NASA Astrophysics Data System (ADS)
Phillips, Zephaniah; Paik, Seung-Ho; Kim, Yoohwan; Kim, Byung-Jo; Choi, Youngwoon; Kim, Beop-Min
2017-02-01
In this work, we analyzed the clinical applicability of NIRS for use during Quantitative Autonomic Testing (QAT). QAT is a protocol consisting of deep breathing, Valsalva maneuver, and tilt table examination. It is used to diagnose a patient with disorders of the autonomic nervous system (ANS). Disorders of ANS includes orthostatic hyper/hypotension, vasovagal syncope, and postural orthostatic tachycardia syndrome. The results of QAT are typically analyzed with the use of blood pressure and heart rate data, however these metrics may be influenced by factors such as arrhythmia, making the data interpretation and diagnosis difficult for clinicians. We tested our custom built 108-channel NIRS probe on 26 elderly patients during the QAT protocol with various ANS disorders. We found that prefrontal cerebral oxygenation correlated well with blood pressure and heart rate changes for all three tasks, making it a clinically feasible tool for observing ANS functionality. During the Valsalva maneuver, we observed a longer delayed and lower amplitude response of cerebral oxygenation to the prefrontal area in orthostatic intolerant patients. During the tilt table examination, we saw a larger response in cerebral oxygenation and less equal transient cerebral oxygenation during tilt up and tilt down in tilt table examinations that were positive (unhealthy), compared to tilt table examinations that were negative (healthy). Overall, our study showcases NIRS as an enhanced tool for understanding ANS disorders.
Tilt testing results are influenced by tilt protocol.
Zyśko, Dorota; Fedorowski, Artur; Nilsson, David; Rudnicki, Jerzy; Gajek, Jacek; Melander, Olle; Sutton, Richard
2016-07-01
It is unknown how the return to supine position influences duration of loss of consciousness (LOC) and cardioinhibition during tilt test. Retrospective analysis of two datasets containing records of patients who underwent tilt testing for unexplained syncope in two centres was performed. Patients, totalling 1232, were included in the study: 262 in a Swedish centre and 970 patients in a Polish centre. In Sweden, tilt table with tilt-down time (TDT) of 18 s was used (Group II). In Poland, two different tilt tables were used, one of them with TDT of 10 s (Group I, n = 325), and the other with TDT of 47 s (Group III, n = 645). Cardioinhibitory reflex occurred most frequently in Group III, whereas number of pauses >3 s, frequency of very long asystole ≥30 s, and the total duration of pauses >3 s demonstrated a trend to increase from Group I to III. Duration of LOC in Groups II and III was significantly longer compared with Group I (32.0 and 33.7 s vs. 16.4 s). In the multivariate-adjusted regression model, cardioinhibitory reflex was predicted by tilt-table model (odds ratio per model with increasing TDT: 1.40; 95% confidence interval, 1.19-1.64; P < 0.0001), whereas LOC duration was longer with increasing TDT (P < 0.0001) and age (P < 0.0001). Longer TDT during induced vasovagal syncope increases the prevalence of cardioinhibitory reflex and prolongs the duration of LOC. Tilt-down time does not affect asystolic pause duration but delay may lead to occurrence of multiple pauses, higher frequency of very long asystole, and longer total asystole duration. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Marr, R. L.; Sambell, K. W.; Neal, G. T.
1973-01-01
Stability and control tests of a scale model of a tilt rotor research aircraft were conducted. The characteristics of the model for hover, low speed, and conversion flight were analyzed. Hover tests were conducted in a rotor whirl cage. Helicopter and conversion tests were conducted in a low speed wind tunnel. Data obtained from the tests are presented as tables and graphs. Diagrams and illustrations of the test equipment are provided.
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING NORTHWEST. TILTING ...
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING NORTHWEST. TILTING TABLE MARKED BY WHITE ELECTRICAL CORD IN LOWER LEFT CENTER - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Tilted wheel satellite attitude control with air-bearing table experimental results
NASA Astrophysics Data System (ADS)
Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.
2015-12-01
Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.
2004-10-07
Expedition 10 Commander Leroy Chiao undergoes physical testing on a mechanized tilt table at crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Agency cosmonaut Yuri Shargin to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once on orbit. Photo Credit: (NASA/Bill Ingalls)
2004-10-07
Expedition 10 Commander Leroy Chiao, left, and Russian Space Forces cosmonaut Yuri Shargin undergo physical testing on a mechanized tilt table at their crew quarters in Baikonur, Kazakhstan, Friday, October 8, 2004, in preparation for launch with Flight Engineer and Soyuz Commander Salizhan Sharipov to the International Space Station on October 14. The tilt table is used to condition the crewmembers' cardiovascular system against the effects of weightlessness once in orbit. Photo Credit: (NASA/Bill Ingalls)
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING SOUTHWEST, SHOWING ...
TILTING TABLE AREA, PDP ROOM, LEVEL +27, LOOKING SOUTHWEST, SHOWING TILTING TABLE, MARKED BY WHITE ELECTRICAL CORD - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
G-suited for prevention of syncope in patients with vasovagal syncope: a pilot study.
Rasmeehirun, Prayuth; Krittayaphong, Rungroj
2014-03-01
Vasovagal syncope (VVS) represents by far the most common cause of syncope as it is diagnosed in around 50% of all patients that come to an emergency department. Although VVS is not fatal, it can cause an injury. Even serious injuries are not common, but there are reports of serious injuries of up to 5%. There are no current studies that demonstrate the effectiveness of any treatment. Past studies found that an Anti-Gravity suit (G-suit) can increase blood pressure and has been reported to prevent orthostatic hypotension effectively in patients with diabetes. It is possible that the G-suit can prevent VVS. In the present study, the authors assessed the efficacy of G-suit for vasovagal syncope prevention. In this open-label, randomized controlled study, we used the Italian tilt protocol, namely 60 degree passive tilting followed by 0.4 mg nitroglycerin challenge when the passive phase fails to induce syncope. If test was positive, then patient was enrolled. Tilt table test was repeated to compare G-suited and no G-suited to assess efficacy of G-suit for vasovagal syncope prevention. 10 patients were enrolled. There is no difference between the control group and an experimental group. In this study there is no cardio-inhibition vasovagal syncope. Positive tilt table test occurred in 50% of the patients receiving G-suited and 100% in control group (p 0.133). G-suit is unable to prevent syncope in patients with positive tilt table test but the result is not statistically significant. However, the number of patients may be too small.
Gajek, Jacek; Zyśko, Dorota; Mazurek, Walentyna
2005-08-01
The stimulation of renin-angiotensin-aldosterone (RAA) system during tilt table test is caused by sympathetic nervous system activation by orthostatic stress and a serotonin release as well. In healthy individuals increase of plasma renin activity during test with maximal values on the peak of the test was described. The aim of the study was to assess the activation of RAAS in patients with neurally mediated syncope during the tilt table test by means of plasma renin activity and serum aldosterone levels. The study was carried out in 31 patients aged 39.4 +/- 15.0 years (18 women and 13 men) with neurally mediated syncope during tilt test. Plasma renin activity was assessed in the baseline conditions, immediately after the test and 10 minutes after the test using radioenzymatic assay. Aldosterone concentrations were measured radioimmunologically, twice: after 30 minutes supine rest and after the syncope. Plasma renin activity during supine rest was 2.2 +/- 2.4 ng/ml/h, rose after the syncope 2.5-fold to 5.2 +/- 4.5 ng/ml/h (p < 0.001 comparing to baseline) stayed on similar level approximately for the next 10 minutes--4.9 +/- 5.5 ng/ml/h (p = n.s.). In 11 patients (35%) 10 minutes after the test even further increase of PRA was observed. Serum aldosterone level increased significantly immediately after tilt test (90.0 +/- 72.9 vs 178.8 +/- 150.1 pg/ml, p < 0.01). Authors showed, that in patients with NMS plasma renin activity increases and this increase lasts for 10 minutes after the syncope and the concentration of aldosterone increases immediately after tilt test.
Krewer, Carmen; Luther, Marianne; Koenig, Eberhard; Müller, Friedemann
2015-01-01
One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC) is to enhance patients’ arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R) showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo). The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com), identifier number ISRCTN72853718 PMID:26623651
Krewer, Carmen; Luther, Marianne; Koenig, Eberhard; Müller, Friedemann
2015-01-01
One major aim of the neurological rehabilitation of patients with severe disorders of consciousness (DOC) is to enhance patients' arousal and ability to communicate. Mobilization into a standing position by means of a tilt table has been shown to improve their arousal and awareness. However, due to the frequent occurrence of syncopes on a tilt table, it is easier to accomplish verticalization using a tilt table with an integrated stepping device. The objective of this randomized controlled clinical trial was to evaluate the effectiveness of a tilt table therapy with or without an integrated stepping device on the level of consciousness. A total of 50 participants in vegetative or minimally conscious states 4 weeks to 6 month after injury were treated with verticalization during this randomized controlled trial. Interventions involved ten 1-hour sessions of the specific treatment over a 3-week period. Blinded assessors made measurements before and after the intervention period, as well as after a 3-week follow-up period. The coma recovery scale-revised (CRS-R) showed an improvement by a median of 2 points for the group receiving tilt table with integrated stepping (Erigo). The rate of recovery of the group receiving the conventional tilt table therapy significantly increased by 5 points during treatment and by an additional 2 points during the 3-week follow-up period. Changes in spasticity did not significantly differ between the two intervention groups. Compared to the conventional tilt table, the tilt table with integrated stepping device failed to have any additional benefit for DOC patients. Verticalization itself seems to be beneficial though and should be administered to patients in DOC in early rehabilitation. Trial Registration: Current Controlled Trials Ltd (www.controlled-trials.com), identifier number ISRCTN72853718.
Dziuda, Łukasz; Krej, Mariusz; Śmietanowski, Maciej; Sobotnicki, Aleksander; Sobiech, Mariusz; Kwaśny, Piotr; Brzozowska, Anna; Baran, Paulina; Kowalczuk, Krzysztof; Skibniewski, Franciszek W
2018-05-17
Lower body negative pressure (LBNP) is a method derived from space medicine, which in recent years has been increasingly used by clinicians to assess the efficiency of the cardiovascular regulatory mechanisms. LBNP with combined tilt testing is considered as an effective form of training to prevent orthostatic intolerance. We have developed a prototype system comprising a tilt table and LBNP chamber, and tested it in the context of the feasibility of the device for assessing the pilots' efficiency. The table allows for controlled tilting in the range from -45 to +80° at the maximum change rate of 45°/s. The LBNP value can smoothly be adjusted down to -100 mmHg at up to 20 mmHg/s. 17 subjects took part in the pilot study. A 24-minute scenario included -100 mmHg supine LBNP, head up tilt (HUT) and -60 mmHg LBNP associated with HUT, separated by resting phases. The most noticeable changes were observed in stroke volume (SV). During supine LBNP, HUT and the combined stimulus, a decrease of the SV value by 20%, 40% and below 50%, respectively, were detected. The proposed system can map any pre-programed tilt and LBNP profiles, and the pilot study confirmed the efficiency of performing experimental procedures.
Kuznetsov, Alexey N; Rybalko, Natalia V; Daminov, Vadim D; Luft, Andreas R
2013-01-01
Background. Stroke frequently leaves survivors with hemiparesis. To prevent persistent deficits, rehabilitation may be more effective if started early. Early training is often limited because of orthostatic reactions. Tilt-table stepping robots and functional electrical stimulation (FES) may prevent these reactions. Objective. This controlled convenience sample study compares safety and feasibility of robotic tilt-table training plus FES (ROBO-FES) and robotic tilt-table training (ROBO) against tilt-table training alone (control). A preliminary assessment of efficacy is performed. Methods. Hemiparetic ischemic stroke survivors (age 58.3 ± 1.2 years, 4.6 ± 1.2 days after stroke) were assigned to 30 days of ROBO-FES (n = 38), ROBO (n = 35), or control (n = 31) in addition to conventional physical therapy. Impedance cardiography and transcranial doppler sonography were performed before, during, and after training. Hemiparesis was assessed using the British Medical Research Council (MRC) strength scale. Results. No serious adverse events occurred; 8 patients in the tilt-table group prematurely quit the study because of orthostatic reactions. Blood pressure and CBFV dipped <10% during robot training. In 52% of controls mean arterial pressure decreased by ≥20%. ROBO-FES increased leg strength by 1.97 ± 0.88 points, ROBO by 1.50 ± 0.85 more than control (1.03 ± 0.61, P < 0.05). CBFV increased in both robotic groups more than in controls (P < 0.05). Conclusions. Robotic tilt-table exercise with or without FES is safe and may be more effective in improving leg strength and cerebral blood flow than tilt table alone.
Kuznetsov, Alexey N.; Rybalko, Natalia V.; Daminov, Vadim D.; Luft, Andreas R.
2013-01-01
Background. Stroke frequently leaves survivors with hemiparesis. To prevent persistent deficits, rehabilitation may be more effective if started early. Early training is often limited because of orthostatic reactions. Tilt-table stepping robots and functional electrical stimulation (FES) may prevent these reactions. Objective. This controlled convenience sample study compares safety and feasibility of robotic tilt-table training plus FES (ROBO-FES) and robotic tilt-table training (ROBO) against tilt-table training alone (control). A preliminary assessment of efficacy is performed. Methods. Hemiparetic ischemic stroke survivors (age 58.3 ± 1.2 years, 4.6 ± 1.2 days after stroke) were assigned to 30 days of ROBO-FES (n = 38), ROBO (n = 35), or control (n = 31) in addition to conventional physical therapy. Impedance cardiography and transcranial doppler sonography were performed before, during, and after training. Hemiparesis was assessed using the British Medical Research Council (MRC) strength scale. Results. No serious adverse events occurred; 8 patients in the tilt-table group prematurely quit the study because of orthostatic reactions. Blood pressure and CBFV dipped <10% during robot training. In 52% of controls mean arterial pressure decreased by ≥20%. ROBO-FES increased leg strength by 1.97 ± 0.88 points, ROBO by 1.50 ± 0.85 more than control (1.03 ± 0.61, P < 0.05). CBFV increased in both robotic groups more than in controls (P < 0.05). Conclusions. Robotic tilt-table exercise with or without FES is safe and may be more effective in improving leg strength and cerebral blood flow than tilt table alone. PMID:23691432
Saengsuwan, J; Laubacher, M; Nef, T; Hunt, K J
2014-01-01
Robotics-assisted tilt table technology was introduced for early rehabilitation of neurological patients. It provides cyclical stepping movement and physiological loading of the legs. The aim of the present study was to assess the feasibility of this type of device for peak cardiopulmonary performance testing using able-bodied subjects. A robotics-assisted tilt table was augmented with force sensors in the thigh cuffs and a work rate estimation algorithm. A custom visual feedback system was employed to guide the subjects' work rate and to provide real time feedback of actual work rate. Feasibility assessment focused on: (i) implementation (technical feasibility), and (ii) responsiveness (was there a measurable, high-level cardiopulmonary reaction?). For responsiveness testing, each subject carried out an incremental exercise test to the limit of functional capacity with a work rate increment of 5 W/min in female subjects and 8 W/min in males. 11 able-bodied subjects were included (9 male, 2 female; age 29.6 ± 7.1 years: mean ± SD). Resting oxygen uptake (O
Laubacher, Marco; Perret, Claudio; Hunt, Kenneth J
2015-01-01
Robotics-assisted tilt-table (RTT) technology allows neurological rehabilitation therapy to be started early thus alleviating some secondary complications of prolonged bed rest. This study assessed the feasibility of a novel work-rate-guided RTT approach for cardiopulmonary training and assessment in patients with incomplete spinal cord injury (iSCI). Three representative subjects with iSCI at three distinct stages of primary rehabilitation completed an incremental exercise test (IET) and a constant load test (CLT) on a RTT augmented with integrated leg-force and position measurement and visual work rate feedback. Feasibility assessment focused on: (i) implementation, (ii) limited efficacy testing, (iii) acceptability. (i) All subjects were able follow the work rate target profile by adapting their volitional leg effort. (ii) During the IETs, peak oxygen uptake above rest was 304, 467 and 1378 ml/min and peak heart rate (HR) was 46, 32 and 65 beats/min above rest (subjects A, B and C, respectively). During the CLTs, steady-state oxygen uptake increased by 42%, 38% and 162% and HR by 12%, 20% and 29%. (iii) All exercise tests were tolerated well. The novel work-rate guided RTT intervention is deemed feasible for cardiopulmonary training and assessment in patients with iSCI: substantial cardiopulmonary responses were observed and the approach was found to be tolerable and implementable. Implications for Rehabilitation Work-rate guided robotics-assisted tilt-table technology is deemed feasible for cardiopulmonary assessment and training in patients with incomplete spinal cord injury. Robotics-assisted tilt-tables might be a good way to start with an active rehabilitation as early as possible after a spinal cord injury. During training with robotics-assisted devices the active participation of the patients is crucial to strain the cardiopulmonary system and hence gain from the training.
2014-10-30
rotation of the tilt table (Figure 3b). A torsion spring pushes the tilt table against the push bar, so that contact is maintained (Figure 3a). The tilt...designed flexible circuit board (Figure 3a), composed of copper conductors patterned on top of vacuum-compatible kapton polymer. The flexibility of...this board is important so that it does not hinder rotation of the tilt-table. The flexible PCB extends into the hollow holder shaft, and interfaces
Hamzaid, N A; Tean, L T; Davis, G M; Suhaimi, A; Hasnan, N
2015-05-01
Prospective study of two cases. To describe the effects of electrical stimulation (ES) therapy in the 4-week management of two sub-acute spinal cord-injured (SCI) individuals (C7 American Spinal Injury Association Impairment Scale (AIS) B and T9 AIS (B)). University Malaya Medical Centre, Kuala Lumpur, Malaysia. A diagnostic tilt-table test was conducted to confirm the presence of orthostatic hypotension (OH) based on the current clinical definitions. Following initial assessment, subjects underwent 4 weeks of ES therapy 4 times weekly for 1 h per day. Post-tests tilt table challenge, both with and without ES on their rectus abdominis, quadriceps, hamstrings and gastrocnemius muscles, was conducted at the end of the study (week 5). Subjects' blood pressures (BP) and heart rates (HR) were recorded every minute during pre-test and post-tests. Orthostatic symptoms, as well as the maximum tolerance time that the subjects could withstand head up tilt at 60°, were recorded. Subject A improved his orthostatic symptoms, but did not recover from clinically defined OH based on the 20-min duration requirement. With concurrent ES therapy, 60° head up tilt BP was 89/62 mm Hg compared with baseline BP of 115/71 mm Hg. Subject B fully recovered from OH demonstrated by BP of 105/71 mm Hg during the 60° head up tilt compared with baseline BP of 124/77 mm Hg. Both patients demonstrated longer tolerance time during head up tilt with concomitant ES (subject A: pre-test 4 min, post-test without ES 6 min, post-test with ES 12 min; subject B: pre-test 4 min, post-test without ES 28 min, post-test with ES 60 min). Weekly ES therapy had positive effect on OH management in sub-acute SCI individuals.
A somatostatin analog improves tilt table tolerance by decreasing splanchnic vascular conductance
Florian, J. P.; Curren, M. J.; Pawelczyk, J. A.
2012-01-01
Splanchnic hemodynamics and tilt table tolerance were assessed after an infusion of placebo or octreotide acetate, a somatostatin analog whose vascular effects are largely confined to the splanchnic circulation. We hypothesized that reductions in splanchnic blood flow (SpBF) and splanchnic vascular conductance (SpVC) would be related to improvements in tilt table tolerance. In randomized, double-blind, crossover trials, hemodynamic variables were collected in 14 women and 16 men during baseline, 70° head-up tilt (HUT), and recovery. A repeated-measures analysis of variance was used to compare changes from baseline with respect to sex and condition. HUT elicited an increase in heart rate and decreases in mean arterial pressure, cardiac index, stroke index, and systemic vascular conductance. Additionally, SpVC and non-SpVC were lower during HUT. Octreotide reduced SpBF and SpVC and increased systemic vascular conductance and non-SpVC. Changes in SpBF and SpVC between supine and HUT were smaller in women (P < 0.05). Tilt table tolerance was increased after administration of octreotide [median tilt time: 15.7 vs. 37.0 min (P < 0.05) and 21.8 vs. 45.0 min (P < 0.05) for women and men, respectively]. A significant relationship existed between change (Δ) in SpBF (placebo-octreotide) and Δtilt time in women (Δtilt time = 2.5–0.0083 ΔSpBF, P < 0.01), but not men (Δtilt time = 3.41–0.0008 ΔSpBF, P = 0.59). In conclusion, administration of octreotide acetate improved tilt table tolerance, which was associated with a decrease in SpVC. In women, but not men, the magnitude of reduction in SpBF was positively associated with improvements in tilt tolerance. PMID:22345429
Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena
2016-01-01
Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during head-up tilt is strongly dependent on the verticalization angle. Therefore, we conclude that orthostatic hypotension cannot be prevented by PE alone, but that the preventive effect depends on the verticalization angle of the robot-assisted tilt table. FES (independent of intensity) is not an important contributing factor to the PE effect.
Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena
2016-01-01
Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during head-up tilt is strongly dependent on the verticalization angle. Therefore, we conclude that orthostatic hypotension cannot be prevented by PE alone, but that the preventive effect depends on the verticalization angle of the robot-assisted tilt table. FES (independent of intensity) is not an important contributing factor to the PE effect. PMID:28018240
Driving safety among patients with neurocardiogenic (vasovagal) syncope.
Bhatia, A; Dhala, A; Blanck, Z; Deshpande, S; Akhtar, M; Sra, A J
1999-11-01
Neurocardiogenic syncope is one of the most common causes of syncope. However, the important issue of driving related injury due to syncope in this population is not well defined. Risk of injury due to syncope while driving and driving behavior was evaluated in 155 consecutive patients (92 women and 63 men; mean age 49 +/- 19 years) with history of syncope in whom hypotension and syncope or presyncope could be provoked during head-up tilt testing. Patients with syncope and positive head-up tilt table test were treated with pharmacological therapy. All participants were asked to fill out a detailed questionnaire regarding any driving related injuries and their driving behavior before tilt table testing and during follow-up. Prior to head-up tilt testing two patients had syncope while driving, and one of these patients had syncope related injury during driving. The mean duration of syncopal episodes was 50 +/- 14 months (range 12-72 months). Of the 155 patients, 52 (34%) had no warning prior to syncope, while 103 (6%) had warning symptoms such as dizziness prior to their clinical syncope. Following a diagnosis of neurocardiogenic syncope established by head-up tilt testing, six patients stopped driving on their own. During a median follow-up of 22 months recurrent syncope occurred in five (3.2%) patients. No patient had syncope or injury during driving. In conclusion, syncope and injury while driving in patients with neurocardiogenic syncope is rare. The precise mechanism of this is unclear but may be related to posture during driving. Consensus among the medical community will be needed to provide specific guidelines in these patients.
Time-varying spectral analysis for comparison of HRV and PPG variability during tilt table test.
Gil, Eduardo; Orini, Michele; Bailon, Raquel; Vergara, Jose Maria; Mainardi, Luca; Laguna, Pablo
2010-01-01
In this work we assessed the possibility of using the pulse rate variability (PRV) extracted from photoplethysmography signal as an alternative measurement of the HRV signal in non-stationary conditions. The study is based on the analysis of the changes observed during tilt table test in the heart rate modulation of 17 young subjects. Time-varying spectral properties of both signals were compared by time-frequency (TF) and TF coherence analysis. In addition, the effect of replacing PRV with HRV in the assessment of the changes of the autonomic modulation of the heart rate was considered. Time-frequency analysis revealed that: the TF spectra of both signals were highly correlated (0.99 ± 0.01); the difference between the instantaneous power, in LF and HF bands, obtained from HRV and PRV was small (, 10(-3) s(-2)) and their temporal patterns were highly correlated (0.98 ± 0.04 and 0.95 ± 0.06 in LF and HF bands respectively); TF coherence in LF and HF bands was high (0.97 ± 0.04 and 0.89 ± 0.08, respectively). Finally, the instantaneous power in LF band was observed to significantly increase during head-up tilt by both HRV and PRV analysis. These results suggest that, although some small differences in the time-varying spectral indices extracted from HRV and PRV exist, mainly in the HF band associated with respiration, PRV could be used as an acceptable surrogate of HRV during non-stationary conditions, at least during tilt table test.
2017-12-11
jsc2017e137341 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmembers Scott Tingle of NASA (left) and Norishige Kanai of the Japan Aerospace Exploration Agency (right) test their vestibular skills on tilt tables Dec. 11 as part of their pre-launch training. Along with Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), they will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.
Dynamic cerebral autoregulation in stroke patients with a central sympathetic deficit.
Gierthmühlen, J; Allardt, A; Sawade, M; Baron, R; Wasner, G
2011-05-01
To investigate the functional role of the sympathetic innervation on cerebral autoregulation. Seventeen patients with infarction of the dorsolateral medulla oblongata affecting central sympathetic pathways (Wallenberg's syndrome) and 21 healthy controls were included in the study. Cerebral blood flow velocity (CBFV) in the medial cerebral artery was investigated using transcranial Doppler ultrasound during decrease in cerebral perfusion pressure induced by leg-cuff test and tilt table. Upon leg-cuff test, changes of cerebral blood flow and mean arterial blood pressure as well as autoregulatory index did not differ between patients or controls. No differences were found in changes of CBFV, mean arterial blood pressure and heart rate between patients or controls during the tilt table test. We suggest that the sympathetic nervous system does not have an influence on cerebral autoregulation after decrease in perfusion pressure under normotonous conditions. © 2010 John Wiley & Sons A/S.
A tilt and roll device for automated correction of rotational setup errors.
Hornick, D C; Litzenberg, D W; Lam, K L; Balter, J M; Hetrick, J; Ten Haken, R K
1998-09-01
A tilt and roll device has been developed to add two additional degrees of freedom to an existing treatment table. This device allows computer-controlled rotational motion about the inferior-superior and left-right patient axes. The tilt and roll device comprises three supports between the tabletop and base. An automotive type universal joint welded to the end of a steel pipe supports the center of the table. Two computer-controlled linear electric actuators utilizing high accuracy stepping motors support the foot of table and control the tilt and roll of the tabletop. The current system meets or exceeds all pre-design specifications for precision, weight capacity, rigidity, and range of motion.
Curiosity on Tilt Table with Mast Up
2011-03-25
The Mast Camera Mastcam on NASA Mars rover Curiosity has two rectangular eyes near the top of the rover remote sensing mast. This image shows Curiosity on a tilt table NASA Jet Propulsion Laboratory, Pasadena, California.
... determine if the cause is related to your heart rate or blood pressure. Why it's done Your doctor ... and symptoms — lightheadedness, dizziness or fainting — while your heart rate and blood pressure are being monitored. If you ...
2016-06-30
At the Cosmonaut Hotel in Baikonur, Kazakhstan, Expedition 48-49 crewmembers Anatoly Ivanishin of Roscosmos (foreground) and Takuya Onishi of the Japan Aerospace Exploration Agency conduct tests of their vestibular system on tilt tables June 30 as part of pre-launch activities. They and Kate Rubins of NASA will launch July 7, Baikonur time, on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station. NASA/Alexander Vysotsky
Potential problems relative to TDRS/IUS tilt table elevation with failed VRCS
NASA Technical Reports Server (NTRS)
Bell, J.
1980-01-01
Operational concerns and preliminary solution alternatives related to elevating the inertial upper stage/tracking and data relay satellite (IUS/TDRS) with a failed orbiter vernier reaction control system (VRCS) are presented. Problems arise from the combination of TDRS thermal constraints and tilt table constraints (the primary reaction control system (PRCS) cannot be used to hold attitude while the tilt table is being elevated), and the problems are compounded by the minimum PRCS attitude deadband. The potential solution options are affected by the launch window, flight profile, crew procedures, vehicle capability and constraints, and flight rules.
2015-12-09
At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 46-47 crewmember Tim Kopra of NASA took a turn on a tilt table to test his vestibular system Dec. 9 as part of his pre-launch training. Kopra, Tim Peake of the European Space Agency and Yuri Malenchenko of the Russian Federal Space Agency will launch Dec. 15 on their Soyuz TMA-19M spacecraft for a six-month mission on the International Space Station. NASA/Victor Zelentsov
Patients with severe acquired brain injury show increased arousal in tilt-table training.
Riberholt, Christian G; Thorlund, Jonas B; Mehlsen, Jesper; Nordenbo, Annette M
2013-12-01
Patients with severe acquired brain injury (ABI) are often mobilised using a tilt-table. Complications such as orthostatic intolerance have been reported. The primary objective of this study was to investigate if using a tilt-table was feasible for mobilising patients with severe ABI admitted for sub-acute rehabilitation. We also investigated change in arousal, treatment duration before termination due to orthostatic reactions and change in muscle tone. A total of 16 patients with severe ABI were included. The patients were tilted head-up, and blood pressure, heart rate, breathing frequency and eye opening were recorded before and during the intervention. Furthermore, muscle tone was recorded before and after the intervention. Fifteen of the 16 patients did not complete the 20-min. session of tilt training due to orthostatic intolerance. There was a significant increase in the proportion of time that the patients had open eyes during treatment as compared with before treatment (p < 0.01). The mean time to occurrence of symptoms at the first, second and third tilt was 244 (standard deviation (SD) = ± 234) sec., 277 (SD = ± 257) sec. and 155 (SD = ± 67) sec., respectively. Patients with severe sub-acute ABI show orthostatic intolerance when mobilised on a tilt-table which results in a low mobilisation intensity. However, the patients showed a significant increase in arousal during mobilisation. No external funding was received for this study. All resources were provided by the Department of Neurorehabilitation, Traumatic Brain Injury Unit, Glostrup University Hospital. not relevant.
2005-04-10
Expedition 11 Flight Engineer John Phillips takes part in a tilt table test, Monday, April 11, 2005, in Baikonur, Kazakhstan as technicians collect pre-launch data on the state of his equilibrium prior to the April 15 launch to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Current profilers and current meters: compass and tilt sensors errors and calibration
NASA Astrophysics Data System (ADS)
Le Menn, M.; Lusven, A.; Bongiovanni, E.; Le Dû, P.; Rouxel, D.; Lucas, S.; Pacaud, L.
2014-08-01
Current profilers and current meters have a magnetic compass and tilt sensors for relating measurements to a terrestrial reference frame. As compasses are sensitive to their magnetic environment, they must be calibrated in the configuration in which they will be used. A calibration platform for magnetic compasses and tilt sensors was built, based on a method developed in 2007, to correct angular errors and guarantee a measurement uncertainty for instruments mounted in mooring cages. As mooring cages can weigh up to 800 kg, it was necessary to find a suitable place to set up this platform, map the magnetic fields in this area and dimension the platform to withstand these loads. It was calibrated using a GPS positioning technique. The platform has a table that can be tilted to calibrate the tilt sensors. The measurement uncertainty of the system was evaluated. Sinusoidal corrections based on the anomalies created by soft and hard magnetic materials were tested, as well as manufacturers’ calibration methods.
Optomechanical design of near-null subaperture test system based on counter-rotating CGH plates
NASA Astrophysics Data System (ADS)
Li, Yepeng; Chen, Shanyong; Song, Bing; Li, Shengyi
2014-09-01
In off-axis subapertures of most convex aspheres, astigmatism and coma dominate the aberrations with approximately quadratic and linear increase as the off-axis distance increases. A pair of counter-rotating computer generated hologram (CGH) plates is proposed to generate variable amount of Zernike terms Z4 and Z6, correcting most of the astigmatism and coma for subapertures located at different positions on surfaces of various aspheric shapes. The residual subaperture aberrations are then reduced within the vertical range of measurement of the interferometer, which enables near-null test of aspheres flexibly. The alignment tolerances for the near-null optics are given with optomechanical analysis. Accordingly a novel design for mounting and aligning the CGH plates is proposed which employs three concentric rigid rings. The CGH plate is mounted in the inner ring which is supported by two couples of ball-end screws in connection with the middle ring. The CGH plate along with the inner ring is hence able to be translated in X-axis and tipped by adjusting the screws. Similarly the middle ring is able to be translated in Y-axis and tilted by another two couples of screws orthogonally arranged and connected to the outer ring. This design is featured by the large center-through hole, compact size and capability of four degrees-of-freedom alignment (lateral shift and tip-tilt). It reduces the height measured in the direction of optical axis as much as possible, which is particularly advantageous for near-null test of convex aspheres. The CGH mounts are then mounted on a pair of center-through tables realizing counter-rotation. Alignment of the interferometer, the CGHs, the tables and the test surface is also discussed with a reasonable layout of the whole test system. The interferometer and the near-null optics are translated by a three-axis stage while the test mirror is rotated and tilted by two rotary tables. Experimental results are finally given to show the near-null subaperture test capability of the system for a convex even asphere.
2016-07-01
bias and scale factor tests. By testing state-of-the-art gyroscopes, the effect of input rate stability and accuracy may be examined. Based on the...tumble test or bias analysis at a tilted position to remove the effect of Earth’s rotation in the scale factor test • A rate table with better rate...format guide and test procedure for coriolis vibratory gyros. Piscataway (NJ): IEEE; 2004 Dec. 3. Maio A, Smith G, Knight R, Nothwang W, Conroy J
Aust, Hansjoerg; Koehler, Sigmund; Kuehnert, Maritta; Wiesmann, Thomas
2016-08-01
Left lateral table tilt of 15° to 30° is recommended for cesarean section, although little is known about the practical problems of its implementation. This study examines these issues from the perspective of anesthesiologists, obstetricians, theater nurses, and patients. Initially, the tilt was set by visual estimation in 100 women and checked by inclinometer afterwards. Observational survey. One hundred women undergoing primary cesarean section. The anesthesiologist's initial estimated tilt setting was documented, then patient comfort and obstetrician's needs were assessed at 15°, and the tilt was adjusted accordingly. Problems were identified, and possible solutions were introduced. The effects of our solutions were reevaluated after 12months. Despite appropriate training, too little tilt was achieved in most cases. Even with objective inclinometry, complaints by patients, obstetricians, and theater nurses made physicians reluctant to press for 15° tilt. Better compliance was achieved by the introduction of a 2-step tilt procedure, side bar mounting, and inclinometry. After 12months, 96% of anesthesiologists were using the inclinometer to set at least 10°. Most observed an improvement in patient care. Implementation of 10° to 15° tilt requires objective inclinometry. It allows tilt adjustment to be made by interdisciplinary staff in greater confidence that patient comfort and surgical conditions will not be impaired. Strategies to reduce discomfort are presented in this article. Copyright © 2016 Elsevier Inc. All rights reserved.
Efficacy of tilt training in patients with vasovagal syncope.
Gajek, Jacek; Zyśko, Dorota; Mazurek, Walentyna
2006-06-01
Besides pharmacological therapy and pacemaker implantation, tilt training is a promising method of treatment in patients with vasovagal syncope (VVS). Tilt training is usually offered to patients with malignant or recurrent VVS which impairs their quality of life and carries a risk of injury. To assess the efficacy of tilt training in patients with VVS. The study group consisted of 40 patients (29 females, 11 males, aged 36.6+/-14 years, range 18-57 years) who underwent tilt training using tilt table testing according to the Westminster protocol. The mean number of syncopal episodes prior to the initiation of tilt training was 6.5+/-4.9 (range 0-20); 3 patients had a history of very frequent faints. According to the VASIS classification, type I VVS (mixed) was diagnosed in 17 patients, type II (cardioinhibitory) in 22 subjects, and type III (vasodepressive) in one patient. Mean follow-up duration was 35.1+/-13.5 months. The control group, which did not undergo the tilt testing programme, consisted of 29 patients with VVS (25 females, 4 males, mean age 44.2+/-15.0 years) who had a mean of 3.3+/-3.2 (range 0-12) syncopal episodes in the past (p <0.05 vs study group); 6 of these patients had only pre-syncopal episodes. Type I VVS was diagnosed in 23 controls and type II VVS in 6 control subjects (syncope occurred during the passive phase of tilt testing in 7 subjects, whereas the remaining 22 fainted during NTG infusion). Of the patients from the study group, 3 underwent pacemaker implantation at the time of the initiation of tilt training. At the end of follow-up, 31 (77.5%) patients remained free from syncope recurrences, 5 had syncopal episodes during the initial phase of tilt training, whereas the remaining 4 continued to suffer from syncopal episodes. Out of 3 patients with presyncope, 2 had no syncope recurrences whereas 1 patient continued to have presyncopal attacks. Out of 3 patients with pacemakers, 1 reported activation of pacing in the interventional mode. During the follow-up period, in 5 patients from the study group the diagnosis of VVS was not confirmed and another condition was diagnosed. In the control group, syncope recurrences occurred in 13 (44.5%) patients (p <0.05 vs study group). In patients with VVS, tilt training is effective in the majority of patients. Syncopal or presyncopal episodes and positive results of tilt testing take place more frequently in the early rather than in the late phase of training. Cessation of tilt training causes a recurrence of positive results of tilt testing in spite of the lack of spontaneous syncopal episodes. During long-term observation, a proper diagnosis, different from VVS, can be established in some patients.
Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities
NASA Astrophysics Data System (ADS)
Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.
2011-12-01
Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For individual rocks the uncertainties may be reduced with more extensive study. The one case (*) where tilt-testing differs materially from 3-D is because an irregular base on the rock allowed the rock to begin to tilt at a lower angle onto a second rocking point with higher alpha. 2-D methods perform well enough to use as a screening method for the larger archive, and reserve the more accurate photographic analyses for the rocks deemed most important. The table below gives a list of the tan alpha data:
Tilt vs. NDT Tan(alpha) values
Self-Organization of Blood Pressure Regulation: Experimental Evidence
Fortrat, Jacques-Olivier; Levrard, Thibaud; Courcinous, Sandrine; Victor, Jacques
2016-01-01
Blood pressure regulation is a prime example of homeostatic regulation. However, some characteristics of the cardiovascular system better match a non-linear self-organized system than a homeostatic one. To determine whether blood pressure regulation is self-organized, we repeated the seminal demonstration of self-organized control of movement, but applied it to the cardiovascular system. We looked for two distinctive features peculiar to self-organization: non-equilibrium phase transitions and hysteresis in their occurrence when the system is challenged. We challenged the cardiovascular system by means of slow, 20-min Tilt-Up and Tilt-Down tilt table tests in random order. We continuously determined the phase between oscillations at the breathing frequency of Total Peripheral Resistances and Heart Rate Variability by means of cross-spectral analysis. We looked for a significant phase drift during these procedures, which signed a non-equilibrium phase transition. We determined at which head-up tilt angle it occurred. We checked that this angle was significantly different between Tilt-Up and Tilt-Down to demonstrate hysteresis. We observed a significant non-equilibrium phase transition in nine healthy volunteers out of 11 with significant hysteresis (48.1 ± 7.5° and 21.8 ± 3.9° during Tilt-Up and Tilt-Down, respectively, p < 0.05). Our study shows experimental evidence of self-organized short-term blood pressure regulation. It provides new insights into blood pressure regulation and its related disorders. PMID:27065880
2005-04-10
European Space Agency astronaut Roberto Vittori, of Italy, left, and Expedition 11 Commander Sergei Krikalev participate in tilt table tests, Sunday, April 10, 2005, so technicians can collect pre-launch data on the state of their equilibrium prior to the April 15 launch to the International Space Station with Flight Engineer John Phillips in Baikonur, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)
Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena
2017-01-01
Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE) mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation)], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a) whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b) whether changing the PE frequency (i.e., stepping speed) influences the PE effect on the cardiovascular system, (c) whether PE could prevent orthostatic hypotension, and finally, (d) whether PE effect is consistent from day to day. Methods: Heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) in response to PE at two different tilt angles (α = 20°, 60°) with three different PE frequencies (i.e., 0, 24, and 48 steps per minute) of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation)] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements. Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a) Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b) The effect of PE was not influenced by its speed. (c) Neither during head-up tilt alone nor in combination with PE did participants experience orthostatic hypotension. (d) The measurement day was not a statistically significant factor regarding the effects of verticalization and PE on the cardiovascular response. Conclusion: We provide evidence that PE can increase steady-state values of sBP and dBP in neurological patients during head-up tilt. Similar to healthy subjects the effect on sBP depends on the verticalization angle of the robot-assisted tilt table. PE might have the potential to prevent orthostatic hypotension, but as the amount of drop in BP in response to head-up tilting was not leading to orthostatic hypotension in our patients, we could neither conclude nor reject such a preventive compensatory effect. Furthermore, we found that changing the PE speed does not influence the steady-state cardiovascular response. PMID:28626427
Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena
2017-01-01
Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE) mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation)], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a) whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b) whether changing the PE frequency (i.e., stepping speed) influences the PE effect on the cardiovascular system, (c) whether PE could prevent orthostatic hypotension, and finally, (d) whether PE effect is consistent from day to day. Methods: Heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) in response to PE at two different tilt angles (α = 20°, 60°) with three different PE frequencies (i.e., 0, 24, and 48 steps per minute) of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation)] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements. Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a) Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b) The effect of PE was not influenced by its speed. (c) Neither during head-up tilt alone nor in combination with PE did participants experience orthostatic hypotension. (d) The measurement day was not a statistically significant factor regarding the effects of verticalization and PE on the cardiovascular response. Conclusion: We provide evidence that PE can increase steady-state values of sBP and dBP in neurological patients during head-up tilt. Similar to healthy subjects the effect on sBP depends on the verticalization angle of the robot-assisted tilt table. PE might have the potential to prevent orthostatic hypotension, but as the amount of drop in BP in response to head-up tilting was not leading to orthostatic hypotension in our patients, we could neither conclude nor reject such a preventive compensatory effect. Furthermore, we found that changing the PE speed does not influence the steady-state cardiovascular response.
NASA Technical Reports Server (NTRS)
Klein, K. E.; Backhausen, F.; Bruner, H.; Eichhorn, J.; Jovy, D.; Schotte, J.; Vogt, L.; Wegman, H. M.
1980-01-01
A group of 12 highly trained athletes and a group of 12untrained students were subjected to passive changes of position on a tilt table and positive accelerations in a centrifuge. During a 20 min tilt, including two additional respiratory maneuvers, the number of faints and average cardiovascular responses did not differ significantly between the groups. During linear increase of acceleration, the average blackout level was almost identical in both groups. Statistically significant coefficients of product-moment correlation for various relations were obtained. The coefficient of multiple determination computed for the dependence of acceleration tolerance on heart-eye distance and systolic blood pressure at rest allows the explanation of almost 50% of the variation of acceleration tolerance. The maximum oxygen uptake showed the expected significant correlation to the heart rate at rest, but not the acceleration tolerance, or to the cardiovascular responses to tilting.
2000-03-01
oscillations of the ecliptic , and the planetary tilt-e ect. The agreement of the new coecients of Souchay & Kinoshita (1996, 1997) with those of Hartmann & So... obliquity are shown in Tables 1 and 2. Table 1. Principal terms for quasidiurnal nutations in longitude and obliquity for the gure axis. The unit is as...Argument Period Longitude ( ) Obliquity (") lM lS F D sin cos sin cos 1 0 0 1 0 1 0.96215 -38.2313 -4.6980 -1.8567 15.1063 1 0 0 -1 0 -1
Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics
NASA Astrophysics Data System (ADS)
Xiong, Ling; Luo, Xiao; Liu, Zhenyu; Wang, Xiaokun; Hu, Haixiang; Zhang, Feng; Zheng, Ligong; Zhang, Xuejun
2016-07-01
The swing arm profilometer (SAP) has been playing a very important role in testing large aspheric optics. As one of most significant error sources that affects the test accuracy, misalignment error leads to low-order errors such as aspherical aberrations and coma apart from power. In order to analyze the effect of misalignment errors, the relation between alignment parameters and test results of axisymmetric optics is presented. Analytical solutions of SAP system errors from tested mirror misalignment, arm length L deviation, tilt-angle θ deviation, air-table spin error, and air-table misalignment are derived, respectively; and misalignment tolerance is given to guide surface measurement. In addition, experiments on a 2-m diameter parabolic mirror are demonstrated to verify the model; according to the error budget, we achieve the SAP test for low-order errors except power with accuracy of 0.1 μm root-mean-square.
Executive function on the 16-day of bed rest in young healthy men
NASA Astrophysics Data System (ADS)
Ishizaki, Yuko; Fukuoka, Hideoki; Tanaka, Hidetaka; Ishizaki, Tatsuro; Fujii, Yuri; Hattori-Uchida, Yuko; Nakamura, Minako; Ohkawa, Kaoru; Kobayashi, Hodaka; Taniuchi, Shoichiro; Kaneko, Kazunari
2009-05-01
Microgravity due to prolonged bed rest may cause changes in cerebral circulation, which is related to brain function. We evaluate the effect of simulated microgravity due to a 6° head-down tilt bed rest experiment on executive function among 12 healthy young men. Four kinds of psychoneurological tests—the table tapping test, the trail making test, the pointing test and losing at rock-paper-scissors—were performed on the baseline and on day 16 of the experiment. There was no significant difference in the results between the baseline and day 16 on all tests, which indicated that executive function was not impaired by the 16-day 6° head-down tilting bed rest. However, we cannot conclude that microgravity did not affect executive function because of the possible contribution of the following factors: (1) the timing of tests, (2) the learning effect, or (3) changes in psychophysiology that were too small to affect higher brain function.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Fiedler, James; Lee, Stuart M. C.; Koslovsky, Matthew D.; Stenger, Michael B.; Platts, Steven H.
2018-01-01
Head-up tilt (HUT) tests often are used in research to measure orthostatic intolerance (OI) (inability to appropriately control blood pressure while upright) in clinical populations and otherwise healthy individuals after interventions. Post-space flight orthostatic intolerance is a well-known phenomenon, and countermeasures to its development has been an active area of research at NASA. In the NASA HUT protocol, subjects lie horizontally on an automatic tilt table for baseline measurements before being raised to 80deg head-up tilt for a defined period of time or until signs or symptoms of presyncope ensues (light-headedness, nausea, dizziness, sweating, weakness or fainting). Multiple measures are collected to evaluate the cardiovascular system's ability to respond appropriately to the orthostatic challenge. However if the intended duration of the HUT is short, the ability to detect changes in OI due to an intervention or its prevention by a countermeasure may be limited by a small number of failures to permit comparisons based on survival time alone. Thus, the time-trajectory of the cardiovascular data becomes an important additional source of information. In particular, we will show how various measures of trajectory variability can effectively augment survival analysis for the assessment of OI in a joint model when high censoring rates are present.
Platform for Testing Robotic Vehicles on Simulated Terrain
NASA Technical Reports Server (NTRS)
Lindemann, Randel
2006-01-01
The variable terrain tilt platform (VTTP) is a means of providing simulated terrain for mobility testing of engineering models of the Mars Exploration Rovers. The VTTP could also be used for testing the ability of other robotic land vehicles (and small vehicles in general) to move across terrain under diverse conditions of slope and surface texture, and in the presence of obstacles of various sizes and shapes. The VTTP consists mostly of a 16-ft-(4.88-m)-square tilt table. The tilt can be adjusted to any angle between 0 (horizontal) and 25 . The test surface of the table can be left bare; can be covered with hard, high-friction material; or can be covered with sand, gravel, and/or other ground-simulating material or combination of materials to a thickness of as much as 6 in. (approx. 15 cm). Models of rocks, trenches, and other obstacles can be placed on the simulated terrain. For example, for one of the Mars- Rover tests, a high-friction mat was attached to the platform, then a 6-in.- ( 15 cm) deep layer of dry, loose beach sand was deposited on the mat. The choice of these two driving surface materials was meant to bound the range of variability of terrain that the rover was expected to encounter on the Martian surface. At each of the different angles at which tests were performed, for some of the tests, rocklike concrete obstacles ranging in height from 10 to 25 cm were placed in the path of the rover (see figure). The development of the VTTP was accompanied by development of a methodology of testing to characterize the performance and modes of failure of a vehicle under test. In addition to variations in slope, ground material, and obstacles, testing typically includes driving up-slope, down-slope, cross-slope, and at intermediate angles relative to slope. Testing includes recording of drive-motor currents, wheel speeds, articulation of suspension mechanisms, and the actual path of the vehicle over the simulated terrain. The collected data can be used to compute curves that summarize torque, speed, power-demand, and slip characteristics of wheels during the traverse.
Postural responses of head and foot cutaneous microvascular flow and their sensitivity to bed rest
NASA Technical Reports Server (NTRS)
Aratow, Michael; Hargens, Alan R.; Meyer, J.-UWE; Arnaud, Sara B.
1991-01-01
To explore the mechanism for facial puffiness, headache, and nasal congestion associated with microgravity and cephalad fluid shifts, the postural responses of the cutaneous microcirculation (CMC) in the forehead and dorsum of the foot of eight healthy men were studied by changing body position on a tilt table and measuring blood flows with a laser Doppler flowmeter. Increasing arterial pressure in the feet by moving from a -6-deg head-down tilt to a 60-deg head-up posture decreased foot CMC by 46.5 + or - 12.0 percent. Raising arterial pressure in the head increased forehead CMC by 25.5 + or - 0.7 percent (p less than 0.05). To investigate the possibility that these opposite responses could be modified by simulated microgravity, tilt test were repeated after 7 d of -6-deg head-down-tilt bed rest. The responses were not significantly different from those recorded before bed rest. Therefore, CMC in the feet is well regulated to prevent edema when shifting to an upright position, whereas there is less regulation in the head CMC.
Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles.
Young, Justin G; Trudeau, Matthieu; Odell, Dan; Marinelli, Kim; Dennerlein, Jack T
2012-01-01
The aim of this study was to determine how head and neck postures vary when using two media tablet (slate) computers in four common user configurations. Fifteen experienced media tablet users completed a set of simulated tasks with two media tablets in four typical user configurations. The four configurations were: on the lap and held with the user's hands, on the lap and in a case, on a table and in a case, and on a table and in a case set at a high angle for watching movies. An infra-red LED marker based motion analysis system measured head/neck postures. Head and neck flexion significantly varied across the four configurations and across the two tablets tested. Head and neck flexion angles during tablet use were greater, in general, than angles previously reported for desktop and notebook computing. Postural differences between tablets were driven by case designs, which provided significantly different tilt angles, while postural differences between configurations were driven by gaze and viewing angles. Head and neck posture during tablet computing can be improved by placing the tablet higher to avoid low gaze angles (i.e. on a table rather than on the lap) and through the use of a case that provides optimal viewing angles.
