concerned about health, tar, and nicotine. Smokers in the U.S. associate brand descriptors with colors. Further, white packaging appears to most influence perceptions of safety. Removal of descriptor terms but not the associated colors will be insufficient in eliminating misperceptions about the risks from smoking communicated to smokers through packaging. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Bacterial Polymertropism, the Response to Strain-Induced Alignment of Polymers

    NASA Astrophysics Data System (ADS)

    Lemon, David J.

    In nature, bacteria often live in surface-associated communities known as biofilms. Biofilm-forming bacteria deposit a layer of polysaccharide on the surfaces they inhabit; hence, polysaccharide is their immediate environment on any surface. In this study, we examined how the physical characteristics of polysaccharide substrates influence the behavior of the biofilm-forming bacterium Myxococcus xanthus. M. xanthus colonies, and indeed those of the majority of biofilm-forming species tested, respond to the compression-induced deformation of polysaccharide substrates by preferentially spreading across the surface perpendicular to the axis of compression. This response is conserved across multiple distantly related phyla and is found in species with an array of distinct motility apparatuses.The birefringence and small angle X-ray scattering patterns of compressed polysaccharide substrates indicate that the directed surface movements of these bacteria consistently match the orientation of the long axes of aligned and tightly packed polysaccharide fibers in compressed substrates. Therefore, we refer to this behavior as polymertropism to denote that the directed movements are a response to the physical arrangement of the change in packing and alignment of the polymers in the substrate. In addition to altering the colony morphology we find the behavior of groups of cells, called flares, is also affected in several species resulting in increased flare speed, duration, and displacement on compressed gel substrates.We suggest that polymertropism, which requires a downward-facing motility apparatus in M. xanthus, may be responsible for the observed tendency of bacterial cells to follow trails of extruded and presumably aligned polysaccharides, which their neighbors secrete and deposit on the substrate as they move across it. Polymertropism may also play a role in the organization of bacteria in a biofilm, as the iterative process of polysaccharide trail deposition and following is proposed to yield aggregates of cells.

  10. NEW LENSLET BASED IFS WITH HIGH DETECTOR PIXEL EFFICIENCY

    NASA Astrophysics Data System (ADS)

    Gong, Qian

    2018-01-01

    Three IFS types currently used for optical design are: lenslet array, imager slicer, and lenslet array and fiber combined. Lenslet array based Integral Field Spectroscopy (IFS) is very popular for many astrophysics applications due to its compactness, simplicity, as well as cost and mass savings. The disadvantage of lenslet based IFS is its low detector pixel efficiency. Enough spacing is needed between adjacent spectral traces in cross dispersion direction to avoid wavelength cross-talk, because the same wavelength is not aligned to the same column on detector. Such as on a recent exoplanet coronagraph instrument study to support the coming astrophysics decadal survey (LUVOIR), to cover a 45 λ/D Field of View (FOV) with a spectral resolving power of 200 at shortest wavelength, a 4k x 4k detector array is needed. This large format EMCCD pushes the detector into technology development area with a low TRL. Besides the future mission, it will help WFIRST coronagraph IFS by packing all spectra into a smaller area on detector, which will reduce the chance for electrons to be trapped in pixels, and slow the detector degradation during the mission.The innovation we propose here is to increase the detector packing efficiency by grouping a number of lenslets together to form many mini slits. In other words, a number of spots (Point Spread Function at lenslet focus) are aligned into a line to resemble a mini slit. Therefore, wavelength cross-talk is no longer a concern anymore. This combines the advantage of lenslet array and imager slicer together. The isolation rows between spectral traces in cross dispersion direction can be reduced or removed. So the packing efficiency is greatly increased. Furthermore, the today’s microlithography and etching technique is capable of making such a lenslet array, which will relax the detector demand significantly. It will finally contribute to the habitable exoplanets study to analyzing their spectra from direct images. Detailed theory, design, analysis, and fabrication status will be presented.

  11. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    NASA Astrophysics Data System (ADS)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  12. Parallel Optical Random Access Memory (PORAM)

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.

    1989-01-01

    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.

  13. Microlens array for focusing airborne ultrasound using heated wire grid

    NASA Astrophysics Data System (ADS)

    Cai, Liang-Wu; Sánchez-Dehesa, José

    2007-10-01

    This letter reports on the focusing of airborne ultrasound by a simple grid of heated wires. The focusing is analogous to that of an array of optical microlenses. The focusing pattern is determined by the spacing between wires, and the focusing areas are tightly confined with a great "depth of field." Such acoustical microlens arrays have great potentials for shaping beams produced by ultrasonic transducers, in applications such as ultrasonic cleaning and nondestructive testing.

  14. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: Loop overlapping rediscovered.

    PubMed

    Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke

    2018-02-01

    To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    upgrade included improving the SHRU clocks by utilizing chip- scale atomic clocks (CSAC), enlarging battery packs to extend the operation duration, and...instrument upgrade included improving the SHRU clocks by utilizing chip-scale atomic clocks (CSAC), enlarging battery packs to extend the operation...Changing the deployment configuration to use dual pressure housings to augment the alkaline primary battery payload to achieve the one-year duration

  16. The Melting of Aqueous Foams

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.; Vera, Moin U.; Langer, Stephen A.

    1996-01-01

    Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.

  17. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be packed in wood boxes (4C1, 4C2, 4D, 4F), fiberboard boxes (4G), plastic boxes (4H1, 4H2), fiber... fiber (1G) or steel (1A2) drums, which are lined with leak-tight, puncture-resistant material. Bags and... employed. If dry ice is used, the outer packaging must permit the release of carbon dioxide gas. (c...

  18. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must be packed in wood boxes (4C1, 4C2, 4D, 4F), fiberboard boxes (4G), plastic boxes (4H1, 4H2), fiber... fiber (1G) or steel (1A2) drums, which are lined with leak-tight, puncture-resistant material. Bags and... employed. If dry ice is used, the outer packaging must permit the release of carbon dioxide gas. (c...

  19. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…

  20. Getty: producing oil from diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zublin, L.

    1981-10-01

    Getty Oil Company has developed unconventional oil production techniques which will yield oil from diatomaceous earth. They propose to mine oil-saturated diatomite using open-pit mining methods. Getty's diatomite deposit in the McKittrick field of California is unique because it is cocoa brown and saturated with crude oil. It is classified also as a tightly packed deposit, and oil cannot be extracted by conventional oil field methods.

  1. Conceptual approach study of a 200 watt per kilogram solar array

    NASA Technical Reports Server (NTRS)

    Stanhouse, R. W.; Fox, D.; Wilson, W.

    1976-01-01

    Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.

  2. Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation

    DOE PAGES

    Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...

    2016-12-20

    In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less

  3. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N.; Sweatt, William C.; Okandan, Murat

    2017-09-12

    A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.

  4. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  5. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors

    PubMed Central

    Yan, Lei; Chen, Peng; Zhang, Shuang; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin. PMID:27708366

  6. Structural transformations in diluted micellar and lamellar systems

    NASA Astrophysics Data System (ADS)

    Zelaya-Rincon, Blanca

    The role of dilution by artificial hard water on nanostructures present in body wash samples provided by Procter and Gamble were investigated using time-resolved cryogenic transmission electron microscopy (cryo-TEM). Samples with and without perfume were examined at 10X, 20X, and 50X dilution. Micellar samples transformed to mostly unilamellar vesicles at 50X dilution, in contrast to the micelle to monomer transition seen in typical samples. At lower dilutions, a change in morphology from spherical to wormlike micelles was observed. For lamellar samples, lower dilution ratios show tightly packed multilamellar vesicles, while higher dilution ratios show more dispersed vesicles with less bilayers. Nanostructural transformations upon dilution were attributed to changes in curvature/packing parameters, which occurred due to dilution with hard water and addition of perfume. The systems experience changes in curvature in order to maintain equilibrium. Also, the addition of perfume in the lamellar samples caused an increase in the number of bilayers present in multilamellar vesicles, because of its role in increasing the packing parameter in the system.

  7. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2013-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid enantiomers.

  8. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid enantiomers.

  9. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd

  10. Fort A.P. Hill Soil Permittivity and Conductivity Measurements for the Wide Area Airborne Minefield Detection Program

    DTIC Science & Technology

    2003-09-01

    4 3. Purpose 4 4. Description of Test Equipment 4 4.1 Damaskos Model 3000T Liquid/Powder Cell Permittivity...Permeability System ..........4 4.2 HP8510 Network Analyzer/ Damaskos System Overview..............................................5 5. Soil Sample Site...Permittivity and conductivity values were measured from 100 to 3000 MHz. The soil samples were packed as tight as possible into the Damaskos

  11. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  12. Virtual and Experimental Visualization of Flows in Packed Beds of Spheres Simulating Porous Media Flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Athavale, M. M.; Lattime, S. B.; Braun, M. J.

    1998-01-01

    A videotape presentation of flow in a packed bed of spheres is provided. The flow experiment consisted of three principal elements: (1) an oil tunnel 76.2 mm by 76.2 mm in cross section, (2) a packed bed of spheres in regular and irregular arrays, and (3) a flow characterization methodology, either (a) full flow field tracking (FFFT) or (b) computational fluid dynamic (CFD) simulation. The refraction indices of the oil and the test array of spheres were closely matched, and the flow was seeded with aluminum oxide particles. Planar laser light provided a two-dimensional projection of the flow field, and a traverse simulated a three-dimensional image of the entire flow field. Light focusing and reflection rendered the spheres black, permitting visualization of the planar circular interfaces in both the axial and transverse directions. Flows were observed near the wall-sphere interface and within the set of spheres. The CFD model required that a representative section of a packed bed be formed and gridded, enclosing and cutting six spheres so that symmetry conditions could be imposed at all cross-boundaries. Simulations had to be made with the flow direction at right angles to that used in the experiments, however, to take advantage of flow symmetry. Careful attention to detail was required for proper gridding. The flow field was three-dimensional and complex to describe, yet the most prominent finding was flow threads, as computed in the representative 'cube' of spheres with face symmetry and conclusively demonstrated experimentally herein. Random packing and bed voids tended to disrupt the laminar flow, creating vortices.

  13. A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions

    NASA Astrophysics Data System (ADS)

    Lu, Shih-Yuan; Yen, Yi-Ming

    2002-02-01

    A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.

  14. A Comparison of Structural and Evolutionary Attributes of Escherichia coli and Thermus thermophilus Small Ribosomal Subunits: Signatures of Thermal Adaptation

    PubMed Central

    Mallik, Saurav; Kundu, Sudip

    2013-01-01

    Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU). Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA) is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs) in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins) have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli) are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder) at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend. PMID:23940533

  15. Spermatozeugmata structure and dissociation of the Australian flat oyster Ostera angasi: Implications for reproductive strategy.

    PubMed

    Hassan, Md Mahbubul; Qin, Jian G; Li, Xiaoxu

    2016-06-01

    Variation in reproductive strategy is one of the key factors contributing to recruitment success of molluscs in different habitats. Spermcasting is a unique mode in mollusc reproduction where males produce spermatozeugmata, a radially arrayed sperm cluster wrapped by gelatinous membrane. In this study, spermatozeugmata structure and their dissociation in the Australian flat oyster Ostrea angasi were investigated to elucidate the reproductive strategy in spermcasting molluscs. The histological observation indicated that spermatogonia gradually aggregated in the gonad follicle at the early gonad development stages and developed into spermatozeugmata and became tightly packed at the advanced stages. Even though mature male and female gametes could be found in a hermaphroditic individual, the animal may prevent self-fertilization by shedding different sex gametes at different time. The O. angasi sperm are similar in size and shape to broadcasting oysters, but have one additional mitochondrion. Variations in maintaining spermatozeugmata integrity and sperm motility between individuals depended on the level of masculinity or femineity. The durations of spermatozeugmata dissociation and sperm viability were longer in males than in hermaphrodites. The unique structure and capability for spermatozeugmata to maintain the functional integrity after spawning have adaptive significance for fertilization and gamete dispersal in this species. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells

    PubMed Central

    Takeuchi, Miyuki; Karahara, Ichirou; Kajimura, Naoko; Takaoka, Akio; Murata, Kazuyoshi; Misaki, Kazuyo; Yonemura, Shigenobu; Staehelin, L. Andrew; Mineyuki, Yoshinobu

    2016-01-01

    The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs. PMID:27053663

  17. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  18. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  19. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    NASA Astrophysics Data System (ADS)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  20. Tap density equations of granular powders based on the rate process theory and the free volume concept.

    PubMed

    Hao, Tian

    2015-02-28

    The tap density of a granular powder is often linked to the flowability via the Carr index that measures how tight a powder can be packed, under an assumption that more easily packed powders usually flow poorly. Understanding how particles are packed is important for revealing why a powder flows better than others. There are two types of empirical equations that were proposed to fit the experimental data of packing fractions vs. numbers of taps in the literature: the inverse logarithmic and the stretched exponential. Using the rate process theory and the free volume concept under the assumption that particles will obey similar thermodynamic laws during the tapping process if the "granular temperature" is defined in a different way, we obtain the tap density equations, and they are reducible to the two empirical equations currently widely used in literature. Our equations could potentially fit experimental data better with an additional adjustable parameter. The tapping amplitude and frequency, the weight of the granular materials, and the environmental temperature are grouped into this parameter that weighs the pace of the packing process. The current results, in conjunction with our previous findings, may imply that both "dry" (granular) and "wet" (colloidal and polymeric) particle systems are governed by the same physical mechanisms in term of the role of the free volume and how particles behave (a rate controlled process).

  1. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation.

    PubMed

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-03-11

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.

  2. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation

    PubMed Central

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  3. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.

    PubMed

    Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta

    2015-07-01

    Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays

    PubMed Central

    Raghavan, Shreya; Ward, Maria R.; Rowley, Katelyn R.; Wold, Rachel M.; Takayama, Shuichi; Buckanovich, Ronald J.; Mehta, Geeta

    2015-01-01

    Background Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant3Din vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. Methods We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Results Spheroids had uniform geometry, with projected areas (42.60 × 103 μm–475.22 × 103 μm2 for A2780 spheroids and 37.24 × 103 μm2–281.01 × 103 μm2 for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell–cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70–80% viability) to cisplatin chemotherapy compared to 2D cultures (30–50% viability). Conclusions Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. PMID:25913133

  5. Staphylococcus aureus Peptidoglycan Stem Packing by Rotational-Echo Double Resonance NMR Spectroscopy

    PubMed Central

    Kim, Sung Joon; Singh, Manmilan; Preobrazhenskaya, Maria; Schaefer, Jacob

    2013-01-01

    Staphylococcus aureus grown in the presence of an alanine-racemase inhibitor was labeled with D-[1-13C]alanine and L-[15N]alanine to characterize some details of the peptidoglycan tertiary structure. Rotational-echo double-resonance NMR of intact whole cells was used to measure internuclear distances between 13C and 15N of labeled amino acids incorporated in the peptidoglycan, and from those labels to 19F of a glycopeptide drug specifically bound to the peptidoglycan. The observed 13C-15N average distance of 4.1 to 4.4 Å between D- and L-alanines in nearest-neighbor peptide stems is consistent with a local, tightly packed, parallel-stem architecture for a repeating structural motif within the peptidoglycan of S. aureus. PMID:23617832

  6. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.

    PubMed

    Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong

    2018-06-21

    Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.

  8. Porosimetry and packing morphology of vertically-aligned carbon nanotube arrays via impedance spectroscopy.

    PubMed

    Mutha, Heena K; Lu, Yuan; Stein, Itai; Cho, H Jeremy; Suss, Matthew; Laoui, Tahar; Thompson, Carl; Wardle, Brian; Wang, Evelyn

    2016-12-13

    Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically-aligned carbon nanotubes (VA-CNTs) non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from 1.7 × 1010 tubes/cm2 to 4.5 × 1011 tubes/cm2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics. Copyright 2016 IOP Publishing Ltd.

  9. Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, J. M.; Bailey, C. N.; Bandler, S.; Brekosky, R. P.; Eckart, M. E.; Erwin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R(sub n), G, and T(sub c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring.

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Control of the angular distribution of the radiation emitted by phase-locked laser arrays

    NASA Astrophysics Data System (ADS)

    Kachurin, O. R.; Lebedev, F. V.; Napartovich, M. A.; Khlynov, M. E.

    1991-03-01

    A numerical investigation was made of the influence of the number and packing density of a linear array of periodically arranged coherent sources on the efficiency of redistributing the radiation power from the side lobes to the main lobe of the angular distribution of the emitted radiation by using a binary phase corrector mounted in the image-doubling plane. The results are given of experimental investigations of a new device for improving the radiation pattern of phase-locked laser arrays.

  11. Genome-wide overlap in the binding location and function of chromatin-remodeling proteins | Center for Cancer Research

    Cancer.gov

    A single strand of DNA can stretch several meters. Yet dozens of these strands, which can be one-tenth as thin as a human hair, need to fit into the cell’s nucleus. To pack those strands into such a small space, DNA tightly winds itself around histone proteins, forming nucleosomes that are strung together into complexes called chromatin. Beyond efficiently packaging DNA,

  12. Solid source MOCVD system

    DOEpatents

    Hubert, Brian N.; Wu, Xin Di

    1998-01-01

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  13. Optimization of Lyophilized Plasma for Use in Combat Casualties

    DTIC Science & Technology

    2016-03-01

    during which a baseline MAP was recorded and pre-weighed laparotomy sponges were placed in both paracolic gutters and in the pelvis for blood...period, the liver was packed tightly with laparotomy sponges . Swine were randomized to receive either LP reconstituted to 50% (50%LP, n=10) or 100...continuously recorded throughout the study. Blood loss following liver injury was carefully recorded with the use of pre-weighed laparotomy sponges and

  14. Optical response from lenslike semiconductor nipple arrays

    NASA Astrophysics Data System (ADS)

    Wu, H.-M.; Lai, C.-M.; Peng, L.-H.

    2008-11-01

    The authors reported the use of recessive size reduction in self-assembled polystyrene sphere mask with anisotropic etching to form lenslike nipple arrays onto the surface of silicon and gallium nitride. These devices are shown to exhibit a filling factor near to an ideal close-packed condition and paraboloidlike etch profile with slope increased proportionally to the device aspect ratio. Specular reflectivity of less than 3% was observed over the visible spectral range for the 0.35-μm-period nipple-lens arrays. Using two-dimensional rigorous coupled-wave analysis, the latter phenomenon can be ascribed to a gradual index matching mechanism accessed by a high surface-coverage semiconductor nipple array structure.

  15. A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark

    2004-01-01

    In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.

  16. How hollow melanosomes affect iridescent colour production in birds

    PubMed Central

    Eliason, Chad M.; Bitton, Pierre-Paul; Shawkey, Matthew D.

    2013-01-01

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness—a morphological innovation largely restricted to birds—affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity. PMID:23902909

  17. MEMS Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Beamesderfer, Michael; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jhabvala, Murzy; Kelly, Dan; hide

    2006-01-01

    MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.

  18. Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting.

    PubMed

    Ban, Yuriko; Cooper, Leanne J; Fullwood, Nigel J; Nakamura, Takahiro; Tsuzuki, Masakatsu; Koizumi, Noriko; Dota, Atsuyoshi; Mochida, Chikako; Kinoshita, Shigeru

    2003-06-01

    To evaluate the usefulness of the air-lifting technique for culturing corneal limbal epithelial cells on amniotic membrane (AM) for use in ocular surface reconstruction. A cultured sheet that has a good barrier function should be better for this purpose. In corneal epithelium, tight junctions (TJ) play a vital role in the barrier function. The TJ complex includes the integral transmembrane proteins occludin and the claudins, and some membrane-associated proteins such as ZO-1. In this paper, we investigated the barrier function and the expression of TJ related proteins. Corneal limbal epithelium obtained from donor corneas and cultivated on acellular AM was divided into two groups. These were the non-air-lifting (Non-AL) group, which was continuously submerged in medium, and the air-lifting (AL) group, which was submerged in medium for 3 weeks, then exposed to air by lowering the medium level. Morphology and the permeability to horseradish peroxidase (HRP) were determined by electron microscopy. Tight junction (TJ)-related protein and mRNA expression changes were assessed by immunoblotting and reverse transcription-polymerase chain reaction. The cultures of both groups formed 4-5-layer-thick, well-stratified epithelium. The AL cultures had tightly packed epithelial cells with all the HRP/diaminobenzidine (DAB) reaction product accumulated on the apical surface of the superficial cells. The Non-AL culture, by contrast, had more loosely packed epithelial cells with larger intercellular spaces. The HRP/DAB reaction product penetrated the intercellular space to a depth of 3-4 cell layers. Statistically, there was a significant difference in intercellular spaces and desmosome count in the superficial cells between the groups. With AL, TJ-related proteins localized at the apical portion of the lateral membrane. TJ-related protein and mRNA amounts were not changed by AL while claudin subtype expression became more consistent and closer to that of in vivo corneal epithelium. The AL technique reduces intercellular spaces in the superficial cells and promotes the formation of the barrier function. It is useful in culturing corneal epithelial cells for use in ocular surface reconstruction.

  19. Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording

    PubMed Central

    Scholvin, Jörg; Kinney, Justin P.; Bernstein, Jacob G.; Moore-Kochlacs, Caroline; Kopell, Nancy; Fonstad, Clifton G.; Boyden, Edward S.

    2015-01-01

    Objective Neural recording electrodes are important tools for understanding neural codes and brain dynamics. Neural electrodes that are close-packed, such as in tetrodes, enable spatial oversampling of neural activity, which facilitates data analysis. Here we present the design and implementation of close-packed silicon microelectrodes, to enable spatially oversampled recording of neural activity in a scalable fashion. Methods Our probes are fabricated in a hybrid lithography process, resulting in a dense array of recording sites connected to submicron dimension wiring. Results We demonstrate an implementation of a probe comprising 1000 electrode pads, each 9 × 9 μm, at a pitch of 11 μm. We introduce design automation and packaging methods that allow us to readily create a large variety of different designs. Significance Finally, we perform neural recordings with such probes in the live mammalian brain that illustrate the spatial oversampling potential of closely packed electrode sites. PMID:26699649

  20. Capillary Pressure of a Liquid Between Uniform Spheres Arranged in a Square-Packed Layer

    NASA Technical Reports Server (NTRS)

    Alexader, J. Iwan D.; Slobozhanin, Lev A.; Collicott, Steven H.

    2004-01-01

    The capillary pressure in the pores defined by equidimensional close-packed spheres is analyzed numerically. In the absence of gravity the menisci shapes are constructed using Surface Evolver code. This permits calculation the free surface mean curvature and hence the capillary pressure. The dependences of capillary pressure on the liquid volume constructed here for a set of contact angles allow one to determine the evolution of basic capillary characteristics under quasi-static infiltration and drainage. The maximum pressure difference between liquid and gas required for a meniscus passing through a pore is calculated and compared with that for hexagonal packing and with approximate solution given by Mason and Morrow [l]. The lower and upper critical liquid volumes that determine the stability limits for the equilibrium capillary liquid in contact with square packed array of spheres are tabulated for a set of contact angles.

  1. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way, preparing us for the next step of the experiment, the thermal test.

  2. Protein aggregation studied by forward light scattering and light transmission analysis

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  3. Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes.

    PubMed

    Chen, Lei; Kirchberg, Stefan; Jiang, Bing-Yan; Xie, Lei; Jia, Yun-Long; Sun, Lei-Lei

    2014-11-01

    A uniform plano-convex spherical microlens array with a long focal length was fabricated by combining the micromilling and injection molding processes in this work. This paper presents a quantitative study of the injection molding process parameters on the uniformity of the height of the microlenses. The variation of the injection process parameters, i.e., barrel temperature, mold temperature, injection speed, and packing pressure, was found to have a significant effect on the uniformity of the height of the microlenses, especially the barrel temperature. The filling-to-packing switchover point is also critical to the uniformity of the height of the microlenses. The optimal uniformity was achieved when the polymer melts completely filled the mold cavity, or even a little excessively filled the cavity, during the filling stage. In addition, due to the filling resistance, the practical filling-to-packing switchover point can vary with the change of the filling processing conditions and lead to a non-negligible effect on the uniformity of the height of the microlenses. Furthermore, the effect of injection speed on the uniformity of the height of the microlenses was analyzed in detail. The results indicated that the effect of injection speed on the uniformity of the height of the microlenses is mainly attributed to the two functions of injection speed: transferring the filling-to-packing switchover point and affecting the distribution of residual flow stress in the polymer melt.

  4. Solid source MOCVD system

    DOEpatents

    Hubert, B.N.; Wu, X.D.

    1998-10-13

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  5. High Resolution N-Body Simulations of Terrestrial Planet Growth

    NASA Astrophysics Data System (ADS)

    Clark Wallace, Spencer; Quinn, Thomas R.

    2018-04-01

    We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.

  6. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Félix A.

    2015-01-01

    Satellite communication has largely been accomplished using reflector antennas. However, such antennas are inherently bulky, and rely on mechanical steering. For this reason, ultra-wideband (UWB) and beam forming arrays have received strong interest. These lower weight, size,and cost arrays can combine many satellite applicationsspread throughout the C–Ka bands (4–40 GHz).To this end, we seek to develop an UWB Tightly-Coupled Dipole Array (TCDA) with the following attributes: UWB band operation (3.5–18.5 GHz) with low loss; 45° or more scanning in all planes; Low-cost Printed Circuit Board (PCB) fabrication; Scalable to Ka-band and above.

  7. The first effects of fluid inertia on flows in ordered and random arrays of spheres

    NASA Astrophysics Data System (ADS)

    Hill, Reghan J.; Koch, Donald L.; Ladd, Anthony J. C.

    2001-12-01

    Theory and lattice-Boltzmann simulations are used to examine the effects of fluid inertia, at small Reynolds numbers, on flows in simple cubic, face-centred cubic and random arrays of spheres. The drag force on the spheres, and hence the permeability of the arrays, is determined at small but finite Reynolds numbers, at solid volume fractions up to the close-packed limits of the arrays. For small solid volume fraction, the simulations are compared to theory, showing that the first inertial contribution to the drag force, when scaled with the Stokes drag force on a single sphere in an unbounded fluid, is proportional to the square of the Reynolds number. The simulations show that this scaling persists at solid volume fractions up to the close-packed limits of the arrays, and that the first inertial contribution to the drag force relative to the Stokes-flow drag force decreases with increasing solid volume fraction. The temporal evolution of the spatially averaged velocity and the drag force is examined when the fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. Theory for the short- and long-time behaviour is in good agreement with simulations, showing that the unsteady force is dominated by quasi-steady drag and added-mass forces. The short- and long-time added-mass coefficients are obtained from potential-flow and quasi-steady viscous-flow approximations, respectively.

  8. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds.

    PubMed

    King, Philip H; Jones, Gareth; Morgan, Hywel; de Planque, Maurits R R; Zauner, Klaus-Peter

    2014-02-21

    In droplet microfluidics, aqueous droplets are typically separated by an oil phase to ensure containment of molecules in individual droplets of nano-to-picoliter volume. An interesting variation of this method involves bringing two phospholipid-coated droplets into contact to form a lipid bilayer in-between the droplets. These interdroplet bilayers, created by manual pipetting of microliter droplets, have proved advantageous for the study of membrane transport phenomena, including ion channel electrophysiology. In this study, we adapted the droplet microfluidics methodology to achieve automated formation of interdroplet lipid bilayer arrays. We developed a 'millifluidic' chip for microliter droplet generation and droplet packing, which is cast from a 3D-printed mould. Droplets of 0.7-6.0 μL volume were packed as homogeneous or heterogeneous linear arrays of 2-9 droplets that were stable for at least six hours. The interdroplet bilayers had an area of up to 0.56 mm(2), or an equivalent diameter of up to 850 μm, as determined from capacitance measurements. We observed osmotic water transfer over the bilayers as well as sequential bilayer lysis by the pore-forming toxin melittin. These millifluidic interdroplet bilayer arrays combine the ease of electrical and optical access of manually pipetted microdroplets with the automation and reproducibility of microfluidic technologies. Moreover, the 3D-printing based fabrication strategy enables the rapid implementation of alternative channel geometries, e.g. branched arrays, with a design-to-device time of just 24-48 hours.

  9. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    NASA Astrophysics Data System (ADS)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  10. Taguchi Experimental Design for Cleaning PWAs with Ball Grid Arrays

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Mehta, A.; Walton, S.

    1997-01-01

    Ball grid arrays (BGAs), and other area array packages, are becoming more prominent as a way to increase component pin count while avoiding the manufacturing difficulties inherent in processing quad flat packs (QFPs)...Cleaning printed wiring assemblies (PWAs) with BGA components mounted on the surface is problematic...Currently, a low flash point semi-aqueous material, in conjunction with a batch cleaning unit, is being used to clean PWAs. The approach taken at JPL was to investigate the use of (1) semi-aqueous materials having a high flash point and (2) aqueous cleaning involving a saponifier.

  11. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.

    PubMed

    Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui

    2013-11-07

    We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.

  12. Chemical Control of Lead Sulfide Quantum Dot Shape, Self-Assembly, and Charge Transport

    NASA Astrophysics Data System (ADS)

    McPhail, Martin R.

    Lead(II) sulfide quantum dots (PbS QDs) are a promising excitonic material for numerous application that require that control of fluxes of charge and energy at nanoscale interfaces, such as solar energy conversion, photo- and electrocatalysis, light emitting diodes, chemical sensing, single-electron logic elements, field effect transistors, and photovoltaics. PbS QDs are particularly suitable for photonics applications because they exhibit size-tunable band-edge absorption and fluorescence across the entire near-infrared spectrum, undergo efficient multi-exciton generation, exhibit a long radiative lifetime, and possess an eight-fold degenerate ground-state. The effective integration of PbS QDs into these applications requires a thorough understanding of how to control their synthesis, self-assembly, and charge transport phenomena. In this document, I describe a series of experiments to elucidate three levels of chemical control on the emergent properties of PbS QDs: (1) the role of surface chemistry in controlling PbS QD shape during solvothermal synthesis, (2) the role of QD shape and ligand functionalization in self-assembly at a liquid-air interface, and (3) the role of QD packing structure on steady-state conductivity and transient current dynamics. At the synthetic level (1), I show that the final shape and surface chemistry of PbS QDs is highly sensitive to the formation of organosulfur byproducts by commonly used sulfur reagents. The insight into PbS QD growth gained from this work is then developed to controllably tune PbS QD shape from cubic to octahedral to hexapodal while maintaining QD size. At the following level of QD self-assembly (2), I show how QD size and shape dictate packing geometry in extended 2D arrays and how this packing can be controllably interrupted in mixed monolayers. I also study the role of ligand structure on the reorganization of QD arrays at a liquid-air interface and find that the specific packing defects in QD arrays vary depending on exchange kinetics and ligand binding geometry. At the final level of emergent macroscopic properties (3), I show that while the size-dependent conductivity of quasi-2D PbS QD arrays can be explained by a simple diffusional hopping model that only accounts for nearest-neighbor interactions, the transient photocurrent dynamics are extremely sensitive to the morphology of the entire percolation network formed by the QDs.

