Sample records for time 3d visualization

  1. Five-dimensional ultrasound system for soft tissue visualization.

    PubMed

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  2. The Impact of Interactivity on Comprehending 2D and 3D Visualizations of Movement Data.

    PubMed

    Amini, Fereshteh; Rufiange, Sebastien; Hossain, Zahid; Ventura, Quentin; Irani, Pourang; McGuffin, Michael J

    2015-01-01

    GPS, RFID, and other technologies have made it increasingly common to track the positions of people and objects over time as they move through two-dimensional spaces. Visualizing such spatio-temporal movement data is challenging because each person or object involves three variables (two spatial variables as a function of the time variable), and simply plotting the data on a 2D geographic map can result in overplotting and occlusion that hides details. This also makes it difficult to understand correlations between space and time. Software such as GeoTime can display such data with a three-dimensional visualization, where the 3rd dimension is used for time. This allows for the disambiguation of spatially overlapping trajectories, and in theory, should make the data clearer. However, previous experimental comparisons of 2D and 3D visualizations have so far found little advantage in 3D visualizations, possibly due to the increased complexity of navigating and understanding a 3D view. We present a new controlled experimental comparison of 2D and 3D visualizations, involving commonly performed tasks that have not been tested before, and find advantages in 3D visualizations for more complex tasks. In particular, we tease out the effects of various basic interactions and find that the 2D view relies significantly on "scrubbing" the timeline, whereas the 3D view relies mainly on 3D camera navigation. Our work helps to improve understanding of 2D and 3D visualizations of spatio-temporal data, particularly with respect to interactivity.

  3. Hybrid 2-D and 3-D Immersive and Interactive User Interface for Scientific Data Visualization

    DTIC Science & Technology

    2017-08-01

    visualization, 3-D interactive visualization, scientific visualization, virtual reality, real -time ray tracing 16. SECURITY CLASSIFICATION OF: 17...scientists to employ in the real world. Other than user-friendly software and hardware setup, scientists also need to be able to perform their usual...and scientific visualization communities mostly have different research priorities. For the VR community, the ability to support real -time user

  4. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models.

    PubMed

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation. Copyright © 2012 American Association of Anatomists.

  5. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  6. Visualization Improves Supraclavicular Access to the Subclavian Vein in a Mixed Reality Simulator.

    PubMed

    Sappenfield, Joshua Warren; Smith, William Brit; Cooper, Lou Ann; Lizdas, David; Gonsalves, Drew B; Gravenstein, Nikolaus; Lampotang, Samsun; Robinson, Albert R

    2018-07-01

    We investigated whether visual augmentation (3D, real-time, color visualization) of a procedural simulator improved performance during training in the supraclavicular approach to the subclavian vein, not as widely known or used as its infraclavicular counterpart. To train anesthesiology residents to access a central vein, a mixed reality simulator with emulated ultrasound imaging was created using an anatomically authentic, 3D-printed, physical mannequin based on a computed tomographic scan of an actual human. The simulator has a corresponding 3D virtual model of the neck and upper chest anatomy. Hand-held instruments such as a needle, an ultrasound probe, and a virtual camera controller are directly manipulated by the trainee and tracked and recorded with submillimeter resolution via miniature, 6 degrees of freedom magnetic sensors. After Institutional Review Board approval, 69 anesthesiology residents and faculty were enrolled and received scripted instructions on how to perform subclavian venous access using the supraclavicular approach based on anatomic landmarks. The volunteers were randomized into 2 cohorts. The first used real-time 3D visualization concurrently with trial 1, but not during trial 2. The second did not use real-time 3D visualization concurrently with trial 1 or 2. However, after trial 2, they observed a 3D visualization playback of trial 2 before performing trial 3 without visualization. An automated scoring system based on time, success, and errors/complications generated objective performance scores. Nonparametric statistical methods were used to compare the scores between subsequent trials, differences between groups (real-time visualization versus no visualization versus delayed visualization), and improvement in scores between trials within groups. Although the real-time visualization group demonstrated significantly better performance than the delayed visualization group on trial 1 (P = .01), there was no difference in gain scores, between performance on the first trial and performance on the final trial, that were dependent on group (P = .13). In the delayed visualization group, the difference in performance between trial 1 and trial 2 was not significant (P = .09); reviewing performance on trial 2 before trial 3 resulted in improved performance when compared to trial 1 (P < .0001). There was no significant difference in median scores (P = .13) between the real-time visualization and delayed visualization groups for the last trial after both groups had received visualization. Participants reported a significant improvement in confidence in performing supraclavicular access to the subclavian vein. Standard deviations of scores, a measure of performance variability, decreased in the delayed visualization group after viewing the visualization. Real-time visual augmentation (3D visualization) in the mixed reality simulator improved performance during supraclavicular access to the subclavian vein. No difference was seen in the final trial of the group that received real-time visualization compared to the group that had delayed visualization playback of their prior attempt. Training with the mixed reality simulator improved participant confidence in performing an unfamiliar technique.

  7. Investigation of visual fatigue/discomfort generated by S3D video using eye-tracking data

    NASA Astrophysics Data System (ADS)

    Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2013-03-01

    Stereoscopic 3D is undoubtedly one of the most attractive content. It has been deployed intensively during the last decade through movies and games. Among the advantages of 3D are the strong involvement of viewers and the increased feeling of presence. However, the sanitary e ects that can be generated by 3D are still not precisely known. For example, visual fatigue and visual discomfort are among symptoms that an observer may feel. In this paper, we propose an investigation of visual fatigue generated by 3D video watching, with the help of eye-tracking. From one side, a questionnaire, with the most frequent symptoms linked with 3D, is used in order to measure their variation over time. From the other side, visual characteristics such as pupil diameter, eye movements ( xations and saccades) and eye blinking have been explored thanks to data provided by the eye-tracker. The statistical analysis showed an important link between blinking duration and number of saccades with visual fatigue while pupil diameter and xations are not precise enough and are highly dependent on content. Finally, time and content play an important role in the growth of visual fatigue due to 3D watching.

  8. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  9. FPV: fast protein visualization using Java 3D.

    PubMed

    Can, Tolga; Wang, Yujun; Wang, Yuan-Fang; Su, Jianwen

    2003-05-22

    Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/

  10. Usefulness of real-time three-dimensional ultrasonography in percutaneous nephrostomy: an animal study.

    PubMed

    Hongzhang, Hong; Xiaojuan, Qin; Shengwei, Zhang; Feixiang, Xiang; Yujie, Xu; Haibing, Xiao; Gallina, Kazobinka; Wen, Ju; Fuqing, Zeng; Xiaoping, Zhang; Mingyue, Ding; Huageng, Liang; Xuming, Zhang

    2018-05-17

    To evaluate the effect of real-time three-dimensional (3D) ultrasonography (US) in guiding percutaneous nephrostomy (PCN). A hydronephrosis model was devised in which the ureters of 16 beagles were obstructed. The beagles were divided equally into groups 1 and 2. In group 1, the PCN was performed using real-time 3D US guidance, while in group 2 the PCN was guided using two-dimensional (2D) US. Visualization of the needle tract, length of puncture time and number of puncture times were recorded for the two groups. In group 1, score for visualization of the needle tract, length of puncture time and number of puncture times were 3, 7.3 ± 3.1 s and one time, respectively. In group 2, the respective results were 1.4 ± 0.5, 21.4 ± 5.8 s and 2.1 ± 0.6 times. The visualization of needle tract in group 1 was superior to that in group 2, and length of puncture time and number of puncture times were both lower in group 1 than in group 2. Real-time 3D US-guided PCN is superior to 2D US-guided PCN in terms of visualization of needle tract and the targeted pelvicalyceal system, leading to quick puncture. Real-time 3D US-guided puncture of the kidney holds great promise for clinical implementation in PCN. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  11. The role of three-dimensional visualization in robotics-assisted cardiac surgery

    NASA Astrophysics Data System (ADS)

    Currie, Maria; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W. A.; Patel, Rajni; Peters, Terry; Kiaii, Bob

    2012-02-01

    Objectives: The purpose of this study was to determine the effect of three-dimensional (3D) versus two-dimensional (2D) visualization on the amount of force applied to mitral valve tissue during robotics-assisted mitral valve annuloplasty, and the time to perform the procedure in an ex vivo animal model. In addition, we examined whether these effects are consistent between novices and experts in robotics-assisted cardiac surgery. Methods: A cardiac surgery test-bed was constructed to measure forces applied by the da Vinci surgical system (Intuitive Surgical, Sunnyvale, CA) during mitral valve annuloplasty. Both experts and novices completed roboticsassisted mitral valve annuloplasty with 2D and 3D visualization. Results: The mean time for both experts and novices to suture the mitral valve annulus and to tie sutures using 3D visualization was significantly less than that required to suture the mitral valve annulus and to tie sutures using 2D vision (p∠0.01). However, there was no significant difference in the maximum force applied by novices to the mitral valve during suturing (p = 0.3) and suture tying (p = 0.6) using either 2D or 3D visualization. Conclusion: This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery. Keywords: Robotics-assisted surgery, visualization, cardiac surgery

  12. Advanced Visualization of Experimental Data in Real Time Using LiveView3D

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    LiveView3D is a software application that imports and displays a variety of wind tunnel derived data in an interactive virtual environment in real time. LiveView3D combines the use of streaming video fed into a three-dimensional virtual representation of the test configuration with networked communications to the test facility Data Acquisition System (DAS). This unified approach to real time data visualization provides a unique opportunity to comprehend very large sets of diverse forms of data in a real time situation, as well as in post-test analysis. This paper describes how LiveView3D has been implemented to visualize diverse forms of aerodynamic data gathered during wind tunnel experiments, most notably at the NASA Langley Research Center Unitary Plan Wind Tunnel (UPWT). Planned future developments of the LiveView3D system are also addressed.

  13. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    PubMed

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  14. VPython: Writing Real-time 3D Physics Programs

    NASA Astrophysics Data System (ADS)

    Chabay, Ruth

    2001-06-01

    VPython (http://cil.andrew.cmu.edu/projects/visual) combines the Python programming language with an innovative 3D graphics module called Visual, developed by David Scherer. Designed to make 3D physics simulations accessible to novice programmers, VPython allows the programmer to write a purely computational program without any graphics code, and produces an interactive realtime 3D graphical display. In a program 3D objects are created and their positions modified by computational algorithms. Running in a separate thread, the Visual module monitors the positions of these objects and renders them many times per second. Using the mouse, one can zoom and rotate to navigate through the scene. After one hour of instruction, students in an introductory physics course at Carnegie Mellon University, including those who have never programmed before, write programs in VPython to model the behavior of physical systems and to visualize fields in 3D. The Numeric array processing module allows the construction of more sophisticated simulations and models as well. VPython is free and open source. The Visual module is based on OpenGL, and runs on Windows, Linux, and Macintosh.

  15. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Karsten; Bendl, Rolf

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach.