Bhatt, Siddhartha; Foote, Stephen; Smith, Andrew; Butler, Paul; Steidl-Nichols, Jill
2015-01-01
Drug induced orthostatic hypotension (OH) is an important clinical concern and can be an unexpected hurdle during drug development. OH is defined as an abnormal decrease in blood pressure (BP) triggered by a rapid postural change. The sympathetic nervous system is critical for controlling normal cardiovascular function and compensatory responses to changes in posture. Thus, OH can also serve as a surrogate indicator of sympathetic dysfunction. However, preclinical conscious models for investigating risk of OH and/or sympathetic dysfunction are lacking. Herein, we describe a conscious nonhuman primate (NHP) model which mimics the widely used clinical tilt table test for OH. Male, Cynomolgus NHPs (n = 7-8) implanted with radio-telemetry transmitters were placed in modified tilt chairs in a supine position. Subsequently, a 90° head up tilt was performed for 3 min followed by return to the supine position. BP and heart rate were continuously monitored. Test compounds were administered either intravenously or via oral gavage in a crossover design, with blood samples collected at the end of the each tilt to assess total drug concentrations. Tilt responses were assessed following treatment with positive control compounds that cause sympathetic dysfunction; hexamethonium (ganglionic blocker) and prazosin (alpha-1 adrenergic receptor antagonist). Both compounds induced marked OH as evidenced by robust and sustained BP reduction in response to a head up tilt (decrease of 25-35 mmHg for hexamethonium, decrease of 21-44 mmHg for prazosin). OH incidence rates increased in a dose-dependent manner. OH incidences following treatment with minoxidil (vasodilator) were markedly lower to those observed with hexamethonium and prazosin indicating the role of sympathetic dysfunction in causing OH. These data demonstrate that the NHP tilt test is a valuable model for investigating OH risk. This model fills an important preclinical gap for assessing such a safety concern and can be applied to programs where a sympathetic deficit and/or OH are anticipated or clinically observed. Copyright © 2015 Elsevier Inc. All rights reserved.
Lower body negative pressure chamber: Design and specifications for tilt-table mounting
NASA Technical Reports Server (NTRS)
Salamacha, Laura; Gundo, D.; Mulenburg, G. M.; Greenleaf, J. E.
1995-01-01
Specifications for a lower body negative pressure chamber for mounting on a tilting table are presented. The main plate is made from HEXEL honeycomb board 1.0 inch thick. The plate, supported at three edges, will be subjected to a uniform pressure differential of -4.7 lb/sq in. A semi-cylindrical Plexiglass top (chamber) is attached to the main plate; the pressure within the chamber will be about 10lb/sq in during operation. The stresses incurred by the main plate with this partial vacuum were calculated. All linear dimensions are in inches.
Ho, Natalie; Shields, Robert W.; Cremer, Paul; Rodriguez, L. Leonardo
2018-01-01
A 36-year-old female with symptoms of orthostatic intolerance and syncope was diagnosed with vasovagal syncope on a tilt table test and with postural tachycardia syndrome (POTS) after a repeat tilt table test. However, an echocardiogram at our institution revealed obstructive cardiomyopathy without severe septal hypertrophy, with a striking increase in left ventricular outflow tract gradient from 7 mmHg at rest to 75 mmHg during Valsalva, with a septal thickness of only 1.3 cm. Cardiac MRI showed an apically displaced multiheaded posteromedial papillary muscle with suggestion of aberrant chordal attachments to the anterior mitral leaflet contributing to systolic anterior motion of the mitral valve. She underwent surgery with reorientation of the posterior medial papillary muscle head, resection of the tethering secondary chordae to the A1 segment of the mitral valve, chordal shortening and tacking of the chordae to the A1 and A2 segments of the mitral valve, and gentle septal myectomy. After surgery, she had significant improvement in her prior symptoms. To our knowledge, this is the first reported case of obstructive cardiomyopathy without severe septal hypertrophy with abnormalities in papillary muscle and chordal attachment, in a patient diagnosed with vasovagal syncope and POTS. PMID:29850268
Mayuga, Kenneth A; Ho, Natalie; Shields, Robert W; Cremer, Paul; Rodriguez, L Leonardo
2018-01-01
A 36-year-old female with symptoms of orthostatic intolerance and syncope was diagnosed with vasovagal syncope on a tilt table test and with postural tachycardia syndrome (POTS) after a repeat tilt table test. However, an echocardiogram at our institution revealed obstructive cardiomyopathy without severe septal hypertrophy, with a striking increase in left ventricular outflow tract gradient from 7 mmHg at rest to 75 mmHg during Valsalva, with a septal thickness of only 1.3 cm. Cardiac MRI showed an apically displaced multiheaded posteromedial papillary muscle with suggestion of aberrant chordal attachments to the anterior mitral leaflet contributing to systolic anterior motion of the mitral valve. She underwent surgery with reorientation of the posterior medial papillary muscle head, resection of the tethering secondary chordae to the A1 segment of the mitral valve, chordal shortening and tacking of the chordae to the A1 and A2 segments of the mitral valve, and gentle septal myectomy. After surgery, she had significant improvement in her prior symptoms. To our knowledge, this is the first reported case of obstructive cardiomyopathy without severe septal hypertrophy with abnormalities in papillary muscle and chordal attachment, in a patient diagnosed with vasovagal syncope and POTS.
[Treatment of recurrent neurocardiogenic syncope with cardiac inhibitors with ipratropium bromide].
Friederich, H-C; Michaelsen, J; Hesse, C; Schellberg, D; Schwab, M; Herzog, W
2004-06-01
Pharmacological approaches for the treatment of cardioinhibitory vasovagal syncope are controversially discussed in the literature. In acute treatment of neurocardiogenic syncope, anticholinergics (atropine) are used effectively. Randomised and placebo-controlled clinical trials evaluating the preventive significance of anticholinergic agents in the therapy of cardioinhibitory vasovagal syncope are still missing. We report the case of an 18-year-old male patient with recurrent convulsive, cardioinhibitory neurocardiogenic syncope. Vasovagal syncope occurred predominantly as centrally induced syncope triggered by negative emotions such as fear or by seeing blood. Under resting conditions, the patient revealed increased parasympathetic tone with nocturnal bradycardia of 38 beats/min. In the course of head-up tilt table testing a cardioinhibitory syncope with an asystolic pause of 10 seconds occurred without any prodromes after 10 minutes of upright positioning. In order to inhibit parasympathetic tone, medication with ipratropiumbromide was initiated. Time-variant analysis of heart rate variability (autoregressive model) during head-up tilt table testing showed under the medication with ipratropiumbromide a vagal mediated cardioinhibition to 56 beats/min, but no further sinus arrest. Throughout clinical follow-up of 6 months the patient remained syncope-free under the medication. The usefulness of ipratropiumbromide in inhibiting vagal mediated cardioinhibition will be discussed referring to the case report and to studies evaluating anticholinergic agents in the treatment of neurocardiogenic syncope.
Cardiovascular Assessment of Falls in Older People
Tan, Maw Pin; Kenny, Rose Anne
2006-01-01
Falls in older people can be caused by underlying cardiovascular disorders, either because of balance instability in persons with background gait and balance disorders, or because of amnesia for loss of consciousness during unwitnessed syncope. Pertinent investigations include a detailed history, 12-lead electrocardiography, lying and standing blood pressure, carotid sinus massage (CSM), head-up tilt, cardiac electrophysiological tests, and ambulatory blood pressure and heart rate monitoring, which includes external and internal cardiac monitoring. The presence of structural heart disease predicts an underlying cardiac cause. Conversely, the absence of either indicates that neurally mediated etiology is likely. CSM and tilt-table testing should be considered in patients with unexplained and recurrent falls. Holter monitoring over 24 hours has a low diagnostic yield. Early use of an implantable loop recorder may be more cost-effective. A dedicated investigation unit increases the likelihood of achieving positive diagnoses and significantly reduces hospital stay and health expenditure. PMID:18047258
Reliability of oscillometric central hemodynamic responses to an orthostatic challenge.
Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A
2015-08-01
Monitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (augmentation index) responses to a 5 min orthostatic challenge (modified tilt-table). Twenty healthy adults (26.4 y (SD 5.2), 55% F, 24.7 kg/m(2) (SD 3.8)) were tested on 3 different mornings in the fasted state, separated by a maximum of 7 days. Central hemodynamic variables were assessed on the left arm using an oscillometric device. Repeated measures analysis of variance indicated a significant main effect of the modified tilt-table for all central hemodynamic variables (P < 0.001). In response to the tilt, central diastolic pressure increased by 4.5 mmHg (CI: 2.6, 6.4), central systolic blood pressure increased by 2.3 (CI: 4.4, 0.16) mmHg, and augmentation index decreased by an absolute - 5.3%, (CI: -2.7, -7.9%). The intra-class correlation coefficient values for central diastolic pressure (0.83-0.86), central systolic blood pressure (0.80-0.87) and AIx (0.79-0.82) were above the 0.75 criterion in both the supine and tilted positions, indicating excellent between-day reliability. Central hemodynamic responses to an orthostatic challenge can be assessed with acceptable between-day reliability using oscillometric pulse wave analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Postural tachycardia in hypermobile Ehlers-Danlos syndrome: A distinct subtype?
Miglis, Mitchell G; Schultz, Brittany; Muppidi, Srikanth
2017-12-01
It is not clear if patients with postural tachycardia syndrome (POTS) and Ehlers-Danlos syndrome (hEDS) differ from patients with POTS due to other etiologies. We compared the results of autonomic testing and healthcare utilization in POTS patients with and without hEDS. Patients with POTS+hEDS (n=20) and POTS controls without hypermobility (n=20) were included in the study. All patients underwent autonomic testing, and the electronic medical records were reviewed to determine the number and types of medications patients were taking, as well as the number of outpatient, emergency department, and inpatient visits over the prior year. Patients with hEDS had twice as many outpatient visits (21 v. 10, p=0.012), were taking more prescription medications (8 vs. 5.5, p=0.030), and were more likely to see a pain physician (70% vs 25%, p=0.005). Autonomic testing demonstrated a slight reduction in heart rate variability and slightly lower blood pressures on tilt table testing in hEDS patients, however for most patients these variables remained within the range of normal. Orthostatic tachycardia on tilt table testing was greater in POTS controls (46bpm vs 39bpm, p=0.018). Abnormal QSweat responses were common in both groups (38% of POTS+hEDS and 36% of POTS controls). While autonomic testing results were not significantly different between groups, patients with POTS+hEDS took more medications and had greater markers of healthcare utilization, with chronic pain likely playing a prominent role. Copyright © 2017 Elsevier B.V. All rights reserved.
Parry, S; Richardson, D; O'Shea, D; Sen, B; Kenny, R
2000-01-01
OBJECTIVE—To assess the diagnostic value of supine and upright carotid sinus massage in elderly patients. DESIGN—Prospective controlled cohort study. SETTING—Three inner city accident and emergency departments and a dedicated syncope facility. PATIENTS—1375 consecutive patients aged > 55 years presenting with unexplained syncope and drop attacks; 25 healthy controls. INTERVENTIONS—Bilateral supine carotid sinus massage, repeated in the 70° head up tilt position if the initial supine test was not diagnostic of cardioinhibitory and mixed carotid sinus hypersensitivity. MAIN OUTCOME MEASURES—Diagnosis of cardioinhibitory or mixed carotid sinus hypersensitivity; clinical characteristics of supine v upright positive groups. RESULTS—226 patients were excluded for contraindications to carotid sinus massage. Of 1149 patients undergoing massage, 223 (19%) had cardioinhibitory or mixed carotid sinus hypersensitivity; 70 (31%) of these had a positive response to massage with head up tilt following negative supine massage (95% confidence interval, 25.3% to 37.5%). None of the healthy controls showed carotid sinus hypersensitivity on erect or supine massage. The initially positive supine test had 74% specificity and 100% sensitivity; these were both 100% for the upright positive test. The clinical characteristics of the supine v upright positive subgroups were similar. CONCLUSIONS—The diagnosis of carotid sinus hypersensitivity amenable to treatment by pacing may be missed in one third of cases if only supine massage is performed. Massage should be done routinely in the head up tilt position if the initial supine test is negative. Keywords: carotid sinus; tilt table testing; syncope; elderly patients PMID:10618329
Gaal, Peter S.; Ebejer, Lino P.; Kareis, James H.; Schlegel, Gary L.
1991-01-01
A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.
Visual- and Vestibular-Autonomic Influence on Short-Term Cardiovascular Regulatory Mechanisms
NASA Technical Reports Server (NTRS)
Mullen, Thomas J.; Ramsdell, Craig D.
1999-01-01
This synergy project was a one-year effort conducted cooperatively by members of the NSBRI Cardiovascular Alterations and Neurovestibular Adaptation Teams in collaboration with NASA Johnson Space Center (JSC) colleagues. The objective of this study was to evaluate visual autonomic interactions on short-term cardiovascular regulatory mechanisms. Based on established visual-vestibular and vestibular-autonomic shared neural pathways, we hypothesized that visually induced changes in orientation will trigger autonomic cardiovascular reflexes. A second objective was to compare baroreflex changes during postural changes as measured with the new Cardiovascular System Identification (CSI) technique with those measured using a neck barocuff. While the neck barocuff stimulates only the carotid baroreceptors, CSI provides a measure of overall baroreflex responsiveness. This study involved a repeated measures design with 16 healthy human subjects (8 M, 8 F) to examine cardiovascular regulatory responses during actual and virtual head-upright tilts. Baroreflex sensitivity was first evaluated with subjects in supine and upright positions during actual tilt-table testing using both neck barocuff and CSI methods. The responses to actual tilts during this first session were then compared to responses during visually induced tilt and/or rotation obtained during a second session.
2018-03-15
jsc2018e025556 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 55 crewmembers Drew Feustel of NASA (top) and Ricky Arnold of NASA (bottom) conduct tests of their vestibular systems on tilt tables March 15 as part of pre-launch activities. Along with Oleg Artemyev of Roscosmos, they will launch March 21 on the Soyuz MS-08 spacecraft from the Baikonur Cosmodrome on a five-month mission to the International Space Station...NASA/Victor Zelentsov.
[Atypical sinus node dysfunction. Usefulness of implantable Holter. A case report].
Martí Almor, J; Delclòs Urgell, J; Bruguera Cortada, J
2001-12-01
We present an 84 year-old female patient with repeated syncopes/presyncopes in the last nine years. All diagnosis tests were negative, including ECG, 24-hour Holter, tilt table test and EP study. Therefore, a subcutaneous insertable loop recorder was implanted (Reveal). The recording of three episodes showed the association of presyncope with the onset of atrial fibrilation and, in two syncopes, with an atrial pause between AF episodes. Probably an abnormal prolonged sinus node recovery time (more than 6 s) allowed AF to restart before the sinus rhythm.
NASA Technical Reports Server (NTRS)
Marshburn, J. P.
1972-01-01
The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.
2014-05-21
11-57-29-2: At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 40/41 Flight Engineer Alexander Gerst of the European Space Agency takes a turn on a tilt table May 21 as he tests his vestibular system during pre-launch medical tests. Gerst, Soyuz Commander Max Suraev of the Russian Federal Space Agency (Roscosmos) and Flight Engineer Reid Wiseman of NASA will launch on May 29, Kazakh time, on the Soyuz TMA-13M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission on the International Space Station. NASA/Victor Zelentsov
Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.
2004-01-01
The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor inputs (e.g., somatosensory) or other circulatory reflex mechanisms.
Effect of lower-body positive pressure on postural fluid shifts in men
NASA Technical Reports Server (NTRS)
Hinghofer-Szalkay, H.; Kravik, S. E.; Greenleaf, J. E.
1988-01-01
The effect of the lower-body positive pressure (LBPP) on the orthostatic fluid and protein shifts were investigated in five men during combined tilt-table/antigravity suit inflation and deflation experiments. Changes in the mass densities of venous blood and plasma were measured and the values were used to calculate the densities of erythrocytes, whole-body blood, and shifted fluid. It was found that the application of 60 mm Hg LBPP during 60-deg head-up tilt prevented about half of the postural hemoconcentration occurring during passive head-up tilt.
[Verticalization as a factor of early rehabilitation in the patients with a spinal cord injury].
Makarova, M R; Romashin, O V
2013-01-01
The number of days from the spinal cord injury to rehabilitation of the victim has significantly decreased. It means that the rehabilitative treatment begins when the risk of secondary trophic lesions, cardiovascular and respiratory complications is especially high. Training with the use of a tilt-table equipped with the dynamic foot support is considered to be the highly effective method for the prevention or reduction of orthostatic hypotension, impaired ventilation, and pressure sores. This approach makes it possible to influence the patient's motivation for further recovery, decrease the duration of hospitalization in the intensive therapy ward, accelerate adaptation of the patients to the vertical posture, decrease hypotension and hypoxia, reduce to a minimum the occurrence of secondary neurologic disorders. Dynamic tilt-table training is considered to be a more effective modality for the adaptation of the patient to the vertical position than standing with the assistance of a simple table.
2014-11-18
6103: At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 42/43 crewmember Samantha Cristoforetti of the European Space Agency tests her vestibular system on a tilt table Nov. 18 as part of pre-launch training. Cristoforetti, Terry Virts of NASA and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch Nov. 24, Kazakh time, from the Baikonur Cosmodrome in the Soyuz TMA-15M spacecraft for a 5 ½ month mission on the International Space Station. NASA/Sergei Fyodorov
Semler, O; Fricke, O; Vezyroglou, K; Stark, C; Schoenau, E
2007-01-01
The present article is a preliminary report on the effect of Whole Body Vibration (WBV) on the mobility in long-term immobilized children and adolescents. WBV was applied to 6 children and adolescents (diagnoses: osteogenesis imperfecta, N=4; cerebral palsy, N=1; dysraphic defect of the lumbar spine, N=1) over a time period of 6 months. WBV was applied by a vibrating platform constructed on a tilt-table. The treatment effect was measured by alternations of the tilt-angle of the table and with the "Brief assessment of motor function" (BAMF). All 6 individuals were characterized by an improved mobility, which was documented by an increased tilt-angle or an improved BAMF-score. The authors concluded WBV might be a promising approach to improve mobility in severely motor-impaired children and adolescents. Therefore, the Cologne Standing-and-Walking- Trainer powered by Galileo is a suitable therapeutic device to apply WBV in immobilized children and adolescents.
Leung, Joan; Harvey, Lisa A; Moseley, Anne M; Whiteside, Bhavini; Simpson, Melissa; Stroud, Katarina
2014-12-01
Is a combination of standing, electrical stimulation and splinting more effective than standing alone for the management of ankle contractures after severe brain injury? A multi-centre randomised trial with concealed allocation, assessor blinding and intention-to-treat analysis. Thirty-six adults with severe traumatic brain injury and ankle plantarflexion contractures. All participants underwent a 6-week program. The experimental group received tilt table standing, electrical stimulation and ankle splinting. The control group received tilt table standing alone. The primary outcome was passive ankle dorsiflexion with a 12Nm torque. Secondary outcomes included: passive dorsiflexion with lower torques (3, 5, 7 and 9Nm); spasticity; the walking item of the Functional Independence Measure; walking speed; global perceived effect of treatment; and perceived treatment credibility. OUTCOME MEASURES were taken at baseline (Week 0), end of intervention (Week 6), and follow-up (Week 10). The mean between-group differences (95% CI) for passive ankle dorsiflexion at Week 6 and Week 10 were -3 degrees (-8 to 2) and -1 degrees (-6 to 4), respectively, in favour of the control group. There was a small mean reduction of 1 point in spasticity at Week 6 (95% CI 0.1 to 1.8) in favour of the experimental group, but this effect disappeared at Week 10. There were no differences for other secondary outcome measures except the physiotherapists' perceived treatment credibility. Tilt table standing with electrical stimulation and splinting is not better than tilt table standing alone for the management of ankle contractures after severe brain injury. ACTRN12608000637347. [Leung J, Harvey LA, Moseley AM, Whiteside B, Simpson M, Stroud K (2014) Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial.Journal of Physiotherapy60: 201-208]. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
2017-04-13
jsc2017e043074 (April 13, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 51 crewmember Jack Fischer of NASA conducts a session on a tilt table to test his vestibular system April 13 as part of his pre-launch activities. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will liftoff April 20 from the Baikonur Cosmodrome on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. NASA/Victor Zelentsov
Morelli, Luca; Palmeri, Matteo; Simoncini, Tommaso; Cela, Vito; Perutelli, Alessandra; Selli, Cesare; Buccianti, Piero; Francesca, Francesco; Cecchi, Massimo; Zirafa, Cristina; Bastiani, Luca; Cuschieri, Alfred; Melfi, Franca
2018-03-30
The da Vinci® Table Motion (dVTM) comprises a combination of a unique operating table (Trumpf Medical™ TruSystem® 7000dV) capable of isocenter motion connected wirelessly with the da Vinci Xi® robotic platform, thereby enabling patients to be repositioned without removal of instruments and or undocking the robot. Between May 2015 to October 2015, the first human use of dVTM was carried out in this prospective, single-arm, post-market study in the EU, for which 40 patients from general surgery (GS), urology (U), or gynecology (G) were enrolled prospectively. Primary endpoints of the study were dVTM feasibility, efficacy, and safety. Surgeons from the three specialties obtained targeting success and the required table positioning in all cases. Table movement/repositioning was necessary to gain exposure of the operating field in 106/116 table moves (91.3%), change target in 2/116 table moves (1.7%), achieve hemodynamic relief in 4/116 table moves (3.5%), and improve external access for tumor removal in 4/116 table moves (3.5%). There was a significantly higher use of tilt and tilt plus Trendelenburg in GS group (GS vs. U p = 0.055 and GS vs. G p = 0.054). There were no dVTM safety-related or adverse events. The dVTM with TruSystem 7000dV operating table in wireless communication with the da Vinci Xi is a perfectly safe and effective synergistic combination, which allows repositioning of the patient whenever needed without imposing any delay in the execution of the operation. Moreover, it is helpful in avoiding extreme positions and enables the anesthesiologist to provide immediate and effective hemodynamic relief to the patient when needed.
Endurance exercise training in orthostatic intolerance: a randomized, controlled trial.
Winker, Robert; Barth, Alfred; Bidmon, Daniela; Ponocny, Ivo; Weber, Michael; Mayr, Otmar; Robertson, David; Diedrich, André; Maier, Richard; Pilger, Alex; Haber, Paul; Rüdiger, Hugo W
2005-03-01
Orthostatic intolerance is a syndrome characterized by chronic orthostatic symptoms of light-headedness, fatigue, nausea, orthostatic tachycardia, and aggravated norepinephrine levels while standing. The aim of this study was to assess the protective effect of exercise endurance training on orthostatic symptoms and to examine its usefulness in the treatment of orthostatic intolerance. 2768 military recruits were screened for orthostatic intolerance by questionnaire. Tilt-table testing identified 36 cases of orthostatic intolerance out of the 2768 soldiers. Subsequently, 31 of these subjects with orthostatic intolerance entered a randomized, controlled trial. The patients were allocated randomly to either a "training" (3 months jogging) or a "control" group. The influence of exercise training on orthostatic intolerance was assessed by determination of questionnaire scores and tilt-table testing before and after intervention. After training, only 6 individuals of 16 still had orthostatic intolerance compared with 10 of 11 in the control group. The Fisher exact test showed a highly significant difference in diagnosis between the 2 groups (P=0.008) at the end of the study. Analysis of the questionnaire-score showed significant interaction between time and group (P=0.001). The trained subjects showed an improvement in the average symptom score from 1.79+/-0.4 to 1.04+/-0.4, whereas the control subjects showed no significant change in average symptom score (2.09+/-0.6 and 2.14+/-0.5, respectively). Our data demonstrate that endurance exercise training leads to an improvement of symptoms in the majority of patients with orthostatic intolerance. Therefore, we suggest that endurance training should be considered in the treatment of orthostatic intolerance patients.
Rybicki, N.B.; Reel, J.T.; Ruhl, H.; Gammon, P.T.; Carter, Virginia; Lee, J.K.
1999-01-01
The U.S. Geological Survey is studying vegetative resistance to flow in the south Florida Everglades as part of a multidisciplinary effort to restore the South Florida Ecosystem. In order to test the flow resistance of sawgrass, one of the dominant species in the Everglades, uniform, dense stands of sawgrass were grown in a tilting flume at Stennis Space Center, Mississippi. Depth of water in the flume was controlled by adding or removing metal plates at the downstream end of the flume. A series of experiments were conducted at various flow depths, and the velocity, flow depth, and water-surface slope were measured. During each set of experiments, the sawgrass was sampled in layers from the sediment water interface for vegetative characteristics, biomass, and leaf area index. The results of the vegetation sampling are summarized in a series of tables.
Nakadate, S; Isshiki, M
1997-01-01
Real-time vibration measurement by a tilted holographic interferogram is presented that utilizes the real-time digital fringe processor of a video signal. Three intensity data sampled at every one-third of the fringe spacing of the tilted fringes are used to calculate the modulation term of the fringe that is a function of a vibration amplitude. A three-dimensional lookup table performs the calculation in a TV repetition rate to give a new fringe profile that contours the vibration amplitude. Vibration modes at the resonant frequencies of a flat speaker were displayed on a monitor as changing the exciting frequency of vibration.
Agents Overcoming Resource Independent Scaling Threats (AORIST)
2004-10-01
20 Table 8: Tilted Consumer Preferences Experiment (m=8, N=61, G=2, C=60, Mean over 13 experiments...probabilities. Non-uniform consumer preferences create a new potential for sub-optimal system performance and thus require an additional adaptive...distribu- tion of the capacities across the sup- plier population must match the non- uniform consumer preferences . The second plot in Table 8
Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors
NASA Technical Reports Server (NTRS)
1981-01-01
An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.
[Heart functions in monkeys during a 2-week antiorthostatic hypokinesia
NASA Technical Reports Server (NTRS)
Krotov, V. P.; Convertino, V.; Korol'kov, V. I.; Latham, R.; Trambovetskii, E. V.; Fanton, J.; Crisman, R.; Truzhennikov, A. N.; Evert, D.; Nosovskii, A. M.;
1996-01-01
Dynamics of the left heart ventricular muscle contractility and compliance was studied in 4 monkeys in the head down position (antiorthostatic hypokinesia) with the body angle 10 during 2 weeks. Functional tests on a tilt table and under two conditions of centrifuge rotation were performed prior to and after the antiorthostatic hypokinesia. No changes in the left heart ventricular muscle contractility was found. However, the sensitivity level of the baroreflex control decreased. Compliance of the left heart myocardial fibre increased in the first hours and days of the antiorthostatic hypokinesia.
Araújo, Marcelo A; Deschk, Maurício; Wagatsuma, Juliana T; Floriano, Beatriz P; Siqueira, Carlos E; Oliva, Valéria Nls; Santos, Paulo Sp
2017-07-01
To assess the cardiopulmonary effects caused by reverse Trendelenburg position (RTP) at 5° and 10° in sevoflurane-anesthetized yearling steers. Prospective, experimental study. Eight Holstein steers aged (mean ± standard deviation) 12 ± 2 months and weighing 145 ± 26 kg. In the first phase of the study, the individual minimum alveolar concentration (MAC) of sevoflurane was determined using electrical stimulation. In the second phase, the effects of RTP were assessed. The animals were anesthetized on three separate events separated by ≥7 days in an incomplete crossover design: control treatment using a table without tilt (RTP0); treatment with the table at 5° RTP (RTP5) and table tilted 10° RTP (RTP10). Subjects were physically restrained in dorsal recumbency on the table, which was already tilted according to each treatment. Anesthesia was induced with sevoflurane at 8% in 5 L minute -1 oxygen via face mask followed by maintenance with sevoflurane at 1.3 MAC and spontaneous breathing. Cardiopulmonary variables were obtained immediately after instrumentation (T 0 ) and then after 30, 60, 120 and 180 minutes (T 30 , T 60 , T 120 and T 180 , respectively). The mean sevoflurane MAC for the eight steers was 2.12 ± 0.31%. Cardiac output was lower at all time points and the systemic vascular resistance index was higher at T 120 and T 180 in RTP10 compared with RTP0. Oxygen consumption was lower at T 0 and at T 180 in RTP10 compared with RTP0 and at all time points except T 30 compared with RTP5. Oxygen extraction was lower at T 0 in RTP10 compared with RTP0 and RTP5, and at T 60 and T 180 compared with RTP5. RTP 5° and 10° did not improve ventilatory and oxygenation variables in sevoflurane-anesthetized steers when compared with no tilt, however the cardiovascular variables were adversely affected in RTP10. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.
Thoracoscopic sympathectomy increases efferent cardiac vagal activity and baroreceptor sensitivity.
Bygstad, Elisabeth; Terkelsen, Astrid J; Pilegaard, Hans K; Hansen, John; Mølgaard, Henning; Hjortdal, Vibeke E
2013-09-01
Thoracoscopic sympathectomy at levels T2 or T2-T3 is a treatment for focal hyperhidrosis and facial blushing. These levels of the sympathetic trunk innervate the heart, and consequently, the procedure is reported to change the heart rate variability due to changes in efferent cardiac autonomic activity. Our objective was to investigate the effects of thoracoscopic sympathectomy on global autonomic control, including baroreceptor sensitivity. Eight patients (6 F, median age 28 years [range 20-58 years]) were exposed to the tilt-table test and cardiopulmonary exercise test before, and 3 months after, thoracoscopic sympathectomy. Eight healthy age-, gender- and BMI-matched controls were used as controls and underwent the same tests once. During tilt-table testing electrocardiogram, blood pressure, impedance cardiography and respiration were measured continuously, and efferent cardiac autonomic balance was estimated. The heart rate measured during orthostatic stress test was lowered after thoracoscopic sympathectomy (between-group; P = 0.01) due to a change in autonomic tone, with increased vagal (high-frequency power n.u.; P = 0.001), and reduced sympathetic efferent cardiac activity (low-frequency power n.u.; P < 0.001). Baroreceptor sensitivity measured during rest was increased (26 ± 13 vs 44 ± 19 ms/mmHg; P = 0.01), and diastolic blood pressure reduced after surgery (P = 0.01). The increases in systolic blood pressure and the sympathetic marker CCV-LF in response to orthostatic stress were higher before sympathectomy, with almost no increases post-surgically (condition × group interaction; P = 0.01 and P = 0.001, respectively). We found no change in post-procedure exercise capacity, although patients had a lower peak VO2 and maximal cardiac index than controls. Thoracoscopic sympathectomy changes the autonomic tone towards increased vagal activity; this is potentially cardioprotective. To our knowledge, this is the first study to show increased baroreceptor sensitivity after thoracoscopic sympathectomy.
Tilt angles and positive response of head-up tilt test in children with orthostatic intolerance.
Lin, Jing; Wang, Yuli; Ochs, Todd; Tang, Chaoshu; Du, Junbao; Jin, Hongfang
2015-01-01
This study aimed at examining three tilt angle-based positive responses and the time to positive response in a head-up tilt test for children with orthostatic intolerance, and the psychological fear experienced at the three angles during head-up tilt test. A total of 174 children, including 76 boys and 98 girls, aged from 4 to 18 years old (mean 11.3±2.8 years old), with unexplained syncope, were randomly divided into three groups, to undergo head-up tilt test at the angles of 60°, 70° and 80°, respectively. The diagnostic rates and times were analysed, and Wong-Baker face pain rating scale was used to access the children's psychological fear. There were no significant differences in diagnostic rates of postural orthostatic tachycardia syndrome and vasovagal syncope at different tilt angles during the head-up tilt test (p>0.05). There was a significant difference, however, in the psychological fear at different tilt angles utilising the Kruskal-Wallis test (χ2=36.398, p<0.01). It was mildest at tilt angle 60° utilising the Kolmogorov-Smirnov test (p<0.01). A positive rank correlation was found between the psychological fear and the degree of tilt angle (r(s)=0.445, p<0.01). Positive response appearance time was 15.1±14.0 minutes at 60° for vasovagal syncope children. There was no significant difference in the time to positive response, at different tilt angles during the head-up tilt test for vasovagal syncope or for postural orthostatic tachycardia syndrome. Hence, it is suggested that a tilt angle of 60° and head-up tilt test time of 45 minutes should be suitable for children with vasovagal syncope.
2006-06-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the tilt table lowers the STEREO spacecraft "A." In this position, technicians can perform the final comprehensive performance test of the instruments, verifying the instrument is fully functional before flight. After a rotation, this configuration also allows deployment tests to be done on the solar arrays. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton
Syncope: causes, clinical evaluation, and current therapy.
Benditt, D G; Remole, S; Milstein, S; Bailin, S
1992-01-01
Syncope is a common clinical problem comprising the sudden loss of both consciousness and postural tone, with a subsequent spontaneous and relatively prompt recovery. Often it is difficult to differentiate a true syncopal spell from other conditions, such as seizure disorders, or from some simple accidents. Even more difficult is the identification of the cause of syncopal episodes. Nonetheless, establishing a definitive diagnosis ia an important task given the high risk of recurrent symptoms. Careful use of noninvasive and invasive cardiovascular studies (including electrophysiologic testing and tilt-table testing) along with selected hematologic, biochemical, and neurologic studies provides, in the majority of cases, the most effective strategy for obtaining a specific diagnosis and for directing therapy.
Wong, Brett J.; Sheriff, Don D.
2008-01-01
The “push-pull” effect denotes the reduced tolerance to +Gz (hypergravity) when +Gz stress is preceded by exposure to hypogravity, i.e., fractional, zero, or negative Gz. The purpose of this study was to test the hypothesis that an exaggerated, myogenically mediated rise in leg vascular conductance contributes to the push-pull effect, using heart level arterial blood pressure as a measure of G tolerance. The approach was to impose control (30 s of 30° head-up tilt) and push-pull (30 s of 30° head-up tilt immediately preceded by 10 s of −15° head-down tilt) gravitational stress after administration of hexamethonium (5 mg/kg) to inhibit autonomic ganglionic neurotransmission in seven dogs. Cardiac output or thigh level arterial pressure (myogenic stimulus) was maintained constant by computer-controlled ventricular pacing. The animals were sedated with acepromazine and lightly restrained in lateral recumbency on a tilt table. Following the onset of head-up tilt, the magnitude of the fall in heart level arterial pressure from baseline was −11.6 ± 2.9 and −17.1 ± 2.2 mmHg for the control and push-pull trials, respectively (P < 0.05), when cardiac output was maintained constant. Over 40% of the exaggerated fall in heart level arterial pressure was attributable to an exaggerated rise in hindlimb vascular conductance (P < 0.05). Maintaining thigh level arterial pressure constant abolished the exaggerated rise in hindlimb blood flow. Thus a push-pull effect largely attributable to a myogenically induced rise in leg vascular conductance occurs when autonomic function is inhibited. PMID:18927267
Satellite services system analysis study. Volume 4: Service equipment concepts
NASA Technical Reports Server (NTRS)
1981-01-01
Payload deployment equipment is discussed, including payload separation, retention structures, the remote manipulator system, tilt tables, the payload installation and deployment aid, the handling and positioning aid, and spin tables. Close proximity retrieval, and on-orbit servicing equipment is discussed. Backup and contingency equipment is also discussed. Delivery and retrieval of high-energy payloads are considered. Earth return equipment, the aft flight deck, optional, and advanced equipment are also discussed.
VIEW OF PDP ROOM AT LEVEL +27, LOOKING NORTH TOWARD ...
VIEW OF PDP ROOM AT LEVEL +27, LOOKING NORTH TOWARD TILTING TABLE AREA. PART OF SHEAVE RACK FOR PDP IN LOWER LEFT - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.
Iino, Yoichi
2018-04-01
The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.
2009-03-20
Expedition 19 Commander Gennady I. Padalka, left, and Flight Engineer Michael R. Barratt listen to their mp3 players as a medical doctor looks on during the tilt table training at the Cosmonaut Hotel, Saturday, March 21, 2009 in Baikonur, Kazakhstan.(Photo Credit: NASA/Bill Ingalls)
Gajek, Jacek; Zyśko, Dorota; Halawa, Bogumił; Mazurek, Walentyna
2006-04-01
Tilt training is a new treatment for vasovagal syncope. Its therapeutic efficacy is thought to be the result of the desensitization of cardiopulmonary receptors, but it could be the influence of the tilt training on the activation of the autonomic nervous system as well. The study group consisted of 24 vasovagal patients (17 women and 7 men) aged 32.5 +/- 11.8 years. The diagnostic head-up tilt test was performed according to the Italian protocol with nitroglycerin if necessary. The monitoring head-up tilt test was performed according to the Westminster protocol without provocation, after 1 to 3 months of tilt training. Holter ECG recordings for HRV parameters (time and frequency domain) were obtained from selected 2-min intervals before, during and after the diagnostic and monitoring tilt test. The diagnostic test was positive in the passive phase in 6 and after provocation in 18 patients. During the training period no syncope occurred. Analysing the HRV parameters we demonstrated the following findings: I. mRR decreases immediately after assumption of a vertical position in both tests (diagnostic and monitoring) but in the diagnostic test its further decrease occurs earlier than in the monitoring test; 2. the absolute power of the HF component is greater in the early phase of tilt after tilt training than in the corresponding period in the diagnostic test. After a longer period of tilt training the activation of the sympathetic nervous system in response to the erect position is diminished.
Porta, Alberto; Faes, Luca; Nollo, Giandomenico; Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Takahashi, Anielle C M; Catai, Aparecida M
2015-01-01
Self-entropy (SE) and transfer entropy (TE) are widely utilized in biomedical signal processing to assess the information stored into a system and transferred from a source to a destination respectively. The study proposes a more specific definition of the SE, namely the conditional SE (CSE), and a more flexible definition of the TE based on joint TE (JTE), namely the conditional JTE (CJTE), for the analysis of information dynamics in multivariate time series. In a protocol evoking a gradual sympathetic activation and vagal withdrawal proportional to the magnitude of the orthostatic stimulus, such as the graded head-up tilt, we extracted the beat-to-beat spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiratory activity (R) in 19 healthy subjects and we computed SE of HP, CSE of HP given SAP and R, JTE from SAP and R to HP, CJTE from SAP and R to HP given SAP and CJTE from SAP and R to HP given R. CSE of HP given SAP and R was significantly smaller than SE of HP and increased progressively with the amplitude of the stimulus, thus suggesting that dynamics internal to HP and unrelated to SAP and R, possibly linked to sympathetic activation evoked by head-up tilt, might play a role during the orthostatic challenge. While JTE from SAP and R to HP was independent of tilt table angle, CJTE from SAP and R to HP given R and from SAP and R to HP given SAP showed opposite trends with tilt table inclination, thus suggesting that the importance of the cardiac baroreflex increases and the relevance of the cardiopulmonary pathway decreases during head-up tilt. The study demonstrates the high specificity of CSE and the high flexibility of CJTE over real data and proves that they are particularly helpful in disentangling physiological mechanisms and in assessing their different contributions to the overall cardiovascular regulation.
ERIC Educational Resources Information Center
Walker, Jearl
1985-01-01
Discusses how the sun's reflection from water offers a means for calculating sloped of waves. Experiments using angles of reflection from a tilted mirror are suggested and explained. A method of counterbalancing dominoes in a stack beyond the edge of a table (using Euler's constant) is also described. (DH)
Heart rate variability analysed by Poincaré plot in patients with metabolic syndrome.
Kubičková, Alena; Kozumplík, Jiří; Nováková, Zuzana; Plachý, Martin; Jurák, Pavel; Lipoldová, Jolana
2016-01-01
The SD1 and SD2 indexes (standard deviations in two orthogonal directions of the Poincaré plot) carry similar information to the spectral density power of the high and low frequency bands but have the advantage of easier calculation and lesser stationarity dependence. ECG signals from metabolic syndrome (MetS) and control group patients during tilt table test under controlled breathing (20 breaths/minute) were obtained. SD1, SD2, SDRR (standard deviation of RR intervals) and RMSSD (root mean square of successive differences of RR intervals) were evaluated for 31 control group and 33 MetS subjects. Statistically significant lower values were observed in MetS patients in supine position (SD1: p=0.03, SD2: p=0.002, SDRR: p=0.006, RMSSD: p=0.01) and during tilt (SD2: p=0.004, SDRR: p=0.007). SD1 and SD2 combining the advantages of time and frequency domain methods, distinguish successfully between MetS and control subjects. Copyright © 2016 Elsevier Inc. All rights reserved.
Rocking and rolling: A can that appears to rock might actually roll
NASA Astrophysics Data System (ADS)
Srinivasan, Manoj; Ruina, Andy
2008-12-01
A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container’s bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this “angle of turn” of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over π and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.
Diagnosing Postural Tachycardia Syndrome: Comparison of Tilt Test versus Standing Hemodynamics
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2012-01-01
Postural tachycardia syndrome (POTS) is characterized by increased heart rate (ΔHR) of ≥30 bpm with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of TILT and STAND testing. ΔHR values were analyzed at 5 min intervals. Receiver Operating Characteristics analysis was performed to determine optimal cut point values of ΔHR for both TILT and STAND. TILT produced larger ΔHR than STAND for all 5 min intervals from 5 min (38±3 bpm vs. 33±3 bpm; P=0.03) to 30 min (51±3 bpm vs. 38±3 bpm; P<0.001). Sensitivity (Sn) of the 30 bpm criterion was similar for all tests (TILT-10=93%, STAND-10=87%, TILT30=100%, and STAND30=93%). Specificity (Sp) of the 30 bpm criterion was less at both 10 and 30 min for TILT (TILT10=40%, TILT30=20%) than STAND (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for TILT (with lower specificity for POTS diagnosis) than STAND at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min TILT. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used. PMID:22931296
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2013-01-01
POTS (postural tachycardia syndrome) is characterized by an increased heart rate (ΔHR) of ≥30 bpm (beats/min) with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of tilt and stand testing. ΔHR values were analysed at 5 min intervals. ROC (receiver operating characteristic) analysis was performed to determine optimal cut point values of ΔHR for both tilt and stand. Tilt produced larger ΔHR than stand for all 5 min intervals from 5 min (38±3 bpm compared with 33±3 bpm; P=0.03) to 30 min (51±3 bpm compared with 38±3 bpm; P<0.001). Sn (sensitivity) of the 30 bpm criterion was similar for all tests (TILT10=93%, STAND10=87%, TILT30=100%, and STAND30=93%). Sp (specificity) of the 30 bpm criterion was less at both 10 and 30 min for tilt (TILT10=40%, TILT30=20%) than stand (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for tilt (with lower Sp for POTS diagnosis) than stand at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min tilt. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used.
Single Shot Epidural Injection for Cervical and Lumbosaccral Radiculopathies: A Preliminary Study
Nawani, Digambar Prasad; Asthana, Veena
2010-01-01
Background Epidural steroid injection is an established treatment modality for intervertebral disc prolapse leading to radiculopathy. In cases where two levels of radiculopathy are present, two separate injections are warranted. Herein, we present our experience of management of such cases with a single epidural injection of local anaesthetic, tramadol and methylprednisolone, and table tilt for management of both radiculopathies. Methods 50 patients of either sex aged between 35-65 years presenting with features of cervical and lumbar radiculopathic pain were included and were subjected to single lumbar epidural injection of local anaesthetic, tramadol and methylprednisolone, in the lateral position. The table was then tilted in the trendelberg position with a tilt of 25 degrees, and patients were maintained for 10 minutes before being turned supine. All patients were administered 3 such injections with an interval of 2 weeks between subsequent injections, and pain relief was assessed with a visual analogue scale. Immediate complications after the block were assessed. Results Immediate and post procedural complications observed were nausea and vomiting (20%), painful injection site (4%), hypotension (10%) and high block (4%). Pain relief was assessed after the three injections by three grades: 37 (74%) had complete resolution of symptoms; 18% had partial relief and 8% did not benefit from the procedure. Conclusions This technique may be used as an alternative technique for pain relief in patients with unilateral cervical and lumbar radiculopathies. PMID:21217889
Muthiah, Kavitha; Gupta, Sunil; Otton, James; Robson, Desiree; Walker, Robyn; Tay, Andre; Macdonald, Peter; Keogh, Anne; Kotlyar, Eugene; Granger, Emily; Dhital, Kumud; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S
2014-08-01
The aim of this study was to determine the contribution of pre-load and heart rate to pump flow in patients implanted with continuous-flow left ventricular assist devices (cfLVADs). Although it is known that cfLVAD pump flow increases with exercise, it is unclear if this increment is driven by increased heart rate, augmented intrinsic ventricular contraction, or enhanced venous return. Two studies were performed in patients implanted with the HeartWare HVAD. In 11 patients, paced heart rate was increased to approximately 40 beats/min above baseline and then down to approximately 30 beats/min below baseline pacing rate (in pacemaker-dependent patients). Ten patients underwent tilt-table testing at 30°, 60°, and 80° passive head-up tilt for 3 min and then for a further 3 min after ankle flexion exercise. This regimen was repeated at 20° passive head-down tilt. Pump parameters, noninvasive hemodynamics, and 2-dimensional echocardiographic measures were recorded. Heart rate alteration by pacing did not affect LVAD flows or LV dimensions. LVAD pump flow decreased from baseline 4.9 ± 0.6 l/min to approximately 4.5 ± 0.5 l/min at each level of head-up tilt (p < 0.0001 analysis of variance). With active ankle flexion, LVAD flow returned to baseline. There was no significant change in flow with a 20° head-down tilt with or without ankle flexion exercise. There were no suction events. Centrifugal cfLVAD flows are not significantly affected by changes in heart rate, but they change significantly with body position and passive filling. Previously demonstrated exercise-induced changes in pump flows may be related to altered loading conditions, rather than changes in heart rate. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Asselin, Pierre; Spungen, Ann M; Muir, Jesse W; Rubin, Clinton T; Bauman, William A
2011-01-01
Persons with spinal cord injury (SCI) develop marked bone loss from paralysis and immobilization. Low-intensity vibration (LIV) has shown to be associated with improvement in bone mineral density in post-menopausal women and children with cerebral palsy. We investigated the transmissibility of LIV through the axial skeleton of persons with SCI as an initial approach to determine whether LIV may be used as a clinical modality to preserve skeletal integrity. Transmission of a plantar-based LIV signal (0.27 +/- 0.11 g; 34 Hz) from the feet through the axial skeleton was evaluated as a function of tilt-table angle (15, 30, and 45 degrees) in seven non-ambulatory subjects with SCI and ten able-bodied controls. Three SCI and five control subjects were also tested at 0.44 +/- 0.18 g and 34 Hz. Transmission was measured using accelerometers affixed to a bite-bar to determine the percentage of LIV signal transmitted through the body. The SCI group transmitted 25, 34, and 43% of the LIV signal, and the control group transmitted 28, 45, and 57% to the cranium at tilt angles of 15, 30, and 45 degrees, respectively. No significant differences were noted between groups at any of the three angles of tilt. SCI and control groups demonstrated equivalent transmission of LIV, with greater signal transmission observed at steeper angles of tilt. This work supports the possibility of the utility of LIV as a means to deliver mechanical signals in a form of therapeutic intervention to prevent/reverse skeletal fragility in the SCI population.
Asselin, Pierre; Spungen, Ann M.; Muir, Jesse W.; Rubin, Clinton T.; Bauman, William A.
2011-01-01
Background/objective Persons with spinal cord injury (SCI) develop marked bone loss from paralysis and immobilization. Low-intensity vibration (LIV) has shown to be associated with improvement in bone mineral density in post-menopausal women and children with cerebral palsy. We investigated the transmissibility of LIV through the axial skeleton of persons with SCI as an initial approach to determine whether LIV may be used as a clinical modality to preserve skeletal integrity. Methods Transmission of a plantar-based LIV signal (0.27 ± 0.11 g; 34 Hz) from the feet through the axial skeleton was evaluated as a function of tilt-table angle (15, 30, and 45°) in seven non-ambulatory subjects with SCI and ten able-bodied controls. Three SCI and five control subjects were also tested at 0.44 ± 0.18 g and 34 Hz. Transmission was measured using accelerometers affixed to a bite-bar to determine the percentage of LIV signal transmitted through the body. Results The SCI group transmitted 25, 34, and 43% of the LIV signal, and the control group transmitted 28, 45, and 57% to the cranium at tilt angles of 15, 30, and 45°, respectively. No significant differences were noted between groups at any of the three angles of tilt. Conclusion SCI and control groups demonstrated equivalent transmission of LIV, with greater signal transmission observed at steeper angles of tilt. This work supports the possibility of the utility of LIV as a means to deliver mechanical signals in a form of therapeutic intervention to prevent/reverse skeletal fragility in the SCI population. PMID:21528627
Effects of head tilt on visual field testing with a head-mounted perimeter imo
Matsumoto, Chota; Nomoto, Hiroki; Numata, Takuya; Eura, Mariko; Yamashita, Marika; Hashimoto, Shigeki; Okuyama, Sachiko; Kimura, Shinji; Yamanaka, Kenzo; Chiba, Yasutaka; Aihara, Makoto; Shimomura, Yoshikazu
2017-01-01
Purpose A newly developed head-mounted perimeter termed “imo” enables visual field (VF) testing without a fixed head position. Because the positional relationship between the subject’s head and the imo is fixed, the effects of head position changes on the test results are small compared with those obtained using a stationary perimeter. However, only ocular counter-roll (OCR) induced by head tilt might affect VF testing. To quantitatively reveal the effects of head tilt and OCR on the VF test results, we investigated the associations among the head-tilt angle, OCR amplitude and VF testing results. Subjects and methods For 20 healthy subjects, we binocularly recorded static OCR (s-OCR) while tilting the subject’s head at an arbitrary angle ranging from 0° to 60° rightward or leftward in 10° increments. By monitoring iris patterns, we evaluated the s-OCR amplitude. We also performed blind spot detection while tilting the subject’s head by an arbitrary angle ranging from 0° to 50° rightward or leftward in 10° increments to calculate the angle by which the blind spot rotates because of head tilt. Results The association between s-OCR amplitude and head-tilt angle showed a sinusoidal relationship. In blind spot detection, the blind spot rotated to the opposite direction of the head tilt, and the association between the rotation angle of the blind spot and the head-tilt angle also showed a sinusoidal relationship. The rotation angle of the blind spot was strongly correlated with the s-OCR amplitude (R2≥0.94, p<0.0001). A head tilt greater than 20° with imo causes interference between adjacent test areas. Conclusions Both the s-OCR amplitude and the rotation angle of the blind spot were correlated with the head-tilt angle by sinusoidal regression. The rotated VF was correlated with the s-OCR amplitude. During perimetry using imo, the change in the subject’s head tilt should be limited to 20°. PMID:28945777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yago, J.