  13. The tapered slot antenna - A new integrated element for millimeter-wave applications

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-01-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  14. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm3 resolution clinical PET system

    PubMed Central

    Vandenbroucke, A.; Innes, D.; Lau, F. W. Y.; Hsu, D. F. C.; Reynolds, P. D.; Levin, Craig S.

    2015-01-01

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm3 resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under construction consists of 2304 units, each containing two 8 × 8 arrays of 1 mm3 LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image. PMID:25563270

  15. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm{sup 3} resolution clinical PET system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, D. L.; Vandenbroucke, A.; Innes, D.

    2015-01-15

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm{sup 3} resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under constructionmore » consists of 2304 units, each containing two 8 × 8 arrays of 1 mm{sup 3} LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image.« less

  16. CCAM: A novel millimeter-wave instrument using a close-packed TES bolometer array

    NASA Astrophysics Data System (ADS)

    Lau, Judy M.

    This thesis describes CCAM, an instrument designed to map the Cosmic Microwave Background (CMB), and also presents some of the initial measurements made with CCAM on the Atacama Cosmology Telescope (ACT). CCAM uses a CCD-like camera of millimeter-wave TES bolometers. It employs new detector technology, read-out electronics, cold re-imaging optics, and cryogenics to obtain high sensitivity CMB anisotropy measurements. The free-standing 8×32 close-packed array of pop- up TES detectors is the first of its kind to observe the sky at 145 GHz. We present the design of the receiver including the antireflection coated silicon lens re-imaging system, construction and optimization of the pulse tube/ sorption refrigerator cryogenic system, as well as the technology developed to integrate eight 1×32 TES columns and accompanying read-out electronics in to an array of 256 millimeter-wave detectors into a focal plane area of 3.5 cm 2. The performance of the detectors and optics prior to deployment at the ACT site in Chile are reported as well as preliminary performance results of the instrument when optically paired with the ACT telescope in the summer of 2007. Here, we also report on the feasibility of the TES detector array to measure polarization when coupled to a rotating birefringent sapphire half wave plate and wire-grid polarizer.

  17. Formation and Combustion of Smoke in Laminar Flames

    NASA Technical Reports Server (NTRS)

    Schalla, Rose L; Clark, Thomas P; Mcdonald, Glen E

    1954-01-01

    The nature and formation of smoke and its combustion were investigated. Smoke, which consist of tiny mesomorphous crystals tightly packed into popcorn-ball-like particles that agglomerate to give filaments, was found to contain about 5 percent of the hydrogen originally present in the fuel. Factors affecting smoke formation were studied in both diffusion flames and premixed Bunsen flames. It is suggested that smoking tendency increases with increasing stability of the carbon skeleton of the molecule, as determined by relative bond strength.

  18. Superresolution imaging of transcription units on newt lampbrush chromosomes

    PubMed Central

    Kaufmann, Rainer; Cremer, Christoph; Gall, Joseph G.

    2013-01-01

    We have examined transcription loops on lampbrush chromosomes of the newt Notophthalmus by superresolution microscopy. Because of the favorable, essentially two-dimensional morphology of these loops, an average optical resolution in the x-y plane of about 50 nm was achieved. We analyzed the distribution of the multifunctional RNA-binding protein CELF1 on specific loops. CELF1 distribution is consistent with a model in which individual transcripts are tightly folded and hence closely packed against the loop axis. PMID:22892678

  19. Coupling of lipid membrane elasticity and in-plane dynamics

    NASA Astrophysics Data System (ADS)

    Tsang, Kuan-Yu; Lai, Yei-Chen; Chiang, Yun-Wei; Chen, Yi-Fan

    2017-07-01

    Biomembranes exhibit liquid and solid features concomitantly with their in-plane fluidity and elasticity tightly regulated by cells. Here, we present experimental evidence supporting the existence of the dynamics-elasticity correlations for lipid membranes and propose a mechanism involving molecular packing densities to explain them. This paper thereby unifies, at the molecular level, the aspects of the continuum mechanics long used to model the two membrane features. This ultimately may elucidate the universal physical principles governing the cellular phenomena involving biomembranes.

  20. Interacting Group of Galaxies Known as Stephan Quintet

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the interacting group of galaxies known as Stephan Quintet NGC 7317, NGC 7318A, NGC 7318B, NGC 7319, NGC 7320, lower left. Of the five galaxies in this tightly packed group, NGC 7320 (the large spiral in the group) is probably a foreground galaxy and not associated with the other four. The spiral galaxy in the upper right is NGC 7331. http://photojournal.jpl.nasa.gov/catalog/PIA07905

  1. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  2. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.

    PubMed

    Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin

    2013-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.

  3. Atomically manufactured nickel-silicon quantum dots displaying robust resonant tunneling and negative differential resistance

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-Yih; Fisher, Brandon L.; Guisinger, Nathan P.; Lilley, Carmen M.

    2017-12-01

    Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni-Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni-Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I-V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. All of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.

  4. Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance

    DOE PAGES

    Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.; ...

    2017-05-22

    Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less

  5. Atomically manufactured nickel–silicon quantum dots displaying robust resonant tunneling and negative differential resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian -Yih; Fisher, Brandon L.; Guisinger, Nathan P.

    Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni–Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni–Si clusters. The resonance energy is reproducible and the peak spacingmore » of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I–V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. Furthermore, all of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.« less

  6. NASA Accelerates SpaceCube Technology into Orbit

    NASA Technical Reports Server (NTRS)

    Petrick, David

    2010-01-01

    On May 11, 2009, STS-125 Space Shuttle Atlantis blasted off from Kennedy Space Center on a historic mission to service the Hubble Space Telescope (HST). In addition to sending up the hardware and tools required to repair the observatory, the servicing team at NASA's Goddard Space Flight Center also sent along a complex experimental payload called Relative Navigation Sensors (RNS). The main objective of the RNS payload was to provide real-time image tracking of HST during rendezvous and docking operations. RNS was a complete success, and was brought to life by four Xilinx FPGAs (Field Programmable Gate Arrays) tightly packed into one integrated computer called SpaceCube. SpaceCube is a compact, reconfigurable, multiprocessor computing platform for space applications demanding extreme processing capabilities based on Xilinx Virtex 4 FX60 FPGAs. In a matter of months, the concept quickly went from the white board to a fully funded flight project. The 4-inch by 4-inch SpaceCube processor card was prototyped by a group of Goddard engineers using internal research funding. Once engineers were able to demonstrate the processing power of SpaceCube to NASA, HST management stood behind the product and invested in a flight qualified version, inserting it into the heart of the RNS system. With the determination of putting Xilinx into space, the team strengthened to a small army and delivered a fully functional, space qualified system to the mission.

  7. Fabrication and optical characterization of imaging fiber-based nanoarrays.

    PubMed

    Tam, Jenny M; Song, Linan; Walt, David R

    2005-09-15

    In this paper, we present a technique for fabricating arrays containing a density at least 90 times higher than previously published. Specifically, we discuss the fabrication of two imaging fiber-based nanoarrays, one with 700nm features, another with 300nm features. With arrays containing up to 4.5x10(6) array elements/mm(2), these nanoarrays have an ultra-high packing density. A straightforward etching protocol is used to create nanowells into which beads can be deposited. These beads comprise the sensing elements of the nanoarray. Deposition of the nanobeads into the nanowells using two techniques is described. The surface characteristics of the etched arrays are examined with atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was used to observe the arrays. The 300nm array features and the 500nm center-to-center distance approach the minimum feature sizes viewable using conventional light microscopy.

  8. Formation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence

    NASA Astrophysics Data System (ADS)

    Kang, M.; Jeon, S.; Jen, T.; Lee, J.-E.; Sih, V.; Goldman, R. S.

    2017-07-01

    We introduce a novel approach to the seamless integration of plasmonic nanoparticle (NP) arrays into semiconductor layers and demonstrate their enhanced photoluminescence (PL) efficiency. Our approach utilizes focused ion beam-induced self-assembly of close-packed arrays of Ga NPs with tailorable NP diameters, followed by overgrowth of GaAs layers using molecular beam epitaxy. Using a combination of PL spectroscopy and electromagnetic computations, we identify a regime of Ga NP diameter and overgrown GaAs layer thickness where NP-array-enhanced absorption in GaAs leads to enhanced GaAs near-band-edge (NBE) PL efficiency, surpassing that of high-quality epitaxial GaAs layers. As the NP array depth and size are increased, the reduction in spontaneous emission rate overwhelms the NP-array-enhanced absorption, leading to a reduced NBE PL efficiency. This approach provides an opportunity to enhance the PL efficiency of a wide variety of semiconductor heterostructures.

  9. Ultralow-Background Large-Format Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)

    2002-01-01

    In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.

  10. Dual drug release from hydrogels covalently containing polymeric micelles that possess different drug release properties.

    PubMed

    Murata, Mari; Uchida, Yusuke; Takami, Taku; Ito, Tomoki; Anzai, Ryosuke; Sonotaki, Seiichi; Murakami, Yoshihiko

    2017-05-01

    In the present study, we designed hydrogels for dual drug release: the hydrogels that covalently contained the polymeric micelles that possess different drug release properties. The hydrogels that were formed from polymeric micelles possessing a tightly packed (i.e., well-entangled) inner core exhibited a higher storage modulus than the hydrogels that were formed from the polymeric micelles possessing a loosely packed structure. Furthermore, we conducted release experiments and fluorescent observations to evaluate the profiles depicting the release of two compounds, rhodamine B and auramine O, from either polymeric micelles or hydrogels. According to our results, (1) hydrogels that covalently contains polymeric micelles that possess different drug release properties successfully exhibit the independent release behaviors of the two compounds and (2) fluorescence microscopy can greatly facilitate efforts to evaluate drug release properties of materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ellipsoids beat Spheres: Experiments with Candies, Colloids and Crystals

    NASA Astrophysics Data System (ADS)

    Chaikin, Paul

    2006-04-01

    How many gumballs fit in the glass sphere of a gumball machine? Scientists have been puzzling over problems like this since the Ancient Greeks. Yet it was only recently proven that the standard way of stacking oranges at a grocery store--with one orange on top of each set of three below--is the densist packing for spheres, with a packing fraction φ˜ 0.74. Random (amorphous) packings of spheres have a lower density, with φ ˜0.64. The density of crystalline and random packings of atoms is intimately related to the melting transition in matter. We have studied the crystal-liquid transition in spherical colloidal systems on earth and in microgravity. The simplest objects to study after spheres are squashed spheres -- ellipsoids. Surprisingly we find that ellipsoids can randomly pack more densely than spheres, up to φ˜0.68 - 0.71 for a shape close to that of M&M's^ Candies, and even approach φ˜0.75 for general ellipsoids. The higher density relates directly to the higher number of neighbors needed to prevent the more asymetric ellipsoid from rotating. We have also found the ellipsoids can be packed in a crystalline array to a density, φ˜.7707 which exceeds the highest previous packing. Our findings provide insights into granular materials, rigidity, crystals and glasses, and they may lead to higher quality ceramic materials.

  12. Gradient index retroreflector

    DOEpatents

    Layne, Clyde B.

    1988-01-01

    A retroreflector is formed of a graded index lens with a reflective coating at one end. The lens has a length of an odd multiple of a quarter period thereof. Hexagonally shaped graded index lenses may be closely packed in an array to form a retroreflecting surface.

  13. Pre-oxidation for Colorimetric Sensor Array Detection of VOCs

    PubMed Central

    Lin, Hengwei; Jang, Minseok; Suslick, Kenneth S.

    2011-01-01

    A disposable pre-oxidation technique is reported that dramatically improves the detection and identification of volatile organic compounds (VOCs) by a colorimetric sensor array. By passing a vapor stream through a tube packed with chromic acid on silica immediately before the colorimetric sensor array, the sensitivity to less reactive VOCs is substantially increased and limits of detection (LODs) are improved ~300-fold, permitting the detection, identification, and discrimination of 20 commonly found indoor VOC pollutants at both their immediately dangerous to life or health (IDLH) and at permissible exposure limits (PEL) concentrations. LODs of these pollutants were on average 1.4% of their respective PELs. PMID:21967478

  14. High resolution photolithography using arrays of polystyrene and SiO2 micro- and nano-sized spherical lenses

    NASA Astrophysics Data System (ADS)

    Dvoretckaia, L. N.; Mozharov, A. M.; Mukhin, I. S.

    2017-11-01

    Photolithography mask made of close-packed array of micro- and nano-sized spherical lenses allows to obtain the ordered structures and provides highest “optical resolution/cost” ratio between all existing photolithography and laser direct writing methods. In this letter, we present results of modeling the propagation of a plane wave falling on the array of quartz (SiO2) microspherical lenses and focusing in the image reverse photoresist layer. We present here experimental results on fabrication of ordered arrays of submicron wells and columns and substrate preparation for growth of monocrystalline nanowires on metal surface using photolithography with mask of SiO2 microspheres. Such ordered nano-sized arrays of wells and columns can be used in fabrication of further growth of monocrystalline nanowires, quantum dots and production of plasmon structures.

  15. Assembly and Integration Process of the First High Density Detector Array for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  16. KSC-00padig104

    NASA Image and Video Library

    2000-11-28

    STS-97 Mission Specialist Carlos Noriega gets help with his boots from suit technician Shelly Grick-Agrella during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  17. KSC-00padig108

    NASA Image and Video Library

    2000-11-28

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Commander Brent Jett gets help with his gloves from suit technician Bill Todd. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  18. KSC-00padig103

    NASA Image and Video Library

    2000-11-28

    STS-97 Mission Specialist Joseph Tanner gets help with his boots from suit technician Erin Canlon during check pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  19. KSC-00padig106

    NASA Image and Video Library

    2000-11-28

    STS-97 Pilot Michael Bloomfield gets help with his boots from suit technician Steve Clendenin during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  20. An Air-Stripping Packed Bed Combined with a Biofilm-Type Biological Process for Treating BTEX and Total Petroleum Hydrocarbon Contaminated Groudwater

    NASA Astrophysics Data System (ADS)

    Hong, U.; Park, S.; Lim, J.; Lee, W.; Kwon, S.; Kim, Y.

    2009-12-01

    In this study, we examined the removal efficiency of a volatile compound (e.g. toluene) and a less volatile compound [e.g. total petroleum hydrocarbon (TPH)] using an air stripping packed bed combined with a biofilm-type biological process. We hypothesized that this system might be effective and economical to simultaneously remove both volatile and less volatile compounds. The gas-tight reactor has 5.9-inch-diameter and 48.8-inch-height. A spray nozzle was installed at the top cover to distribute the liquid evenly through reactor. The reactor was filled with polypropylene packing media for the increase of volatilization surface area and the growth of TPH degrading facultative aerobic bacteria on the surface of the packing media. In air stripping experiments, 45.6%, 71.7%, 72.0%, and 75.4% of toluene was removed at air injection rates of 0 L/min, 2.5 L/min, 4 L/min, and 6 L/min, respectively. Through the result, we confirmed that toluene removal efficiency increased by injecting higher amounts of air. TPH removal by stripping was minimal. To remove a less volatile TPH by commercial TPH degrading culture (BIO-ZYME B-52), 15-times diluted culture was circulated through the reactor for 2-3 days to build up a biofilm on the surface of packing media with 1 mg-soluble nitrogen source /L-water per 1 ppm of TPH. Experiments evaluating the degree of TPH biodegradation in this system are carrying out.

  1. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less

  2. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  3. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  4. Endovascular Treatment of Cerebral Aneurysm with Coils and Onyx

    PubMed Central

    Ueno, J.; Tohma, N.

    2004-01-01

    Summary We investigated endovascular treatment of cerebral aneurysm by coil and Onyx in vivo experiment in order to promote the advantages of coil embolization,. The aim of this study was to clarify the advantages and problems of coil and Onyx embolization and to evaluate its potentials for application in clinical medicine. We set experimental aneurysms made of external jugular vein to bilateral carotid arteries of 10 Beagle dogs and embolized aneurysm with coils and Onyx. Two months later, the dogs were sacrificed and took out the experimental aneurysms and examined them histologically. We have experienced Onyx migration into the vessel at the beginning of our experiment. Technical problems were as follows; Onyx was not easily visible on DSA monitor particularly in tight coil packing. Catheter tip was often stuck to the Onyx in the aneurysm. Protect balloon could not completely protect the Onyx leakage into the vessel. Microscopic examinations were as follows; The aneurysm was filled with Onyx, coils, and inflammatory reactants. The orifice of the aneurysm was packed with augmented fibrous tissue. 1. This method increased contact between the aneurysm wall and coils. 2. Onyx filled the intra-aneurismal space more tightly. 3. Coils prevented Onyx from flowing out into the vessel. 4. In Onyx, intimal layer was more rapidly formed at the neck of the aneurysm than coils only. 5. The most important problems during Onyx embolization is how to prevent Onyx migration into the vessel. We should like to propose the guideline for Onyx embolization. PMID:20587272

  5. Textural and mineralogical study of sandstones from the onshore Gulf of Alaska Tertiary Province, southern Alaska

    USGS Publications Warehouse

    Winkler, Gary R.; McLean, Hugh; Plafker, George

    1976-01-01

    Petrographic examination of 74 outcrop samples of Paleocene through Pliocene age from the onshore Gulf of Alaska Tertiary Province indicates that sandstones of the province characteristically are texturally immature and mineralogically unstable. Diagenetic alteration of framework grains throughout the stratigraphic sequence has produced widespread zeolite cement or phyllosilicate grain coatings and pseudomatrix. Multiple deformation and deep burial of the older Tertiary sequence--the Orca Group, the shale of Haydon Peak, and the Kulthieth and Tokun Formations--caused extensive alteration and grain interpenetration, resulting in low porosity values. Less intense deformation and intermediate depth of burial of the younger Tertiary sequence--the Katalla, Poul Creek, Redwood, and Yakataga Formations--has resulted in a greater range in textural properties. Most sandstone samples in the younger Tertiary sequence are poorly sorted, tightly packed, and have strongly appressed framework grains, but some are less tightly packed and contain less matrix. Soft and mineralogically unstable framework grains have undergone considerable alteration, reducing pore space even in the youngest rocks. Measurements of porosity, permeability, grain density, and sonic velocity of outcrop samples of the younger Tertiary sequence indicate a modest up-section improvement in sandstone reservoir characteristics. Nonetheless porosity and permeability values typically are below 16 percent and 15 millidarcies respectively and grain densities are consistently high, about 2.7 gm/cc. Low permeability and porosity values, and high grain densities and sonic velocities appear to be typical of most outcrop areas throughout the onshore Gulf of Alaska Tertiary Province.

  6. Fibrillar Collagen Organization Associated with Broiler Wooden Breast Fibrotic Myopathy.

    PubMed

    Velleman, Sandra G; Clark, Daniel L; Tonniges, Jeffrey R

    2017-12-01

    Wooden breast (WB) is a fibrotic myopathy affecting the pectoralis major (p. major) muscle in fast-growing commercial broiler lines. Birds with WB are phenotypically detected by the palpation of a hard p. major muscle. A primary feature of WB is the fibrosis of muscle with the replacement of muscle fibers with extracellular matrix proteins, such as collagen. The ability of a tissue to be pliable and stretch is associated with the organization of collagen fibrils in the connective tissue areas surrounding muscle fiber bundles (perimysium) and around individual muscle fibers (endomysium). The objective of this study was to compare the structure and organization of fibrillar collagen by using transmission electron microscopy in two fast-growing broiler lines (Lines A and B) with incidence of WB to a slower growing broiler Line C with no phenotypically detectable WB. In Line A, the collagen fibrils were tightly packed in a parallel organization, whereas in Line B, the collagen fibrils were randomly aligned. Tightly packed collagen fibrils arranged in parallel are associated with nonpliable collagen that is highly cross-linked. This will lead to a phenotypically hard p. major muscle. In Line C, the fibrillar collagen was sparse in its distribution. Furthermore, the average collagen fibril diameter and banding D-period length were altered in Line A p. major muscles affected with WB. Taken together, these data are suggestive of different fibrotic myopathies beyond just what is classified as WB in fast-growing broiler lines.

  7. Modeling extracellular fields for a three-dimensional network of cells using NEURON.

    PubMed

    Appukuttan, Shailesh; Brain, Keith L; Manchanda, Rohit

    2017-10-01

    Computational modeling of biological cells usually ignores their extracellular fields, assuming them to be inconsequential. Though such an assumption might be justified in certain cases, it is debatable for networks of tightly packed cells, such as in the central nervous system and the syncytial tissues of cardiac and smooth muscle. In the present work, we demonstrate a technique to couple the extracellular fields of individual cells within the NEURON simulation environment. The existing features of the simulator are extended by explicitly defining current balance equations, resulting in the coupling of the extracellular fields of adjacent cells. With this technique, we achieved continuity of extracellular space for a network model, thereby allowing the exploration of extracellular interactions computationally. Using a three-dimensional network model, passive and active electrical properties were evaluated under varying levels of extracellular volumes. Simultaneous intracellular and extracellular recordings for synaptic and action potentials were analyzed, and the potential of ephaptic transmission towards functional coupling of cells was explored. We have implemented a true bi-domain representation of a network of cells, with the extracellular domain being continuous throughout the entire model. This has hitherto not been achieved using NEURON, or other compartmental modeling platforms. We have demonstrated the coupling of the extracellular field of every cell in a three-dimensional model to obtain a continuous uniform extracellular space. This technique provides a framework for the investigation of interactions in tightly packed networks of cells via their extracellular fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  9. A 90GHz Bolometer Camera Detector System for the Green

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  10. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications.

    PubMed

    Lacroix, Fréderic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A Sam; Beaulieu, Luc

    2008-08-01

    A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility (+/-0.8%) in-field and good accuracy (+/-1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber.

  11. Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame

    PubMed Central

    Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.

    2016-01-01

    Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194

  12. High-density CMOS Microelectrode Array System for Impedance Spectroscopy and Imaging of Biological Cells.

    PubMed

    Vijay, Viswam; Raziyeh, Bounik; Amir, Shadmani; Jelena, Dragas; Alicia, Boos Julia; Axel, Birchler; Jan, Müller; Yihui, Chen; Andreas, Hierlemann

    2017-01-26

    A monolithic measurement platform was implemented to enable label-free in-vitro electrical impedance spectroscopy measurements of cells on multi-functional CMOS microelectrode array. The array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. The 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen electrodes on the array by applying a sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, and measuring the respective current. Proof-of-concept measurements of impedance sensing and imaging are shown in this paper. Correlations between cell detection through optical microscopy and electrochemical impedance scanning were established.

  13. Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.

  14. The Extensive Air Shower Experiment Kascade-Grande

    NASA Astrophysics Data System (ADS)

    Kang, Donghwa; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schatz, G.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    The extensive air shower experiment KASCADE-Grande (KArlsruhe Shower Core and Array DEtector and Grande array) is located on site of the Forschungszentrum Karlsruhe in Germany. The original KASCADE experiment consisted of a densely packed scintillator array with unshielded and shielded detectors for the measurement of the electromagnetic and muonic shower component independently, as well as muon tracking devices and a hadron calorimeter. The Grande array as an extension of KASCADE consists of 37 scintillation detector stations covering an area of 700×700 m2. The main goal for the combined measurements of KASCADE and Grande is the investigation of the energy spectrum and composition of primary cosmic rays in the energy range of 1016 to 1018 eV. In this paper an overview of the KASCADE-Grande experiment and recent results will be presented.

  15. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be detected using a cryogenic amplifier and subsequent homodyne mixing at room temperature. In an array of MKIDs, all the resonators are coupled to a shared feedline and are tuned to slightly different frequencies. They can be read out simultaneously using a comb of frequencies generated and measured using digital techniques. This thesis documents an effort to demonstrate the basic operation of ˜ 256 pixel arrays of lumped-element MKIDs made from superconducting TiN x on silicon. The resonators are designed and simulated for optimum operation. Various properties of the resonators and arrays are measured and compared to theoretical expectations. A particularly exciting observation is the extremely high quality factors (˜ 3 x 107) of our TiNx resonators which is essential for ultra-high sensitivity. The arrays are tightly packed both in space and in frequency which is desirable for larger full-size arrays. However, this can cause a serious problem in terms of microwave crosstalk between neighboring pixels. We show that by properly designing the resonator geometry, crosstalk can be eliminated; this is supported by our measurement results. We also tackle the problem of excess frequency noise in MKIDs. Intrinsic noise in the form of an excess resonance frequency jitter exists in planar superconducting resonators that are made on dielectric substrates. We conclusively show that this noise is due to fluctuations of the resonator capacitance. In turn, the capacitance fluctuations are thought to be driven by two-level system (TLS) fluctuators in a thin layer on the surface of the device. With a modified resonator design we demonstrate with measurements that this noise can be substantially reduced. An optimized version of this resonator was designed for the multiwavelength submillimeter kinetic inductance camera (MUSIC) instrument for the Caltech Submillimeter Observatory.

  16. A new fast detection system at the KWS-2 high-intensity SANS diffractometer of the JCNS at MLZ - prototype test

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Arend, N.; Drochner, M.; Ioffe, A.; Kemmerling, G.; Ossovyi, V.; Staringer, S.; Vehres, G.; McKinny, K.; Olechnowicz, B.; Yen, D.

    2016-09-01

    A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF.

  17. On the Thermal Model of Transverse Flow of Unidirectional Materials

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2002-01-01

    The thermal model for transverse heat flow of having single filament in a unit cell is extended. In this model, we proposed that two circular filaments in a unit cell of square packing array and obtained the transverse thermal conductivity of an unidirectional material.

  18. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    NASA Astrophysics Data System (ADS)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  19. Development of theoretical models of integrated millimeter wave antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.

    1991-01-01

    Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.

  20. Master-slave mixed arrays for data-flow computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, T.L.; Fisher, P.D.

    1983-01-01

    Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less

  1. Thermoelectric Devices Cool, Power Electronics

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  2. The Design and Characterization of Wideband Spline-profiled Feedhorns for Advanced Actpol

    NASA Technical Reports Server (NTRS)

    Simon, Sara M.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hills, Felicity B.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    Advanced ACTPol (AdvACT) is an upgraded camera for the Atacama Cosmology Telescope (ACT) that will measure the cosmic microwave background in temperature and polarization over a wide range of angular scales and five frequency bands from 28-230 GHz. AdvACT will employ four arrays of feedhorn-coupled, polarization- sensitive multichroic detectors. To accommodate the higher pixel packing densities necessary to achieve Ad- vACTs sensitivity goals, we have developed and optimized wideband spline-profiled feedhorns for the AdvACT multichroic arrays that maximize coupling efficiency while carefully controlling polarization systematics. We present the design, fabrication, and testing of wideband spline-profiled feedhorns for the multichroic arrays of AdvACT.

  3. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1977-01-01

    Electrostatic bonding has been used to join silicon solar cells to borosilicate glass without the aid of any organic binders or adhesives. The results of this investigation have been to demonstrate, without question, the feasibility of this process as an encapsulation technique. The potential of ESB for terrestrial solar arrays was clearly shown. The process is fast, reproducible, and produces a permanent bond between glass and silicon that is stronger than the silicon itself. Since this process is a glass sealing technique requiring no organics it makes moisture tight sealing of solar cells possible.

  4. Dynamic array processing for computationally intensive expert systems in CLIPS

    NASA Technical Reports Server (NTRS)

    Athavale, N. N.; Ragade, R. K.; Fenske, T. E.; Cassaro, M. A.

    1990-01-01

    This paper puts forth an architecture for implementing a loop for advanced data structure of arrays in CLIPS. An attempt is made to use multi-field variables in such an architecture to process a set of data during the decision making cycle. Also, current limitations on the expert system shells are discussed in brief in this paper. The resulting architecture is designed to circumvent the current limitations set by the expert system shell and also by the operating environment. Such advanced data structures are needed for tightly coupling symbolic and numeric computation modules.

  5. Morphological Control of Co3O4 and Its Photocatalytic Properties

    EPA Science Inventory

    Cobaltosic oxide (Co3O4), a p-type semiconductor, belongs to the normal spinel crystal structure based on a cubic close packing array of oxide ions. The size, surface, geometry, and crystal phase of catalysts are important parameters for controlling their chemical, optical, and ...

  6. Bonding Unidirectional Carbon Nanotube with Carbon for High Performance

    DTIC Science & Technology

    2015-06-24

    the longest time of 80 minutes had an aerogel -like density, with CNT packing density lower than even the as-grown CNT array. This highly porous nature...nanotube foams with ultralow densities. Unlike other routes for fabrication of CNT aerogels , foam and sponges, this processing method allows the fast

  7. KSC-00padig107

    NASA Image and Video Library

    2000-11-28

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Mission Specialist Marc Garneau waves after getting his helmet on. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  8. KSC-00padig105

    NASA Image and Video Library

    2000-11-28

    STS-97 Mission Specialist Marc Garneau gets help with his boots from suit technician Tommy McDonald during pre-pack and fit check. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  9. Status of wraparound contact solar cells and arrays

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Young, L. E.

    1978-01-01

    Solar cells with wraparound contacts provide the following advantages in array assembly: (1) eliminate the need for discretely formed, damage susceptible series tabs; (2) eliminate the n gap problem by allowing the use of uniform covers over the entire cell surface; (3) allow a higher packing factor by reducing the additional series spacing formly required for forming, and routing the series tab; and (4) allow the cell bonding to the interconnect system to be a single-side function wherein series contacts can be made at the same time parallel contracts are made.

  10. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  11. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays*1

    NASA Astrophysics Data System (ADS)

    Eah, Sang-Kee; Jaeger, Heinrich M.; Scherer, Norbert F.; Lin, Xiao-Min; Wiederrecht, Gary P.

    2004-03-01

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  12. Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays.

    PubMed

    Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L

    2018-02-07

    Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

  13. Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.

    2007-01-01

    The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.

  14. A global analysis of adaptive evolution of operons in cyanobacteria.

    PubMed

    Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P

    2013-02-01

    Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.

  15. The Dynamics of Tightly-packed Planetary Systems in the Presence of an Outer Planet: Case Studies Using Kepler-11 and Kepler-90

    NASA Astrophysics Data System (ADS)

    Granados Contreras, A. P.; Boley, A. C.

    2018-03-01

    We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.