  16. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  17. Are There Side Effects to Watching 3D Movies? A Prospective Crossover Observational Study on Visually Induced Motion Sickness

    PubMed Central

    Solimini, Angelo G.

    2013-01-01

    Background The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. Methods and Findings A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Conclusions Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators. PMID:23418530

  18. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness.

    PubMed

    Solimini, Angelo G

    2013-01-01

    The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators.

  19. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.

    PubMed

    Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X

    1993-01-01

    Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.

  20. Stereoscopic applications for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2007-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  1. Subjective and objective evaluation of visual fatigue on viewing 3D display continuously

    NASA Astrophysics Data System (ADS)

    Wang, Danli; Xie, Yaohua; Yang, Xinpan; Lu, Yang; Guo, Anxiang

    2015-03-01

    In recent years, three-dimensional (3D) displays become more and more popular in many fields. Although they can provide better viewing experience, they cause extra problems, e.g., visual fatigue. Subjective or objective methods are usually used in discrete viewing processes to evaluate visual fatigue. However, little research combines subjective indicators and objective ones in an entirely continuous viewing process. In this paper, we propose a method to evaluate real-time visual fatigue both subjectively and objectively. Subjects watch stereo contents on a polarized 3D display continuously. Visual Reaction Time (VRT), Critical Flicker Frequency (CFF), Punctum Maximum Accommodation (PMA) and subjective scores of visual fatigue are collected before and after viewing. During the viewing process, the subjects rate the visual fatigue whenever it changes, without breaking the viewing process. At the same time, the blink frequency (BF) and percentage of eye closure (PERCLOS) of each subject is recorded for comparison to a previous research. The results show that the subjective visual fatigue and PERCLOS increase with time and they are greater in a continuous process than a discrete one. The BF increased with time during the continuous viewing process. Besides, the visual fatigue also induced significant changes of VRT, CFF and PMA.

  2. Planning, implementation and optimization of future space missions using an immersive visualization environment (IVE) machine

    NASA Astrophysics Data System (ADS)

    Nathan Harris, E.; Morgenthaler, George W.

    2004-07-01

    Beginning in 1995, a team of 3-D engineering visualization experts assembled at the Lockheed Martin Space Systems Company and began to develop innovative virtual prototyping simulation tools for performing ground processing and real-time visualization of design and planning of aerospace missions. At the University of Colorado, a team of 3-D visualization experts also began developing the science of 3-D visualization and immersive visualization at the newly founded British Petroleum (BP) Center for visualization, which began operations in October, 2001. BP acquired ARCO in the year 2000 and awarded the 3-D flexible IVE developed by ARCO (beginning in 1990) to the University of Colorado, CU, the winner in a competition among 6 Universities. CU then hired Dr. G. Dorn, the leader of the ARCO team as Center Director, and the other experts to apply 3-D immersive visualization to aerospace and to other University Research fields, while continuing research on surface interpretation of seismic data and 3-D volumes. This paper recounts further progress and outlines plans in Aerospace applications at Lockheed Martin and CU.

  3. Telerobotic Haptic Exploration in Art Galleries and Museums for Individuals with Visual Impairments.

    PubMed

    Park, Chung Hyuk; Ryu, Eun-Seok; Howard, Ayanna M

    2015-01-01

    This paper presents a haptic telepresence system that enables visually impaired users to explore locations with rich visual observation such as art galleries and museums by using a telepresence robot, a RGB-D sensor (color and depth camera), and a haptic interface. The recent improvement on RGB-D sensors has enabled real-time access to 3D spatial information in the form of point clouds. However, the real-time representation of this data in the form of tangible haptic experience has not been challenged enough, especially in the case of telepresence for individuals with visual impairments. Thus, the proposed system addresses the real-time haptic exploration of remote 3D information through video encoding and real-time 3D haptic rendering of the remote real-world environment. This paper investigates two scenarios in haptic telepresence, i.e., mobile navigation and object exploration in a remote environment. Participants with and without visual impairments participated in our experiments based on the two scenarios, and the system performance was validated. In conclusion, the proposed framework provides a new methodology of haptic telepresence for individuals with visual impairments by providing an enhanced interactive experience where they can remotely access public places (art galleries and museums) with the aid of haptic modality and robotic telepresence.

  4. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo

    PubMed Central

    Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan

    2012-01-01

    Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578

  5. Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device.

    PubMed

    Holub, Joseph; Winer, Eliot

    2017-12-01

    Powerful non-invasive imaging technologies like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI) are used daily by medical professionals to diagnose and treat patients. While 2D slice viewers have long been the standard, many tools allowing 3D representations of digital medical data are now available. The newest imaging advancement, functional MRI (fMRI) technology, has changed medical imaging from viewing static to dynamic physiology (4D) over time, particularly to study brain activity. Add this to the rapid adoption of mobile devices for everyday work and the need to visualize fMRI data on tablets or smartphones arises. However, there are few mobile tools available to visualize 3D MRI data, let alone 4D fMRI data. Building volume rendering tools on mobile devices to visualize 3D and 4D medical data is challenging given the limited computational power of the devices. This paper describes research that explored the feasibility of performing real-time 3D and 4D volume raycasting on a tablet device. The prototype application was tested on a 9.7" iPad Pro using two different fMRI datasets of brain activity. The results show that mobile raycasting is able to achieve between 20 and 40 frames per second for traditional 3D datasets, depending on the sampling interval, and up to 9 frames per second for 4D data. While the prototype application did not always achieve true real-time interaction, these results clearly demonstrated that visualizing 3D and 4D digital medical data is feasible with a properly constructed software framework.

  6. DspaceOgreTerrain 3D Terrain Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.

    2012-01-01

    DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.

  7. Immersive Visual Analytics for Transformative Neutron Scattering Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Daniel, Jamison R; Drouhard, Margaret

    The ORNL Spallation Neutron Source (SNS) provides the most intense pulsed neutron beams in the world for scientific research and development across a broad range of disciplines. SNS experiments produce large volumes of complex data that are analyzed by scientists with varying degrees of experience using 3D visualization and analysis systems. However, it is notoriously difficult to achieve proficiency with 3D visualizations. Because 3D representations are key to understanding the neutron scattering data, scientists are unable to analyze their data in a timely fashion resulting in inefficient use of the limited and expensive SNS beam time. We believe a moremore » intuitive interface for exploring neutron scattering data can be created by combining immersive virtual reality technology with high performance data analytics and human interaction. In this paper, we present our initial investigations of immersive visualization concepts as well as our vision for an immersive visual analytics framework that could lower the barriers to 3D exploratory data analysis of neutron scattering data at the SNS.« less

  8. Real-time catheter localization and visualization using three-dimensional echocardiography

    NASA Astrophysics Data System (ADS)

    Kozlowski, Pawel; Bandaru, Raja Sekhar; D'hooge, Jan; Samset, Eigil

    2017-03-01

    Real-time three-dimensional transesophageal echocardiography (RT3D-TEE) is increasingly used during minimally invasive cardiac surgeries (MICS). In many cath labs, RT3D-TEE is already one of the requisite tools for image guidance during MICS. However, the visualization of the catheter is not always satisfactory making 3D- TEE challenging to use as the only modality for guidance. We propose a novel technique for better visualization of the catheter along with the cardiac anatomy using TEE alone - exploiting both beamforming and post processing methods. We extended our earlier method called Delay and Standard Deviation (DASD) beamforming to 3D in order to enhance specular reflections. The beam-formed image was further post-processed by the Frangi filter to segment the catheter. Multi-variate visualization techniques enabled us to render both the standard tissue and the DASD beam-formed image on a clinical ultrasound scanner simultaneously. A frame rate of 15 FPS was achieved.

  9. Bedside assistance in freehand ultrasonic diagnosis by real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion

    NASA Astrophysics Data System (ADS)

    Fukuzawa, M.; Kawata, K.; Nakamori, N.; Kitsunezuka, Y.

    2011-03-01

    By real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion, freehand ultrasonic diagnosis of neonatal ischemic diseases has been assisted at the bedside. The 2D ultrasonic movie was taken with a conventional ultrasonic apparatus (ATL HDI5000) and ultrasonic probes of 5-7 MHz with the compact tilt-sensor to measure the probe orientation. The real-time 3D visualization was realized by developing an extended version of the PC-based visualization system. The software was originally developed on the DirectX platform and optimized with the streaming SIMD extensions. The 3D scatter diagram of the latest pulsatile tissues has been continuously generated and visualized as projection image with the ultrasonic movie in the current section more than 15 fps. It revealed the 3D structure of pulsatile tissues such as middle and posterior cerebral arteries, Willis ring and cerebellar arteries, in which pediatricians have great interests in the blood flow because asphyxiated and/or low-birth-weight neonates have a high risk of ischemic diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia. Since the pulsatile tissue-motion is due to local blood flow, it can be concluded that the system developed in this work is very useful to assist freehand ultrasonic diagnosis of ischemic diseases in the neonatal cranium.

  10. 3D Exploration of Meteorological Data: Facing the challenges of operational forecasters

    NASA Astrophysics Data System (ADS)

    Koutek, Michal; Debie, Frans; van der Neut, Ian

    2016-04-01

    In the past years the Royal Netherlands Meteorological Institute (KNMI) has been working on innovation in the field of meteorological data visualization. We are dealing with Numerical Weather Prediction (NWP) model data and observational data, i.e. satellite images, precipitation radar, ground and air-borne measurements. These multidimensional multivariate data are geo-referenced and can be combined in 3D space to provide more intuitive views on the atmospheric phenomena. We developed the Weather3DeXplorer (W3DX), a visualization framework for processing and interactive exploration and visualization using Virtual Reality (VR) technology. We managed to have great successes with research studies on extreme weather situations. In this paper we will elaborate what we have learned from application of interactive 3D visualization in the operational weather room. We will explain how important it is to control the degrees-of-freedom during interaction that are given to the users: forecasters/scientists; (3D camera and 3D slicing-plane navigation appear to be rather difficult for the users, when not implemented properly). We will present a novel approach of operational 3D visualization user interfaces (UI) that for a great deal eliminates the obstacle and the time it usually takes to set up the visualization parameters and an appropriate camera view on a certain atmospheric phenomenon. We have found our inspiration in the way our operational forecasters work in the weather room. We decided to form a bridge between 2D visualization images and interactive 3D exploration. Our method combines WEB-based 2D UI's, pre-rendered 3D visualization catalog for the latest NWP model runs, with immediate entry into interactive 3D session for selected visualization setting. Finally, we would like to present the first user experiences with this approach.

  11. 3d visualization of atomistic simulations on every desktop

    NASA Astrophysics Data System (ADS)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-08-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  12. Denoising and 4D visualization of OCT images

    PubMed Central

    Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.

    2009-01-01

    We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509

  13. Evaluating the effect of three-dimensional visualization on force application and performance time during robotics-assisted mitral valve repair.