As an aid to designers of solar structures, tables are presented which allow determination of shadows for roof overhangs, obstructions, skylights, etc. Shadow effects are illustrated and use of the tables is explained. For times ranging from 7 am to 5 pm, shadow factors are given for June 21, March 21, and September 21 (which are the same), and December 21 at latitudes from 30/sup 0/ to 50/sup 0/. It is assumed that structures are facing true south. Calculations are also illustrated for determining the shadow of solar collectors of known length and tilt. (MJJ)
On-track test of tilt control strategies for less motion sickness on tilting trains
NASA Astrophysics Data System (ADS)
Persson, Rickard; Kufver, Björn; Berg, Mats
2012-07-01
Carbody tilting is today a mature and inexpensive technology that permits higher train speeds in horizontal curves, thus shortening travel time. However, tilting trains run a greater risk of causing motion sickness than non-tilting ones. It is likely that the difference in motions between the two train types contributes to the observed difference in risk of motion sickness. Decreasing the risk of motion sickness has until now been equal to increasing the discomfort related to quasi-static lateral acceleration. But, there is a difference in time perception between discomfort caused by quasi-static quantities and motion sickness, which opens up for new solutions. One proposed strategy is to let the local track conditions influence the tilt and give each curve its own optimised tilt angle. This is made possible by new tilt algorithms, storing track data and using a positioning system to select the appropriate data. The present paper reports from on-track tests involving more than 100 test subjects onboard a tilting train. A technical approach is taken evaluating the effectiveness of the new tilt algorithms and the different requirements on quasi-static lateral acceleration and lateral jerk in relative terms. The evaluation verifies that the rms values important for motion sickness can be influenced without changing the requirements on quasi-static lateral acceleration and lateral jerk. The evaluation shows that reduced quantities of motions assumed to have a relation to motion sickness also lead to a reduction in experienced motion sickness. However, a limitation of applicability is found as the lowest risk of motion sickness was not recorded for the test case with motions closest to those of a non-tilting train. An optimal level of tilt, different from no tilt at all, is obtained. This non-linear relation has been observed by other researchers in laboratory tests.
DRDC Toronto Guidelines for Compensation of Subjects Participating in Research Studies
2008-09-01
research subject, it is increasingly likely to amount to an undue incentive for participation.” The Tri-Council Policy statement also describes in... spirometry equipment 0 Tilt table restrictive posture 1 Wrist actigraphy 0 Use of active heating or cooling vests to prevent the fall or rise of core
BlueSeis3A - performance, laboratory tests and applications
NASA Astrophysics Data System (ADS)
Bernauer, F.; Wassermann, J. M.; de Toldi, E.; Guattari, F.; Ponceau, D.; Ripepe, M.; Igel, H.
2017-12-01
One of the most emerging developments in seismic instrumentation is the application of fiber optic gyroscopes as portable rotational ground motion sensors. In the framework of the European Research Council Project, ROMY (ROtational Motions in seismologY), BlueSeis3A was developed in a collaboration between researchers from Ludwig-Maximilians University of Munich, Germany, and the fiber optic sensors manufacturer iXblue, France. With its high sensitivity (20 nrads-1Hz-1/2) in a broad frequency range (0.001 Hz to 50 Hz) BlueSeis3A opens a variety of applications which were up to now hampered by the lack of such an instrument. In this contribution, we will first present performance characteristics of BlueSeis3A with a focus on timing stability and scale factor linearity. In a second part we demonstrate the benefit of directly measured rotational motion for dynamic tilt correction of measurements made with a classical seismometer. A well known tilt signal was produced with a shake table and recorded simultaneously with a classical seismometer and BlueSeis3A. The seismometer measurement could be improved significantly by subtracting the coherent tilt signal which was measured directly with the rotational motion sensor. As a last part we show the advantage of directly measured rotational motion for applications in civil engineering. Results from a measurement campaign in the Giotto bell tower in the city of Florence, Italy, show the possibility of direct observation of torsional modes by deploying a rotational motion sensor inside the structure.
Tilting table for ergometer and for other biomedical devices
NASA Technical Reports Server (NTRS)
Gause, R. L.; Spier, R. A. (Inventor)
1973-01-01
The apparatus is for testing the human body in a variety of positions, ranging from the vertical to the supine, while exercising on an ergometer; and can also be used for angular positioning of other biomedical devices. It includes a floor plate and a hinged plate upon which to fix the ergometer, a back rest and a head rest attached at right angles to said hinged plate and behind the seat of the ergometer, dual hydraulic cylinders for raising and lowering the hinged plate through 90 deg by means of a self contained hydraulic system, with valve means for control and positive stops on the apparatus to prevent over travel. Tests can be made with the subject positioned on the seat of the ergometer, through the various angles, with a substantially normal body attitude relative to the seat and ergometer.
Quantitative Accelerated Life Testing of MEMS Accelerometers
Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul
2007-01-01
Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1. PMID:28903265
Study on compensation algorithm of head skew in hard disk drives
NASA Astrophysics Data System (ADS)
Xiao, Yong; Ge, Xiaoyu; Sun, Jingna; Wang, Xiaoyan
2011-10-01
In hard disk drives (HDDs), head skew among multiple heads is pre-calibrated during manufacturing process. In real applications with high capacity of storage, the head stack may be tilted due to environmental change, resulting in additional head skew errors from outer diameter (OD) to inner diameter (ID). In case these errors are below the preset threshold for power on recalibration, the current strategy may not be aware, and drive performance under severe environment will be degraded. In this paper, in-the-field compensation of small DC head skew variation across stroke is proposed, where a zone table has been equipped. Test results demonstrating its effectiveness to reduce observer error and to enhance drive performance via accurate prediction of DC head skew are provided.
Saengsuwan, Jittima; Berger, Lucia; Schuster-Amft, Corina; Nef, Tobias; Hunt, Kenneth J
2016-09-06
Exercise testing devices for evaluating cardiopulmonary fitness in patients with severe disability after stroke are lacking, but we have adapted a robotics-assisted tilt table (RATT) for cardiopulmonary exercise testing (CPET). Using the RATT in a sample of patients after stroke, this study aimed to investigate test-retest reliability and repeatability of CPET and to prospectively investigate changes in cardiopulmonary outcomes over a period of four weeks. Stroke patients with all degrees of disability underwent 3 separate CPET sessions: 2 tests at baseline (TB1 and TB2) and 1 test at follow up (TF). TB1 and TB2 were at least 24 h apart. TB2 and TF were 4 weeks apart. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and a real-time visual feedback system was used to guide the patients' exercise work rate during CPET. Test-retest reliability and repeatability of CPET variables were analysed using paired t-tests, the intraclass correlation coefficient (ICC), the coefficient of variation (CoV), and Bland and Altman limits of agreement. Changes in cardiopulmonary fitness during four weeks were analysed using paired t-tests. Seventeen sub-acute and chronic stroke patients (age 62.7 ± 10.4 years [mean ± SD]; 8 females) completed the test sessions. The median time post stroke was 350 days. There were 4 severely disabled, 1 moderately disabled and 12 mildly disabled patients. For test-retest, there were no statistically significant differences between TB1 and TB2 for most CPET variables. Peak oxygen uptake, peak heart rate, peak work rate and oxygen uptake at the ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) showed good to excellent test-retest reliability (ICC 0.65-0.94). For all CPET variables, CoV was 4.1-14.5 %. The mean difference was close to zero in most of the CPET variables. There were no significant changes in most cardiopulmonary performance parameters during the 4-week period (TB2 vs TF). These findings provide the first evidence of test-retest reliability and repeatability of the principal CPET variables using the novel RATT system and testing methodology, and high success rates in identification of VAT and RCP: good to excellent test-retest reliability and repeatability were found for all submaximal and maximal CPET variables. Reliability and repeatability of the main CPET parameters in stroke patients on the RATT were comparable to previous findings in stroke patients using standard exercise testing devices. The RATT has potential to be used as an alternative exercise testing device in patients who have limitations for use of standard exercise testing devices.
Landslide early warning system prototype with GIS analysis indicates by soil movement and rainfall
NASA Astrophysics Data System (ADS)
Artha, Y.; Julian, E. S.
2018-01-01
The aim of this paper is developing and testing of landslide early warning system. The early warning system uses accelerometersas ground movement and tilt-sensing device and a water flow sensor. A microcentroller is used to process the input signal and activate the alarm. An LCD is used to display the acceleration in x,y and z axis. When the soil moved or shifted and rainfall reached 100 mm/day, the alarm rang and signal were sentto the monitoring center via a telemetry system.Data logging information and GIS spatial data can be monitored remotely as tables and graphics as well as in the form of geographical map with the help of web-GIS interface. The system were tested at Kampung Gerendong, Desa Putat Nutug, Kecamatan Ciseeng, Kabupaten Bogor. This area has 3.15 cumulative score, which mean vulnerable to landslide. The results show that the early warning system worked as planned.
Heart rate variability during head-up tilt test in patients with syncope of unknown origin.
Gielerak, Grzegorz; Makowski, Karol; Kramarz, Elzbieta; Cholewa, Marian; Dłuzniewska, Ewa; Roszczyk, Anna; Bogaj, Agnieszka
2002-11-01
Analysis of pathophysiological mechanisms responsible for vaso-vagal reaction reveals a close relationship between neurocardiogenic syncope and the preceding abnormalities of autonomic nervous system (ANS). Therefore, the interest in the assessment of heart rate variability (HRV) for detecting and establishing therapy in patients with syncope due to vaso-vagal mechanism is not surprising. To assess ANS changes during tilt testing in patients with syncope of unknown origin. Forty patients (18 males, mean age 34.8+/-15.8 years) with a history of at least two syncopal episodes during the last 6 months and 24 healthy controls underwent tilt testing. Spectral HRV analysis was performed from ECG recorded 5 min before tilting (period A), 5 min after tilting (period B), and 5 min before syncope (or 20-25 min of tilt test when syncope did not occur) (period C). Tilt test was positive in 23 (58%) patients; 12 (30%) had mixed response, 10 (25%) - vasodepressive, and 1 (3%) - cardioinhibitory reaction. The mean time from tilt to syncope was 22.3 minutes. One (4%) control subject developed syncope. In all groups a decrease of LF and HF power, as well as an increase in the LF/HF ratio in response to tilting were observed. The LF/HF values were significantly different between patients with mixed vaso-vagal reaction and controls (1.9 vs 4.2; p=0.04). In the C-B periods the highest decrease in the HF spectra was found in patients with mixed reaction and was significantly greater than in other patients or controls. Also, patients with mixed reaction had the highest increase in LF values which was significantly more pronounced than in patients with vasodepressive reaction (10139.3 vs 466.9; p=0.003). As a result, the change in LF/HF ratio was positive in patients with mixed reaction, controls and patients with negative result of tilt test, and negative - in patients with vaso-depressive syncope, reaching statistical significance between patients with mixed and vaso-depressive response (2.04 vs -0.51; p=0.03). The pattern of HRV changes during tilt testing depends on the type of vaso-vagal reaction which leads to syncope. The most accurate HRV parameter for identification of patients with reflex syncope is the LF/HF ratio.
Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror
NASA Astrophysics Data System (ADS)
Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi
2017-09-01
A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.
Upper Body Venous Compliance Exceeds Lower Body Venous Compliance in Humans
NASA Technical Reports Server (NTRS)
Watenpaugh, Donald E.
1996-01-01
Human venous compliance hypothetically decreases from upper to lower body as a mechanism for maintenance of the hydrostatic indifference level 'headward' in the body, near the heart. This maintains cardiac filling pressure, and thus cardiac output and cerebral perfusion, during orthostasis. This project entailed four steps. First, acute whole-body tilting was employed to alter human calf and neck venous volumes. Subjects were tilted on a tilt table equipped with a footplate as follows: 90 deg, 53 deg, 30 deg, 12 deg, O deg, -6 deg, -12 deg, -6 deg, O deg, 12 deg, 30 deg, 53 deg, and 90 deg. Tilt angles were held for 30 sec each, with 10 sec transitions between angles. Neck volume increased and calf volume decreased during head-down tilting, and the opposite occurred during head-up tilt. Second, I sought to cross-validate Katkov and Chestukhin's (1980) measurements of human leg and neck venous pressures during whole-body tilting, so that those data could be used with volume data from the present study to calculate calf and neck venous compliance (compliance = (Delta)volume/(Delta)pressure). Direct measurements of venous pressures during postural chances and whole-body tilting confirmed that the local changes in venous pressures seen by Katkov and Chestukhin (1980) are valid. The present data also confirmed that gravitational changes in calf venous pressure substantially exceed those changes in upper body venous pressure. Third, the volume and pressure data above were used to find that human neck venous compliance exceeds calf venous compliance by a factor of 6, thereby upholding the primary hypothesis. Also, calf and neck venous compliance correlated significantly with each other (r(exp 2) = 0.56). Fourth, I wished to determine whether human calf muscle activation during head-up tilt reduces calf venous compliance. Findings from tilting and from supine assessments of relaxed calf venous compliance were similar, indicating that tilt-induced muscle activation is relatively unimportant. Low calf venous compliance probably results from stiffer venous, skeletal muscle, and connective tissues, and better-developed local and central neural controls of venous distensibility. This research establishes that upper-to-lower body reduction of venous compliance can explain headward positioning of the hydrostatic indifference level in humans.
Deformation of products cut on AWJ x-y tables and its suppression
NASA Astrophysics Data System (ADS)
Hlaváč, L. M.; Hlaváčová, I. M.; Plančár, Š.; Krenický, T.; Geryk, V.
2018-02-01
The aim of this study is namely investigation of the abrasive water jet (AWJ) cutting of column pieces on commercial x-y cutting machines with AWJ. The shape deformation in curved and/or stepped parts of cutting trajectories caused by both the trailback (declination angle) and the taper (inclination of cut walls) can be calculated from submitted analytical model. Some of the results were compared with data measured on samples cut on two types of commercial tables. The main motivation of this investigation is determination of the percentage difference between predicted and real distortion of cutting product, i.e. accuracy of prepared analytical model. Subsequently, the possibility of reduction of the distortion can be studied through implementation of the theoretical model into the control systems of the cutting machines with the system for cutting head tilting. Despite some limitations of the used AWJ machines the comparison of calculated dimensions with the real ones shows very good correlation of model and experimental data lying within the range of measurement uncertainty. Results on special device demonstrated that the shape deformation in curved parts of the cutting trajectory can be substantially reduced through tilting of the cutting head.
Manual displacement of the uterus during Caesarean section.
Kundra, P; Khanna, S; Habeebullah, S; Ravishankar, M
2007-05-01
Ninety ASA 1 and 2 pregnant women with term singleton pregnancies and no maternal and fetal complications, scheduled for elective or emergency Caesarean section, were randomly allocated to group LT (15 degrees left lateral table tilt, n = 45) and group MD (leftward manual displacement, n = 45). Subarachnoid block was established with a 25-gauge spinal needle at the L3-L4 interspace using 1.5 ml of 0.5% hyperbaric bupivacaine. A median sensory level of T6 was observed in both groups but the incidence of hypotension was markedly lower in group MD when compared to group LT (4.4% vs 40%; p < 0.001) with a significant reduction in mean (SD) ephedrine requirement (6 (0) vs 11.3 (4.9) mg; p < 0.001). The mean (SD) fall in systolic blood pressure was 28.8 (7.3) mmHg in group LT and 20 (12.7) mmHg in group MD. The time to maximum fall in systolic blood pressure was similar in both groups (4.5 min). We conclude that manual displacement of the uterus effectively reduces the incidence of hypotension and ephedrine requirements when compared to 15 degrees left lateral table tilt in parturients undergoing Caesarean section.
Roll-Tilt Perception Using a Somatosensory Bar Task
NASA Technical Reports Server (NTRS)
Black, F. O.; Wade, S. W.; Arshi, A.
1999-01-01
Visual estimates of roll-tilt perception during static roll-tilt are confounded by an offset due to the ocular counterroll that simultaneously occurs. An alternative, non-visual ('somatosensory') measure of roll-tilt perception was developed which is not contaminated by this offset. The aims of this study were to determine: 1) inter-subject variability of somatosensory settings across test session in normal subjects and patients with unilateral or bilateral vestibular loss and 2) intra-subject variability of settings across test session in normal subjects.
[Evaluation of psychological fear in children undergoing head-up tilt test].
Chu, Wei-Hong; Wu, Li-Jia; Wang, Cheng; Lin, Ping; Li, Fang; Zhu, Li-Ping; Ran, Jing; Zou, Run-Mei; Liu, De-Yu
2014-03-01
To investigate the effects of different tilt angles of head-up tilt test (HUTT) and different responses to HUTT on the psychological fear in children undergoing the test. HUTT was performed on children with unexplained syncope or pre-syncope (107 cases: 52 males and 55 females), aged 5.5-17.8 years (mean 12.0±2.8 years). All subjects were randomly assigned to undergo HUTT at an angle of 60°, 70° or 80°; the negative cases underwent sublingual nitroglycerin-provocation HUTT at the same tilt angle. The Wong-Baker Faces Pain Rating Scale was used for self-assessment of psychological fear in subjects during HUTT at the end point of the test. The positive rate, hemodynamic changes and distribution of response types showed no significant differences between children at tilt angles of 60°, 70° and 80° (P>0.05). The greater the tilt angle, the higher the degree of psychological fear in children undergoing the test, but there were no significant differences between them (P>0.05). The degree of psychological fear in children who showed a positive response to HUTT (n=76) was significantly higher than that in children who showed a negative response (n=31) (P<0.01). HUTT can cause psychological fear in children undergoing the test, and the degree of psychological fear increases in children tested at tilt angles from 60° to 80°, but the differences have no statistical significance. A positive response to HUTT can significantly increase the psychological fear in children.
Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu
2011-01-01
Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.
Wind Tunnel Test Results of 25 Foot Tilt Rotor During Autorotation
NASA Technical Reports Server (NTRS)
Marr, R. L.
1976-01-01
A 25 foot diameter tilt rotor was tested in the 40 by 80 foot large scale wind tunnel. The test confirmed the predicted autorotation capability of the XV-15 tilt rotor aircraft. Autorotations were made at 60, 80, and 100 knots. A limited evaluation of lateral cyclic was made. Test data indicate a minimum rate of descent of 2,200 feet per minute at 60 knots at the XV-15 design gross weight of 13,000 pounds.
Bai, Yanqiang; Jiang, Shizhong; Gauquelin, Gullemette; Aubry, Patrick; Wan, Yuming; Custaud, Marc Antoine; Li, Yinghui
2011-01-01
Objective Check if the Temporal flow response to Tilt could provide early hemodynamic pattern in the minutes preceding a syncope during the Tilt test performed after a 60-d head down bedrest (HDBR). Method Twenty-one men divided into 3 groups [Control (Con), Resistive Vibration (RVE) and Chinese Herb (Herb)] underwent a 60 day HDBR. Pre and Post HDBR a 20 min Tilt identified Finishers (F) and Non Finishers (NF). Cerebral (MCA), Temporal (TEMP), Femoral (FEM) flow velocity, were measured by Doppler during the Tilt. Blood pressure (BP) was measured by arm cuff and cardiopress. Results and Discussion Four of the 21 subjects were NF at the post HDBR Tilt test (Con gr:2, RVE gr: 1, Herb gr: 1). At 1 min and 10 s before end of Tilt in NF gr, FEM flow decreased less and MCA decreased more at post HDBR Tilt compared to pre (p<0.05), while in the F gr they changed similarly as pre. In NF gr: TEMP flow decreased more at post HDBR Tilt compared to pre, but only at 10 s before the end of Tilt (P<0.05). During the last 10 s a negative TEMP diastolic component appeared which induced a drop in mean velocity until Tilt arrest. Conclusion The sudden drop in TEMP flow with onset of a negative diastolic flow preceding the decrease in MCA flow confirm that the TEMP vascular resistance respond more directly than the cerebral one to the cardiac output redistribution and that this response occur several seconds before syncope. PMID:22073117
Belz, G G; Butzer, R; Gaus, W; Loew, D
2002-10-01
In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.
Chae, S W; Lee, J; Han, S H; Kim, S-Y
2015-06-01
Glenoid component fixation with an inferior tilt has been suggested to decrease scapular notching, but this remains controversial. We aimed here to evaluate the effect of glenoid component inferior tilt in reverse total shoulder arthroplasty (RSA) on micromotion and loss of fixation of the glenoid component by biomechanical testing. Increased inferior reaming of the glenoid for inferiorly tilted implantation of the glenoid component will decrease glenoid bone stock and compromise the fixation of RSA. The micromotions of the glenoid components attached to 14 scapulae from fresh frozen cadavers were measured and compared between neutral and 10° inferior tilts in 0.7- and 1-body weight cyclic loading tests using digital-image analysis. The incidence of bone breakage or loss of fixation was assessed in the 1-body weight fatigue-loading test. Micromotion was higher with a 10° inferior tilt than with a neutral tilt during both the 0.7-body weight (36 ± 11 μm vs. 22 ± 5 μm; P = 0.028) and 1-body weight (44 ± 16 μm vs. 28 ± 9 μm; P = 0.045) cyclic loading. The incidence of bone breakage or loss of fixation was 17% and 60% with a neutral and 10° inferior tilt, respectively. Glenoid component inferior tilt fixation in RSA may reduce primary stability and increase mechanical failure of the glenoid component, thereby reducing longevity of the prosthesis. Accordingly, we recommend careful placement of the glenoid component when an inferior tilt is used. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
[Descriptive analysis of pelvic asymmetry in an asymptomatic population].
Barbosa, A C; Bonifácio, D N; Lopes, I P; Martins, F L M; Barbosa, M C S A; Barbosa, A C
2014-01-01
Pelvic tilt is clinically assessed based on its relationship with spinal conditions, but there is little evidence from the asymptomatic-population for comparison purposes. To analyze an asymptomatic population focusing,on pelvic asymmetries using photogrammetry. 92 subjects (18-35 years old) underwent marking of the anterior and posterior iliac spines and were photographed. Alcimage software was used to measure the pelvic tilt angle. Other tests included: the Kolmogorov normality test, t test, Wilcoxon test, and Pearson coefficient to measure the correlation. 11.96% of males had anteversion and 34.78% normality; 38.04% of females had anteversion and 15.22% normality. Angles between iliacs for bilateral tilt showed no difference, but a difference was seen with the predominance of one side. For unilateral tilt a difference between illacs was seen. Good correlation of predominance versus anteversion was observed, and correlation was poor for side angles. The rest showed a weak or non-significant correlation. Tilt cannot be used individually to characterize pelvic dysfunction or pathology.
The clinical relevance of the duration of loss of consciousness provoked by tilt testing.
Zyśko, Dorota; Gajek, Jacek; Kozluk, Edward; Agrawal, Anil Kumar; Smereka, Jacek; Checiński, Igor
2010-04-01
The authors assessed the relationships between the duration of loss of consciousness (dLOC) during tilt testing-induced syncope (TTS) and demographics, medical history as well as tilt testing results. Previous research focused on the relevance of the type of neurocardiogenic reaction during TTS. The importance of dLOC has not been assessed so far. The study was carried out in 274 patients with suspected neurally mediated syncope and total loss of consciousness during tilt testing. The syncope burden, demographics, and data regarding spontaneous syncope orTTS were compared between group I with dLOC > or =47 seconds and group 2 with dLOC <47 seconds. Medical history revealed that patients in group I had more syncopal spells, more frequent syncope-related traumatic injuries, urine incontinence, jerking movements and typical vasovagal history than in group 2. Moreover, group I patients had more frequently a cardioinhibitory type of reaction and a shorter active phase duration. In addition, they manifested more frequent accompanying cerebral hypoperfusion signs and reproduction of symptoms during TTS than patients in group 2. The loss of consciousness during tilt testing-induced syncope differs in terms of duration among patients with neurally mediated syncope. The dLOC during TTS is associated with medical history and tilt-testing data which confirm the vasovagal aetiology of spontaneous events. The longer dLOC suggests deeper cerebral haemodynamic disturbances during either spontaneous or provoked syncope.
Saengsuwan, Jittima; Huber, Celine; Schreiber, Jonathan; Schuster-Amft, Corina; Nef, Tobias; Hunt, Kenneth J
2015-09-26
We evaluated the feasibility of an augmented robotics-assisted tilt table (RATT) for incremental cardiopulmonary exercise testing (CPET) and exercise training in dependent-ambulatory stroke patients. Stroke patients (Functional Ambulation Category ≤ 3) underwent familiarization, an incremental exercise test (IET) and a constant load test (CLT) on separate days. A RATT equipped with force sensors in the thigh cuffs, a work rate estimation algorithm and real-time visual feedback to guide the exercise work rate was used. Feasibility assessment considered technical feasibility, patient tolerability, and cardiopulmonary responsiveness. Eight patients (4 female) aged 58.3 ± 9.2 years (mean ± SD) were recruited and all completed the study. For IETs, peak oxygen uptake (V'O2peak), peak heart rate (HRpeak) and peak work rate (WRpeak) were 11.9 ± 4.0 ml/kg/min (45 % of predicted V'O2max), 117 ± 32 beats/min (72 % of predicted HRmax) and 22.5 ± 13.0 W, respectively. Peak ratings of perceived exertion (RPE) were on the range "hard" to "very hard". All 8 patients reached their limit of functional capacity in terms of either their cardiopulmonary or neuromuscular performance. A ventilatory threshold (VT) was identified in 7 patients and a respiratory compensation point (RCP) in 6 patients: mean V'O2 at VT and RCP was 8.9 and 10.7 ml/kg/min, respectively, which represent 75 % (VT) and 85 % (RCP) of mean V'O2peak. Incremental CPET provided sufficient information to satisfy the responsiveness criteria and identification of key outcomes in all 8 patients. For CLTs, mean steady-state V'O2 was 6.9 ml/kg/min (49 % of V'O2 reserve), mean HR was 90 beats/min (56 % of HRmax), RPEs were > 2, and all patients maintained the active work rate for 10 min: these values meet recommended intensity levels for bouts of training. The augmented RATT is deemed feasible for incremental cardiopulmonary exercise testing and exercise training in dependent-ambulatory stroke patients: the approach was found to be technically implementable, acceptable to the patients, and it showed substantial cardiopulmonary responsiveness. This work has clinical implications for patients with severe disability who otherwise are not able to be tested.
Perceived object stability depends on multisensory estimates of gravity.
Barnett-Cowan, Michael; Fleming, Roland W; Singh, Manish; Bülthoff, Heinrich H
2011-04-27
How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.
[Reha-Stepper locomotion therapy in early rehabilitation of paraplegic patients].
Rupp, R; Eberhard, S; Schreier, R; Colombo, G
2002-01-01
Treadmill training with partial body weight support was shown to significantly improve the constitution and gait capacity of incomplete spinal cord injured (SCI) persons. The main requirement for application of this therapy is a sufficient capacity of the cardiovascular system. Most of the SCI patients do not comply with this requirement in the first few weeks after spinal cord injury, where spinal reflexes are frequently missing (spinal shock). To offer SCI patients a locomotion therapy at this early stage of rehabilitation we developed a novel, active tilt-table, the Reha-Stepper, that moves the lower limbs in an almost physiological manner in terms of kinematic and kinetic parameters. The tilt of the device can be continuously increased from horizontal to almost upright position adapted to the status of the patient.
NASA Technical Reports Server (NTRS)
Weiberg, James A.; Holzhauser, Curt A.
1961-01-01
Tests were made of a large-scale tilt-wing deflected-slipstream VTOL airplane with blowing-type BLC trailing-edge flaps. The model was tested with flap deflections of 0 deg. without BLC, 50 deg. with and without BLC, and 80 deg. with BLC for wing-tilt angles of 0, 30, and 50 deg. Included are results of tests of the model equipped with a leading-edge flap and the results of tests of the model in the presence of a ground plane.
Research in Varying Burner Tilt Angle to Reduce Rear Pass Temperature in Coal Fired Boiler
NASA Astrophysics Data System (ADS)
Thrangaraju, Savithry K.; Munisamy, Kannan M.; Baskaran, Saravanan
2017-04-01
This research shows the investigation conducted on one of techniques that is used in Manjung 700 MW tangentially fired coal power plant. The investigation conducted in this research is finding out the right tilt angle for the burners in the boiler that causes an efficient temperature distribution and combustion gas flow pattern in the boiler especially at the rear pass section. The main outcome of the project is to determine the right tilt angle for the burner to create an efficient temperature distribution and combustion gas flow pattern that able to increase the efficiency of the boiler. The investigation is carried out by using Computational Fluid Dynamics method to obtain the results by varying the burner tilt angle. The boiler model is drawn by using designing software which is called Solid Works and Fluent from Computational Fluid Dynamics is used to conduct the analysis on the boiler model. The analysis is to imitate the real combustion process in the real Manjung 700 MW boiler. The expected results are to determine the right burner tilt angle with a computational fluid analysis by obtaining the temperature distribution and combustion gas flow pattern for each of the three angles set for the burner tilt angle in FLUENT software. Three burner tilt angles are selected which are burner tilt angle at (0°) as test case 1, burner tilt angle at (+10°) as test case 2 and burner tilt angle at (-10°) as test case 3. These entire three cases were run in CFD software and the results of temperature distribution and velocity vector were obtained to find out the changes on the three cases at the furnace and rear pass section of the boiler. The results are being compared in analysis part by plotting graphs to determine the right tilting angle that reduces the rear pass temperature.
Integration and Validation of Avian Radars (IVAR)
2011-07-01
IVAR study locations. ‘X’ indicates the specified type of demonstration was conducted at that location; ‘B’ indicates a potential Back-up locations... nation two radar with parabolic dishes tilted nsor (AR-1; specifically The initial deployment of avian radar systems at a civil airport was completed...ARTI. 45 Table 4-1. Summary of the IVAR study locations. ‘X’ indicates the specified type of demonstration was conducted at that
Qualitative flow visualization of flame attachment on slopes
Torben P. Grumstrup; Sara S. McAllister; Mark A. Finney
2017-01-01
Heating of unburned fuel by attached flames and plume of a wildfire can produce high spread rates that have resulted in firefighter fatalities worldwide. Qualitative flow fields of the plume of a gas burner embedded in a table tilted to 0°, 10°, 20°, and 30° above horizontal were imaged using the retroreflective shadowgraph technique as a means to understand plume...
Robotic tilt table reduces the occurrence of orthostatic hypotension over time in vegetative states.
Taveggia, Giovanni; Ragusa, Ivana; Trani, Vincenzo; Cuva, Daniele; Angeretti, Cristina; Fontanella, Marco; Panciani, Pier Paolo; Borboni, Alberto
2015-06-01
The aim of this study is to evaluate the effects of verticalization with or without combined movement of the lower limbs in patients in a vegetative state or a minimally conscious state. In particular, we aimed to study whether, in the group with combined movement, there was better tolerance to verticalization. This was a randomized trial conducted in a neurorehabilitation hospital. Twelve patients with vegetative state and minimally conscious state 3-18 months after acute acquired brain injuries were included. Patients were randomized into A and B treatment groups. Study group A underwent verticalization with a tilt table at 65° and movimentation of the lower limbs with a robotic system for 30 min three times a week for 24 sessions. Control group B underwent the same rehabilitation treatment, with a robotic verticalization system, but an inactive lower-limb movement system. Systolic and diastolic blood pressure and heart rate were determined. Robotic movement of the lower limbs can reduce the occurrence of orthostatic hypotension in hemodynamically unstable patients. Despite the small number of patients involved (only eight patients completed the trial), our results indicate that blood pressures and heart rate can be stabilized better (with) by treatment with passive leg movements in hemodynamically unstable patients.
Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An
2018-04-01
Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.
NASA Technical Reports Server (NTRS)
Magee, J. P.; Alexander, H. R.
1973-01-01
The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.
NASA Technical Reports Server (NTRS)
Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.
2002-01-01
Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P < 0.01). No differences were observed in calculated cerebral vascular resistance between the four conditions. These data suggest that skin-surface cooling prevents the fall in CBFV during upright tilting and improves orthostatic tolerance, presumably via maintenance of MAP. Hence, skin-surface cooling may be a potent countermeasure to protect against orthostatic intolerance observed in heat-stressed humans.
Balance Training with Wii Fit Plus for Community-Dwelling Persons 60 Years and Older.
Roopchand-Martin, Sharmella; McLean, Roshé; Gordon, Carron; Nelson, Gail
2015-06-01
This study sought to determine the effect of 6 weeks of training, using activities from the Nintendo(®) (Kyoto, Japan) "Wii™ Fit Plus" disc, on balance in community-dwelling Jamaicans 60 years and older. A single group pretest/posttest design was used. Thirty-three subjects enrolled and 28 completed the study. Participants completed 30-minute training sessions on the Nintendo "Wii Fit" twice per week for 6 weeks. Activities used included "Obstacle Course," "Penguin Slide," "Soccer Heading," "River Bubble," "Snow Board," "Tilt Table," "Skate Board," and "Yoga Single Tree Pose." Balance was assessed with the Berg Balance Scale, the Multi Directional Reach Test, the Star Excursion Balance Test and the Modified Clinical Test for Sensory Integration in Balance. There was significant improvement in the mean Berg Balance Scale score (P=0.004), Star Excursion Balance Test score (SEBT) (P<0.001 both legs), and Multi Directional Reach Test score (P=0.002). There was no significant change on the Modified Clinical Test for Sensory Integration in Balance. Balance games on the Nintendo "Wii Fit Plus" disc can be used as a tool for balance training in community-dwelling persons 60 years of age and older.
NASA Astrophysics Data System (ADS)
Cao, Hao; Cao, Xiaoyu; Chen, Fei; Li, Ming; Zhang, Bolin; Wei, Jilong
2017-12-01
This paper presents a new kind of tilting-pad gas seal. This design is introduced to reduce the tangential seal force and to improve the stability of rotor system finally. A seal test rig is set up. The paper compares the leakage between tilting-pad seal and fixed pad seal. The result shows that the leakage ratio of the tilting-pad seal is close to the leakage ratio of the fixed pad seal. The work done by seal force on the cylinder system is calculated as an index of comparison between these two seals. Result shows that the work done by the fixed pad seal is greater than the work done by the tilting-pad seal. Moreover, system damping factor is used to compare the stabilities of these two seals. The impact tests on the cylinder system are done under different conditions. The system damping factors are calculated from the damped waves of system vibration. Test results show that the damping factor of the tilting pad seal is higher than that of the fixed pad seal in both the vertical and the horizontal directions.
NASA Astrophysics Data System (ADS)
Melnikov, A. A.; Popov, S. G.; Nikolaev, D. V.; Vikulov, A. D.
2013-04-01
We have investigated the distribution of peripheral blood volumes in different regions of the body in response to the tilt-test in endurance trained athletes after aerobic exercise. Distribution of peripheral blood volumes (ml/beat) simultaneously in six regions of the body (two legs, two hands, abdomen, neck and ECG) was assessed in response to the tilt-test using the impedance method (the impedance change rate (dZ/dT). Before and after exercise session cardiac stroke (CSV) and blood volumes in legs, arms and neck were higher in athletes both in lying and standing positions. Before exercise the increase of heart rate and the decrease of a neck blood volume in response to tilting was lower (p <0.05) but the decrease of leg blood volumes was higher (p<0.001) in athletes. The reactions in arms and abdomen blood volumes were similar. Also, the neck blood volumes as percentage of CSV (%/CSV) did not change in the control but increased in athletes (p <0.05) in response to the tilt test. After (10 min recovery) the aerobic bicycle exercise (mean HR = 156±8 beat/min, duration 30 min) blood volumes in neck and arms in response to the tilting were reduced equally, but abdomen (p<0.05) and leg blood volumes (p <0.001) were lowered more significantly in athletes. The neck blood flow (%/CSV) did not change in athletes but decreased in control (p<0.01), which was offset by higher tachycardia in response to tilt-test in controls after exercise. The data demonstrate greater orthostatic tolerance in athletes both before and after exercise during fatigue which is due to effective distribution of blood flows aimed at maintaining cerebral blood flow.
NASA Technical Reports Server (NTRS)
Meck, Janice V.; Platts, Steven H.; Waters, Wendy W.; Shi, Shang-Jin; Hayashi, Yuho; Perez, Sondra A.; Ziegler, Michael G.
2006-01-01
Circulating blood volume is reduced during spaceflight, making astronauts hemodynamically compromised. After landing, astronauts separate into two groups. One group compensates for the hypovolemia with a hyper-sympathetic response during upright tilt testing and can complete a tilt test with few symptoms. The other group is unable to mount a hyper-sympathetic response and experiences orthostatic hypotension and presyncope during upright tilt tests. We tested the hypothesis that hypovolemia alone, in the absence of spaceflight, also would cause subjects to separate into presyncopal and non-presyncopal groups according to their sympathetic responses during tilt. We studied 20 subjects, including 10 veteran astronauts, on three occasions. On Days 1 (normovolemia) and 3 (hypovolemia), plasma volume, tilt tolerance and supine and standing plasma norepinephrine levels were measured. Forty hours prior to Day 3, subjects were given intravenous furosemide, followed by 36 hours of a 10MEq Na diet. Statistical comparisons were made between normovolemia and hypovolemia responses. This protocol reproduced landing day tilt test outcomes with 100% fidelity in the astronauts. Similarly to patterns reported after flight, non-presyncopal subjects had greater norepinephrine responses to tilt during hypovolemia compared to normovolemia (580 plus or minus 79 vs. 298 plus or minus 37 pg/ml, P less than 0.05), but presyncopal subjects had no increase (180 plus or minus 44 vs. 145 plus or minus 32 pg/ml, P=NS). This model can be used to predict astronauts who will become presyncopal on landing day, so that prospective, individualized countermeasures can be developed. Within patient populations, it can be used to study the interaction of volemic state and the sympathetic nervous system.
Micromirror with large-tilting angle using Fe-based metallic glass.
Lee, Jae-Wung; Lin, Yu-Ching; Kaushik, Neelam; Sharma, Parmanand; Makino, Akihiro; Inoue, Akihisa; Esashi, Masayoshi; Gessner, Thomas
2011-09-01
For enhancing the micromirror properties like tilting angle and stability during actuation, Fe-based metallic glass (MG) was applied for torsion bar material. A micromirror with mirror-plate diameter of 900 μm and torsion bar dimensions length 250 μm, width 30 μm and thickness 2.5 μm was chosen for the tilting angle tests, which were performed by permanent magnets and electromagnet setup. An extremely large tilting angle of over -270° was obtained from an activation test by permanent magnet that has approximately 0.2 T of magnetic strength. A large mechanical tilting angle of over -70° was obtained by applying approximately 1.1 mT to the mirror when 93 mAwas applied to solenoid setup. The large-tilting angle of the micromirror is due to the torsion bar, which was fabricated with Fe-based MG thin film that has large elastic strain limit, fracture toughness, and excellent magnetic property.
TILT : the Treasure Island Liquefaction Test : final report
DOT National Transportation Integrated Search
2002-01-01
This report presents the results of the Treasure Island Liquefaction Test (TILT), a joint project carried out by University of California, San Diego, and Brigham Young University. To improve our understanding of the lateral load behavior of deep foun...
AGARD Flight Test Techniques Series. Volume 7. Air-to-Air Radar Flight Testing
1988-06-01
enters the beam ), a different tilt angle should be used. The emphasis on setting the tilt angle may require a non - standard high accuracy tilt angle...is: the time from pilot designation on a non -maneuvering target to the time that the system achieves target range, range rate and angle tracking...minimal attenuation, distortion, or boresight Shift effects on the radar beam . Thus, radome design for airborne application io largely a process of
V/STOL tilt rotor research aircraft. Volume 3: Ship 2 instrumentation
NASA Technical Reports Server (NTRS)
1978-01-01
Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 2 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness, instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement data codes to J-box locations is given in a table. Cross references are given.
V/STOL tilt rotor research aircraft. Volume 2: Ship 1 instrumentation
NASA Technical Reports Server (NTRS)
1978-01-01
Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 1 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement item codes to J-box locations is given in a table. Cross references are given.
Effect of balance training in older adults using Wii fit plus.
Afridi, Ayesha; Malik, Arshad Nawaz; Ali, Shaukat; Amjad, Imran
2018-03-01
The Nintendo Wii-fit plus is a type of Virtual Reality exer-gaming with graphical and auditory response system. A case series was conducted at Shifa Tamer-e-Millat University Islamabad from January-July 2016. Sixteen adults more than 60 years age (07 males and 09 females) were recruited through convenient sampling. The specified Wii fit plus training was provided to all patients and the games included the Soccer heading, Ski slalom, table tilt and yoga. Berg balance test, time up and go and functional reach test were used before and after 06 weeks of treatment (4 days / week). Data was analysed by SPSS V-20. The mean age of the sample was 67.56±7.29 years, with 56% female and 44% males were in sample. There was a statistically significant difference in pre and post Berg Balance Score, time up and go test and functional reach. In this case series Wii-fit plus training was effective in improving dynamic balance and mobility in older adults. This should be explored further in large trials.
Beardsley, Chris; Egerton, Tim; Skinner, Brendon
2016-01-01
Objective. The purpose of this study was to investigate the reliability of a digital pelvic inclinometer (DPI) for measuring sagittal plane pelvic tilt in 18 young, healthy males and females. Method. The inter-rater reliability and test-re-test reliabilities of the DPI for measuring pelvic tilt in standing on both the right and left sides of the pelvis were measured by two raters carrying out two rating sessions of the same subjects, three weeks apart. Results. For measuring pelvic tilt, inter-rater reliability was designated as good on both sides (ICC = 0.81-0.88), test-re-test reliability within a single rating session was designated as good on both sides (ICC = 0.88-0.95), and test-re-test reliability between two rating sessions was designated as moderate on the left side (ICC = 0.65) and good on the right side (ICC = 0.85). Conclusion. Inter-rater reliability and test-re-test reliability within a single rating session of the DPI in measuring pelvic tilt were both good, while test-re-test reliability between rating sessions was moderate-to-good. Caution is required regarding the interpretation of the test-re-test reliability within a single rating session, as the raters were not blinded. Further research is required to establish validity.
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2013-06-01
A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.
House, G; Burdea, G; Polistico, K; Roll, D; Kim, J; Grampurohit, N; Damiani, F; Keeler, S; Hundal, J; Pollack, S
2016-11-01
To describe the novel BrightArm Duo bimanual upper extremity (UE) rehabilitation system; to determine its technology acceptance and clinical benefit for older hemiplegic participants. The system table tilted to adjust arm gravity loading. Participants wore arm supports that sensed grasp strength and wrist position on the table. Wrist weights further increased shoulder exertion. Games were designed to improve UE strength, motor function, cognition and emotive state and adapted automatically to each participant. The system underwent feasibility trials spanning 8 weeks in two skilled nursing facilities (SNFs). Participants were evaluated pre-therapy and post-therapy using standardized clinical measures. Computerized measures of supported arm reach, table tilt and number of arm repetitions were stored on a remote server. Seven participants had significant improvements in their active range of shoulder movement, supported arm reach, shoulder strength, grasp strength and their ability to focus. The group demonstrated higher arm function measured with FMA (p = 0.01) and CAHAI (p = 0.05), and had an improvement in depression (Becks Depression Inventory, II). BrightArm Duo technology was well accepted by participants with a rating of 4.4 out of 5 points. Given these findings, it will be beneficial to evaluate the BrightArm Duo application in SNF maintenance programs. Implications for Rehabilitation Integrative rehabilitation that addresses both physical and cognitive domains is promising for post-stroke maintenance in skilled nursing facilities. Simultaneous bilateral arm exercise may improve arm function in older hemiplegic patients several years after stroke. Virtual reality games that adapt to the patient can increase attention and working memory while decreasing depression in elderly.
Absolute Measurement of Tilts via Fourier Analysis of Interferograms
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2004-01-01
The Fourier method of interferogram analysis requires the introduction of a constant tilt into the inteferogram to serve as a 'carrier signal' for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.
Absolute Measurement of Tilts via Fourier Analysis of Interferograms
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2004-01-01
The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.
Blunted autonomic response in cluster headache patients.
Barloese, Mads; Brinth, Louise; Mehlsen, Jesper; Jennum, Poul; Lundberg, Helena Inez Sofia; Jensen, Rigmor
2015-12-01
Cluster headache (CH) is a disabling headache disorder with chronobiological features. The posterior hypothalamus is involved in CH pathophysiology and is a hub for autonomic control. We studied autonomic response to the head-up tilt table test (HUT) including heart rate variability (HRV) in CH patients and compared results to healthy controls. Twenty-seven episodic and chronic CH patients and an equal number of age-, sex- and BMI-matched controls were included. We analyzed responses to HUT in the time and frequency domain and by non-linear analysis. CH patients have normal cardiovascular responses compared to controls but increased blood pressure. In the frequency analysis CH patients had a smaller change in the normalized low- (LF) (2.89 vs. 13.38, p < 0.05) and high-frequency (HF) (-2.86 vs. -13.38, p < 0.05) components as well as the LF/HF ratio (0.81 vs. 2.62, p < 0.05) in response to tilt. In the Poincaré plot, the change in ratio between long- and short-term variation was lower in patients (SD1/SD2, -0.05 vs. -0.17, p < 0.05). CH patients show decreased autonomic response to HUT compared to healthy controls. This can be interpreted as dysregulation in the posterior hypothalamus and supports a theory of central autonomic mechanisms involvement in CH. © International Headache Society 2015.
Determinants of Motion Sickness in Tilting Trains: Coriolis/Cross-Coupling Stimuli and Tilt Delay
Bertolini, Giovanni; Durmaz, Meek Angela; Ferrari, Kim; Küffer, Alexander; Lambert, Charlotte; Straumann, Dominik
2017-01-01
Faster trains require tilting of the cars to counterbalance the centrifugal forces during curves. Motion sensitive passengers, however, complain of discomfort and overt motion sickness. A recent study comparing different control systems in a tilting train, suggested that the delay of car tilts relative to the curve of the track contributes to motion sickness. Other aspects of the motion stimuli, like the lateral accelerations and the car jitters, differed between the tested conditions and prevented a final conclusion on the role of tilt delay. Nineteen subjects were tested on a motorized 3D turntable that simulated the roll tilts during yaw rotations experienced on a tilting train, isolating them from other motion components. Each session was composed of two consecutive series of 12 ideal curves that were defined on the bases of recordings during an actual train ride. The simulated car tilts started either at the beginning of the curve acceleration phase (no-delay condition) or with 3 s of delay (delay condition). Motion sickness was self-assessed by each subject at the end of each series using an analog motion sickness scale. All subjects were tested in both conditions. Significant increases of motion sickness occurred after the first sequence of 12 curves in the delay condition, but not in the no-delay condition. This increase correlated with the sensitivity of motion sickness, which was self-assessed by each subject before the experiment. The second sequence of curve did not lead to a significant further increase of motion sickness in any condition. Our results demonstrate that, even if the speed and amplitude are as low as those experienced on tilting trains, a series of roll tilts with a delay relative to the horizontal rotations, isolated from other motion stimuli occurring during a travel, generate Coriolis/cross-coupling stimulations sufficient to rapidly induce motion sickness in sensitive individuals. The strength and the rapid onset of the motion sickness reported confirm that, even if the angular velocity involved are low, the Coriolis/cross-coupling resulting from the delay is a major factor in causing sickness that can be resolved by improving the tilt timing relative to the horizontal rotation originating from the curve. PMID:28555125
Meck, J V; Reyes, C J; Perez, S A; Goldberger, A L; Ziegler, M G
2001-01-01
The incidence of postflight orthostatic intolerance after short-duration spaceflight is about 20%. However, the incidence after long-duration spaceflight was unknown. The purpose of this study was to test the hypothesis that orthostatic intolerance is more severe after long-duration than after short-duration flight. We performed tilt tests on six astronauts before and after long-duration (129-190 days) spaceflights and compared these data with data obtained during stand tests before and after previous short-duration missions. Five of the six astronauts studied became presyncopal during tilt testing after long-duration flights. Only one had become presyncopal during stand testing after short-duration flights. We also compared the long-duration flight tilt test data to tilt test data from 20 different astronauts who flew on the short-duration Shuttle missions that delivered and recovered the astronauts to and from the Mir Space Station. Five of these 20 astronauts became presyncopal on landing day. Heart rate responses to tilt were no different between astronauts on long-duration flights and astronauts on short-duration flights, but long-duration subjects had lower stroke volumes and cardiac outputs than short-duration presyncopal subjects, suggesting a possible decrease in cardiac contractile function. One subject had subnormal norepinephrine release with upright posture after the long flight but not after the short flight. Plasma volume losses were not greater after long flights. Long-duration spaceflight markedly increases orthostatic intolerance, probably with multiple contributing factors.
Report on Results of Borehole Tilt Measurements from the Charlevoix Observatory, Quebec
1986-11-30
with long baseline tiltmeters ; any mechanical in- " _____,_ stability in the sensor or of the instrument/rock 3 ,.w ,-- interface produces...KEY WORDS (Continue on reverse side if necessary and identify by block number) ’Earth tides, tiltmeters , tidal loading, seismic activity, linear and...Water Table, Variations in a Seismically Active Region ip Quebec, Canada’ b iH-J. Kiimpel, J.A. Peters, and D.R. Bower. The array of three tiltmeters is
NASA Astrophysics Data System (ADS)
Sapilewski, Glen Alan
The Satellite Test of the Equivalence Principle (STEP) is a modern version of Galileo's experiment of dropping two objects from the leaning tower of Pisa. The Equivalence Principle states that all objects fall with the same acceleration, independent of their composition. The primary scientific objective of STEP is to measure a possible violation of the Equivalence Principle one million times better than the best ground based tests. This extraordinary sensitivity is made possible by using cryogenic differential accelerometers in the space environment. Critical to the STEP experiment is a sound fundamental understanding of the behavior of the superconducting magnetic linear bearings used in the accelerometers. We have developed a theoretical bearing model and a precision measuring system with which to validate the model. The accelerometers contain two concentric hollow cylindrical test masses, of different materials, each levitated and constrained to axial motion by a superconducting magnetic bearing. Ensuring that the bearings satisfy the stringent mission specifications requires developing new testing apparatus and methods. The bearing is tested using an actively-controlled table which tips it relative to gravity. This balances the magnetic forces from the bearing against a component of gravity. The magnetic force profile of the bearing can be mapped by measuring the tilt necessary to position the test mass at various locations. An operational bearing has been built and is being used to verify the theoretical levitation models. The experimental results obtained from the bearing test apparatus were inconsistent with the previous models used for STEP bearings. This led to the development of a new bearing model that includes the influence of surface current variations in the bearing wires and the effect of the superconducting transformer. The new model, which has been experimentally verified, significantly improves the prediction of levitation current, accurately estimates the relationship between tilting and translational modes, and predicts the dependence of radial mode frequencies on the bearing current. In addition, we developed a new model for the forces produced by trapped magnetic fluxons, a potential source of imperfections in the bearing. This model estimates the forces between magnetic fluxons trapped in separate superconducting objects.
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2014-01-01
A Fast Steering Mirror (FSM) is going to be provided as the secondary of the Giant Magellan Telescope (GMT) for the first light observations. FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m, and each mirror is activated by three tip-tilt actuators which compensate image degradations caused by winds and structure jitter. An FSM prototype (FSMP) has been developed to achieve the key technologies, fabrication of highly aspheric off-axis mirror and precise tip-tilt actuation. It consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The development has been conducted by Korea Astronomy and Space Science Institute together with four other institutions in Korea and USA. The mirror was light-weighted by digging about a hundred holes at the backside, and the front surface has been polished. The result of computer generated hologram measurements showed the surface error of 11.7 nm rms. The tip-tilt test-bed has been manufactured and assembled. Tip-tilt range and resolution tests complied the requirements, and the attenuation test results also satisfied the performance requirements. In this paper, we present the successful developments of the prototype.
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.
2014-01-01
Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Behavior of Tilted Angle Shear Connectors.