  16. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  17. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  18. Flight solar calibrations using the Mirror Attenuator Mosaic (MAM): Low scattering mirror

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    Measurements of solar radiances reflected from the mirror attenuator mosaic (MAM) were used to calibrate the shortwave portions of the Earth Radiation Budget Experiment (ERBE) thermistor bolometer scanning radiometers. The MAM is basically a low scattering mirror which has been used to attenuate and reflect solar radiation into the fields of view for the broadband shortwave (0.2 to 5 micrometers) and total (0.2 to 50.0+ micrometers) ERBE scanning radiometers. The MAM assembly consists of a tightly packed array of aluminum, 0.3175-cm diameter concave spherical mirrors and field of view limiting baffles. The spherical mirrors are masked by a copper plate, electro-plated with black chrome. Perforations (0.14 centimeter in diameter) in the copper plate serve as apertures for the mirrors. Black anodized aluminum baffles limit the MAM clear field of view to 7.1 degrees. The MAM assemblies are located on the Earth Radiation Budget Satellite (ERBS) and on the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft. The 1984-1985 ERBS and 1985-1986 NOAA-9 solar calibration datasets are presented. Analyses of the calibrations indicate that the MAM exhibited no detectable degradation in its reflectance properties and that the gains of the shortwave scanners did not change. The stability of the shortwave radiometers indicates that the transmission of the Suprasil W1 filters did not degrade detectably when exposed to Earth/atmosphere-reflected solar radiation.

  19. GM1-gangliosidosis in Alaskan huskies: clinical and pathologic findings.

    PubMed

    Müller, G; Alldinger, S; Moritz, A; Zurbriggen, A; Kirchhof, N; Sewell, A; Baumgärtner, W

    2001-05-01

    Three Alaskan Huskies, two females and one male, were diagnosed with GM1-gangliosidosis. Clinically, diseased animals exhibited proportional dwarfism and developed progressive neurologic impairment with signs of cerebellar dysfunction at the age of 5-7 months. Skeletal lesions characterized by retarded enchondral ossification of vertebral epiphyses were revealed by radiographs of the male dog at 5.5 months of age. Histologic examination of the central nervous system (CNS) revealed that most neurons were enlarged with a foamy to granular cytoplasm due to tightly packed vacuoles that displaced the Nissl substance. Vacuoles in paraffin-embedded sections stained positively with Luxol fast blue and Grocott's method, and in frozen sections vacuoles were periodic acid-Schiff positive. Foamy vacuolation also occurred within neurons of the autonomic ganglia. Extracerebral cells such as macrophages and peripheral lymphocytes also displayed foamy cytoplasm and vacuolation. In the CNS of diseased animals, a mild demyelination and axonal degeneration was accompanied by a significant astrogliosis (P < 0.05) in the gray matter as compared with age- and sex-matched control dogs. There was also a significant loss (P < 0.05) of oligodendrocytes in the gray and white matter of affected animals as compared with controls. Ultrastructurally, the neuronal storage material consisted of numerous circular to concentric whorls of lamellated membranes or stacks of membranes in parallel arrays. GM1-gangliosidosis in Alaskan Huskies resembles beta-galactosidase deficiency in other canine breeds, and these CNS disorders may be a consequence of neuronal storage and disturbed myelin processing.

  20. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  1. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  2. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2017-06-06

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  3. Er:YLF-laser microperforation of the nail plate for drug delivery

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Sergeev, Andrey N.; Smirnov, Sergey N.; Tavalinskaya, Anastasia D.

    2018-04-01

    Laser microperforation of a human nail plate is an effective method to increase the speed of local drugs delivery in the treatment of nail diseases. In this paper we present the study results of the influence of spatial parameters of Er:YLFlaser- produced microhole array in human nail plate (the diameter of microholes and their packing density) on the rate (vsp) of 0.25 % water-alcohol solution of methylene blue penetration through a single microhole and on the time (Tmp) required for uniform distribution of this drug under the nail plate. In experiments, the diameter of microholes was 220 +/- 10 μm, 300 +/- 10 μm or 350 +/- 10 μm. The packing density for microholes of each of these diameters was 100 μholes/cm2, 400 μholes/cm2 and 950 μholes/cm2. It is shown that vsp is mainly determined by the microhole diameter, and the packing density does not have a significant influence on it. It was experimentally established that the rate vsp is maximal for microholes with 350 μm diameter at packing density of 950 μholes/cm2 and reaches a value of 6.3 μm/s, and the time Tmp is minimal and equal to 180 +/- 10 s at the same values of microhole diameter and packing density.

  4. Manipulating membrane lipid profiles to restore T-cell function in autoimmunity.

    PubMed

    Waddington, Kirsty E; Jury, Elizabeth C

    2015-08-01

    Plasma membrane lipid rafts are heterogeneous cholesterol and glycosphingolipid (GSL)-enriched microdomains, within which the tight packing of cholesterol with the saturated-acyl chains of GSLs creates a region of liquid-order relative to the surrounding disordered membrane. Thus lipid rafts govern the lateral mobility and interaction of membrane proteins and regulate a plethora of signal transduction events, including T-cell antigen receptor (TCR) signalling. The pathways regulating homoeostasis of membrane cholesterol and GSLs are tightly controlled and alteration of these metabolic processes coincides with immune cell dysfunction as is evident in atherosclerosis, cancer and autoimmunity. Indeed, membrane lipid composition is emerging as an important factor influencing the ability of cells to respond appropriately to microenvironmental stimuli. Consequently, there is increasing interest in targeting membrane lipids or their metabolic control as a novel therapeutic approach to modulate immune cell behaviour and our recent work demonstrates that this is a promising strategy in T-cells from patients with the autoimmune disease systemic lupus erythematosus (SLE). © 2015 Authors; published by Portland Press Limited.

  5. Specific arrangement of alpha-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function.

    PubMed

    Fujii, Takashi; Kato, Takayuki; Namba, Keiichi

    2009-11-11

    The bacterial flagellar hook is a short, highly curved tubular structure connecting the rotary motor to the filament acting as a helical propeller. The bending flexibility of the hook allows it to work as a universal joint. A partial atomic model of the hook revealed a sliding intersubunit domain interaction along the protofilament to produce bending flexibility. However, it remained unclear how the tightly packed inner core domains can still permit axial extension and compression. We report advances in cryoEM image analysis for high-resolution, high-throughput structural analysis and a density map of the hook that reveals most of the secondary structures, including the terminal alpha helices forming a coiled coil. The orientations and axial packing interactions of these two alpha helices are distinctly different from those of the filament, allowing them to have a room for axial compression and extension for bending flexibility without impairing the mechanical stability of the hook.

  6. Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.

    2017-10-01

    With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.

  7. Specific Uptake of Lipid-Antibody-Functionalized LbL Microcarriers by Cells.

    PubMed

    Göse, Martin; Scheffler, Kira; Reibetanz, Uta

    2016-11-14

    The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier's surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system.

  8. Clogging and jamming transitions in periodic obstacle arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hong; Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2017-03-29

    We numerically examine clogging transitions for bidisperse disks flowing through a two-dimensional periodic obstacle array. Here, we show that clogging is a probabilistic event that occurs through a transition from a homogeneous flowing state to a heterogeneous or phase-separated jammed state where the disks form dense connected clusters. The probability for clogging to occur during a fixed time increases with increasing particle packing and obstacle number. For driving at different angles with respect to the symmetry direction of the obstacle array, we show that certain directions have a higher clogging susceptibility. It is also possible to have a size-specific cloggingmore » transition in which one disk size becomes completely immobile while the other disk size continues to flow.« less

  9. Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.

    PubMed

    Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin

    2009-06-17

    In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  11. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  12. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  13. Heat-resistant DNA tile arrays constructed by template-directed photoligation through 5-carboxyvinyl-2′-deoxyuridine

    PubMed Central

    Tagawa, Miho; Shohda, Koh-ichiroh; Fujimoto, Kenzo; Sugawara, Tadashi; Suyama, Akira

    2007-01-01

    Template-directed DNA photoligation has been applied to a method to construct heat-resistant two-dimensional (2D) DNA arrays that can work as scaffolds in bottom-up assembly of functional biomolecules and nano-electronic components. DNA double-crossover AB-staggered (DXAB) tiles were covalently connected by enzyme-free template-directed photoligation, which enables a specific ligation reaction in an extremely tight space and under buffer conditions where no enzymes work efficiently. DNA nanostructures created by self-assembly of the DXAB tiles before and after photoligation have been visualized by high-resolution, tapping mode atomic force microscopy in buffer. The improvement of the heat tolerance of 2D DNA arrays was confirmed by heating and visualizing the DNA nanostructures. The heat-resistant DNA arrays may expand the potential of DNA as functional materials in biotechnology and nanotechnology. PMID:17982178

  14. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.

  15. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  16. Three-Dimensional Modeling of the Brain's ECS by Minimum Configurational Energy Packing of Fluid Vesicles

    PubMed Central

    Nandigam, Ravi K.; Kroll, Daniel M.

    2007-01-01

    The extracellular space of the brain is the heterogeneous porous medium formed by the spaces between the brain cells. Diffusion in this interstitial space is the mechanism by which glucose and oxygen are delivered to the brain cells from the vascular system. It is also a medium for the transport of certain informational substances between the cells (called volume transmission), and for drug delivery. This work involves three-dimensional modeling of the extracellular space as void space in close-packed arrays of fluid membrane vesicles. These packings are generated by minimizing the configurational energy using a Monte Carlo procedure. Both regular and random packs of vesicles are considered. A random walk algorithm is then used to compute the geometric tortuosities, and the results are compared with published experimental data. For the random packings, it is found that although the absolute values for the tortuosities differ, the dependence of the tortuosity on pore volume fraction is very similar to that observed in experiment. The tortuosities we measure are larger than those computed in previous studies of packings of convex polytopes, and modeling improvements, which require higher resolution studies and an improved modeling of brain cell shapes and mechanical properties, could help resolve remaining discrepancies between model simulations and experiment. It is also shown that the specular reflection scheme is the appropriate technique for implementing zero-flux boundary conditions in random walk simulations commonly encountered in diffusion problems. PMID:17307830

  17. Three-dimensional modeling of the brain's ECS by minimum configurational energy packing of fluid vesicles.

    PubMed

    Nandigam, Ravi K; Kroll, Daniel M

    2007-05-15

    The extracellular space of the brain is the heterogeneous porous medium formed by the spaces between the brain cells. Diffusion in this interstitial space is the mechanism by which glucose and oxygen are delivered to the brain cells from the vascular system. It is also a medium for the transport of certain informational substances between the cells (called volume transmission), and for drug delivery. This work involves three-dimensional modeling of the extracellular space as void space in close-packed arrays of fluid membrane vesicles. These packings are generated by minimizing the configurational energy using a Monte Carlo procedure. Both regular and random packs of vesicles are considered. A random walk algorithm is then used to compute the geometric tortuosities, and the results are compared with published experimental data. For the random packings, it is found that although the absolute values for the tortuosities differ, the dependence of the tortuosity on pore volume fraction is very similar to that observed in experiment. The tortuosities we measure are larger than those computed in previous studies of packings of convex polytopes, and modeling improvements, which require higher resolution studies and an improved modeling of brain cell shapes and mechanical properties, could help resolve remaining discrepancies between model simulations and experiment. It is also shown that the specular reflection scheme is the appropriate technique for implementing zero-flux boundary conditions in random walk simulations commonly encountered in diffusion problems.

  18. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  19. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Han, Shu-Jen; Tulevski, George S.

    2014-09-01

    One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.

  20. Tools being considered for use in freeing solar array wing of Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Engineers at the Marshall Space Flight Center examine tools that are being considered for use in freeing the solar array wing of Skylab. The device at center is a cable cutter which is operated by cable. At right is the handle end of a rod. White material taped just below the handle is buoyancy packing to make the oject weightless when submerged in water. Small object at left is the attachment head for a two-prong 'rake' device for use on the end of a pole made up of one, two or more five-foot secitons of extension rods.

  1. High temperature, high intensity solar array. [for Venus Radar Mapper mission

    NASA Technical Reports Server (NTRS)

    Smith, B. S.; Brooks, G. R.; Pinkerton, R.

    1985-01-01

    The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.

  2. Preparation and magnetic properties of cylindrical NiFe films and antidot arrays.

    PubMed

    Sanz, R; Navas, D; Vazquez, M; Hernández-Vélez, M; Ross, C A

    2010-10-01

    Continuous NiFe (Permalloy) cylindrical films and arrays of cylindrical NiFe antidots 7 nm thick have been prepared by sputtering onto cylindrical aluminum wires and onto wires anodized to form a porous anodic alumina layer. The antidots are arranged in a close-packed pattern determined by the hexagonal pore arrangement in the porous alumina, with period 103 nm and diameter 42 nm. Hysteresis loops were measured at different angles with respect to the cylinder axis and indicate an easy plane normal to the radius of the wire. The antidots enhance the coercivity compared to the continuous cylindrical film.

  3. Variable-delay Polarization Modulators for the CLASS Telescope

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Mirel, P.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The challenges of measuring faint polarized signals at microwave wavelengths have motivated the development of rapid polarization modulators. One scalable technique, called a Variable-delay Polarization Modulator (VPM), consists of a stationary wire array in front of a movable mirror. The mirror motion creates a changing phase difference between the polarization modes parallel and orthogonal to the wire array. The Cosmology Large Angular Scale Surveyor (CLASS) will use a VPM as the first optical element in a telescope array that will search for the signature of inflation through the “B-mode” pattern in the polarization of the cosmic microwave background. In the CLASS VPMs, parallel transport of the mirror is maintained by a voice-coil actuated flexure system which will translate the mirror in a repeatable manner while holding tight parallelism constraints with respect to the wire array. The wire array will use 51 μm diameter copper-plated tungsten wire with 160 μm pitch over a 60 cm clear aperture. We present the status of the construction and testing of the mirror transport mechanism and wire arrays for the CLASS VPMs.

  4. The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface.

    PubMed

    Lorieau, Justin L; Louis, John M; Bax, Ad

    2010-06-22

    All but five of the N-terminal 23 residues of the HA2 domain of the influenza virus glycoprotein hemagglutinin (HA) are strictly conserved across all 16 serotypes of HA genes. The structure and function of this HA2 fusion peptide (HAfp) continues to be the focus of extensive biophysical, computational, and functional analysis, but most of these analyses are of peptides that do not include the strictly conserved residues Trp(21)-Tyr(22)-Gly(23). The heteronuclear triple resonance NMR study reported here of full length HAfp of sero subtype H1, solubilized in dodecylphosphatidyl choline, reveals a remarkably tight helical hairpin structure, with its N-terminal alpha-helix (Gly(1)-Gly(12)) packed tightly against its second alpha-helix (Trp(14)-Gly(23)), with six of the seven conserved Gly residues at the interhelical interface. The seventh conserved Gly residue in position 13 adopts a positive angle, enabling the hairpin turn that links the two helices. The structure is stabilized by multiple interhelical C(alpha)H to C=O hydrogen bonds, characterized by strong interhelical H(N)-H(alpha) and H(alpha)-H(alpha) NOE contacts. Many of the previously identified mutations that make HA2 nonfusogenic are also incompatible with the tight antiparallel hairpin arrangement of the HAfp helices.(15)N relaxation analysis indicates the structure to be highly ordered on the nanosecond time scale, and NOE analysis indicates HAfp is located at the water-lipid interface, with its hydrophobic surface facing the lipid environment, and the Gly-rich side of the helix-helix interface exposed to solvent.

  5. Novel Implementations of Wideband Tightly Coupled Dipole Arrays for Wide-Angle Scanning

    NASA Astrophysics Data System (ADS)

    Yetisir, Ersin

    Ultra-wideband (UWB) antennas and arrays are essential for high data rate communications and for addressing spectrum congestion. Tightly coupled dipole arrays (TCDAs) are of particular interest due to their low-profile, bandwidth and scanning range. But existing UWB (>3:1 bandwidth) arrays still suffer from limited scanning, particularly at angles beyond 45° from broadside. Almost all previous wideband TCDAs have employed dielectric layers above the antenna aperture to improve scanning while maintaining impedance bandwidth. But even so, these UWB arrays have been limited to no more than 60° away from broadside. In this work, we propose to replace the dielectric superstrate with frequency selective surfaces (FSS). In effect, the FSS is used to create an effective dielectric layer placed over the antenna array. FSS also enables anisotropic responses and more design freedom than conventional isotropic dielectric substrates. Another important aspect of the FSS is its ease of fabrication and low weight, both critical for mobile platforms (e.g. unmanned air vehicles), especially at lower microwave frequencies. Specifically, it can be fabricated using standard printed circuit technology and integrated on a single board with active radiating elements and feed lines. In addition to the FSS superstrate, a modified version of the stripline-based folded Marchand balun is presented. As usual the balun serves to match the 50Ω coaxial cable to the high input impedance ( 200Ω) at the terminals of array elements. Doing so, earlier Wilkinson power dividers, which degrade efficiency during E-plane scanning, are eliminated. To verify the proposed array concept, 12x12 TCDA prototype was fabricated using the modified balun and the new FSS superstrate layer. The design and experimental data showed an impedance bandwidth of 6.1:1 with VSWR<3.2. The latter VSWR was achieved even when scanning down to +/-60° in the H-plane, +/-70° in the D-plane and +/-75° in the E-plane. All array components, including the FSS, radiating dipoles and the feed lines are placed on the same PCB, vertically oriented over the array ground plane, resulting in a low-cost and light-weight structure. The effects of finite aperture sizes in presence of FSS or dielectric superstrates are also considered. Specifically, we compare the performance of finite TCDAs with FSS or dielectric loading. The performance metric is beam pointing accuracy for moderate array sizes ( 30dBi gain) with various edge element terminations. It is shown that even terminating two unit cells at the array edges can provide effective suppression of edge-born waves and achieve excellent beam accuracy. This is the case when both the FSS elements and radiating dipoles are resistively loaded in the unit-cells along the aperture edges.

  6. Comparison and validation of acoustic response models for wind noise reduction pipe arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marty, Julien; Denis, Stéphane; Gabrielson, Thomas

    The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less

  7. Comparison and validation of acoustic response models for wind noise reduction pipe arrays

    DOE PAGES

    Marty, Julien; Denis, Stéphane; Gabrielson, Thomas; ...

    2017-02-13

    The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less

  8. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  9. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  10. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol

    NASA Astrophysics Data System (ADS)

    Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin

    2018-05-01

    Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.

  11. Pixel detectors for use in retina neurophysiology studies

    NASA Astrophysics Data System (ADS)

    Cunningham, W.; Mathieson, K.; Horn, M.; Melone, J.; McEwan, F. A.; Blue, A.; O'Shea, V.; Smith, K. M.; Litke, A.; Chichilnisky, E. J.; Rahman, M.

    2003-08-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed ˜500 electrode arrays with feature sizes down to below 2 μm. The neural signals from significant areas of the retina may thus be captured.

  12. DESCANT--The DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Sarazin, F.

    2014-09-01

    The DESCANT array at TRIUMF is designed to track neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. The anisotropy of the n - d scattering will allow distinction of higher neutron multiplicities from scattering within the array and determination of the neutron energy spectrum directly from the pulse-height spectrum without using TOF. A prototype detector has been tested with monoenergetic neutrons at the accelerator laboratory of the University of Kentucky and a 24Mg(3He, n)26Si experiment has been performed with eight DESCANT detectors and two HPGe detectors. The results of the tests and the status of DESCANT will be presented.

  13. DESCANT - The DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Turko, J.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Bishop, D. P.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Shaw, B.; Saran, F.

    2016-09-01

    The DESCANT array at TRIUMF is designed to detect neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. A prototype detector has been tested with monoenergetic neutrons at the accelerator laboratory of the University of Kentucky. A first commissioning experiment of the full array, using the decay of 145-146Cs, will be performed in August 2016. The results of the tests and a preliminary analysis of the commissioning experiment will be presented. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council of Canada and the Canadian Research Chairs program.

  14. Plasmonic Nanoholes in a Multi-Channel Microarray Format for Parallel Kinetic Assays and Differential Sensing

    PubMed Central

    Im, Hyungsoon; Lesuffleur, Antoine; Lindquist, Nathan C.; Oh, Sang-Hyun

    2009-01-01

    We present nanohole arrays in a gold film integrated with a 6-channel microfluidic chip for parallel measurements of molecular binding kinetics. Surface plasmon resonance effects in the nanohole arrays enable real-time label-free measurements of molecular binding events in each channel, while adjacent negative reference channels can record measurement artifacts such as bulk solution index changes, temperature variations, or changing light absorption in the liquid. Using this platform, streptavidin-biotin specific binding kinetics are measured at various concentrations with negative controls. A high-density microarray of 252 biosensing pixels is also demonstrated with a packing density of 106 sensing elements/cm2, which can potentially be coupled with a massively parallel array of microfluidic channels for protein microarray applications. PMID:19284776

  15. Array-scale performance of TES X-ray Calorimeters Suitable for Constellation-X

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; hide

    2008-01-01

    Having developed a transition-edge-sensor (TES) calorimeter design that enables high spectral resolution in high fill-factor arrays, we now present array-scale results from 32-pixel arrays of identical closely packed TES pixels. Each pixel in such an array contains a Mo/Au bilayer with a transition temperature of 0.1 K and an electroplated Au or Au/Bi xray absorber. The pixels in an array have highly uniform physical characteristics and performance. The arrays are easy to operate due to the range of bias voltages and heatsink temperatures over which solution better than 3 eV at 6 keV can be obtained. Resolution better than 3 eV has also been obtained with 2x8 time-division SQUID multiplexing. We will present the detector characteristics and show spectra acquired through the read-out chain from the multiplexer electronics through the demultiplexer software to real-time signal processing. We are working towards demonstrating this performance over the range of count rates expected in the observing program of the Constellation-X observatory. We mill discuss the impact of increased counting rate on spectral resolution, including the effects of crosstalk and optimal-filtering dead time.

  16. Exploring New Methods of Displaying Bit-Level Quality and Other Flags for MODIS Data

    NASA Technical Reports Server (NTRS)

    Khalsa, Siri Jodha Singh; Weaver, Ron

    2003-01-01

    The NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) archives and distributes snow and sea ice products derived from the MODerate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. All MODIS standard products are in the Earth Observing System version of the Hierarchal Data Format (HDF-EOS). The MODIS science team has packed a wealth of information into each HDF-EOS file. In addition to the science data arrays containing the geophysical product, there are often pixel-level Quality Assurance arrays which are important for understanding and interpreting the science data. Currently, researchers are limited in their ability to access and decode information stored as individual bits in many of the MODIS science products. Commercial and public domain utilities give users access, in varying degrees, to the elements inside MODIS HDF-EOS files. However, when attempting to visualize the data, users are confronted with the fact that many of the elements actually represent eight different 1-bit arrays packed into a single byte array. This project addressed the need for researchers to access bit-level information inside MODIS data files. In an previous NASA-funded project (ESDIS Prototype ID 50.0) we developed a visualization tool tailored to polar gridded HDF-EOS data set. This tool,called the Polar researchers to access, geolocate, visualize, and subset data that originate from different sources and have different spatial resolutions but which are placed on a common polar grid. The bit-level visualization function developed under this project was added to PHDIS, resulting in a versatile tool that serves a variety of needs. We call this the EOS Imaging Tool.

  17. Thermal Cycle Testing of the Powersphere Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Curtis, Henry; Piszczor, Mike; Kerslake, Thomas W.; Peterson, Todd T.; Scheiman, David A.; Simburger, Edward J.; Giants, Thomas W.; Matsumoto, James H.; Garcia, Alexander; Liu, Simon H.; hide

    2007-01-01

    During the past three years the team of The Aerospace Corporation, Lockheed Martin Space Systems, NASA Glenn Research Center, and ILC Dover LP have been developing a multifunctional inflatable structure for the PowerSphere concept under contract with NASA (NAS3-01115). The PowerSphere attitude insensitive solar power-generating microsatellite, which could be used for many different space and Earth science purposes, is ready for further refinement and flight demonstration. The development of micro- and nanosatellites requires the energy collection system, namely the solar array, to be of lightweight and small size. The limited surface area of these satellites precludes the possibility of body mounting the solar array system for required power generation. The use of large traditional solar arrays requires the support of large satellite volumes and weight and also requires a pointing apparatus. The current PowerSphere concept (geodetic sphere), which was envisioned in the late 1990 s by Mr. Simburger of The Aerospace Corporation, has been systematically developed in the past several years.1-7 The PowerSphere system is a low mass and low volume system suited for micro and nanosatellites. It is a lightweight solar array that is spherical in shape and does not require a pointing apparatus. The recently completed project culminated during the third year with the manufacturing of the PowerSphere Engineering Development Unit (EDU). One hemisphere of the EDU system was tested for packing and deployment and was subsequently rigidized. The other hemisphere was packed and stored for future testing in an uncured state. Both cured and uncured hemisphere components were delivered to NASA Glenn Research Center for thermal cycle testing and long-term storage respectively. This paper will discuss the design, thermal cycle testing of the PowerSphere EDU.

  18. Toward more efficient fabrication of high-density 2-D VCSEL arrays for spatial redundancy and/or multi-level signal communication

    NASA Astrophysics Data System (ADS)

    Roscher, Hendrik; Gerlach, Philipp; Khan, Faisal Nadeem; Kroner, Andrea; Stach, Martin; Weigl, Alexander; Michalzik, Rainer

    2006-04-01

    We present flip-chip attached high-speed VCSELs in 2-D arrays with record-high intra-cell packing densities. The advances of VCSEL array technology toward improved thermal performance and more efficient fabrication are reviewed, and the introduction of self-aligned features to these devices is pointed out. The structure of close-spaced wedge-shaped VCSELs is discussed and their static and dynamic characteristics are presented including an examination of the modal structure by near-field measurements. The lasers flip-chip bonded to a silicon-based test platform exhibit 3-dB and 10-dB bandwidths of 7.7 GHz and 9.8 GHz, respectively. Open 12.5 Gbit/s two-level eye patterns are demonstrated. We discuss the uses of high packing densities for the increase of the total amount of data throughput an array can deliver in the course of its life. One such approach is to provide up to two backup VCSELs per fiber channel that can extend the lifetimes of parallel transmitters through redundancy of light sources. Another is to increase the information density by using multiple VCSELs per 50 μm core diameter multimode fiber to generate more complex signals. A novel scheme using three butt-coupled VCSELs per fiber for the generation of four-level signals in the optical domain is proposed. First experiments are demonstrated using two VCSELs butt-coupled to the same standard glass fiber, each modulated with two-level signals to produce four-level signals at the photoreceiver. A four-level direct modulation of one VCSEL within a triple of devices produced first 20.6 Gbit/s (10.3 Gsymbols/s) four-level eyes, leaving two VCSELs as backup sources.

  19. Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure

    PubMed Central

    Banchelli, Martina; Tiribilli, Bruno; Pini, Roberto; Dei, Luigi

    2016-01-01

    Summary Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir–Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir–Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis. PMID:26925348

  20. Histopathologic and Myogenic Gene Expression Changes Associated with Wooden Breast in Broiler Breast Muscles.

    PubMed

    Velleman, Sandra G; Clark, Daniel L

    2015-09-01

    The wooden breast condition is a myopathy affecting the pectoralis major (p. major) muscle in fast-growing commercial broiler lines. Currently, wooden breast-affected birds are phenotypically detected by palpation of the breast area, with affected birds having a very hard p. major muscle that is of lower value. The objective of this study was to compare the wooden breast myopathy in two fast-growing broiler lines (Lines A and B) with incidence of wooden breast to a slower growing broiler Line C with no phenotypically observable wooden breast. One of the characteristics of the wooden breast condition is fibrosis of the p. major muscle. Morphologic assessment of Lines A and B showed significant fibrosis in both lines, but the collagen distribution and arrangement of the collagen fibrils was different. In Line A, the collagen fibrils were tightly packed, whereas in Line B the collagen fibrils were diffuse. This difference in collagen organization may be due to the expression of the extracellular matrix proteoglycan decorin. Decorin is a regulator of collagen crosslinking and is expressed at significantly higher levels in Line A wooden breast-affected p. major muscle, which would lead to tightly packed collagen fibers due to high levels of collagen crosslinking. Furthermore, expression of the muscle-specific transcriptional regulatory factors for proliferation and differentiation of muscle cells leading to the regeneration of muscle in response to muscle damage was significantly elevated in Line A, and only the factor for differentiation, myogenin, was increased in Line B. The results from this study provide initial evidence that the etiology of the wooden breast myopathy may vary between fast-growing commercial broiler lines.

  1. HUBBLE SEES A VAST 'CITY' OF STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In these pictures, a 'city' of a million stars glitters like a New York City skyline. The images capture the globular cluster 47 Tucanae, located 15,000 light-years from Earth in the southern constellation Tucana. Using NASA's Hubble Space Telescope, astronomers went hunting in this large city for planetary companions: bloated gaseous planets that snuggle close to their parent stars, completing an orbit in a quick three to five days. To their surprise, they found none. This finding suggests that the cluster's environment is too hostile for breeding planets or that it lacks the necessary elements for making them. The picture at left, taken by a terrestrial telescope, shows most of the cluster, a tightly packed group of middle-aged stars held together by mutual gravitational attraction. The box near the center represents the Hubble telescope's view. The image at right shows the Hubble telescope's close-up look at a swarm of 35,000 stars near the cluster's central region. The stars are tightly packed together: They're much closer together than our Sun and its closest stars. The picture, taken by the Wide Field and Planetary Camera 2, depicts the stars' natural colors and tells scientists about their composition and age. For example, the red stars denote bright red giants nearing the end of their lives; the more common yellow stars are similar to our middle-aged Sun. Most of the stars in the cluster are believed to have formed about 10 billion years ago. The bright, blue stars -- thought to be remnants of stellar collisions and mergers -- provide a few rejuvenated, energetic stars in an otherwise old system. The Hubble picture was taken in July 1999. Credits for Hubble image: NASA and Ron Gilliland (Space Telescope Science Institute) Credits for ground-based image: David Malin, c Anglo-Australian Observatory

  2. Are Front of Pack Claims Indicators of Nutrition Quality? Evidence from 2 Product Categories.

    PubMed

    Schaefer, Debra; Hooker, Neal H; Stanton, John L

    2016-01-01

    American grocery shoppers face an array of front of pack (FOP) nutrition and health claims when making food selections. Such systems have been categorized as summary or nutrient specific. Either type should help consumers make judgments about the nutrition quality of a product. This research tests if the type or quantity of FOP claims are indeed good indicators of objective nutrition quality. Claim and nutrition information from more than 2200 breakfast cereals and prepared meals launched between 2006 and 2010 were analyzed using binary and multinomial logistic regression models. Results suggest that no type or number of front of pack claims could distinguish "healthy" foods. However, some types and frequencies of FOP claims were significant predictors of higher or lower levels of certain key nutrients. Given the complex and crowded label environment in which these FOP claims reside, one may be concerned that such cues are not closely related to objective measures of nutrition quality. © 2015 Institute of Food Technologists®

  3. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  4. Transparent lattices and their solitary waves.