    PubMed

    Currie, Maria E; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W A; Patel, Rajni; Peters, Terry; Kiaii, Bob B

    2013-01-01

    The purpose of this study was to determine the effect of three-dimensional (3D) binocular, stereoscopic, and two-dimensional (2D) monocular visualization on robotics-assisted mitral valve annuloplasty versus conventional techniques in an ex vivo animal model. In addition, we sought to determine whether these effects were consistent between novices and experts in robotics-assisted cardiac surgery. A cardiac surgery test-bed was constructed to measure forces applied during mitral valve annuloplasty. Sutures were passed through the porcine mitral valve annulus by the participants with different levels of experience in robotics-assisted surgery and tied in place using both robotics-assisted and conventional surgery techniques. The mean time for both the experts and the novices using 3D visualization was significantly less than that required using 2D vision (P < 0.001). However, there was no significant difference in the maximum force applied by the novices to the mitral valve during suturing (P = 0.7) and suture tying (P = 0.6) using either 2D or 3D visualization. The mean time required and forces applied by both the experts and the novices were significantly less using the conventional surgical technique than when using the robotic system with either 2D or 3D vision (P < 0.001). Despite high-quality binocular images, both the experts and the novices applied significantly more force to the cardiac tissue during 3D robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery.

  14. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition exhibited more positive attitudes toward instruction than those in other treatment conditions (2D static, 2D animated, and 3D static conditions). No group differences were found in the posttest scores among four treatment conditions. However, students in the 3D animated condition took less time for information retrieval on posttest than those in other treatment conditions.

  15. Visualizing topography: Effects of presentation strategy, gender, and spatial ability

    NASA Astrophysics Data System (ADS)

    McAuliffe, Carla

    2003-10-01

    This study investigated the effect of different presentation strategies (2-D static visuals, 3-D animated visuals, and 3-D interactive, animated visuals) and gender on achievement, time-spent-on visual treatment, and attitude during a computer-based science lesson about reading and interpreting topographic maps. The study also examined the relationship of spatial ability and prior knowledge to gender, achievement, and time-spent-on visual treatment. Students enrolled in high school chemistry-physics were pretested and given two spatial ability tests. They were blocked by gender and randomly assigned to one of three levels of presentation strategy or the control group. After controlling for the effects of spatial ability and prior knowledge with analysis of covariance, three significant differences were found between the versions: (a) the 2-D static treatment group scored significantly higher on the posttest than the control group; (b) the 3-D animated treatment group scored significantly higher on the posttest than the control group; and (c) the 2-D static treatment group scored significantly higher on the posttest than the 3-D interactive animated treatment group. Furthermore, the 3-D interactive animated treatment group spent significantly more time on the visual screens than the 2-D static treatment group. Analyses of student attitudes revealed that most students felt the landform visuals in the computer-based program helped them learn, but not in a way they would describe as fun. Significant differences in attitude were found by treatment and by gender. In contrast to findings from other studies, no gender differences were found on either of the two spatial tests given in this study. Cognitive load, cognitive involvement, and solution strategy are offered as three key factors that may help explain the results of this study. Implications for instructional design include suggestions about the use of 2-D static, 3-D animated and 3-D interactive animations as well as a recommendation about the inclusion of pretests in similar instructional programs. Areas for future research include investigating the effects of combinations of presentation strategies, continuing to examine the role of spatial ability in science achievement, and gaining cognitive insights about what it is that students do when learning to read and interpret topographic maps.

  16. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Real-time three-dimensional transesophageal echocardiography in the assessment of mechanical prosthetic mitral valve ring thrombosis.

    PubMed

    Ozkan, Mehmet; Gürsoy, Ozan Mustafa; Astarcıoğlu, Mehmet Ali; Gündüz, Sabahattin; Cakal, Beytullah; Karakoyun, Süleyman; Kalçık, Macit; Kahveci, Gökhan; Duran, Nilüfer Ekşi; Yıldız, Mustafa; Cevik, Cihan

    2013-10-01

    Although 2-dimensional (2D) transesophageal echocardiography (TEE) is the gold standard for the diagnosis of prosthetic valve thrombosis, nonobstructive clots located on mitral valve rings can be missed. Real-time 3-dimensional (3D) TEE has incremental value in the visualization of mitral prosthesis. The aim of this study was to investigate the utility of real-time 3D TEE in the diagnosis of mitral prosthetic ring thrombosis. The clinical outcomes of these patients in relation to real-time 3D transesophageal echocardiographic findings were analyzed. Of 1,263 patients who underwent echocardiographic studies, 174 patients (37 men, 137 women) with mitral ring thrombosis detected by real-time 3D TEE constituted the main study population. Patients were followed prospectively on oral anticoagulation for 25 ± 7 months. Eighty-nine patients (51%) had thrombi that were missed on 2D TEE and depicted only on real-time 3D TEE. The remaining cases were partially visualized with 2D TEE but completely visualized with real-time 3D TEE. Thirty-seven patients (21%) had thromboembolism. The mean thickness of the ring thrombosis in patients with thromboembolism was greater than that in patients without thromboembolism (3.8 ± 0.9 vs 2.8 ± 0.7 mm, p <0.001). One hundred fifty-five patients (89%) underwent real-time 3D TEE during follow-up. There were no thrombi in 39 patients (25%); 45 (29%) had regression of thrombi, and there was no change in thrombus size in 68 patients (44%). Thrombus size increased in 3 patients (2%). Thrombosis was confirmed surgically and histopathologically in 12 patients (7%). In conclusion, real-time 3D TEE can detect prosthetic mitral ring thrombosis that could be missed on 2D TEE and cause thromboembolic events. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Virtual reality on the web: the potentials of different methodologies and visualization techniques for scientific research and medical education.

    PubMed

    Kling-Petersen, T; Pascher, R; Rydmark, M

    1999-01-01

    Academic and medical imaging are increasingly using computer based 3D reconstruction and/or visualization. Three-dimensional interactive models play a major role in areas such as preclinical medical education, clinical visualization and medical research. While 3D is comparably easy to do on a high end workstations, distribution and use of interactive 3D graphics necessitate the use of personal computers and the web. Several new techniques have been demonstrated providing interactive 3D via a web browser thereby allowing a limited version of VR to be experienced by a larger majority of students, medical practitioners and researchers. These techniques include QuickTimeVR2 (QTVR), VRML2, QuickDraw3D, OpenGL and Java3D. In order to test the usability of the different techniques, Mednet have initiated a number of projects designed to evaluate the potentials of 3D techniques for scientific reporting, clinical visualization and medical education. These include datasets created by manual tracing followed by triangulation, smoothing and 3D visualization, MRI or high-resolution laserscanning. Preliminary results indicate that both VRML and QTVR fulfills most of the requirements of web based, interactive 3D visualization, whereas QuickDraw3D is too limited. Presently, the JAVA 3D has not yet reached a level where in depth testing is possible. The use of high-resolution laserscanning is an important addition to 3D digitization.

  19. Java 3D Interactive Visualization for Astrophysics

    NASA Astrophysics Data System (ADS)

    Chae, K.; Edirisinghe, D.; Lingerfelt, E. J.; Guidry, M. W.

    2003-05-01

    We are developing a series of interactive 3D visualization tools that employ the Java 3D API. We have applied this approach initially to a simple 3-dimensional galaxy collision model (restricted 3-body approximation), with quite satisfactory results. Running either as an applet under Web browser control, or as a Java standalone application, this program permits real-time zooming, panning, and 3-dimensional rotation of the galaxy collision simulation under user mouse and keyboard control. We shall also discuss applications of this technology to 3-dimensional visualization for other problems of astrophysical interest such as neutron star mergers and the time evolution of element/energy production networks in X-ray bursts. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  20. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  1. Subjective evaluation of two stereoscopic imaging systems exploiting visual attention to improve 3D quality of experience

    NASA Astrophysics Data System (ADS)

    Hanhart, Philippe; Ebrahimi, Touradj

    2014-03-01

    Crosstalk and vergence-accommodation rivalry negatively impact the quality of experience (QoE) provided by stereoscopic displays. However, exploiting visual attention and adapting the 3D rendering process on the fly can reduce these drawbacks. In this paper, we propose and evaluate two different approaches that exploit visual attention to improve 3D QoE on stereoscopic displays: an offline system, which uses a saliency map to predict gaze position, and an online system, which uses a remote eye tracking system to measure real time gaze positions. The gaze points were used in conjunction with the disparity map to extract the disparity of the object-of-interest. Horizontal image translation was performed to bring the fixated object on the screen plane. The user preference between standard 3D mode and the two proposed systems was evaluated through a subjective evaluation. Results show that exploiting visual attention significantly improves image quality and visual comfort, with a slight advantage for real time gaze determination. Depth quality is also improved, but the difference is not significant.

  2. Falcon: Visual analysis of large, irregularly sampled, and multivariate time series data in additive manufacturing

    DOE PAGES

    Steed, Chad A.; Halsey, William; Dehoff, Ryan; ...

    2017-02-16

    Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less

  3. Falcon: Visual analysis of large, irregularly sampled, and multivariate time series data in additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A.; Halsey, William; Dehoff, Ryan

    Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less

  4. Specialized Computer Systems for Environment Visualization

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.

    2018-06-01

    The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.

  5. A client–server framework for 3D remote visualization of radiotherapy treatment space

    PubMed Central

    Santhanam, Anand P.; Min, Yugang; Dou, Tai H.; Kupelian, Patrick; Low, Daniel A.

    2013-01-01

    Radiotherapy is safely employed for treating wide variety of cancers. The radiotherapy workflow includes a precise positioning of the patient in the intended treatment position. While trained radiation therapists conduct patient positioning, consultation is occasionally required from other experts, including the radiation oncologist, dosimetrist, or medical physicist. In many circumstances, including rural clinics and developing countries, this expertise is not immediately available, so the patient positioning concerns of the treating therapists may not get addressed. In this paper, we present a framework to enable remotely located experts to virtually collaborate and be present inside the 3D treatment room when necessary. A multi-3D camera framework was used for acquiring the 3D treatment space. A client–server framework enabled the acquired 3D treatment room to be visualized in real-time. The computational tasks that would normally occur on the client side were offloaded to the server side to enable hardware flexibility on the client side. On the server side, a client specific real-time stereo rendering of the 3D treatment room was employed using a scalable multi graphics processing units (GPU) system. The rendered 3D images were then encoded using a GPU-based H.264 encoding for streaming. Results showed that for a stereo image size of 1280 × 960 pixels, experts with high-speed gigabit Ethernet connectivity were able to visualize the treatment space at approximately 81 frames per second. For experts remotely located and using a 100 Mbps network, the treatment space visualization occurred at 8–40 frames per second depending upon the network bandwidth. This work demonstrated the feasibility of remote real-time stereoscopic patient setup visualization, enabling expansion of high quality radiation therapy into challenging environments. PMID:23440605

  6. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  7. LiveView3D: Real Time Data Visualization for the Aerospace Testing Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    This paper addresses LiveView3D, a software package and associated data visualization system for use in the aerospace testing environment. The LiveView3D system allows researchers to graphically view data from numerous wind tunnel instruments in real time in an interactive virtual environment. The graphical nature of the LiveView3D display provides researchers with an intuitive view of the measurement data, making it easier to interpret the aerodynamic phenomenon under investigation. LiveView3D has been developed at the NASA Langley Research Center and has been applied in the Langley Unitary Plan Wind Tunnel (UPWT). This paper discusses the capabilities of the LiveView3D system, provides example results from its application in the UPWT, and outlines features planned for future implementation.