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
Evidence for arousal-biased competition in perceptual learning.
Lee, Tae-Ho; Itti, Laurent; Mather, Mara
2012-01-01
Arousal-biased competition theory predicts that arousal biases competition in favor of perceptually salient stimuli and against non-salient stimuli (Mather and Sutherland, 2011). The current study tested this hypothesis by having observers complete many trials in a visual search task in which the target either always was salient (a 55° tilted line among 80° distractors) or non-salient (a 55° tilted line among 50° distractors). Each participant completed one session in an emotional condition, in which visual search trials were preceded by negative arousing images, and one session in a non-emotional condition, in which the arousing images were replaced with neutral images (with session order counterbalanced). Test trials in which the target line had to be selected from among a set of lines with different tilts revealed that the emotional condition enhanced identification of the salient target line tilt but impaired identification of the non-salient target line tilt. Thus, arousal enhanced perceptual learning of salient stimuli but impaired perceptual learning of non-salient stimuli.
Evidence for Arousal-Biased Competition in Perceptual Learning
Lee, Tae-Ho; Itti, Laurent; Mather, Mara
2012-01-01
Arousal-biased competition theory predicts that arousal biases competition in favor of perceptually salient stimuli and against non-salient stimuli (Mather and Sutherland, 2011). The current study tested this hypothesis by having observers complete many trials in a visual search task in which the target either always was salient (a 55° tilted line among 80° distractors) or non-salient (a 55° tilted line among 50° distractors). Each participant completed one session in an emotional condition, in which visual search trials were preceded by negative arousing images, and one session in a non-emotional condition, in which the arousing images were replaced with neutral images (with session order counterbalanced). Test trials in which the target line had to be selected from among a set of lines with different tilts revealed that the emotional condition enhanced identification of the salient target line tilt but impaired identification of the non-salient target line tilt. Thus, arousal enhanced perceptual learning of salient stimuli but impaired perceptual learning of non-salient stimuli. PMID:22833729
ASPOD modifications of 1993-1994
NASA Technical Reports Server (NTRS)
Jackson, Jennifer J. (Editor); Fogarty, Paul W.; Muller, Matthew; Martucci, Thomas A., III; Williams, Daniel; Rowney, David A.
1994-01-01
ASPOD, Autonomous Space Processors for Orbital Debris, provides a unique way of collecting the space debris that has built up over the past 37 years. For the past several years, ASPOD has gone through several different modifications. This year's concentrations were on the solar cutting array, the solar tracker, the earth based main frame/tilt table, the controls for the two robotic arms, and accurate autocad drawings of ASPOD. This final report contains the reports written by the students who worked on the ASPOD project this year.
2006-06-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., technicians check the STEREO spacecraft "B" as it is lifted off a tilt table. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton
Li, Chunli; Jia, Libo; Wang, Zhenzhou; Niu, Ling; An, Xinjiang
2018-01-01
The present study investigated the therapeutic effect of radiofrequency ablation on children with supraventricular tachycardia (SVT), and explored the risk factors for postoperative recurrence. A total of 312 patients with pediatric SVT were selected in the Affiliated Children's Hospital of Xuzhou Medical University from April, 2011 to March, 2017. All the patients were subjected to radiofrequency ablation, and clinical data were retrospectively analyzed. Tilt table test was performed before and after treatment, and heart rate, systolic and diastolic blood pressure before and after treatment were compared. Plasma levels of D-dimer (D-D), platelet α-granule membrane protein (GMP-140) and thrombin-antithrombin III complex (TAT) were detected by enzyme-linked immunosorbent assay before treatment, immediately after radiofrequency oblation, and at 1, 3 and 7 days after treatment. Treatment outcomes were compared between the atrioventricular reentrant tachycardia (AVRT) and atrioventricular nodal reentrant tachycardia (AVNRT) groups. Risk factors for postoperative recurrence were analyzed. Supine position heart rate after treatment was not significantly different from that before treatment (P>0.05), while the upright position heart rate was significantly increased after treatment (P<0.05). Systolic pressures of the supine and upright positions were significantly reduced after treatment compared with the levels before (P<0.05), but no significant differences were found in diastolic blood pressure of supine and the upright position (P>0.05). No significant difference in radiofrequency ablation rate, recurrence rate and incidence of complications were found between the AVRT and AVNRT groups (P>0.05). After radiofrequency, the levels of D-D, GMP-140 and TAT ablation showed an upward trend, but decreased at day 7 to reach preoperative levels. Logistic regression analysis revealed that residual slow pathway (OR=6.718, P=0.005) and inaccurate targeting (OR=2.815, P=0.007) were independent risk factors for postoperative recurrence (P<0.05). Although radiofrequency ablation can damage the cardiac vagal nerve, resulting in an increase in the heart rate after ablation during the course of the tilt table test and changed hemagglutination state within one week after ablation, those changes returned to normal after one week. The efficacy of radiofrequency ablation in the treatment of pediatric SVT is clear, and recurrence rate is low. Residual slow pathway and inaccurate targeting were independent risk factors for postoperative recurrence. PMID:29725383
Li, Chunli; Jia, Libo; Wang, Zhenzhou; Niu, Ling; An, Xinjiang
2018-05-01
The present study investigated the therapeutic effect of radiofrequency ablation on children with supraventricular tachycardia (SVT), and explored the risk factors for postoperative recurrence. A total of 312 patients with pediatric SVT were selected in the Affiliated Children's Hospital of Xuzhou Medical University from April, 2011 to March, 2017. All the patients were subjected to radiofrequency ablation, and clinical data were retrospectively analyzed. Tilt table test was performed before and after treatment, and heart rate, systolic and diastolic blood pressure before and after treatment were compared. Plasma levels of D-dimer (D-D), platelet α-granule membrane protein (GMP-140) and thrombin-antithrombin III complex (TAT) were detected by enzyme-linked immunosorbent assay before treatment, immediately after radiofrequency oblation, and at 1, 3 and 7 days after treatment. Treatment outcomes were compared between the atrioventricular reentrant tachycardia (AVRT) and atrioventricular nodal reentrant tachycardia (AVNRT) groups. Risk factors for postoperative recurrence were analyzed. Supine position heart rate after treatment was not significantly different from that before treatment (P>0.05), while the upright position heart rate was significantly increased after treatment (P<0.05). Systolic pressures of the supine and upright positions were significantly reduced after treatment compared with the levels before (P<0.05), but no significant differences were found in diastolic blood pressure of supine and the upright position (P>0.05). No significant difference in radiofrequency ablation rate, recurrence rate and incidence of complications were found between the AVRT and AVNRT groups (P>0.05). After radiofrequency, the levels of D-D, GMP-140 and TAT ablation showed an upward trend, but decreased at day 7 to reach preoperative levels. Logistic regression analysis revealed that residual slow pathway (OR=6.718, P=0.005) and inaccurate targeting (OR=2.815, P=0.007) were independent risk factors for postoperative recurrence (P<0.05). Although radiofrequency ablation can damage the cardiac vagal nerve, resulting in an increase in the heart rate after ablation during the course of the tilt table test and changed hemagglutination state within one week after ablation, those changes returned to normal after one week. The efficacy of radiofrequency ablation in the treatment of pediatric SVT is clear, and recurrence rate is low. Residual slow pathway and inaccurate targeting were independent risk factors for postoperative recurrence.
Quantitative Accelerated Life Testing of MEMS Accelerometers.
Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul
2007-11-20
Quantitative Accelerated Life Testing (QALT) is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature) and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the"worst case" being smaller than 10 -7 h -1 .
NASA Technical Reports Server (NTRS)
Mchugh, F. J.; Eason, W.; Alexander, H. R.; Mutter, H.
1973-01-01
Wind tunnel test data obtained from a 1/4.622 Froude scale Boeing Model 222 with a full span, two prop, tilt rotor, powered model in the Boeing V/STOL wind tunnel are reported. Data were taken in transition and cruise flight conditions and include performance, stability and control and blade loads information. The effects of the rotors, tail surfaces and airframe on the performance and stability are isolated as are the effects of the airframe on the rotors.
Anxiety, depression and autonomic nervous system dysfunction in hypertension.
Bajkó, Zoltán; Szekeres, Csilla-Cecília; Kovács, Katalin Réka; Csapó, Krisztina; Molnár, Sándor; Soltész, Pál; Nyitrai, Erika; Magyar, Mária Tünde; Oláh, László; Bereczki, Dániel; Csiba, László
2012-06-15
This study examined the relationship between autonomic nervous system dysfunction, anxiety and depression in untreated hypertension. 86 newly diagnosed hypertensive patients and 98 healthy volunteers were included in the study. The psychological parameters were assessed with Spielberger State-Trait Anxiety Inventory and Beck Depression Inventory by a skilled psychologist. Autonomic parameters were examined during tilt table examination (10min lying position, 10min passive tilt). Heart rate variability (HRV) was calculated by autoregressive methods. Baroreflex sensitivity (BRS) was calculated by non-invasive sequence method from the recorded beat to beat blood pressure values and RR intervals. Significantly higher state (42.6±9.3 vs. 39.6±10.7 p=0.05) and trait (40.1±8.9 vs. 35.1±8.6, p<0.0001) anxiety scores were found in the hypertension group. There was no statistically significant difference in the depression level. LF-RRI (Low Frequency-RR interval) of HRV in passive tilt (377.3±430.6 vs. 494.1±547, p=0.049) and mean BRS slope (11.4±5.5 vs. 13.2±6.4, p=0.07) in lying position were lower in hypertensives. Trait anxiety score correlates significantly with sympatho/vagal balance (LF/HF-RRI) in passive tilt position (Spearman R=-0.286, p=0.01). Anxiety could play a more important role than depression in the development of hypertension. Altered autonomic control of the heart could be one of the pathophysiological links between hypertension and psychological factors. Copyright © 2012 Elsevier B.V. All rights reserved.
Posture changes and subfoveal choroidal blood flow.
Longo, Antonio; Geiser, Martial H; Riva, Charles E
2004-02-01
To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers. The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures. Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P < 0.0004), IOP increased by 29% (P < 0.001), and mean ChBF increased by 11% (P < 0.01). The increase in ChBF was primarily due to an increase in the nonpulsatile component of the blood velocity. Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.
Human perceptual overestimation of whole body roll tilt in hypergravity
Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.
2014-01-01
Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216
LBNP/ergometer effects on female cardiovascular and muscle deconditioning in 15d head-down bed rest
NASA Astrophysics Data System (ADS)
Wang, Lin-Jie
2012-07-01
Female has already been an important part of astronaut corps but gender characteristics in weightlessness and countermeasure effects still not clearly elucidated. In this study the LBNP/Ergometer effects on female cardiovascular deconditioning and muscle atrophy in 15d head-down bed rest were explored. 22 female university students were recruited as volunteers that participated in the 15d head-down bed rest. They were divided into control group (Con,n=8), LBNP exercise group (LBNP,n=7) and LBNP combined with ergometer exercise group (LBNP+Ergo, n=7). Grade negative pressures of -10,-20,-30,-40mmHg 20 or 55min were used in LBNP exercise. In ergometer exercises the subjects must maintain 60-80% VO2peak of pre-bed rest at pedal speed of about 70cycle/min for 15min and the entire exercise duration was 30min. LBNP were performed at 6th,8th,10th,12th,and 13th day and Ergometer were operated at 4th,5th,7th,9th,11th day during bed rest. Before and after bed rest, cardiovascular tilt test were performed to evaluate orthostatic intolerance, supine cycle ergometer were used to test the cardiopulmonary function, MRI tests were operated to examine the volume variations of leg muscle groups and isokinetic test were given to test the muscle strength and endurance of knee. 40% of female subjects did not pass the tilt table test after bed rest and exercises made no difference. Compared with pre-BR, VO2max and VO2max /body weight, VO2/HRmax, maximal power and duration significantly decreased in CON group and LBNP group. For the ERGO+LBNP group, there were no visible different in the parameters of cardiopulmonary function except that maximal power and duration decreased. Muscle maximal voluntary contraction and muscle (quadriceps, rectus femoris, gastrocnemius and soleus) volume decreasing in non-predominant leg was larger in Con group than in LBNP+Ergo group. It is suggested that LBNP combined with ergometer in some degrees can counteract the cardiovascular and muscle deconditioning induced by 15d head-down bed rest.
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
Effects of pelvic tilt angles and forced vital capacity in healthy individuals
Hwang, Young-In; Kim, Ki-Song
2018-01-01
[Purpose] The purpose of this study was to investigate the effect of pelvic tilt angles and lung function in participants performing pelvic tilts on a ball. [Subjects and Methods] Eighteen subjects participated in this study. While they performed pelvic tilt on sitting at a ball, the peak expiratory flow (PEF) and forced expiratory volume in one second (FEV1) were measured at 10 degrees of anterior and posterior pelvic tilt, respectively, and neutral position. The repeated measure ANOVA was performed, and the Bonferroni correction was used for post-hoc analysis. [Results] The PEF of the participants was significantly higher at neutral position, compared with an anterior pelvic tilt at 10 degrees. The FEV1 was also higher in neutral position, compared with anterior and posterior pelvic tilt. [Conclusion] This study underlines the need for the standardization of the FVC testing protocol for positioning the pelvic angle in a neutral position in patients with respiratory disorders to promote reliable interpretation of intervention outcomes. PMID:29410572
Clark, Sean; Iltis, Peter W
2008-05-01
Controlled laboratory study. To compare postural performance measures of athletes with those of nonathletes when completing the standard Sensory Organization Test (SOT) and a modified SOT that included dynamic head tilts (DHT-SOT). Authors of recently published research have suggested that modifications to the SOT protocol (eg, introduction of pitch and roll head tilts) may enhance the test's sensitivity when assessing postural stability in individuals with higher balance capabilities or with well-compensated sensory deficits. Nineteen athletes and 19 nonathletes (group) completed both the SOT and DHT-SOT (protocol). During the SOT, participants stood upright as steadily as possible for 20 seconds during each of 6 different sensory conditions. As a variation of the SOT, the DHT-SOT incorporated active pitch and roll head tilts into the SOT protocol. Four 2-way mixed-model analyses of variance (with protocol as the repeated factor) were performed to determine if the composite equilibrium score or the visual, vestibular, or somatosensory ratio scores differed between the 2 groups across the 2 testing protocols. Significant group-by-protocol interaction effects were present for both the composite equilibrium score and visual ratio. Follow-up simple main-effects analyses indicated that these measures did not differ between groups for the SOT protocol but were significantly different on the DHT-SOT. The addition of dynamic head tilts to the SOT protocol resulted in subtle differences in balance function between athletes and nonathletes. Athletes demonstrated an increased ability to adapt to sensory disruptions during the DHT-SOT. Therapists should consider including active pitch and roll head tilts to the SOT when evaluating individuals with higher balance function or to detect subtle deficits in balance function. Diagnosis, level 3b.
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Kraus, Hans-Jürgen; Weise, Dennis; Braxmaier, Claus; Peters, Achim; Johann, Ulrich
2017-11-01
The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) requires a high performance position sensor in order to measure the translation and tilt of the free flying test mass with respect to the LISA optical bench. Here, we present a mechanically highly stable and compact setup of a heterodyne interferometer combined with differential wavefront sensing for the tilt measurement which serves as a demonstrator for an optical readout of the LISA test mass position. First results show noise levels below 1 nm/√Hz and 1 μrad/√Hz, respectively, for frequencies < 10-3 Hz.
Extension-twist coupling of composite circular tubes with application to tilt rotor blade design
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1987-01-01
This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.
Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight
NASA Technical Reports Server (NTRS)
Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.
2008-01-01
Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize that performance on the closed-loop tilt control task will be improved with this tactile display feedback of tilt orientation. The current plans include testing on eight crewmembers following Space Shuttle missions or short stay onboard the International Space Station. Measurements are obtained pre-flight at L-120 (plus or minus 30), L-90 (plus or minus 30), and L-30, (plus or minus 10) days and post-flight at R+0, R+1, R+2 or 3, R+4 or 5, and R+8 days. Pre-and post-flight testing (from R+1 on) is performed in the Neuroscience Laboratory at the NASA Johnson Space Center on both the Tilt-Translation Device and a variable radius centrifuge. A second variable radius centrifuge, provided by DLR for another joint ESA-NASA project, has been installed at the Baseline Data Collection Facility at Kennedy Space Center to collect data immediately after landing. ZAG was initiated with STS-122/1E and the first post-flight testing will take place after STS-123/1JA landing.
Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R
2015-02-05
In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impaired perception of surface tilt in progressive supranuclear palsy
Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina
2017-01-01
Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762
A Horizontal Tilt Correction Method for Ship License Numbers Recognition
NASA Astrophysics Data System (ADS)
Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi
2018-02-01
An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Brock, P. J.; Sciaraffa, D.; Polese, A.; Elizondo, R.
1985-01-01
Two aspects of prolonged endurance training were investigated: (1) the effects of exercise-heat acclimation (on a cycle ergometer at 40 C, 42 rh) on orthostatic tolerance (70 deg head-up tilt) and on a +Gz (head-to-foot) acceleration tolerance of male and female subjects; and (2) comparison of their fluid-electrolyte shifts and hormonal (plasma epinephdrine, norepinephrine, renin, and vasopressin) responses during tilting and centrifugation. The adaptive responses during the 12 d, 2-h acclimation did not alter acceleration tolerance of either men or women, or the women's tilt tolerance, but did increase men's tilt tolerance from 30.4 min before to 58.3 min after acclimation. The patterns of fluid, electrolyte, and protein shifts at tolerance in acceleration and tilting tests were virtually the same in men and women. On the other hand, the hormonal plasma epinephrine, norepinephrine, renin, and vasopressin resonses displayed different shift patterns during acceleration and tilting. It is concluded that the responses to tilting cannot be used to predict responses to acceleration. Future experiments for relating the orthostatic and the acceleration tolerances, and the practical questions of the training regimens for future astronauts are discussed.
Contribution of perfusion pressure to vascular resistance response during head-up tilt
NASA Technical Reports Server (NTRS)
Imadojemu, V. A.; Lott, M. E.; Gleeson, K.; Hogeman, C. S.; Ray, C. A.; Sinoway, L. I.
2001-01-01
We measured brachial and femoral artery flow velocity in eight subjects and peroneal and median muscle sympathetic nerve activity (MSNA) in five subjects during tilt testing to 40 degrees. Tilt caused similar increases in MSNA in the peroneal and median nerves. Tilt caused a fall in femoral artery flow velocity, whereas no changes in flow velocity were seen in the brachial artery. Moreover, with tilt, the increase in the vascular resistance employed (blood pressure/flow velocity) was greater and more sustained in the leg than in the arm. The ratio of the percent increase in vascular resistance in leg to arm was 2.5:1. We suggest that the greater vascular resistance effects in the leg were due to an interaction between sympathetic nerve activity and the myogenic response.
The performance of the MROI fast tip-tilt correction system
NASA Astrophysics Data System (ADS)
Young, John; Buscher, David; Fisher, Martin; Haniff, Christopher; Rea, Alexander; Seneta, Eugene; Sun, Xiaowei; Wilson, Donald; Farris, Allen; Olivares, Andres
2014-07-01
The fast tip-tilt (FTT) correction system for the Magdalena Ridge Observatory Interferometer (MROI) is being developed by the University of Cambridge. The design incorporates an EMCCD camera protected by a thermal enclosure, optical mounts with passive thermal compensation, and control software running under Xenomai real-time Linux. The complete FTT system is now undergoing laboratory testing prior to being installed on the first MROI unit telescope in the fall of 2014. We are following a twin-track approach to testing the closed-loop performance: tracking tip-tilt perturbations introduced by an actuated flat mirror in the laboratory, and undertaking end-to-end simulations that incorporate realistic higher-order atmospheric perturbations. We report test results that demonstrate (a) the high stability of the entire opto-mechanical system, realized with a completely passive design; and (b) the fast tip-tilt correction performance and limiting sensitivity. Our preliminary results in both areas are close to those needed to realise the ambitious stability and sensitivity goals of the MROI which aims to match the performance of current natural guide star adaptive optics systems.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Feiveson, Alan H.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.
2011-01-01
Our laboratory previously reported that the incidence of orthostatic hypotension (OH) was greater after long- than short-duration spaceflight in astronauts who participated in Mir Space Station and Space Shuttle missions. To confirm and extend these findings, we retrospectively examined tilt test data from International Space Station (ISS) and Shuttle astronauts. We anticipated that the proportion of ISS astronauts experiencing OH would be high on landing day and the number of days to recover greater after long- than short-duration missions. Methods: Twenty ISS and 66 Shuttle astronauts participated in 10-min 80? head-up tilt tests 10 d before launch (L-10), on landing day (R+0) or 1 d after landing (R+1). Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. Many astronauts repeated the test 3 d (R+3) after landing. Fisher?s Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the tilt test on R+0. Cox regression was used to identify cardiovascular parameters that were associated with test completion across all tests, and mixed model analysis was used to compare the change and recovery rates between ISS and Shuttle astronauts. In these analyses, ISS data from R+0 and R+1 were pooled to provide sufficient statistical power. Results: The proportion of astronauts who completed the tilt test on R+0 without OH was less in ISS than in Shuttle astronauts (p=0.03). On R+0, only 2 of 6 ISS astronauts completed the test compared to 53 of 66 (80%) Shuttle astronauts. However, 8 of 9 ISS astronauts completed the test on R+1. On R+3, 13 of 15 (87%) of the ISS and 19 of 19 (100%) of the Shuttle astronauts completed the 10-min test. An index comprised of stroke volume and diastolic blood pressure provided a very good prediction of overall tilt survival. This index was altered by spaceflight similarly for both groups soon after landing (pooled R+0 and R+ 1), but ISS astronauts did not recover at the same rate as Shuttle astronauts (p=0.007). Conclusions: The proportion of ISS astronauts who could not complete the tilt test on R+0 due to OH (4 of 6) is similar to that reported in astronauts who flew on Mir (5 of 6). Further, cardiovascular parameters most closely associated with OH recover more slowly after long- compared to short-duration spaceflight.
2006-06-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., technicians check the STEREO spacecraft "B" as it moves away from a tilt table (at right). The spacecraft will be placed on another stand nearby. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton
Astronaut Musgrave performing EVA during STS-6
NASA Technical Reports Server (NTRS)
1983-01-01
Views of Mission Specialist F. Story Musgrave performing an extravehicular activity (EVA) during the STS-6 mission. In this view, Musgrave uses hand holds in the payload bay door hinge line to move towards the aft payload bay (30215); Musgrave conducts a simulation of a contingency EVA in the aft payload bay. This was designed to return the inertial upper stage (IUS) support equipment's tilt table device to its normal stowed configuration in the event of failure of an automatic system. A cloud-covered earth can be seen in the background (30216).
Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar
2014-05-28
The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.
Cian, C; Esquivié, D; Barraud, P A; Raphel, C
1995-01-01
The visual angle subtended by the frame seems to be an important determinant of the contribution of orientation contrast and illusion of self-tilt (ie vection) to the rod-and-frame effect. Indeed, the visuovestibular factor (which produces vection) seems to be predominant in large displays and the contrast effect in small displays. To determine how these two phenomena are combined to account for the rod-and-frame effect, independent estimates of the magnitude of each component in relation to the angular size subtended by the display were examined. Thirty-five observers were exposed to three sets of experimental situations: body-adjustment test (illusion of self-tilt only), the tilt illusion (contrast only) and the rod-and-frame test, each display subtending 7, 12, 28, and 45 deg of visual angle. Results showed that errors recorded in the three situations increased linearly with the angular size. Whatever the size of the frame, both mechanisms, contrast effect (tilt illusion) and illusory effect on self-orientation (body-adjustment test), are always present. However, rod-and-frame errors became greater at a faster rate than the other two effects as the size of teh stimuli became larger. Neither one nor the other independent phenomenen, nor the combined effect could fully account for the rod-and-frame effect whatever the angular size of the apparatus.
Which hemodynamic parameter predicts nitroglycerin-potentiated head-up tilt test response?
Russo, Vincenzo; Papa, Andrea Antonio; Ciardiello, Carmine; Rago, Anna; Proietti, Riccardo; Calabrò, Paolo; Russo, Maria Giovanna; Nigro, Gerardo
2015-04-01
The aim of our study was to identify the early hemodynamic predictors of head-up tilt test (HUTT) outcome in healthy patients with recurrent unexplained syncope. The study involved 95 patients (mean age 38 ± 15; 42 male) who were referred for the evaluation of the syncopal episodes from October 2012 to May 2013. According to the nitroglycerin-potentiated diagnostic tilt test response, the study population was divided into two groups: HUTT+ Group (61 patients, mean age 37 ± 10; 27 male) and HUTT- Group (34 patients, mean age 38 ± 11; 15 male) with no tilt-induced syncope. Finger arterial blood pressure (BP) was recorded during tilt testing. Left ventricular stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) were computed from the pressure pulsations. After nitroglycerin administration, the HUTT+ Group showed a significant increase in heart rate (92.0 ± 7.3 beats/min vs 68.9 ± 8.7 beats/min, P < 0.0001), with well-maintained systolic BP (111.6 ± 14.1 mm Hg vs 108.8 ± 11.5 mm Hg; P = 0.332) and diastolic BP (66.1 ± 8.5 mm Hg vs 63.1 ± 6.9 mm Hg; P = 0.0913); a significant decrease in SV (53.9 ± 8.0 mL vs 78.6 ± 8.2 mL; P < 0.0001) and CO (4.0 ± 0.5 L/min vs 5.8 ± 1.0 L/min; P < 0.001), and a significant increase in TPR (1.3 ± 0.3 U vs 0.9 ± 0.2 U, P < 0.0011). We tested three hemodynamic parameters (SV, CO, and TPR) as predictors of positive tilt test response with receiver-operating characteristic curve analysis. Our results show that, 2 minutes after nitroglycerin administration, a statistically significant decrease of SV values (<67 mL) strongly predicts (area under the curve, 0.985; P < 0.0001) the HUTT-positive response in healthy patients with recurrent unexplained syncope. © 2015 Wiley Periodicals, Inc.
Graizer, V.
2006-01-01
Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.
NASA Technical Reports Server (NTRS)
Meyer, H.
1973-01-01
Paper honeycomb is used for the construction of conventional, propeller-type, windmill blades. Using fairly simple techniques and conventional power tools, it is possible to shape both simple foils and more complex foils with or without tapered plan forms and with or without varying profiles. A block of honeycomb, in its compressed form, is mounted on a wedge and run through a bandsaw with the table at an appropriate tilt angle. It is the combination of the wedge angle and the table angle that gives the tapered planform and profile shape. Next the honeycomb is expanded on the shaft and jigged to give the desired angles of attack. With the honeycomb fixed in position, the blade is covered with a fine weave fiberglass cloth. Any surface quality can then be achieved with filling and sanding.
Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1992-01-01
The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.
Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow.
Henderson, A Cortney; Levin, David L; Hopkins, Susan R; Olfert, I Mark; Buxton, Richard B; Prisk, G Kim
2006-08-01
Head-down tilt has been shown to increase lung water content in animals and alter the distribution of ventilation in humans; however, its effects on the distribution of pulmonary blood flow in humans are unknown. We hypothesized that head-down tilt would increase the heterogeneity of pulmonary blood flow in humans, an effect analogous to the changes seen in the distribution of ventilation, by increasing capillary hydrostatic pressure and fluid efflux in the lung. To test this, we evaluated changes in the distribution of pulmonary blood flow in seven normal subjects before and after 1 h of 30 degrees head-down tilt using the magnetic resonance imaging technique of arterial spin labeling. Data were acquired in triplicate before tilt and at 10-min intervals for 1 h after tilt. Pulmonary blood flow heterogeneity was quantified by the relative dispersion (standard deviation/mean) of signal intensity for all voxels within the right lung. Relative dispersion was significantly increased by 29% after tilt and remained elevated during the 1 h of measurements after tilt (0.84 +/- 0.06 pretilt, 1.09 +/- 0.09 calculated for all time points posttilt, P < 0.05). We speculate that the mechanism most likely responsible for our findings is that increased pulmonary capillary pressures and fluid efflux in the lung resulting from head-down tilt alters regional blood flow distribution.
A novel psychophysiological treatment for vasovagal syncope.
Khurana, R K; Lynch, J J; Craig, F W
1997-08-01
The objective of this study was to evaluate the efficacy of transactional psychophysiological therapy (TPT) in a patient with recurrent vasovagal syncope (VVS) and to quantify the capacity of human dialogue to effect significant and consistent measurable therapeutic cardiovascular (CV) changes. A 31-year-old nurse with recurrent VVS and a reproducibly abnormal tilt-table test was refractory to pharmacological and conventional psychiatric treatments. She was treated with TPT. Her CV responses during psychotherapy were incorporated into the dialogue as an important source of communicative information, and she was taught psychophysiological techniques to correct exaggerated CV responses. These responses, during 16 weekly and 12 subsequent monthly sessions, were analysed using a one-way multiple analysis of variance. As TPT progressed, the magnitude and lability of CV responses as well as frequency of VVS were reduced. She has been relatively asymptomatic for 14 years posttherapy. In conclusion, (1) TPT may be an effective primary/adjunctive treatment for patients with VVS; (2) TPT may reduce syncopal episodes, perhaps by normalizing limbic input to the brainstem baroreflex system.
A Wind-Tunnel Investigation of Tilt-Rotor Gust Alleviation Systems
NASA Technical Reports Server (NTRS)
Ham, N. D.; Whitaker, H. P.
1978-01-01
The alleviation of the effects of gusts on tilt rotor aircraft by means of active control systems was investigated. The gust generator, the derivation of the equations of motion of the rotor wing combination, the correlation of these equations with the results of wind tunnel model tests, the use of the equations to design various gust alleviating active control systems, and the testing and evaluation of these control systems by means of wind tunnel model tests were developed.
Tests for z-direction fibre orientation in paper
David W. Vahey; John M. Considine
2010-01-01
Fibres that acquire a z-direction tilt in the forming process help bond adjacent strata of the paper sheet, increasing z-direction shear. Fibre tilt manifests itself as a measurement difference when directionally sensitive tests are conducted âtoward headboxâ or âtoward reel.â Seven of eight different paper grades ranging in grammage from 73 to 268 g/m2...
Rajta, Istvan; Huszánk, Robert; Szabó, Atilla T T; Nagy, Gyula U L; Szilasi, Szabolcs; Fürjes, Peter; Holczer, Eszter; Fekete, Zoltan; Járvás, Gabor; Szigeti, Marton; Hajba, Laszlo; Bodnár, Judit; Guttman, Andras
2016-02-01
Design, fabrication, integration, and feasibility test results of a novel microfluidic cell capture device is presented, exploiting the advantages of proton beam writing to make lithographic irradiations under multiple target tilting angles and UV lithography to easily reproduce large area structures. A cell capture device is demonstrated with a unique doubly tilted micropillar array design for cell manipulation in microfluidic applications. Tilting the pillars increased their functional surface, therefore, enhanced fluidic interaction when special bioaffinity coating was used, and improved fluid dynamic behavior regarding cell culture injection. The proposed microstructures were capable to support adequate distribution of body fluids, such as blood, spinal fluid, etc., between the inlet and outlet of the microfluidic sample reservoirs, offering advanced cell capture capability on the functionalized surfaces. The hydrodynamic characteristics of the microfluidic systems were tested with yeast cells (similar size as red blood cells) for efficient capture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Fiber Bragg grating based tilt sensor suitable for constant temperature room
NASA Astrophysics Data System (ADS)
Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng
2015-07-01
Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10-5 ° (that is, 0.08% of the measuring range).
Reduced Baroreflex Sensitivity in Cluster Headache Patients.
Barloese, Mads C J; Mehlsen, Jesper; Brinth, Louise; Lundberg, Helena I S; Jennum, Poul J; Jensen, Rigmor H
2015-06-01
Important elements of cluster headache (CH) pathophysiology may be seated in the posterior hypothalamus. Cranial autonomic features are inherent, but involvement of systemic autonomic control is still debated. We aimed to characterize autonomic function as investigated by baroreflex sensitivity (BRS) in CH patients. Twenty-six active CH patients and an equal number of age-, sex-, and BMI-matched controls underwent head-up tilt table test and BRS was determined by the sequence method. Compared with controls, patients exhibited a blunted reactivity of RR intervals in response to falls and increases in systolic blood pressure (SBP) (15.3 vs. 20.0 ms/mmHg, P = .0041) in the supine position. Also, compared with controls, BRS was lower in patients having suffered an attack within the past 12 hours (n = 13, 12.5 vs. 22.3 ms/mmHg, P = .0091), opposed to those patients who had not (n = 13, 16.0 ms/mmHg, P = .1523). In the tilted position, the drop in SBP at the carotid sinuses was higher in patients who had recently suffered an attack. Despite this, they exhibited a less marked shortening of RR intervals when compared with patients who had been attack free for longer. CH patients exhibit a subclinical blunting of BRS that may be affected by the attacks themselves. The fast RR interval fluctuations used in this method reflects cardiovagal responses, thus the blunted responses are suggestive of dysfunction in the parasympathetic division of the autonomic nervous system or in the central relay of impulses from the baroreceptors. © 2015 American Headache Society.
A blended wing body airplane with a close-coupled, tilting tail
NASA Astrophysics Data System (ADS)
Nasir, R. E. M.; Mazlan, N. S. C.; Ali, Z. M.; Wisnoe, W.; Kuntjoro, W.
2016-10-01
This paper highlights a novel approach to stabilizing and controlling pitch and yaw motion via a set of horizontal tail that can act as elevator and rudder. The tail is incorporated into a new design of blended wing body (BWB) aircraft, known as Baseline-V, located just aft of the trailing edge of its inboard wing. The proposed close-coupled tail is equipped with elevators that deflect in unison, and can tilt - an unusual means of tilting where if starboard side is tilted downward at k degree, and then the portside must be tilted upward at k degree too. A wind tunnel experiment is conducted to investigate aerodynamics and static stability of Baseline-V BWB aircraft. The model is being tested at actual flight speed of 15 m/s (54 km/h) with varying angle of attack for five elevator angle cases at zero tilt angle and varying sideslip angle for four tilt angle cases at one fixed elevator angle. The result shows that the aircraft's highest lift-to-drag ratio is 32. It is also found that Baseline-V is statically stable in pitch and yaw but has no clear indication in terms of roll stability.
Baier, Bernhard; Thömke, Frank; Wilting, Janine; Heinze, Caroline; Geber, Christian; Dieterich, Marianne
2012-10-24
The perceived subjective visual vertical (SVV) is an important sign of a vestibular otolith tone imbalance in the roll plane. Previous studies suggested that unilateral pontomedullary brainstem lesions cause ipsiversive roll-tilt of SVV, whereas pontomesencephalic lesions cause contraversive roll-tilts of SVV. However, previous data were of limited quality and lacked a statistical approach. We therefore tested roll-tilt of the SVV in 79 human patients with acute unilateral brainstem lesions due to stroke by applying modern statistical lesion-behavior mapping analysis. Roll-tilt of the SVV was verified to be a brainstem sign, and for the first time it was confirmed statistically that lesions of the medial longitudinal fasciculus (MLF) and the medial vestibular nucleus are associated with ipsiversive tilt of the SVV, whereas contraversive tilts are associated with lesions affecting the rostral interstitial nucleus of the MLF, the superior cerebellar peduncle, the oculomotor nucleus, and the interstitial nucleus of Cajal. Thus, these structures constitute the anatomical pathway in the brainstem for verticality perception. Present data indicate that graviceptive otolith signals present a predominant role in the multisensory system of verticality perception.
Computer-based simulation of the Bielschowsky head-tilt test using the SEE++ software system.
Kaltofen, Thomas; Buchberger, Michael; Priglinger, Siegfried
2008-01-01
Latest measurements of the vestibulo-ocular reflex (VOR) allowed the integration of the simulation of the Bielschowsky head-tilt test (BHTT) into the SEE++ software system. SEE++ realizes a biomechanical model of the human eye in order to simulate eye motility disorders and strabismus surgeries. With the addition of the BHTT it can now also be used for differential-diagnostic simulations of complex disorders (e.g., superior oblique palsies). In order to simulate the BHTT in SEE++, the user can freely choose the desired head-tilt angle from -45 degrees to +45 degrees. The chosen angle is shown in the 3D view with a human body model and is also used in the calculation of the Hess-Lancaster test. The integration of the BHTT offers an additional improvement of the possibilities for simulating eye motility disorders. Moreover, SEE++ allows the creation of a video of the "virtual patient" while tilting the head from one side to the other, which shows dynamic changes in the simulated Hess-diagrams. Comparisons of simulation results with patient-measured data showed a good correlation between the simulated and the measured data. Further comparisons with patient data are planned.
A tilted and warped inner accretion disc around a spinning black hole: an analytical solution
NASA Astrophysics Data System (ADS)
Chakraborty, Chandrachur; Bhattacharyya, Sudip
2017-08-01
Inner accretion disc around a black hole provides a rare, natural probe to understand the fundamental physics of the strong gravity regime. A possible tilt of such a disc, with respect to the black hole spin equator, is important. This is because such a tilt affects the observed spectral and timing properties of the disc X-ray emission via Lense-Thirring precession, which could be used to test the theoretical predictions regarding the strong gravity. Here, we analytically solve the steady, warped accretion disc equation of Scheurer and Feiler, and find an expression of the radial profile of the disc tilt angle. In our exact solution, considering a prograde disc around a slowly spinning black hole, we include the inner part of the disc, which was not done earlier in this formalism. Such a solution is timely, as a tilted inner disc has recently been inferred from X-ray spectral and timing features of the accreting black hole H1743-322. Our tilt angle radial profile expression includes observationally measurable parameters, such as black hole mass and Kerr parameter, and the disc inner edge tilt angle Win, and hence can be ideal to confront observations. Our solution shows that the disc tilt angle in 10-100 gravitational radii is a significant fraction of the disc outer edge tilt angle, even for Win = 0. Moreover, tilt angle radial profiles have humps in ˜10-1000 gravitational radii for some sets of parameter values, which should have implications for observed X-ray features.
Transfer orbit stage mechanisms thermal vacuum test
NASA Technical Reports Server (NTRS)
Oleary, Scott T.
1990-01-01
A systems level mechanisms test was conducted on the Orbital Sciences Corp.'s Transfer Orbit Stage (TOS). The TOS is a unique partially reusable transfer vehicle which will boost a satellite into its operational orbit from the Space Shuttle's cargo bay. The mechanical cradle and tilt assemblies will return to earth with the Space Shuttle while the Solid Rocket Motor (SRM) and avionics package are expended. A mechanisms test was performed on the forward cradle and aft tilting assemblies of the TOS under thermal vacuum conditions. Actuating these assemblies under a 1 g environment and thermal vacuum conditions proved to be a complex task. Pneumatic test fixturing was used to lift the forward cradle, and tilt the SRM, and avionics package. Clinometers, linear voltage displacement transducers, and load cells were used in the thermal vacuum chamber to measure the performance and characteristics of the TOS mechanism assembly. Incorporation of the instrumentation and pneumatic system into the test setup was not routine since pneumatic actuation of flight hardware had not been previously performed in the facility. The methods used are presented along with the problems experienced during the design, setup and test phases.
NASA Astrophysics Data System (ADS)
Pei, Hua-Fu; Yin, Jian-Hua; Jin, Wei
2013-09-01
Two kinds of innovative sensors based on optical fiber sensing technologies have been proposed and developed for measuring tilts and displacements in geotechnical structures. The newly developed tilt sensors are based on classical beam theory and were successfully used to measure the inclinations in a physical model test. The conventional inclinometers including in-place and portable types, as a key instrument, are very commonly used in geotechnical engineering. In this paper, fiber Bragg grating sensing technology is used to measure strains along a standard inclinometer casing and these strains are used to calculate the lateral and/or horizontal deflections of the casing using the beam theory and a finite difference method. Finally, the monitoring results are verified by laboratory tests.
Cardiopulmonary readjustments in passive tilt
NASA Technical Reports Server (NTRS)
Matalon, S. V.; Farhi, L. E.
1979-01-01
The readjustment of cardiopulmonary variables in human volunteers at various tilt angles on a tilt board is studied. Five healthy subjects (18-31 yr) with thorough knowledge of the experimental protocol are tested, passively tilted from the supine to the upright position in 15-deg increments in random sequence. The parameters measured are cardiac output (Q), heart rate (HR), stroke volume (SV), minute and alveolar ventilation /V(E) and V(A)/, functional residual capacity (FRC), and arterial-end-tidal P(CO2) pressure difference. It is found that changes in Q and FRC are linearly related to the sine of the tilt angle, indicating that either reflexes are absent or their net effect is proportional to the effects of gravity. This is clearly not the case for other variables /HR, SV, V(E), V(A)/, where it is possible to demonstrate threshold values for the appearance of secondary changes.
Effect of longitudinal physical training and water immersion on orthostatic tolerance in men
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Dunn, E. R.; Nesvig, C.; Keil, L. C.; Harrison, M. H.
1988-01-01
The effect of six months of moderately intense aerobic training on 60-deg head-up tilt tolerance was assessed before and after 6 hrs of water-immersion deconditioning by comparing the orthostatic and fluid-electrolyte-endocrine responses of five male subjects before and after these tests. It was found that six months of training has no significant effect on 60-deg head-up tilt tolerance. Thus, during pretraining, the water immersion tilt-tolerance was found to decrease from about 74 min before to 34 min after water immersion, while during posttraining, water immersion tilt tolerance decreased from 74 min to 44 min. Fluid-electrolyte-endocrine responses were also essentially the same during all four tilts. Plasma volume decreased by 9.0 to 12.6 percent; plasma sodium and osmotic concentrations were unchanged; and serum protein and plasma renin activity increased.
Watano, Chikako; Shiota, Yuri; Onoda, Keiichi; Sheikh, Abdullah Md; Mishima, Seiji; Nitta, Eri; Yano, Shozo; Yamaguchi, Shuhei; Nagai, Atsushi
2018-02-01
The aim of this study was to evaluate the autonomic neural function in Parkinson's disease (PD) and multiple system atrophy (MSA) with head-up tilt test and spectral analysis of cardiovascular parameters. This study included 15 patients with MSA, 15 patients with PD, and 29 healthy control (HC) subjects. High frequency power of the RR interval (RR-HF), the ratio of low frequency power of RR interval to RR-HF (RR-LF/HF) and LF power of systolic BP were used to evaluate parasympathetic, cardiac sympathetic and vasomotor sympathetic functions, respectively. Both patients with PD and MSA showed orthostatic hypotension and lower parasympathetic function (RR-HF) at tilt position as compared to HC subjects. Cardiac sympathetic function (RR-LF/HF) was significantly high in patients with PD than MSA at supine position. RR-LF/HF tended to increase in MSA and HC, but decreased in PD by tilting. Consequently, the change of the ratio due to tilting (ΔRR-LF/HF) was significantly lower in patients with PD than in HC subjects. Further analysis showed that compared to mild stage of PD, RR-LF/HF at the supine position was significantly higher in advanced stage. By tilting, it was increased in mild stage and decreased in the advanced stage of PD, causing ΔRR-LF/HF to decrease significantly in the advanced stage. Thus, we demonstrated that spectral analysis of cardiovascular parameters is useful to identify sympathetic and parasympathetic disorders in MSA and PD. High cardiac sympathetic function at the supine position, and its reduction by tilting might be a characteristic feature of PD, especially in the advanced stage.
[Abnormal head turn in a patient with Brown's syndrome].
van Waveren, M; Krzizok, T; Besch, D
2008-08-01
We report on an eight-year-old boy, who was presented in our clinic because of head turn. The cause of the tortecollis (ocular or general) in this case was and still cannot be explained. Only by applying extensive prism adaptation tests it was possible to prove the ocular character of the head turn. An eight-year-old boy with Brown's syndrome was referred to us because of a head tilt to the left side. Six months previously surgery on the M. obl. superior of the right eye was performed in another clinic. No improvement of the head tilt could be observed after the operation. In addition, an exotropia became decompensated. Under a 3-day occlusion of one eye, no change of the head turn and the squint could be measured. No other cause of the head turn could be found by an orthopaedist and a paediatrist. Under a prism of 20 cm/m basis in and 10 cm/m basis against the positive vertical deviation, the head tilt decreased, so that we decided to do a second surgery. The head tilting had not resumed at one year after the surgery. Although the initial diagnostic findings ruled out an ocular cause, it was possible to lessen the head tilting with the aid of the prism adaptation test. This case study emphasises the usefulness of a prism adaptation test of several days duration in order to validate an ocular cause of head turn and to determine an adequate indication for surgery.
Henley, Charles E; Ivins, Douglas; Mills, Miriam; Wen, Frances K; Benjamin, Bruce A
2008-01-01
Background The relationship between osteopathic manipulative treatment (OMT) and the autonomic nervous system has long been acknowledged, but is poorly understood. In an effort to define this relationship, cervical myofascial release was used as the OMT technique with heart rate variability (HRV) as a surrogate for autonomic activity. This study quantifies that relationship and demonstrates a cause and effect. Methods Seventeen healthy subjects, nine males and eight females aged 19–50 years from the faculty, staff, and students at Oklahoma State University Center for Health Sciences College of Osteopathic Medicine, acted as their own controls and received interventions, administered in separate sessions at least 24 hours apart, of cervical myofascial OMT, touch-only sham OMT, and no-touch control while at a 50-degree head-up tilt. Each group was dichotomized into extremes of autonomic activity using a tilt table. Comparisons were made between measurements taken at tilt and those taken at pre- and post-intervention in the horizontal. The variance of the spectral components of HRV, expressed as frequencies, measured the response to change in position of the subjects. Normalized low frequency (LF) and high frequency (HF) values, including LF/HF ratio, were calculated and used to determine the effect of position change on HRV. Results Predominantly parasympathetic responses were observed with subjects in the horizontal position, while a 50-degree tilt provided a significantly different measure of maximum sympathetic tone (p < 0.001). Heart rate changed in all subjects with change in position; respirations remained constant. When OMT was performed in a sympathetic environment (tilt), a vagal response was produced that was strong enough to overcome the sympathetic tone. There was no HRV difference between sham and control in either the horizontal or tilt positions. Conclusion The vagal response produced by the myofascial release procedure in the maximally stimulated sympathetic environment could only have come from the application of the OMT. This demonstrates the association between OMT and the autonomic nervous system. The lack of significance between control and sham in all positions indicates that HRV may be a useful method of developing sham controls in future studies of OMT. Trial registration clinicaltrials.gov NCT00516984. PMID:18534024
Coupé, Mickael; Bai, Yanqiang; Gauquelin-Koch, Guillemette; Jiang, Shizhong; Aubry, Patrick; Wan, Yumin; Custaud, Marc-Antoine; Li, Yinghui
2012-01-01
We quantified the impact of 60-day head-down bed rest (HDBR) with countermeasures on arterial and venous response to tilt. Methods: Twenty-one males: 7 control (Con), 7 resistive vibration exercise (RVE) and 7 Chinese herb (Herb) were assessed. Subjects were identified as finisher (F) or non-finishers (NF) at the post-HDBR 20-min tilt test. The cerebral (MCA), femoral (FEM) arterial flow velocity and leg vascular resistance (FRI), the portal vein section (PV), the flow redistribution ratios (MCA/FEM; MCA/PV), the tibial (Tib), gastrocnemius (Gast), and saphenous (Saph) vein sections were measured by echography and Doppler ultrasonography. Arterial and venous parameters were measured at 3-min pre-tilt in the supine position, and at 1 min before the end of the tilt. Results: At post-HDBR tilt, MCA decreased more compared with pre-HDBR tilt in the Con, RVE, and Herb groups, the MCA/FEM tended to decrease in the Con and Herb groups (not significant) but remained stable in the RVE gr. FRI dropped in the Con gr, but remained stable in the Herb gr and increased in the RVE gr. PV decreased less in the Con and Herb groups but remained unchanged in the RVE gr. MCA/PV decreased in the Con and Herb groups, but increased to a similar extent in the RVE gr. Gast section significantly increased more in the Con gr only, whereas Tib section increased more in the Con and Herb groups but not in the RVE gr. The percent change in Saph section was similar at pre- and post-HDBR tilt. Conclusion: In the Con gr, vasoconstriction was reduced in leg and splanchnic areas. RVE and Herb contributed to prevent the loss of vasoconstriction in both areas, but the effect of RVE was higher. RVE and Herb contributed to limit Gast distension whereas only RVE had a protective effect on the Tib. PMID:22412933
NASA Astrophysics Data System (ADS)
Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre
In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the test protocol. The subjects were subjected to a passive tilt test of 60 degrees, during 15 minutes. The results show that cosmonauts clearly have a statistically significantly reduced ocular counter rolling during rotation upon return from space, when compared to the pre-flight condition, indicating a reduced sensitivity of the otolith system to gravito intertial acceleration. None of the subjects fainted or even approached presyncope. However, the resistance in the calf, measured with the impedance method, showed a significant increased pooling in the lower limbs. Additionally, this was statistically significantly correlated (p=0.024) with a reduced otolith response, when comparing for each subject the vestibular and autonomic data. This result shows that the vestibulo-autonomic reflex is reduced after 6 months of spaceflight. When compared with Neurolab, the otolith response in the current group of crew members that were not subjected to in-flight centrifugation is significantly reduced, corroborating the hypothesis that in-flight artificial gravity may be of great importance to mitigate the deleterious effects of microgravity. Projects are funded by PRODEX-BELSPO, ESA, IBMP
Large scale static tests of a tilt-nacelle V/STOL propulsion/attitude control system
NASA Technical Reports Server (NTRS)
1978-01-01
The concept of a combined V/STOL propulsion and aircraft attitude control system was subjected to large scale engine tests. The tilt nacelle/attitude control vane package consisted of the T55 powered Hamilton Standard Q-Fan demonstrator. Vane forces, moments, thermal and acoustic characteristics as well as the effects on propulsion system performance were measured under conditions simulating hover in and out of ground effect.
Reducing tilt-to-length coupling for the LISA test mass interferometer
NASA Astrophysics Data System (ADS)
Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.
2018-05-01
Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of ±25 μm rad‑1 for interfering beams with relative angles of up to ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.
A new ankle laxity tester and its use in the measurement of the effectiveness of taping.
Kirk, T; Saha, S; Bowman, L S
2000-12-01
Damage to the lateral ligaments of the ankle, namely the anterior talofibular (ATFL) and the calcaneofibular (CFL) ligaments, is a frequently reported sports injury. The anterior drawer test is generally used to evaluate whether the ATFL has been torn, while the talar tilt test is used to determine if the CFL has been injured. Although these two manual tests are often utilized for quick diagnosis, they have been criticized because of their subjective nature and their inability to produce quantitative and reproducible results. A prototype ankle tester was manufactured that could measure the input force and torque, as well as the linear and angular deprivations for the anterior drawer test and the talar tilt test, respectively. This device was used to take readings on 10 human volunteers of a mean age of 21.6 years. This device was X-ray compatible, adjustable for varying patient sizes, relatively small, portable, and easy to operate. Testing was performed to determine how the stiffness of the ankle would respond to taping, and the effect of walking on the taped ankle. The overall mean anterior drawer was 5.93 mm and the mean talar tilt was 51.6 degrees for bare ankles using a force of 111 N (25 lbs) for the drawer and a torque of 16 N m for the tilt. Taping provided an average increase in stiffness of 11.3%, demonstrating that it did provide increased stability. However, statistically significant (P<0.05) decreases in the stiffness subsequent to taping were observed between the initially taped ankles and after 20 min of walking, when it was shown that talar tilt had increased. The prototype ankle tester produced repeatable measurements, and results show that the increase in stiffness due to taping did decrease after a short period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.