    PubMed

    Sadurní, E

    2014-09-01

    We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.

  5. Influence of the properties of soft collective spin wave modes on the magnetization reversal in finite arrays of dipolarly coupled magnetic dots

    NASA Astrophysics Data System (ADS)

    Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei

    2015-06-01

    Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.

  6. Bioinspired broadband antireflection coatings on GaSb

    NASA Astrophysics Data System (ADS)

    Min, Wei-Lun; Betancourt, Amaury P.; Jiang, Peng; Jiang, Bin

    2008-04-01

    We report an inexpensive yet scalable templating technique for fabricating moth-eye antireflection gratings on gallium antimonide substrates. Non-close-packed colloidal monolayers are utilized as etching masks to pattern subwavelength-structured nipple arrays on GaSb. The resulting gratings exhibit superior broadband antireflection properties and thermal stability than conventional multilayer dielectric coatings. The specular reflection of the templated nipple arrays match with the theoretical predictions using a rigorous coupled-wave analysis model. The effect of the nipple shape and size on the antireflection properties has also been investigated by the same model. These biomimetic coatings are of great technological importance in developing efficient thermophotovoltaic cells.

  7. Development program on a Spindt cold-cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1982-01-01

    A thin film field emission cathode (TFFEC) array and a cold cathode electron gun based on the emitter were developed. A microwave tube gun that uses the thin film field emission cathode as an electron source is produced. State-of-the-art cathodes were fabricated and tested. The tip-packing density of the arrays were increased thereby increasing the cathode's current density capability. The TFFEC is based on the well known field emission effect and was conceived to exploit the advantages of that phenomenon while minimizing the difficulties associated with conventional field emission structures, e.g. limited life and high voltage requirements. Field emission follows the Fowler-Nordheim equation.

  8. Multilayer Ferritin Array for Bionanobattery

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R., Jr. (Inventor)

    2009-01-01

    A thin-film electrode for a bio-nanobattery is produced by consecutively depositing arrays of a ferritin protein on a substrate, employing a spin self-assembly procedure. By this procedure, a first ferritin layer is first formed on the substrate, followed by building a second, oppositely-charged ferritin layer on the top of the first ferritin layer to form a bilayer structure. Oppositely-charged ferritin layers are subsequently deposited on top of each other until a desired number of bilayer structures is produced. An ordered, uniform, stable and robust, thin-film electrode material of enhanced packing density is presented, which provides optimal charge density for the bio-nanobattery.

  9. Nanosilicon dot arrays with a bit pitch and a track pitch of 25 nm formed by electron-beam drawing and reactive ion etching for 1 Tbit/in.{sup 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosaka, Sumio; Sano, Hirotaka; Shirai, Masumi

    2006-11-27

    The formation of very fine Si dots with a bit pitch and a track pitch of less than 25 nm using electron-beam (EB) lithography on ZEP520 and calixarene EB resists and CF{sub 4} reactive ion etching has been demonstrated. The experimental results indicate that the calixarene resist is very suitable for forming an ultrahigh-packed bit array pattern of Si dots. This result promises to open the way toward 1 Tbit/in.{sup 2} storage using patterned media with a dot size of <15 nm.

  10. DESCANT - Testing and Commissioning

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Turko, J.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Bishop, D. P.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Shaw, B.; Sarazin, F.

    2017-09-01

    The DESCANT array at TRIUMF is designed to detect neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration permits online pulse-shape discrimination between neutron and γ-ray events. A prototype detector was tested with monoenergetic neutrons at the University of Kentucky Accelerator Laboratory. The data from these tests was compared to Geant4 simulations. A first commissioning experiment of the full array, using the decay of Cs 145 - 146 , was performed in August 2016. The results of the tests and a preliminary analysis of the commissioning experiment will be presented.

  11. Study on the mesophase development of pressure-responsive ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    Here we focus on the revelation of new nanoscale morphologies for a molten compressible polymeric surfactant through a compressible self-consistent field approach. A linear ABC block copolymer is set to allow a disparity in the propensities for curved interfaces and in pressure responses of ij-pairs. Under these conditions, the copolymer evolves into noble morphologies at selected segregation levels such as networks with tetrapod connections, rectangularly packed cylinders in a 2-dimensional array, and also body-centered cubic phases. Those new structures are considered to turn up by interplay between disparity in the densities of block domains and packing frustration. Comparison with the classical mesophase structures is also given. The author acknowledges the support from the Center for Photofunctional Energy Materials (GRRC).

  12. Nuclear thermionic converter. [tungsten-thorium oxide rods

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Mondt, J. F. (Inventor)

    1977-01-01

    Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.

  13. Hexagon solar power panel

    NASA Technical Reports Server (NTRS)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  14. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  15. Semiquinone-bridged bisdithiazolyl radicals as neutral radical conductors.

    PubMed

    Yu, Xin; Mailman, Aaron; Lekin, Kristina; Assoud, Abdeljalil; Robertson, Craig M; Noll, Bruce C; Campana, Charles F; Howard, Judith A K; Dube, Paul A; Oakley, Richard T

    2012-02-01

    Semiquinone-bridged bisdithiazolyls 3 represent a new class of resonance-stabilized neutral radical for use in the design of single-component conductive materials. As such, they display electrochemical cell potentials lower than those of related pyridine-bridged bisdithiazolyls, a finding which heralds a reduced on-site Coulomb repulsion U. Crystallographic characterization of the chloro-substituted derivative 3a and its acetonitrile solvate 3a·MeCN, both of which crystallize in the polar orthorhombic space group Pna2(1), revealed the importance of intermolecular oxygen-to-sulfur (CO···SN) interactions in generating rigid, tightly packed radical π-stacks, including the structural motif found for 3a·MeCN in which radicals in neighboring π-stacks are locked into slipped-ribbon-like arrays. This architecture gives rise to strong intra- and interstack overlap and hence a large electronic bandwidth W. Variable-temperature conductivity measurements on 3a and 3a·MeCN indicated high values of σ(300 K) (>10(-3) S cm(-1)) with correspondingly low thermal activation energies E(act), reaching 0.11 eV in the case of 3a·MeCN. Overall, the strong performance of these materials as f = ½ conductors is attributed to a combination of low U and large W. Variable-temperature magnetic susceptibility measurements were performed on both 3a and 3a·MeCN. The unsolvated material 3a orders as a spin-canted antiferromagnet at 8 K, with a canting angle φ = 0.14° and a coercive field H(c) = 80 Oe at 2 K. © 2012 American Chemical Society

  16. Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Yang, Jinkyu; Silvestro, Claudio; Sangiorgio, Sophia N.; Borkowski, Sean L.; Ebramzadeh, Edward; De Nardo, Luigi; Daraio, Chiara

    2012-01-01

    We propose a new biomedical sensing technique based on highly nonlinear solitary waves to assess orthopaedic implant stability in a nondestructive and efficient manner. We assemble a granular crystal actuator consisting of a one-dimensional tightly packed array of spherical particles, to generate acoustic solitary waves. Via direct contact with the specimen, we inject acoustic solitary waves into a biomedical prosthesis, and we nondestructively evaluate the mechanical integrity of the bone-prosthesis interface, studying the properties of the waves reflected from the contact zone between the granular crystal and the implant. The granular crystal contains a piezoelectric sensor to measure the travelling solitary waves, which allows it to function also as a sensor. We perform a feasibility study using total hip arthroplasty (THA) samples made of metallic stems implanted in artificial composite femurs using polymethylmethacrylate for fixation. We first evaluate the sensitivity of the proposed granular crystal sensor to various levels of prosthesis insertion into the composite femur. Then, we impose a sequence of harsh mechanical loading on the THA samples to degrade the mechanical integrity at the stem-cement interfaces, using a femoral load simulator that simulates aggressive, accelerated physiological loading. We investigate the implant stability via the granular crystal sensor-actuator during testing. Preliminary results suggest that the reflected waves respond sensitively to the degree of implant fixation. In particular, the granular crystal sensor-actuator successfully detects implant loosening at the stem-cement interface following violent cyclic loading. This study suggests that the granular crystal sensor and actuator has the potential to detect metal-cement defects in a nondestructive manner for orthopaedic applications.

  17. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  18. A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature

    PubMed Central

    Welsh, John D.; Muthard, Ryan W.; Stalker, Timothy J.; Taliaferro, Joshua P.; Diamond, Scott L.

    2016-01-01

    Previous studies have shown that hemostatic thrombi formed in response to penetrating injuries have a core of densely packed, fibrin-associated platelets overlaid by a shell of less-activated, loosely packed platelets. Here we asked, first, how the diverse elements of this structure combine to stem the loss of plasma-borne molecules and, second, whether antiplatelet agents and anticoagulants that perturb thrombus structure affect the re-establishment of a tight vascular seal. The studies combined high-resolution intravital microscopy with a photo-activatable fluorescent albumin marker to simultaneously track thrombus formation and protein transport following injuries to mouse cremaster muscle venules. The results show that protein loss persists after red cell loss has ceased. Blocking platelet deposition with an αIIbβ3 antagonist delays vessel sealing and increases extravascular protein accumulation, as does either inhibiting adenosine 5′-diphosphate (ADP) P2Y12 receptors or reducing integrin-dependent signaling and retraction. In contrast, sealing was unaffected by introducing hirudin to block fibrin accumulation or a Gi2α gain-of-function mutation to expand the thrombus shell. Collectively, these observations describe a novel approach for studying vessel sealing after injury in real time in vivo and show that (1) the core/shell architecture previously observed in arterioles also occurs in venules, (2) plasma leakage persists well beyond red cell escape and mature thrombus formation, (3) the most critical events for limiting plasma extravasation are the stable accumulation of platelets, ADP-dependent signaling, and the emergence of a densely packed core, not the accumulation of fibrin, and (4) drugs that affect platelet accumulation and packing can delay vessel sealing, permitting protein escape to continue. PMID:26738537

  19. Suppressed beta relaxations and reduced heat capacity in ultrastable organic glasses prepared by physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ediger, Mark

    Glasses play an important role in technology as a result of their macroscopic homogeneity (e.g., the clarity of window glass) and our ability to tune properties through composition changes. A problem with liquid-cooled glasses is that they exhibit marginal kinetic stability and slowly evolve towards lower energy glasses and crystalline states. In contrast, we have shown that physical vapor deposition can prepare glasses with very high kinetic stability. These materials have properties expected for ``million-year-old'' glasses, including high density, low enthalpy, and high mechanical moduli. We have used nanocalorimetry to show that these high stability glasses have lower heat capacities than liquid-cooled glasses for a number of molecular systems. Dielectric relaxation has been used to show that the beta relaxation can be suppressed by nearly a factor of four in vapor-deposited toluene glasses, indicating a very tight packing environment. Consistent with this view, computer simulations of high stability glasses indicate reduced Debye-Waller factors. These high stability materials raise interesting questions about the limiting properties of amorphous packing arrangements.

  20. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    PubMed

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    NASA Astrophysics Data System (ADS)

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-02-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.

  2. a High-Precision Branching-Ratio Measurement for the Superallowed β+ Emitter 74Rb

    NASA Astrophysics Data System (ADS)

    Dunlop, R.; Chagnon-Lessard, S.; Finlay, P.; Garrett, P. E.; Hadinia, B.; Leach, K. G.; Svensson, C. E.; Wong, J.; Ball, G.; Garnsworthy, A. B.; Glister, J.; Hackman, G.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Leslie, J. R.; Andreoiu, C.; Chester, A.; Cross, D.; Starosta, K.; Yates, S. W.; Zganjar, E. F.

    2013-03-01

    Precision measurements of superallowed Fermi beta decay allow for tests of the Cabibbo-Kobayashi-Maskawa matrix (CKM) unitarity, the conserved vector current hypothesis, and the magnitude of isospin-symmetry-breaking effects in nuclei. A high-precision measurement of the branching ratio for the β+ decay of 74Rb has been performed at the Isotope Separator and ACcelerator (ISAC) facility at TRIUMF. The 8π spectrometer, an array of 20 close-packed HPGe detectors, was used to detect gamma rays emitted following the decay of 74Rb. PACES, an array of 5 Si(Li) detectors, was used to detect emitted conversion electrons, while SCEPTAR, an array of plastic scintillators, was used to detect emitted beta particles. A total of 51γ rays have been identified following the decay of 21 excited states in the daughter nucleus 74Kr.

  3. Self-assembled vertically aligned Au nanorod arrays for surface-enhanced Raman scattering (SERS) detection of Cannabinol.

    PubMed

    Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin

    2018-05-05

    Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0nM and 50mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids. Copyright © 2018. Published by Elsevier B.V.

  4. Large enhancement of X-ray excited luminescence in Ga-doped ZnO nanorod arrays by hydrogen annealing

    NASA Astrophysics Data System (ADS)

    Li, Qianli; Liu, Xiaoliln; Gu, Mu; Li, Fengrui; Zhang, Juannan; Wu, Qiang; Huang, Shiming; Liu, Si

    2018-03-01

    Highly c-axis oriented and densely packed ZnO:Ga nanorod arrays were fabricated on ZnO-seeded substrates by hydrothermal method, and the effect of hydrogen annealing on their morphology, structure and luminescence properties was investigated in detail. Under ultraviolet or X-ray excitation, an intense ultraviolet luminescence appeared in the hydrogen-annealed samples owing to the formation of a shallow hydrogen donor state, which can sharply activate the reconbination radiation. The luminescence intensity increased with the annealing temperature, and then decreased at a higher temperature due to the dissociation of the hydrogen ion. The optimum concentration and time of hydrogen annealing were acquired simultaneously. It is expected that the ZnO:Ga nanorod array is a promising candidate for application in ultrafast and high-spatial-resolution X-ray imaging detector.

  5. Bipolar battery with array of sealed cells

    DOEpatents

    Kaun, Thomas D.; Smaga, John A.

    1987-01-01

    A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.

  6. Ladder-structured photonic variable delay device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1998-01-01

    An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the ladder experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  7. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  8. Novel Battery Management System with Distributed Wireless and Fiber Optic Sensors for Early Detection and Suppression of Thermal Runaway in Large Battery Packs, FY13 Q4 Report, ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.; Chang, J.; Zumstein, J.

    Technology has been developed that enables monitoring of individual cells in highcapacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array ofmore » sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high-capacity battery management system at Yardney Technical Products; (10) demonstrated operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less

  9. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI

    NASA Astrophysics Data System (ADS)

    Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.

    2017-06-01

    Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.

  10. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  11. Multilayer DNA Origami Packed on a Square Lattice

    PubMed Central

    Ke, Yonggang; Douglas, Shawn M.; Liu, Minghui; Sharma, Jaswinder; Cheng, Anchi; Leung, Albert; Liu, Yan; Shih, William M.; Yan, Hao

    2009-01-01

    Molecular self-assembly using DNA as a structural building block has proven to be an efficient route to the construction of nanoscale objects and arrays of increasing complexity. Using the remarkable “scaffolded DNA origami” strategy, Rothemund demonstrated that a long single-stranded DNA from a viral genome (M13) can be folded into a variety of custom two-dimensional (2D) shapes using hundreds of short synthetic DNA molecules as staple strands. More recently, we generalized a strategy to build custom-shaped, three-dimensional (3D) objects formed as pleated layers of helices constrained to a honeycomb lattice, with precisely controlled dimensions ranging from 10 to 100 nm. Here we describe a more compact design for 3D origami, with layers of helices packed on a square lattice, that can be folded successfully into structures of designed dimensions in a one-step annealing process, despite the increased density of DNA helices. A square lattice provides a more natural framework for designing rectangular structures, the option for a more densely packed architecture, and the ability to create surfaces that are more flat than is possible with the honeycomb lattice. Thus enabling the design and construction of custom 3D shapes from helices packed on a square lattice provides a general foundational advance for increasing the versatility and scope of DNA nanotechnology. PMID:19807088

  12. Recovery of inter-row shading losses using differential power-processing submodule DC–DC converters

    DOE PAGES

    Doubleday, Kate; Choi, Beomseok; Maksimovic, Dragan; ...

    2016-06-17

    Large commercial photovoltaic (PV) systems can experience regular and predictable energy loss due to both inter-row shading and reduced diffuse irradiance in tightly spaced arrays. This article investigates the advantages of replacing bypass diodes with submodule-integrated DC-DC converters (subMICs) to mitigate these losses. Yearly simulations of commercial-scale PV systems were conducted considering a range of row-to-row pitches. In the limit case of array spacing (unity ground coverage), subMICs can confer a 7% increase in annual energy output and peak energy density (kW h/m 2). Simulation results are based on efficiency assumptions experimentally confirmed by prototype submodule differential power-processing converters.

  13. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices

    NASA Astrophysics Data System (ADS)

    Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr; Bals, Sara; Klajn, Rafal

    2017-10-01

    Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here, we show that non-close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.

  14. Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV

    NASA Technical Reports Server (NTRS)

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; hide

    2007-01-01

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.

  15. Simulation study of a high power density rectenna array for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  16. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  17. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  18. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lau, Timothy; Hatzikirou, Haralampos; Meyer-Hermann, Michael; Corbo, Joseph C.; Torquato, Salvatore

    2014-02-01

    Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their photoreceptor patterns are not perfectly regular. By analyzing the chicken cone photoreceptor system consisting of five different cell types using a variety of sensitive microstructural descriptors, we find that the disordered photoreceptor patterns are "hyperuniform" (exhibiting vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified in a unique subset of physical systems, but had never been observed in any living organism. Remarkably, the patterns of both the total population and the individual cell types are simultaneously hyperuniform. We term such patterns "multihyperuniform" because multiple distinct subsets of the overall point pattern are themselves hyperuniform. We have devised a unique multiscale cell packing model in two dimensions that suggests that photoreceptor types interact with both short- and long-ranged repulsive forces and that the resultant competition between the types gives rise to the aforementioned singular spatial features characterizing the system, including multihyperuniformity. These findings suggest that a disordered hyperuniform pattern may represent the most uniform sampling arrangement attainable in the avian system, given intrinsic packing constraints within the photoreceptor epithelium. In addition, they show how fundamental physical constraints can change the course of a biological optimization process. Our results suggest that multihyperuniform disordered structures have implications for the design of materials with novel physical properties and therefore may represent a fruitful area for future research.

  19. Winding Pack Height Management During Fabrication of the ITER CS Module

    NASA Astrophysics Data System (ADS)

    Martovetsky, Nicolai N.; Irick, David K.; Reed, Richard P.; Haefelfinger, Rolf; Salazar, Erica

    The Central Solenoid (CS) stack consists of six modules, 2.1 m tall each [1]. In order to verify good impregnation, we performed a vacuum pressure impregnation (VPI) test of a full cross section of the CS module (CSM), 40 conductors tall and 14 conductors wide [2]. It was discovered that after preparation of the full cross section stack until completion of the VPI, the stack shrunk in height by 20-25 mm. Our study of the literature and discussions with the leading experts in VPI did not reveal obvious reasons for this change of height, so we launched a study to address this issue. We assembled two 12x1 (tall by wide) arrays and several 7x1 arrays in order to study characteristics of the dry winding pack under compressive force and effects of different fabrication steps. Then we impregnated these arrays in different conditions under compressive force and studied change of height as a result of compression, impregnation, gelling and curing of the stack of insulated conductors. We showed that by controlling the application of the compressive force, before closing the mold and during impregnation, one can reduce the height uncertainty. Most of the height reduction takes place while the glass is dry under the dead weight and the applied compressive force. Reduction of height during injection of the resin and during gelling, curing and cooling of the coil is noticeable, reproducible and relatively small. The paper presents results of our studies and recommendations for assembly and VPI of tall windings.

  20. Assembling substrate-less plasmonic metacrystals at the oil/water interface for multiplex ultratrace analyte detection.

    PubMed

    Lee, Yih Hong; Lee, Hiang Kwee; Ho, Jonathan Yong Chew; Yang, Yijie; Ling, Xing Yi

    2016-08-15

    Current substrate-less SERS platforms are limited to uncontrolled aggregation of plasmonic nanoparticles or quasi-crystalline arrays of spherical nanoparticles, with no study on how the lattice structures formed by nanoparticle self-assembly affect their detection capabilities. Here, we organize Ag octahedral building blocks into two large-area plasmonic metacrystals at the oil/water interface, and investigate their in situ SERS sensing capabilities. Amphiphilic octahedra assemble into a hexagonal close-packed metacrystal, while hydrophobic octahedra assemble into an open square metacrystal. The lower packing density square metacrystal gives rise to much stronger SERS enhancement than the denser packing hexagonal metacrystal, arising from the larger areas of plasmonic hotspots within the square metacrystal at the excitation wavelength. We further demonstrate the ability of the square metacrystal to achieve quantitative ultratrace detection of analytes from both the aqueous and organic phases. Detection limits are at the nano-molar levels, with analytical enhancement factors reaching 10(8). In addition, multiplex detection across both phases can be achieved in situ without any loss of signal quantitation.

  1. Experimental design for a basic mixture on a fluorinated packing. The effect of composition of the mobile phase.

    PubMed

    Wang, Y; Harrison, M; Clark, B J

    2006-02-10

    An optimization methodology is introduced for investigating the separation and the retention behavior of analytes on a new fluorinated reversed-phase packing. Ten basic compounds were selected as test probes to study the predictive models developed by using SPSS and MATLAB software. A two-level orthogonal array design (OAD) was used to extract significant parameters. The significant factors were optimised using a central composite design to obtain the quadratic relationship between the dependent and the independent variables. Using this strategy, response surfaces were derived as the 3D and contour plots, and mathematical models were defined for the separation. The models had a satisfactory coefficient (R(2) > 0.97, n = 16). For the test compounds, the best separation condition was: MeCN/30 mM phosphate buffer pH 7.1(55.5:44.5, v/v) and 10 basic solutes were resolved in 22 min. The significant influence of the concentration of buffer shows that different mechanisms of separation for basic compounds on the fluorinated packing exist compared with a common ODS stationary phase.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We presentmore » the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  4. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji'an

    2018-04-01

    A simple and efficient technique for fabricating parabolic cylindrical microlens arrays (CMLAs) on the surface of fused silica by shaped femtosecond (fs) laser direct-writing is demonstrated. By means of spatially shaping of a Gaussian fs laser beam to a Bessel distribution, an inversed cylindrical shape laser intensity profile is formed in a specific cross-sectional plane among the shaped optical field. Applying it to experiments, large area close-packed parabolic CMLAs with line-width of 37.5 μm and array size of about 5 × 5 mm are produced. The cross-sectional outline of obtained lenslets has a satisfied parabolic profile and the numerical aperture (NA) of lenslets is more than 0.35. Furthermore, the focusing performance of the fabricated CMLA is also tested in this work and it has been demonstrated that the focusing power of the CMLA with a parabolic profile is better than that with a semi-circular one.

  5. Reduced-Scale Transition-Edge Sensor Detectors for Solar and X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Datesman, Aaron M.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chang, Meng-Ping; Chervenak, James A.; Eckart, Megan E.; Ewin, Audrey E.; Finkbeiner, Fred M.; Ha, Jong Yoon; hide

    2017-01-01

    We have developed large-format, close-packed X-ray microcalorimeter arrays fabricated on solid substrates, designed to achieve high energy resolution with count rates up to a few hundred counts per second per pixel for X-ray photon energies upto 8 keV. Our most recent arrays feature 31-micron absorbers on a 35-micron pitch, reducing the size of pixels by about a factor of two. This change will enable an instrument with significantly higher angular resolution. In order to wire out large format arrays with an increased density of smaller pixels, we have reduced the lateral size of both the microstrip wiring and the Mo/Au transition-edge sensors (TES). We report on the key physical properties of these small TESs and the fine Nb leads attached, including the critical currents and weak-link properties associated with the longitudinal proximity effect.

  6. Three-dimensionally ordered array of air bubbles in a polymer film

    NASA Technical Reports Server (NTRS)

    Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.

  7. Stent-assisted coil embolization for cavernous carotid artery aneurysms.

    PubMed

    Kono, Kenichi; Shintani, Aki; Okada, Hideo; Tanaka, Yuko; Terada, Tomoaki

    2014-01-01

    Internal carotid artery (ICA) occlusion with or without a bypass surgery is the traditional treatment for cavernous sinus (CS) aneurysms with cranial nerve (CN) dysfunction. Coil embolization without stents frequently requires retreatment because of the large size of CS aneurysms. We report the mid-term results of six unruptured CS aneurysms treated with stent-assisted coil embolization (SACE). The mean age of the patients was 72 years. The mean size of the aneurysms was 19.8 mm (range: 13-26 mm). Before treatment, four patients presented with CN dysfunction and two patients had no symptoms. SACE was performed under local or general anesthesia in three patients each. Mean packing density was 29.1% and tight packing was achieved. There were no neurological complications. CN dysfunction was cured in three patients (75%) and partly resolved in one patient (25%). Transient new CN dysfunction was observed in two patients (33%). Clinical and imaging follow-up ranged from 6 to 26 months (median: 16 months). Recanalization was observed in three patients (50%; neck remnant in two patients and dome filling in one patient), but no retreatment has yet been required. No recurrence of CN dysfunction has occurred yet. In summary, SACE increases packing density and may reduce requirement of retreatment with an acceptable cure rate of CN dysfunction. SACE may be a superior treatment for coiling without stents and be an alternative treatment of ICA occlusion for selected patients, such as older patients and those who require a high-flow bypass surgery or cannot receive general anesthesia.

  8. Carbon Nanotube Field Emission Arrays

    DTIC Science & Technology

    2011-06-01

    K , and M [14]. Using the tight binding energy model, the energy dispersion relations for graphene can be calculated for the triangle formed from...The corresponding reciprocal lattice vectors, b1 and b2, and Brillouin zone of graphene [14]. 19 graphene band structure is the six K ...points where the two bands are degenerate and the Fermi level passes. It has been shown through thorough calculations that at T = 0 K , the density

  9. (Bio)Sensing Using Nanoparticle Arrays: On the Effect of Analyte Transport on Sensitivity.

    PubMed

    Lynn, N Scott; Homola, Jiří

    2016-12-20

    There has recently been an extensive amount of work regarding the development of optical, electrical, and mechanical (bio)sensors employing planar arrays of surface-bound nanoparticles. The sensor output for these systems is dependent on the rate at which analyte is transported to, and interacts with, each nanoparticle in the array. There has so far been little discussion on the relationship between the design parameters of an array and the interplay of convection, diffusion, and reaction. Moreover, current methods providing such information require extensive computational simulation. Here we demonstrate that the rate of analyte transport to a nanoparticle array can be quantified analytically. We show that such rates are bound by both the rate to a single NP and that to a planar surface (having equivalent size as the array), with the specific rate determined by the fill fraction: the ratio between the total surface area used for biomolecular capture with respect to the entire sensing area. We characterize analyte transport to arrays with respect to changes in numerous parameters relevant to experiment, including variation of the nanoparticle shape and size, packing density, flow conditions, and analyte diffusivity. We also explore how analyte capture is dependent on the kinetic parameters related to an affinity-based biosensor, and furthermore, we classify the conditions under which the array might be diffusion- or reaction-limited. The results obtained herein are applicable toward the design and optimization of all (bio)sensors based on nanoparticle arrays.

  10. High resolution ion chamber array delivery quality assurance for robotic radiosurgery: Commissioning and validation.

    PubMed

    Blanck, Oliver; Masi, Laura; Chan, Mark K H; Adamczyk, Sebastian; Albrecht, Christian; Damme, Marie-Christin; Loutfi-Krauss, Britta; Alraun, Manfred; Fehr, Roman; Ramm, Ulla; Siebert, Frank-Andre; Stelljes, Tenzin Sonam; Poppinga, Daniela; Poppe, Björn

    2016-06-01

    High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans. Preliminary evaluation consisted of beam profile validation and analysis of source-detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference⩽2%, distance-to-agreement⩽2mm, pass-rate⩾90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions. The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10cm source-detector-distance change, but remains within 1% for the clinically relevant source-detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1mm distance-to-agreement criterion while 2mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria. We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source-detector-distance response. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites

    NASA Astrophysics Data System (ADS)

    Chen, Sanyuan; Pei, Weihua; Gui, Qiang; Chen, Yuanfang; Zhao, Shanshan; Wang, Huan; Chen, Hongda

    2013-08-01

    Objective. Although various kinds of optrodes are designed to deliver light and sense electrophysiological responses, few have a tightly closed optical delivering site or electrical recording site. The large space between them often blurs the stimulation location and light intensity threshold. Approach. Based on an optical fiber, we develop an optrode structure which has a coniform tip where the light exit point and gold-based electrode site are located. The optrode is fabricated by integrating a metal membrane electrode on the outside of a tapered fiber. Half of the cone-shape tip is covered by a layer of gold membrane to form the electrode. A commercial fiber connector, mechanical transfer (MT) module, is chosen to assemble the multi-optrode array (MOA). The MT connector acts as both the holder of the optrode array and an aligning part to connect the MOA with the light source. Main results. We fabricated a pluggable MOA weighing only 0.2 g. The scanning electron microscope images showed a tight cover of the metal layer on the optrode tip with an exposure area of 1500 µm2. The electrochemical impedance of the optrode at 1 kHz was 100 kΩ on average and the light emission intensity reached 13 mW. The optical modulating and electrophysiological recording ability of the MOA was validated by monitoring the response of cells in a ChR2-expressing mouse's cerebral cortex. Neurons that maintained high cluster quality (signal-to-noise ratio = 5:1) and coherence in response to trains of 20 Hz stimulation were monitored. Significance. The optrode array reduces the distance between the optical stimulating sites and electrophysiological sites dramatically and can supply multiple channels to guide different lights simultaneously. This optrode with its novel structure may lead to a different kind of optical neural control prosthetic device, opening up a new option for neural modulation in the brain.

  12. Final Technical Report- Radiation Hard Tight Pitch GaInP SPAD Arrays for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, Eric S.