  8. When the display matters: A multifaceted perspective on 3D geovisualizations

    NASA Astrophysics Data System (ADS)

    Juřík, Vojtěch; Herman, Lukáš; Šašinka, Čeněk; Stachoň, Zdeněk; Chmelík, Jiří

    2017-04-01

    This study explores the influence of stereoscopic (real) 3D and monoscopic (pseudo) 3D visualization on the human ability to reckon altitude information in noninteractive and interactive 3D geovisualizations. A two phased experiment was carried out to compare the performance of two groups of participants, one of them using the real 3D and the other one pseudo 3D visualization of geographical data. A homogeneous group of 61 psychology students, inexperienced in processing of geographical data, were tested with respect to their efficiency at identifying altitudes of the displayed landscape. The first phase of the experiment was designed as non-interactive, where static 3D visual displayswere presented; the second phase was designed as interactive and the participants were allowed to explore the scene by adjusting the position of the virtual camera. The investigated variables included accuracy at altitude identification, time demands and the amount of the participant's motor activity performed during interaction with geovisualization. The interface was created using a Motion Capture system, Wii Remote Controller, widescreen projection and the passive Dolby 3D technology (for real 3D vision). The real 3D visual display was shown to significantly increase the accuracy of the landscape altitude identification in non-interactive tasks. As expected, in the interactive phase there were differences in accuracy flattened out between groups due to the possibility of interaction, with no other statistically significant differences in completion times or motor activity. The increased number of omitted objects in real 3D condition was further subjected to an exploratory analysis.

  9. Automated virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Hunt, Gordon W.; Hemler, Paul F.; Vining, David J.

    1997-05-01

    Virtual colonscopy (VC) is a minimally invasive alternative to conventional fiberoptic endoscopy for colorectal cancer screening. The VC technique involves bowel cleansing, gas distension of the colon, spiral computed tomography (CT) scanning of a patient's abdomen and pelvis, and visual analysis of multiplanar 2D and 3D images created from the spiral CT data. Despite the ability of interactive computer graphics to assist a physician in visualizing 3D models of the colon, a correct diagnosis hinges upon a physician's ability to properly identify small and sometimes subtle polyps or masses within hundreds of multiplanar and 3D images. Human visual analysis is time-consuming, tedious, and often prone to error of interpretation.We have addressed the problem of visual analysis by creating a software system that automatically highlights potential lesions in the 2D and 3D images in order to expedite a physician's interpretation of the colon data.

  10. Immersive Visualization of the Solid Earth

    NASA Astrophysics Data System (ADS)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs, or using commodity low-cost virtual reality headsets such as HTC's Vive. The recent emergence of high-quality commodity VR means that researchers can buy a complete VR system off the shelf, install it and the 3D Visualizer software themselves, and start using it for data analysis immediately.

  11. A Unified Air-Sea Visualization System: Survey on Gridding Structures

    NASA Technical Reports Server (NTRS)

    Anand, Harsh; Moorhead, Robert

    1995-01-01

    The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.

  12. Trapezius muscle activity increases during near work activity regardless of accommodation/vergence demand level.

    PubMed

    Richter, H O; Zetterberg, C; Forsman, M

    2015-07-01

    To investigate if trapezius muscle activity increases over time during visually demanding near work. The vision task consisted of sustained focusing on a contrast-varying black and white Gabor grating. Sixty-six participants with a median age of 38 (range 19-47) fixated the grating from a distance of 65 cm (1.5 D) during four counterbalanced 7-min periods: binocularly through -3.5 D lenses, and monocularly through -3.5 D, 0 D and +3.5 D. Accommodation, heart rate variability and trapezius muscle activity were recorded in parallel. General estimating equation analyses showed that trapezius muscle activity increased significantly over time in all four lens conditions. A concurrent effect of accommodation response on trapezius muscle activity was observed with the minus lenses irrespective of whether incongruence between accommodation and convergence was present or not. Trapezius muscle activity increased significantly over time during the near work task. The increase in muscle activity over time may be caused by an increased need of mental effort and visual attention to maintain performance during the visual tasks to counteract mental fatigue.

  13. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  14. Improving the visualization of 3D ultrasound data with 3D filtering

    NASA Astrophysics Data System (ADS)

    Shamdasani, Vijay; Bae, Unmin; Managuli, Ravi; Kim, Yongmin

    2005-04-01

    3D ultrasound imaging is quickly gaining widespread clinical acceptance as a visualization tool that allows clinicians to obtain unique views not available with traditional 2D ultrasound imaging and an accurate understanding of patient anatomy. The ability to acquire, manipulate and interact with the 3D data in real time is an important feature of 3D ultrasound imaging. Volume rendering is often used to transform the 3D volume into 2D images for visualization. Unlike computed tomography (CT) and magnetic resonance imaging (MRI), volume rendering of 3D ultrasound data creates noisy images in which surfaces cannot be readily discerned due to speckles and low signal-to-noise ratio. The degrading effect of speckles is especially severe when gradient shading is performed to add depth cues to the image. Several researchers have reported that smoothing the pre-rendered volume with a 3D convolution kernel, such as 5x5x5, can significantly improve the image quality, but at the cost of decreased resolution. In this paper, we have analyzed the reasons for the improvement in image quality with 3D filtering and determined that the improvement is due to two effects. The filtering reduces speckles in the volume data, which leads to (1) more accurate gradient computation and better shading and (2) decreased noise during compositing. We have found that applying a moderate-size smoothing kernel (e.g., 7x7x7) to the volume data before gradient computation combined with some smoothing of the volume data (e.g., with a 3x3x3 lowpass filter) before compositing yielded images with good depth perception and no appreciable loss in resolution. Providing the clinician with the flexibility to control both of these effects (i.e., shading and compositing) independently could improve the visualization of the 3D ultrasound data. Introducing this flexibility into the ultrasound machine requires 3D filtering to be performed twice on the volume data, once before gradient computation and again before compositing. 3D filtering of an ultrasound volume containing millions of voxels requires a large amount of computation, and doing it twice decreases the number of frames that can be visualized per second. To address this, we have developed several techniques to make computation efficient. For example, we have used the moving average method to filter a 128x128x128 volume with a 3x3x3 boxcar kernel in 17 ms on a single MAP processor running at 400 MHz. The same methods reduced the computing time on a Pentium 4 running at 3 GHz from 110 ms to 62 ms. We believe that our proposed method can improve 3D ultrasound visualization without sacrificing resolution and incurring an excessive computing time.

  15. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography.

    PubMed

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Ake; Winter, Reidar

    2009-08-25

    Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 +/- 3.7% and -0.2 +/- 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.

  16. `We put on the glasses and Moon comes closer!' Urban Second Graders Exploring the Earth, the Sun and Moon Through 3D Technologies in a Science and Literacy Unit

    NASA Astrophysics Data System (ADS)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day and night, Moon phases and seasons. These modules were used in a science and literacy unit for 35 second graders at an urban elementary school in Midwestern USA. Data included pre- and post-interviews, audio-taped lessons and classroom observations. Post-interviews demonstrated that children's knowledge of the shapes and the movements of the Earth and Moon, alternation of day and night, the occurrence of the seasons, and Moon's changing appearance increased. Second graders reported that they enjoyed expanding their knowledge through hands-on experiences; through its reality effect, 3D visualization enabled them to observe the space objects that move in the virtual space. The teachers noted that 3D visualization stimulated children's interest in space and that using 3D visualization in combination with other teaching methods-literacy experiences, videos and photos, simulations, discussions, and presentations-supported student learning. The teachers and the students still experienced challenges using 3D visualization due to technical problems with 3D vision and time constraints. We conclude that 3D visualization offers hands-on experiences for challenging science concepts and may support young children's ability to view phenomena that would typically be observed through direct, long-term observations in outer space. Results imply a reconsideration of assumed capabilities of young children to understand astronomical phenomena.

  17. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE.

    PubMed

    Sekine, Tetsuro; Amano, Yasuo; Takagi, Ryo; Matsumura, Yoshio; Murai, Yasuo; Kumita, Shinichiro

    2014-01-01

    A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.

  18. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    PubMed

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  19. Forecasting and visualization of wildfires in a 3D geographical information system

    NASA Astrophysics Data System (ADS)

    Castrillón, M.; Jorge, P. A.; López, I. J.; Macías, A.; Martín, D.; Nebot, R. J.; Sabbagh, I.; Quintana, F. M.; Sánchez, J.; Sánchez, A. J.; Suárez, J. P.; Trujillo, A.

    2011-03-01

    This paper describes a wildfire forecasting application based on a 3D virtual environment and a fire simulation engine. A novel open-source framework is presented for the development of 3D graphics applications over large geographic areas, offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connections of several users for monitoring a real wildfire event. The system is able to make a realistic composition of what is really happening in the area of the wildfire with dynamic 3D objects and location of human and material resources in real time, providing a new perspective to analyze the wildfire information. The user is enabled to simulate and visualize the propagation of a fire on the terrain integrating at the same time spatial information on topography and vegetation types with weather and wind data. The application communicates with a remote web service that is in charge of the simulation task. The user may specify several parameters through a friendly interface before the application sends the information to the remote server responsible of carrying out the wildfire forecasting using the FARSITE simulation model. During the process, the server connects to different external resources to obtain up-to-date meteorological data. The client application implements a realistic 3D visualization of the fire evolution on the landscape. A Level Of Detail (LOD) strategy contributes to improve the performance of the visualization system.

  20. Preoperative evaluation of venous systems with 3-dimensional contrast-enhanced magnetic resonance venography in brain tumors: comparison with time-of-flight magnetic resonance venography and digital subtraction angiography.

    PubMed

    Lee, Jong-Myung; Jung, Shin; Moon, Kyung-Sub; Seo, Jeong-Jin; Kim, In-Young; Jung, Tae-Young; Lee, Jung-Kil; Kang, Sam-Suk

    2005-08-01

    Recent developments in magnetic resonance (MR) technology now enable the use of MR venography, providing 3-dimensional (3D) images of intracranial venous structures. The purpose of this study was to assess the usefulness of 3D contrast-enhanced MR venography (CE MRV) in the evaluation of intracranial venous system for surgical planning of brain tumors. Forty patients underwent 3D CE MRV, as well as 25 patients, 2-dimensional (2D) time-of-flight (TOF) MR venography in axial and sagittal planes; and 10 patients, digital subtraction angiography. We determined the number of visualized sinuses and cortical veins. Degree of visualization of the intracranial venous system on 3D CE MRV was compared with that of 2D TOF MR venography and digital subtraction angiography as a standard. We also assessed the value of 3D CE MRV in the investigation of sinus occlusion or localization of cortical draining veins preoperatively. Superficial cortical veins and the dural sinus were better visualized on 3D CE MRV than on 2D TOF MR venography. Both MR venographic techniques visualized superior sagittal sinus, lateral sinus, sigmoid sinus, straight sinus, and internal cerebral vein and provided more detailed information by showing obstructed sinuses in brain tumors. Only 3D CE MRV showed superficial cortical draining veins. However, it was difficult to accurately evaluate the presence of cortical collateral venous drainage. Although we do not yet advocate MR venography to replace conventional angiography as the imaging standard for brain tumors, 3D CE MRV can be regarded as a valuable diagnostic method just in evaluating the status of major sinuses and localization of the cortical draining veins.