This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emissionmore » reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.« less
de Carvalho, Isabela Feitosa; Leme, Gianluca Loyolla Montanari; Scheicher, Marcos Eduardo
2018-01-01
The aim of the study was to investigate the effect of balance training with Nintendo Wii technology, with and without the use of additional sensory information (subpatellar bandage), in the functional mobility and gait speed of elderly female fallers. Twenty elderly women were divided into two groups: group I: trained with the use of the Nintendo Wii; group II: trained using the Nintendo Wii and the addition of sensory information (subpatellar bandage). The functional mobility was assessed with the Timed up and Go test (TUG) and gait speed with the 10 m test. The tests were carried out with and without the use of the subpatellar bandage. The training was carried out within sessions of 30 minutes, twice a week, using three different games ( Penguin Slide , Table Tilt , and Tightrope ). There was an increase in the gait speed and a decrease in the TUG time in both groups, independently of the sensory condition used ( p < 0.05). In the short term, the subpatellar bandage improved the TUG time ( p < 0.05) and the gait speed ( p < 0.01). The training for postural balance with virtual reality was effective for improving functional mobility and gait speed of elderly female fallers. The subpatellar bandage did not maximize the effect of training.
First results of a polychromatic artificial sodium star for the correction of tilt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, H.; Foy, R..; Tallon, M.
1996-03-06
This paper presents the first results of a joint experiment carried out at Lawrence Livermore National Laboratory during January, 1996. Laser and optical systems were tested to provide a polychromatic artificial sodium star for the correction of tilt. This paper presents the results of that experiment.
Hamstring muscle length and pelvic tilt range among individuals with and without low back pain.
Fasuyi, Francis Oluwafunsho; Fabunmi, Ayodele A; Adegoke, Babatunde O A
2017-04-01
Hamstring tightness has been documented not to be related to the pelvic tilt position during static standing posture, but there is limited data on the relationship between hamstring muscle length (HML) and pelvic tilt range (PTR) during the dynamic movement of forward bending. This ex-post facto study was designed to compare each of HML and PTR in individuals with low back pain (LBP) and counterparts without LBP, and the relationship between HML and PTR in individuals with and without LBP. The study involved 30 purposively recruited individuals with LBP and 30 height and weight-matched individuals without LBP. Participants' PTR and HML were assessed using digital inclinometer and active knee extension test respectively. Data were analyzed using t-test and Pearson Correlation (r) at α = 0.05. Participants without LBP had significantly longer (p = 0.01) HML than those with LBP but the PTR of both groups were not significantly different. HML and PTR had indirect but not significant correlations in participants with and without LBP. Hamstring muscle length is significantly reduced in individuals with LBP but it has no significant correlation with pelvic tilt range. Pelvic tilt range reduces as hamstring muscle length increases. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Dynamics of ECG voltage in changing gravity].
Saltykova, M M; At'kov, O Iu; Capderou, A; Morgun, V V; Gusakov, V A; Kheĭmets, G I; Konovalov, G A; Kondratiuk, L L; Kataev, Iu V; Voronin, L I; Kaspranskiĭ, R R; Vaida, P
2006-01-01
Comparative analysis of the QRS voltage response to gravity variations was made using the data about 26 normal human subjects collected in parabolic flights (CNERS-AIRBUS A300 Zero-G, n=23; IL-76MD, n=3) and during the tilt test (head-up tilt at 70 degrees for a min and head-down tilt at-15 degrees for 5 min, n=14). Both the parabolic flights and provocative tilt tests affected R-amplitude in the Z lead. During the hypergravity episodes it was observed in 95% of cases with the mean gain of 16% and maximal--56%. On transition to the horizontal position, the Rz-amplitude showed a rise in each subject (16% on the average). In microgravity, the Rz-amplitude reduced in 95% of the observations. The voltage decline averaged 18% and reached 49% at the maximum. The head-down tilt was conducive to Rz reduction in 78% of observations averaging 2%. Analysis of the ECG records under changing gravity when blood redistribution developed within few seconds not enough for serious metabolic shifts still revealed QRS deviations associated exclusively with the physical factors, i.e., alteration in tissue conduction and distance to electrodes. Our findings can stand in good stead in evaluation of the dynamics of predictive ECG parameters during long-term experiments leading to changes as in tissue conduction, so metabolism.
TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.
Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V
2017-08-01
Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.
Road Cycling and Mountain Biking Produces Adaptations on the Spine and Hamstring Extensibility.
Muyor, J M; Zabala, M
2016-01-01
The purposes of this study were as follows: 1) to analyse the influence of training in road cycling or cross-country mountain biking on sagittal spinal curvatures, pelvic tilt and trunk inclination in cyclists of both cycling modalities; 2) to evaluate the specific spinal posture and pelvic tilt adopted on the road bicycle and cross-country mountain bike; and 3) to compare the spinal sagittal capacity of flexion and pelvic tilt mobility as well as hamstring muscle extensibility among road cyclists, cross-country mountain bikers and non-cyclists. Thirty matched road cyclists, 30 mountain bikers and 30 non-cyclists participated in this study. The road cyclists showed significantly greater thoracic kyphosis and trunk inclination than did the mountain bikers and non-cyclists in a standing posture. On the bicycle, the road bicycling posture was characterised by greater lumbar flexion and more significant anterior pelvic tilt and trunk inclination compared with the mountain biking posture. The thoracic spine was more flexed in mountain biking than in road cycling. Road cyclists had significantly greater hamstring muscle extensibility in the active knee extension test, and showed greater anterior pelvic tilt and trunk inclination capacity in the sit-and-reach test, compared with mountain bikers and non-cyclists. © Georg Thieme Verlag KG Stuttgart · New York.
Regional Soiling Stations for PV: Soling Loss Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
TamizhMani, G.; King, B.; Venkatesan, A.
The soiling loss factor (SLF) of photovoltaic (PV) modules/system is an interplay between the dust frequency and intensity of the site, rain frequency and intensity of the site, tilt angle and height of the module installation, and wind speed and humidity of the site. The integrated area of the downward peaks of the SLF time series plots for a year provides the annual soiling loss for the system at each tilt angle. Sandia National Laboratories, in collaboration with Arizona State University, installed five regional soiling stations around the country and collected soiling loss data over a year. Four of thesemore » soiling stations are located at the U.S. Department of Energy Regional Test Centers (Florida, Albuquerque, Colorado and Vermont), while the fifth station is located at the Arizona State University Photovoltaic Reliability Lab (Arizona). This paper presents an analysis on the SLF for each test site at ten different tilt angles. Based on the analysis of a yearlong data obtained in 2015, it appears to indicate that the Arizona site experienced the highest annual soiling loss with a significant dependence on the tilt angle while the other four sites experienced a negligibly small annual soiling loss with practically no dependence on the tilt angle.« less
Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes
NASA Technical Reports Server (NTRS)
Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.
2014-01-01
In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.
NASA Astrophysics Data System (ADS)
He, Xiaozhong; Pang, Jian; Chen, Nan; Li, Qin; Dai, Wenhua; Ma, Chaofan; Zhao, Liangchao; Gao, Feng; Dai, Zhiyong
2017-06-01
The authors previously reported that the axial B-dots can be used to directly measure the beam tilt and demonstrated that the axial B-dots are applicable to a coaxial calibration stand. In this study, a combined B-dot monitor composed of four axial B-dot loops and four azimuthal ones is tested for the simultaneous measurement of the time-varying beam current, beam offset, and beam tilt at the output of the injector of the DRAGON-I induction linac. In the experiments, the beam offset and beam tilt at the position of the monitor are proportionally adjusted using a pair of steering coils. Eight waveforms acquired from the B-dot monitor are analyzed to reconstruct the time-varying beam current, beam offset, and beam tilt. The original signals of both the azimuthal B-dot and the axial B-dot ports change significantly with respect to the current applied to the steering coils. The measured beam tilt is linearly dependent on the current applied to the steering coils and agrees well with the measured beam offset.
Astronaut McDivitt - Blood Pressure Check - Preflight Examination - Merritt Island, FL
1965-06-01
S65-19524 (1 June 1965) --- Dr. Charles A. Berry, chief of Center Medical Programs, MSC, Houston, Texas, prepares to check the blood pressure of astronaut James A. McDivitt, command pilot for the Gemini-Titan 4 spaceflight. McDivitt is on the tilt table at the Aero Medical Area, MSC, Merritt Island, where he and astronaut Edward H. White II (out of frame), GT-4 pilot, underwent preflight physicals in preparation for the four-day, 62-revolution spaceflight. The two astronauts were declared in top physical condition. In the background is Dr. Gordon Benson, NASA physician at Cape Kennedy.
Autogenic-feedback training: A countermeasure for orthostatic intolerance
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Toscano, William B.; Kamiya, Joe; Miller, Neal E.; Pickering, Thomas G.
1991-01-01
NASA has identified cardiovascular deconditioning as a serious biomedical problem associated with long-duration exposure to microgravity in space. High priority has been given to the development of countermeasures for this disorder and the resulting orthostatic intolerance experienced by crewmembers upon their return to the 1g norm of Earth. The present study was designed to examine the feasibility of training human subjects to control their own cardiovascular responses to gravitational stimulation (i.e., a tilt table). Using an operant conditioning procedure, Autogenic-Feedback Training (AFT), we would determine if subjects could learn to increase their own blood pressure voluntarily.
A comparative study of three different kinds of school furniture.
Aagaard, Jens; Storr-Paulsen, Annette
1995-05-01
Several studies indicate that the ISO standards for school furniture seem to be inappropriate, and there is increasing evidence that the inclination of the seat should be forward and that it should be possible to adjust the table-top to a certain non-horizontal angle. However, these studies have predominantly used objective measurement methods on adult subjects for short-term experiments in rather artificial surroundings. By means of structured interviews registering the school children's perception of ergonomic comfort, the present study has compared three types of school furniture-the original ISO-standard type, and two different new types characterized by forward slanting seats and tiltable desk-tops, the main difference between the two being approximately 15 cm in the height of the chair as well as the table. The study showed that the highest of the two tilting types was perceived to be significantly better than the two others in terms of table height, chair height, reading position, back-rest, and global assessment. Likewise, the feature of a tiltable table-top was considered overwhelmingly positive independently of the height of the furniture. It is recommended that school authorities, producers of school furniture, and relevant medical personnel consider these results for alternative designs of school furniture. It should be kept in mind, however, that school furniture is only one among many factors in the multifactorial field of the back health of school children.
Gradient Compression Stockings may Prevent Recovery after Bed Rest Deconditioning
NASA Technical Reports Server (NTRS)
Stenger, Michael B.; Lee, Stuart M.; Westby, Christian M.; Willig, Michael C.; Platts, Steven H.
2011-01-01
Introduction: Astronauts continue to wear a compression garment during and immediately after landing to prevent orthostatic intolerance (OI). We recently developed a custom-fitted, 3-piece garment that consists of thigh-high stockings with biker-style shorts that provides continuous, gradient compression: 55 mmHg at the ankle that decreases to approximately 20 mmHg at the top of the leg and 15 mmHg over the abdomen. This garment has been shown to be effective in preventing symptoms of OI during a short stand test after Space Shuttle missions, but symptoms may persist for several days after a long-duration mission in some astronauts. The purpose of this study was to confirm the effectiveness of wearing these elastic, gradient compression garments during orthostatic testing after 2 weeks of 6 degree head-down tilt bed rest as a model of spaceflight and to determine whether they would impact recovery after bed rest. Methods: Eight (5 treatment, 3 control) of 16 subjects have completed this study to-date. All subjects wore the 3-piece garment from waking until tilt testing (3 h) as a simulation of the timeline for astronauts on landing day (BR+0). Control subjects removed the garment after the tilt test. Treatment subjects wore the garment for the remainder of the day and wore lower compression thigh-high only garments on the day after bed rest (BR+1). Blood pressure, heart rate, and stroke volume responses to a 15-min 80 degree head-up tilt test were determined before 2 weeks of 6 degree head-down tilt, and on BR+0 and BR+1. Plasma volume (PV) was measured before each of these test sessions. Data are mean SE. Results: Compression garments prevented signs of OI on BR+0; all subjects in both groups completed the full 15-min test. Heart rate responses to tilt were lower on BR+0 than all other test days. Control subjects demonstrated a marginal PV decrease after bed rest, but showed typical recovery the day after bed rest (BR+0: 2.32 plus or minus 0.15 L to BR+1: 2.79 plus or minus 0.15 L). Treatment subjects did not recover PV the day after bed rest (BR+0: 2.61 plus or minus 0.23 L to BR+1: 2.61 plus or minus 0.23 L). Conclusion: Abdomen-high compression garments, which are effective in preventing post-bed rest orthostatic intolerance, may slow recovery of PV. Modified garments with reduced compression may be necessary to prevent prolonging recovery.
V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft
NASA Technical Reports Server (NTRS)
Soule, V. A.
1973-01-01
The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.
1959-08-15
XV-3 HOVERING ON RAMP. Flight Test of Bell XV-3 Convertiplane. Bell VTOL tilt-rotor aircraft hovering in front of building N-211 at Moffett Field. The XV-3 design combined a helicopter rotor and a wing. A 450 horsepower Pratt & Whitney piston engine drove the two rotors. The XV-3, first flown in 1955 , was the first tilt-rotor to achieve 100% tilting of rotors. The vehicle was underpowered, however, and could not hover out of ground effect. Note the large ventral fin, which was added to imrpove directional stability in cruse (Oct 1962)
A summary of wind tunnel research on tilt rotors from hover to cruise flight
NASA Technical Reports Server (NTRS)
Poisson-Quinton, PH.; Cook, W. L.
1972-01-01
An experimental research program has been conducted on a series of tilt rotors designed for a range of blade twist in various wind tunnel facilities. The objective was to obtain precise results on the influence of blade twist and aeroelasticity on tilt rotor performance, from hover to high speed cruise Mach number of about 0.7. global forces on the rotor, local loads and blade torsional deflection measurements were compared with theoretical predictions inside a large Reynolds-Mach envelope. Testing techniques developed during the program are described.
Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Xapsos, Michael A.; LaBel, Kenneth A.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kennth P.; Hakey, Mark C.; Dodd, Paul E.; Shanneyfelt, Marty R.; Schwank, James R.;
2009-01-01
A 1 GeV/u 5 6Fe ion beam allows for true 90deg tilt irradiations of various microelectronic c-0mponents and reveals relevant upset trends at the GCR Hux energy peak. Three SRAMs and an SRAM-based FPGA evaluated at the NASA Space Radiation Effects Laboratory demonstrate that a 90deg tilt irradiation yields a unique device response. These tilt angle effects need t-0 be screened for, and if found, pursued with radiation transport simulations to quantify their impact on event rate calculations.
NASA Technical Reports Server (NTRS)
Blucker, T. J.; Ferry, W. W.
1971-01-01
An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.
NASA Technical Reports Server (NTRS)
Schuller, F. T.
1975-01-01
Hydrodynamic journal stability tests were conducted with tilted-lobe bearings. The bearings had three, five, and seven lobes and length to diameter (L/D) ratios from 0.2 to 1.0. They were tested in water and MIL-L-7808G oil at 294 K (70 F) at speeds to 5400 rpm with zero load. Stability was not appreciably affected by the number of lobes and decreased with a decrease in L/D ratio. However, a three-tilted-lobe bearing with an offset factor of 0.76 and an L/D of 0.5 was more stable than a three centrally lobed bearing with an offset factor of 0.50 and an L/D of 1.0.
Does osteoporosis reduce the primary tilting stability of cementless acetabular cups?
von Schulze Pellengahr, Christoph; von Engelhardt, Lars V; Wegener, Bernd; Müller, Peter E; Fottner, Andreas; Weber, Patrick; Ackermann, Ole; Lahner, Matthias; Teske, Wolfram
2015-04-21
Cementless hip cups need sufficient primary tilting stability to achieve osseointegration. The aim of the study was to assess differences of the primary implant stability in osteoporotic bone and in bone with normal bone density. To assess the influence of different cup designs, two types of threaded and two types of press-fit cups were tested. The maximum tilting moment for two different cementless threaded cups and two different cementless press-fit cups was determined in macerated human hip acetabuli with reduced (n=20) and normal bone density (n=20), determined using Q-CT. The tilting moments for each cup were determined five times in the group with reduced bone density and five times in the group with normal bone density, and the respective average values were calculated. The mean maximum extrusion force of the threaded cup Zintra was 5670.5 N (max. tilting moment 141.8 Nm) in bone with normal density and.5748.3 N (max. tilting moment 143.7 Nm) in osteoporotic bone. For the Hofer Imhof (HI) threaded cup it was 7681.5 N (192.0 Nm) in bone with normal density and 6828.9 N (max. tilting moment 170.7 Nm) in the group with osteoporotic bone. The mean maximum extrusion force of the macro-textured press-fit cup Metallsockel CL was 3824.6 N (max. tilting moment 95.6 Nm) in bone with normal and 2246.2 N (max. tilting moment 56.2 Nm) in osteoporotic bone. For the Monoblock it was 1303.8 N (max. tilting moment 32.6 Nm) in normal and 1317 N (max. tilting moment 32.9 Nm) in osteoporotic bone. There was no significance. A reduction of the maximum tilting moment in osteoporotic bone of the ESKA press-fit cup Metallsockel CL was noticed. Results on macerated bone specimens showed no statistically significant reduction of the maximum tilting moment in specimens with osteoporotic bone density compared to normal bone, neither for threaded nor for the press-fit cups. With the limitation that the results were obtained using macerated bone, we could not detect any restrictions for the clinical indication of the examined cementless cups in osteoporotic bone.
Mihci, Ebru; Dora, Babür; Balkan, Sevin
2007-01-01
To assess the effects of the tilt test on cerebral blood flow velocity (CBFV), blood pressure, and heart rate in patients with Parkinson's disease (PD) without symptomatic orthostatic dysautonomia. Thirty patients with idiopathic PD and 15 healthy controls were included. Mean middle cerebral artery blood flow velocity (CBFV) was recorded with transcranial Doppler sonography, while systolic (SBP), diastolic (DBP), and mean (MBP) blood pressure and heart rate were measured in the supine position and after passive tilting. There was no difference in resting SBP, DBP, or MBP between patients and controls. CBFV was lower at rest in patients than in controls and dropped significantly and similarly after tilting in both groups. SBP decreased in patients during the first 5 minutes of tilting (p < 0.05), whereas it increased progressively after the first minute in controls. In patients, DBP decreased slightly and MBP dropped during the first 2 minutes, then increased. Baseline heart rate was higher in patients than in controls (p < 0.05) and increased in both groups during tilting. Our results suggest that cardiovascular responses to tilting are delayed in PD patients and that subclinical autonomic dysfunction may be present even in the absence of symptomatic orthostatic dysautonomia. Copyright 2007 Wiley Periodicals, Inc.
Furlan, R
2001-05-01
In the present manuscript the different methodologies aimed at assessing the autonomic profile in humans during a gravitational stimulus have been described. In addition, strengths and drawbacks of the tilt test in relation to occasional orthostatic intolerance were addressed. Finally, different autonomic abnormalities underlying occasional and chronic orthostatic intolerance syndromes have been schematically highlighted. The direct recording of the neural sympathetic discharge from the peroneal nerve (MSNA), in spite of its invasive nature, still represents the recognized reference to quantify the changes in the sympathetic activity to the vessels attending postural modifications. The increase of plasma norepinephrine during a tilt test is achieved by both an increase in plasma spillover and a concomitant decrease in systemic clearance. Changes in the indices of cardiac sympathetic and vagal modulation may also be quantified during a tilt test by power spectrum analysis of RR interval variability. The spectral markers of cardiac autonomic control, if evaluated concomitantly with MSNA, may contribute to assess abnormalities in the regional distribution of the sympathetic activity to the heart and the vessels. The capability of the tilt test of reproducing a vasovagal event or of inducing "false positive responses" seems to be markedly affected by the age, thus suggesting that additional or different etiopathogenetic mechanisms might be involved in the loss of consciousness in older as compared to younger subjects. In subjects suffering from occasional or habitual neurally mediated syncope an increase or, respectively, a decrease in cardiac and vascular sympathetic modulation has been documented before the loss of consciousness. In patients with pure autonomic failure, a global dysautonomia affecting both the sympathetic and the vagal modulation to the heart, seems to be present. In chronic orthostatic intolerance, the most common form of dysautonomia of young women, an abnormal regional distribution of sympathetic activity has been hypothesized during up-right posture. Indeed, during standing a blunted increase of sympathetic activity to the vessels is attended by a cardiac sympathetic overactivity leading to an exaggerated tachycardia.
Acute Effects of Hamstring Stretching on Sagittal Spinal Curvatures and Pelvic Tilt
López-Miñarro, Pedro A.; Muyor, José M.; Belmonte, Felipe; Alacid, Fernando
2012-01-01
The aim of this study was to determine acute effects of hamstring stretching in thoracic and lumbar spinal curvatures and pelvic tilt. Fifty-five adults (29.24 ± 7.41 years) were recruited for this study. Subjects performed a hamstring stretching protocol consisting of four exercises. The session consisted of 3 sets of each exercise and subjects held the position for 20 seconds with a 30-second rest period between sets and exercises. Thoracic and lumbar spinal angles and pelvic tilt were measured with a SpinalMouse in relaxed standing, sit-and-reach test and Macrae & Wright position. Hamstring extensibility was determined by active straight leg raise test and sit-and-reach score. All measures were performed before and immediately after the hamstring stretching protocol. Active straight leg raise angle and sitand-reach score significantly improved immediately after the stretching protocol (p<0.001). Greater anterior pelvic tilt (p<0.001) and lumbar flexion (p<0.05) and a smaller thoracic kyphosis in the sit-and-reach (p<0.001) were found after the stretching protocol. However, stretching produced no significant change on spinal curvatures or pelvic tilt in standing and maximal trunk flexion with knees flexed. In conclusion, static stretching of the hamstring is associated to an immediate change in the sagittal spinal curvatures and pelvic position when performing trunk flexion with knees extended, so that allowing for greater lumbar flexion and anterior pelvic tilt and lower thoracic kyphosis. Hamstring stretching is recommended prior to sport activities involving trunk flexion with the knees straight. PMID:23486214
Comparison of 70 deg tilt, LBNP, and passive standing as measures of orthostatic tolerance
NASA Technical Reports Server (NTRS)
Hyatt, K. H.; Jacobson, L. B.; Schneider, V. S.
1975-01-01
The present study was performed to assess the reliability of lower body negative pressure (LBNP) as a test of orthostatic tolerance. The need for this assessment arose from the prior observation in this laboratory that some subjects show wide day-to-day variation in heart rate responses to LBNP. The extent of these variations was so great as to raise a serious question as to the value of LBNP as a measure of study-induced alterations (e.g., those produced by bedrest or weightlessness) in orthostatic tolerance. Five healthy volunteers were subjected to a series of tests, consisting of 70 deg tilt, LBNP, and passive standing, on three occasions preceding and three occasions following a 2-week period of bedrest. Study results show that it is possible to subdivide the volunteers into subgroups which show either great or little day-to-day variability in any of the three tests. All three tests revealed bedrest-induced alterations in orthostatic tolerance quite adequately. Of the three tests studied, LBNP most frequently resulted in the largest test-induced heart rate alterations, followed by quiet standing and, finally 70 deg tilt.
Sweat patterns differ between tilt-induced reflex syncope and tilt-induced anxiety among youth.
Heyer, Geoffrey L; Harvey, Rebecca A; Islam, Monica P
2016-08-01
Profound sweating can occur with reflex-syncope and with emotional distress, but little is known about the similarities and differences between these sweat responses when they occur during orthostatic challenge. We sought to characterize and compare the sweat patterns related to tilt-induced syncope, presyncope, anxiety, and normal tilt testing. In a prospective observational study, quantitative sweat rate was measured from the abdomen, forearm, ankle, and thigh during head-upright tilt. Sweat characteristics were compared across tilt diagnoses of syncope, presyncope, anxiety, and normal testing. When anxiety and syncope/presyncope occurred during the same study (separated by ≥6 min), both were diagnosed. Our cohort comprised150 patients (15.1 ± 2.3 years; 82.9 % female) with 156 diagnoses: 76 with reflex-syncope, 31 with presyncope, 23 with anxiety, and 26 with normal results. All syncope/presyncope patients and 20 (87 %) of the anxiety patients had corresponding sweat responses. Minimal or negligible sweating occurred among patients with normal tests. Neither basal sweat (19.4 ± 4.7 versus 18.3 ± 3.7 versus 18.5 ± 3.7 nL/min/cm(2)) nor peak sweat (171 ± 47.4 versus 149.4 ± 64.4 versus 154.4 ± 59.2 nL/min/cm(2)) differed between patients with syncope, presyncope, or anxiety, p = .32 and p = .12, respectively. However, the qualitative sweat patterns related to syncope/presyncope (diffuse, smoothly contoured, symmetrical, single peaks) differed considerably from the sweat patterns related to anxiety (heterogeneous, asymmetrical, roughly contoured single-peak, multi-peak, or progressive sweat changes). The sweat patterns related to syncope/presyncope are distinguishable from the sweat patterns related to anxiety. Recognition of the different sweat patterns can inform how signs and symptoms are interpreted during clinical orthostatic challenge.
Perception of tilt and ocular torsion of vestibular patients during eccentric rotation.
Clément, Gilles; Deguine, Olivier
2010-01-04
Four patients following unilateral vestibular loss and four patients complaining of otolith-dependent vertigo were tested during eccentric yaw rotation generating 1 x g centripetal acceleration directed along the interaural axis. Perception of body tilt in roll and in pitch was recorded in darkness using a somatosensory plate that the subjects maintained parallel to the perceived horizon. Ocular torsion was recorded by a video camera. Unilateral vestibular-defective patients underestimated the magnitude of the roll tilt and had a smaller torsion when the centrifugal force was towards the operated ear compared to the intact ear and healthy subjects. Patients with otolithic-dependent vertigo overestimated the magnitude of roll tilt in both directions of eccentric rotation relative to healthy subjects, and their ocular torsion was smaller than in healthy subjects. Eccentric rotation is a promising tool for the evaluation of vestibular dysfunction in patients. Eye torsion and perception of tilt during this stimulation are objective and subjective measurements, which could be used to determine alterations in spatial processing in the CNS.
Ramsay, N; Walker, J; Tang, R; Vaghadia, H; Sawka, A
2014-03-01
The posterior longitudinal ligament (PLL) has been found to be a reliable measure of the acoustic target window for lumbar spinal anaesthesia and a predictive tool for difficult spinals. Currently, there is limited information on the PLL in the thoracic spine and its potential use for optimizing the acoustic target window during thoracic epidural placement. This study examined the effects of changes in body position on the length of the PLL as a measure of the acoustic target window for paramedian thoracic epidural access. We performed thoracic ultrasonography on 30 adult volunteers to measure the length of the PLL at the T9/10 interspace, in five different positions: P1, neutral; P2, thoracic and lumbar flexion; P3, as in position 2 with dorsal table tilt to 10°; P4, as in position 2 with 45° rightward shoulder rotation; and P5, as in position 2 with 45° leftward shoulder rotation. The mean (sd) PLL length increased significantly from 9.9 (3.9) mm in P1 to 11.7 (3.4) mm in P2, 12.9 (3.1) mm in P3, and 13.8 (4.0) mm in P4 (P<0.01, <0.01, and <0.01, respectively). The mean PLL length in P3 and P4 was also significantly longer compared with P2 (P<0.01 and 0.01, respectively). In volunteers, flexion with 10° dorsal table tilt and flexion with right rotation significantly increased the length of the ipsilateral PLL, compared with the standard flexed sitting position, as visualized by paramedian ultrasonography at the level of T9/10.
Analysis of Advanced Rotorcraft Configurations
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2000-01-01
Advanced rotorcraft configurations are being investigated with the objectives of identifying vehicles that are larger, quieter, and faster than current-generation rotorcraft. A large rotorcraft, carrying perhaps 150 passengers, could do much to alleviate airport capacity limitations, and a quiet rotorcraft is essential for community acceptance of the benefits of VTOL operations. A fast, long-range, long-endurance rotorcraft, notably the tilt-rotor configuration, will improve rotorcraft economics through productivity increases. A major part of the investigation of advanced rotorcraft configurations consists of conducting comprehensive analyses of vehicle behavior for the purpose of assessing vehicle potential and feasibility, as well as to establish the analytical models required to support the vehicle development. The analytical work of FY99 included applications to tilt-rotor aircraft. Tilt Rotor Aeroacoustic Model (TRAM) wind tunnel measurements are being compared with calculations performed by using the comprehensive analysis tool (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD 11)). The objective is to establish the wing and wake aerodynamic models that are required for tilt-rotor analysis and design. The TRAM test in the German-Dutch Wind Tunnel (DNW) produced extensive measurements. This is the first test to encompass air loads, performance, and structural load measurements on tilt rotors, as well as acoustic and flow visualization data. The correlation of measurements and calculations includes helicopter-mode operation (performance, air loads, and blade structural loads), hover (performance and air loads), and airplane-mode operation (performance).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Min; Pennycook, Stephen J.; Borisevich, Albina Y.
Octahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this study, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts. While optimal conditions for BF imaging are more restricted with respect to sample thickness and defocus, we find that BF imaging with an aberration-corrected microscopemore » with the accelerating voltage of 300 kV gives us the most accurate quantitative measurement of the oxygen column positions. Using the tilted perovskite structure of BiFeO 3 (BFO) as our test sample, we simulate BF and ABF images in a wide range of conditions, identifying the optimal imaging conditions for each mode. Finally, we show that unlike ABF imaging, BF imaging remains directly quantitatively interpretable for a wide range of the specimen mistilt, suggesting that it should be preferable to the ABF STEM imaging for quantitative structure determination.« less
Kim, Young-Min; Pennycook, Stephen J.; Borisevich, Albina Y.
2017-04-29
Octahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this study, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts. While optimal conditions for BF imaging are more restricted with respect to sample thickness and defocus, we find that BF imaging with an aberration-corrected microscopemore » with the accelerating voltage of 300 kV gives us the most accurate quantitative measurement of the oxygen column positions. Using the tilted perovskite structure of BiFeO 3 (BFO) as our test sample, we simulate BF and ABF images in a wide range of conditions, identifying the optimal imaging conditions for each mode. Finally, we show that unlike ABF imaging, BF imaging remains directly quantitatively interpretable for a wide range of the specimen mistilt, suggesting that it should be preferable to the ABF STEM imaging for quantitative structure determination.« less
Exercise Training During +Gz Acceleration
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.
1999-01-01
The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.
Comparison of cardiovascular function during the early hours of bed rest and space flight
NASA Technical Reports Server (NTRS)
Lathers, C. M.; Charles, J. B.
1994-01-01
This paper reviews the cardiovascular responses of six healthy male subjects to 6 hours in a 5 degrees head-down bed rest model of weightlessness, and compares these responses to those obtained when subjects were positioned in head-up tilts of 10 degrees, 20 degrees, and 42 degrees, simulating 1/6, 1/3, and 2/3 G, respectively. Thoracic fluid index, cardiac output, stroke volume, and peak flow were measured using impedance cardiography. Cardiac dimensions and volumes were determined from two-dimensional guided M-mode echocardiograms in the left lateral decubitus position at 0, 2, 4, and 6 hours. Cardiovascular response to a stand test were compared before and after bed rest. The impedance values were related to tilt angle for the first 2 hours of tilt; however, after 3 hours, at all four angles, values began to converge, indicating that cardiovascular homeostatic mechanisms seek a common adapted state, regardless of effective gravity level (tilt angle) up to 2/3 G. Echocardiography revealed that left ventricular end-diastolic and end-systolic volume, stroke volume, ejection fraction, heart rate, and cardiac output had returned to control values by hour 6 for all tilt angles. The lack of a significant immediate change in left ventricular end-diastolic volume, despite decrements in stroke volume (P < .05) and heart rate (not significant), indicates that multiple factors may play a role in the adaptation to simulated hypogravity. The echocardiography data indicated that no angle of tilt, whether head-down or head-up for 4 to 6 hours, mimicked exactly the changes in cardiovascular function recorded after 4 to 6 hours of space flight. Changes in left ventricular end-diastolic volume during space flight and tilt may be similar, but follow a different time course. Nevertheless, head-down tilt at 5 degrees for 6 hours mimics some (stroke volume, systolic and diastolic blood pressure, mean arterial blood pressure, and total resistance), but not all, of the changes occurring in an equivalent time of space flight. The magnitude of the change in the mean heart rate response to standing was greater after six hours of tilt at -5 degrees or 10 degrees. Thus, results from the stand test after 6 hours of bed rest at -5 degrees and 10 degrees, but not at 20 degrees or 42 degrees, are similar to those obtained after space flight.
Böhm, Harald; Hösl, Matthias; Döderlein, Leonhard
2017-05-01
Patellar tendon shortening procedure within single event multilevel surgeries was shown to improve crouch gait in Cerebral Palsy (CP) patients. However, one of the drawbacks associated to the correction of flexed knee gait may be increased pelvic anterior tilt with compensatory lumbar lordosis. Which CP patients are at risk for excessive anterior pelvic tilt following correction of flexed knee gait including patellar tendon shortening? 32 patients with CP between 8 and 18 years GMFCS I&II were included. They received patellar tendon shortenings within multilevel surgery. Patients with concomitant knee flexor lengthening were excluded. Gait analysis and clinical testing was performed pre- and 24.1 (SD=1.9) months postoperatively. Patients were subdivided into more/less than 5° increase in anterior pelvic tilt. Preoperative measures indicating m. rectus and m. psoas shortness, knee flexor over-length, hip extensor and abdominal muscle weakness and equinus gait were compared between groups. Stepwise multilinear regression of the response value increase in pelvic tilt during stance phase was performed from parameters that were significantly different between groups. 34% of patients showed more than 5° increased pelvic anterior tilt postoperatively. Best predictors for anterior pelvic tilt from preoperative measures were increased m. rectus tone and reduced hip extension during walking that explained together 39% of the variance in increase of anterior pelvic tilt. Every third patient showed considerable increased pelvic tilt following surgery of flexed knee gait. In particular patients with preoperative higher muscle tone in m. rectus and lower hip extension during walking were at risk and both features need to be addressed in the therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Tribukait, A; Bergenius, J; Brantberg, K
1998-07-01
The subjective visual horizontal (SVH) was measured by means of a small, rotatable, luminous line in darkness in the upright head and body position and at 10, 20 and 30 degrees of tilt to the right and left before, and repeatedly during a follow-up period of 1 year after intratympanic gentamicin instillations in 12 patients with recurrent vertigo attacks. This treatment caused a loss of the bithermal caloric responses on the diseased side. Shortly after treatment there was a significant tilt of SVH towards the treated side (group mean = 10.6 degrees). Repeated testing made it possible to characterize mathematically the changes with time for SVH. For the group of patients as a whole this otolithic component of vestibular compensation was best described by a power function, SVH = 8.65t(-0.16) degrees, where t is time in days after maximum tilt of SVH. After 1 year, SVH was still significantly tilted towards the treated side (group mean = 3.16 degrees). Gentamicin treatment also caused a significant reduction in the perception of head and body tilt towards the deafferented side, while the perception of tilt towards the healthy side did not show any significant changes. During follow-up there was a gradual improvement in the perception of tilt towards the treated side. However, a significant asymmetry in roll-tilt perception was still present 1 year after deafferentation. There was no correlation between SVH in the upright position and roll-tilt perception, suggesting that these parameters are to some extent dependent on different afferent input from the vestibular organ. They were also found to be complementary for the detection of vestibular disturbance.
Gajek, Jacek; Zyśko, Dorota; Krzemińska, Sylwia; Mazurek, Walentyna
2009-08-01
We assessed the influence of short-term and long-term tilt training on the activity of the renin-angiotensin-aldosterone system (RAAS) in vasovagal patients. Thirty-nine patients (28 F, 11 M) aged 39.7 +/- 11.2 years with a history of vasovagal syncope and a positive head-up tilt test (HUT) were studied. Blood samples for plasma renin activity (PRA) and aldosterone (ALDO) concentration were drawn at the baseline, immediately after HUT and 10 min after HUT, during the diagnostic, the negative short-term (2-5 days) follow-up HUT and long-term (1-3 months) follow-up HUT. Tilt training was started after diagnostic HUT. In diagnostic HUT, PRA increased significantly immediately after HUT comparing to the baseline, during recovery the values did not change. ALDO concentration increased after HUT comparing to baseline and further increased during recovery. After short-term tilt training, PRA and ALDO concentrations did not significantly change compared to their corresponding values in diagnostic HUT. After long-term tilt training, PRA did not significantly change compared to the values in the diagnostic and short-term follow-up HUT. ALDO concentration also did not change significantly at the baseline and immediately after HUT, and 10 min after HUT ALDO concentration was significantly lower than after diagnostic HUT. Tilt training changes the response of RAAS to the prolonged orthostasis in vasovagal patients. The coupling between PRA and ALDO after diagnostic HUT has been found to be altered and the physiological relationship was restored after long-term tilt training. The beneficial effect of tilt training depends partially on changed RAAS activation.
NASA Technical Reports Server (NTRS)
Clement, Gilles; Wood, Scott J.
2010-01-01
This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.
Bhalala, Utpal S.; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A. G. M.; Allen, Robert H.; Acharya, Soumyadipta
2016-01-01
Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°. PMID:27003759
Bhalala, Utpal S; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A G M; Allen, Robert H; Acharya, Soumyadipta
2016-01-01
Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°.
NASA Technical Reports Server (NTRS)
Kayanickupuram, A. J.; Ramos, K. A.; Cordova, M. L.; Wood, S. J.
2009-01-01
The need to resolve new patterns of sensory feedback in altered gravitoinertial environments requires cognitive processes to develop appropriate reference frames for spatial orientation awareness. The purpose of this study was to examine deficits in spatial cognitive performance during adaptation to conflicting tilt-translation stimuli. Fourteen subjects were tilted within a lighted enclosure that simultaneously translated at one of 3 frequencies. Tilt and translation motion was synchronized to maintain the resultant gravitoinertial force aligned with the longitudinal body axis, resulting in a mismatch analogous to spaceflight in which the canals and vision signal tilt while the otoliths do not. Changes in performance on different spatial cognitive tasks were compared 1) without motion, 2) with tilt motion alone (pitch at 0.15, 0.3 and 0.6 Hz or roll at 0.3 Hz), and 3) with conflicting tilt-translation motion. The adaptation paradigm was continued for up to 30 min or until the onset of nausea. The order of the adaptation conditions were counter-balanced across 4 different test sessions. There was a significant effect of stimulus frequency on both motion sickness and spatial cognitive performance. Only 3 of 14 were able to complete the full 30 min protocol at 0.15 Hz, while 7 of 14 completed 0.3 Hz and 13 of 14 completed 0.6 Hz. There were no changes in simple visual-spatial cognitive tests, e.g., mental rotation or match-to-sample. There were significant deficits during 0.15 Hz adaptation in both accuracy and reaction time during a spatial reference task in which subjects are asked to identify a match of a 3D reoriented cube assemblage. Our results are consistent with antidotal reports of cognitive impairment that are common during sensorimotor adaptation with G-transitions. We conclude that these cognitive deficits stem from the ambiguity of spatial reference frames for central processing of inertial motion cues.
NASA Astrophysics Data System (ADS)
Polet, J.; Alvarez, K.; Elizondo, K.
2017-12-01
In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.
Design of and normative data for a new computer based test of ocular torsion.
Vaswani, Reena S; Mudgil, Ananth V
2004-01-01
To evaluate a new clinically practical and dynamic test for quantifying torsional binocular eye alignment changes which may occur in the change from monocular to binocular viewing conditions. The test was developed using a computer with Lotus Freelance Software, binoculars with prisms and colored filters. The subject looks through binoculars at the computer screen two meters away. For monocular vision, six concentric blue circles, a blue horizontal line and a tilted red line were displayed on the screen. For binocular vision, white circles replaced blue circles. The subject was asked to orient the lines parallel to each other. The difference in tilt (degrees) between the subjective parallel and fixed horizontal position is the torsional alignment of the eye. The time to administer the test was approximately two minutes. In 70 Normal subjects, average age 16 years, the mean degree of cyclodeviation tilt in the right eye was 0.6 degrees for monocular viewing conditions and 0.7 degrees for binocular viewing conditions, with a standard deviation of approximately one degree. There was no "statistically significant" difference between monocular and binocular viewing. This computer based test is a simple, computerized, non-invasive test that has a potential for use in the diagnosis of cyclovertical strabismus. Currently, there is no commercially available test for this purpose.
Vibrotactile tilt feedback improves dynamic gait index: a fall risk indicator in older adults.
Wall, Conrad; Wrisley, Diane M; Statler, Kennyn D
2009-07-01
The purpose of this study was to determine the effectiveness of vibrotactile feedback of body tilt in improving dynamic gait index (DGI) a fall risk indicator in community dwelling older adults. Twelve healthy elderly subjects (three males and nine females, age 79.7+/-5.4 yrs) were tested in an institutional balance rehabilitation laboratory to investigate changes between the feedback off and on conditions. Subjects were acutely exposed to a vibrotactile display that indicated the magnitude and direction of their body tilt from the vertical. DGI and mediolateral (ML) sway were determined during locomotion with, and without, vibrotactile tilt feedback (VTTF). All subjects were at risk for falls based on their initial DGI Score (range: 15-19, mean 17.4+/-1.56), which was taken with the vibratory stimulus turned off. Subjects learned to use the trunk tilt information from the vibrotactile feedback vest through 20-30 min of gait and balance training consisting of activities that challenged their balance. Subjects were then retested on the DGI. Statistically significant changes were demonstrated for the DGI total score while using the vibrotactile tilt feedback. DGI total scores improved from 17.1+/-0.4 to 20.8+/-0.3 (p<0.05). We conclude that vibrotactile tilt feedback improves both control of mediolateral sway during gait and dynamic gait index. Both are fall risk indicators for this population.
NASA Technical Reports Server (NTRS)
1969-01-01
A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.
Current Measurements and Overwash Monitoring Using Tilt Current Meters in Three Coastal Environments
NASA Astrophysics Data System (ADS)
Lowell, N. S.; Sherwood, C. R.; Decarlo, T. M.; Grant, J. R.
2014-12-01
Tilt Current Meters (TCMs) provide accurate, cost effective measurements of near-bottom current velocities. Many studies in coastal environments require current measurements, which are frequently made with Acoustic Doppler Profilers (ADPs). ADPs are expensive, however, and may not be suitable for locations where there is significant risk of damage, loss, or theft or where a large spatial array of measurements is required. TCMs, by contrast, are smaller, less expensive, and easier to deploy. This study tested TCMs in three sites to determine their suitability for use in research applications. TCMs are based on the drag-tilt principle, where the instrument tilts in response to current. The meter consists of a buoyant float with an onboard accelerometer, three-axis tilt sensor, three-axis magnetometer (compass), and a data logger. Current measurements are derived by post processing the tilt and compass values and converting them to velocity using empirical calibration data. Large data-storage capacity (4 GB) and low power requirements allow long deployments (many months) at high sample rates (16 Hz). We demonstrate the utility of TCM current measurements on a reef at Dongsha Atoll in the South China Sea, and in Vineyard Sound off Cape Cod, where the TCM performance was evaluated against ADP measurements. We have also used the TCM to record waves during an overwash event on a Cape Cod barrier beach during a winter storm. The TCM recorded waves as they came through the overwash channel, and the data were in agreement with the water-level record used as a reference. These tests demonstrate that TCMs may be used in a variety of near shore environments and have the potential to significantly increase the density of meters in future studies were current measurements are required.
Tilt Current Meter Field Validation in the Surf Zone
NASA Astrophysics Data System (ADS)
Anarde, K.; Myres, H.; Figlus, J.
2016-12-01
Tilt current meters (TCMs) are a low-cost way of measuring current velocities in coastal waters. They consist of a slightly buoyant floater, tilt sensor assembly, and internal logger tethered to a fixed base. TCMs measure the tilt of the sensor induced by the forces of the flowing water to infer local current velocity. They have been successfully deployed to measure unidirectional flows in rivers and slowly oscillating flows in tidally influenced bodies of water where the inertia of the instrument does not create a problem. Here we attempt to validate an array of TCMs for use in the surf zone where waves, wave bores, and alongshore currents dominate the hydrodynamics in relatively shallow water (0.3 - 2.0 m) with relatively high oscillatory frequencies. A series of test deployments using seven measuring pods outfitted with TCMs and pressure transducers were conducted in the surf zone off Galveston Island, Texas. Field experiments were supported by laboratory tests of the instrument assemblies in a moveable-bed wave flume. Instrument pod design was optimized over the series of tests to minimize issues caused by scouring, sedimentation, and overturning. The end design consists of a low-profile concrete base plate secured to the bed by sand stakes. Field measurements of tilt and bearing were calibrated against co-located acoustic Doppler velocimeter (ADV) and wave-current profiler (ADCP) measurements as well as laboratory-supplied calibration curves. While optimization of the setup is ongoing, the initial field studies show good correlation between instrument pairs. If successfully validated, the TCMs will be used as part of an instrument array designed to measure overland flow dynamics during extreme storms. Other potential uses include detailed analysis of spatial and temporal gradients in nearshore hydrodynamics such as the complex flow scenarios through tidal inlets and around barrier islands.
NASA Technical Reports Server (NTRS)
Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.
2009-01-01
Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingerle, D.; Schiebl, M.; Streli, C.
2014-08-15
As Grazing Incidence X-ray Fluorescence (GIXRF) analysis does not provide unambiguous results for the characterization of nanometre layers as well as nanometre depth profiles of implants in silicon wafers by its own, the approach of providing additional information using the signal from X-ray Reflectivity (XRR) was tested. As GIXRF already uses an X-ray beam impinging under grazing incidence and the variation of the angle of incidence, a GIXRF spectrometer was adapted with an XRR unit to obtain data from the angle dependent fluorescence radiation as well as data from the reflected beam. A θ-2θ goniometer was simulated by combining amore » translation and tilt movement of a Silicon Drift detector, which allows detecting the reflected beam over 5 orders of magnitude. HfO{sub 2} layers as well as As implants in Silicon wafers in the nanometre range were characterized using this new setup. A just recently published combined evaluation approach was used for data evaluation.« less
Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii®
Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato
2015-01-01
[Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii®. [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus® software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe’s test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii® can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii® in physical activity programs. PMID:26504308
Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii(®).
Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato
2015-09-01
[Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii(®). [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus(®) software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe's test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii(®) can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii(®) in physical activity programs.
Castellucci, H I; Arezes, P M; Molenbroek, J F M; de Bruin, R; Viviani, C
2017-01-01
The purpose of this study was to determine, using a systematic review, whether the design and/or dimensions of school furniture affect the students' physical responses and/or their performance. Of the review studies, 64% presented positive results, i.e. proven effects; 24% presented negative effects or no change/effect; and the remaining 12% showed an unclear effect. The compatibility between school furniture dimensions and students' anthropometric characteristics was identified as a key factor for improving some students' physical responses. Design characteristics such as high furniture, sit-stand furniture, and tilt tables and seats also present positive effects. Finally, we concluded that further research should be conducted exploring various aspects of those variables, particularly focusing on more objective measures complemented by controlled and prospective design. Practitioner Summary: A systematic review of the literature presents a clearly positive effect of school furniture dimensions on students' performance and physical responses. Similar results appeared when school furniture design was tested. However, studying the effects of design and dimensions together produced an unclear positive effect.
NASA Technical Reports Server (NTRS)
Gates, R. M.
1974-01-01
Results are presented of the frequency response test performed on the dynamic docking test system (DDTS) active table. Sinusoidal displacement commands were applied to the table and the dynamic response determined from measured actuator responses and accelerometers mounted to the table and one actuator.
Astronaut James A. McDivitt has blood pressure checked during preflight exam.
NASA Technical Reports Server (NTRS)
1965-01-01
S65-19524 (1 June 1965) --- Dr. Charles A. Berry, Chief of Center Medical Programs, Manned Spacecraft Center (MSC), Houston, prepares to check the blood pressure of astronaut James A. McDivitt, command pilot for the Gemini-Titan 4 space flight. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, where he and Astronaut Edward H. White II, GT-4 pilot, underwent pre-flight physicals in preparation for the 4-day, 62 revolution space flight. The two astronauts were declared in top physical condition. In the background is Dr. Gordon Benson, NASA physician at Cape Kennedy.
MS Peterson and MS Musgrave in payload bay (PLB) during EVA
NASA Technical Reports Server (NTRS)
1983-01-01
Extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson, designated EV2, translates from forward payload bay (PLB) to aft bulkhead worksite along port side sill longeron using tether and slidewire system while MS Musgrave, designated EV1, floats on a tether in center of PLB. Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table appear in front and behind Musgrave and vertical tail and Orbital Maneuvering System (OMS) pods appear in background highlighted against the cloudy surface of Earth. EMU mini workstation extravehicular activity (EVA) crewmember safety tether reel floats on Musgrave's waist tether.
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with the tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is raised into deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). ASE aft frame tilt actuator (AFTA) table supports the IUS as it is positioned in the PLB and the ASE umbilical boom drifts away from IUS toward ASE forward cradle. TDRS-C solar array panels (in stowed configuration) are visible on top of the IUS. In the background are the orbital maneuvering system (OMS) pods and the Earth's limb.
Impact of z-direction fiber orientation on performance of commercial and laboratory linerboards
David W. Vahey; John M. Considine; Roland Gleisner; Alan Rudie; Sabine Rolland du Roscoat; Jean-Francis Bloch
2009-01-01
Fibers tilted in z-direction by hydraulic forces associated with rushing or dragging the sheet can bond multiple strata together, resulting in improved out-of-plane shear strengths. Tilted fibers are difficult to identify microscopically; however, their presence can result in different measurements of Scott internal bond when tests are carried out in the two opposing...
Realtime system for GLAS on WHT
NASA Astrophysics Data System (ADS)
Skvarč, Jure; Tulloch, Simon; Myers, Richard M.