    The specialized photodetectors used in high energy physics experiments often need to remain extremely sensitive for years despite radiation induced damage caused by the constant bombardment of high energy particles. To solve this problem, LightSpin Technologies, Inc. in collaboration with Prof. Bradley Cox and the University of Virginia is developing radiation-hard GaInP photodetectors which are projected to be extraordinarily radiation hard, theoretically capable of withstanding a 100,000-fold higher radiation dose than silicon. In this Phase I SBIR project, LightSpin investigated the performance and radiation hardness of fifth generation GaInP SPAD arrays. These fifth generation devices used a new planar processingmore » approach that enables very tight pitch arrays to be produced. High performance devices with SPAD pitches of 11, 15, and 25 μm were successfully demonstrated, which greatly increased the dynamic range and maximum count rate of the devices. High maximum count rates are critical when considering radiation hardness, since radiation damage causes a proportional increase in the dark count rate, causing SPAD arrays with low maximum count rates (large SPAD pitches) to fail. These GaInP SPAD array Photomultiplier Chips™ were irradiated with protons, electrons, and neutrons. Initial irradiation results were disappointing, with the post-irradiation devices exhibiting excessively high dark currents. The degradation was traced to surface leakage currents that were largely eliminated through the use of trenches etched around the exterior of the Photomultiplier Chip™ (not between SPAD elements). A second round of irradiations on Photomultiplier Chips™ with trenches proved substantially more successful, with post-irradiation dark currents remaining relatively low, though dark count rates were observed to increase at the highest doses. Preliminary analysis of the post-irradiation devices is promising … many of the irradiated Photomultiplier Chips™ still exhibit good gain characteristics after 1E12/cm 2 – 1E13/cm 2 doses and have apparent dark count rates that are lower than the apparent dark count rates published for irradiation of silicon SPAD arrays (silicon photomultipliers or SiPMs). Some post-irradiation results are still pending because the samples will still too radioactive to be shipped back from the irradiation facility for post-irradiation testing.« less

  13. A Microfabricated 8-40 GHz Dual-Polarized Reflector Feed

    NASA Technical Reports Server (NTRS)

    Vanhille, Kenneth; Durham, Tim; Stacy, William; Karasiewicz, David; Caba, Aaron; Trent, Christopher; Lambert, Kevin; Miranda, Felix

    2014-01-01

    Planar antennas based on tightly coupled dipole arrays (also known as a current sheet antenna or CSA) are amenable for use as electronically scanned phased arrays. They are capable of performance nearing a decade of bandwidth. These antennas have been demonstrated in many implementations at frequencies below 18 GHz. This paper describes the implementation using a relatively new multi-layer microfabrication process resulting in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 GHz. The beamformer includes baluns that feed the dual-polarized differential antenna elements and reactive splitter networks that also cover the full frequency range of operation. This antenna array serves as a reflector feed for a multi-band instrument designed to measure snow water equivalent (SWE) from airborne platforms. The instrument has both radar and radiome try capability at multiple frequencies. Scattering-parameter and time-domain measurements have been used to characterize the array feed. Radiation patterns of the antenna have been measured and are compared to simulation. To the best of the authors' knowledge, this work represents the most integrated multi-octave millimeter-wave antenna feed fabricated to date.

  14. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  15. Self-organized plasmonic metasurfaces for all-optical modulation

    NASA Astrophysics Data System (ADS)

    Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F.

    2015-06-01

    We experimentally demonstrate a self-organized metasurface with a polarization dependent transmittance that can be dynamically controlled by optical means. The configuration consists of tightly packed plasmonic nanowires with a large dispersion of width and height produced by the defocused ion-beam sputtering of a thin gold film supported on a silica glass. Our results are quantitatively interpreted according to a theoretical model based on the thermomodulational nonlinearity of gold and a finite-element numerical analysis of the absorption and scattering cross-sections of the nanowires. We found that the polarization sensitivity of the metasurface can be strongly enhanced by pumping with ultrashort laser pulses, leading to potential applications in ultrafast all-optical modulation and switching of light.

  16. Crystallization and preliminary X-ray diffraction analysis of West Nile virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, Barbel; Plevka, Pavel; Kuhn, Richard J.

    2010-05-25

    West Nile virus, a human pathogen, is closely related to other medically important flaviviruses of global impact such as dengue virus. The infectious virus was purified from cell culture using polyethylene glycol (PEG) precipitation and density-gradient centrifugation. Thin amorphously shaped crystals of the lipid-enveloped virus were grown in quartz capillaries equilibrated by vapor diffusion. Crystal diffraction extended at best to a resolution of about 25 {angstrom} using synchrotron radiation. A preliminary analysis of the diffraction images indicated that the crystals had unit-cell parameters a {approx_equal} b {approx_equal} 480 {angstrom}, {gamma} = 120{sup o}, suggesting a tight hexagonal packing of onemore » virus particle per unit cell.« less

  17. One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating.

    PubMed

    Lin, Yu-Chih; Tu, Han-Yen; Wu, Xin-Ru; Lai, Xin-Ji; Cheng, Chau-Jern

    2018-05-14

    This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.

  18. Brush seals for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Proctor, Margaret P.

    1994-07-01

    This viewgraph presentation presents test results of brush seals for cryogenic applications. Leakage for a single brush seal was two to three times less than for a 12-tooth labyrinth seal. The maximum temperature rise for a single brush seal was less than 50 R and occurred at 25 psid across the seal and 35,000 rpm. A static blowout test demonstrated sealing capability up to 550 psid. The seal limit was not obtained. The power loss for a single brush at 35,000 rpm and 175 psid was 2.45 hp. Two brushes far apart leak less than two brushes tight packed. Rotor wear was approximately 0.00075 mils and bristle wear was 1-3 mils after 4-1/2 hours.

  19. Miscibility, chain packing, and hydration of 1-palmitoyl-2-oleoyl phosphatidylcholine and other lipids in surface phases.

    PubMed

    Smaby, J M; Brockman, H L

    1985-11-01

    The miscibility of 1-palmitoyl-2-oleoyl phosphatidylcholine with triolein, 1,2-diolein, 1,3-diolein, 1(3)-monoolein, oleyl alcohol, methyl oleate, oleic acid, and oleyl cyanide (18:1 lipids) was studied at the argon-water interface. The isothermal phase diagrams for the mixtures at 24 degrees were characterized by two compositional regions. At the limit of miscibility with lower mol fractions of 18:1 lipid, the surface pressure was composition-independent, but above a mixture-specific stoichiometry, surface pressure at the limit of miscibility was composition-dependent. From the two-dimensional phase rule, it was determined that at low mol fractions of 18:1 lipids, the surface consisted of phospholipid and a preferred packing array or complex of phospholipid and 18:1 lipid, whereas, above the stoichiometry of the complex, the surface phase consisted of complex and excess 18:1 lipids. In both regions of the phase diagram, mixing along the phase boundary was apparently ideal allowing application of an equation of state described earlier (J. M. Smaby and H. L. Brockman, 1984, Biochemistry, 23:3312-3316). From such analysis, apparent partial molecular areas and hydrations for phospholipid, complex, and 18:1 lipid were obtained. Comparison of these calculated parameters for the complexed and uncomplexed states shows that the aliphatic moieties behave independently of polar head group. The transition of each 18:1 chain to the complexed state involves the loss of about one interfacial water molecule and its corresponding area. For 18:1 lipids with more than one chain another two water molecules per additional chain are present in both states but contribute little to molecular area. In contrast to 18:1 lipids, the phospholipid area and hydration change little upon complexation. The uniformity of chain packing and hydration behavior among 18:1 lipid species contrasts with complex stoichiometries that vary from 0.04 to 0.65. This suggests that the stoichiometry of the preferred packing array is determined by interactions involving the more polar moieties of the 18:1 lipids and the phospholipid.

  20. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Fifth Quarterly Project Report - FY14 Q1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less

  1. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Monthly Report - November 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less

  2. New technologies for the detection of millimeter and submillimeter waves

    NASA Technical Reports Server (NTRS)

    Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.

    2001-01-01

    Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.

  3. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays

    PubMed Central

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-01-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought. PMID:25428353

  4. High hopes: can molecular electronics realise its potential?

    PubMed

    Coskun, Ali; Spruell, Jason M; Barin, Gokhan; Dichtel, William R; Flood, Amar H; Botros, Youssry Y; Stoddart, J Fraser

    2012-07-21

    Manipulating and controlling the self-organisation of small collections of molecules, as an alternative to investigating individual molecules, has motivated researchers bent on processing and storing information in molecular electronic devices (MEDs). Although numerous ingenious examples of single-molecule devices have provided fundamental insights into their molecular electronic properties, MEDs incorporating hundreds to thousands of molecules trapped between wires in two-dimensional arrays within crossbar architectures offer a glimmer of hope for molecular memory applications. In this critical review, we focus attention on the collective behaviour of switchable mechanically interlocked molecules (MIMs)--specifically, bistable rotaxanes and catenanes--which exhibit reset lifetimes between their ON and OFF states ranging from seconds in solution to hours in crossbar devices. When these switchable MIMs are introduced into high viscosity polymer matrices, or self-assembled as monolayers onto metal surfaces, both in the form of nanoparticles and flat electrodes, or organised as tightly packed islands of hundreds and thousands of molecules sandwiched between two electrodes, the thermodynamics which characterise their switching remain approximately constant while the kinetics associated with their reset follow an intuitively predictable trend--that is, fast when they are free in solution and sluggish when they are constrained within closely packed monolayers. The importance of seamless interactions and constant feedback between the makers, the measurers and the modellers in establishing the structure-property relationships in these integrated functioning systems cannot be stressed enough as rationalising the many different factors that impact device performance becomes more and more demanding. The choice of electrodes, as well as the self-organised superstructures of the monolayers of switchable MIMs employed in the molecular switch tunnel junctions (MSTJs) associated with the crossbars of these MEDs, have a profound influence on device operation and performance. It is now clear, after much investigation, that a distinction should be drawn between two types of switching that can be elicited from MSTJs. One affords small ON/OFF ratios and is a direct consequence of the switching in bistable MIMs that leads to a relatively small remnant molecular signature--an activated chemical process. The other leads to a very much larger signature and ON/OFF ratios resulting from physical or chemical changes in the electrodes themselves. Control experiments with various compounds, including degenerate catenanes and free dumbbells, which cannot and do not switch, are crucial in establishing the authenticity of the small ON/OFF ratios and remnant molecular signatures produced by bistable MIMs. Moreover, experiments conducted on monolayers in MSTJs of molecules designed to switch and molecules designed not to switch have been probed directly by spectroscopic and other means in support of MEDs that store information through switching collections of bistable MIMs contained in arrays of MSTJs. In the quest for the next generation of MEDs, it is likely that monolayers of bistable MIMs will be replaced by robust crystalline extended structures wherein the switchable components, derived from bistable MIMs, are organised precisely in a periodic manner.

  5. Numerical Simulations and Experimental Measurements of Scale-Model Horizontal Axis Hydrokinetic Turbines (HAHT) Arrays

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2014-11-01

    The performance, turbulent wake evolution and interaction of multiple Horizontal Axis Hydrokinetic Turbines (HAHT) is analyzed in a 45:1 scale model setup. We combine experimental measurements with different RANS-based computational simulations that model the turbines with sliding-mesh, rotating reference frame and blame element theory strategies. The influence of array spacing and Tip Speed Ratio on performance and wake velocity structure is investigated in three different array configurations: Two coaxial turbines at different downstream spacing (5d to 14d), Three coaxial turbines with 5d and 7d downstream spacing, and Three turbines with lateral offset (0.5d) and downstream spacing (5d & 7d). Comparison with experimental measurements provides insights into the dynamics of HAHT arrays, and by extension to closely packed HAWT arrays. The experimental validation process also highlights the influence of the closure model used (k- ω SST and k- ɛ) and the flow Reynolds number (Re=40,000 to 100,000) on the computational predictions of devices' performance and characteristics of the flow field inside the above-mentioned arrays, establishing the strengths and limitations of existing numerical models for use in industrially-relevant settings (computational cost and time). Supported by DOE through the National Northwest Marine Renewable Energy Center (NNMREC).

  6. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  7. Cobalt selenide hollow nanorods array with exceptionally high electrocatalytic activity for high-efficiency quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2018-02-01

    In quasi-solid-state dye-sensitized solar cells (QSDSSCs), electron transport through a random network of catalyst in the counter electrode (CE) and electrolyte diffusion therein are limited by the grain boundaries of catalyst particles, thus diminishing the electrocatalytic performance of CE and the corresponding photovoltaic performance of QSDSSCs. We demonstrate herein an ordered Co0.85Se hollow nanorods array film as the Pt-free CE of QSDSSCs. The Co0.85Se hollow nanorods array displays excellent electrocatalytic activity for the reduction of I3- in the quasi-solid-state electrolyte with extremely low charge transfer resistance at the CE/electrolyte interface, and the diffusion of redox species within the Co0.85Se hollow nanorods array CE is pretty fast. The QSDSSC device with the Co0.85Se hollow nanorods array CE produces much higher photovoltaic conversion efficiency (8.35%) than that (4.94%) with the Co0.85Se randomly packed nanorods CE, against the control device with the Pt CE (7.75%). Moreover, the QSDSSC device based on the Co0.85Se hollow nanorods array CE presents good long-term stability with only 4% drop of power conversion efficiency after 1086 h one-sun soaking.

  8. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.

    PubMed

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T

    2009-10-01

    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  9. Development and Operation of Arrays of TES x-ray Microcalorimeters Suitable for Constellation-X

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; hide

    2008-01-01

    Having already developed a transition-edge-sensor (TES) microcalorimeter design that enables uniform and reproducible high spectral resolution (routinely better than 3 eV resolution at 6 keV) and is compatible with high fill-factor arrays, we are now working towards demonstrating this performance at high count rates and with the multiplexed read-out needed for instrumenting the Constellation-X X-ray Microcalorimeter Spectrometer (XMS) focal plane array. Design changes that increase the speed of the individual XMS pixels, such as lowering the heat capacity or increasing the thermal conductance of the link to the 50-mK heatsink, result in larger, faster signals, thus the coupling to the multiplexer and the overall bandwidth of the electronics must accommodate this increase in slew rate. In order to operate the array with high incident x-ray flux without unacceptable degradation of the spectral resolution, the magnitude of thermal and electrical crosstalk must be controlled. We will discuss recent progress in the thermal and electrical designs of our close-packed TES arrays, and we will present spectra acquired through the read-out chain from the multiplexer electronics, through the demultiplexer software, to real-time signal processing.

  10. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  11. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.

    PubMed

    Halpern, Aaron R; Corn, Robert M

    2013-02-26

    A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids were removed from the surface, a thin film of positive photoresist was applied, and a backside exposure of the photoresist was used to create a nanohole electrode array; (iii) this array of nanoscale cylindrical electrodes was then used for the electrodeposition of gold, silver, or nickel nanorings. Removal of the photoresist and sacrificial metal film yielded a nanoring array in which all of the nanoring dimensions were set independently: the inter-ring spacing was fixed by the colloidal radius, the radius of the nanorings was controlled by the plasma etching process, and the width of the nanorings was controlled by the electrodeposition process. A combination of scanning electron microscopy (SEM) measurements and Fourier transform near-infrared (FT-NIR) absorption spectroscopy were used to characterize the nanoring arrays. Nanoring arrays with radii from 200 to 400 nm exhibited a single strong NIR plasmonic resonance with an absorption maximum wavelength that varied linearly from 1.25 to 3.33 μm as predicted by a simple standing wave model linear antenna theory. This simple yet versatile nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances.

  12. Annular solid-immersion lenslet array super-resolution optical microscopy

    NASA Astrophysics Data System (ADS)

    Liau, Z. L.

    2012-10-01

    We describe a novel solid-immersion lenslet array, micro-fabricated in a chip form in the high-index (3.45) gallium phosphide. The innovatively designed lenslet features an annular aperture with appropriately patterned light absorbers and antireflection coatings. The array chip is easy to handle and enables the direct deposition of the specimen of interest onto its back-plane for tight adhesion and good optical coupling. The ensuing diffraction from the near field can yield supercritical rays inside the high-index lenslet and can, therefore, overcome the refraction and critical-angle limitations. This model showed agreement with the experimental observation of the solid-immersion fluorescence microscopy imaging, in which the refracted rays were completely blocked by the annular aperture. A large longitudinal (depth) magnification effect was also predicted and showed agreement with experiment. The annular lenslet's additional advantages of improved resolution and contrast were also discussed. Resolution of nested-L patterns with grating pitch as small as 100 nm was experimentally demonstrated. The demonstrated annular solid-immersion lenslet array concept is promising for a wider use in super-resolution optical microscopy.

  13. Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colasanti, L.; Macculi, C.; Piro, L.

    2009-12-16

    The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA), requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%). A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo-AntiCoincidence (Cryo-AC) based on a silicon absorber and read by a TES (Transition-Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. Wemore » present the results of estimations, simulations and preliminary measurement.« less

  14. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  15. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGES

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  16. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raposo, V.; Zazo, M.; Flores, A. G.

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which wasmore » achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.« less

  17. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.

    PubMed

    Cai, Hongbing; Meng, Qiushi; Zhao, Hui; Li, Mingling; Dai, Yanmeng; Lin, Yue; Ding, Huaiyi; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping

    2018-06-13

    The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 10 6 and a detection limit of 10 -11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe 2 . Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.

  18. A Realtime Active Feedback Control System For Coupled Nonlinear Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan; Fraden, Seth

    2012-02-01

    We study the manipulation and control of oscillatory networks. As a model system we use an emulsion of Belousov-Zhabotinsky (BZ) oscillators packed on a hexagonal lattice. Each drop is observed and perturbed by a Programmable Illumination Microscope (PIM). The PIM allows us to track individual BZ oscillators, calculate the phase and order parameters of every drop, and selectively perturb specific drops with photo illumination, all in realtime. To date we have determined the native attractor patterns for drops in 1D arrays and 2D hexagonal packing as a function of coupling strength as well as determined methods to move the system from one attractor basin to another. Current work involves implementing these attractor control methods with our experimental system and future work will likely include implementing a model neural network for use with photo controllable BZ emulsions.

  19. Frequency dependent ac transport of films of close-packed carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.

    2018-03-01

    We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.

  20. Investigating the relative permeability behavior of microporosity-rich carbonates and tight sandstones with multiscale pore network models

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Stappen, Jeroen Van; Kock, Tim De; Boever, Wesley De; Boone, Marijn A.; Hoorebeke, Luc Van; Cnudde, Veerle

    2016-11-01

    The relative permeability behavior of rocks with wide ranges of pore sizes is in many cases still poorly understood and is difficult to model at the pore scale. In this work, we investigate the capillary pressure and relative permeability behavior of three outcrop carbonates and two tight reservoir sandstones with wide, multimodal pore size distributions. To examine how the drainage and imbibition properties of these complex rock types are influenced by the connectivity of macropores to each other and to zones with unresolved small-scale porosity, we apply a previously presented microcomputed-tomography-based multiscale pore network model to these samples. The sensitivity to the properties of the small-scale porosity is studied by performing simulations with different artificial sphere-packing-based networks as a proxy for these pores. Finally, the mixed-wet water-flooding behavior of the samples is investigated, assuming different wettability distributions for the microporosity and macroporosity. While this work is not an attempt to perform predictive modeling, it seeks to qualitatively explain the behavior of the investigated samples and illustrates some of the most recent developments in multiscale pore network modeling.

  1. Nd:YAG end pumped by semiconductor laser arrays for free space optical communications

    NASA Technical Reports Server (NTRS)

    Sipes, D. L., Jr.

    1985-01-01

    Preliminary experimental results are reported for a diode-pumped Nd:YAG laser employing a tightly focused end-pump geometry. The resonator configuration is planoconcave, with the pumped end of the Nd:YAG rod being coated for high reflection at 1.06 microns. This geometry rectifies nearly all the inefficiencies plaguing side-pumped schemes. This laser is further considered as a candidate for optical communication over the deep space channel.

  2. Innovative Multiphase Nanoparticle Composites Developed Using Electrophoresis And Electromigration

    DTIC Science & Technology

    2008-12-01

    Fig. 2. Surface of enamel steel sheet showing the array of fine cracks in the enamel . Copper metal was deposited on the...suspensions of enameling frit are used, a layer of glass particles can be built up that can be fused into a tightly bonded vitreous coating. 1...Prescribed by ANSI Std Z39-18 Electrophoresis has been particularly important in enameling because it can deposit a glassy frit layer uniformly

  3. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broitman, Esteban, E-mail: esbro@ifm.liu.se; Flores-Ruiz, Francisco J.; Di Giulio, Massimo

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure withmore » respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.« less

  4. Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials

    NASA Astrophysics Data System (ADS)

    Gresch, Dominik; Autès, Gabriel; Yazyev, Oleg V.; Troyer, Matthias; Vanderbilt, David; Bernevig, B. Andrei; Soluyanov, Alexey A.

    2017-02-01

    The intense theoretical and experimental interest in topological insulators and semimetals has established band structure topology as a fundamental material property. Consequently, identifying band topologies has become an important, but often challenging, problem, with no exhaustive solution at the present time. In this work we compile a series of techniques, some previously known, that allow for a solution to this problem for a large set of the possible band topologies. The method is based on tracking hybrid Wannier charge centers computed for relevant Bloch states, and it works at all levels of materials modeling: continuous k .p models, tight-binding models, and ab initio calculations. We apply the method to compute and identify Chern, Z2, and crystalline topological insulators, as well as topological semimetal phases, using real material examples. Moreover, we provide a numerical implementation of this technique (the Z2Pack software package) that is ideally suited for high-throughput screening of materials databases for compounds with nontrivial topologies. We expect that our work will allow researchers to (a) identify topological materials optimal for experimental probes, (b) classify existing compounds, and (c) reveal materials that host novel, not yet described, topological states.

  5. In silico study of full-length amyloid beta 1-42 tri- and penta-oligomers in solution.

    PubMed

    Masman, Marcelo F; Eisel, Ulrich L M; Csizmadia, Imre G; Penke, Botond; Enriz, Ricardo D; Marrink, Siewert Jan; Luiten, Paul G M

    2009-08-27

    Amyloid oligomers are considered to play causal roles in the pathogenesis of amyloid-related degenerative diseases including Alzheimer's disease. Using MD simulation techniques, we explored the contributions of the different structural elements of trimeric and pentameric full-length Abeta1-42 aggregates in solution to their stability and conformational dynamics. We found that our models are stable at a temperature of 310 K, and converge toward an interdigitated side-chain packing for intermolecular contacts within the two beta-sheet regions of the aggregates: beta1 (residues 18-26) and beta2 (residues 31-42). MD simulations reveal that the beta-strand twist is a characteristic element of Abeta-aggregates, permitting a compact, interdigitated packing of side chains from neighboring beta-sheets. The beta2 portion formed a tightly organized beta-helix, whereas the beta1 portion did not show such a firm structural organization, although it maintained its beta-sheet conformation. Our simulations indicate that the hydrophobic core comprising the beta2 portion of the aggregate is a crucial stabilizing element in the Abeta aggregation process. On the basis of these structure-stability findings, the beta2 portion emerges as an optimal target for further antiamyloid drug design.

  6. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    PubMed

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  7. Structures of M2(SO2)6B12F12 (M = Ag or K) and Ag2(H2O)4B12F12: Comparison of the Coordination of SO2 versus H2O and of B12F122- versus Other Weakly Coordinating Anions to Metal Ions in the Solid State.

    PubMed

    Malischewski, Moritz; Peryshkov, Dmitry V; Bukovsky, Eric V; Seppelt, Konrad; Strauss, Steven H

    2016-12-05

    The structures of three solvated monovalent cation salts of the superweak anion B 12 F 12 2- (Y 2- ), K 2 (SO 2 ) 6 Y, Ag 2 (SO 2 ) 6 Y, and Ag 2 (H 2 O) 4 Y, are reported and discussed with respect to previously reported structures of Ag + and K + with other weakly coordinating anions. The structures of K 2 (SO 2 ) 6 Y and Ag 2 (SO 2 ) 6 Y are isomorphous and are based on expanded cubic close-packed arrays of Y 2- anions with M(OSO) 6 + complexes centered in the trigonal holes of one expanded close-packed layer of B 12 centroids (⊙). The K + and Ag + ions have virtually identical bicapped trigonal prism MO 6 F 2 coordination spheres, with M-O distances of 2.735(1)-3.032(2) Å for the potassium salt and 2.526(5)-2.790(5) Å for the silver salt. Each M(OSO) 6 + complex is connected to three other cationic complexes through their six μ-SO 2 -κ 1 O,κ 2 O' ligands. The structure of Ag 2 (H 2 O) 4 Y is unique [different from that of K 2 (H 2 O) 4 Y]. Planes of close-packed arrays of anions are offset from neighboring planes along only one of the linear ⊙···⊙···⊙ directions of the close-packed arrays, with [Ag(μ-H 2 O) 2 Ag(μ-H 2 O) 2 )] ∞ infinite chains between the planes of anions. There are two nearly identical AgO 4 F 2 coordination spheres, with Ag-O distances of 2.371(5)-2.524(5) Å and Ag-F distances of 2.734(4)-2.751(4) Å. This is only the second structurally characterized compound with four H 2 O molecules coordinated to a Ag + ion in the solid state. Comparisons with crystalline H 2 O and SO 2 solvates of other Ag + and K + salts of weakly coordinating anions show that (i) N[(SO 2 ) 2 (1,2-C 6 H 4 )] - , BF 4 - , SbF 6 - , and Al(OC(CF 3 ) 3 ) 4 - coordinate much more strongly to Ag + than does Y 2- , (ii) SnF 6 2- coordinates somewhat more strongly to K + than does Y 2- , and (iii) B 12 Cl 12 2- coordinates to K + about the same as, if not slightly weaker than, Y 2- .

  8. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.

    PubMed

    Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey

    2016-02-15

    We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.

  9. The effects of ethanol on the size-exclusion characteristics of type I dentin collagen to adhesive resin monomers.

    PubMed

    Chiba, A; Zhou, J; Nakajima, M; Tan, J; Tagami, J; Scheffel, D L S; Hebling, J; Agee, K A; Breschi, L; Grégoire, G; Jang, S S; Tay, F R; Pashley, D H

    2016-03-01

    During dentin bonding with etch-and-rinse adhesive systems, phosphoric acid etching of mineralized dentin solubilizes the mineral crystallites and replaces them with bound and unbound water. During the infiltration phase of dentin bonding, solvated adhesive resin comonomers are supposed to replace all of the unbound collagen water and polymerize into copolymers. A recently published review suggested that dental monomers are too large to enter and displace water from tightly-packed collagen molecules. Conversely, recent work from the authors' laboratory demonstrated that HEMA and TEGDMA freely equilibrate with water-saturated dentin matrices. However, because adhesive blends are solvated in organic solvents, those solvents may remove enough free water to allow collagen molecules to come close enough to exclude adhesive monomer permeation. The present study analyzed the size-exclusion characteristics of dentin collagen, using a gel permeation-like column chromatography technique, filled with dentin powder instead of Sephadex beads as the stationary phase. The elution volumes of different sized test molecules, including adhesive resin monomers, studied in both water-saturated dentin, and again in ethanol-dehydrated dentin powder, showed that adhesive resin monomers can freely diffuse into both hydrated and dehydrated collagen molecules. Under these in vitro conditions, all free and some of the loosely-bound water seems to have been removed by ethanol. These results validate the concept that adhesive resin monomers can permeate tightly-bound water in ethanol-saturated collagen molecules during infiltration by etch-and-rinse adhesives. It has been reported that collagen molecules in dentin matrices are packed too close together to allow permeation of adhesive monomers between them. Resin infiltration, in this view, would be limited to extrafibrillar spaces. Our work suggests that monomers equilibrate with collagen water in both water and ethanol-saturated dentin matrices. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive tomore » small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.« less

  11. A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies

    PubMed Central

    McCue, Molly E.; Bannasch, Danika L.; Petersen, Jessica L.; Gurr, Jessica; Bailey, Ernie; Binns, Matthew M.; Distl, Ottmar; Guérin, Gérard; Hasegawa, Telhisa; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Penedo, M. Cecilia T.; Røed, Knut H.; Ryder, Oliver A.; Swinburne, June E.; Tozaki, Teruaki; Valberg, Stephanie J.; Vaudin, Mark; Lindblad-Toh, Kerstin

    2012-01-01

    An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species. PMID:22253606

  12. Discrete microfluidics: Reorganizing droplet arrays at a bend

    NASA Astrophysics Data System (ADS)

    Surenjav, Enkhtuul; Herminghaus, Stephan; Priest, Craig; Seemann, Ralf

    2009-10-01

    Microfluidic manipulation of densely packed droplet arrangements (i.e., gel emulsions) using sharp microchannel bends was studied as a function of bend angle, droplet volume fraction, droplet size, and flow velocity. Emulsion reorganization was found to be specifically dependent on the pathlength that the droplets are forced to travel as they navigate the bend under spatial confinement. We describe how bend-induced droplet displacements might be exploited in complex, droplet-based microfluidics.

  13. Template-Growth of Highly Ordered Carbon Nanotube Arrays on Silicon POSTPRINT

    DTIC Science & Technology

    2006-09-01

    packed uni- form CNTs that are spatially isolated from each other is to use a growth template. Highly ordered anodic aluminum oxide ( AAO ) template can...process for evaporating thick aluminum of high quality and good adhesion. 15. SUBJECT TERMS Anodic Aluminum Oxide Template, Carbon Nanotubes (CNTs...within the highly ordered nanopores of an alumina oxide template, which is in turn formed on silicon through anodization of aluminum of unprecedented

  14. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  15. A novel adhering junction in the apical ciliary apparatus of the rotifer Brachionus plicatilis (Rotifera, Monogononta).

    PubMed

    Dallai, R; Lupetti, P; Lane, N J

    1996-10-01

    Cultures of the rotifer Brachionus plicatilis were examined with regard to their interepithelial junctions after infiltration with the extracellular tracer lanthanum, freeze-fracturing or quick-freeze deep-etching. The lateral borders between ciliated cells have an unusual apical adhering junction. This apical part of their intercellular cleft looks desmosome-like, but it is characterized by unusual intramembranous E-face clusters of particles. Deep-etching reveals that these are packed together in short rows which lie parallel to one another in orderly arrays. The true membrane surface in these areas features filaments in the form of short ribbons; these are produced by projections, possibly part of the glycocalyx, emerging from the membranes, between which the electron-dense tracer lanthanum permeates. These projections appear to overlap with each other in the centre of the intercellular cleft; this would provide a particularly flexible adaptation to maintain cell-cell contact and coordination as a consequence. The filamentous ribbons may be held in position by the intramembranous particle arrays since both have a similar size and distribution. These contacts are quite different from desmosomes and appear to represent a distinct new category of adhesive cell-cell junction. Beneath these novel structures, conventional pleated septate junctions are found, exhibiting the undulating intercellular ribbons typical of this junctional type, as well as the usual parallel alignments of intramembranous rows of EF grooves and PF particles. Below these are found gap junctions as close-packed plaques of intramembranous particles on either the P-face or E-face. After freeze-fracturing, the complementary fracture face to the particles shows pits, usually on the P-face, arrayed with a very precise hexagonal pattern.