  1. Time-resolved 3D contrast-enhanced MRA on 3.0T: a non-invasive follow-up technique after stent-assisted coil embolization of the intracranial aneurysm.

    PubMed

    Choi, Jin Woo; Roh, Hong Gee; Moon, Won-Jin; Kim, Na Ra; Moon, Sung Gyu; Kang, Chung Hwan; Chun, Young Il; Kang, Hyun-Seung

    2011-01-01

    To evaluate the usefulness of time-resolved contrast enhanced magnetic resonance angiography (4D MRA) after stent-assisted coil embolization by comparing it with time of flight (TOF)-MRA. TOF-MRA and 4D MRA were obtained by 3T MRI in 26 patients treated with stent-assisted coil embolization (Enterprise:Neuroform = 7:19). The qualities of the MRA were rated on a graded scale of 0 to 4. We classified completeness of endovascular treatment into three categories. The degree of quality of visualization of the stented artery was compared between TOF and 4D MRA by the Wilcoxon signed rank test. We used the Mann-Whitney U test for comparing the quality of the visualization of the stented artery according to the stent type in each MRA method. The quality in terms of the visualization of the stented arteries in 4D MRA was significantly superior to that in 3D TOF-MRA, regardless of type of the stent (p < 0.001). The quality of the arteries which were stented with Neuroform was superior to that of the arteries stented with Enterprise in 3D TOF (p < 0.001) and 4D MRA (p = 0.008), respectively. 4D MRA provides a higher quality view of the stented parent arteries when compared with TOF.

  2. Visualization of volumetric seismic data

    NASA Astrophysics Data System (ADS)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  3. Large Terrain Continuous Level of Detail 3D Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  4. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    NASA Astrophysics Data System (ADS)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.

  5. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography

    PubMed Central

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Åke; Winter, Reidar

    2009-01-01

    Background Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Methods Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. Results There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Conclusion Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant. PMID:19706183

  6. Partially converted stereoscopic images and the effects on visual attention and memory

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Morikawa, Hiroyuki; Mitsuya, Reiko; Kawai, Takashi; Watanabe, Katsumi

    2015-03-01

    This study contained two experimental examinations of the cognitive activities such as visual attention and memory in viewing stereoscopic (3D) images. For this study, partially converted 3D images were used with binocular parallax added to a specific region of the image. In Experiment 1, change blindness was used as a presented stimulus. The visual attention and impact on memory were investigated by measuring the response time to accomplish the given task. In the change blindness task, an 80 ms blank was intersected between the original and altered images, and the two images were presented alternatingly for 240 ms each. Subjects were asked to temporarily memorize the two switching images and to compare them, visually recognizing the difference between the two. The stimuli for four conditions (2D, 3D, Partially converted 3D, distracted partially converted 3D) were randomly displayed for 20 subjects. The results of Experiment 1 showed that partially converted 3D images tend to attract visual attention and are prone to remain in viewer's memory in the area where moderate negative parallax has been added. In order to examine the impact of a dynamic binocular disparity on partially converted 3D images, an evaluation experiment was conducted that applied learning, distraction, and recognition tasks for 33 subjects. The learning task involved memorizing the location of cells in a 5 × 5 matrix pattern using two different colors. Two cells were positioned with alternating colors, and one of the gray cells was moved up, down, left, or right by one cell width. Experimental conditions was set as a partially converted 3D condition in which a gray cell moved diagonally for a certain period of time with a dynamic binocular disparity added, a 3D condition in which binocular disparity was added to all gray cells, and a 2D condition. The correct response rates for recognition of each task after the distraction task were compared. The results of Experiment 2 showed that the correct response rate in the partial 3D condition was significantly higher with the recognition task than in the other conditions. These results showed that partially converted 3D images tended to have a visual attraction and affect viewer's memory.

  7. 3D visualization techniques for the STEREO-mission

    NASA Astrophysics Data System (ADS)

    Wiegelmann, T.; Podlipnik, B.; Inhester, B.; Feng, L.; Ruan, P.

    The forthcoming STEREO-mission will observe the Sun from two different viewpoints We expect about 2GB data per day which ask for suitable data presentation techniques A key feature of STEREO is that it will provide for the first time a 3D-view of the Sun and the solar corona In our normal environment we see objects three dimensional because the light from real 3D objects needs different travel times to our left and right eye As a consequence we see slightly different images with our eyes which gives us information about the depth of objects and a corresponding 3D impression Techniques for the 3D-visualization of scientific and other data on paper TV computer screen cinema etc are well known e g two colour anaglyph technique shutter glasses polarization filters and head-mounted displays We discuss advantages and disadvantages of these techniques and how they can be applied to STEREO-data The 3D-visualization techniques are not limited to visual images but can be also used to show the reconstructed coronal magnetic field and energy and helicity distribution In the advent of STEREO we test the method with data from SOHO which provides us different viewpoints by the solar rotation This restricts the analysis to structures which remain stationary for several days Real STEREO-data will not be affected by these limitations however

  8. Voxel Datacubes for 3D Visualization in Blender

    NASA Astrophysics Data System (ADS)

    Gárate, Matías

    2017-05-01

    The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-around camera animation to highlight the points of interest. We explain the process to import simulation outputs into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This method allows scientists to perform a complementary visual analysis of their data and display their results in an appealing way, both for outreach and science presentations.

  9. Intensity-based segmentation and visualization of cells in 3D microscopic images using the GPU

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Lee, Jeong-Eom; Jeon, Woong-ki; Choi, Heung-Kook; Kim, Myoung-Hee

    2013-02-01

    3D microscopy images contain abundant astronomical data, rendering 3D microscopy image processing time-consuming and laborious on a central processing unit (CPU). To solve these problems, many people crop a region of interest (ROI) of the input image to a small size. Although this reduces cost and time, there are drawbacks at the image processing level, e.g., the selected ROI strongly depends on the user and there is a loss in original image information. To mitigate these problems, we developed a 3D microscopy image processing tool on a graphics processing unit (GPU). Our tool provides efficient and various automatic thresholding methods to achieve intensity-based segmentation of 3D microscopy images. Users can select the algorithm to be applied. Further, the image processing tool provides visualization of segmented volume data and can set the scale, transportation, etc. using a keyboard and mouse. However, the 3D objects visualized fast still need to be analyzed to obtain information for biologists. To analyze 3D microscopic images, we need quantitative data of the images. Therefore, we label the segmented 3D objects within all 3D microscopic images and obtain quantitative information on each labeled object. This information can use the classification feature. A user can select the object to be analyzed. Our tool allows the selected object to be displayed on a new window, and hence, more details of the object can be observed. Finally, we validate the effectiveness of our tool by comparing the CPU and GPU processing times by matching the specification and configuration.

  10. Value of non-contrast sequences in magnetic resonance angiography of hepatic arterial vasculature.

    PubMed

    Kalra, Vivek B; Gilbert, John W; Krishnamoorthy, Saravanan; Cornfeld, Daniel

    2014-06-01

    To evaluate value of adding non-contrast MR angiographic sequence (In-Flow Inversion Recovery [IFIR]) to standard fat-suppressed T1-weighted postcontrast sequence (3D spoiled gradient echo [3D-GRE]) for evaluating hepatic arterial anatomy. Retrospective evaluation of 30 consecutive patients undergoing multiphase liver MRI. Individual vessels for IFIR/3D-GRE sequences were evaluated by two blinded readers using a four-point scale. Statistical analysis was performed using the Wilcoxon signed-rank test for vessel conspicuity between IFIR/3D-GRE sequences. IFIR alone diagnostically imaged 8.1% of vessels, 3D-GRE alone 25.8%, 55.8% by both 3D-GRE/IFIR, and 10.3% of vessels by neither. Two patients with variant vascular anatomy were visualized with both sequences. Addition of IFIR to 3D-GRE resulted in statistically significant increase in arterial visualization (p<0.001), 10% relative increase in identified vessels, and 3-5 mi increase in acquisition time for total scan time of 30-35 min. IFIR may be a useful adjunct to 3D-GRE in hepatic angiography without adding considerably to scan time. 10% more hepatic arteries were seen when combining information from IFIR/3D-GRE vs. 3D-GRE alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Visual control of robots using range images.

    PubMed

    Pomares, Jorge; Gil, Pablo; Torres, Fernando

    2010-01-01

    In the last years, 3D-vision systems based on the time-of-flight (ToF) principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.

  12. 3DView: Space physics data visualizer

    NASA Astrophysics Data System (ADS)

    Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.

    2018-04-01

    3DView creates visualizations of space physics data in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, and 2D cuts in simulation cubes are among the variety of data representation enabled by 3DView. It offers direct connections to several large databases and uses VO standards; it also allows the user to upload data. 3DView's versatility covers a wide range of space physics contexts.

  13. Visualizing UAS-collected imagery using augmented reality

    NASA Astrophysics Data System (ADS)

    Conover, Damon M.; Beidleman, Brittany; McAlinden, Ryan; Borel-Donohue, Christoph C.

    2017-05-01

    One of the areas where augmented reality will have an impact is in the visualization of 3-D data. 3-D data has traditionally been viewed on a 2-D screen, which has limited its utility. Augmented reality head-mounted displays, such as the Microsoft HoloLens, make it possible to view 3-D data overlaid on the real world. This allows a user to view and interact with the data in ways similar to how they would interact with a physical 3-D object, such as moving, rotating, or walking around it. A type of 3-D data that is particularly useful for military applications is geo-specific 3-D terrain data, and the visualization of this data is critical for training, mission planning, intelligence, and improved situational awareness. Advances in Unmanned Aerial Systems (UAS), photogrammetry software, and rendering hardware have drastically reduced the technological and financial obstacles in collecting aerial imagery and in generating 3-D terrain maps from that imagery. Because of this, there is an increased need to develop new tools for the exploitation of 3-D data. We will demonstrate how the HoloLens can be used as a tool for visualizing 3-D terrain data. We will describe: 1) how UAScollected imagery is used to create 3-D terrain maps, 2) how those maps are deployed to the HoloLens, 3) how a user can view and manipulate the maps, and 4) how multiple users can view the same virtual 3-D object at the same time.