2006-06-01
The new ground layer adaptive optics system (GLAS) on the William Herschel Telescope (WHT) on La Palma will be based on the existing natural guide star adaptive optics system called NAOMI. A part of the new developments is a new control system for the tip-tilt mirror. Instead of the existing system, built around a custom built multiprocessor computer made of C40 DSPs, this system uses an ordinary PC machine and a Linux operating system. It is equipped with a high sensitivity L3 CCD camera with effective readout noise of nearly zero. The software design for the tip-tilt system is being completely redeveloped, in order to make a use of object oriented design which should facilitate easier integration with the rest of the observing system at the WHT. The modular design of the system allows incorporation of different centroiding and loop control methods. To test the system off-sky, we have built a laboratory bench using an artificial light source and a tip-tilt mirror. We present results of tip-tilt correction quality using different centroiding algorithms and different control loop methods at different light levels. This system will serve as a testing ground for a transition to a completely PC-based real-time control system.
Large scale wind tunnel investigation of a folding tilt rotor
NASA Technical Reports Server (NTRS)
1972-01-01
A twenty-five foot diameter folding tilt rotor was tested in a large scale wind tunnel to determine its aerodynamic characteristics in unfolded, partially folded, and fully folded configurations. During the tests, the rotor completed over forty start/stop sequences. After completing the sequences in a stepwise manner, smooth start/stop transitions were made in approximately two seconds. Wind tunnel speeds up through seventy-five knots were used, at which point the rotor mast angle was increased to four degrees, corresponding to a maneuver condition of one and one-half g.
V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft
NASA Technical Reports Server (NTRS)
1972-01-01
A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.
Data report for the Northeast Residential Experiment Station, Apr. 1982
NASA Astrophysics Data System (ADS)
Russell, M. C.; Raghuraman, P.; Mahoney, P. C.
1982-06-01
Physical performance data obtained from photovoltaic energy systems under test at the Northeast Residential Experiment Station (NE RES) in Concord, Massachusetts, are tabulated for the month of April 1982. Five prototype residential photovoltaic systems are under test at the NE RES, each consisting of a roof mounted array sized to meet at least 50% of the annual electrical demand of an energy conserving house, and an enclosed structure to house the remainder of the photovoltaic system equipment, test instrumentation, and work space. Each system is grid connected. In addition, one full sized PV residence, the Carlisle House, is also being monitored in Carlisle, Massachusetts. The features of the systems and of the houses, are briefly summarized, and the monthly performance of the monitored houses, PV systems, and meteorological data is tabulated. Also tabulated is hourly information for an average day of the month including data on the monitored houses and prototype systems data. Data include energy consumption, array and inverter outputs, energy supplied to and by the utility, solar array panel temperatures, and total tilt insolation. Also included are tables that present the hypothetical energy exchange between the system and the utility if each prototype system supplied energy to each monitored house. These data are also graphed, as well as the duration of time for which the load had a specific value.
Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Mcveigh, M. A.
1976-01-01
The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.
Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragile, P C; Lindner, C C; Anninos, P
2008-09-24
In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcomingmore » we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.« less
Tilted orthodontic micro implants: a photoelastic stress analysis.
Çehreli, Seçil; Özçırpıcı, Ayça Arman; Yılmaz, Alev
2013-10-01
The aim of this study was to examine peri-implant stresses around orthodontic micro implants upon torque-tightening and static load application by quasi-three-dimensional photoelastic stress analysis. Self-tapping orthodontic micro implants were progressively inserted into photoelastic models at 30, 45, 70, and 90 degrees and insertion torques were measured. Stress patterns (isochromatic fringe orders) were recorded by the quasi-three-dimensional photoelastic method using a circular polariscope after insertion and 250 g static force application. Torque-tightening of implants generated peri-implant stresses. Upon insertion, 90 degree placed implants displayed the lowest and homogeneous stress distribution followed by 30, 70, and 45 degree tilted implants. Static loading did not dramatically alter stress fields around the implants tested. The highest alteration in stress distribution was observed for the 90 degree placed implant, while 70 degree tilted implant had the lowest stresses among tilted implants. Torque-tightening of orthodontic micro implants creates a stress field that is not dramatically altered after application of static lateral moderate orthodontic loads, particularly at the cervical region of tilted implants.
Age-related disappearance of Mayer-like heart rate waves
NASA Technical Reports Server (NTRS)
Jarisch, W. R.; Ferguson, J. J.; Shannon, R. P.; Wei, J. Y.; Goldberger, A. L.
1987-01-01
The effect of age on the principal spectral components of heart rate obtained immediately after passive upright tilt was investigated in human subjects who underwent a 60-deg tilt over 9 sec. Two groups were examined, the first of which consisting of healthy male subjects aged 22-26 years, while the second was comprised of subjects aged 65-84 years on no medication; radiograms were recorded continuously beginning just prior to tilt until 3 min posttilt. The results of spectral analysis showed that elderly subjects did not exhibit the Mayer-like heart rate waves (the 0.07-0.09 Hz oscillations) that were present in the spectra of young subjects immediately after passive upright tilt. The findings are consistent with the concept of a 'dysautonomia of aging'. It is suggested that postural stress testing with spectral analysis of heart rate fluctuations may provide a useful way of assessing physiologic vs chronologic age.
Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation
NASA Technical Reports Server (NTRS)
O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.
2006-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.
NASA Technical Reports Server (NTRS)
Hadley, H.
1980-01-01
The stratospheric and mesospheric sounder (SAMS) experiment on Nimbus 7 includes a 2 axis scanning mirror and 7 pressure modulator cells. The SAMS experiment is a limb sounding instrument to measure the temperature profile and minor constituents of the atmosphere. The limb scan requires small mirror steps over a 3 deg range, while the scan in azimuth is in larger steps over a 15 deg range. The mirror is plane, 20 cm in diameter, and of zero expansion glass-ceramic. It is supported on two tilt tables, fitted one on the other, with the axes at right angles. The angle of tilt is adjusted by means of recirculating ball screws which are ion plated with lead for lubrication and driven by stepper motors. The seven gas filled cells are each pressure modulated by a 3 cm diameter, 0.3 cm stroke piston which is supported by diaphragm springs and driven electromagnetically at the system's mechanical resonant frequency. The mean pressure of the filling gas, which is the atmospheric constituent being measured, is changed by varying the temperature of a suitable molecular sieve.
Gebauer, André; Jahr, Thomas; Jentzsch, Gerhard
2007-05-01
In June 2003, a large scale injection experiment started at the Continental Deep Drilling site (KTB) in Germany. A tiltmeter array was installed which consisted of five high resolution borehole tiltmeters of the ASKANIA type, also equipped with three dimensional seismometers. For the next 11 months, 86 000 m(3) were injected into the KTB pilot borehole 4000 m deep. The average injection rate was approximately 200 l/min. The research objective was to observe and to analyze deformation caused by the injection into the upper crust at the kilometer range. A new data acquisition system was developed by Geo-Research Center Potsdam (GFZ) to master the expected huge amount of seismic and tilt data. Furthermore, it was necessary to develop a new preprocessing software called PREANALYSE for long-period time series. This software includes different useful functions, such as step and spike correction, interpolation, filtering, and spectral analysis. This worldwide unique installation offers the excellent opportunity of the separation of signals due to injection and due to environment by correlation of the data of the five stations with the ground water table and meteorological data.
Analysis of the Korean Navy Selection Process for the Naval Post Graduate School
1988-06-01
OUTCOME OF ECL TESTING SCORE..........................54 C. OUTCOME OF TOEFL TESTING SCORE.......................55 D. PLOT OF NPS GRADE WITH ECL...TESTING SCORE..............55 E. PLOT OF NPS GRADE WIHT NA GRADE......................56 F. PLOT OF NPS GRADE WITH TOEFL TESTING SCORE............56...OF ECL TESTING SCORE ............. 30 Table S. EXPECTANCY TABLE OF NAG ............................ 31 Table 9. EXPECTANCY TABLE OF TOEFL TESTING SCORE
NASA Technical Reports Server (NTRS)
1980-01-01
Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.
NASA Technical Reports Server (NTRS)
Dawson, C. R.; Omar, E.
1977-01-01
Wind tunnel test data are analysed to determine ground effects and the effectiveness of the aerodynamic control surfaces to provide a technology base for a Navy type A V/STOL airplane. Three 14CM (5.5 inch) turbopowered simulators were used to power the model which was tested primarily in the following configurations: (1) VTOL with flaps deployed, gear down, and engines tilted to 80 deg, 90 deg, and 95 deg, (2) STOL with flap and gear down and engines tilted to 50 deg; and (3) Loiter with flaps and gear up and L/C nacelles off. Data acquired during the tests are included as an appendix.
Analysis of the wind tunnel test of a tilt rotor power force model
NASA Technical Reports Server (NTRS)
Marr, R. L.; Ford, D. G.; Ferguson, S. W.
1974-01-01
Two series of wind tunnel tests were made to determine performance, stability and control, and rotor wake interaction on the airframe, using a one-tenth scale powered force model of a tilt rotor aircraft. Testing covered hover (IGE/OCE), helicopter, conversion, and airplane flight configurations. Forces and moments were recorded for the model from predetermined trim attitudes. Control positions were adjusted to trim flight (one-g lift, pitching moment and drag zero) within the uncorrected test data balance accuracy. Pitch and yaw sweeps were made about the trim attitudes with the control held at the trimmed settings to determine the static stability characteristics. Tail on, tail off, rotors on, and rotors off configurations were testes to determine the rotor wake effects on the empennage. Results are presented and discussed.
NASA Technical Reports Server (NTRS)
Newsom, William A., Jr.; Tosti, Louis P.
1959-01-01
A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
Reliability of sensor-based real-time workflow recognition in laparoscopic cholecystectomy.
Kranzfelder, Michael; Schneider, Armin; Fiolka, Adam; Koller, Sebastian; Reiser, Silvano; Vogel, Thomas; Wilhelm, Dirk; Feussner, Hubertus
2014-11-01
Laparoscopic cholecystectomy is a very common minimally invasive surgical procedure that may be improved by autonomous or cooperative assistance support systems. Model-based surgery with a precise definition of distinct procedural tasks (PT) of the operation was implemented and tested to depict and analyze the process of this procedure. Reliability of real-time workflow recognition in laparoscopic cholecystectomy ([Formula: see text] cases) was evaluated by continuous sensor-based data acquisition. Ten PTs were defined including begin/end preparation calots' triangle, clipping/cutting cystic artery and duct, begin/end gallbladder dissection, begin/end hemostasis, gallbladder removal, and end of operation. Data acquisition was achieved with continuous instrument detection, room/table light status, intra-abdominal pressure, table tilt, irrigation/aspiration volume and coagulation/cutting current application. Two independent observers recorded start and endpoint of each step by analysis of the sensor data. The data were cross-checked with laparoscopic video recordings serving as gold standard for PT identification. Bland-Altman analysis revealed for 95% of cases a difference of annotation results within the limits of agreement ranging from [Formula: see text]309 s (PT 7) to +368 s (PT 5). Laparoscopic video and sensor data matched to a greater or lesser extent within the different procedural tasks. In the majority of cases, the observer results exceeded those obtained from the laparoscopic video. Empirical knowledge was required to detect phase transit. A set of sensors used to monitor laparoscopic cholecystectomy procedures was sufficient to enable expert observers to reliably identify each PT. In the future, computer systems may automate the task identification process provided a more robust data inflow is available.
Low speed tests of a fixed geometry inlet for a tilt nacelle V/STOL airplane
NASA Technical Reports Server (NTRS)
Syberg, J.; Koncsek, J. L.
1977-01-01
Test data were obtained with a 1/4 scale cold flow model of the inlet at freestream velocities from 0 to 77 m/s (150 knots) and angles of attack from 45 deg to 120 deg. A large scale model was tested with a high bypass ratio turbofan in the NASA/ARC wind tunnel. A fixed geometry inlet is a viable concept for a tilt nacelle V/STOL application. Comparison of data obtained with the two models indicates that flow separation at high angles of attack and low airflow rates is strongly sensitive to Reynolds number and that the large scale model has a significantly improved range of separation-free operation.
40 CFR Table 3 of Subpart Aaaaaaa... - Test Methods
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Test Methods 3 Table 3 of Subpart..., Subpt. AAAAAAA, Table 3 Table 3 of Subpart AAAAAAA of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in...
40 CFR Table 3 of Subpart Aaaaaaa... - Test Methods
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Test Methods 3 Table 3 of Subpart..., Subpt. AAAAAAA, Table 3 Table 3 of Subpart AAAAAAA of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in...
40 CFR Table 3 of Subpart Aaaaaaa... - Test Methods
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Test Methods 3 Table 3 of Subpart..., Subpt. AAAAAAA, Table 3 Table 3 of Subpart AAAAAAA of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in...
40 CFR Table 3 of Subpart Aaaaaaa... - Test Methods
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Test Methods 3 Table 3 of Subpart..., Subpt. AAAAAAA, Table 3 Table 3 of Subpart AAAAAAA of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in...
40 CFR Table 3 of Subpart Aaaaaaa... - Test Methods
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Test Methods 3 Table 3 of Subpart..., Subpt. AAAAAAA, Table 3 Table 3 of Subpart AAAAAAA of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in...
NASA Technical Reports Server (NTRS)
Ream, L. W.
1974-01-01
A test program was conducted to determine the performance characteristics of gas-lubricated cruciform-mounted tilting-pad journal bearings and a damped spiral-groove thrust bearing designed for the Brayton cycle rotating unit (BRU). Hydrostatic, hybrid (simultaneously hydrostatic and hydrodynamic), and hydrodynamic tests were conducted in argon gas at ambient pressure and temperature ranges representative of operation to the 10.5 kWe BRU power-generating level. Performance of the gas lubricated bearings is presented including hydrostatic gas flow rates, bearing clearances, bearing temperatures, and transient performance.
Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Landman, Drew
2015-01-01
Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.
NASA Technical Reports Server (NTRS)
Goett, Harry J; Delaney, Noel K
1944-01-01
Report presents the results of tests of a model of a single-engine airplane with two different tilts of the propeller axis. The results indicate that on a typical design a 5 degree downward tilt of the propeller axis will considerably reduce the destabilization effects of power. A comparison of the experimental results with those computed by use of existing theory is included. A comparison of the experimental results with those computed by use of existing theory is included. It is shown that the results can be predicted with an accuracy acceptable for preliminary design purposes, particularly at the higher powers where the effects are of significant magnitude.
Van der Loos, H F Machiel; Worthen-Chaudhari, Lise; Schwandt, Douglas; Bevly, David M; Kautz, Steven A
2010-08-01
This paper presents a novel computer-controlled bicycle ergometer, the TiltCycle, for use in human biomechanics studies of locomotion. The TiltCycle has a tilting (reclining) seat and backboard, a split pedal crankshaft to isolate the left and right loads to the feet of the pedaler, and two belt-driven, computer-controlled motors to provide assistance or resistance loads independently to each crank. Sensors measure the kinematics and force production of the legs to calculate work performed, and the system allows for goniometric and electromyography signals to be recorded. The technical description presented includes the mechanical design, low-level software and control algorithms, system identification and validation test results.
Evaluation of the prototype dual-axis wall attitude measurement sensor
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1994-01-01
A prototype dual-axis electrolytic tilt sensor package for angular position measurements was built and evaluated in a laboratory environment. The objective was to investigate the use of this package for making wind tunnel wall attitude measurements for the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC). The instrumentation may replace an existing, more costly, and less rugged servo accelerometer package (angle-of-attack package) currently in use. The dual-axis electrolytic tilt sensor package contains two commercial electrolytic tilt sensors thermally insulated with NTF foam, all housed within a stainless steel package. The package is actively heated and maintained at 160 F using foil heating elements. The laboratory evaluation consisted of a series of tests to characterize the linearity, repeatability, cross-axis interaction, lead wire effect, step response, thermal time constant, and rectification errors. Tests revealed that the total RMS errors for the x-axis sensor is 0.084 degree, and 0.182 degree for the y-axis sensor. The RMS errors are greater than the 0.01 degree specification required for NTF wall attitude measurements. It is therefore not a viable replacement for the angle-of-attack package in the NTF application. However, with some physical modifications, it can be used as an inexpensive 5-degree range dual-axis inclinometer with overall accuracy approaching 0.01 degree under less harsh environments. Also, the data obtained from the tests can be valuable for wind tunnel applications of most types of electrolytic tilt sensors.
40 CFR Table B-3 to Subpart B of... - Interferent Test Concentration, Parts per Million
Code of Federal Regulations, 2012 CFR
2012-07-01
... per Million B Table B-3 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION..., Subpt. B, Table B-3 Table B-3 to Subpart B of Part 53—Interferent Test Concentration, Parts per Million Table B-3 to Subpart B of Part 53—Interferent Test Concentration,1 Parts per Million Pollutant Analyzer...
Visuospatial memory computations during whole-body rotations in roll.
Van Pelt, S; Van Gisbergen, J A M; Medendorp, W P
2005-08-01
We used a memory-saccade task to test whether the location of a target, briefly presented before a whole-body rotation in roll, is stored in egocentric or in allocentric coordinates. To make this distinction, we exploited the fact that subjects, when tilted sideways in darkness, make systematic errors when indicating the direction of gravity (an allocentric task) even though they have a veridical percept of their self-orientation in space. We hypothesized that if spatial memory is coded allocentrically, these distortions affect the coding of remembered targets and their readout after a body rotation. Alternatively, if coding is egocentric, updating for body rotation becomes essential and errors in performance should be related to the amount of intervening rotation. Subjects (n = 6) were tested making saccades to remembered world-fixed targets after passive body tilts. Initial and final tilt angle ranged between -120 degrees CCW and 120 degrees CW. The results showed that subjects made large systematic directional errors in their saccades (up to 90 degrees ). These errors did not occur in the absence of intervening body rotation, ruling out a memory degradation effect. Regression analysis showed that the errors were closely related to the amount of subjective allocentric distortion at both the initial and final tilt angle, rather than to the amount of intervening rotation. We conclude that the brain uses an allocentric reference frame, possibly gravity-based, to code visuospatial memories during whole-body tilts. This supports the notion that the brain can define information in multiple frames of reference, depending on sensory inputs and task demands.
Large micromirror array for multi-object spectroscopy in space
NASA Astrophysics Data System (ADS)
Canonica, Michael; Zamkotsian, Frédéric; Lanzoni, Patrick; Noell, Wilfried
2017-11-01
Multi-object spectroscopy (MOS) is a powerful tool for space and ground-based telescopes for the study of the formation and evolution of galaxies. This technique requires a programmable slit mask for astronomical object selection. We are engaged in a European development of micromirror arrays (MMA) for generating reflective slit masks in future MOS, called MIRA. The 100 x 200 μm2 micromirrors are electrostatically tilted providing a precise angle. The main requirements are cryogenic environment capabilities, precise and uniform tilt angle over the whole device, uniformity of the mirror voltage-tilt hysteresis and a low mirror deformation. A first MMA with single-crystal silicon micromirrors was successfully designed, fabricated and tested. A new generation of micromirror arrays composed of 2048 micromirrors (32 x 64) and modelled for individual addressing were fabricated using fusion and eutectic wafer-level bonding. These micromirrors without coating show a peak-to-valley deformation less than 10 nm, a tilt angle of 24° for an actuation voltage of 130 V. Individual addressing capability of each mirror has been demonstrated using a line-column algorithm based on an optimized voltage-tilt hysteresis. Devices are currently packaged, wire-bonded and integrated to a dedicated electronics to demonstrate the individual actuation of all micromirrors on an array. An operational test of this large array with gold coated mirrors has been done at cryogenic temperature (162 K): the micromirrors were actuated successfully before, during and after the cryogenic experiment. The micromirror surface deformation was measured at cryo and is below 30 nm peak-to-valley.
Alvim, Felipe C; Peixoto, Jennifer G; Vicente, Eduardo J D; Chagas, Paula S C; Fonseca, Diogo S
2010-01-01
There is a lack of data in the literature for determining the influences of the extensor portion of the gluteus maximus muscle on pelvic tilting and, thus, on lumbar stability. To assess the influences of the extensor portion of the gluteus maximus muscle on pelvic tilt. Ten healthy young subjects were recruited, with a body mass index (BMI) below 24.9 kg/m(2) and leg length discrepancy below 1 cm. The BMI, pelvic perimeter and lower-limb lengths were assessed and, subsequently, the degrees of hemi-pelvic tilt and asymmetry between them were analyzed using lateral view photographs of the subjects in a standing position, using SAPO (Software for Postural Assessment). Next, fatigue was induced in the extensor portion of the gluteus maximus muscle on the dominant side, and after that the hemi-pelvic tilt and the asymmetry between the hemi-pelvises were reassessed. The Pearson r and Student t tests were conducted at the significance level of alpha=0.05. There were no significant correlations between the confounding variables and asymmetry of the hemi-pelvic angles. There were significant changes in the hemi-pelvic angle of the dominant side (t=3.760; p=0.004). Fatigue in the extensor portion of the gluteus maximus muscle can generate increases in the tilt angle of the ipsilateral pelvis.
NASA Technical Reports Server (NTRS)
Furlan, R.; Porta, A.; Costa, F.; Tank, J.; Baker, L.; Schiavi, R.; Robertson, D.; Malliani, A.; Mosqueda-Garcia, R.
2000-01-01
BACKGROUND: We tested the hypothesis that a common oscillatory pattern might characterize the rhythmic discharge of muscle sympathetic nerve activity (MSNA) and the spontaneous variability of heart rate and systolic arterial pressure (SAP) during a physiological increase of sympathetic activity induced by the head-up tilt maneuver. METHODS AND RESULTS: Ten healthy subjects underwent continuous recordings of ECG, intra-arterial pressure, respiratory activity, central venous pressure, and MSNA, both in the recumbent position and during 75 degrees head-up tilt. Venous samplings for catecholamine assessment were obtained at rest and during the fifth minute of tilt. Spectrum and cross-spectrum analyses of R-R interval, SAP, and MSNA variabilities and of respiratory activity provided the low (LF, 0.1 Hz) and high frequency (HF, 0.27 Hz) rhythmic components of each signal and assessed their linear relationships. Compared with the recumbent position, tilt reduced central venous pressure, but blood pressure was unchanged. Heart rate, MSNA, and plasma epinephrine and norepinephrine levels increased, suggesting a marked enhancement of overall sympathetic activity. During tilt, LF(MSNA) increased compared with the level in the supine position; this mirrored similar changes observed in the LF components of R-R interval and SAP variabilities. The increase of LF(MSNA) was proportional to the amount of the sympathetic discharge. The coupling between LF components of MSNA and R-R interval and SAP variabilities was enhanced during tilt compared with rest. CONCLUSIONS: During the sympathetic activation induced by tilt, a similar oscillatory pattern based on an increased LF rhythmicity characterized the spontaneous variability of neural sympathetic discharge, R-R interval, and arterial pressure.
Head position modulates optokinetic nystagmus
Ferraresi, A.; Botti, F. M.; Panichi, R.; Barmack, N. H.
2011-01-01
Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5–5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, “open loop.” Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during “closed loop” HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement. PMID:21735244
Head position modulates optokinetic nystagmus.
Pettorossi, V E; Ferraresi, A; Botti, F M; Panichi, R; Barmack, N H
2011-08-01
Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5-5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, "open loop." Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during "closed loop" HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement.
Braaf, Boy; van de Watering, Thomas Christiaan; Spruijt, Kees; van der Heijde, Rob G.L.; Sicam, Victor Arni D.P.
2010-01-01
Purpose To develop a method to calculate the angle λ of the human eye using Zernike tilt measurements in specular reflection corneal topography. Methods The meaning of Zernike tilt in specular reflection corneal topography is demonstrated by measurements on translated artificial surfaces using the VU Topographer. The relationship derived from the translation experiments is used to determine the angle λ. Corneal surfaces are measured for a set of eight different fixation points, for which tilt angles ρ are obtained from the Zernike tilt coefficients. The angles ρ are used with respect to the fixation target angles to determine angle λ by fitting a geometrical model. This method is validated with Orbscan II's angle-κ measurements in 9 eyes. Results The translation experiments show that the Zernike tilt coefficient is directly related to an angle ρ, which describes a tilt orientation of the cornea and can therefore be used to derive a value for angle λ. A significant correlation exists between measured values for angle λ with the VU Topographer and the angle κ with the Orbscan II (r=0.95, P<0.001). A Bland-Altman plot indicates a mean difference of -0.52 degrees between the two instruments, but this is not statistically significant as indicated by a matched-pairs Wilcoxon signed-rank test (P≤0.1748). The mean precision for measuring angle λ using the VU topographer is 0.6±0.3 degrees. Conclusion The method described above to determine angle λ is sufficiently repeatable and performs similarly to the angle-κ measurements made with the Orbscan II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaeger, Ryan T.; Wollaber, Allan B.; Urbatsch, Todd J.
2016-02-23
Here, the non-linear thermal radiative-transfer equations can be solved in various ways. One popular way is the Fleck and Cummings Implicit Monte Carlo (IMC) method. The IMC method was originally formulated with piecewise-constant material properties. For domains with a coarse spatial grid and large temperature gradients, an error known as numerical teleportation may cause artificially non-causal energy propagation and consequently an inaccurate material temperature. Source tilting is a technique to reduce teleportation error by constructing sub-spatial-cell (or sub-cell) emission profiles from which IMC particles are sampled. Several source tilting schemes exist, but some allow teleportation error to persist. We examinemore » the effect of source tilting in problems with a temperature-dependent opacity. Within each cell, the opacity is evaluated continuously from a temperature profile implied by the source tilt. For IMC, this is a new approach to modeling the opacity. We find that applying both source tilting along with a source tilt-dependent opacity can introduce another dominant error that overly inhibits thermal wavefronts. We show that we can mitigate both teleportation and under-propagation errors if we discretize the temperature equation with a linear discontinuous (LD) trial space. Our method is for opacities ~ 1/T 3, but we formulate and test a slight extension for opacities ~ 1/T 3.5, where T is temperature. We find our method avoids errors that can be incurred by IMC with continuous source tilt constructions and piecewise-constant material temperature updates.« less
Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen
2015-01-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.
Kim, Joong-Hwi; Seo, Hye-Jung
2015-05-01
[Purpose] This study evaluated the effects of trunk-hip strengthening exercise on trunk-hip activation and pelvic tilt motion during standing in children with spastic diplegia and compared the improvement of pelvic tilt between the modified trunk-hip strengthening exercise and conventional exercise. [Subjects and Methods] Ten ambulant children with spastic diplegia were randomized to the modified trunk-hip strengthening exercise (n = 5) or conventional exercise (n = 5) group. The intervention consisted of a 6-week modified trunk-hip strengthening exercise 3 times per week. The children were tested for trunk-hip muscles activation and pelvic tilt motion during standing by surface electromyography and an inclinometer before and after the intervention. [Results] The anterior pelvic tilt angle and activation of the extensor spinae, rectus femoris, and semitendinosus during standing decreased significantly in the modified exercise group. The activation of extensor spinae differed significantly between groups. [Conclusion] Compared to the conventional exercise, the modified exercise was more effective for trunk-hip activation improvement and anterior pelvic tilt motion decrease during standing in children with spastic diplegia. We suggest clinicians use an individually tailored modified trunk-hip strengthening exercise for strengthening the weakest muscle groups in children with standing ability problems.
Endogenous circadian rhythm in vasovagal response to head-up tilt
Hu, Kun; Scheer, Frank AJL; Laker, Michael; Smales, Carolina; Shea, Steven A
2011-01-01
Background The incidence of syncope exhibits a daily pattern with more occurrences in the morning, possibly due to influences from the endogenous circadian system and/or the daily pattern of behavioral/emotional stimuli. This study tested the hypothesis that the circadian system modulates cardiovascular responses to postural stress, leading to increased susceptibility to syncope at specific times of day. Methods and Results Twelve subjects underwent a 13-day in-laboratory protocol, in which subjects’ sleep-wake cycles were adjusted to 20 hours for 12 cycles. A 15-minute title-table test (60° head-up) was performed ~4.5 hours after scheduled awakening in each cycle so that twelve tests in each subject were distributed evenly across the circadian cycle. Out of 144 tests, signs/symptoms of presyncope were observed in 21 tests in 6 subjects. These presyncope events displayed a clear circadian rhythm (P=0.028) with 17 cases (81%) in the circadian phase range corresponding to ~22:30-10:30 (4.25 times of the probability from the other half of the circadian cycle). Significant circadian rhythms were also observed in hemodynamic and autonomic function markers (blood pressure, heart rate, epinephrine, norepinephrine, and indices of cardiac vagal tone) that may underlie the circadian rhythm of presyncope susceptibility. Conclusion The circadian system affects cardiovascular responses to postural stressors resulting in greater susceptibility to presyncope during the biological night. This finding suggests that night-shift workers and people with disrupted sleep at night may have great risk of syncope due to their exposure to postural stressors during the biological night. PMID:21339480
Numerical Modeling of the Global Atmosphere
NASA Technical Reports Server (NTRS)
Arakawa, Akio; Mechoso, Carlos R.
1996-01-01
Under this grant, we continued development and evaluation of the updraft downdraft model for cumulus parameterization. The model includes the mass, rainwater and vertical momentum budget equations for both updrafts and downdrafts. The rainwater generated in an updraft falls partly inside and partly outside the updraft. Two types of stationary solutions are identified for the coupled rainwater budget and vertical momentum equations: (1) solutions for small tilting angles, which are unstable; (2) solutions for large tilting angles, which are stable. In practical applications, we select the smallest stable tilting angle as an optimum value. The model has been incorporated into the Arakawa-Schubert (A-S) cumulus parameterization. The results of semi-prognostic and single-column prognostic tests of the revised A-S parameterization show drastic improvement in predicting the humidity field. Cheng and Arakawa presents the rationale and basic design of the updraft-downdraft model, together with these test results. Cheng and Arakawa, on the other hand gives technical details of the model as implemented in current version of the UCLA GCM.
40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions
Code of Federal Regulations, 2012 CFR
2012-07-01
... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test day...
40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions
Code of Federal Regulations, 2013 CFR
2013-07-01
... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test day...
40 CFR Table B-4 to Subpart B of... - Line Voltage and Room Temperature Test Conditions
Code of Federal Regulations, 2014 CFR
2014-07-01
... Conditions B Table B-4 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Testing Performance Characteristics of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Table B-4 Table B-4 to Subpart B of Part 53—Line Voltage and Room Temperature Test Conditions Test day...
Barbaro, V; Boccanera, G; Daniele, C; Grigioni, M; Palombo, A
1995-09-01
A fatigue life test, by accelerating the beat rate, simulates several years of virtual life of a prosthetic heart valve in a short period of time. The correlation between the in vivo life of a valve and in vitro testing expectations is as yet not well established, but reproducible test conditions yield precious information about wear and failure. The paper reports a qualitative analysis of mechanical valve wear as part of a comparison program designed to investigate the significance of fatigue testing with the ultimate aim of defining standard guidelines for these type of tests. Two tilting disc valves (29 mm) were subjected to 16 years of fatigue life simulated by means of a Rowan Ash fatigue tester (accelerated rate of 1,200 bpm). Fatigue-induced effects on valve disc and ring surfaces were observed under a monitor microscope to identify wear sites and patterns. A high speed cinematographic system was used to investigate the mechanisms responsible for the wear (wear modes). Valve closure was inspected at a 6,000 frame/s rate. Because of disc rotation during the tilting movement, the points of contact between disc and ring are distributed all around the disc edge but focally on the ring. On both sides of the disc, the surfaces present ring-like concentric grooves. After 16 years of fatigue life the valves showed neither severe wear nor alteration of their fluidodynamic behavior in the pulsatile flow test.
Isometric arm counter-pressure maneuvers to abort impending vasovagal syncope.
Brignole, Michele; Croci, Francesco; Menozzi, Carlo; Solano, Alberto; Donateo, Paolo; Oddone, Daniele; Puggioni, Enrico; Lolli, Gino
2002-12-04
We hypothesized that isometric arm exercises were able to increase blood pressure (BP) during the phase of impending vasovagal syncope and allow the patient to avoid losing consciousness. Hypotension is always present during the prodromal phase of vasovagal syncope. We evaluated the effect of handgrip (HG) and arm-tensing in 19 patients affected by tilt-induced vasovagal syncope. The study consisted of an acute single-blind, placebo-controlled, randomized, cross-over tilt-table efficacy study and a clinical follow-up feasibility study. In the acute tilt study, HG was administered for 2 min, starting at the time of onset of symptoms of impending syncope. In the active arm, HG caused an increase in systolic blood pressure (SBP) from 92 +/- 10 mm Hg to 105 +/- 38 mm Hg, whereas in the placebo arm SBP decreased from 91 +/- 11 mm Hg to 73 +/- 21 mm Hg (p = 0.008). Heart rate behavior was similar in the two arms. In the active arm, 63% of patients became asymptomatic, versus 11% in the control arm (p = 0.02); conversely, only 5% of patients developed syncope, versus 47% in the control arm (p = 0.01). The patients were trained to self-administer arm-tensing treatment as soon as symptoms of impending syncope occurred. During 9 +/- 3 months of follow-up, the treatment was actually performed in 95/97 episodes of impending syncope (98%) and was successful in 94/95 (99%). No patients suffered injury or other adverse morbidity related to the relapses. Isometric arm contraction is able to abort impending vasovagal syncope by increasing systemic BP. Arm counter-pressure maneuvers can be proposed as a new, feasible, safe, and well accepted first-line treatment for vasovagal syncope.
4MOST fiber feed preliminary design: prototype testing and performance
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.
2016-08-01
The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.
NASA Astrophysics Data System (ADS)
Liu, L.; Ye, X.; Wu, S. C.; Bai, Y. Z.; Zhou, Z. B.
2015-10-01
The performance test of precision space inertial sensors on the ground is inevitably affected by seismic noise. A traditional vibration isolation platform, generally with a resonance frequency of several Hz, cannot satisfy the requirements for testing an inertial sensor at low frequencies. In this paper, we present a pendulum bench for inertial sensor testing based on translation-tilt compensation. A theoretical analysis indicates that the seismic noise effect on inertial sensors located on this bench can be attenuated by more than 40 dB below 0.1 Hz, which is very significant for investigating the performance of high-precision inertial sensors. We demonstrate this attenuation with a dedicated experiment.
Dissociable processes for orientation discrimination learning and contextual illusion magnitude.
Wilks, Charlotte Elizabeth Holmes; Rees, Geraint; Schwarzkopf, Dietrich Samuel
2014-01-01
Previous research suggests an inverse relationship between human orientation discrimination sensitivity and tilt illusion magnitude. To test whether these perceptual functions are inherently linked, we measured both orientation discrimination sensitivity and the magnitude of the tilt illusion before and after participants had been trained for three days on an orientation discrimination task. Discrimination sensitivity improved with training and this improvement remained one month after the initial learning. However, tilt illusion magnitude remained unchanged before and after orientation training, at either trained or untrained orientations. Our results suggest that orientation discrimination sensitivity and illusion magnitude are not inherently linked. They also provide further evidence that, at least for the training periods we employed, perceptual learning of orientation discrimination may involve high-level processes.
Dissociable Processes for Orientation Discrimination Learning and Contextual Illusion Magnitude
Wilks, Charlotte Elizabeth Holmes; Rees, Geraint; Schwarzkopf, Dietrich Samuel
2014-01-01
Previous research suggests an inverse relationship between human orientation discrimination sensitivity and tilt illusion magnitude. To test whether these perceptual functions are inherently linked, we measured both orientation discrimination sensitivity and the magnitude of the tilt illusion before and after participants had been trained for three days on an orientation discrimination task. Discrimination sensitivity improved with training and this improvement remained one month after the initial learning. However, tilt illusion magnitude remained unchanged before and after orientation training, at either trained or untrained orientations. Our results suggest that orientation discrimination sensitivity and illusion magnitude are not inherently linked. They also provide further evidence that, at least for the training periods we employed, perceptual learning of orientation discrimination may involve high-level processes. PMID:25061816
2018-01-01
Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267
NASA Technical Reports Server (NTRS)
Meck, Janice V.; Stenger, Michael B.; Platts, Steven H.; Ziegler, Michael G.
2007-01-01
Circulating blood volume is reduced during spaceflight, leaving astronauts hemodynamically compromised after landing. Because of this hypovolemia, crew members are able to withstand a postflight 10 minute upright tilt test only if they are able to mount a hyper-sympathetic response. Previous work from this laboratory has shown that about 30% of astronauts, primarily female, have postflight sympathetic responses to tilt that are equal to or less than their preflight responses and thus, they become presyncopal. Part of the mission of the cardiovascular lab at the Johnson Space Center is to identify susceptible crewmembers before flight so that individualized countermeasures can be prescribed. The goal of this study was to develop a ground based model of hypovolemia that could be used for this purpose We tested the hypothesis that hypovolemia alone, in the absence of spaceflight, would reproduce the landing day rate of presyncope during upright tilt in normal volunteers. Further, we hypothesized that, during hypovolemia, subjects who had sympathetic responses that were equal to or less than their normovolemic responses would become presyncopal during upright tilt tests. We studied 20 subjects, 13 male and 7 female, on two separate occasions: during normovolemia and hypovolemia. We induced hypovolemia with intravenous furosemide 40 hours prior to the experiment day, followed by a 10MEq Na diet. On the normovolemia and hypovolemia test days, plasma volume, tilt tolerance and supine and standing arterial pressure, heart rate and plasma norepinephrine levels were measured. A two factor, repeated measures analysis of variance was performed to examine the differences between group (presyncopal vs. non-presyncopal) and day (normovolemia vs. hypovolemia) effects. There were no differences in baseline arterial pressure between normovolemia and hypovolemia or between presyncopal and non-presyncopal groups, but heart rates were higher with hypovolemia in both groups (presyncopal: 70 5 bpm vs. 63 3 bpm, P = 0.003, non-presyncopal: 59 2 bpm vs. 52 2 bpm, P = 0.003). Similar to patterns reported after flight, non-presyncopal subjects had greater norepinephrine responses to tilt during hypovolemia compared to normovolemia (580 79 vs. 298 37 pg/ml, P < 0.05), but presyncopal subjects did not (180 44 vs. 145 32 pg/ml, P = NS). This new model has the potential to accelerate the development of countermeasures and save flight resources. It can be used to identify astronauts who will become presyncopal on landing day, so that prospective, individualized countermeasures can be developed. In addition, it can also be used to screen candidate countermeasures prior to requests for bed rest or inflight resources.
Measuring attention using induced motion.
Gogel, W C; Sharkey, T J
1989-01-01
Attention was measured by means of its effect upon induced motion. Perceived horizontal motion was induced in a vertically moving test spot by the physical horizontal motion of inducing objects. All stimuli were in a frontoparallel plane. The induced motion vectored with the physical motion to produce a clockwise or counterclockwise tilt in the apparent path of motion of the test spot. Either a single inducing object or two inducing objects moving in opposite directions were used. Twelve observers were instructed to attend to or to ignore the single inducing object while fixating the test object and, when the two opposing inducing objects were present, to attend to one inducing object while ignoring the other. Tracking of the test spot was visually monitored. The tilt of the path of apparent motion of the test spot was measured by tactile adjustment of a comparison rod. It was found that the measured tilt was substantially larger when the single inducing object was attended rather than ignored. For the two inducing objects, attending to one while ignoring the other clearly increased the effectiveness of the attended inducing object. The results are analyzed in terms of the distinction between voluntary and involuntary attention. The advantages of measuring attention by its effect on induced motion as compared with the use of a precueing procedure, and a hypothesis regarding the role of attention in modifying perceived spatial characteristics are discussed.
Guo, Junfeng; Wang, Chao; Chan, Kung-Sik; Jin, Dakai; Saha, Punam K; Sieren, Jered P; Barr, R G; Han, MeiLan K; Kazerooni, Ella; Cooper, Christopher B; Couper, David; Newell, John D; Hoffman, Eric A
2016-05-01
A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dual source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [-6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors' results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Junfeng; Newell, John D.; Wang, Chao
Purpose: A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Methods: Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dualmore » source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. Results: This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [−6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Conclusions: Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors’ results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.« less
Vestibuloocular reflex of rhesus monkeys after spaceflight
NASA Technical Reports Server (NTRS)
Cohen, Bernard; Kozlovskaia, Inessa; Raphan, Theodore; Solomon, David; Helwig, Denice; Cohen, Nathaniel; Sirota, Mikhail; Iakushin, Sergei
1992-01-01
The vestibuloocular reflex (VOR) of two rhesus monkeys was recorded before and after 14 days of spaceflight. The gain (eye velocity/head velocity) of the horizontal VOR, tested 15 and 18 h after landing, was approximately equal to preflight values. The dominant time constant of the animal tested 15 h after landing was equivalent to that before flight. During nystagmus induced by off-vertical axis rotation (OVAR), the latency, rising time constant, steady-state eye velocity, and phase of modulation in eye velocity and eye position with respect to head position were similar in both monkeys before and after flight. There were changes in the amplitude of modulation of horizontal eye velocity during steady-state OVAR and in the ability to discharge stored activity rapidly by tilting during postrotatory nystagmus (tilt dumping) after flight: OVAR modulations were larger, and tilt dumping was lost in the one animal tested on the day of landing and for several days thereafter. If the gain and time constant of the horizontal VOR exchange in microgravity, they must revert to normal soon after landing. The changes that were observed suggest that adaptation to microgravity had caused alterations in way that the central nervous system processes otolith input.
Faber, Irene R; Oosterveld, Frits G J; Nijhuis-Van der Sanden, Maria W G
2014-01-01
This study investigated the added value, i.e. discriminative and concurrent validity and reproducibility, of an eye-hand coordination test relevant to table tennis as part of talent identification. Forty-three table tennis players (7-12 years) from national (n = 13), regional (n = 11) and local training centres (n = 19) participated. During the eye-hand coordination test, children needed to throw a ball against a vertical positioned table tennis table with one hand and to catch the ball correctly with the other hand as frequently as possible in 30 seconds. Four different test versions were assessed varying the distance to the table (1 or 2 meter) and using a tennis or table tennis ball. 'Within session' reproducibility was estimated for the two attempts of the initial tests and ten youngsters were retested after 4 weeks to estimate 'between sessions' reproducibility. Validity analyses using age as covariate showed that players from the national and regional centres scored significantly higher than players from the local centre in all test versions (p<0.05). The tests at 1 meter demonstrated better discriminative ability than those at 2 meter. While all tests but one had a positive significant association with competition outcome, which were corrected for age influences, the version with a table tennis ball at 1 meter showed the highest association (r = 0.54; p = 0.001). Differences between the first and second attempts were comparable for all test versions (between -8 and +7 repetitions) with ICC's ranging from 0.72 to 0.87. The smallest differences were found for the test with a table tennis ball at 1 meter (between -3 and +3 repetitions). Best test version as part of talent identification appears to be the version with a table tennis ball at 1 meter regarding the psychometric characteristics evaluated. Longitudinal studies are necessary to evaluate the predictive value of this test.
Multivariate Analyses of Balance Test Performance, Vestibular Thresholds, and Age
Karmali, Faisal; Bermúdez Rey, María Carolina; Clark, Torin K.; Wang, Wei; Merfeld, Daniel M.
2017-01-01
We previously published vestibular perceptual thresholds and performance in the Modified Romberg Test of Standing Balance in 105 healthy humans ranging from ages 18 to 80 (1). Self-motion thresholds in the dark included roll tilt about an earth-horizontal axis at 0.2 and 1 Hz, yaw rotation about an earth-vertical axis at 1 Hz, y-translation (interaural/lateral) at 1 Hz, and z-translation (vertical) at 1 Hz. In this study, we focus on multiple variable analyses not reported in the earlier study. Specifically, we investigate correlations (1) among the five thresholds measured and (2) between thresholds, age, and the chance of failing condition 4 of the balance test, which increases vestibular reliance by having subjects stand on foam with eyes closed. We found moderate correlations (0.30–0.51) between vestibular thresholds for different motions, both before and after using our published aging regression to remove age effects. We found that lower or higher thresholds across all threshold measures are an individual trait that account for about 60% of the variation in the population. This can be further distributed into two components with about 20% of the variation explained by aging and 40% of variation explained by a single principal component that includes similar contributions from all threshold measures. When only roll tilt 0.2 Hz thresholds and age were analyzed together, we found that the chance of failing condition 4 depends significantly on both (p = 0.006 and p = 0.013, respectively). An analysis incorporating more variables found that the chance of failing condition 4 depended significantly only on roll tilt 0.2 Hz thresholds (p = 0.046) and not age (p = 0.10), sex nor any of the other four threshold measures, suggesting that some of the age effect might be captured by the fact that vestibular thresholds increase with age. For example, at 60 years of age, the chance of failing is roughly 5% for the lowest roll tilt thresholds in our population, but this increases to 80% for the highest roll tilt thresholds. These findings demonstrate the importance of roll tilt vestibular cues for balance, even in individuals reporting no vestibular symptoms and with no evidence of vestibular dysfunction. PMID:29167656
NASA Technical Reports Server (NTRS)
Cohen, B.; Cohen, N.; Helwig, D.; Solomon, D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Raphan, T.
1994-01-01
This technical paper discusses the following: (1) The VOR of two rhesus monkeys was studied before and after 14 days of spaceflight to determine effects of microgravity on the VOR. Horizontal, vertical and roll eye movements were recorded in these and six other monkeys implanted with scleral search coils. Animals were rotated about a vertical axis to determine the gain of the horizontal, vertical and roll VOR. They were rotated about axes tilted from the vertical (off-vertical axis rotation, OVAR) to determine steady state gains and effects of gravity on modulations in eye position and eye velocity. They were also tested for tilt dumping of post-rotatory nystagmus. (2) The gain of the horizontal VOR was close to unity when animals were tested 15 and 18 hours after flight. VOR gain values were similar to those registered before flight. If the gain of the horizontal VOR changes in microgravity, it must revert to normal soon after landing. (3) Steady state velocities of nystagmus induced by off-vertical axis rotation (OVAR) were unchanged by adaptation to microgravity, and the phase of the modulations was similar before and after flight. However, modulations in horizontal eye velocity had more variation after landing and were on mean about 50% larger for angles of tilt of the axis of rotation between 50 and 90?/s after flight. This difference was similar in both animals and was significant. (4) A striking finding was that tilt dumping was lost in the one animal tested for this function. This loss persisted for several days after return. This is reminiscent of the loss of response to pitch while rotating in the M-131 experiments of Skylab, and must be studied in detail in future spaceflights. (5) Thus, two major findings emerged from these studies: after spaceflight the modulation of horizontal eye velocity was larger during OVAR, and one animal lost its ability to tilt-dump its nystagmus. Both findings are consistent with the postulate that adaptation to microgravity causes alterations in the way that otolith information is processed in the central nervous system. The experiments lay the groundwork for studying the vertical and roll VOR before and after future space flights, as well as for studying modulations in vertical and roll eye position during OVAR and tilt dumping.
Energetics of Table Tennis and Table Tennis-Specific Exercise Testing.
Zagatto, Alessandro Moura; Leite, Jorge Vieira de Mello; Papoti, Marcelo; Beneke, Ralph
2016-11-01
To test the hypotheses that the metabolic profile of table tennis is dominantly aerobic, anaerobic energy is related to the accumulated duration and intensity of rallies, and activity and metabolic profile are interrelated with the individual fitness profile determined via table tennis-specific tests. Eleven male experienced table tennis players (22 ± 3 y, 77.6 ± 18.9 kg, 177.1 ± 8.1 cm) underwent 2 simulated table tennis matches to analyze aerobic (W OXID ) energy, anaerobic glycolytic (W BLC ) energy, and phosphocreatine breakdown (W PCr ); a table tennis-specific graded exercise test to measure ventilatory threshold and peak oxygen uptake; and an exhaustive supramaximal table tennis effort to determine maximal accumulated deficit of oxygen. W OXID , W BLC , and W PCr corresponded to 96.5% ± 1.7%, 1.0% ± 0.7%, and 2.5% ± 1.4%, respectively. W OXID was interrelated with rally duration (r = .81) and number of shots per rally (r = .77), whereas match intensity was correlated with WPCr (r = .62) and maximal accumulated oxygen deficit (r = .58). The metabolic profile of table tennis is predominantly aerobic and interrelated with the individual fitness profile determined via table tennis-specific tests. Table tennis-specific ventilatory threshold determines the average oxygen uptake and overall W OXID , whereas table tennis-specific maximal accumulated oxygen deficit indicates the ability to use and sustain slightly higher blood lactate concentration and W BLC during the match.
Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight
NASA Technical Reports Server (NTRS)
Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Zuckerman, Julie H.; Diedrich, Andre; Biaggioni, Italo; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi;
2002-01-01
Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts approximately 72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (+/- S.E.M.) stroke volume was lower (46 +/- 5 vs. 76 +/- 3 ml, P = 0.017) and heart rate was higher (93 +/- 1 vs. 74 +/- 4 beats min(-1), P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 +/- 256 vs. 1372 +/- 62 dynes s cm(-5), P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 +/- 4 vs. 17 +/- 2 bursts min(-1), P = 0.04) and tilted (46 +/- 4 vs. 38 +/- 3 bursts min(-1), P = 0.01) positions. A strong (r(2) = 0.91-1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.
Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight
Levine, Benjamin D; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Zuckerman, Julie H; Diedrich, André; Biaggioni, Italo; Ray, Chester A; Smith, Michael L; Iwase, Satoshi; Saito, Mitsuru; Sugiyama, Yoshiki; Mano, Tadaaki; Zhang, Rong; Iwasaki, Kenichi; Lane, Lynda D; Buckey, Jay C; Cooke, William H; Baisch, Friedhelm J; Robertson, David; Eckberg, Dwain L; Blomqvist, C Gunnar
2002-01-01
Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts ∼72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (± s.e.m.) stroke volume was lower (46 ± 5 vs. 76 ± 3 ml, P = 0.017) and heart rate was higher (93 ± 1 vs. 74 ± 4 beats min−1, P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 ± 256 vs. 1372 ± 62 dynes s cm−5, P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 ± 4 vs. 17 ± 2 bursts min−1, P = 0.04) and tilted (46 ± 4 vs. 38 ± 3 bursts min−1, P = 0.01) positions. A strong (r2 = 0.91–1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal. PMID:11773340
Variability in perceived tilt during a roll plane canal-otolith conflict in a gondola centrifuge.
Tribukait, Arne; Bergsten, Eddie; Eiken, Ola
2013-11-01
During a simulated coordinated turn in a gondola centrifuge, the perceived roll-tilt, quantified as the subjective visual horizontal (SVH), may differ tenfold between individuals. One aim of this study was to discern whether this variability reflects real individual characteristics or is due to noise or day-to-day variation. We also wanted to establish whether there are any habituation or learning effects of the centrifuge test. In nine nonpilots (NP) and nine student pilots (SP), with a flight experience of 150 h, the SVH was measured using an adjustable luminous line in darkness. At two test occasions (T1, T2) (interval 5-14 d) subjects underwent two runs (R1, R2; acceleration to 2 G in 10 s, gondola inclination 60 degrees, 5 min at 2 G, deceleration to 1 g in 10 s, interval between runs 5 min) in a centrifuge (r = 9.1 m). Initial and final SVH was determined for each individual run. Acceleration of the centrifuge induced a tilt of the SVH. At T1 R1, this SVH tilt was, in NP, initially 24 +/- 18 degrees and finally 8 +/- 10 degrees. The corresponding values for SP were 28 +/- 18 degrees and 31 +/- 33 degrees. The SVH tilt was slightly larger at R2 than at R1. There was no difference between T1 and T2. Reliability coefficients ranged between 0.86 and 0.98 for NP and between 0.78 and 0.99 for SP. The large interindividual variability combined with a very high reproducibility suggests the existence of persistent individual characteristics in the perception of complex vestibular stimuli. Habituation or learning effects of gondola centrifugation appears to be small.