  16. Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Capolino, Filippo

    In this study, we investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observemore » two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices.« less

  17. Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity

    DOE PAGES

    Campione, Salvatore; Capolino, Filippo

    2016-01-25

    In this study, we investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observemore » two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices.« less

  18. Stent-Assisted Coil Embolization for Cavernous Carotid Artery Aneurysms

    PubMed Central

    KONO, Kenichi; SHINTANI, Aki; OKADA, Hideo; TANAKA, Yuko; TERADA, Tomoaki

    2014-01-01

    Internal carotid artery (ICA) occlusion with or without a bypass surgery is the traditional treatment for cavernous sinus (CS) aneurysms with cranial nerve (CN) dysfunction. Coil embolization without stents frequently requires retreatment because of the large size of CS aneurysms. We report the mid-term results of six unruptured CS aneurysms treated with stent-assisted coil embolization (SACE). The mean age of the patients was 72 years. The mean size of the aneurysms was 19.8 mm (range: 13–26 mm). Before treatment, four patients presented with CN dysfunction and two patients had no symptoms. SACE was performed under local or general anesthesia in three patients each. Mean packing density was 29.1% and tight packing was achieved. There were no neurological complications. CN dysfunction was cured in three patients (75%) and partly resolved in one patient (25%). Transient new CN dysfunction was observed in two patients (33%). Clinical and imaging follow-up ranged from 6 to 26 months (median: 16 months). Recanalization was observed in three patients (50%; neck remnant in two patients and dome filling in one patient), but no retreatment has yet been required. No recurrence of CN dysfunction has occurred yet. In summary, SACE increases packing density and may reduce requirement of retreatment with an acceptable cure rate of CN dysfunction. SACE may be a superior treatment for coiling without stents and be an alternative treatment of ICA occlusion for selected patients, such as older patients and those who require a high-flow bypass surgeryor cannot receive general anesthesia. PMID:24257503

  19. Wafer-scale, massively parallel carbon nanotube arrays for realizing field effect transistors with current density exceeding silicon and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Arnold, Michael

    Calculations have indicated that aligned arrays of semiconducting carbon nanotubes (CNTs) promise to outperform conventional semiconducting materials in short-channel, aggressively scaled field effect transistors (FETs) like those used in semiconductor logic and high frequency amplifier technologies. These calculations have been based on extrapolation of measurements of FETs based on one CNT, in which ballistic transport approaching the quantum conductance limit of 2Go = 4e2/h has been achieved. However, constraints in CNT sorting, processing, alignment, and contacts give rise to non-idealities when CNTs are implemented in densely-packed parallel arrays, which has resulted in a conductance per CNT far from 2Go. The consequence has been that it has been very difficult to create high performance CNT array FETs, and CNT array FETs have not outperformed but rather underperformed channel materials such as Si by 6 x or more. Here, we report nearly ballistic CNT array FETs at a density of 50 CNTs um-1, created via CNT sorting, wafer-scale alignment and assembly, and treatment. The on-state conductance in the arrays is as high as 0.46 Go per CNT, and the conductance of the arrays reaches 1.7 mS um-1, which is 7 x higher than previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density reaches 900 uA um-1 and is similar to or exceeds that of Si FETs when compared at equivalent gate oxide thickness, off-state current density, and channel length. The on-state current density exceeds that of GaAs FETs, as well. This leap in CNT FET array performance is a significant advance towards the exploitation of CNTs in high-performance semiconductor electronics technologies.

  20. A 220-GHz SIS Mixer Tightly Integrated With a Sub-Hundred-Microwatt SiGe IF Amplifier

    NASA Astrophysics Data System (ADS)

    Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.

    2016-01-01

    Future kilopixel-scale heterodyne focal plane arrays based on superconductor-insulator-superconductor (SIS) mixers will require submilliwatt power consumption low-noise amplifiers (LNAs) which are tightly integrated with the mixers. In this paper, an LNA that is optimized for direct connection to a 220-GHz SIS mixer chip and requires less than 100 μW of dc power is reported. The amplifier design process is described, and measurement results are presented. It is shown that, when pumped at local oscillator frequencies between 214 and 226 GHz, the mixer/amplifier module achieves a double-sideband system noise temperature between 35 and 50 K over the 3.3-6 GHz IF frequency range while requiring just 90 μW of dc power. Moreover, the potential to further reduce the power consumption is explored and successful operation is demonstrated for LNA power consumption as low as 60 μW.

  1. Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Seitz, O.; Caillard, L.; Nguyen, H. M.; Chiles, C.; Chabal, Y. J.; Malko, A. V.

    2012-01-01

    To optimize colloidal nanocrystals/Si hybrid structures, nanopillars are prepared and organized via microparticle patterning and Si etching. A monolayer of CdSe nanocrystals is then grafted on the passivated oxide-free nanopillar surfaces, functionalized with carboxy-alkyl chain linkers. This process results to a negligible number of non-radiative surface state defects with a tightly controlled separation between the nanocrystals and Si. Steady-state and time-resolved photoluminescence measurements confirm the close-packing nanocrystal arrangement and the dominance of non-radiative energy transfer from nanocrystals to Si. We suggest that radially doped p-n junction devices based on energy transfer offer a viable approach for thin film photovoltaic devices.

  2. Percolation transition in Yang-Mills matter at a finite number of colors.

    PubMed

    Lottini, Stefano; Torrieri, Giorgio

    2011-10-07

    We examine baryonic matter at a quark chemical potential of the order of the confinement scale μ(q)∼Λ(QCD). In this regime, quarks are supposed to be confined but baryons are close to the "tightly packed limit" where they nearly overlap in configuration space. We show that this system will exhibit a percolation phase transition when varied in the number of colors N(c): at high N(c), large distance correlations at the quark level are possible even if the quarks are essentially confined. At low N(c), this does not happen. We discuss the relevance of this for dense nuclear matter, and argue that our results suggest a new "phase transition," varying N(c) at constant μ(q).

  3. Microeconomic principles explain an optimal genome size in bacteria.

    PubMed

    Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A

    2005-01-01

    Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).

  4. CENDRILLON CONTAINERS FOR THE TRANSPORT AND DISPENSING OF RADIOACTIVE LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertut, J.

    1963-01-01

    Pumpkin-shaped containers were developed for safe transport and dispensing of radioactive liquids. Four different sizes varying in capacity from 3.5 to 50 liters are available, However, liquids with criticality hazards cannot be handled in these containers. The shape was chosen to make the container rest firmly on a flat surface and to prevent it from being turned over and remaining upset. The liquid is held in an inner container of stainless steel. It is surrounded by a protective lead shell made in two halves, so that the upper half can be taken off. The lead itself is cast into steelmore » shells to provide additional strength. Both halves are rendered liquid tight by asbestos packing. (M.C.G.)« less

  5. Serpentine Robots for Inspection Tasks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choset, Howie

    2003-09-11

    Serpentine robots are snake like devices that can use their internal degrees of freedom to thread through tightly packed volumes accessing locations that people or conventional machinery cannot. These devices are ideally suited for minimally invasive inspection tasks where the surrounding areas do not have to be disturbed. Applications for these devices are therefore inspection of underground tanks and other storage facilities for classification purposes. This work deals with the design, construction, and control of a serpentine robot. The challenges lie in developing a device that can lift itself in three dimensions, which is necessary for the inspection tasks. Themore » other challenge in control deals with coordinating all of the internal degrees of freedom to exact purposeful motion.« less

  6. KSC-2011-1405

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician has secured a newly installed heat shield tile in place under space shuttle Atlantis with a pressure fitting to ensure a tight bond. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  7. KSC-2011-1404

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician has secured a newly installed heat shield tile in place under space shuttle Atlantis with a pressure fitting to ensure a tight bond. The tiles are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will deliver the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  8. KSC-2011-1479

    NASA Image and Video Library

    2011-02-17

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician secures a newly installed heat shield tile in place under space shuttle Atlantis with a pressure fitting to ensure a tight bond. The tiles are part of the Orbiter Thermal Protection System that protects the shuttle against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will carry the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last flight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  9. KSC-2011-1478

    NASA Image and Video Library

    2011-02-17

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a thermal protection system technician secures a newly installed heat shield tile in place under space shuttle Atlantis with a pressure fitting to ensure a tight bond. The tiles are part of the Orbiter Thermal Protection System that protects the shuttle against temperatures as high as 3,000 degrees Fahrenheit, which are produced during descent for landing. Atlantis is being prepared for the STS-135 mission, which will carry the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last flight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller

  10. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    PubMed

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  11. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  12. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  13. Supramolecular Control over the Interparticle Distance in Gold Nanoparticle Arrays by Cyclodextrin Polyrotaxanes

    PubMed Central

    Paulo Coelho, Joao; Osío Barcina, José; Aicart, Emilio; Tardajos, Gloria; Cruz-Gil, Pablo; Salgado, Cástor; Díaz-Núñez, Pablo

    2018-01-01

    Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays. PMID:29547539

  14. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard

    2015-12-01

    The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  15. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application

    PubMed Central

    Ghoshal, Tandra; Maity, Tuhin; Senthamaraikannan, Ramsankar; Shaw, Matthew T.; Carolan, Patrick; Holmes, Justin D.; Roy, Saibal; Morris, Michael A.

    2013-01-01

    Highly dense hexagonally arranged iron oxide nanodots array were fabricated using PS-b-PEO self-assembled patterns. The copolymer molecular weight, composition and choice of annealing solvent/s allows dimensional and structural control of the nanopatterns at large scale. A mechanism is proposed to create scaffolds through degradation and/or modification of cylindrical domains. A methodology based on selective metal ion inclusion and subsequent processing was used to create iron oxide nanodots array. The nanodots have uniform size and shape and their placement mimics the original self-assembled nanopatterns. For the first time these precisely defined and size selective systems of ordered nanodots allow careful investigation of magnetic properties in dimensions from 50 nm to 10 nm, which delineate the nanodots are superparamagnetic, well-isolated and size monodispersed. This diameter/spacing controlled iron oxide nanodots systems were demonstrated as a resistant mask over silicon to fabricate densely packed, identical ordered, high aspect ratio silicon nanopillars and nanowire features. PMID:24072037

  16. A Highly Efficient Sensor Platform Using Simply Manufactured Nanodot Patterned Substrates

    PubMed Central

    Rasappa, Sozaraj; Ghoshal, Tandra; Borah, Dipu; Senthamaraikannan, Ramsankar; Holmes, Justin D.; Morris, Michael A.

    2015-01-01

    Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H2O2) detection. The work demonstrates that BCP systems can be used as a highly efficient, flexible methodology for creating functional surfaces of materials. Highly dense iron oxide nanodots arrays that mimicked the original BCP pattern were prepared by an ‘insitu’ BCP inclusion methodology using poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO). The electrochemical behaviour of these densely packed arrays of iron oxide nanodots fabricated by two different molecular weight PS-b-PEO systems was studied. The dual detection of EtOH and H2O2 was clearly observed. The as-prepared nanodots have good long term thermal and chemical stability at the substrate and demonstrate promising electrocatalytic performance. PMID:26290188

  17. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.

    PubMed

    Zhang, Kun; Ji, Ji; Li, Yixin; Liu, Baohong

    2014-07-01

    Surface-enhanced Raman scattering (SERS) has proven to be promising for the detection of trace analytes; however, the precise nanofabrication of a specific and sensitive plasmonic SERS-active substrate is still a major challenge that limits the scope of its applications. In this work, gold nanoparticles are self-assembled into densely packed two-dimensional arrays at a liquid/liquid interface between dimethyl carbonate and water in the absence of template controller molecules. Both the simulation and experiment results show that the particles within these film-like arrays exhibit strong electromagnetic coupling and enable large amplification of Raman signals. In order to realize the level of sensing specificity, the surface chemistry of gold nanoparticles (Au NPs) is rationally tailored by incorporating an appropriate chemical moiety that specifically captures molecules of interest. The ease of fabrication and good uniformity make this platform ideal for in situ SERS sensing of trace targets in complex samples.

  18. The detector calibration system for the CUORE cryogenic bolometer array

    DOE PAGES

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...

    2016-11-14

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less

  19. A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.

    PubMed

    Pakdel, Majid; Jalilzadeh, Saeid

    2017-09-29

    In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.

  20. Innovative research in the design and operation of large telescopes for space: Aspects of giant telescopes in space

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1985-01-01

    The capability and understanding of how to finish the reflector surfaces needed for large space telescopes is discussed. The technology for making very light glass substrates for mirrors is described. Other areas of development are in wide field imaging design for very fast primaries, in data analysis and retrieval methods for astronomical images, and in methods for making large area closely packed mosaics of solid state array detectors.

  1. Rural health clinics infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, K.

    1997-12-01

    The author discusses programs which were directed at the installation of photovoltaic power systems in rural health clinics. The objectives included: vaccine refrigeration; ice pack freezing; lighting; communications; medical appliances; sterilization; water purification; and income generation. The paper discusses two case histories, one in the Dominican Republic and one in Colombia. The author summarizes the results of the programs, both successes and failures, and offers an array of conclusions with regard to the implementation of future programs of this general nature.

  2. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration

    PubMed Central

    Fan, Yuwei; Nelson, James R.; Alvarez, Jason R.; Hagan, Joseph; Berrier, Allison; Xu, Xiaoming

    2011-01-01

    The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by FE-SEM, ATR-FTIR and XRD. The concentration of fluoride and supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP) = 10.2±2.0 with fluoride 1.5±0.5 mg/L and amelogenin 40±10 µg/mL, pH 6.8±0.4. A phase diagram summarized the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management. PMID:21256987

  3. Fabrication of cell container arrays with overlaid surface topographies.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  4. A phased antenna array for surface plasmons

    PubMed Central

    Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099

  5. Enhancement of thermoelectric figure of merit in zigzag graphene nanoribbons with periodic edge vacancies

    NASA Astrophysics Data System (ADS)

    Kolesnikov, D. V.; Sadykova, O. G.; Osipov, V. A.

    2017-06-01

    The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) are investigated. Using Green’s function method, the tight-binding approximation for the electron Hamiltonian and the 4th nearest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.

  6. Jamming II: Edwards’ statistical mechanics of random packings of hard spheres

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Song, Chaoming; Jin, Yuliang; Makse, Hernán A.

    2011-02-01

    The problem of finding the most efficient way to pack spheres has an illustrious history, dating back to the crystalline arrays conjectured by Kepler and the random geometries explored by Bernal in the 1960s. This problem finds applications spanning from the mathematician’s pencil, the processing of granular materials, the jamming and glass transitions, all the way to fruit packing in every grocery. There are presently numerous experiments showing that the loosest way to pack spheres gives a density of ∼55% (named random loose packing, RLP) while filling all the loose voids results in a maximum density of ∼63%-64% (named random close packing, RCP). While those values seem robustly true, to this date there is no well-accepted physical explanation or theoretical prediction for them. Here we develop a common framework for understanding the random packings of monodisperse hard spheres whose limits can be interpreted as the experimentally observed RLP and RCP. The reason for these limits arises from a statistical picture of jammed states in which the RCP can be interpreted as the ground state of the ensemble of jammed matter with zero compactivity, while the RLP arises in the infinite compactivity limit. We combine an extended statistical mechanics approach ‘a la Edwards’ (where the role traditionally played by the energy and temperature in thermal systems is substituted by the volume and compactivity) with a constraint on mechanical stability imposed by the isostatic condition. We show how such approaches can bring results that can be compared to experiments and allow for an exploitation of the statistical mechanics framework. The key result is the use of a relation between the local Voronoi volumes of the constituent grains (denoted the volume function) and the number of neighbors in contact that permits us to simply combine the two approaches to develop a theory of volume fluctuations in jammed matter. Ultimately, our results lead to a phase diagram that provides a unifying view of the disordered hard sphere packing problem and further sheds light on a diverse spectrum of data, including the RLP state. Theoretical results are well reproduced by numerical simulations that confirm the essential role played by friction in determining both the RLP and RCP limits. The RLP values depend on friction, explaining why varied experimental results can be obtained.

  7. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation.

    PubMed

    Schunter, David J; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P

    2018-02-16

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  8. Elastogranular Mechanics: Buckling, Jamming, and Structure Formation

    NASA Astrophysics Data System (ADS)

    Schunter, David J.; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P.

    2018-02-01

    Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.

  9. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Astrophysics Data System (ADS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  10. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Technical Reports Server (NTRS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; hide

    2016-01-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN(sub x)) materials and microwave structures, and the resulting performance improvements.

  11. Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Stenkin, Yu. V.; Alekseenko, V. V.; Aynutdinov, V.; Cai, Z. Y.; Guo, X. W.; Liu, Y.; Rulev, V.; Shchegolev, O. B.; Stepanov, V.; Volchenko, V.; Zhang, H.

    2016-08-01

    We report on a measurement of thermal neutrons, generated by the hadronic component of extensive air showers (EAS), by means of a small array of EN-detectors developed for the PRISMA project (PRImary Spectrum Measurement Array), novel devices based on a compound alloy of ZnS(Ag) and 6LiF. This array has been operated within the ARGO-YBJ experiment at the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m a.s.l.). Due to the tight correlation between the air shower hadrons and thermal neutrons, this technique can be envisaged as a simple way to estimate the number of high energy hadrons in EAS. Coincident events generated by primary cosmic rays of energies greater than 100 TeV have been selected and analyzed. The EN-detectors have been used to record simultaneously thermal neutrons and the air shower electromagnetic component. The density distributions of both components and the total number of thermal neutrons have been measured. The correlation of these data with the measurements carried out by ARGO-YBJ confirms the excellent performance of the EN-detector.

  12. Elastic Distribution of Microshutters, Measurements Obtainable on James Web Space Telescope

    NASA Technical Reports Server (NTRS)

    Kletetschka, Gunther; King, Todd; Mikula, Vilem

    2008-01-01

    Spectrographic astronomy measurements in the near-infrared region will be done by functional two-dimensional microshutter arrays that are being fabricated at the NASA Goddard Space Flight Center for the James Webb Space Telescope (JWST). These micro-shutter arrays will represent the first mission-critical MEMS devices to be flown in space. JWST will use microshutter arrays to select focal plane object. 2-D programmable aperture masks of more than 200,000 elements select such space object. The use of silicon wafer material promises high efficiency and high contrast. Microshutter operation temperature is around 35K. Microshutter arrays are fabricated as close-packed silicon nitride membranes with a unit cell size of 105 x 204 micrometers. A layer of magnetic material is deposited onto each shutter. Individual shutters are equipped with a torsion flexure. Reactive ion etching (RIE) releases the shutters so they can open up to 90 degrees using the torsion flexure. Shutter rotation is initiated into a silicon support structure via an external magnetic field. Two electrically independent aluminum electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing to hold specific shutters open via external electronics.

  13. Atomic force microscopy of chromatin arrays reveal non-monotonic salt dependence of array compaction in solution

    PubMed Central

    Krzemien, Katarzyna M.; Beckers, Maximilian; Quack, Salina; Michaelis, Jens

    2017-01-01

    Compaction of DNA in chromatin is a hallmark of the eukaryotic cell and unravelling its structure is required for an understanding of DNA involving processes. Despite strong experimental efforts, many questions concerning the DNA packing are open. In particular, it is heavily debated whether an ordered structure referred to as the “30 nm fibre” exist in vivo. Scanning probe microscopy has become a cutting edge technology for the high-resolution imaging of DNA- protein complexes. Here, we perform high-resolution atomic force microscopy of non-cross-linked chromatin arrays in liquid, under different salt conditions. A statistical analysis of the data reveals that array compaction is salt dependent in a non-monotonic fashion. A simple physical model can qualitatively explain the observed findings due to the opposing effects of salt dependent stiffening of DNA, nucleosome stability and histone-histone interactions. While for different salt concentrations different compaction states are observed, our data do not provide support for the existence of regular chromatin fibres. Our studies add new insights into chromatin structure, and with that contribute to a further understanding of the DNA condensation. PMID:28296908

  14. Mechanical Designs and Developement of Advanced ACT: A Transfomative Upgrade to the ACTPol Receiver on the Atacama Cosmology Telescope.

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan; Advanced ACT Collaboration, NASA Space Technology Research Fellowship

    2017-06-01

    The Atacama Cosmology Telescope is a six-meter diameter telescope located at 17,000 feet (5,200 meters) on Cerro Toco in the Andes Mountains of northern Chile. The next generation Advanced ACT (AdvACT) experiment is currently underway and will consist of three multichroic TES bolometer arrays operating together, totaling 5800 detectors on the sky. Each array will be sensitive to two frequency bands: a high frequency (HF) array at 150 and 230 GHz, two middle frequency (MF) arrays at 90 and 150 GHz, and a low frequency (LF) array at 28 and 41 GHz. The AdACT detector arrays will feature a revamped design when compared to ACTPol, including a transition to 150mm wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors consists of a feedhorn array of stacked silicon wafers which form a corrugated profile leading to each pixel. This is then followed by a four-piece detector stack assembly of silicon wafers which includes a waveguide interface plate, detector wafer, backshort cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured out of gold-plated, high purity copper. In addition to the detector array assembly, the array package also encloses the majority of our readout electronics. We present the full mechanical design of the AdvACT HF and MF detector array packages along with a detailed look at the detector array assemblies. We also highlight the use of continuously rotating warm half-wave plates (HWPs) at the front of the AdvACT receiver. We review the design of the rotation system and also early pipeline data analysis results. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT instruments with pre-existing ACTPol infrastructure.

  15. Plasmonic lattice solitons in metallic nanowire materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swami, O. P., E-mail: omg1789@gmail.com; Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com

    2016-05-06

    In this paper, we demonstrate theoretically that the plasmonic lattice solitons (PLSs) are formed in array of metallic nanowires embedded in Kerr-type material. The strong nonlinearity at metal surface, combined with the tight confinement of the guiding modes of the metallic nanowires, provide the main physical mechanism for balancing the creation of plasmonic lattice solitons and wave diffraction. We show that the PLSs are satisfied in a verity of plasmonic systems, which have important applications in nanophotonics and subwavelength optics.

  16. Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers

    NASA Astrophysics Data System (ADS)

    Liu, Pai; Singh, Shalini; Guo, Yina; Wang, Jian-Jun; Xu, Hongxing; Silien, Christophe; Liu, Ning; Ryan, Kevin M.

    2017-03-01

    Herein we report the formation of multi-layered arrays of vertically aligned and close packed semiconductor nanorods in perfect registry at a substrate using electric field assisted assembly. The collective properties of these CdSexS1-x nanorod emitters are harnessed by demonstrating a relatively low amplified spontaneous emission (ASE) threshold and a high net optical gain at medium pump intensity. The importance of order in the system is highlighted where a lower ASE threshold is observed compared to disordered samples.

  17. KSC-07pd0498

    NASA Image and Video Library

    2007-02-22

    KENNEDY SPACE CENTER, FLA. -- Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/George Shelton.

  18. From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.

    PubMed

    Zhou, Ziwei; Zhao, Zhiyuan; Yu, Ye; Ai, Bin; Möhwald, Helmuth; Chiechi, Ryan C; Yang, Joel K W; Zhang, Gang

    2016-04-20

    Tunable sub-10 nm 1D nanogaps are fabricated based on nanoskiving. The electric field in different sized nanogaps is investigated theoretically and experimentally, yielding nonmonotonic dependence and an optimized gap-width (5 nm). 2D nanogap arrays are fabricated to pack denser gaps combining surface patterning techniques. Innovatively, 3D multistory nanogaps are built via a stacking procedure, processing higher integration, and much improved electric field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability

    PubMed Central

    Rejniak, Katarzyna A.; Anderson, Alexander R.A.

    2013-01-01

    Simple epithelial tissues are organized as single layers of tightly packed cells that surround hollow lumens and form selective barriers separating different internal compartments of the body. The maintenance of epithelial structure and its function requires tight coordination and control of all the life processes of epithelial cells via cell-to-cell communication and signaling. These well-balanced cellular systems are, however, quite often disturbed by genetic or environmental cues that may lead to the formation of epithelial tumors (carcinomas). In fact, more than a half of all diagnosed tumors are initiated from epithelial cells. It is, therefore, important to gain a greater understanding of the factors that form and maintain the epithelial structure, as well as the features of the acinar structure that are modified during cancer development as observable in experimental and clinical research. We address these questions using the bio-mechanical model of the developing hollow epithelial acini introduced in Rejniak and Anderson (Bull. Math. Biol. 70:677–712, 2008). Here, we propose several scenarios involving various bio-mechanical interactions between neighboring cells that result in abnormal acinar development. Whenever possible, we compare our computational results with known experimental cases of mutant acini. PMID:18401665

  20. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions

    PubMed Central

    Crosby, Heidi A.; Kwiecinski, Jakub; Horswill, Alexander R.

    2017-01-01

    The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to non-surface attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly-packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host’s immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion. PMID:27565579

  1. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster

    PubMed Central

    Tsai, Yu-Cheng; Cooke, Nancy E.; Liebhaber, Stephen A.

    2016-01-01

    Abstract The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR ‘loops’ over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed ‘hCS chromatin hub’. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355

  2. Stromal characterization and comparison of odontogenic cysts and odontogenic tumors using picrosirius red stain and polarizing microscopy: A retrospective and histochemical study.

    PubMed

    Jahagirdar, P B; Kale, A D; Hallikerimath, S

    2015-01-01

    Odontogenic lesions represent a range of conditions, the features of which probably depend on the stage of induction towards tooth formation reached prior to neoplastic or hamartomatous proliferation. It has been also suggested that inductive changes may allow progression from one type of odontogenic tumor to another. The epithelium also plays an important role in the pathogenesis of these lesions; even stroma is likely to play an equally important role in the pathogenesis and biological behavior. So, this study was performed to investigate, compare, and correlate different types of collagen fibers in odontogenic cysts and odontogenic tumors. Thirty each pre-diagnosed odontogenic cysts and tumors were histochemically analyzed using a special stain (Picrosirius red stain) and polarizing microscopy. Seven cases (99%) of inflammatory cysts exhibited predominantly greenish-yellow birefringence indicating procollagen, intermediate, or pathologic collagen fibers suggestive of loosely packed collagen fibers. Predominant yellowish-orange birefringence exhibited by 21 cases (99%) of developmental cysts was comparable to the yellowish-orange and orangish-red to red birefringence exhibited by odontogenic tumors suggesting tightly packed fibers. The Picrosirius red stain in conjunction with polarizing microscopy serves as a specific and sensitive tool in characterizing collagen fibers in odontogenic cysts and odontogenic tumor.

  3. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    PubMed

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  4. Controllable synthesis of mesoporous Co{sub 3}O{sub 4} nanoflake array and its application for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang

    Graphical abstract: Electrodeposited mesoporous Co{sub 3}O{sub 4} nanoflake arrays exhibit porous structure composed of mesoporous nanoflakes and high supercapacitor performance. - Highlights: • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays are prepared via electrodeposition method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays show excellent supercapacitor performance. - Abstract: A mesoporous Co{sub 3}O{sub 4} nanoflake array grown on carbon cloth is prepared by a facile electrodeposition method with a following annealing process. The as-prepared Co{sub 3}O{sub 4} nanoflake possesses a continuous mesopores ranging from 2 to 5 nm and grows tightly onmore » the substrate forming a porous net-like structure with macropores of 20–200 nm. The electrochemical performance of the mesoporous Co{sub 3}O{sub 4} nanoflake arrays as pseudocapcitor electrode are investigated by cyclic voltammograms and galvanostatic charge/discharge tests in 2 M KOH. The as-prepared Co{sub 3}O{sub 4} array exhibits a high discharge capacitance and excellent rate capability with 450 F g{sup −1}, 436 F g{sup −1}, 408 F g{sup −1}, 380 F g{sup −1}and 363 F g{sup −1} at 1, 2, 4, 10, and 20 A g{sup −1}, respectively. The specific capacitance of 81% is maintained from 1 A g{sup −1} to 20 A g{sup −1}. The electrode also shows rather good cycling stability and exhibits a specific capacitance of 414 F g{sup −1} after 5000 cycles.« less

  5. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_A^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (epic), we present the first software demonstration of a generalized direct imaging algorithm, namely the Modular Optimal Frequency Fourier imager. Not only does it bring down the cost for dense layouts to O(N_A log _2N_A) but can also image from irregular layouts and heterogeneous arrays of antennas. epic is highly modular, parallelizable, implemented in object-oriented python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that epic robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of epic. The algorithm is a strong candidate for instruments targeting transient searches of fast radio bursts as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  6. The source of high signal cooperativity in bacterial chemosensory arrays

    PubMed Central

    Piñas, Germán E.; Frank, Vered; Vaknin, Ady; Parkinson, John S.

    2016-01-01

    The Escherichia coli chemosensory system consists of large arrays of transmembrane chemoreceptors associated with a dedicated histidine kinase, CheA, and a linker protein, CheW, that couples CheA activity to receptor control. The kinase activity responses to receptor ligand occupancy changes can be highly cooperative, reflecting allosteric coupling of multiple CheA and receptor molecules. Recent structural and functional studies have led to a working model in which receptor core complexes, the minimal units of signaling, are linked into hexagonal arrays through a unique interface 2 interaction between CheW and the P5 domain of CheA. To test this array model, we constructed and characterized CheA and CheW mutants with amino acid replacements at key interface 2 residues. The mutant proteins proved defective in interface 2-specific in vivo cross-linking assays, and formed signaling complexes that were dispersed around the cell membrane rather than clustered at the cell poles as in wild type chemosensory arrays. Interface 2 mutants down-regulated CheA activity in response to attractant stimuli in vivo, but with much less cooperativity than the wild type. Moreover, mutant cells containing fluorophore-tagged receptors exhibited greater basal anisotropy that changed rapidly in response to attractant stimuli, consistent with facile changes in loosely packed receptors. We conclude that interface 2 lesions disrupt important network connections between core complexes, preventing receptors from operating in large, allosteric teams. This work confirms the critical role of interface 2 in organizing the chemosensory array, in directing the clustered array to the cell poles, and in producing its highly cooperative signaling properties. PMID:26951681

  7. High-density arrays of x-ray microcalorimeters for Constellation-X

    NASA Astrophysics Data System (ADS)

    Kilbourne, C. A.; Bandler, S. R.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Saab, T.; Sadleir, J.

    2005-12-01

    We have been developing x-ray microcalorimeters for the Constellation-X mission. Devices based on superconducting transition edge sensors (TES) have demonstrated the potential to meet the Constellation-X requirements for spectral resolution, speed, and array scale (> 1000 pixels) in a close-packed geometry. In our part of the GSFC/NIST collaboration on this technology development, we have been concentrating on the fabrication of arrays of pixels suitable for the Constellation-X reference configuration. We have fabricated 8x8 arrays with 0.25-mm pixels arranged with 92% fill factor. The pixels are based on Mo/Au TES and Bi/Cu absorbers. We have achieved a resolution of 4.9 eV FWHM at 6 keV in such devices. Studies of the thermal transport in our Bi/Cu absorbers have shown that, while there is room for improvement, for 0.25 mm pixels our existing absorber design is adequate to avoid line-broadening from position dependence caused by thermal diffusion. In order to push closer to the 4-eV requirement and 2-eV goal at 6 keV, we are refining the design of the TES and the interface to the absorber. For the 32x32 arrays ultimately needed for Constellation-X, signal lead routing and heatsinking will drive the design. We have had early successes with experiments in electroplating electrical vias and thermal busses into micro-machined features in silicon substrates. The next steps will be fabricating arrays that have all of the essential features of the required flight design, testing, and then engineering a prototype array for optimum performance.