  14. Ray-based approach to integrated 3D visual communication

    NASA Astrophysics Data System (ADS)

    Naemura, Takeshi; Harashima, Hiroshi

    2001-02-01

    For a high sense of reality in the next-generation communications, it is very important to realize three-dimensional (3D) spatial media, instead of existing 2D image media. In order to comprehensively deal with a variety of 3D visual data formats, the authors first introduce the concept of "Integrated 3D Visual Communication," which reflects the necessity of developing a neutral representation method independent of input/output systems. Then, the following discussions are concentrated on the ray-based approach to this concept, in which any visual sensation is considered to be derived from a set of light rays. This approach is a simple and straightforward to the problem of how to represent 3D space, which is an issue shared by various fields including 3D image communications, computer graphics, and virtual reality. This paper mainly presents the several developments in this approach, including some efficient methods of representing ray data, a real-time video-based rendering system, an interactive rendering system based on the integral photography, a concept of virtual object surface for the compression of tremendous amount of data, and a light ray capturing system using a telecentric lens. Experimental results demonstrate the effectiveness of the proposed techniques.

  15. Training Performance of Laparoscopic Surgery in Two- and Three-Dimensional Displays.

    PubMed

    Lin, Chiuhsiang Joe; Cheng, Chih-Feng; Chen, Hung-Jen; Wu, Kuan-Ying

    2017-04-01

    This research investigated differences in the effects of a state-of-art stereoscopic 3-dimensional (3D) display and a traditional 2-dimensional (2D) display in simulated laparoscopic surgery over a longer duration than in previous publications and studied the learning effects of the 2 display systems on novices. A randomized experiment with 2 factors, image dimensions and image sequence, was conducted to investigate differences in the mean movement time, the mean error frequency, NASA-TLX cognitive workload, and visual fatigue in pegboard and circle-tracing tasks. The stereoscopic 3D display had advantages in mean movement time ( P < .001 and P = .002) and mean error frequency ( P = .010 and P = .008) in both the tasks. There were no significant differences in the objective visual fatigue ( P = .729 and P = .422) and in the NASA-TLX ( P = .605 and P = .937) cognitive workload between the 3D and the 2D displays on both the tasks. For the learning effect, participants who used the stereoscopic 3D display first had shorter mean movement time in the 2D display environment on both the pegboard ( P = .011) and the circle-tracing ( P = .017) tasks. The results of this research suggest that a stereoscopic system would not result in higher objective visual fatigue and cognitive workload than a 2D system, and it might reduce the performance time and increase the precision of surgical operations. In addition, learning efficiency of the stereoscopic system on the novices in this study demonstrated its value for training and education in laparoscopic surgery.

  16. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    USGS Publications Warehouse

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  17. Systems and Methods for Data Visualization Using Three-Dimensional Displays

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)

    2017-01-01

    Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.

  18. High-resolution gadolinium-enhanced 3D MRA of the infrapopliteal arteries. Lessons for improving bolus-chase peripheral MRA.

    PubMed

    Hood, Maureen N; Ho, Vincent B; Foo, Thomas K F; Marcos, Hani B; Hess, Sandra L; Choyke, Peter L

    2002-09-01

    Peripheral magnetic resonance angiography (MRA) is growing in use. However, methods of performing peripheral MRA vary widely and continue to be optimized, especially for improvement in illustration of infrapopliteal arteries. The main purpose of this project was to identify imaging factors that can improve arterial visualization in the lower leg using bolus chase peripheral MRA. Eighteen healthy adults were imaged on a 1.5T MR scanner. The calf was imaged using conventional three-station bolus chase three-dimensional (3D) MRA, two dimensional (2D) time-of-flight (TOF) MRA and single-station Gadolinium (Gd)-enhanced 3D MRA. Observer comparisons of vessel visualization, signal to noise ratios (SNR), contrast to noise ratios (CNR) and spatial resolution comparisons were performed. Arterial SNR and CNR were similar for all three techniques. However, arterial visualization was dramatically improved on dedicated, arterial-phase Gd-enhanced 3D MRA compared with the multi-station bolus chase MRA and 2D TOF MRA. This improvement was related to optimization of Gd-enhanced 3D MRA parameters (fast injection rate of 2 mL/sec, high spatial resolution imaging, the use of dedicated phased array coils, elliptical centric k-space sampling and accurate arterial phase timing for image acquisition). The visualization of the infrapopliteal arteries can be substantially improved in bolus chase peripheral MRA if voxel size, contrast delivery, and central k-space data acquisition for arterial enhancement are optimized. Improvements in peripheral MRA should be directed at these parameters.

  19. Technical Note: A 3-D rendering algorithm for electromechanical wave imaging of a beating heart.

    PubMed

    Nauleau, Pierre; Melki, Lea; Wan, Elaine; Konofagou, Elisa

    2017-09-01

    Arrhythmias can be treated by ablating the heart tissue in the regions of abnormal contraction. The current clinical standard provides electroanatomic 3-D maps to visualize the electrical activation and locate the arrhythmogenic sources. However, the procedure is time-consuming and invasive. Electromechanical wave imaging is an ultrasound-based noninvasive technique that can provide 2-D maps of the electromechanical activation of the heart. In order to fully visualize the complex 3-D pattern of activation, several 2-D views are acquired and processed separately. They are then manually registered with a 3-D rendering software to generate a pseudo-3-D map. However, this last step is operator-dependent and time-consuming. This paper presents a method to generate a full 3-D map of the electromechanical activation using multiple 2-D images. Two canine models were considered to illustrate the method: one in normal sinus rhythm and one paced from the lateral region of the heart. Four standard echographic views of each canine heart were acquired. Electromechanical wave imaging was applied to generate four 2-D activation maps of the left ventricle. The radial positions and activation timings of the walls were automatically extracted from those maps. In each slice, from apex to base, these values were interpolated around the circumference to generate a full 3-D map. In both cases, a 3-D activation map and a cine-loop of the propagation of the electromechanical wave were automatically generated. The 3-D map showing the electromechanical activation timings overlaid on realistic anatomy assists with the visualization of the sources of earlier activation (which are potential arrhythmogenic sources). The earliest sources of activation corresponded to the expected ones: septum for the normal rhythm and lateral for the pacing case. The proposed technique provides, automatically, a 3-D electromechanical activation map with a realistic anatomy. This represents a step towards a noninvasive tool to efficiently localize arrhythmias in 3-D. © 2017 American Association of Physicists in Medicine.

  20. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  1. Parallel Rendering of Large Time-Varying Volume Data

    NASA Technical Reports Server (NTRS)

    Garbutt, Alexander E.

    2005-01-01

    Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.

  2. EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS).

    PubMed

    Arsalan Naqvi, Syed Ali; Badruddin, Nasreen; Jatoi, Munsif Ali; Malik, Aamir Saeed; Hazabbah, Wan; Abdullah, Baharudin

    2015-12-01

    3D movies are attracting the viewers as they can see the objects flying out of the screen. However, many viewers have reported various problems which are usually faced after watching 3D movies. These problems include visual fatigue, eye strain, headaches, dizziness, blurred vision or collectively may be termed as visually induced motion sickness (VIMS). This research focuses on the comparison between 3D passive technology with a conventional 2D technology to find that whether 3D is causing trouble in the viewers or not. For this purpose, an experiment was designed in which participants were randomly assigned to watch 2D or a 3D movie. The movie was specially designed to induce VIMS. The movie was shown for the duration of 10 min to every participant. The electroencephalogram (EEG) data was recorded throughout the session. At the end of the session, participants rated their feelings using simulator sickness questionnaire (SSQ). The SSQ data was analyzed and the ratings of 2D and 3D participants were compared statistically by using a two tailed t test. From the SSQ results, it was found that participants watching 3D movies reported significantly higher symptoms of VIMS (p value <0.05). EEG data was analyzed by using MATLAB and topographic plots are created from the data. A significant difference has been observed in the frontal-theta power which increases with the passage of time in 2D condition while decreases with time in 3D condition. Also, a decrease in beta power has been found in the temporal lobe of 3D group. Therefore, it is concluded that there are negative effects of 3D movies causing significant changes in the brain activity in terms of band powers. This condition leads to produce symptoms of VIMS in the viewers.

  3. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction.

    PubMed

    Povšič, K; Jezeršek, M; Možina, J

    2015-07-01

    Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of  ±0.08 dm(3) for rigid movement extraction. Similarly, the error was calculated to be  ±0.02 dm(3) for torsional deformation extraction and  ±0.11 dm(3) for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill.

  4. Fast 3D Surface Extraction 2 pages (including abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer; Patchett, John M.; Ahrens, James P.

    Ocean scientists searching for isosurfaces and/or thresholds of interest in high resolution 3D datasets required a tedious and time-consuming interactive exploration experience. PISTON research and development activities are enabling ocean scientists to rapidly and interactively explore isosurfaces and thresholds in their large data sets using a simple slider with real time calculation and visualization of these features. Ocean Scientists can now visualize more features in less time, helping them gain a better understanding of the high resolution data sets they work with on a daily basis. Isosurface timings (512{sup 3} grid): VTK 7.7 s, Parallel VTK (48-core) 1.3 s, PISTONmore » OpenMP (48-core) 0.2 s, PISTON CUDA (Quadro 6000) 0.1 s.« less

  5. AstroCloud: An Agile platform for data visualization and specific analyzes in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Molina, F. Z.; Salgado, R.; Bergel, A.; Infante, A.

    2017-07-01

    Nowadays, astronomers commonly run their own tools, or distributed computational packages, for data analysis and then visualizing the results with generic applications. This chain of processes comes at high cost: (a) analyses are manually applied, they are therefore difficult to be automatized, and (b) data have to be serialized, thus increasing the cost of parsing and saving intermediary data. We are developing AstroCloud, an agile visualization multipurpose platform intended for specific analyses of astronomical images (https://astrocloudy.wordpress.com). This platform incorporates domain-specific languages which make it easily extensible. AstroCloud supports customized plug-ins, which translate into time reduction on data analysis. Moreover, it also supports 2D and 3D rendering, including interactive features in real time. AstroCloud is under development, we are currently implementing different choices for data reduction and physical analyzes.

  6. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.

  7. Investigating the Use of 3d Geovisualizations for Urban Design in Informal Settlement Upgrading in South Africa

    NASA Astrophysics Data System (ADS)

    Rautenbach, V.; Coetzee, S.; Çöltekin, A.

    2016-06-01

    Informal settlements are a common occurrence in South Africa, and to improve in-situ circumstances of communities living in informal settlements, upgrades and urban design processes are necessary. Spatial data and maps are essential throughout these processes to understand the current environment, plan new developments, and communicate the planned developments. All stakeholders need to understand maps to actively participate in the process. However, previous research demonstrated that map literacy was relatively low for many planning professionals in South Africa, which might hinder effective planning. Because 3D visualizations resemble the real environment more than traditional maps, many researchers posited that they would be easier to interpret. Thus, our goal is to investigate the effectiveness of 3D geovisualizations for urban design in informal settlement upgrading in South Africa. We consider all involved processes: 3D modelling, visualization design, and cognitive processes during map reading. We found that procedural modelling is a feasible alternative to time-consuming manual modelling, and can produce high quality models. When investigating the visualization design, the visual characteristics of 3D models and relevance of a subset of visual variables for urban design activities of informal settlement upgrades were qualitatively assessed. The results of three qualitative user experiments contributed to understanding the impact of various levels of complexity in 3D city models and map literacy of future geoinformatics and planning professionals when using 2D maps and 3D models. The research results can assist planners in designing suitable 3D models that can be used throughout all phases of the process.