Effects of bilateral vestibular nucleus lesions on cardiovascular regulation in conscious cats.
Mori, R L; Cotter, L A; Arendt, H E; Olsheski, C J; Yates, B J
2005-02-01
The vestibular system participates in cardiovascular regulation during postural changes. In prior studies (Holmes MJ, Cotter LA, Arendt HE, Cas SP, and Yates BJ. Brain Res 938: 62-72, 2002, and Jian BJ, Cotter LA, Emanuel BA, Cass SP, and Yates BJ. J Appl Physiol 86: 1552-1560, 1999), transection of the vestibular nerves resulted in instability in blood pressure during nose-up body tilts, particularly when no visual information reflecting body position in space was available. However, recovery of orthostatic tolerance occurred within 1 wk, presumably because the vestibular nuclei integrate a variety of sensory inputs reflecting body location. The present study tested the hypothesis that lesions of the vestibular nuclei result in persistent cardiovascular deficits during orthostatic challenges. Blood pressure and heart rate were monitored in five conscious cats during nose-up tilts of varying amplitude, both before and after chemical lesions of the vestibular nuclei. Before lesions, blood pressure remained relatively stable during tilts. In all animals, the blood pressure responses to nose-up tilts were altered by damage to the medial and inferior vestibular nuclei; these effects were noted both when animals were tested in the presence and absence of visual feedback. In four of the five animals, the lesions also resulted in augmented heart rate increases from baseline values during 60 degrees nose-up tilts. These effects persisted for longer than 1 wk, but they gradually resolved over time, except in the animal with the worst deficits. These observations suggest that recovery of compensatory cardiovascular responses after loss of vestibular inputs is accomplished at least in part through plastic changes in the vestibular nuclei and the enhancement of the ability of vestibular nucleus neurons to discriminate body position in space by employing nonlabyrinthine signals.
Spatiotopic coding during dynamic head tilt
Turi, Marco; Burr, David C.
2016-01-01
Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636
NASA Technical Reports Server (NTRS)
Fujimura, J.; Camilleri, M.; Low, P. A.; Novak, V.; Novak, P.; Opfer-Gehrking, T. L.
1997-01-01
Our aims were to evaluate to role of superior mesenteric blood flow in the pathophysiology of orthostatic hypotension in patients with generalized autonomic failure. METHODS: Twelve patients with symptomatic neurogenic orthostatic hypotension and 12 healthy controls underwent superior mesenteric artery flow measurements using Doppler ultrasonography during head-up tilt and tilt plus meal ingestion. Autonomic failure was assessed using standard tests of the function of the sympathetic adrenergic, cardiovagal and postganglionic sympathetic sudomotor function. RESULTS: Superior mesenteric flow volume and time-averaged velocity were similar in patients and controls at supine rest; however, responses to cold pressor test and upright tilt were attenuated (p < 0.05) in patients compared to controls. Head-up tilt after the meal evoked a profound fall of blood pressure and mesenteric blood flow in the patients; the reduction of mesenteric blood flow correlated (r = 0.89) with the fall of blood pressure in these patients, providing another manifestation of failed baroreflexes. We make the novel finding that the severity of postprandial orthostatic hypotension regressed negatively with the postprandial increase in mesenteric flow in patients with orthostatic hypotension. CONCLUSION: Mesenteric flow is under baroreflex control, which when defective, results in, or worsens orthostatic hypotension. Its large size and baroreflexivity renders it quantitatively important in the maintenance of postural normotension. The effects of orthostatic stress can be significantly attenuated by reducing the splanchnic-mesenteric volume increase in response to food. Evaluation of mesenteric flow in response to eating and head-up tilt provide important information on intra-abdominal sympathetic adrenergic function, and the ability of the patient to cope with orthostatic stress.
Virag, Nathalie; Erickson, Mark; Taraborrelli, Patricia; Vetter, Rolf; Lim, Phang Boon; Sutton, Richard
2018-04-28
We developed a vasovagal syncope (VVS) prediction algorithm for use during head-up tilt with simultaneous analysis of heart rate (HR) and systolic blood pressure (SBP). We previously tested this algorithm retrospectively in 1155 subjects, showing sensitivity 95%, specificity 93% and median prediction time of 59s. This study was prospective, single center, on 140 subjects to evaluate this VVS prediction algorithm and assess if retrospective results were reproduced and clinically relevant. Primary endpoint was VVS prediction: sensitivity and specificity >80%. In subjects, referred for 60° head-up tilt (Italian protocol), non-invasive HR and SBP were supplied to the VVS prediction algorithm: simultaneous analysis of RR intervals, SBP trends and their variability represented by low-frequency power generated cumulative risk which was compared with a predetermined VVS risk threshold. When cumulative risk exceeded threshold, an alert was generated. Prediction time was duration between first alert and syncope. Of 140 subjects enrolled, data was usable for 134. Of 83 tilt+ve (61.9%), 81 VVS events were correctly predicted and of 51 tilt-ve subjects (38.1%), 45 were correctly identified as negative by the algorithm. Resulting algorithm performance was sensitivity 97.6%, specificity 88.2%, meeting primary endpoint. Mean VVS prediction time was 2min 26s±3min16s with median 1min 25s. Using only HR and HR variability (without SBP) the mean prediction time reduced to 1min34s±1min45s with median 1min13s. The VVS prediction algorithm, is clinically-relevant tool and could offer applications including providing a patient alarm, shortening tilt-test time, or triggering pacing intervention in implantable devices. Copyright © 2018. Published by Elsevier Inc.
40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM10 Methods
Code of Federal Regulations, 2011 CFR
2011-07-01
... Pb in PM10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods...
40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM10 Methods
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pb in PM10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10 Methods...
Impairment of Postural Control in Rabbits With Extensive Spinal Lesions
Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.
2009-01-01
Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T12 level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (≤30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant. PMID:19164112
NASA Technical Reports Server (NTRS)
Low, P. A.; Denq, J. C.; Opfer-Gehrking, T. L.; Dyck, P. J.; O'Brien, P. C.; Slezak, J. M.
1997-01-01
Normative data are limited on autonomic function tests, especially beyond age 60 years. We therefore evaluated these tests in a total of 557 normal subjects evenly distributed by age and gender from 10 to 83 years. Heart rate (HR) response to deep breathing fell with increasing age. Valsalva ratio varied with both age and gender. QSART (quantitative sudomotor axon-reflex test) volume was consistently greater in men (approximately double) and progressively declined with age for all three lower extremity sites but not the forearm site. Orthostatic blood pressure reduction was greater with increasing age. HR at rest was significantly higher in women, and the increment with head-up tilt fell with increasing age. For no tests did we find a regression to zero, and some tests seem to level off with increasing age, indicating that diagnosis of autonomic failure was possible to over 80 years of age.
Full scale hover test of a 25 foot tilt rotor
NASA Technical Reports Server (NTRS)
Helf, S.; Broman, E.; Gatchel, S.; Charles, B.
1973-01-01
The tilt rotor underwent a hover performance test on the Aero Propulsion Laboratory whirl stand at Wright-Patterson Air Force Base. The maximum thrust over density ratio measured at the design tip speed of 740 feet per second was 10,016 pounds. This occurred when the power over density ratio was 1721 horsepower. At the hover overspeed rpm, the thrust and power, over density ratio, were 11,008 pounds and 1866 horsepower. During the test, the maximum measured thrust coefficient was 0.177, and the rotor figure of merit exceeded 0.81. Measured lifting efficiency was 8.35 pounds per horsepower at the thrust a 13,000-pound aircraft would require for hover at sea level on a standard day. No effect of compressibility on performance is discernible in the test results (the range of tip Mach numbers tested was 0.55 to 0.71).
NASA Astrophysics Data System (ADS)
Long, Xiaoyun; He, Lifen; Zhang, Yan; Ge, Mingqiao
2018-04-01
In this study, the self-lubricating layer consist of polytetrafluoroethylene (PTFE) micropowders and two types fluorocarbon acrylate resin were formed on the surface of geotextile, to improves the evenness and decreases the frictional angle value of geotextile surface. The surface and cross section morphology of geotextile were examined by scanning electron microscopy (SEM). It was determined that composite resin emulsion was evenly coated on the surface of geotextile, to form a even and complete self-lubricating layer, and it was strongly combined with the geotextile due to formation of the transition layer. The tensile fracture stress and strain values of samples were evaluated by mechanical properties measurement, the tensile fracture stress of the untreated and treated sample was approximately 5329 kN/m and 5452 kN/m while the elongation at the yield of them was approximately 85% to 83.9%, respectively. In addition, the frictional angle values of municipal solid waste (MSW)/geotextile interface was measured by the tilt table test, the values of untreated sample was 28.1° and 24.2° under the dry and moist condition, the values of treated sample was 16.2° and 9.8°, respectively.
NASA Astrophysics Data System (ADS)
Bao, Chuanchen; Li, Jiakun; Feng, Qibo; Zhang, Bin
2018-07-01
This paper introduces an error-compensation model for our measurement method to measure five motion errors of a rotary axis based on fibre laser collimation. The error-compensation model is established in a matrix form using the homogeneous coordinate transformation theory. The influences of the installation errors, error crosstalk, and manufacturing errors are analysed. The model is verified by both ZEMAX simulation and measurement experiments. The repeatability values of the radial and axial motion errors are significantly suppressed by more than 50% after compensation. The repeatability experiments of five degrees of freedom motion errors and the comparison experiments of two degrees of freedom motion errors of an indexing table were performed by our measuring device and a standard instrument. The results show that the repeatability values of the angular positioning error ε z and tilt motion error around the Y axis ε y are 1.2″ and 4.4″, and the comparison deviations of the two motion errors are 4.0″ and 4.4″, respectively. The repeatability values of the radial and axial motion errors, δ y and δ z , are 1.3 and 0.6 µm, respectively. The repeatability value of the tilt motion error around the X axis ε x is 3.8″.
Investigation of an optical sensor for small tilt angle detection of a precision linear stage
NASA Astrophysics Data System (ADS)
Saito, Yusuke; Arai, Yoshikazu; Gao, Wei
2010-05-01
This paper presents evaluation results of the characteristics of the angle sensor based on the laser autocollimation method for small tilt angle detection of a precision linear stage. The sensor consists of a laser diode (LD) as the light source, and a quadrant photodiode (QPD) as the position-sensing detector. A small plane mirror is mounted on the moving table of the stage as a target mirror for the sensor. This optical system has advantages of high sensitivity, fast response speed and the ability for two-axis angle detection. On the other hand, the sensitivity of the sensor is determined by the size of the optical spot focused on the QPD, which is a function of the diameter of the laser beam projected onto the target mirror. Because the diameter is influenced by the divergence of the laser beam, this paper focuses on the relationship between the sensor sensitivity and the moving position of the target mirror (sensor working distance) over the moving stroke of the stage. The main error components that influence the sensor sensitivity are discussed and the optimal conditions of the optical system of the sensor are analyzed. The experimental result about evaluation of the effective working distance is also presented.
Image quality testing of assembled IR camera modules
NASA Astrophysics Data System (ADS)
Winters, Daniel; Erichsen, Patrik
2013-10-01
Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.
NASA Technical Reports Server (NTRS)
Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.
2001-01-01
During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that perception weights the sense of the body vertical more heavily early in-flight, that this weighting falls during adaptation to microgravity, and that the decreased reliance on the body vertical persists early post-flight, generating an exaggerated sense of tilt. Since graviceptors respond to linear acceleration and not to head tilt in orbit, it has been proposed that adaptation to weightlessness entails reinterpretation of otolith activity, causing tilt to be perceived as translation. Since linear acceleration during in-flight centrifugation was always perceived as tilt, not translation, the findings do not support this hypothesis.
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88 Tabl...
THz optical design considerations and optimization for medical imaging applications
NASA Astrophysics Data System (ADS)
Sung, Shijun; Garritano, James; Bajwa, Neha; Nowroozi, Bryan; Llombart, Nuria; Grundfest, Warren; Taylor, Zachary D.
2014-09-01
THz imaging system design will play an important role making possible imaging of targets with arbitrary properties and geometries. This study discusses design consideration and imaging performance optimization techniques in THz quasioptical imaging system optics. Analysis of field and polarization distortion by off-axis parabolic (OAP) mirrors in THz imaging optics shows how distortions are carried in a series of mirrors while guiding the THz beam. While distortions of the beam profile by individual mirrors are not significant, these effects are compounded by a series of mirrors in antisymmetric orientation. It is shown that symmetric orientation of the OAP mirror effectively cancels this distortion to recover the original beam profile. Additionally, symmetric orientation can correct for some geometrical off-focusing due to misalignment. We also demonstrate an alternative method to test for overall system optics alignment by investigating the imaging performance of the tilted target plane. Asymmetric signal profile as a function of the target plane's tilt angle indicates when one or more imaging components are misaligned, giving a preferred tilt direction. Such analysis can offer additional insight into often elusive source device misalignment at an integrated system. Imaging plane tilting characteristics are representative of a 3-D modulation transfer function of the imaging system. A symmetric tilted plane is preferred to optimize imaging performance.
Laver, Lior; Garrigues, Grant E
2014-10-01
Superior tilt of the baseplate component in reverse total shoulder arthroplasty leads to tensile baseplate forces and may be a contributor to early loosening. The risk factors for this implant malposition include inadequate exposure through a superior approach and superior glenoid bone deficiency that obscures the native glenoid tilt. Here we review our preoperative evaluation and surgical management strategies to avoid superior tilt. Adequate exposure with a superior approach can be achieved but requires not just proper surgical technique but also careful patient selection. We propose that the superior approach be considered only for acute proximal humerus fractures or in patients when the following criteria are met: no prior open surgery on the shoulder; more than 30° of passive external rotation at 0° of abduction; no medial humeral osteophytes; and any superior migration must be reducible with a sulcus test during examination under anesthesia. Avoiding superior tilt when there is significant superior glenoid erosion can be accomplished with humeral head autograft, most easily performed through a deltopectoral approach. Preoperative templating is critical to determine proper graft thickness, inclination, reaming depth, and harvest technique. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Imaging tilted transversely isotropic media with a generalised screen propagator
NASA Astrophysics Data System (ADS)
Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee
2015-01-01
One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.
Santos, Thiago Ribeiro Teles; Andrade, Juliana Alves de; Silva, Bárbara Lopes da; Garcia, Alysson Francisco Alves; Persichini Filho, José Gaspar Wild; Ocarino, Juliana de Melo; Silva, Paula Lanna
2014-08-01
To describe the capability of soccer players to stabilize pelvic position actively in the transverse plane; and, to evaluate the influence of lower limb dominance, length of exposure to soccer practice, and field position on pelvic stabilization capability. Cross-sectional. Sixty-eight soccer players from under-15 (U-15) and professional categories. Magnitude and asymmetry of pelvic tilt in the transverse plane, evaluated using the bridge test with unilateral knee extension. The magnitude of pelvic tilt did not differ between dominant and non-dominant sides, suggesting absence of relative asymmetry. However, there was difference between the sides of greater and lesser magnitude of pelvic tilt, indicating presence of absolute asymmetry. Players with shorter length of exposure to soccer practice (U-15 group) had greater pelvic tilt than players with longer length of exposure (professional group). There was no association of field position with the magnitude and asymmetry of pelvic tilt. Soccer players showed asymmetry in pelvic stabilization capability that was unrelated to lower limb dominance or field position. Athletes with longer length of exposure to soccer practice present better capability to stabilize the pelvis in the transverse plane than those with shorter length of exposure to soccer practice. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR Table B-3 to Subpart B of... - Interferent Test Concentration,1 Parts per Million
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Interferent Test Concentration,1 Parts per Million B Table B-3 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION..., Subpt. B, Table B-3 Table B-3 to Subpart B of Part 53—Interferent Test Concentration,1 Parts per Million...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Requirements for Performance Tests for Organic HAP Emissions From Catalytic Reforming Units 18 Table 18 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 18 Table 18 to Subpart UUU of Part 63—Requirements for Performance Tests...
Experimental investigation of cross-over jets in a rib-roughened trailing-edge cooling channel
NASA Astrophysics Data System (ADS)
Xue, Fei
Increasing the rotor inlet temperature can dramatically increase the efficiency and power output of the gas turbine engine. However, the melting point of turbine blade material limits the realistic upper bound of the rotor inlet temperature. As a result, the development of high temperature turbine blade material and advanced turbine blade cooling technology determines the future of turbine blade engine. Adding impingement jet holes and rib turbulators in the inner cooling channel of the gas turbine blades are two effective ways to enhance the cooling effects. The purpose of this study is to figure out the influence of different combinations of jet holes and rib turbulators on the heat transfer efficiency. A tabletop scale test model is used in the study to simulate the cooling cavity of trailing edge and its feed channel in a real gas turbine blade. The Dimensional Analysis Theory is used in the study to eliminate the influence of scaling. Two different crossover slots are tested with 5 different rib arrangements, and each of the test geometries is tested for 6 jet Reynolds numbers ranging from 10,000 to 36,000. The two different crossover slots are the crossover slots with 0 and 5 degree tilt angles. The four different rib arrangements are ribs with 0 degree, 45 degree, 90 degree and 135 degree angles of attack with respect to the flow direction. Furthermore, a smooth test section (no ribs) was also tested. The steady state liquid crystal thermography is used to quantify the heat transfer performance of the target areas. The variation of Nusselt number versus Reynolds number is plotted for each of the 10 geometries. Also, the variation of Nusselt number versus Reynolds number are compared for different rib angles of attack with the same crossover slot tilt angle, and between different crossover slots tilt angles with the same rib angle. The results show that, the area-weighted average Nusselt number increases monotonically with the Reynolds number; the target areas near the open end have a larger Nusselt number comparing with the ones near the close end; the 90 degree rib angle has the highest Nusselt number among the 4 rib angles of attack and the smooth wall channel; the crossover slots with 0 degree tilt angle produce higher convective heat transfer coefficients than the crossover slots with 5 degree tilt angle. Possible physical explanations for the result are offered by the author.
Spatial Orientation and Balance Control Changes Induced by Altered Gravito-Inertial Force Vectors
NASA Technical Reports Server (NTRS)
Kaufman, Galen D.; Wood, Scott J.; Gianna, Claire C.; Black, F. Owen; Paloski, William H.; Dawson, David L. (Technical Monitor)
1999-01-01
Seventeen healthy and eight vestibular deficient subjects were exposed to an interaural centripetal acceleration of 1 G (resultant 45 deg roll tilt of 1.4 G) on a 0.8 meter radius centrifuge for a period of 90 minutes in the dark. The subjects sat with head fixed upright, except every 4 of 10 minutes when instructed to rotate their head so that their nose and eyes pointed towards a visual point switched on every 3 to 5 seconds at random places (within +/- 30 deg) in the Earth horizontal plane. Motion sickness caused some subjects to limit their head movements during significant portions of the 90 minute period, and led three normal subjects to stop the test earlier. Eye movements, including directed saccades for subjective Earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation using electro-oculography. Postural stability measurements were made before and within ten minutes after centrifugation. In normal subjects, postural sway and multisegment body kinematics were gathered during an eyes-closed head movement cadence (sway-referenced support platform), and in response to translational/rotational platform perturbations. A significant increase in postural sway, segmental motion amplitude and hip frequency was observed after centrifugation. This effect was short-lived, with a recovery time of several postural test trials. There were also asymmetries in the direction of post-centrifugation center of sway and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). To delineate the effect of the magnitude of the gravito-inertial vector versus its direction during the adaptive centrifugation period, we tilted eight normal subjects in the roll axis at a 45 deg angle in the dark for 90 minutes without rotational motion. Their postural responses did not change following the period of tilt. Based on verbal reports, normal subjects overestimated roll-tilt during 90 minutes of both tilt and centrifugation stimuli. Subjective estimates of head-horizontal, provided by directed saccades, revealed significant errors after approximately 30 minutes that tended to increase only in the group who underwent centrifugation. Immediately after centrifugation, subjects reported feeling tilted on average 10 degrees in the opposite direction, which was in agreement with the direction of their earth-directed saccades. In vestibular deficient (VD) subjects, postural sway was measured using a sway-referenced or earth-fixed support surface, and with or without a head movement sequence. 'Me protocol was selected for each patient during baseline testing, and corresponded to the most challenging condition in which the patient was able to maintain balance with eyes closed. Bilaterally VD subjects showed no postural decrement after centrifugation, while unilateral VD subjects had varying degrees of decrement. Unilateral VD subjects were tested twice; they underwent centrifugation both with right ear out and left ear out. Their post-centrifuation center of sway shifted at right angles depending on the centrifuge GIF orientation. Bilateral VD subjects bad shifts as well, but no consistent directional trend. VD subjects underestimated roll-tilt during centrifugation, These results suggest that orientation of the gravito-inertial vector and its magnitude arc both used by the central nervous system for calibration of multiple orientation systems. A change in the background gravito-inertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.
Mathematical model for the simulation of Dynamic Docking Test System (DDST) active table motion
NASA Technical Reports Server (NTRS)
Gates, R. M.; Graves, D. L.
1974-01-01
The mathematical model developed to describe the three-dimensional motion of the dynamic docking test system active table is described. The active table is modeled as a rigid body supported by six flexible hydraulic actuators which produce the commanded table motions.
Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1991-01-01
The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.
Noise reduction of a tilt-rotor aircraft including effects on weight and performance
NASA Technical Reports Server (NTRS)
Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.
1973-01-01
Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.
Shul'zhenko, E B; Kozlova, V G; Kurdin, K A; Iarov, A S; Plokhova, V G
1983-01-01
Orthostatic tolerance after 7-day dry immersion and head-to-feet acceleration was investigated on test subjects with and without an antigravity suit of bladderless type. With the suit on, the 20 min tilt test at 70 degrees prior to immersion induced less marked changes than without the suit. When the suit was on, cardiovascular reactions to tilt tests after immersion and acceleration improved. The maximum heart rate decreased from 135 +/- 4 to 101 +/- 5 beats/min (p less than 0.01), minimum stroke volume increased from 29 +/- 2 to 41 +/- 3 ml (p less than 0.05), and pulse pressure grew. Thus, an antigravity suit may help increase initial orthostatic tolerance and maintain it after the combined effect of simulated hypogravity and acceleration.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (NSPS) for Particulate Matter (PM) 4 Table 4 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 4 Table 4 to Subpart UUU of Part 63—Requirements for Performance Tests...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (NSPS) for Particulate Matter (PM) 4 Table 4 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 4 Table 4 to Subpart UUU of Part 63—Requirements for Performance Tests...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (NSPS) for Particulate Matter (PM) 4 Table 4 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 4 Table 4 to Subpart UUU of Part 63—Requirements for Performance Tests...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL..., Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...
2008-06-01
and hopefully a better linearization. The edges were treated in a different manner than before. Their voltages only varied between 0–2000-nm...followed by tilt, and then other optical aberrations such as focus, astigmatism , 54 defocus, and coma. These aberations continue to increase in complexity as...testing proved that the linearization LUT was adequate for also reproducing Zernike shapes on the DM. In the lowest-order terms ( astigmatism and tilt) the
How do visual and postural cues combine for self-tilt perception during slow pitch rotations?
Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L
2014-11-01
Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. Copyright © 2014 Elsevier B.V. All rights reserved.
Faber, Irene R.; Oosterveld, Frits G. J.; Nijhuis-Van der Sanden, Maria W. G.
2014-01-01
This study investigated the added value, i.e. discriminative and concurrent validity and reproducibility, of an eye-hand coordination test relevant to table tennis as part of talent identification. Forty-three table tennis players (7–12 years) from national (n = 13), regional (n = 11) and local training centres (n = 19) participated. During the eye-hand coordination test, children needed to throw a ball against a vertical positioned table tennis table with one hand and to catch the ball correctly with the other hand as frequently as possible in 30 seconds. Four different test versions were assessed varying the distance to the table (1 or 2 meter) and using a tennis or table tennis ball. ‘Within session’ reproducibility was estimated for the two attempts of the initial tests and ten youngsters were retested after 4 weeks to estimate ‘between sessions’ reproducibility. Validity analyses using age as covariate showed that players from the national and regional centres scored significantly higher than players from the local centre in all test versions (p<0.05). The tests at 1 meter demonstrated better discriminative ability than those at 2 meter. While all tests but one had a positive significant association with competition outcome, which were corrected for age influences, the version with a table tennis ball at 1 meter showed the highest association (r = 0.54; p = 0.001). Differences between the first and second attempts were comparable for all test versions (between −8 and +7 repetitions) with ICC's ranging from 0.72 to 0.87. The smallest differences were found for the test with a table tennis ball at 1 meter (between −3 and +3 repetitions). Best test version as part of talent identification appears to be the version with a table tennis ball at 1 meter regarding the psychometric characteristics evaluated. Longitudinal studies are necessary to evaluate the predictive value of this test. PMID:24465638
Zhang, Pinglei; Wei, Heming; Guo, Jingjing; Sun, Changsen
2016-10-01
Ground settlement (GS) is one of the causes that destroy the durability of reinforced concrete structures. It could lead to a deterioration in the structural basement and increase the risk of collapse. The methods used for GS monitoring were mostly electronic-based sensors for reading the changes in resistance, resonant frequencies, etc. These sensors often bear low accuracy in the long term. Our published work demonstrated that a fiber-optic low-coherent interferometer configured in a Michelson interferometer was designed as a GS sensor, and a micro-meter resolution in the room environment was approached. However, the designed GS sensor, which in principle is based on a hydraulic connecting vessel, has to suffer from a tilt degeneration problem due to a strictly vertical requirement in practical installment. Here, we made a design for the GS sensor based on its robust tilt performance. The experimental tests show that the sensor can work well within a ±5° tilt. This could meet the requirements in most designed GS sensor installment applications.
Novel adaptive fiber-optics collimator for coherent beam combination.
Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei
2014-12-15
In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.
WIYN tip-tilt module performance
NASA Astrophysics Data System (ADS)
Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod
2003-02-01
The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.
Lorenz, Andrea; Bobrowitsch, Evgenij; Wünschel, Markus; Walter, Christian; Wülker, Nikolaus; Leichtle, Ulf G
2015-07-23
Anterior knee pain is often associated with patellar maltracking and instability. However, objective measurement of patellar stability under clinical and experimental conditions is difficult, and muscular activity influences the results. In the present study, a new experimental setting for in vitro measurement of patellar stability was developed and the mediolateral force-displacement behavior of the native knee analyzed with special emphasis on patellar tilt and muscle loading. In the new experimental setup, two established testing methods were combined: an upright knee simulator for positioning and loading of the knee specimens, and an industry robot for mediolateral patellar displacement. A minimally invasive coupling and force control mechanism enabled unconstrained motion of the patella as well as measurement of patellar motion in all six degrees of freedom via an external ultrasonic motion-tracking system. Lateral and medial patellar displacement were measured on seven fresh-frozen human knee specimens in six flexion angles with varying muscle force levels, muscle force distributions, and displacement forces. Substantial repeatability was achieved for patellar shift (ICC(3,1) = 0.67) and tilt (ICC(3,1) = 0.75). Patellar lateral and medial shift decreased slightly with increasing flexion angle. Additional measurement of patellar tilt provided interesting insights into the different displacement mechanisms in lateral and medial directions. For lateral displacement, the patella tilted in the same (lateral) direction, and tilted in the opposite direction (again laterally) for medial displacement. With regard to asymmetric muscle loading, a significant influence (p < 0.03, up to 5 mm shift and 8° tilt) was found for lateral displacement and a reasonable relationship between muscle and patellar force, whereas no effect was visible in the medial direction. The developed experimental setup delivered reproducible results and was found to be an excellent testing method for the in vitro analysis of patellar stability and future investigation of surgical techniques for patellar stabilization and total knee arthroplasty. We demonstrated a significant influence of asymmetric quadriceps loading on patellar stability. In particular, increased force application on the vastus lateralis muscle led to a clear increase of lateral patellar displacement.
Sensory substitution in bilateral vestibular a-reflexic patients
Alberts, Bart B G T; Selen, Luc P J; Verhagen, Wim I M; Medendorp, W Pieter
2015-01-01
Patients with bilateral vestibular loss have balance problems in darkness, but maintain spatial orientation rather effectively in the light. It has been suggested that these patients compensate for vestibular cues by relying on extravestibular signals, including visual and somatosensory cues, and integrating them with internal beliefs. How this integration comes about is unknown, but recent literature suggests the healthy brain remaps the various signals into a task-dependent reference frame, thereby weighting them according to their reliability. In this paper, we examined this account in six patients with bilateral vestibular a-reflexia, and compared them to six age-matched healthy controls. Subjects had to report the orientation of their body relative to a reference orientation or the orientation of a flashed luminous line relative to the gravitational vertical, by means of a two-alternative-forced-choice response. We tested both groups psychometrically in upright position (0°) and 90° sideways roll tilt. Perception of body tilt was unbiased in both patients and controls. Response variability, which was larger for 90° tilt, did not differ between groups, indicating that body somatosensory cues have tilt-dependent uncertainty. Perception of the visual vertical was unbiased when upright, but showed systematic undercompensation at 90° tilt. Variability, which was larger for 90° tilt than upright, did not differ between patients and controls. Our results suggest that extravestibular signals substitute for vestibular input in patients’ perception of spatial orientation. This is in line with the current status of rehabilitation programs in acute vestibular patients, targeting at recognizing body somatosensory signals as a reliable replacement for vestibular loss. PMID:25975644
Matos de Moura, Marina; Augusto Sousa dos Santos, Robson; Antônio Peliky Fontes, Marco
2005-01-01
Studies have shown that the angiotensin II (Ang II) AT1 receptor antagonist, losartan, accentuates the orthostatic hypotensive response in anesthetized rats, and there is evidence indicating that this effect is not exclusively mediated by AT1 receptors. We investigated whether the pronounced orthostatic cardiovascular response observed in losartan-treated rats involves an interference with angiotensin-(1–7) (Ang-(1–7)) receptors. Urethane-anesthetized rats were submitted to orthostatic stress (90° head-up tilt for 2 min). Intravenous injection of losartan (1 mg kg−1, n=9) significantly accentuated the decrease in mean arterial pressure (MAP) induced by head-up tilt (−33±6% after losartan vs −15±8% control tilt). This effect was accompanied by a significant bradycardia (−8±3% after losartan vs −3±3% control tilt). Another AT1 antagonist, candesartan, did not potentiate the decrease of MAP and did not change the cardiac response induced by head-up tilt. Strikingly, administration of the Ang-(1–7) antagonist, A-779 (10 nmol kg−1, n=5), totally reversed the bradicardiac effect caused by losartan and this effect was accompanied by a tendency towards attenuation of the hypotensive response caused by losartan. These findings indicate that the marked orthostatic cardiovascular response is specific for losartan, and that it may be due, in part, to an interaction of this antagonist with Ang-(1–7) receptors, probably at the cardiac level. PMID:15685215
Drysdale, Cheri L.; Earl, Jennifer E.
2004-01-01
Objective: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. Design and Setting: 2 × 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. Subjects: Twenty-six healthy, active young adult females. Measurements: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90° and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90° without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. Results: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. Conclusions: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles. PMID:15085209
Drysdale, Cheri L.; Earl, Jennifer E.; Hertel, Jay
2004-03-01
OBJECTIVE: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. DESIGN AND SETTING: 2 x 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. SUBJECTS: Twenty-six healthy, active young adult females. MEASUREMENTS: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90 degrees and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90 degrees without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. RESULTS: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. CONCLUSIONS: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles.
Viscoelastic Properties of Advanced Polymer Composites for Ballistic Protective Applications
1994-09-01
ofthe Damaged Sample 78 Figure 69: Fracture Surface of Damage Area Near the Point of Penetration 79 Figure 70. Closer View ofthe Damaged Area...LIST OF TABLES Table 1. Basic Mechanical Properties of the Materials 6 Table 2. Initial DMA Test Results 23 Table 3. Flexural Three Point Bend... point bend testing was conducted using an Instron 1127 Universal Tester to verify the DMA test method and specimen clamping configuration. Interfacial
Acceptability of VTOL aircraft noise determined by absolute subjective testing
NASA Technical Reports Server (NTRS)
Sternfeld, H., Jr.; Hinterkeuser, E. G.; Hackman, R. B.; Davis, J.
1972-01-01
A program was conducted during which test subjects evaluated the simulated sounds of a helicopter, a tilt wing aircraft, and a 15 second, 90 PNdB (indoors) turbojet aircraft used as reference. Over 20,000 evaluations were made while the test subjects were engaged in work and leisure activities. The effects of level, exposure time, distance and aircraft design on subjective acceptability were evaluated. Some of the important conclusions are: (1) To be judged equal in annoyance to the reference jet sound, the helicopter and tilt wing sounds must be 4 to 5 PNdB lower when lasting 15 seconds in duration. (2) To be judged significantly more acceptable than the reference jet sound, the helicopter sound must be 10 PNdB lower when lasting 15 seconds in duration. (3) To be judged significantly more acceptable than the reference jet sound, the tilt wing sound must be 12 PNdB lower when lasting 15 seconds in duration. (4) The relative effect of changing the duration of a sound upon its subjectively rated annoyance diminishes with increasing duration. It varies from 2 PNdB per doubling of duration for intervals of 15 to 30 seconds, to 0.75 PNdB per doubling of duration for intervals of 120 to 240 seconds.
Head up tilt test in the diagnosis of neurocardiogenic syncope in childhood and adolescence.
Udani, Vrajesh; Bavdekar, Manisha; Karia, Samir
2004-06-01
Neurocardiogenic syncope (NCS) is a common paroxysmal disorder that is often misdiagnosed as a seizure disorder. Head up tilt test (HUTT) has been used to confirm this diagnosis. There is no data available of its use in children / adolescents from India. To study the usefulness of the HUTT in children and adolescents with suspected NCS. This was a part retrospective and later prospective study set in a tertiary child neurology outpatient department (OPD). Patients with a strong clinical suspicion of syncope were recruited for the study. Clinical and treatment details were either retrieved from the chart or prospectively recorded in later patients. The HUTT was then carried out at baseline and after provocation and the results correlated with the clinical diagnosis. Eighteen children with a mean age of 10.8 years were studied. Eight had precipitating factors. Thirteen had premonitory symptoms. Pallor, temperature change, diaphoresis, headache, tonic / clonic movements, post-ictal confusion and peri-ictal headache were symptoms noticed. Sixteen had a positive HUTT. Seven were on long-term anti-epileptic drugs (AEDs). Two had epileptiform abnormalities on their electroencephalogram (EEG). The diagnosis of syncope is often confused with epilepsy. Head up tilt test has a high sensitivity in the diagnosis of NCS in children / adolescents. It is fairly safe and easy to perform.
Autonomous BBOBS-NX (NX-2G) for New Era of Ocean Bottom Broadband Seismology
NASA Astrophysics Data System (ADS)
Shiobara, H.; Ito, A.; Sugioka, H.; Shinohara, M.
2017-12-01
The broadband ocean bottom seismometer (BBOBS) and its new generation system (BBOBS-NX) have been developed in Japan, and we performed several test and practical observations to create and establish a new category of the ocean floor broadband seismology, since 1999. Now, the data obtained by our BBOBS and BBOBS-NX is proved to be adequate for broadband seismic analyses. Especially, the BBOBS-NX can obtain the horizontal data comparable to land sites in longer periods (10 s -). Moreover, the BBOBST-NX is in practical evaluation for the mobile tilt observation that enables dense geodetic monitoring. The BBOBS-NX system is a powerful tool, although, it has intrinsic limitation of the ROV operation. If this system can be used without the ROV, like as the BBOBS, it should lead us a true breakthrough of ocean bottom seismology. Hereafter, the new autonomous BBOBS-NX is noted as NX-2G in short. The main problem to realize the NX-2G is a tilt of the sensor unit on landing, which exceed the acceptable limit (±8°) in about 50%. As we had no evidence at which moment and how this tilt occurred, we tried to observe it during the BBOBST-NX landing in 2015 by attaching a video camera and an acceleration logger. The result shows that the tilt on landing was determined by the final posture of the system at the penetration into the sediment, and the large oscillating tilt more than ±10° was observed in descending. The function of the NX-2G system is based on 3 stage operations as shown in the image. The glass float is aimed not only to obtain enough buoyancy to extract the sensor unit, but also to suppress the oscillating tilt of the system in descending. In Oct. 2016, we made the first in-situ test of the NX-2G system with a ROV. It was dropped from the sea surface with the video camera and the acceleration logger. The ROV was used to watch the operation of the system at the seafloor. The landing looked well and it was examined from the acceleration data. As the maximum tilt in descending was about ±2.5°, the glass float effectively suppressed the oscillating tilt. The extraction of the sensor unit was also succeeded with the total buoyancy of about 75 kgf within about 2.5 minutes. As the final step experiment, the one-year-long observation of this NX-2G system has been started in this April with the BBOBS, to obtain simultaneous data for the noise level evaluation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Measurements Required, and Maximum Discrepancy Specification C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges..., June 22, 2010, table C-1 to subpart C was revised, effective Aug. 23, 2010. For the convenience of the...
40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM 10 Methods
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Specifications for Pb in TSP and Pb in PM 10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM 10...
40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM 10 Methods
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Specifications for Pb in TSP and Pb in PM 10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM 10...
40 CFR Table C-3 to Subpart C of... - Test Specifications for Pb in TSP and Pb in PM10 Methods
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Specifications for Pb in TSP and Pb in PM10 Methods C Table C-3 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL..., Subpt. C, Table C-3 Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM10...
40 CFR Table 3 of Subpart Bbbbbbb... - Test Methods
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Test Methods 3 Table 3 of Subpart... 3 Table 3 of Subpart BBBBBBB of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in appendix A to part 60. 2...
40 CFR Table 3 of Subpart Bbbbbbb... - Test Methods
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Test Methods 3 Table 3 of Subpart... 3 Table 3 of Subpart BBBBBBB of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in appendix A to part 60. 2...
40 CFR Table 3 of Subpart Bbbbbbb... - Test Methods
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Test Methods 3 Table 3 of Subpart... 3 Table 3 of Subpart BBBBBBB of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in appendix A to part 60. 2...
40 CFR Table 3 of Subpart Bbbbbbb... - Test Methods
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Test Methods 3 Table 3 of Subpart... 3 Table 3 of Subpart BBBBBBB of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in appendix A to part 60. 2...
40 CFR Table 3 of Subpart Bbbbbbb... - Test Methods
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Test Methods 3 Table 3 of Subpart... 3 Table 3 of Subpart BBBBBBB of Part 63—Test Methods For * * * You must use * * * 1. Selecting the sampling locations a and the number of traverse points EPA test method 1 or 1A in appendix A to part 60. 2...
40 CFR 63.10006 - When must I conduct subsequent performance tests or tune-ups?
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicable periodic HCl emissions tests according to Table 5 to this subpart and § 63.10007 at least... performance tests according to Table 5 to this subpart and § 63.10007 at least every year. (b) For affected... years (once every year for Hg) according to Table 5 and § 63.10007. Should subsequent emissions testing...
40 CFR 63.10006 - When must I conduct subsequent performance tests or tune-ups?
Code of Federal Regulations, 2014 CFR
2014-07-01
... limit, you must conduct all applicable periodic HCl emissions tests according to Table 5 to this subpart... performance tests according to Table 5 to this subpart and § 63.10007 at least every year. (b) For affected... years (once every year for Hg) according to Table 5 and § 63.10007. Should subsequent emissions testing...
40 CFR 63.10006 - When must I conduct subsequent performance tests or tune-ups?
Code of Federal Regulations, 2013 CFR
2013-07-01
... limit, you must conduct all applicable periodic HCl emissions tests according to Table 5 to this subpart... performance tests according to Table 5 to this subpart and § 63.10007 at least every year. (b) For affected... years (once every year for Hg) according to Table 5 and § 63.10007. Should subsequent emissions testing...
Kwan, Mun Keong; Wong, Kai Ann; Lee, Chee Kean; Chan, Chris Yin Wei
2016-02-01
To introduce a new clinical neck tilt grading and to investigate clinically and radiologically whether neck tilt and shoulder imbalance is the same phenomenon in AIS patients. 89 AIS Lenke 1 and 2 cases were assessed prospectively using the new clinical neck tilt grading. Shoulder imbalance and neck tilt were correlated with coracoid height difference (CHD), clavicle\\rib intersection distance (CRID), clavicle angle (CA), radiographic shoulder height (RSH), T1 tilt and cervical axis. Mean age was 17.2 ± 3.8 years old. 66.3 % were Lenke type 1 and 33.7 % were type 2 curves. Strong intraobserver (0.79) and interobserver (0.75) agreement of the clinical neck tilt grading was noted. No significant correlation was observed between clinical neck tilt and shoulder imbalance (0.936). 56.3 % of grade 3 neck tilt, 50.0 % grade 2 neck tilt patients had grade 0 shoulder imbalance. In patients with grade 2 shoulder imbalance, 42.9 % had grade 0, 35.7 % grade 1, 14.3 % grade 2 and only 7.1 % had grade 3 neck tilt. CHD, CRID, CA and RSH correlated with shoulder imbalance. T1 tilt and cervical axis measurements correlated with neck tilt. In conclusion, neck tilt is distinct from shoulder imbalance. Clinical neck tilt has poor correlation with clinical shoulder imbalance. Clinical neck tilt grading correlated with cervical axis and T1 tilt whereas clinical shoulder grading correlated with CHD, RSH CRID and CA.
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Stenger, Michael B.; Ploutz-Snyder, Lori L.; Lee, Stuart M. C.
2014-01-01
Approximately 20% of Space Shuttle astronauts became presyncopal during operational stand and 80deg head-up tilt tests, and the prevalence of orthostatic intolerance increases after longer missions. Greater than 60% of the US astronauts participating in Mir and early International Space Station missions experienced presyncope during post-flight tilt tests, perhaps related to limitations of the exercise hardware that prevented high intensity exercise training until later ISS missions. The objective of this study was to determine whether an intense resistive and aerobic exercise countermeasure program designed to prevent cardiovascular and musculoskeletal deconditioning during 70 d of bed rest (BR), a space flight analog, would protect against post-BR orthostatic intolerance. METHODS Twenty-six subjects were randomly assigned to one of three groups: non-exercise controls (n=11) or one of two exercise groups (ExA, n=8; ExB, n=7). Both ExA and ExB groups performed the same resistive and aerobic exercise countermeasures during BR, but one exercise group received testosterone supplementation while the other received a placebo during BR in a double-blinded fashion. On 3 d/wk, subjects performed lower body resistive exercise and 30 min of continuous aerobic exercise (=75% max heart rate). On the other 3 d/wk, subjects performed only highintensity, interval-style aerobic exercise. Orthostatic intolerance was assessed using a 15-min 80? head-up tilt test performed 2 d (BR-2) before and on the last day of BR (BR70). Plasma volume was measured using carbon monoxide rebreathing on BR-3 and before rising on the first recovery day (BR+0). The code for the exercise groups has not been broken, and results are reported here without group identification. RESULTS Only one subject became presyncopal during tilt testing on BR-2, but 7 of 11 (63%) controls, 3 of 8 (38%) ExA, and 4 of 7 (57%) ExB subjects were presyncopal on BR70. Survival analysis of post-BR tilt tests revealed no differences (p=0.77) between groups. Plasma volume (absolute or relative to body mass index) decreased (p<0.001) from pre to post-BR, with no differences between groups. CONCLUSIONS These preliminary results corroborate previous reports that the performance of a vigorous exercise countermeasure protocol during BR, even with testosterone supplementation, does not protect against orthostatic intolerance or plasma volume loss. Preventing post-BR orthostatic intolerance may require additional countermeasures, such as orthostatic stress during BR or end-of-BR fluid infusion.
Design of a radiation facility for very small specimens used in radiobiology studies
NASA Astrophysics Data System (ADS)
Rodriguez, Manuel; Jeraj, Robert
2008-06-01
A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88...
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88...
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpart B, Tables Tables to Subpart B of Part 88...
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpart B, Tables Tables to Subpart B of Part 88...
40 CFR Table C-2 to Subpart C of... - Sequence of Test Measurements
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Sequence of Test Measurements C Table C-2 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Comparability Between Candidate Methods and Reference Methods Pt. 53, Subpt. C, Table C-2 Table C-2 to Subpart C...
40 CFR Table C-2 to Subpart C of... - Sequence of Test Measurements
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Sequence of Test Measurements C Table C-2 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Comparability Between Candidate Methods and Reference Methods Pt. 53, Subpt. C, Table C-2 Table C-2 to Subpart C...
40 CFR Table C-2 to Subpart C of... - Sequence of Test Measurements
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Sequence of Test Measurements C Table C-2 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Comparability Between Candidate Methods and Reference Methods Pt. 53, Subpt. C, Table C-2 Table C-2 to Subpart C...
40 CFR Table C-2 to Subpart C of... - Sequence of Test Measurements
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Sequence of Test Measurements C Table C-2 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Comparability Between Candidate Methods and Reference Methods Pt. 53, Subpt. C, Table C-2 Table C-2 to Subpart C...
40 CFR Table C-2 to Subpart C of... - Sequence of Test Measurements
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Sequence of Test Measurements C Table C-2 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Comparability Between Candidate Methods and Reference Methods Pt. 53, Subpt. C, Table C-2 Table C-2 to Subpart C...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2012 CFR
2012-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2014 CFR
2014-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2013 CFR
2013-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As...
Some Exact Conditional Tests of Independence for R X C Cross-Classification Tables
ERIC Educational Resources Information Center
Agresti, Alan; Wackerly, Dennis
1977-01-01
Exact conditional tests of independence in cross-classification tables are formulated based on chi square and other statistics with stronger operational interpretations, such as some nominal and ordinal measures of association. Guidelines for table dimensions and sample sizes for which the tests are economically implemented on a computer are…
LGM-30B, Stage II Dissected Motors Test Report,
1980-07-01
Relaxation Test Data (Outer Propellant) 29 Table 9, Stress Relaxation Test Data (Inner Propellant) 31 Table 10 , Cohesive Tear Energy Test Data (Outer...Outer) 45 7 Maximum Stress (Inner) 46 8Strain at Rupture (Inner) 47 9 Modulus (Inner) 48 Regression Plot, Low Rate Tensile 10 Maximum Stress (Outer...outer propellants are almost the same. H. TEAR ENERGY TEST: Data from this test period are contained in Tables 10 and 11. Sufficient valid data became
Wagoner, Ashley L.; Shaltout, Hossam A.; Fortunato, John E.
2015-01-01
Studies of adults with orthostatic intolerance (OI) have revealed altered neurohumoral responses to orthostasis, which provide mechanistic insights into the dysregulation of blood pressure control. Similar studies in children with OI providing a thorough neurohumoral profile are lacking. The objective of the present study was to determine the cardiovascular and neurohumoral profile in adolescent subjects presenting with OI. Subjects at 10–18 yr of age were prospectively recruited if they exhibited two or more traditional OI symptoms and were referred for head-up tilt (HUT) testing. Circulating catecholamines, vasopressin, aldosterone, renin, and angiotensins were measured in the supine position and after 15 min of 70° tilt. Heart rate and blood pressure were continuously measured. Of the 48 patients, 30 patients had an abnormal tilt. Subjects with an abnormal tilt had lower systolic, diastolic, and mean arterial blood pressures during tilt, significantly higher levels of vasopressin during HUT, and relatively higher catecholamines and ANG II during HUT than subjects with a normal tilt. Distinct neurohumoral profiles were observed when OI subjects were placed into the following groups defined by the hemodynamic response: postural orthostatic tachycardia syndrome (POTS), orthostatic hypotension (OH), syncope, and POTS/syncope. Key characteristics included higher HUT-induced norepinephrine in POTS subjects, higher vasopressin in OH and syncope subjects, and higher supine and HUT aldosterone in OH subjects. In conclusion, children with OI and an abnormal response to tilt exhibit distinct neurohumoral profiles associated with the type of the hemodynamic response during orthostatic challenge. Elevated arginine vasopressin levels in syncope and OH groups are likely an exaggerated response to decreased blood flow not compensated by higher norepinephrine levels, as observed in POTS subjects. These different compensatory mechanisms support the role of measuring neurohumoral profiles toward the goal of selecting more focused and mechanistic-based treatment options for pediatric patients with OI. PMID:26608337
Stranzinger, Enno; Leidolt, Lars; Eich, Georg; Klimek, Peter Michael
2014-08-01
Evaluation of the anterior tilt angle of the proximal tibia epiphyseal plate in young children, which suffered a trampoline fracture in comparison with a normal population. 62 children (31 females, 31 males) between 2 and 5 years of age (average 2 years 11 months, standard deviation 11 months) with radiographs in two views of the tibia were included in this retrospective study. 25 children with proximal tibia fractures were injured with a history of jumping on a trampoline. All other causes for tibia fractures were excluded. A normal age-mapped control cohort of 37 children was compared. These children had neither evidence of a trampoline related injury nor a fracture of the tibia. The anterior tilt angle of the epiphyseal plate of the tibia was defined as an angle between the proximal tibia physis and the distal tibia physis on a lateral view. Two radiologists evaluated all radiographs for fractures and measured the anterior tilt angle in consensus. An unpaired Student's t-test was used for statistical analysis (SPSS). Original reports were reviewed and compared with the radiological findings and follow-up radiographs. In the normal control group, the average anterior tilt angle measured -3.2°, SD ± 2.8°. The children with trampoline fractures showed an anterior tilt of +4.4°, SD ± 2.9°. The difference was statistically significant, P<0.0001. In 6 patients (24% of all patients with confirmed fractures) the original report missed to diagnose the proximal tibial fracture. Young children between 2 and 5 years of age are at risk for proximal tibia fractures while jumping on a trampoline. These fractures may be very subtle and difficult to detect on initial radiographs. Measurement of the anterior tilt angle of the proximal tibia epiphyseal plate on lateral radiographs is supportive for interpreting correctly trampoline fractures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5 and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5 and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Specifications for PM 10, PM 2.5 and PM 10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Specifications for PM 10, PM 2.5 and PM 10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test Specifications for PM10, PM2.5 and PM10-2.5 Candidate Equivalent Methods C Table C-4 to Subpart C of Part 53 Protection of Environment... Pt. 53, Subpt. C, Table C-4 Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5 and...