  8. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis.

    PubMed

    Ganesan, Kumaravelu; Garrett, David J; Ahnood, Arman; Shivdasani, Mohit N; Tong, Wei; Turnley, Ann M; Fox, Kate; Meffin, Hamish; Prawer, Steven

    2014-01-01

    The interface between medical implants and the human nervous system is rapidly becoming more and more complex. This rise in complexity is driving the need for increasing numbers of densely packed electrical feedthrough to carry signals to and from implanted devices. This is particularly crucial in the field of neural prosthesis where high resolution stimulating or recording arrays near peripheral nerves or in the brain could dramatically improve the performance of these devices. Here we describe a flexible strategy for implementing high density, high count arrays of hermetic electrical feedthroughs by forming conducting nitrogen doped nanocrystalline diamond channels within an insulating polycrystalline diamond substrate. A unique feature of these arrays is that the feedthroughs can themselves be used as stimulating electrodes for neural tissue. Our particular application is such a feedthrough, designed as a component of a retinal implant to restore vision to the blind. The hermeticity of the feedthroughs means that the array can also form part of an implantable capsule which can interface directly with internal electronic chips. The hermeticity of the array is demonstrated by helium leak tests and electrical and electrochemical characterisation of the feedthroughs is described. The nitrogen doped nanocrystalline diamond forming the electrical feedthroughs is shown to be non-cyctotoxic. New fabrication strategies, such as the one described here, combined with the exceptional biostability of diamond can be exploited to generate a range of biomedical implants that last for the lifetime of the user without fear of degradation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, T. J.; Weisend, II, J. G.

    The TESLA collaboration developed a unique variant of SRF cryomodule designs, the chief feature being use of the large, low pressure helium vapor return pipe as the structural support backbone of the cryomodule. Additional innovative features include all cryogenic piping within the cryomodule (no parallel external cryogenic transfer line), long strings of RF cavities within a single cryomodule, and cryomodules connected in series. Several projects, including FLASH and XFEL at DESY, LCLS-II at SLAC, and the ILC technical design have adopted this general design concept. Advantages include saving space by eliminating the external transfer line, relatively tight packing of RFmore » cavities along the beamline due to fewer warm-cold transitions, and potentially lower costs. However, a primary disadvantage is the relative lack of independence for warm-up, replacement, and cool-down of individual cryomodules.« less

  10. Micro-Masonry: Construction of 3D Structures by Mesoscale Self-Assembly

    PubMed Central

    Fernandez, Javier G.; Khademhosseini, Ali

    2010-01-01

    A general method for construction of three dimensional structures by directed assembly of microscale polymeric sub-units is presented. Shape-controlled microgels are directed to assemble into different shapes by limiting their movement onto a molded substrate. The capillary forces, resulting from the presence of a liquid polymer, assemble the microgels in close contact with the rest of the units and with the free surface, the latter imposing the final geometry of the resulting construct. The result is a freestanding structure composed of one or multiple layers of sub-units assembled in a tightly packed conformation. The applicability of the technique for the construction of scaffolds with cell-laden sub-units is demonstrated. In addition, scaffolds formed by the sequential aggregation of sub-units are produced. PMID:20440697

  11. A Matter of Millimeters: Defining the Processes for Critical Clearances on Curiosity

    NASA Technical Reports Server (NTRS)

    Florow, Brandon

    2013-01-01

    The Mars Science Laboratory (MSL) mission presents an immense packaging problem in that it takes a rover the size of a car with a sky crane landing system and packs it tightly into a spacecraft. This creates many areas of close and critical clearances. Critical Clearances are defined as hardware-to-hardware or hardware-to-envelope clearances which fall below a pre-established location dependent threshold and pose a risk of hardware to hardware contact during events such as launch, entry, landing, and operations. Close Clearances, on the other hand, are defined as any clearance value that is chosen to be tracked but is larger than the critical clearance threshold for its region. Close clearances may be tracked for various reasons including uncertainty in design, large expected dynamic motion, etc.

  12. X-ray coherent diffraction imaging of cellulose fibrils in situ.

    PubMed

    Lal, Jyotsana; Harder, Ross; Makowski, Lee

    2011-01-01

    Cellulose is the most abundant renewable source of organic molecules on earth[1]. As fossil fuel reserves become depleted, the use of cellulose as a feed stock for fuels and chemicals is being aggressively explored. Cellulose is a linear polymer of glucose that packs tightly into crystalline fibrils that make up a substantial proportion of plant cell walls. Extraction of the cellulose chains from these fibrils in a chemically benign process has proven to be a substantial challenge [2]. Monitoring the deconstruction of the fibrils in response to physical and chemical treatments would expedite the development of efficient processing methods. As a step towards achieving that goal, we here describe Bragg-coherent diffraction imaging (CDI) as an approach to producing images of cellulose fibrils in situ within vascular bundles from maize.

  13. Cell-cell interactions of isolated and cultured oligodendrocytes: formation of linear occluding junctions and expression of peculiar intramembrane particles.

    PubMed

    Massa, P T; Szuchet, S; Mugnaini, E

    1984-12-01

    Oligodendrocytes were isolated from lamb brain. Freshly isolated cells and cultured cells, either 1- to 4-day-old unattached or 1- to 5-week-old attached, were examined by thin section and freeze-fracture electron microscopy. Freeze-fracture of freshly isolated oligodendrocytes showed globular and elongated intramembrane particles similar to those previously described in oligodendrocytes in situ. Enrichment of these particles was seen at sites of inter-oligodendrocyte contact. Numerous gap junctions and scattered linear tight junctional arrays were apparent. Gap junctions were connected to blebs of astrocytic plasma membrane sheared off during isolation, whereas tight junctions were facing extracellular space or blebs of oligodendrocytic plasma membrane. Thin sections of cultured, unattached oligodendrocytes showed rounded cell bodies touching one another at points without forming specialized cell junctions. Cells plated on polylysine-coated aclar dishes attached, emanated numerous, pleomorphic processes, and expressed galactocerebroside and myelin basic protein, characteristic markers for oligodendrocytes. Thin sections showed typical oligodendrocyte ultrastructure but also intermediate filaments not present in unattached cultures. Freeze-fracture showed intramembrane particles similar to but more numerous, and with a different fracture face repartition, than those seen in oligodendrocytes, freshly isolated or in situ. Gap junctions were small and rare. Apposed oligodendrocyte plasma membrane formed linear tight junctions which became more numerous with time in culture. Thus, cultured oligodendrocytes isolated from ovine brains develop and maintain features characteristic of mature oligodendrocytes in situ and can be used to explore formation and maintenance of tight junctions and possibly other classes of cell-cell interactions important in the process of myelination.

  14. Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range.

    PubMed

    Boutin, Claude; Geindreau, Christian

    2010-09-01

    This paper presents a study of transport parameters (diffusion, dynamic permeability, thermal permeability, trapping constant) of porous media by combining the homogenization of periodic media (HPM) and the self-consistent scheme (SCM) based on a bicomposite spherical pattern. The link between the HPM and SCM approaches is first established by using a systematic argument independent of the problem under consideration. It is shown that the periodicity condition can be replaced by zero flux and energy through the whole surface of the representative elementary volume. Consequently the SCM solution can be considered as a geometrical approximation of the local problem derived through HPM for materials such that the morphology of the period is "close" to the SCM pattern. These results are then applied to derive the estimates of the effective diffusion, the dynamic permeability, the thermal permeability and the trapping constant of porous media. These SCM estimates are compared with numerical HPM results obtained on periodic arrays of spheres and polyhedrons. It is shown that SCM estimates provide good analytical approximations of the effective parameters for periodic packings of spheres at porosities larger than 0.6, while the agreement is excellent for periodic packings of polyhedrons in the whole range of porosity.

  15. A tightly coupled linear array of perylene, bis(porphyrin), and phthalocyanine units that functions as a photoinduced energy-transfer cascade

    PubMed

    Miller; Lammi; Prathapan; Holten; Lindsey

    2000-10-06

    We have prepared a linear array of chromophores consisting of a perylene input unit, a bis(free base porphyrin) transmission unit, and a free base phthalocyanine output unit for studies in artificial photosynthesis and molecular photonics. The synthesis involved four stages: (1) a rational synthesis of trans-AB2C-porphyrin building blocks each bearing one meso-unsubstituted position, (2) oxidative, meso,meso coupling of the zinc porphyrin monomers to afford a bis(zinc porphyrin) bearing one phthalonitrile group and one iodophenyl group, (3) preparation of a bis(porphyrin)-phthalocyanine array via a mixed cyclization involving the bis(free base porphyrin) and 4-tert-butylphthalonitrile, and (4) Pd-mediated coupling of an ethynylperylene to afford a perylene-bis(porphyrin)-phthalocyanine linear array. The perylene-bis(porphyrin)-phthalocyanine array absorbs strongly across the visible spectrum. Excitation at 490 nm, where the perylene absorbs preferentially, results in fluorescence almost exclusively from the phthalocyanine (phi(f) = 0.78). The excited phthalocyanine forms with time constants of 2 ps (90%) and 13 ps (10%). The observed time constants resemble those of corresponding phenylethyne-linked dyads, including a perylene-porphyrin (< or = 0.5 ps) and a porphyrin-phthalocyanine (1.1 ps (70%) and 8 ps (30%)). The perylene-bis(porphyrin)-phthalocyanine architecture exhibits efficient light-harvesting properties and rapid funneling of energy in a cascade from perylene to bis(porphyrin) to phthalocyanine.

  16. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  17. Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy

    NASA Astrophysics Data System (ADS)

    Fontana, Scott; Dadmun, Mark; Lowndes, Douglas

    2003-03-01

    Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.

  18. Phonon-mediated superconducting transition-edge sensor X-ray detectors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Leman, Steven W.; Martinez-Galarce, Dennis S.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Morse, Kathleen; Stern, Robert A.; Tomada, Astrid

    2004-09-01

    Superconducting Transition-Edge Sensors (TESs) are generating a great deal of interest in the areas of x-ray astrophysics and space science, particularly to develop them as large-array, imaging x-ray spectrometers. We are developing a novel concept that is based on position-sensitive macro-pixels placing TESs on the backside of a silicon or germanium absorber. Each x-ray absorbed will be position (X/δX and Y/δY ~ 100) and energy (E/δE ~ 1000) resolved via four distributed TES readouts. In the future, combining such macropixels with advances in multiplexing could lead to 30 by 30 arrays of close-packed macro-pixels equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to a plausible solar satellite mission and plans for future development.

  19. Hydrophilic/hydrophobic surface modification impact on colloid lithography: Schottky-like defects, dislocation, and ideal distribution

    NASA Astrophysics Data System (ADS)

    Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy

    2018-03-01

    Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.

  20. Shear Adhesion of Tapered Nanopillar Arrays.

    PubMed

    Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu

    2018-04-04

    Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.

  1. Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.

    PubMed

    Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan

    2012-05-01

    Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.

  2. Plasmonic graded-chains as deep-subwavelength light concentrators

    NASA Astrophysics Data System (ADS)

    Esteves-López, Natalia; Pastawski, Horacio M.; Bustos-Marún, Raúl A.

    2015-04-01

    We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs) formed by two opposite and equal graded-chains (a chain where interactions change gradually). We found that these arrays concentrate the external electromagnetic fields even in the long wavelength limit. The phenomenon was understood by identifying the system with an effective cavity where plasmonics excitations are trapped between effective band edges, resulting from the change of passband with the NP's position. Dependence of excitation concentration on several system parameters was also assessed. This includes different gradings as well as NP couplings, damping, and resonant frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory that allows us to rationalize all these system parameters into universal curves. The theory is quite general and can also be used in many other situations (different arrays for example). Additionally, we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications in sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell efficiency.

  3. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology.

    PubMed

    Han, Hau-Vei; Lin, Huang-Yu; Lin, Chien-Chung; Chong, Wing-Cheung; Li, Jie-Ru; Chen, Kuo-Ju; Yu, Peichen; Chen, Teng-Ming; Chen, Huang-Ming; Lau, Kei-May; Kuo, Hao-Chung

    2015-12-14

    Colloidal quantum dots which can emit red, green, and blue colors are incorporated with a micro-LED array to demonstrate a feasible choice for future display technology. The pitch of the micro-LED array is 40 μm, which is sufficient for high-resolution screen applications. The method that was used to spray the quantum dots in such tight space is called Aerosol Jet technology which uses atomizer and gas flow control to obtain uniform and controlled narrow spots. The ultra-violet LEDs are used in the array to excite the red, green and blue quantum dots on the top surface. To increase the utilization of the UV photons, a layer of distributed Bragg reflector was laid down on the device to reflect most of the leaked UV photons back to the quantum dot layers. With this mechanism, the enhanced luminous flux is 194% (blue), 173% (green) and 183% (red) more than that of the samples without the reflector. The luminous efficacy of radiation (LER) was measured under various currents and a value of 165 lm/Watt was recorded.

  4. Xray: N-dimensional, labeled arrays for analyzing physical datasets in Python

    NASA Astrophysics Data System (ADS)

    Hoyer, S.

    2015-12-01

    Efficient analysis of geophysical datasets requires tools that both preserve and utilize metadata, and that transparently scale to process large datas. Xray is such a tool, in the form of an open source Python library for analyzing the labeled, multi-dimensional array (tensor) datasets that are ubiquitous in the Earth sciences. Xray's approach pairs Python data structures based on the data model of the netCDF file format with the proven design and user interface of pandas, the popular Python data analysis library for labeled tabular data. On top of the NumPy array, xray adds labeled dimensions (e.g., "time") and coordinate values (e.g., "2015-04-10"), which it uses to enable a host of operations powered by these labels: selection, aggregation, alignment, broadcasting, split-apply-combine, interoperability with pandas and serialization to netCDF/HDF5. Many of these operations are enabled by xray's tight integration with pandas. Finally, to allow for easy parallelism and to enable its labeled data operations to scale to datasets that does not fit into memory, xray integrates with the parallel processing library dask.

  5. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.

    PubMed

    Brüggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhäusser, A

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  6. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    NASA Technical Reports Server (NTRS)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  7. Parallel multipoint recording of aligned and cultured neurons on micro channel array toward cellular network analysis.

    PubMed

    Tonomura, Wataru; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    2010-08-01

    This paper describes an advanced Micro Channel Array (MCA) for recording electrophysiological signals of neuronal networks at multiple points simultaneously. The developed MCA is designed for neuronal network analysis which has been studied by the co-authors using the Micro Electrode Arrays (MEA) system, and employs the principles of extracellular recordings. A prerequisite for extracellular recordings with good signal-to-noise ratio is a tight contact between cells and electrodes. The MCA described herein has the following advantages. The electrodes integrated around individual micro channels are electrically isolated to enable parallel multipoint recording. Reliable clamping of a targeted cell through micro channels is expected to improve the cellular selectivity and the attachment between the cell and the electrode toward steady electrophysiological recordings. We cultured hippocampal neurons on the developed MCA. As a result, the spontaneous and evoked spike potentials could be recorded by sucking and clamping the cells at multiple points. In this paper, we describe the design and fabrication of the MCA and the successful electrophysiological recordings leading to the development of an effective cellular network analysis device.

  8. Design of hybrid two-dimensional and three-dimensional nanostructured arrays for electronic and sensing applications

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub

    This dissertation presents the design of organic/inorganic hybrid 2D and 3D nanostructured arrays via controlled assembly of nanoscale building blocks. Two representative nanoscale building blocks such as carbon nanotubes (one-dimension) and metal nanoparticles (zero-dimension) are the core materials for the study of solution-based assembly of nanostructured arrays. The electrical, mechanical, and optical properties of the assembled nanostructure arrays have been investigated for future device applications. We successfully demonstrated the prospective use of assembled nanostructure arrays for electronic and sensing applications by designing flexible carbon nanotube nanomembranes as mechanical sensors, highly-oriented carbon nanotubes arrays for thin-film transistors, and gold nanoparticle arrays for SERS chemical sensors. In first section, we fabricated highly ordered carbon nanotube (CNT) arrays by tilted drop-casting or dip-coating of CNT solution on silicon substrates functionalized with micropatterned self-assembled monolayers. We further exploited the electronic performance of thin-film transistors based on highly-oriented, densely packed CNT micropatterns and showed that the carrier mobility is largely improved compared to randomly oriented CNTs. The prospective use of Raman-active CNTs for potential mechanical sensors has been investigated by studying the mechano-optical properties of flexible carbon nanotube nanomembranes, which contain freely-suspended carbon nanotube array encapsulated into ultrathin (<50 nm) layer-by-layer (LbL) polymer multilayers. In second section, we fabricated 3D nano-canal arrays of porous alumina membranes decorated with gold nanoparticles for prospective SERS sensors. We showed extraordinary SERS enhancement and suggested that the high performance is associated with the combined effects of Raman-active hot spots of nanoparticle aggregates and the optical waveguide properties of nano-canals. We demonstrated the ability of this SERS substrate for trace level sensing of nitroaromatic explosives by detecting down to 100 zeptogram (˜330 molecules) of DNT.

  9. A new method for multi-bit and qudit transfer based on commensurate waveguide arrays

    NASA Astrophysics Data System (ADS)

    Petrovic, J.; Veerman, J. J. P.

    2018-05-01

    The faithful state transfer is an important requirement in the construction of classical and quantum computers. While the high-speed transfer is realized by optical-fibre interconnects, its implementation in integrated optical circuits is affected by cross-talk. The cross-talk between densely packed optical waveguides limits the transfer fidelity and distorts the signal in each channel, thus severely impeding the parallel transfer of states such as classical registers, multiple qubits and qudits. Here, we leverage on the suitably engineered cross-talk between waveguides to achieve the parallel transfer on optical chip. Waveguide coupling coefficients are designed to yield commensurate eigenvalues of the array and hence, periodic revivals of the input state. While, in general, polynomially complex, the inverse eigenvalue problem permits analytic solutions for small number of waveguides. We present exact solutions for arrays of up to nine waveguides and use them to design realistic buses for multi-(qu)bit and qudit transfer. Advantages and limitations of the proposed solution are discussed in the context of available fabrication techniques.

  10. Study of multi-kilowatt solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1983-01-01

    A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.

  11. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance.

    PubMed

    Chou, Shuli; Shao, Changxuan; Wang, Jiajun; Shan, Anshan; Xu, Lin; Dong, Na; Li, Zhongyu

    2016-01-01

    The β-hairpin structure has been proposed to exhibit potent antimicrobial properties with low cytotoxicity, thus, multiple β-hairpin structures have been proved to be highly stable in structures containing tightly packed hydrophobic cores. The aim of this study was to develop peptide-based synthetic strategies for generating short, but effective AMPs as inexpensive antimicrobial agents. Multiple-stranded β-hairpin peptides with the same β-hairpin unit, (WRXxRW)n where n=1, 2, 3, or 4 and Xx represent the turn sequence, were synthesized, and their potential as antimicrobial agents was evaluated. Owning to the tightly packed hydrophobic core and paired Trp of this multiple-stranded β-hairpin structure, all the 12-residues peptides exhibited high cell selectivity towards bacterial cells over human red blood cells (hRBCs), and the peptide W2 exhibited stronger antimicrobial activities with the MIC values of 2-8μM against various tested bacteria. Not only that, but W2 also showed obvious synergy with streptomycin and chloramphenicol against Escherichia coli, and displayed synergy with ciprofloxacin against Staphylococcus aureus with the FICI values ⩽0.5. Fluorescence spectroscopy and electron microscopy analyses indicated that W2 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Collectively, based on the multiple β-hairpin peptides, the ability to develop libraries of short and effective peptides will be a powerful approach to the discovery of novel antimicrobial agents. We successfully screened a peptide W2 ((WRPGRW)2) from a series of multiple-stranded β-hairpin antimicrobial peptides based on the "S-shaped" motif that induced the formation of a globular structure, and Trp zipper was used to replace the disulfide bonds to reduce the cost of production. This novel structure applied to AMPs improved cell selectivity and salt stability. The findings of this study will promote the development of peptide-based antimicrobial biomaterials. Further exploration of these AMPs will allow for diverse biotechnological and clinical applications such as biomedical coating, food storaging, and animal feeding. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Uncovering a new Uranus ring-moon connection in 25 years of occultation data

    NASA Astrophysics Data System (ADS)

    Chancia, R. O.; Hedman, M. M.; French, R. G.

    2017-12-01

    The Uranus ring-moon system consists of 10 narrow and dense main rings, 3 broad diffuse and dusty rings, and 13 small inner moons. Nine of these moons, dubbed the `Portia group', orbit within a radial range of less than 20,000 km, making them the most tightly packed system of moons in our solar system. For the first time, we have constrained the mass of one of the inner moons by measuring its gravitational influence on the η ring. The η ring is one of the narrow rings of Uranus, consisting of a dense core that is 1-2 km wide and a diffuse outer sheet spanning about 40 km. Its dense core lies just exterior to the 3:2 Inner Lindblad Resonance of the small moon Cressida. We fit the η ring radius residuals and longitudes from a complete set of both ground-based and Voyager stellar and radio occultations of the Uranian rings spanning 1977-2002. We find variations in the radial position of the η ring that are likely generated by this resonance, and take the form of a 3-lobed structure rotating at an angular rate equal to the mean motion of the moon Cressida. The amplitude of these radial oscillations is 0.667 ± 0.113 km, which is consistent with the expected shape due to the perturbations of Cressida. The magnitude of these variations provides the first measurement of the mass and density of the moon Cressida or, indeed, any of Uranus' small inner moons. The system has previously been simulated over a wide range of presumed masses and is found to be dynamically unstable, with the next collision most likely occurring in less than a few million years. Two of the broad dusty rings orbit in range of the moons and may be evidence of collisions in the recent past. A better grasp of inner Uranian satellite masses will provide another clue to the composition, dynamical stability, and history of this tightly packed system of moons.

  13. Optimizing the Timing Resolution for the NEXT Array

    NASA Astrophysics Data System (ADS)

    Engelhardt, A.; Shadrick, S.; Rajabali, M.; Schmitt, K.; Grzywacz, R.

    2016-09-01

    In nuclear physics studies there are very few detectors capable of measuring neutron energies in the 0.1-10 MeV energy range with a reasonable resolution. The VANDLE array is the premier detector array for these measurements, yet VANDLE is limited by the its thickness (2.9 cm minimum).The Neutron dEtector with Tracking (NEXT) array would be capable of surpassing the limitations caused by the large size of VANDLE bars. A proposed configuration of each neutron detector consists of ten 3-mm thick plastic scintillators with two or more silicon photomultipliers (SiPMs) attached at each end. To achieve the desired energy resolution for neutron energy measurements through time of flight, the timing resolution between these SiPMs needs to be below 200 ps. A SiPM was placed on each end of a plastic scintillator inside a light-tight electrical box along with a 137Cs source. An analog circuit was designed in order to measure the timing difference between the two SiPMs. Different configurations of SiPM sizes, scintillator sizes, and wrappings were tested in order to determine the configuration that yields the best timing resolution. Details of the testing procedures and results will be presented. Research Supported by the National Nuclear Security Administration.

  14. Spaceborne Processor Array

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  15. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  16. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    NASA Technical Reports Server (NTRS)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  17. Pore-scale mechanisms of gas flow in tight sand reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at whichmore » the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.« less

  18. Magnetic vortices in nanocaps induced by curvature

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.

    2018-05-01

    Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.

  19. Biogenic twinned crystals exhibiting unique morphological symmetry

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Palmer, Ben; Addadi, Lia; Leiserowitz, Leslie; Kronik, Leeor

    Guanine crystals are widely used in nature as components of multilayer reflectors. Organisms control the size, morphology, and arrangement of these crystals, to obtain a variety of optical ''devices''. The reflection systems found in the lens of the scallop eye and in the copepod cuticle are unique in that the multilayered reflectors are tiled together to form a contiguous packed array. In the former, square crystals are tiled to form a reflecting mirror. In the latter, hexagonal crystals are closely packed to produce brilliant colors. Based on electron diffraction, morphology considerations, and density functional theory, these crystals were shown to possess similar monoclinic crystal symmetry, which we have previously identified as different from that of synthetic anhydrous guanine. However, the crystals are different in that multiple twinning about the {012} and the {011} crystallographic planes results in square and hexagonal morphology, respectively. This is a unique example where controlled twinning is used as a strategy to form a morphology with higher symmetry than that of the underlying crystal, allowing for tilling that facilitates optical functionality.

  20. Coupled Molecular Switching Processes in Ordered Mono- and Multilayers of Stimulus-Responsive Rotaxanes on Gold Surfaces

    PubMed Central

    2015-01-01

    Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. PMID:25782057

  1. Volumetric Interpretation of Protein Adsorption: Interfacial Packing of Protein Adsorbed to Hydrophobic Surfaces from Surface-Saturating Solution Concentrations

    PubMed Central

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L.; Vogler, Erwin A.

    2010-01-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square-or-hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square-or-hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. PMID:21035180

  2. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations.

    PubMed

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A

    2011-02-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Whole-cell patch clamp recording of voltage-sensitive Ca²+ channel currents: heterologous expression systems and dissociated brain neurons.

    PubMed

    Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro

    2005-01-01

    Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.

  4. Fabrication of computer-generated holograms using femtosecond laser direct writing.

    PubMed

    Berlich, René; Richter, Daniel; Richardson, Martin; Nolte, Stefan

    2016-04-15

    We demonstrate a single-step fabrication method for computer-generated holograms based on femtosecond laser direct writing. Therefore, a tightly arranged longitudinal waveguide array is directly inscribed into a transparent material. By tailoring the individual waveguide length, the phase profile of an incident laser beam can be arbitrarily adapted. The approach is verified in common borosilicate glass by inscribing a designed phase hologram, which forms the desired intensity pattern in its far field. The resulting performance is analyzed, and the potential as well as limitations of the method are discussed.

  5. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  6. Theory and applications for optimization of every part of a photovoltaic system

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1978-01-01

    A general method is presented for quantitatively optimizing the design of every part and fabrication step of an entire photovoltaic system, based on the criterion of minimum cost/Watt for the system output power. It is shown that no element or process step can be optimized properly by considering only its own cost and performance. Moreover, a fractional performance loss at any fabrication step within the cell or array produces the same fractional increase in the cost/Watt of the entire array, but not of the full system. One general equation is found to be capable of optimizing all parts of a system, although the cell and array steps are basically different from the power-handling elements. Applications of this analysis are given to show (1) when Si wafers should be cut to increase their packing fraction; and (2) what the optimum dimensions for solar cell metallizations are. The optimum shadow fraction of the fine grid is shown to be independent of metal cost and resistivity as well as cell size. The optimum thicknesses of both the fine grid and the bus bar are substantially greater than the values in general use, and the total array cost has a major effect on these values. By analogy, this analysis is adaptable to other solar energy systems.

  7. Programmable 2-D Addressable Cryogenic Aperture Masks

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Moseley, S. H.; Jhabvala, M.; Li, M.; Schwinger, D. S.; Silverberg, R. F.; Wesenberg, R. P.

    2004-01-01

    We are developing a two-dimensional array of square microshutters (programmable aperture mask) for a multi-object spectrometer for the James Webb Space Telescope (JWST). This device will provide random access selection of the areas in the field to be studied. The device is in essence a close packed array of square slits, each of which can be opened independently to select areas of the sky for detailed study.The device is produced using a 100-micron thick silicon wafer as a substrate with 0.5-micron thick silicon nitride shutters on top of it. Silicon nitride has been selected as the blade and flexure material because its stiffness allows thinner and lighter structures than single crystal Si, the chief alternative, and because of its ease of manufacture. The 100 micron silicon wafer is backetched in a high aspect ratio Deep Reactive Ion Etching (Deep RIE) to leave only a support grid for the shutters and the address electronics. The shutter actuation is done magnetically whereas addressing is electrostatic. 128x128 format microshutter arrays have been produced. Their operation has been demostarted on 32x32 subarrays. Good reliability of the fabrication process and good quality of the microshutters has been achieved. The mechanical behavior and optical performance of the fabricated arrays at cryogenic temperature are being studied.

  8. Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II

    NASA Astrophysics Data System (ADS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.

    2003-02-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  9. REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Joshua S.; Parsons, Aaron R., E-mail: jsdillon@berkeley.edu

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed followingmore » these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.« less

  10. Study of the Photon Strength Functions for Gadolinium Isotopes with the DANCE Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.

    2009-03-10

    The gadolinium isotopes are interesting for reactor applications as well as for medicine and astrophysics. The gadolinium isotopes have some of the largest neutron capture cross sections. As a consequence they are used in the control rod in reactor fuel assembly. From the basic science point of view, there are seven stable isotopes of gadolinium with varying degrees of deformation. Therefore they provide a good testing ground for the study of deformation dependent structure such as the scissors mode. Decay gamma rays following neutron capture on Gd isotopes are detected by the DANCE array, which is located at flight pathmore » 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a specific isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. Various photon strength function models are used for comparison with experimentally measured DANCE data and provide insight for understanding the statistical decay properties of deformed nuclei.« less

  11. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  12. High duty cycle hard soldered kilowatt laser diode arrays

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom

    2010-02-01

    High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.

  13. Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration.

    PubMed

    Ye, Longfang; Xiao, Yifan; Liu, Na; Song, Zhengyong; Zhang, Wei; Liu, Qing Huo

    2017-01-23

    We proposed a novel planar terahertz (THz) plasmonic waveguide with folded stub arrays to achieve excellent terahertz propagation performance with tight field confinement and compact size based on the concept of spoof surface plasmon polaritons (spoof SPPs). It is found that the waveguide propagation characteristics can be directly manipulated by increasing the length of the folded stubs without increasing its lateral dimension, which exhibits much lower asymptotic frequency of the dispersion relation and even tighter terahertz field confinement than conventional plasmonic waveguides with rectangular stub arrays. Based on this waveguiding scheme, a terahertz concentrator with gradual step-length folded stubs is proposed to achieve high terahertz field enhancement, and an enhancement factor greater than 20 is demonstrated. This work offers a new perspective on very confined terahertz propagation and concentration, which may have promising potential applications in various integrated terahertz plasmonic circuits and devices, terahertz sensing and terahertz nonlinear optics.