  8. Three-dimensional Visualization of Ultrasound Backscatter Statistics by Window-modulated Compounding Nakagami Imaging.

    PubMed

    Zhou, Zhuhuang; Wu, Shuicai; Lin, Man-Yen; Fang, Jui; Liu, Hao-Li; Tsui, Po-Hsiang

    2018-05-01

    In this study, the window-modulated compounding (WMC) technique was integrated into three-dimensional (3D) ultrasound Nakagami imaging for improving the spatial visualization of backscatter statistics. A 3D WMC Nakagami image was produced by summing and averaging a number of 3D Nakagami images (number of frames denoted as N) formed using sliding cubes with varying side lengths ranging from 1 to N times the transducer pulse. To evaluate the performance of the proposed 3D WMC Nakagami imaging method, agar phantoms with scatterer concentrations ranging from 2 to 64 scatterers/mm 3 were made, and six stages of fatty liver (zero, one, two, four, six, and eight weeks) were induced in rats by methionine-choline-deficient diets (three rats for each stage, total n = 18). A mechanical scanning system with a 5-MHz focused single-element transducer was used for ultrasound radiofrequency data acquisition. The experimental results showed that 3D WMC Nakagami imaging was able to characterize different scatterer concentrations. Backscatter statistics were visualized with various numbers of frames; N = 5 reduced the estimation error of 3D WMC Nakagami imaging in visualizing the backscatter statistics. Compared with conventional 3D Nakagami imaging, 3D WMC Nakagami imaging improved the image smoothness without significant image resolution degradation, and it can thus be used for describing different stages of fatty liver in rats.

  9. Web-based three-dimensional geo-referenced visualization

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Gong, Jianhua; Wang, Freeman

    1999-12-01

    This paper addresses several approaches to implementing web-based, three-dimensional (3-D), geo-referenced visualization. The discussion focuses on the relationship between multi-dimensional data sets and applications, as well as the thick/thin client and heavy/light server structure. Two models of data sets are addressed in this paper. One is the use of traditional 3-D data format such as 3-D Studio Max, Open Inventor 2.0, Vis5D and OBJ. The other is modelled by a web-based language such as VRML. Also, traditional languages such as C and C++, as well as web-based programming tools such as Java, Java3D and ActiveX, can be used for developing applications. The strengths and weaknesses of each approach are elaborated. Four practical solutions for using VRML and Java, Java and Java3D, VRML and ActiveX and Java wrapper classes (Java and C/C++), to develop applications are presented for web-based, real-time interactive and explorative visualization.

  10. Visual Semantic Based 3D Video Retrieval System Using HDFS.

    PubMed

    Kumar, C Ranjith; Suguna, S

    2016-08-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L 2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

  11. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible.

  12. D Visualization of Volcanic Ash Dispersion Prediction with Spatial Information Open Platform in Korea

    NASA Astrophysics Data System (ADS)

    Youn, J.; Kim, T.

    2016-06-01

    Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.

  13. Early detection of glaucoma by means of a novel 3D computer‐automated visual field test

    PubMed Central

    Nazemi, Paul P; Fink, Wolfgang; Sadun, Alfredo A; Francis, Brian; Minckler, Donald

    2007-01-01

    Purpose A recently devised 3D computer‐automated threshold Amsler grid test was used to identify early and distinctive defects in people with suspected glaucoma. Further, the location, shape and depth of these field defects were characterised. Finally, the visual fields were compared with those obtained by standard automated perimetry. Patients and methods Glaucoma suspects were defined as those having elevated intraocular pressure (>21 mm Hg) or cup‐to‐disc ratio of >0.5. 33 patients and 66 eyes with risk factors for glaucoma were examined. 15 patients and 23 eyes with no risk factors were tested as controls. The recently developed 3D computer‐automated threshold Amsler grid test was used. The test exhibits a grid on a computer screen at a preselected greyscale and angular resolution, and allows patients to trace those areas on the grid that are missing in their visual field using a touch screen. The 5‐minute test required that the patients repeatedly outline scotomas on a touch screen with varied displays of contrast while maintaining their gaze on a central fixation marker. A 3D depiction of the visual field defects was then obtained that was further characterised by the location, shape and depth of the scotomas. The exam was repeated three times per eye. The results were compared to Humphrey visual field tests (ie, achromatic standard or SITA standard 30‐2 or 24‐2). Results In this pilot study 79% of the eyes tested in the glaucoma‐suspect group repeatedly demonstrated visual field loss with the 3D perimetry. The 3D depictions of visual field loss associated with these risk factors were all characteristic of or compatible with glaucoma. 71% of the eyes demonstrated arcuate defects or a nasal step. Constricted visual fields were shown in 29% of the eyes. No visual field changes were detected in the control group. Conclusions The 3D computer‐automated threshold Amsler grid test may demonstrate visual field abnormalities characteristic of glaucoma in glaucoma suspects with normal achromatic Humphrey visual field testing. This test may be used as a screening tool for the early detection of glaucoma. PMID:17504855

  14. Accuracy and efficiency of computer-aided anatomical analysis using 3D visualization software based on semi-automated and automated segmentations.

    PubMed

    An, Gao; Hong, Li; Zhou, Xiao-Bing; Yang, Qiong; Li, Mei-Qing; Tang, Xiang-Yang

    2017-03-01

    We investigated and compared the functionality of two 3D visualization software provided by a CT vendor and a third-party vendor, respectively. Using surgical anatomical measurement as baseline, we evaluated the accuracy of 3D visualization and verified their utility in computer-aided anatomical analysis. The study cohort consisted of 50 adult cadavers fixed with the classical formaldehyde method. The computer-aided anatomical analysis was based on CT images (in DICOM format) acquired by helical scan with contrast enhancement, using a CT vendor provided 3D visualization workstation (Syngo) and a third-party 3D visualization software (Mimics) that was installed on a PC. Automated and semi-automated segmentations were utilized in the 3D visualization workstation and software, respectively. The functionality and efficiency of automated and semi-automated segmentation methods were compared. Using surgical anatomical measurement as a baseline, the accuracy of 3D visualization based on automated and semi-automated segmentations was quantitatively compared. In semi-automated segmentation, the Mimics 3D visualization software outperformed the Syngo 3D visualization workstation. No significant difference was observed in anatomical data measurement by the Syngo 3D visualization workstation and the Mimics 3D visualization software (P>0.05). Both the Syngo 3D visualization workstation provided by a CT vendor and the Mimics 3D visualization software by a third-party vendor possessed the needed functionality, efficiency and accuracy for computer-aided anatomical analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Changing the Learning Curve in Novice Laparoscopists: Incorporating Direct Visualization into the Simulation Training Program.

    PubMed

    Dawidek, Mark T; Roach, Victoria A; Ott, Michael C; Wilson, Timothy D

    A major challenge in laparoscopic surgery is the lack of depth perception. With the development and continued improvement of 3D video technology, the potential benefit of restoring 3D vision to laparoscopy has received substantial attention from the surgical community. Despite this, procedures conducted under 2D vision remain the standard of care, and trainees must become proficient in 2D laparoscopy. This study aims to determine whether incorporating 3D vision into a 2D laparoscopic simulation curriculum accelerates skill acquisition in novices. Postgraduate year-1 surgical specialty residents (n = 15) at the Schulich School of Medicine and Dentistry, at Western University were randomized into 1 of 2 groups. The control group practiced the Fundamentals of Laparoscopic Surgery peg-transfer task to proficiency exclusively under standard 2D laparoscopy conditions. The experimental group first practiced peg transfer under 3D direct visualization, with direct visualization of the working field. Upon reaching proficiency, this group underwent a perceptual switch, changing to standard 2D laparoscopy conditions, and once again trained to proficiency. Incorporating 3D direct visualization before training under standard 2D conditions significantly (p < 0.0.5) reduced the total training time to proficiency by 10.9 minutes or 32.4%. There was no difference in total number of repetitions to proficiency. Data were also used to generate learning curves for each respective training protocol. An adaptive learning approach, which incorporates 3D direct visualization into a 2D laparoscopic simulation curriculum, accelerates skill acquisition. This is in contrast to previous work, possibly owing to the proficiency-based methodology employed, and has implications for resource savings in surgical training. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Three-dimensional visualization of the craniofacial patient: volume segmentation, data integration and animation.

    PubMed

    Enciso, R; Memon, A; Mah, J

    2003-01-01

    The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.

  17. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents--a phantom study.

    PubMed

    Bunck, Alexander C; Jüttner, Alena; Kröger, Jan Robert; Burg, Matthias C; Kugel, Harald; Niederstadt, Thomas; Tiemann, Klaus; Schnackenburg, Bernhard; Crelier, Gerard R; Heindel, Walter; Maintz, David

    2012-09-01

    4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n=14) than by 2D phase contrast flow imaging (n=10). 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Visualizer: 3D Gridded Data Visualization Software for Geoscience Education and Research

    NASA Astrophysics Data System (ADS)

    Harwood, C.; Billen, M. I.; Kreylos, O.; Jadamec, M.; Sumner, D. Y.; Kellogg, L. H.; Hamann, B.

    2008-12-01

    In both research and education learning is an interactive and iterative process of exploring and analyzing data or model results. However, visualization software often presents challenges on the path to learning because it assumes the user already knows the locations and types of features of interest, instead of enabling flexible and intuitive examination of results. We present examples of research and teaching using the software, Visualizer, specifically designed to create an effective and intuitive environment for interactive, scientific analysis of 3D gridded data. Visualizer runs in a range of 3D virtual reality environments (e.g., GeoWall, ImmersaDesk, or CAVE), but also provides a similar level of real-time interactivity on a desktop computer. When using Visualizer in a 3D-enabled environment, the software allows the user to interact with the data images as real objects, grabbing, rotating or walking around the data to gain insight and perspective. On the desktop, simple features, such as a set of cross-bars marking the plane of the screen, provide extra 3D spatial cues that allow the user to more quickly understand geometric relationships within the data. This platform portability allows the user to more easily integrate research results into classroom demonstrations and exercises, while the interactivity provides an engaging environment for self-directed and inquiry-based learning by students. Visualizer software is freely available for download (www.keckcaves.org) and runs on Mac OSX and Linux platforms.