Kwan, M K; Chan, C Y W
2016-10-01
To investigate whether an optimal upper instrumented vertebra (UIV) tilt angle would prevent 'lateral' shoulder imbalance or neck tilt (with 'medial' shoulder imbalance) post-operatively. The mean follow-up for 60 AIS (Lenke 1 and Lenke 2) patients was 49.3 ± 8.4 months. Optimal UIV tilt angle was calculated from the cervical supine side bending radiographs. Lateral shoulder imbalance was graded using the clinical shoulder grading. The clinical neck tilt grading was as follows: Grade 0: no neck tilt, Grade 1: actively correctable neck tilt, Grade 2: neck tilt that cannot be corrected by active contraction and Grade 3: severe neck tilt with trapezial asymmetry >1 cm. T1 tilt, clavicle angle and cervical axis were measured. UIVDiff (difference between post-operative UIV tilt and pre-operative Optimal UIV tilt) and the reserve motion of the UIV were correlated with the outcome measures. Patients were assessed at 6 weeks and at final follow-up with a minimum follow-up duration of 24 months. Among patients with grade 0 neck tilt, 88.2 % of patients had the UIV tilt angle within the reserve motion range. This percentage dropped to 75.0 % in patients with grade 1 neck tilt whereas in patients with grade 2 and grade 3 neck tilt, the percentage dropped further to 22.2 and 20.0 % (p = 0.000). The occurrence of grade 2 and 3 neck tilt when UIVDiff was <5°, 5-10° and >10° was 9.5, 50.0 and 100.0 %, respectively (p = 0.005). UIVDiff and T1 tilt had a positive and strong correlation (r 2 = 0.618). However, UIVDiff had poor correlation with clavicle angle and the lateral shoulder imbalance. An optimal UIV tilt might prevent neck tilt with 'medial' shoulder imbalance due to trapezial prominence and but not 'lateral' shoulder imbalance.
Water table tests of proposed heat transfer tunnels for small turbine vanes
NASA Technical Reports Server (NTRS)
Meitner, P. L.
1974-01-01
Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.
40 CFR Table 5 of Subpart Aaaa to... - Requirements for Stack Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Requirements for Stack Tests 5 Table 5 of Subpart AAAA to Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Pt. 60, Subpt. AAAA, Table 5 Table 5 of Subpart AAAA to Part 60—Requirement...
40 CFR Table 5 of Subpart Aaaa to... - Requirements for Stack Tests
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Requirements for Stack Tests 5 Table 5 of Subpart AAAA to Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Pt. 60, Subpt. AAAA, Table 5 Table 5 of Subpart AAAA to Part 60—Requirement...
40 CFR Table 5 of Subpart Aaaa to... - Requirements for Stack Tests
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Requirements for Stack Tests 5 Table 5 of Subpart AAAA to Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Pt. 60, Subpt. AAAA, Table 5 Table 5 of Subpart AAAA to Part 60—Requirement...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2010 CFR
2010-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As stated in § 63...
40 CFR Table 37 to Subpart Uuu of... - Requirements for Performance Tests for Bypass Lines
Code of Federal Regulations, 2011 CFR
2011-07-01
... Bypass Lines 37 Table 37 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 37 Table 37 to Subpart UUU of Part 63—Requirements for Performance Tests for Bypass Lines As stated in § 63...
Application of Executable Architectures in Early Concept Evaluation
2015-12-01
xi List of Tables Page Table 1: Confusion Matrix Format (with example threshold values) ............................... 37 Table 2: Confusion... Matrix Logic Example ...................................................................... 37 Table 3: Test Case Matrix ...43 Table 4: Sensor Low Target Detection Threshold Confusion Matrix
NASA Astrophysics Data System (ADS)
Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael
2014-05-01
Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.
VSTOL tilt nacelle aerodynamics and its relation to fan blade stresses
NASA Technical Reports Server (NTRS)
Shaw, R. J.; Williams, R. C.; Koncsek, J. L.
1978-01-01
A scale model of a VSTOL tilt nacelle with a 0.508 m single stage fan was tested in a low speed wind tunnel to ascertain inlet aerodynamic and fan aeromechanical performance over the low speed flight envelope. Fan blade stress maxima occurred at discrete rotational speeds corresponding to integral engine order vibrations of the first flatwise bending mode. Increased fan blade stress levels coincided with internal boundary layer separation but became severe only when the separation location had progressed to the entry lip region of the inlet.
Flyover noise characteristics of a tilt-wing V/STOL aircraft (XC-142A)
NASA Technical Reports Server (NTRS)
Pegg, R. J.; Henderson, H. R.; Hilton, D. A.
1974-01-01
A field noise measurement investigation was conducted during the flight testing of an XC-142A tilt-wing V/STOL aircraft to define its external noise characteristics. Measured time histories of overall sound pressure level show that noise levels are higher at lower airspeeds and decrease with increased speed up to approximately 160 knots. The primary noise sources were the four high-speed, main propellers. Flyover-noise time histories calculated by existing techniques for propeller noise prediction are in reasonable agreement with the experimental data.
Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel
NASA Technical Reports Server (NTRS)
Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.
2014-01-01
Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.
Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers.
Cantrell, Rebecca A; James, Christine; Clancy, Paulette
2011-08-16
The tendency for C(60) nanowires to persist on two monolayers of recumbent pentacene is studied using molecular dynamics (MD) simulations. A review of existing experimental literature for the tilt angle adopted by pentacene on noble metal surfaces shows that studies cover a limited range from 55° to 90°, motivating simulation studies of essentially the entire range of tilt angles (10°-90°) to predict the optimum surface tilt angle for C(60) nanowire formation. The persistence of a 1D nanowire depends sensitively on this tilt angle, the amount of initial tensile strain, and the presence of surface step edges. At room temperature, C(60) nanowires oriented along the pentacene short axes persist for several nanoseconds and are more likely to occur if they reside between, or within, pentacene rows for ϕ ≤ ∼60°. The likelihood of this persistence increases the smaller the tilt angle. Nanowires oriented along the long axes of pentacene molecules are unlikely to form. The limit of stability of nanowires was tested by raising the temperature to 400 K. Nanowires located between pentacene rows survived this temperature rise, but those located initially within pentacene rows are only stable in the range ϕ(1) = 30°-50°. Flatter pentacene surfaces, that is, tilt angles above about 60°, are subject to disorder caused by C(60) molecules "burrowing" into the pentacene surface. An initial strain of 5% applied to the C(60) nanowires significantly decreases the likelihood of nanowire persistence. In contrast, any appreciable surface roughness, even by half a monolayer in height of a third pentacene monolayer, strongly enhances the likelihood of nanowire formation due to the strong binding energy of C(60) molecules to step edges.
ERIC Educational Resources Information Center
Aviation/Space, 1982
1982-01-01
Current aeronautical research is highlighted, focusing on tilt rotor aircraft, quiet short-haul jets, HiMAT (Highly Maneuverable Aircraft Technology), pivoting wing aircraft, energy absorption tests, and lightning research. (JN)
Perception of self-tilt in a true and illusory vertical plane
NASA Technical Reports Server (NTRS)
Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)
2002-01-01
A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.
Impact of syncope on quality of life: validation of a measure in patients undergoing tilt testing.
Nave-Leal, Elisabete; Oliveira, Mário; Pais-Ribeiro, José; Santos, Sofia; Oliveira, Eunice; Alves, Teresa; Cruz Ferreira, Rui
2015-03-01
Recurrent syncope has a significant impact on quality of life. The development of measurement scales to assess this impact that are easy to use in clinical settings is crucial. The objective of the present study is a preliminary validation of the Impact of Syncope on Quality of Life questionnaire for the Portuguese population. The instrument underwent a process of translation, validation, analysis of cultural appropriateness and cognitive debriefing. A population of 39 patients with a history of recurrent syncope (>1 year) who underwent tilt testing, aged 52.1 ± 16.4 years (21-83), 43.5% male, most in active employment (n=18) or retired (n=13), constituted a convenience sample. The resulting Portuguese version is similar to the original, with 12 items in a single aggregate score, and underwent statistical validation, with assessment of reliability, validity and stability over time. With regard to reliability, the internal consistency of the scale is 0.9. Assessment of convergent and discriminant validity showed statistically significant results (p<0.01). Regarding stability over time, a test-retest of this instrument at six months after tilt testing with 22 patients of the sample who had not undergone any clinical intervention found no statistically significant changes in quality of life. The results indicate that this instrument is of value for assessing quality of life in patients with recurrent syncope in Portugal. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Reasons for using power tilt: perspectives from clients and therapists.
Titus, Laura C; Miller Polgar, Janice
2018-02-01
A power tilt wheelchair allows independence in changing body position to address a variety of needs throughout the day; however, literature and clinical practice suggest that actual use varies greatly. This grounded theory study examined how power tilt was used in daily life from the perspectives of adults who used power tilt and therapists who prescribed this technology. A constant comparative approach was used to collect and analyze interview data from five people who use power tilt and six therapists who prescribe this technology. This paper presents the findings specific to understanding the reasons why power tilt was used, focusing on the relationships between tilt use and (1) the reasons for use, (2) the reasons for prescribing power tilt and (3) the associated amplitudes of tilt. This study advances knowledge related to how power tilt is used in daily life by elucidating that how the reasons for use are conceptualized is complex. The three relationships related to the reason for power tilt use identified in this paper have the potential to influence the quality of communication about power tilt use in clinical practice between therapist and client and in research between researcher and participant. Implications for Rehabilitation: Understanding the inconsistencies and variations in how power tilt is used in daily life is dependent on exploring the reasons beyond the words or terms expressed to describe use. Reasons for tilt use are context dependent, particularly the activity occurring at the time of tilt use, the associated amplitude of tilt and the influence of other reasons occurring at the same time.
40 CFR Table 6 to Subpart IIIi of... - Optional 3-Mode Test Cycle for Stationary Fire Pump Engines
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Optional 3-Mode Test Cycle for.... IIII, Table 6 Table 6 to Subpart IIII of Part 60—Optional 3-Mode Test Cycle for Stationary Fire Pump Engines [As stated in § 60.4210(g), manufacturers of fire pump engines may use the following test cycle...
STS-44 Defense Support Program (DSP) / IUS during preflight operations
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Defense Support Program (DSP) satellite atop the inertial upper stage (IUS) is prepared for transfer in a processing facility at Cape Canaveral Air Force Station. Clean-suited technicians overseeing the operation are dwarfed by the size of the 5,200-pound DSP satellite and the IUS. The underside of the IUS (bottom) mounted in the airborne support equipment (ASE) aft frame tilt actuator (AFTA) table and ASE forward frame is visible at the base. The umbilical boom between the two ASE frames and the forward frame keel trunnion are visible. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous Earth orbit by the IUS. View provided by KSC with alternate number KSC-91PC-1749.
Magnetospheric Multiscale (MMS)
2014-05-09
Observatory #1 is shown here on the Ransome table, tilted in a vertical position to provide better access for the engineers and technicians. Learn more about MMS at www.nasa.gov/mms Credit NASA/Goddard The Magnetospheric Multiscale, or MMS, will study how the sun and the Earth's magnetic fields connect and disconnect, an explosive process that can accelerate particles through space to nearly the speed of light. This process is called magnetic reconnection and can occur throughout all space. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less
NASA Astrophysics Data System (ADS)
Porta, Alberto; Marchi, Andrea; Bari, Vlasta; De Maria, Beatrice; Esler, Murray; Lambert, Elisabeth; Baumert, Mathias
2017-05-01
The study assesses the strength of the causal relation along baroreflex (BR) in humans during an incremental postural challenge soliciting the BR. Both cardiac BR (cBR) and sympathetic BR (sBR) were characterized via BR sequence approaches from spontaneous fluctuations of heart period (HP), systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and muscle sympathetic nerve activity (MSNA). A model-based transfer entropy method was applied to quantify the strength of the coupling from SAP to HP and from DAP to MSNA. The confounding influences of respiration were accounted for. Twelve young healthy subjects (20-36 years, nine females) were sequentially tilted at 0°, 20°, 30° and 40°. We found that (i) the strength of the causal relation along the cBR increases with tilt table inclination, while that along the sBR is unrelated to it; (ii) the strength of the causal coupling is unrelated to the gain of the relation; (iii) transfer entropy indexes are significantly and positively associated with simplified causality indexes derived from BR sequence analysis. The study proves that causality indexes are complementary to traditional characterization of the BR and suggests that simple markers derived from BR sequence analysis might be fruitfully exploited to estimate causality along the BR. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.
Asundi, Krishna; Odell, Dan; Luce, Adam; Dennerlein, Jack T
2012-03-01
This study evaluated the use of simple inclines as a portable peripheral for improving head and neck postures during notebook computer use on tables in portable environments such as hotel rooms, cafés, and airport lounges. A 3D motion analysis system measured head, neck and right upper extremity postures of 15 participants as they completed a 10 min computer task in six different configurations, all on a fixed height desk: no-incline, 12° incline, 25° incline, no-incline with external mouse, 25° incline with an external mouse, and a commercially available riser with external mouse and keyboard. After completion of the task, subjects rated the configuration for comfort and ease of use and indicated perceived discomfort in several body segments. Compared to the no-incline configuration, use of the 12° incline reduced forward head tilt and neck flexion while increasing wrist extension. The 25° incline further reduced head tilt and neck flexion while further increasing wrist extension. The 25° incline received the lowest comfort and ease of use ratings and the highest perceived discomfort score. For portable, temporary computing environments where internal input devices are used, users may find improved head and neck postures with acceptable wrist extension postures with the utilization of a 12° incline. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From Sulfur...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Requirements for Performance Tests for Organic HAP Emissions From Catalytic Reforming Units 18 Table 18 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 18 Table 18 to Subpart UUU of Part 63—Requirements for...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Requirements for Performance Tests for Organic HAP Emissions From Catalytic Reforming Units 18 Table 18 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 18 Table 18 to Subpart UUU of Part 63—Requirements for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Sulfur Oxides 32 Table 32 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 32 Table 32 to Subpart UUU of Part 63—Requirements for Performance Tests for HAP Emissions From...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Performance Tests for Organic HAP Emissions From Catalytic Reforming Units 18 Table 18 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 18 Table 18 to Subpart UUU of Part 63—Requirements for...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 11 Table 11 to Subpart UUU of Part 63—Requirements for Performance Tests for Organic HAP Emissions...
Installation of child safety seats in selected 1988-1989 model year automobiles
DOT National Transportation Integrated Search
1989-06-01
The study tested whether currently marketed child safety seats are difficult to install in current model automobiles. The study also tested whether once installed, the child seats remain securely fastened when rocked or tilted. Thirteen toddler and f...
Human Health Countermeasures - Partial-Gravity Analogs Workshop
NASA Technical Reports Server (NTRS)
Barr, Yael; Clement, Gilles; Norsk, Peter
2016-01-01
The experimental conditions that were deemed the most interesting by the HHC Element lead scientists are those permitting studies of the long-term effects of exposure to (a) chronic rotation when supine or in head down tilt (ground-based); and (b) long-radius centrifugation (space based). It is interesting to note that chronic ground based slow rotation room studies have not been performed since the 1960's, when the USA and USSR were investigating the potential use of AG for long-duration space missions. On the other hand, the other partial gravity analogs, i.e., parabolic flight, HUT, suspension, and short-radius centrifugation, have been regularly used in the last three decades (see review in Clément et al. 2015). Based on the workshop evaluations and the scores by the HHC scientific disciplines indicated in tables 3 and 4, simulation of partial G between 0 and 1 should be prioritized as follows: Priority 1. Chronic space-based partial-G analogs: a. Chronic space-based long-radius centrifugation. The ideal scenario would be chronic long-radius centrifugation of cells, animals and humans in a translational research approach - ideally beyond low earth orbit under deep space environmental effects and at various rotations - to obtain different G-effects. In this scenario, all physiological systems could be evaluated and the relationship between physiological response and G level established. This would be the most integrative way of defining, for the first time ever, G-thresholds for each physiological system. b. Chronic space-based centrifugation of animals. Chronic centrifugation of rodents at various G levels in space would allow for determination of AG thresholds of protection for each physiological system. In this case, all physiological systems will be of interest. Intermittent centrifugation will be of secondary interest. c. Chronic space-based centrifugation of cell cultures (RWV). Bioreactor studies of cells and cell cultures of various tissues at various G levels would allow for intracellular investigations of the effects of partial-G. Priority 2. Acute, intermittent space based partial-G analogs: a. Acute, intermittent space-based short radius human centrifugation. Intermittent centrifugation of humans would allow determination of thresholds of AG for protection of astronaut health in space. Priority 3. Chronic ground-based partial-G analogs: a. Chronic centrifugation of supine or head-down tilted humans. b. Chronic head-up tilt in humans. c. Chronic head-out graded dry immersion in humans. d. Chronic partial suspension of rodents e. Chronic rotating bioreactor cell culture studies (RWV) Priority 4. Acute ground based partial-G analogs. a. Parabolic flights. Very acute and short term effects of G levels between 0 and 1 in humans for fast responding systems like cardiovascular and sensorimotor as well as for acute responses in cell cultures and animals. b. Other acute models as indicated in table 3.
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
NASA Technical Reports Server (NTRS)
Nemeth, Z. N.
1972-01-01
Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.
Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.
1990-01-01
Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.
V/STOLAND digital avionics system for XV-15 tilt rotor
NASA Technical Reports Server (NTRS)
Liden, S.
1980-01-01
A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.
Ran, Jing; Wang, Cheng; Zou, Run-Mei; Wu, Li-Jia; Lin, Ping; Li, Fang; Xu, Yi
2015-10-01
To study the time-dependent heart rate (HR) variability in the head-up tilt test (HUTT) in children with postural orthostatic tachycardia syndrome (POTS) and to explore the HR diagnostic criteria for POTS in children. A retrospective analysis was performed on the clinical data of 105 children diagnosed with POTS with HR≥120 beats per minute (bpm) within the first 10 minutes of HUTT between January 2007 and December 2014. Their HR variability within the first 10 minutes of HUTT was analyzed. The HR of children with POTS increased gradually from the supine position to a 60° head-up tilt position, and the increase in HR was 24±12 bpm at the beginning of HUTT, 30±14 bpm at 3 minutes of HUTT, 32±13 bpm at 5 minutes of HUTT, and 38±12 bpm at 10 minutes of HUTT. The average maximal HR increase within the first 10 minutes of HUTT was 43±10 bpm. In children with POTS, the HR variability gradually increases with time, and therefore, it is suggested that HR increase ≥40 bpm is more suitable for diagnosis of POTS in children.
Advances in the Echidna fiber-positioning technology
NASA Astrophysics Data System (ADS)
Sheinis, Andrew; Saunders, Will; Gillingham, Peter; Farrell, Tony J.; Muller, Rolf; Smedley, Scott; Brzeski, Jurek; Waller, Lewis G.; Gilbert, James; Smith, Greg
2014-07-01
We present advances in the patented Echidna 'tilting spine' fiber positioner technology that has been in operation since 2007 on the SUBARU telescope in the FMOS system. The new Echidna technology is proposed to be implemented on two large fiber surveys: the Dark Energy Spectroscopic Instrument (DESI) (5000 fibers) as well the Australian ESO Positioner (AESOP) for 4MOST, a spectroscopic survey instrument for the VISTA telescope (~2500 fibers). The new 'superspine' actuators are stiffer, longer and more accurate than their predecessors. They have been prototyped at AAO, demonstrating reconfiguration times of ~15s for errors of <5 microns RMS. Laboratory testing of the prortotype shows accurate operation at temperatures of -10 to +30C, with an average heat output of 200 microwatts per actuator during reconfiguration. Throughput comparisons to other positioner types are presented, and we find that losses due to tilt will in general be outweighed by increased allocation yield and reduced fiber stress FRD. The losses from spine tilt are compensated by the gain in allocation yield coming from the greater patrol area, and quantified elsewhere in these proceedings. For typical tilts, f-ratios and collimator overspeeds, Echidna offers a clear efficiency gain versus current r-that or theta-phi positioners.
Hong, Chuan; Chen, Yong; Ning, Yang; Wang, Shuang; Wu, Hao; Carroll, Raymond J
2017-01-01
Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and non-differentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g. mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and non-identifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real data set to identify differentially methylated sites between ovarian cancer subjects and normal subjects.
Wada, Takahiro; Yoshida, Keigo
2016-08-01
This study examined the effect of passengers' active head-tilt and eyes-open/eyes-closed conditions on the severity of motion sickness in the lateral acceleration environment of cars. In the centrifugal head-tilt condition, participants intentionally tilted their heads towards the centrifugal force, whereas in the centripetal head-tilt condition, the participants tilted their heads against the centrifugal acceleration. The eyes-open and eyes-closed cases were investigated for each head-tilt condition. In the experimental runs, the sickness rating in the centripetal head-tilt condition was significantly lower than that in the centrifugal head-tilt condition. Moreover, the sickness rating in the eyes-open condition was significantly lower than that in the eyes-closed condition. The results suggest that an active head-tilt motion against the centrifugal acceleration reduces the severity of motion sickness both in the eyes-open and eyes-closed conditions. They also demonstrate that the eyes-open condition significantly reduces the motion sickness even when the head-tilt strategy is used. Practitioner Summary: Little is known about the effect of head-tilt strategies on motion sickness. This study investigated the effects of head-tilt direction and eyes-open/eyes-closed conditions on motion sickness during slalom automobile driving. Passengers' active head tilt towards the centripetal direction and the eyes-open condition greatly reduce the severity of motion sickness.
NASA Technical Reports Server (NTRS)
Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.
1986-01-01
Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.
Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspi, S.; Dietderich, D. R.; Ferracin, P.
2007-06-01
It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especiallymore » suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.« less
Combined scanning transmission electron microscopy tilt- and focal series.
Dahmen, Tim; Baudoin, Jean-Pierre; Lupini, Andrew R; Kübel, Christian; Slusallek, Philipp; de Jonge, Niels
2014-04-01
In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt-focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller "missing wedge" artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Inorganic HAP Emissions From Catalytic Reforming Units 25 Table 25 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 25 Table 25 to Subpart UUU of Part 63—Requirements for Performance Tests... Procedure) in appendix A to subpart UUU; or EPA Method 5050 combined either with EPA Method 9056, or with...
Increased Aldosterone Release During Head-Up Tilt in Early Primary Hypertension.
Reinold, Annemarie; Schneider, Andreas; Kalizki, Tatjana; Raff, Ulrike; Schneider, Markus P; Schmieder, Roland E; Schmidt, Bernhard M W
2017-05-01
Hyperaldosteronism is well known cause of secondary hypertension. However, the importance of aldosterone for the much larger group of patients with primary hypertension is less clear. We hypothesized that in young subjects with primary hypertension, the rise of plasma aldosterone levels in response to head-up tilt testing as a stress stimulus is exaggerated. Hemodynamics (blood pressure (BP), heart rate (HR), cardiac index (CI), and total peripheral vascular resistance index (TPRI), all by TaskForce monitor) and hormones (plasma renin activity (PRA), angiotensin II (Ang II), aldosterone) were measured before and during 30 minutes of head-up tilt in 45 young hypertensive and 45 normotensive subjects. BP, HR, CI, and TPRI all increased in response to head-up tilt, with no difference between groups. There was no difference in baseline PRA, Ang II, and aldosterone between groups. During head-up tilt, PRA, and Ang II levels increased similarly. However, aldosterone levels increased to a greater extent in the hypertensive vs. normotensive subjects (P = 0.0021). Our data suggest that an increased release of aldosterone in response to orthostatic stress is a feature of early primary hypertension. The similar increase in PRA and Ang II suggests a potential role for secretagogues of aldosterone other than Ang II in this response. In addition to its established role in secondary hypertension, dysregulation of aldosterone release might contribute to the development of primary arterial hypertension. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Wall, Conrad
2010-01-01
Background and Purpose Balance rehabilitation and vestibular/balance prostheses are both emerging fields that have a potential for synergistic interaction. This paper reviews vibrotactile prosthetic devices that have been developed to date and ongoing work related to the application of vibrotactile feedback for enhanced postural control. A vibrotactile feedback device developed in the author’s laboratory is described. Methods Twelve subjects with vestibular hypofunction were tested on a platform that moved randomly in a plane, while receiving vibrotactile feedback in the anterio-posterior direction. The feedback allowed subjects to significantly decrease their anterio-posterior body tilt, but did not change mediolateral tilt. A tandem walking task using subjects with vestibulopathies demonstrated a reduction in their medio-lateral sway due to vibrotactile feedback of medio-lateral body tilt, after controlling for the effects of task learning. The findings from two additional experiments conducted in the laboratories of collaborating physical therapists are summarized. Results The Dynamic Gait Index scores in community-dwelling elderly individuals who were prone-to-fall were significantly improved with the use of medio-lateral body tilt feedback. Discussion and Conclusions While more work is needed, these results suggest that vibrotactile tilt feedback of subjects’ body motion can be used effectively by physical therapists for balance rehabilitation. A preliminary description of the 3rd generation device that has been reduced from a vest format to a belt format is described to demonstrate the progressive evolution from research to clinical application. PMID:20588096
Scapular Contribution for the End-Range of Shoulder Axial Rotation in Overhead Athletes
Ribeiro, Andrea; Pascoal, Augusto Gil
2012-01-01
The aim of this study was to analyze the relative contribution of the scapular motion on the extreme range-of-motion of shoulder external and internal rotation, in overhead athletes. An electromagnetic tracking device (Flock of Birds) was used to record humeral and scapular kinematics. The dominant arm of 26 male subjects (13 athletes and 13 non-athletes) was studied while subjects actively reached end-range of internal and external rotation. Humeral and scapular angles were calculated and compared across groups by means of a t-test for independent samples. A bivariate correlation approach was used to describe the relationship between humeral angles and scapular variables. The range-of-motion of the thoracohumeral angles, during shoulder external rotation was significantly less (p < 0.05) on the athletes group, athletes also positioned their dominant scapula more retracted and posteriorly tilted. A positive correlation was found between glenohumeral angles and scapular tilt (r = 0.6777; p < 0.05). Concerning internal rotation; athletes showed significantly greater (highest) thoracohumeral angles (p < 0.05). Scapula assumed a position more in retraction and anterior tilt. Based on these findings, it is suggested that differences found in athletes seem to reveal an eventual shoulder adaptation to the throwing mechanics. Key points In external rotation end-range, athletes positioned their scapula more in retraction and posterior tilt. In internal rotation end-range, athletes positioned their scapula more in retraction and anterior tilt. Results seem to reveal a sport-related shoulder adaptation. PMID:24150078
Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope
NASA Astrophysics Data System (ADS)
Liu, Cheng; Park, Jong-Woong; Spencer, B. F., Jr.; Moon, Do-Soo; Fan, Jiansheng
2017-10-01
A tilt sensor can provide useful information regarding the health of structural systems. Most existing tilt sensors are gravity/acceleration based and can provide accurate measurements of static responses. However, for dynamic tilt, acceleration can dramatically affect the measured responses due to crosstalk. Thus, dynamic tilt measurement is still a challenging problem. One option is to integrate the output of a gyroscope sensor, which measures the angular velocity, to obtain the tilt; however, problems arise because the low-frequency sensitivity of the gyroscope is poor. This paper proposes a new approach to dynamic tilt measurements, fusing together information from a MEMS-based gyroscope and an acceleration-based tilt sensor. The gyroscope provides good estimates of the tilt at higher frequencies, whereas the acceleration measurements are used to estimate the tilt at lower frequencies. The Tikhonov regularization approach is employed to fuse these measurements together and overcome the ill-posed nature of the problem. The solution is carried out in the frequency domain and then implemented in the time domain using FIR filters to ensure stability. The proposed method is validated numerically and experimentally to show that it performs well in estimating both the pseudo-static and dynamic tilt measurements.
Jessen, Wilko; Wilbert, Stefan; Gueymard, Christian A.; ...
2018-04-10
Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of thismore » ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches correspond to potential accuracy improvements for a quick estimation of the average efficiency by applying the appropriate subordinate standard spectrum instead of the IEC/G173 spectra. The applicability of these spectra for PV performance analyses is confirmed at five test sites, for which subordinate spectra could be intuitively selected based on the average atmospheric aerosol optical depth (AOD) and precipitable water vapor at those locations. The development of subordinate standard spectra for DNI and concentrating solar power (CSP) and concentrating PV (CPV) is also considered. However, it is found that many more sets of atmospheric conditions would be required to allow the intuitive selection of DNI spectra for the five test sites, due in particular to the stronger effect of AOD on DNI compared to GTI. The matrix of subordinate GTI spectra described in this paper are recommended to appear as an option in the annex of future standards, in addition to the obligatory use of the main spectrum from the ASTM G173 and IEC 60904 standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessen, Wilko; Wilbert, Stefan; Gueymard, Christian A.
Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of thismore » ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches correspond to potential accuracy improvements for a quick estimation of the average efficiency by applying the appropriate subordinate standard spectrum instead of the IEC/G173 spectra. The applicability of these spectra for PV performance analyses is confirmed at five test sites, for which subordinate spectra could be intuitively selected based on the average atmospheric aerosol optical depth (AOD) and precipitable water vapor at those locations. The development of subordinate standard spectra for DNI and concentrating solar power (CSP) and concentrating PV (CPV) is also considered. However, it is found that many more sets of atmospheric conditions would be required to allow the intuitive selection of DNI spectra for the five test sites, due in particular to the stronger effect of AOD on DNI compared to GTI. The matrix of subordinate GTI spectra described in this paper are recommended to appear as an option in the annex of future standards, in addition to the obligatory use of the main spectrum from the ASTM G173 and IEC 60904 standards.« less
Evaluating the Subjective Straight Ahead Before and After Spaceflight
NASA Technical Reports Server (NTRS)
Campbell, D. J.; Wood, S. J.; Reschke, M. F.; Clement, G.
2017-01-01
Introduction. This joint European Space Agency/NASA pre- and post-flight study investigates the influence of exposure to microgravity on the subjective straight ahead (SSA) in crewmembers returning from long-duration expeditions to the International Space Station (ISS). The SSA is a measure of the internal representation of body orientation and to be influenced by stimulation of sensory systems involved in postural control. The use of a vibrotactile sensory aid to correct the representation of body tilted relative to gravity is also tested as a countermeasure. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing." Research Plans. The ISS study will involve eight crewmembers who will participate in three pre-flight sessions (between 120 and 60 days before launch) and then three post-flight sessions on R plus 0/1 day, R plus 4 days, and R plus 8 days. Sixteen control subjects were also tested during three sessions to evaluate the effects of repeated testing and to establish normative values. The experimental protocol includes measurements of gaze and arm movements during the following tasks: (1) Near & Far Fixation: The subject is asked to look at actual targets in the true straight-ahead direction or to imagine these targets in the dark. Targets are located at near distance (arm's length) and far distance (beyond 2 meters). This task is successively performed with the subject's body aligned with the gravitational vertical, and with the subject's body tilted in pitch relative to the gravitational vertical using a tilt chair. Measures are then compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the vertical; (2) Eye and Arm Movements: The subject is asked to look and point in the SSA direction in darkness and then make horizontal and vertical eye or arm movements, relative to Earth coordinates (allocentric) and to the subject's head/body reference (egocentric). This task is successively performed with the subject's body aligned with the gravitational vertical, and with subject's body tilted in roll using a tilt chair; (3) Linear Vestibulo-Ocular Reflex: The subject is asked to fixate actual visual targets at near and far distances in the true straight-ahead direction, and to evaluate the distance of these targets. The subject is asked to continue fixating the same imagined targets in darkness while he/she is passively accelerated up and down on a spring-loaded vertical linear accelerator. Results. In the control subject population, the perceived tilt angles, translations, and distances were remarkably close to the actual values. The pointing tasks indicated that the orientation of arm saccades was influenced by both the gravitational vertical and the body idiotropic vector. Repeating the testing did not reveal any significant changes. Preliminary results obtained in three crewmembers before and after flight will also be presented. Applications. A change in an individual's egocentric reference might have negative consequences on evaluating the direction of an approaching object or on the accuracy of reaching movements or locomotion. Consequently, investigating how microgravity affects the target location will have theoretical, operational, and even clinical implications for future space exploration missions. The use of vibrotactile feedback as a sensorimotor countermeasure is applicable to balance therapy applications for patients with vestibular loss and the elderly to mitigate risks due to loss of spatial orientation.
NASA Technical Reports Server (NTRS)
Parzych, D.; Boyd, L.; Meissner, W.; Wyrostek, A.
1991-01-01
An experiment was performed by Hamilton Standard, Division of United Technologies Corporation, under contract by LeRC, to measure the blade surface pressure of a large scale, 8 blade model prop-fan in flight. The test bed was the Gulfstream 2 Prop-Fan Test Assessment (PTA) aircraft. The objective of the test was to measure the steady and periodic blade surface pressure resulting from three different Prop-Fan air inflow angles at various takeoff and cruise conditions. The inflow angles were obtained by varying the nacelle tilt angles, which ranged from -3 to +2 degrees. A range of power loadings, tip speeds, and altitudes were tested at each nacelle tilt angle over the flight Mach number range of 0.30 to 0.80. Unsteady blade pressure data tabulated as Fourier coefficients for the first 35 harmonics of shaft rotational frequency and the steady (non-varying) pressure component are presented.
NASA Technical Reports Server (NTRS)
Hunt, D.; Clinglan, J.; Salemann, V.; Omar, E.
1977-01-01
Ground static and wind tunnel test of a scale model modified T-39 airplane are reported. The configuration in the nose and replacement of the existing nacelles with tilting lift/cruise fans. The model was powered with three 14 cm diameter tip driven turbopowered simulators. Forces and moments were measured by an internal strain guage balance. Engine simulator thrust and mass flow were measured by calibrated pressure and temperature instrumentation mounted downstream of the fans. The low speed handling qualities and general aerodynamic characteristics of the modified T-39 were defined. Test variables include thrust level and thrust balance, forward speed, model pitch and sideslip angle at forward speeds, model pitch, roll, and ground height during static tests, lift/cruise fan tilt angle, flap and aileron deflection angle, and horizonal stabilizer angle. The effects of removing the landing gear, the lift/cruise fans, and the tail surfaces were also investigated.
Cardiovascular Autonomic Dysfunction in Patients with Drug-Induced Parkinsonism
Ryu, Dong-Woo; Oh, Ju-Hee; Lee, Yang-Hyun; Park, Sung-Jin; Jeon, Kipyung; Lee, Jong-Yun; Ho, Seong Hee; So, Jungmin; Im, Jin Hee; Lee, Kwang-Soo
2017-01-01
Background and Purpose Recent studies have shown that several nonmotor symptoms differ between Parkinson's disease (PD) and drug-induced parkinsonism (DIP). However, there have been no reports on cardiovascular autonomic function in DIP, and so this study investigated whether cardiovascular autonomic function differs between PD and DIP patients. Methods This study consecutively enrolled 20 DIP patients, 99 drug-naïve PD patients, and 25 age-matched healthy controls who underwent head-up tilt-table testing and 24-h ambulatory blood pressure monitoring. Results Orthostatic hypotension was more frequent in patients with PD or DIP than in healthy controls. In DIP, orthostatic hypotension was associated with the underlying psychiatric diseases and neuroleptics use, whereas prokinetics were not related to orthostatic hypotension. The supine blood pressure, nighttime blood pressure, and nocturnal blood pressure dipping did not differ significantly between the DIP and control groups. Supine hypertension and nocturnal hypertension were more frequent in PD patients than in controls. Conclusions The included DIP patients frequently exhibited orthostatic hypotension that was associated with the underlying diseases as well as the nature of and exposure time to the offending drugs. Clinicians should individualize the manifestations of DIP according to underlying diseases as well as the action mechanism of and exposure time to each offending drug. PMID:27730767
Integrative rehabilitation of elderly stroke survivors: the design and evaluation of the BrightArm™.
Rabin, Bryan A; Burdea, Grigore C; Roll, Doru T; Hundal, Jasdeep S; Damiani, Frank; Pollack, Simcha
2012-07-01
To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations.
Integrative rehabilitation of elderly stroke survivors: The design and evaluation of the BrightArm™
Rabin, Bryan A.; Burdea, Grigore C.; Roll, Doru T.; Hundal, Jasdeep S.; Damiani, Frank; Pollack, Simcha
2011-01-01
Purpose To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. Method The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Results Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Conclusions Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations. PMID:22107353
Generator Set Durability Testing Using 25% ATJ Fuel Blend
2016-02-01
Table Page Table 1. Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 3 Table 2... Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 4 Table 3. Chemical & Physical...Properties of Evaluated 25% ATJ Blend .................................................... 5 Table 4. Chemical & Physical Properties of Evaluated 25
Preliminary results from comparisons of redundant tiltmeters at three sites in central california
Mortensen, C.E.; Johnston, M.J.S.
1979-01-01
The U.S. Geological Survey has been operating a network of shallow-borehole tiltmeters in central California since June 1973. At six sites redundant instruments have been installed as a check on data coherency. These include the Sage Ranch, Tres Pinos, New Idria, Aromas, Bear Valley and San Juan Bautista tiltmeter sites. Preliminary results from the comparison of redundant data from the Aromas, Bear Valley and San Juan Bautista sites for periods of eight, three and seven months respectively, suggest that short period tilt signals in the range 5 min < T < 3-5 h and ranging in amplitude from 5 ?? 10-8 to 10-6 rad, but not including step offsets, show excellent agreement on closely spaced instruments. Agreement is not as good in this period range for instruments at San Juan Bautista with a separation of 200 m. Signals of interest observed in this period range include coseismic tilts, teleseisms and tilts associated with creep events. Tilt signals in the period range 3-5 h < T < 2- 5 weeks are not always coherent at all three of the redundant tilt sites studied. Tilt signals in this period range have amplitudes up to 5 ?? 10-6 rad and wavelengths down to at least the instrument separation at the closely spaced sites (~several meters). Regarding longerterm coherency, the instruments at San Juan Bautista with 200-m spacing, agree within 0.5 ??rad for the N-S component and 0.7 jurad for the E-W component for a period of two months. The closely spaced redundant instruments at Aromas agree within 2 ??rad for the N-S component and 1 ??rad for the E-W component for the eight-month period of operation. Data from the three sites have been checked for effects of temperature, atmospheric pressure and rainfall. The latter appears to be critically site dependent. The worst case tilts for 1 inch of rainfall can be more than 1 jurad with a duration of a few days to a week. Typical rain-induced tilts are less than 0.3 ??rad for 1 inch of rain. The two instruments at the Sage Ranch site have been in operation for the longest period. However, they have shown local site or ground instability, high drift and lack of coherency since installation. Data are not yet available from the Tres Pinos or New Idria instruments. Deeper installation appears necessary for these instruments and two alternative methods of tiltmeter emplacement are currently being tested in an attempt to evaluate the depth, spatial and temporal dependency of surface tilt sources. ?? 1979.
NASA Astrophysics Data System (ADS)
Kleinhans, Maarten G.; van der Vegt, Maarten; Leuven, Jasper; Braat, Lisanne; Markies, Henk; Simmelink, Arjan; Roosendaal, Chris; van Eijk, Arjan; Vrijbergen, Paul; van Maarseveen, Marcel
2017-11-01
Analogue models or scale experiments of estuaries and short tidal basins are notoriously difficult to create in the laboratory because of the difficulty to obtain currents strong enough to transport sand. Our recently discovered method to drive tidal currents by periodically tilting the entire flume leads to intense sediment transport in both the ebb and flood phase, causing dynamic channel and shoal patterns. However, it remains unclear whether tilting produces periodic flows with characteristic tidal properties that are sufficiently similar to those in nature for the purpose of landscape experiments. Moreover, it is not well understood why the flows driven by periodic sea level fluctuation, as in nature, are not sufficient for morphodynamic experiments. Here we compare for the first time the tidal currents driven by sea level fluctuations and by tilting. Experiments were run in a 20 × 3 m straight flume, the Metronome, for a range of tilting periods and with one or two boundaries open at constant head with free inflow and outflow. Also, experiments were run with flow driven by periodic sea level fluctuations. We recorded surface flow velocity along the flume with particle imaging velocimetry and measured water levels along the flume. We compared the results to a one-dimensional model with shallow flow equations for a rough bed, which was tested on the experiments and applied to a range of length scales bridging small experiments and large estuaries. We found that the Reynolds method results in negligible flows along the flume except for the first few metres, whereas flume tilting results in nearly uniform reversing flow velocities along the entire flume that are strong enough to move sand. Furthermore, tidal excursion length relative to basin length and the dominance of friction over inertia is similar in tidal experiments and reality. The sediment mobility converges between the Reynolds method and tilting for flumes hundreds of metres long, which is impractical. Smaller flumes of a few metres in length, on the other hand, are much more dominated by friction than natural systems, meaning that sediment suspension would be impossible in the resulting laminar flow on tidal flats. Where the Reynolds method is limited by small sediment mobility and high tidal range relative to water depth, the tilting method allows for independent control over the variables flow depth, velocity, sediment mobility, tidal period and excursion length, and tidal asymmetry. A periodically tilting flume thus opens up the possibility of systematic biogeomorphological experimentation with self-formed estuaries.
Design and test of a tip-tilt driver for an image stabilization system
NASA Astrophysics Data System (ADS)
Casas, Albert; Gómez, José María.; Roma, David; Carmona, Manuel; López, Manel; Bosch, José; Herms, Atilù; Sabater, Josep; Volkmer, Reiner; Heidecke, Frank; Maue, Thorsten; Nakai, Eiji; Baumgartner, Jörg; Schmidt, Wolfgang
2016-08-01
The tip/tilt driver is part of the Polarimetric and Helioseismic Imager (PHI) instrument for the ESA Solar Orbiter (SO), which is scheduled to launch in 2017. PPHI captures polarimetric images from the Sun to better understand our nearest star, the Sun. The paper covers an analog amplifier design to drive capacitive solid state actuator such ass piezoelectric actuator. Due to their static and continuous operation, the actuator needs to be supplied by high-quality, low-frequency, high-voltage sinusoidal signals. The described circuit is an efficiency-improved Class-AB amplifier capable of recovering up to 60% of the charge stored in the actuator. The results obtained after the qualification model test demonstrate the feasibility of the circuit with the accomplishment of the requirements fixed by the scientific team.
NASA Astrophysics Data System (ADS)
Tian, Jiajun; Zhang, Qi; Han, Ming
2013-05-01
Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.
Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback
2009-11-10
The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.
Tilt changes of short duration
McHugh, Stuart
1976-01-01
Section I of this report contains a classification scheme for short period tilt data. For convenience, all fluctuations in the local tilt field of less than 24 hours duration will be designated SP (i.e., short period) tilt events. Three basic categories of waveshape appearance are defined, and the rules for naming the waveforms are outlined. Examples from tilt observations at four central California sites are provided. Section II contains some coseismic tilt data. Fourteen earthquakes in central California, ranging in magnitude from 2.9 to 5.2, were chosen for study on four tiltmeters within 10 source dimensions of the epicenters. The raw records from each of the four tiltmeters at the times of the earthquakes were photographed and are presented in this section. Section III contains documentation of computer programs used in the analysis of the short period tilt data. Program VECTOR computes the difference vector of a tilt event and displays the sequence of events as a head-to-tail vector plot. Program ONSTSP 1) requires two component digitized tilt data as input, 2) scales and plots the data, and 3) computes and displays the amplitude, azimuth, and normalized derivative of the tilt amplitude. Program SHARPS computes the onset sharpness, (i.e., the normalized derivative of the tilt amplitude at the onset of the tilt event) as a function of source-station distance from a model of creep-related tilt changes. Program DSPLAY plots the digitized data.
Rosenbaum, Sarah E; Glenton, Claire; Nylund, Hilde Kari; Oxman, Andrew D
2010-06-01
To develop a Summary of Findings (SoF) table for use in Cochrane reviews that is understandable and useful for health professionals, acceptable to Cochrane Collaboration stakeholders, and feasible to implement. We gathered stakeholder feedback on the format and content of an SoF table from an advisory group of more than 50 participants and their constituencies through e-mail consultations. We conducted user tests using a think-aloud protocol method, collecting feedback from 21 health professionals and researchers in Norway and the UK. We analyzed the feedback, defined problem areas, and generated new solutions in brainstorming workshops. Stakeholders were concerned about precision in the data representation and about production feasibility. User testing revealed unexpected comprehension problems, mainly confusion about what the different numbers referred to (class reference). Resolving the tension between achieving table precision and table simplicity became the main focus of the working group. User testing led to a table more useful and understandable for clinical audiences. We arrived at an SoF table that was acceptable to the stakeholders and in principle feasible to implement technically. Some challenges remain, including presenting continuous outcomes and technical/editorial implementation.
Effects of head-down tilt on fluid and electrolyte balance
NASA Technical Reports Server (NTRS)
Volicer, L.; Jean-Charles, R.; Chobanian, A. V.
1976-01-01
The metabolic effects of -5 deg tilt were studied in eight normal individuals. Exposure to tilt for 24 hr increased sodium excretion and decreased plasma volume. Plasma renin activity and plasma aldosterone levels were not significantly different from supine values during the first 6 hr of tilting, but were increased significantly at the end of the 24-hr tilt period. Creatinine clearance and potassium balance were not affected by the tilt. These findings indicate that head-down tilt induces a sodium diuresis and stimulation of the renin-angiotensin-aldosterone system.
Integrated Robust Open-Set Speaker Identification System (IROSIS)
2012-05-01
29 LIST OF TABLES Table 1. Detail of NIST Data Used for Training and Testing ............................................ 3 Table 2...scenarios are referred to as VB-YB, VL-YL, VB-YL and VL-YB respectively. Table 1. Detail of NIST Data Used for Training and Testing Purpose Source No...M is the UBM supervector, and that the difference between ( )L m and ( , )Q M m is the Kullback - Leibler divergence between the “alignment” of the
Code of Federal Regulations, 2010 CFR
2010-07-01
... Permitted Tolerance for Conducting Radiative Tests E Table E-2 to Subpart E of Part 53 Protection of... Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for...
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Brown, A. K.; Lee, S. M.; Stenger, M. B.
2009-01-01
Purpose: Post-spaceflight orthostatic intolerance (OI) is observed in 20-30% of astronauts. Previous data from our laboratory suggests that this is largely a result of decreased venous return. Currently, NASA astronauts wear an anti-gravity suit (AGS) which consists of inflatable air bladders over the calves, thighs and abdomen, typically pressurized from 26 to 78 mmHg. We recently determined that, thigh-high graded compression stockings (JOBST , 55 mmHg at ankle, 6 mmHg at top of thigh) were effective, though to a lesser degree than the AGS. The purpose of this study was to evaluate the addition of splanchnic compression to prevent orthostatic intolerance. Methods: Ten healthy volunteers (6M, 4F) participated in three 80 head-up tilts on separate days while (1) normovolemic (2) hypovolemic w/ breast-high compression stockings (BS)(JOBST(R), 55 mmHg at the ankle, 6 mmHg at top of thigh, 12 mmHg over abdomen) (3) hypovolemic w/o stockings. Hypovolemia was induced by IV infusion of furosemide (0.5 mg/kg) and 48 hrs of a low salt diet to simulate plasma volume loss following space flight. Hypovolemic testing occurred 24 and 48 hrs after furosemide. One-way repeated measures ANOVA, with Bonferroni corrections, was used to test for differences in blood pressure and heart rate responses to head-up tilt, stand times were compared using a Kaplan-Meyer survival analysis. Results: BS were effective in preventing OI and presyncope in hypovolemic test subjects ( p = 0.015). BS prevented the decrease in systolic blood pressure seen during tilt in normovolemia (p < 0.001) and hypovolemia w/o countermeasure (p = 0.005). BS also prevented the decrease in diastolic blood pressure seen during tilt in normovolemia (p = 0.006) and hypovolemia w/o countermeasure (p = 0.041). Hypovolemia w/o countermeasure showed a higher tilt-induced heart rate increase (p = 0.022) than seen in normovolemia; heart rate while wearing BS was not different than normovolemia (p = 0.353). Conclusion: BS may be an effective countermeasure to post-space flight OI. The addition of splanchnic compression is more effective than the previous thigh-high garments. These stockings are readily available, inexpensive, and can be worn for days following landing as astronauts re-adapt to Earth gravity.
Automated particle correspondence and accurate tilt-axis detection in tilted-image pairs
Shatsky, Maxim; Arbelaez, Pablo; Han, Bong-Gyoon; ...
2014-07-01
Tilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems. The method benefits from treating the two problems as a singlemore » optimization task. It automatically finds corresponding particle pairs and accurately computes tilt-axis direction even in the cases when EM grid is not perfectly planar.« less
Sechachalam, Sreedharan; Satku, Mala; Wong, Jian Hao Kevin; Tan, Lester Teong Jin; Yong, Fok Chuan
2017-03-01
Restoration of extra-articular and intra-articular parameters are important considerations during operative fixation of distal radius fractures. Restoration of volar tilt by using visual estimation and the 'lift' technique has previously been described. The aim of our study was to describe a mathematical technique for accurately restoring the volar tilt of the distal radius to acceptable anatomic values. A retrospective review of cases performed using the trigonometry-integrated ' lift' technique (TILT) was performed. This technique uses the pre-operative volar tilt angle as well as the dimensions of the implant to calculate the 'lift' required to restore volar tilt. Intra-operative angles were measured using a marked transparency overlay on fluoroscopic images. Pre-operative and post-operative volar tilt were measured and analysed. Twenty-seven fractures were included in the study, with 20 being classified as Arbeitsgemeinschaft für Osteosynthesefragen (AO) C-type. Pre-'lift' volar tilt ranged from 0° to -20°. Post-'lift' volar tilt ranged from 2° to 16°, with all but three cases ranging from 5° to 15°. The mean volar tilt achieved was 10.2°. The trigonometry-integrated 'lift' technique resulted in reliable intra-operative restoration of anatomic volar tilt in distal radius fractures.
Sandwich Hologram Interferometry For Determination Of Sacroiliac Joint Movements
NASA Astrophysics Data System (ADS)
Vukicevic, S.; Vinter, I.; Vukicevic, D.
1983-12-01
Investigations were carried out on embalmed and fresh specimens of human pelvisis with preserved lumbar spines, hip joints and all the ligaments. Specimens were tested under static vertical loading by pulsed laser interferometry. The deformations and behaviour of particular pelvic parts were interpreted by providing computer interferogram models. Results indicate rotation and tilting of the sacrum in the dorso-ventral direction and small but significant movements in the cranio-caudal direction. Sandwich holography proved to be the only applicable method when there is a combination of translation and tilt in the range of 200 μm to 1.5 mm.
Wavefront Tilt And Beam Walk Correction For A Pulsed Laser System
NASA Astrophysics Data System (ADS)
Bartosewcz, Mike; Tyburski, Joe
1986-05-01
The Lockheed Beam Alignment Assembly (BAA) is designed to be a space qualifiable, long life, low bandwidth beam stabilization system. The BAA will stabilize a wandering pulsed laser beam with an input beam tilt of ±750 microradians and translation of ±2.5 mm by two orders of magnitude at the bandwidth of interest. A bandwidth of three hertz was selected to remove laser and optical train thermal drifts and launch induced strain effects. The lambda over twenty RMS wavefront will be maintained in the optics at full power under vacuum test, to demonstrate space qualifiability and optical performance.