  14. Telescope Array measurement of UHECR composition from stereoscopic fluorescence detection

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas; Abu Zayyad, Tareq

    2014-03-01

    The chemical composition of ultra-high-energy cosmic rays (UHECRs) is an important constraint on models of UHECR production and propagation, and must be determined experimentally. A UHECR-induced extensive air shower's longitudinal development is dictated by the energy per nucleon of the primary particle. The observed distribution of atmospheric slant depths (Xmax) is therefore sensitive to the composition, facilitating measurement of the relative abundances of ``light'' (proton-like) and ``heavy'' (iron-like) primary UHECR particles. The Telescope Array (TA) experiment, the northern hemisphere's largest UHECR detector, includes three fluorescence detector (FD) stations that record the longitudinal development of the extensive air showers produced by UHECR arrivals. ``Stereo'' observation of individual showers by multiple FDs tightly constrains the trajectory reconstruction, allowing a precise measurement of Xmax as well as energy. We will present the stereo TA data from six years of operation and progress toward a measurement of chemical composition.

  15. Multiple period s-p hybridization in nano-strip embedded photonic crystal.

    PubMed

    Han, Seunghoon; Lee, Il-Min; Kim, Hwi; Lee, Byoungho

    2005-04-04

    We report and analyze hybridization of s-state and p-state modes in photonic crystal one-dimensional defect cavity array. When embedding a nano-strip into a dielectric rod photonic crystal, an effective cavity array is made, where each cavity possesses two cavity modes: s-state and p-state. The two modes are laterally even versus the nano-strip direction, and interact with each other, producing defect bands, of which the group velocity becomes zero within the first Brillouin zone. We could model and describe the phenomena by using the tight-binding method, well agreeing with the plane-wave expansion method analysis. We note that the reported s- and p-state mode interaction corresponds to the hybridization of atomic orbital in solid-state physics. The concept of multiple period s-p hybridization and the proposed model can be useful for analyzing and developing novel photonic crystal waveguides and devices.

  16. The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.

    2000-01-01

    The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.

  17. NuSTAR Briefing

    NASA Image and Video Library

    2012-05-30

    Yunjin Kim, NuSTAR project manager at the Jet Propulsion Laborartory (JPL), talks about NASA's Spectroscopic Telescope Array (NuStar) during a briefing, Wednesday, May 30, 2012, at NASA Headquarters in Washington. Imaging light in the high-energy, short-wavelength X-ray range, the telescope will aim to study how black holes form and evolve along with galaxies. The instrument, packed aboard an Orbital Sciences Pegasus XL rocket is set to launch from a plane in midair no earlier than June 13 from Kwajalein Atoll in the Marshall Islands. Photo Credit: (NASA/Paul E. Alers)

  18. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  19. In-situ and Ex-situ Observations of Lithium De-intercalation from LiCoO2: Atomic Force Microscopy and Transmission Electron Microscopy Studies

    DTIC Science & Technology

    2005-06-01

    has a layered structure consisting of lithium and cobalt sheets stacked alternatively between oxygen sheets. Li and Co occupy octahedral sites in...cobalt sheets stacked alternatively between ABCABC close-packed oxygen arrays. Li and Co occupy octahedral sites in alternating layers between the oxygen... Co 4.- o 4 Li Figure 1: Crystal structure of LiCoO2. LiCoO2 has a layered structure consisting of lithium and cobalt sheets stacked alternatively

  20. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  1. Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same

    DOEpatents

    Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist

    2013-11-19

    A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.

  2. Two multichannel integrated circuits for neural recording and signal processing.

    PubMed

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  3. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  4. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    PubMed Central

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827

  5. Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays

    PubMed Central

    Huh, Yun Suk; Erickson, David

    2009-01-01

    Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 μU/mL. This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. PMID:19857952

  6. Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog.

    PubMed

    Xue, Longjian; Sanz, Belén; Luo, Aoyi; Turner, Kevin T; Wang, Xin; Tan, Di; Zhang, Rui; Du, Hang; Steinhart, Martin; Mijangos, Carmen; Guttmann, Markus; Kappl, Michael; Del Campo, Aránzazu

    2017-10-24

    Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix-fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments.

  7. Hybrid Surface Patterns Mimicking the Design of the Adhesive Toe Pad of Tree Frog

    PubMed Central

    2017-01-01

    Biological materials achieve directional reinforcement with oriented assemblies of anisotropic building blocks. One such example is the nanocomposite structure of keratinized epithelium on the toe pad of tree frogs, in which hexagonal arrays of (soft) epithelial cells are crossed by densely packed and oriented (hard) keratin nanofibrils. Here, a method is established to fabricate arrays of tree-frog-inspired composite micropatterns composed of polydimethylsiloxane (PDMS) micropillars embedded with polystyrene (PS) nanopillars. Adhesive and frictional studies of these synthetic materials reveal a benefit of the hierarchical and anisotropic design for both adhesion and friction, in particular, at high matrix–fiber interfacial strengths. The presence of PS nanopillars alters the stress distribution at the contact interface of micropillars and therefore enhances the adhesion and friction of the composite micropattern. The results suggest a design principle for bioinspired structural adhesives, especially for wet environments. PMID:28885831

  8. The rapid growth of vertically aligned carbon nanotubes using laser heating.

    PubMed

    Park, J B; Jeong, S H; Jeong, M S; Lim, S C; Lee, I H; Lee, Y H

    2009-05-06

    Growth of densely packed vertically aligned carbon nanotubes (VA-CNTs) using laser-induced chemical vapor deposition with visible laser (lambda = 532 nm) irradiation at room temperature is reported. Using a multiple-catalyst layer (Fe/Al/Cr) on quartz as the substrate and an acetylene-hydrogen mixture as the precursor gas, VA-CNT pillars with 60 microm height and 4 microm diameter were grown at a high rate of around 1 microm s(-1) with good reproducibility. It is demonstrated that the fabrication of uniform pillar arrays of VA-CNTs can be achieved with a single irradiation for each pillar using LCVD with no annealing or preprocessing of the substrate. Here, laser fast heating is considered the primary mechanism facilitating the growth of VA-CNT pillars. Field emission characteristics of an array of VA-CNT pillars were then examined to investigate their potential application in vacuum electronic devices.

  9. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    NASA Astrophysics Data System (ADS)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  10. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.

    PubMed

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

  11. Simulation of Non-Newtonian Emulsion Flows in Microchannels

    NASA Astrophysics Data System (ADS)

    Malanichev, I. V.; Akhmadiev, F. G.

    2015-11-01

    Simulation of emulsion flows in differently shaped microchannels to reproduce the choking of such flows as a result of the effect of dynamic blocking has been made. A model of a highly concentrated emulsion as a structure of tightly packed deformed droplets surrounded by elastic shells is considered. The motion of liquid was determined by the method of the lattice Boltzmann equations together with the immersed boundary method. The influence of the non-Newtonian properties and of elastic turbulence of the indicated emulsion, as well as of the elasticity of the shells of its droplets and of the interaction of these shells on the emulsion motion in a microchannel, has been investigated. It is shown that the flow of this emulsion can be slowed down substantially only due to the mutual attraction of the shells of its droplets.

  12. Genome-wide overlap in the binding location and function of chromatin-remodeling proteins | Center for Cancer Research

    Cancer.gov

    A single strand of DNA can stretch several meters. Yet dozens of these strands, which can be one-tenth as thin as a human hair, need to fit into the cell’s nucleus. To pack those strands into such a small space, DNA tightly winds itself around histone proteins, forming nucleosomes that are strung together into complexes called chromatin. Beyond efficiently packaging DNA, chromatin also regulates how and when DNA is used. The condensed coiling of the genome makes it inaccessible to proteins such as RNA polymerases and transcription factors that control the expression of specific genes. For DNA to become accessible local chromatin regions need to be “opened” up. This process is called chromatin remodeling, and involves the ATP-dependent removal, ejection, or restructuring of nucleosomes by large, multiprotein enzymes.

  13. Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.

    2014-07-01

    Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.

  14. CONSOLIDATING AND CRUSHING EXOPLANETS: DID IT HAPPEN HERE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, Kathryn; Gladman, Brett

    2015-06-20

    The Kepler mission results indicate that systems of tightly packed inner planets (STIPs) are present around of order 5% of FGK field stars (whose median age is ∼5 Gyr). We propose that STIPs initially surrounded nearly all such stars, and those observed are the final survivors of a process in which long-term metastability eventually ceases and the systems proceed to collisional consolidation or destruction, losing roughly equal fractions of systems every decade in time. In this context, we also propose that our solar system initially contained additional large planets interior to the current orbit of Venus, which survived in amore » metastable dynamical configuration for 1%–10% of the solar system’s age. Long-term gravitational perturbations caused the system orbits to cross, leading to a cataclysmic event that left Mercury as the sole surviving relic.« less

  15. Chromatin Configuration Determines Cell Responses to Hormone Stimuli | Center for Cancer Research

    Cancer.gov

    Ever since selective gene expression was established as the central driver of cell behavior, researchers have been working to understand the forces that control gene transcription. Aberrant gene expression can cause or promote many diseases, including cancer, and alterations in gene expression are the goal of many therapeutic agents. Recent work has focused on the potential role of chromatin structure as a contributor to gene regulation. Chromatin can exist in a tightly packed/inaccessible or loose/accessible configuration depending on the interactions between DNA and its associated proteins. Patterns of chromatin structure can differ between cell types and can also change within cells in response to certain signals. Cancer researchers are particularly interested in the role of chromatin in gene regulation because many of the genomic regions found to be associated with cancer risk are in open chromatin structures.

  16. Theory of prokaryotic genome evolution.

    PubMed

    Sela, Itamar; Wolf, Yuri I; Koonin, Eugene V

    2016-10-11

    Bacteria and archaea typically possess small genomes that are tightly packed with protein-coding genes. The compactness of prokaryotic genomes is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. Here, by fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. These results suggest that the number of genes in prokaryotic genomes reflects the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias (i.e., the rate of deletion of genetic material being slightly greater than the rate of acquisition). Thus, new genes acquired by microbial genomes, on average, appear to be adaptive. The tight spacing of protein-coding genes likely results from a combination of the deletion bias and purifying selection that efficiently eliminates nonfunctional, noncoding sequences.

  17. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.

    2005-08-01

    The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtainedmore » in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.« less

  18. A galactic mega-merger

    NASA Image and Video Library

    2016-01-11

    The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the Universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time. NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the Universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer, stars in ages, and are thus packed full of old and redder stellar populations. Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centres of galaxies like satellites, packed tightly full of millions of stars.

  19. A comparison of DNA compaction by arginine and lysine peptides: A physical basis for arginine rich protamines

    PubMed Central

    DeRouchey, Jason; Hoover, Brandon

    2013-01-01

    Protamines are small, highly positively charged peptides used to package DNA to very high densities in sperm nuclei. Tight DNA packing is considered essential to minimize DNA damage by mutagens and reactive oxidizing species. A striking and general feature of protamines is the almost exclusive use of arginine over lysine for the positive charge to neutralize DNA. We have investigated whether this preference for arginine might arise from a difference in DNA condensation by arginine and lysine peptides. The forces underlying DNA compaction by arginine, lysine, and ornithine peptides are measured using the osmotic stress technique coupled with x-ray scattering. The equilibrium spacings between DNA helices condensed by lysine and ornithine peptides are significantly larger than the interhelical distances with comparable arginine peptides. The DNA surface-to-surface separation, for example, is some 50% larger with poly-lysine compared to poly-arginine. DNA packing by lysine rich peptides in sperm nuclei would allow much greater accessibility to small molecules that could damage DNA. The larger spacing with lysine peptides is due to both a weaker attraction and a stronger short ranged repulsion relative to the arginine peptides. A previously proposed model for poly-arginine and protamine binding to DNA provides a convenient framework for understanding the differences between the ability of lysine and arginine peptides to assemble DNA. PMID:23540557

  20. Three-dimensional, multiwavelength Monte Carlo simulations of dermally implantable luminescent sensors

    NASA Astrophysics Data System (ADS)

    Long, Ruiqi; McShane, Mike

    2010-03-01

    Dermally implanted luminescent sensors have been proposed for monitoring of tissue biochemistry, which has the potential to improve treatments for conditions such as diabetes and kidney failure. Effective in vivo monitoring via noninvasive transdermal measurement of emission from injected microparticles requires a matched optoelectronic system for excitation and collection of luminescence. We applied Monte Carlo modeling to predict the characteristics of output luminescence from microparticles in skin to facilitate hardware design. Three-dimensional, multiwavelength Monte Carlo simulations were used to determine the spatial and spectral distribution of the escaping luminescence for different implantation depths, excitation light source properties, particle characteristics, and particle packing density. Results indicate that the ratio of output emission to input excitation power ranged 10-3 to 10-6 for sensors at the upper and lower dermal boundaries, respectively, and 95% of the escaping emission photons induced by a 10-mm-diam excitation beam were confined within an 18-mm circle. Tightly packed sensor configurations yielded higher output intensity with fewer particles, even after luminophore concentration effects were removed. Most importantly, for the visible wavelengths studied, the ability to measure spectral changes in emission due to glucose changes was not significantly affected by absorption and scattering of tissue, which supports the potential to accurately track changes in luminescence of sensor implants that respond to the biochemistry of the skin.

  1. Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Yin, Jiewei; Zhang, Junliang

    2018-03-01

    Although lithium-rich layered composite cathode materials can meet the requirements of high discharge capacities and energy densities of lithium-ion batteries (LIBs), the drawbacks of encountering structural reconstruction, sharp voltage decay during cycling as well as low packing density still exist, which retard their further commercial development. This paper presents a novel approach to construct hollow porous bowl-shaped Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as HPB-LMNCO) particles, which involves bowl-shaped carbonaceous particles as the predominant template and polyvinylpyrrolidone as an assistant soft template. One crucial step during the synthetic process is the controlled growth of metal ions with specific molar ratios in the bowl-shaped carbonaceous particles, and the key control parameter is the heating rate to ensure the prepared particles own the desired hollow porous bowl-shaped morphology. Of particular note is the desirable architecture which not only inherits the merits of hollow structures but also facilitates the tight particles packing. Owing to these advantages, utilizing this HPB-LMNCO as a cathode material manifests impressive rate capability and exceptional cycling stability at high rates with capacity retention of above 82% over 100 cycles. These results reveal that structural design of cathode materials play a pivotal role in developing high-performance LIBs.

  2. Cellular responses of bioabsorbable polymeric material and Guglielmi detachable coil in experimental aneurysms.

    PubMed

    Murayama, Yuichi; Viñuela, Fernando; Tateshima, Satoshi; Gonzalez, Nestor R; Song, Joon K; Mahdavieh, Haleh; Iruela-Arispe, Luisa

    2002-04-01

    Acceleration of healing mechanisms is a promising approach to improve current limitations of endovascular aneurysm therapy with the use of platinum coils. We evaluated a new endovascular therapeutic, bioabsorbable polymeric material (BPM), which may promote cellular reaction in the aneurysms. Four different concentrations of lactide/glycolic acid copolymer [poly(D-L-lactic-co-glycolic acid)] (PLGA), 85/15, 75/25, 65/35, and 50/50, were used as BPMs. Sixteen experimental aneurysms were created in 8 swine. Eight-millimeter-long spiral-shaped BPMs were surgically implanted in the aneurysms without tight packing (n=3 for each BPM). Guglielmi detachable coils (GDCs) were used as control (n=4). The animals were killed 14 days after embolization, and angiographic, histological, and immunohistochemical analyses were performed. Despite loose packing of aneurysms with BPMs, faster BPMs such as 50/50 or 65/35 PLGA demonstrated more mature collagen formation and fibrosis in the sac and neck of the aneurysm. One aneurysm treated with 65/35 PLGA, 1 treated with 75/25 PLGA, and all 3 treated with 85/15 PLGA showed a neck remnant on angiography. There was a linear relationship between collagen levels and polymer degradation properties (r=-0.9513). This preliminary animal study indicates that acceleration of aneurysm healing with the use of BPM is feasible. This concept can be applied to decrease and perhaps prevent aneurysmal recanalization after endovascular treatment of cerebral aneurysms.

  3. Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials

    NASA Astrophysics Data System (ADS)

    O'Connell, D. J.; Bombelli, F. Baldelli; Pitek, A. S.; Monopoli, M. P.; Cahill, D. J.; Dawson, K. A.

    2015-09-01

    Nanoparticles in physiological environments are known to selectively adsorb proteins and other biomolecules forming a tightly bound biomolecular `corona' on their surface. Where the exchange times of the proteins are sufficiently long, it is believed that the protein corona constitutes the particle identity in biological milieu. Here we show that proteins in the corona retain their functional characteristics and can specifically bind to cognate proteins on arrays of thousands of immobilised human proteins. The biological identity of the nanomaterial is seen to be specific to the blood plasma concentration in which they are exposed. We show that the resulting in situ nanoparticle interactome is dependent on the protein concentration in plasma, with the emergence of a small number of dominant protein-protein interactions. These interactions are those driven by proteins that are adsorbed onto the particle surface and whose binding epitopes are subsequently expressed or presented suitably on the particle surface. We suggest that, since specific tailored protein arrays for target systems and organs can be designed, their use may be an important element in an overall study of the biomolecular corona.Nanoparticles in physiological environments are known to selectively adsorb proteins and other biomolecules forming a tightly bound biomolecular `corona' on their surface. Where the exchange times of the proteins are sufficiently long, it is believed that the protein corona constitutes the particle identity in biological milieu. Here we show that proteins in the corona retain their functional characteristics and can specifically bind to cognate proteins on arrays of thousands of immobilised human proteins. The biological identity of the nanomaterial is seen to be specific to the blood plasma concentration in which they are exposed. We show that the resulting in situ nanoparticle interactome is dependent on the protein concentration in plasma, with the emergence of a small number of dominant protein-protein interactions. These interactions are those driven by proteins that are adsorbed onto the particle surface and whose binding epitopes are subsequently expressed or presented suitably on the particle surface. We suggest that, since specific tailored protein arrays for target systems and organs can be designed, their use may be an important element in an overall study of the biomolecular corona. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01970b

  4. Advances in LEDs for automotive applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light source technology are discussed.

  5. Spermatogenesis in mammals: proteomic insights.

    PubMed

    Chocu, Sophie; Calvel, Pierre; Rolland, Antoine D; Pineau, Charles

    2012-08-01

    Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling expression studies and/or systematic analyses of testicular proteomes in entire organs or isolated cells from various species. We consider the pros and cons of proteomics for studying the testicular germ cell gene expression program. Finally, we address the use of protein datasets, through integrative genomics (i.e., combining genomics, transcriptomics, and proteomics), bioinformatics, and modelling.

  6. Studying and controlling order within nanoparticle monolayers fabricated through electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Krejci, Alexander J.

    Just as ensembles of ordered atoms (a crystal) exhibit collective properties which give rise to phenomena that do not exist for a single atom, the same is true of NP ensembles; ordered arrays of NPs (supercrystals) exhibit properties that are not observed in individual NPs. These collective properties open the door for even more applications for nanomaterials. A few examples that demonstrate this fact will be discussed. In the first example, photoluminescent (PL) optical properties of three CdSe NP systems were studied: one ordered array of NPs, one unordered array, and one system of isolated NPs. In these three systems, the ordered array showed a significantly sharper PL peak compared to the unordered array and the individual NPs. In a second example, the electrical properties for three systems of Ag NPs were studied: one hexagonally packed 2D array of Ag NPs, one cubically packed 2D array, and one individual NP. I-V curves of each system were measured and produced dramatically different behaviors simply due to the change in arrangement of NPs. In a final example, arrays of Ag NPs were created and then sintered. By sintering ordered arrays, it was possible to create large monocrystals of silver; monocrystals could not be created using unordered arrays. These are just three examples that elucidate the control over a wide range of properties that can be achieved by tuning the order within NP ensembles. Given the potential of films composed of ordered NP arrays, many researchers have been investigating how to create and control such arrays using a variety of techniques. For example, ligand-mediated assembly is being studied using a variety of ligands. DNA ligands, in particular, offer a powerful way to control NP assemblies. Evaporative self-assembly has been used to create large supercrystals of one, two, and even more types/sizes of NPs. Assisted assembly incorporating electric and/or magnetic fields has shown promise in creating ordered NP arrays. Spin-casting and Langmuir Blodgett films can be used to create very thin NP films. Templated substrates in combination with spin coating have been used to order blockcopolymers; this could be adapted for NP arrays as well. Some of these techniques can be applied for forming ordered arrays of NPs in two-dimensions, creating nanoparticle monolayers (NPMs), the focus of this work. NPMs are attractive for many applications in devices such as magnetic storage, solar cells, and biosensors. One particularly attractive feature of NPMs is the high surface area to volume ratio of the films. For example, through collaboration, we are investigating PL properties of two monolayers, composed of two different types of NPs, stacked on top of one another. Although challenging, there now are a variety of techniques for the fabrication of NPMs. This dissertation introduces a new process by which one can fabricate monolayers, electrophoretic deposition (EPD). Literature exists on using EPD to fabricate NPMs, but this literature is very limited. One such study deposited films of Au NPs on carbon films and another Pt NPs on carbon films. To the best of our knowledge, only NPMs of metallic NPs on carbon have been fabricated. Of the EPD studies in which NPMs have been fabricated, the technique has not been investigated in depth or has not been generalized for deposition of many types of materials. If NPM formation via EPD could be generalized, the NPMs could be industrially attractive as EPD has many industrially advantageous properties. For instance, EPD is highly versatile in multiple ways: many types of particles can be deposited, the size of the electrodes can be varied over many orders of magnitude, and a large variety of solvents can be used to suspend NPs. For example, our group has deposited materials of different shapes including tubes, sheets, and spheres; different materials such as polymers, metals, semiconductors, and magnetic materials; and on a variety of substrates including steel, silicon, silicon dioxide, indium tin oxide, and gold. In addition, EPD is very simple to perform, forms smooth films, and forms films quite rapidly. By fabricating NPMs of many types of NPs, the technique used herein has proven to be generalizable and thus could be industrially attractive. (Abstract shortened by UMI.)

  7. Lenslet Array to Further Suppress Star Light for Direct Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Gong, Qian; McElwain, Michael; Shiri, Ron

    2016-01-01

    Direct imaging plays a key role in the detection and characterization of exoplanets orbiting within its host star's habitable zone. Many innovative ideas for starlight suppression and wavefront control have been proposed and developed over the past decade. However, several technological challenges still lie ahead to achieve the required contrast, including controlling the observatory pointing performance, fabricating occulting masks with tight optical tolerances, developing wavefront control algorithms, controlling stray light, advancing single photon detecting detectors, and integrated system-level issues. This paper explores how a lenslet array and pinhole mask may be implemented to further suppress uncorrected starlight that leaks through the occulting mask. An external occulter, or star shade, is simulated to demonstrate this concept, although this approach can be implemented for internal coronagraphs as well. We describe how to use simple relay optics to control the scene near the inner working angle and the level of the suppression expected. Furthermore, if the lenslet array is the input to an integral field spectrograph, as planned for the WFIRST mission, the spectral content of the exoplanet atmospheres can be obtained to determine if the observed planet is habitable and ultimately, if it is inhabited.

  8. Ultra-high field MRI for primate imaging using the travelling-wave concept.

    PubMed

    Mallow, Johannes; Herrmann, Tim; Kim, Kyoung-Nam; Stadler, Joerg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2013-08-01

    Ultra-high field (UHF) neuroimaging is usually conducted with volume transmit (Tx) and phased array receive (Rx) coils, both tightly enclosing the object. The travelling-wave (TW) concept allows a remote excitation offering more flexible experimental setups. To investigate the feasibility of primate MRI in horizontal UHF MRI, we first compared the distribution of the electromagnetic fields in an oil phantom and then verified the concept with an in vivo experiment. In the phantom experiments an in-house circularly polarized hybrid birdcage coil and a self-developed patch antenna were used for Tx and an eight-element phased array antenna for Rx. B1+ fields were calculated and measured for both approaches. For in vivo experiments the Rx part was replaced with an optimized three-element phased array head coil. The SAR was calculated using field simulation. In the phantom the field distribution was homogenous in a central volume of interest of about 10 cm diameter. The TW concept showed a slightly better homogeneity. Examination of a female crab-eating macaque led to homogeneous high-contrast images with a good delineation of anatomical details. The TW concept opens up a new approach for MRI of medium-sized animals in horizontal UHF scanners.

  9. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array/polymer composite films showed that their energy-conversion properties were comparable to those of an array attached to the growth substrate. High quantum efficiencies were observed relative to the packing density of the wires, particularly with illumination at high angles of incidence. The results indicate that an inexpensive, solid-state Si wire array solar cell is possible, and a plan is presented to develop one.

  10. Charge Transport in Semiconductor Nanocrystal Solids

    NASA Astrophysics Data System (ADS)

    Talapin, Dmitri; Shevchenko, Elena; Lee, Jong Soo; Urban, Jeffrey; Mitzi, David; Murray, Christopher

    2007-03-01

    Self-assembly of chemically-synthesized nanocrystals can yield complex long-range ordered structures which can be used as model systems for studying transport phenomena in low-dimensional materials [1]. Treatment of close-packed PbSe nanocrystal arrays with hydrazine enhanced exchange coupling between the nanocrystals and improved conductance by more than ten orders of magnitude compared to native nanocrystal films [2]. The conductivity of PbSe nanocrystal solids can be switched between n- and p-type transports by controlling the saturation of electronic states at nanocrystal surfaces. Nanocrystal arrays form the n- and p-channels of field-effect transistors with electron and hole mobilities of 2.5 cm^2V-1s-1 and 0.3 cm^2V-1s-1, respectively, and current modulation Ion/Ioff˜10^3-10^4. The field-effect mobility in PbSe nanocrystal arrays is higher than the mobility of organic transistors while the easy switch between n- and p-transport allows realization of complimentary circuits and p-n junctions for nanocrystal-based solar cells and thermoelectric devices. [1] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray. Nature 439, 55 (2006). [2] D. V. Talapin, C. B. Murray. Science 310, 86 (2005).

  11. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  12. Fabrication of polymerized crystalline colloidal array thin film modified β-cyclodextrin polymer for paraoxon-ethyl and parathion-ethyl detection.

    PubMed

    Bui, Minh-Phuong N; Seo, Seong S

    2014-01-01

    We have developed an optical chemical sensor for the detection of organophosphate (OP) compounds using a polymerized crystalline colloidal array (PCCA) thin film composed of a close-packed colloidal array of polystyrene particles. The PCCA thin film was modified with β-cyclodextrin (β-CD) polymer as a capping cavity for the selective detection of paraoxon-ethyl and parathion-ethyl chemical agents. The fabrication of the modified PCCA thin film was optimized and the structure was characterized using scanning electron microscopy (SEM). The arrangement of polystyrene particles in the PCCA follows a pattern of the fcc (111) planes with strong diffraction peak in the visible spectral region and pH dependence. The diffraction peak of the β-CD modified PCCA thin film showed a red shift according to the change of paraoxon-ethyl and parathion-ethyl concentrations at a fast response time (10 s) and high sensitivity with detection limits of 2.0 and 3.4 ppb, respectively. Furthermore, the proposed interaction mechanism of β-CD with paraoxon-ethyl and parathion-ethyl in the β-CD modified PCCA thin film were discussed.

  13. Novel photonic technique creates micrometer resolution protein arrays and provides a new approach to coupling of genes, peptide hormones and drugs to nanoparticle carriers

    NASA Astrophysics Data System (ADS)

    Duroux, M.; Duroux, L.; Neves-Petersen, M. T.; Skovsen, E.; Petersen, S. B.

    2007-07-01

    We demonstrate that ultraviolet light can be used to make sterically oriented covalent immobilization of a large variety of protein molecules onto either thiolated quartz, gold or silicon. The reaction mechanism behind the reported new technology involves light-induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol reactive surfaces. In general, the protein molecules retain their function. The size of the immobilization spot is limited to the focal point of illumination being as small as a few micrometers. This new technology allows for dense packing of different bio-molecules on a surface, allowing the creation of multi-potent functionalised new materials, such as nano-biosensors. We have developed the necessary technology for preparing large protein arrays of enzymes and fragments of monoclonal antibodies. Dedicated image processing software has been developed for making quality assessment of the protein arrays. This novel technology is ideal to couple drugs and other bio-molecules to nanoparticles which can be used as carriers into cells for therapeutic purposes.

  14. Achieving sub-50 nm controlled diameter of aperiodic Si nanowire arrays by ultrasonic catalyst removal for photonic applications

    NASA Astrophysics Data System (ADS)

    Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2018-05-01

    We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.

  15. Electronic instability and change of crystalline phase in compounds of the V3Si type at low temperature

    NASA Technical Reports Server (NTRS)

    Labbe, J.; Friedel, J.

    1978-01-01

    In V3Si, the V atoms form an array of dense linear chains; a tight-binding approximation in one dimension was used to describe the d electrons. The electronic energy calculated by this method was reduced when the lattice is deformed. This lead to a band type of the Jahn Teller effect, which may explain the cubic to tetragonal transition which was observed at low temperatures. The theory can be extended to other superconductors of the V3X type when X=Ga, Ge, Sn, etcetera, or NB3SN.

  16. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; hide

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.

  17. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  18. Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array

    NASA Astrophysics Data System (ADS)

    Bae, Hyungchul; Kim, Jun Soo; Hong, Chinsoo

    2018-05-01

    A theoretical model based on ray optics is used to simulate the optical performance of organic light-emitting diodes (OLEDs) with spheroidal microlens arrays (MLAs) in a hexagonal array configuration using the Monte Carlo method. In simulations, ray tracing was performed until 20 reflections occurred from the metal cathode, with 10 consecutive reflections permitted in a single lens pattern. The parameters describing the shape and array of the lens pattern of a MLA are its radius, height, contact angle, and fill factor (FF). Many previous results on how these parameters affect light extraction efficiency (LEE) are inconsistent. In this paper, these contradictory results are discussed and explained by introducing a new parameter. To examine light extraction from an OLED through a MLA, the LEE enhancement is studied considering the effect of absorption by indium tin oxide during multiple reflections from the metal cathode. The device size where LEE enhancement is unchanged with changing lens pattern was identified for a fixed FF; under this condition, the optimal LEE enhancement, 84%, can be obtained using an OLED with a close-packed spheroidal MLA. An ideal maximum LEE enhancement of 120% was achieved with a device with an infinite-sized MLA. The angular intensity distribution of light emitted through a MLA is considered in addition to LEE enhancement for an optimized MLA.

  19. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    PubMed Central

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  20. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

    PubMed

    Brady, Gerald J; Way, Austin J; Safron, Nathaniel S; Evensen, Harold T; Gopalan, Padma; Arnold, Michael S

    2016-09-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.

Top