  19. Real time 3D visualization of intraoperative organ deformations using structured dictionary.

    PubMed

    Wang, Dan; Tewfik, Ahmed H

    2012-04-01

    Restricted visualization of the surgical field is one of the most critical challenges for minimally invasive surgery (MIS). Current intraoperative visualization systems are promising. However, they can hardly meet the requirements of high resolution and real time 3D visualization of the surgical scene to support the recognition of anatomic structures for safe MIS procedures. In this paper, we present a new approach for real time 3D visualization of organ deformations based on optical imaging patches with limited field-of-view and a single preoperative scan of magnetic resonance imaging (MRI) or computed tomography (CT). The idea for reconstruction is motivated by our empirical observation that the spherical harmonic coefficients corresponding to distorted surfaces of a given organ lie in lower dimensional subspaces in a structured dictionary that can be learned from a set of representative training surfaces. We provide both theoretical and practical designs for achieving these goals. Specifically, we discuss details about the selection of limited optical views and the registration of partial optical images with a single preoperative MRI/CT scan. The design proposed in this paper is evaluated with both finite element modeling data and ex vivo experiments. The ex vivo test is conducted on fresh porcine kidneys using 3D MRI scans with 1.2 mm resolution and a portable laser scanner with an accuracy of 0.13 mm. Results show that the proposed method achieves a sub-3 mm spatial resolution in terms of Hausdorff distance when using only one preoperative MRI scan and the optical patch from the single-sided view of the kidney. The reconstruction frame rate is between 10 frames/s and 39 frames/s depending on the complexity of the test model.

  20. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    NASA Astrophysics Data System (ADS)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  1. Clinical evaluation of accommodation and ocular surface stability relavant to visual asthenopia with 3D displays

    PubMed Central

    2014-01-01

    Background To validate the association between accommodation and visual asthenopia by measuring objective accommodative amplitude with the Optical Quality Analysis System (OQAS®, Visiometrics, Terrassa, Spain), and to investigate associations among accommodation, ocular surface instability, and visual asthenopia while viewing 3D displays. Methods Fifteen normal adults without any ocular disease or surgical history watched the same 3D and 2D displays for 30 minutes. Accommodative ability, ocular protection index (OPI), and total ocular symptom scores were evaluated before and after viewing the 3D and 2D displays. Accommodative ability was evaluated by the near point of accommodation (NPA) and OQAS to ensure reliability. The OPI was calculated by dividing the tear breakup time (TBUT) by the interblink interval (IBI). The changes in accommodative ability, OPI, and total ocular symptom scores after viewing 3D and 2D displays were evaluated. Results Accommodative ability evaluated by NPA and OQAS, OPI, and total ocular symptom scores changed significantly after 3D viewing (p = 0.005, 0.003, 0.006, and 0.003, respectively), but yielded no difference after 2D viewing. The objective measurement by OQAS verified the decrease of accommodative ability while viewing 3D displays. The change of NPA, OPI, and total ocular symptom scores after 3D viewing had a significant correlation (p < 0.05), implying direct associations among these factors. Conclusions The decrease of accommodative ability after 3D viewing was validated by both subjective and objective methods in our study. Further, the deterioration of accommodative ability and ocular surface stability may be causative factors of visual asthenopia in individuals viewing 3D displays. PMID:24612686

  2. Visualizing Astronomical Data with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2014-01-01

    We present methods for using the 3D graphics program Blender in the visualization of astronomical data. The software's forte for animating 3D data lends itself well to use in astronomy. The Blender graphical user interface and Python scripting capabilities can be utilized in the generation of models for data cubes, catalogs, simulations, and surface maps. We review methods for data import, 2D and 3D voxel texture applications, animations, camera movement, and composite renders. Rendering times can be improved by using graphic processing units (GPUs). A number of examples are shown using the software features most applicable to various kinds of data paradigms in astronomy.

  3. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using the STARS (Solar-terrestrial data Analysis and Reference System). The STARS is a data analysis system for satellite and ground-based observation data for solar-terrestrial physics.

  4. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool. Currently STRING can generate animations of single 2D cuts, either planar or curved surfaces, through 3D simulation domains. To provide a general tool for experts enabling also direct exploration and analysis of large 3D flow fields the software needs to be extended to intuitive as well as interactive visualizations of entire 3D flow domains. The current research concerning this project, which is funded by the Federal Ministry for Economic Affairs and Energy (Germany), is presented.

  5. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation

    USGS Publications Warehouse

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fu-Wen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  6. Movement-Based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation

    PubMed Central

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  7. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  8. Virtual reality and 3D animation in forensic visualization.

    PubMed

    Ma, Minhua; Zheng, Huiru; Lallie, Harjinder

    2010-09-01

    Computer-generated three-dimensional (3D) animation is an ideal media to accurately visualize crime or accident scenes to the viewers and in the courtrooms. Based upon factual data, forensic animations can reproduce the scene and demonstrate the activity at various points in time. The use of computer animation techniques to reconstruct crime scenes is beginning to replace the traditional illustrations, photographs, and verbal descriptions, and is becoming popular in today's forensics. This article integrates work in the areas of 3D graphics, computer vision, motion tracking, natural language processing, and forensic computing, to investigate the state-of-the-art in forensic visualization. It identifies and reviews areas where new applications of 3D digital technologies and artificial intelligence could be used to enhance particular phases of forensic visualization to create 3D models and animations automatically and quickly. Having discussed the relationships between major crime types and level-of-detail in corresponding forensic animations, we recognized that high level-of-detail animation involving human characters, which is appropriate for many major crime types but has had limited use in courtrooms, could be useful for crime investigation. © 2010 American Academy of Forensic Sciences.

  9. Impact of 3D vision on mental workload and laparoscopic performance in inexperienced subjects.

    PubMed

    Gómez-Gómez, E; Carrasco-Valiente, J; Valero-Rosa, J; Campos-Hernández, J P; Anglada-Curado, F J; Carazo-Carazo, J L; Font-Ugalde, P; Requena-Tapia, M J

    2015-05-01

    To assess the effect of vision in three dimensions (3D) versus two dimensions (2D) on mental workload and laparoscopic performance during simulation-based training. A prospective, randomized crossover study on inexperienced students in operative laparoscopy was conducted. Forty-six candidates executed five standardized exercises on a pelvitrainer with both vision systems (3D and 2D). Laparoscopy performance was assessed using the total time (in seconds) and the number of failed attempts. For workload assessment, the validated NASA-TLX questionnaire was administered. 3D vision improves the performance reducing the time (3D = 1006.08 ± 315.94 vs. 2D = 1309.17 ± 300.28; P < .001) and the total number of failed attempts (3D = .84 ± 1.26 vs. 2D = 1.86 ± 1.60; P < .001). For each exercise, 3D vision also shows better performance times: "transfer objects" (P = .001), "single knot" (P < .001), "clip and cut" (P < .05), and "needle guidance" (P < .001). Besides, according to the NASA-TLX results, less mental workload is experienced with the use of 3D (P < .001). However, 3D vision was associated with greater visual impairment (P < .01) and headaches (P < .05). The incorporation of 3D systems in laparoscopic training programs would facilitate the acquisition of laparoscopic skills, because they reduce mental workload and improve the performance on inexperienced surgeons. However, some undesirable effects such as visual discomfort or headache are identified initially. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Graphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collection.

    PubMed

    Yamada, Shigehito; Uwabe, Chigako; Nakatsu-Komatsu, Tomoko; Minekura, Yutaka; Iwakura, Masaji; Motoki, Tamaki; Nishimiya, Kazuhiko; Iiyama, Masaaki; Kakusho, Koh; Minoh, Michihiko; Mizuta, Shinobu; Matsuda, Tetsuya; Matsuda, Yoshimasa; Haishi, Tomoyuki; Kose, Katsumi; Fujii, Shingo; Shiota, Kohei

    2006-02-01

    Morphogenesis in the developing embryo takes place in three dimensions, and in addition, the dimension of time is another important factor in development. Therefore, the presentation of sequential morphological changes occurring in the embryo (4D visualization) is essential for understanding the complex morphogenetic events and the underlying mechanisms. Until recently, 3D visualization of embryonic structures was possible only by reconstruction from serial histological sections, which was tedious and time-consuming. During the past two decades, 3D imaging techniques have made significant advances thanks to the progress in imaging and computer technologies, computer graphics, and other related techniques. Such novel tools have enabled precise visualization of the 3D topology of embryonic structures and to demonstrate spatiotemporal 4D sequences of organogenesis. Here, we describe a project in which staged human embryos are imaged by the magnetic resonance (MR) microscope, and 3D images of embryos and their organs at each developmental stage were reconstructed based on the MR data, with the aid of computer graphics techniques. On the basis of the 3D models of staged human embryos, we constructed a data set of 3D images of human embryos and made movies to illustrate the sequential process of human morphogenesis. Furthermore, a computer-based self-learning program of human embryology is being developed for educational purposes, using the photographs, histological sections, MR images, and 3D models of staged human embryos. Copyright 2005 Wiley-Liss, Inc.

  11. BioCichlid: central dogma-based 3D visualization system of time-course microarray data on a hierarchical biological network.

    PubMed

    Ishiwata, Ryosuke R; Morioka, Masaki S; Ogishima, Soichi; Tanaka, Hiroshi

    2009-02-15

    BioCichlid is a 3D visualization system of time-course microarray data on molecular networks, aiming at interpretation of gene expression data by transcriptional relationships based on the central dogma with physical and genetic interactions. BioCichlid visualizes both physical (protein) and genetic (regulatory) network layers, and provides animation of time-course gene expression data on the genetic network layer. Transcriptional regulations are represented to bridge the physical network (transcription factors) and genetic network (regulated genes) layers, thus integrating promoter analysis into the pathway mapping. BioCichlid enhances the interpretation of microarray data and allows for revealing the underlying mechanisms causing differential gene expressions. BioCichlid is freely available and can be accessed at http://newton.tmd.ac.jp/. Source codes for both biocichlid server and client are also available.

  12. Handheld real-time volumetric 3-D gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Haefner, Andrew; Barnowski, Ross; Luke, Paul; Amman, Mark; Vetter, Kai

    2017-06-01

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  13. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative rotational digital subtraction angiography. PMID:25803318

  14. Improved visualization of intracranial vessels with intraoperative coregistration of rotational digital subtraction angiography and intraoperative 3D ultrasound.

    PubMed

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative rotational digital subtraction angiography.

  15. Usability of Three-dimensional Augmented Visual Cues Delivered by Smart Glasses on (Freezing of) Gait in Parkinson's Disease.

    PubMed

    Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J A

    2017-01-01

    External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson's disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability.

  16. Comparative case study between D3 and highcharts on lustre data visualization

    NASA Astrophysics Data System (ADS)

    ElTayeby, Omar; John, Dwayne; Patel, Pragnesh; Simmerman, Scott

    2013-12-01

    One of the challenging tasks in visual analytics is to target clustered time-series data sets, since it is important for data analysts to discover patterns changing over time while keeping their focus on particular subsets. In order to leverage the humans ability to quickly visually perceive these patterns, multivariate features should be implemented according to the attributes available. However, a comparative case study has been done using JavaScript libraries to demonstrate the differences in capabilities of using them. A web-based application to monitor the Lustre file system for the systems administrators and the operation teams has been developed using D3 and Highcharts. Lustre file systems are responsible of managing Remote Procedure Calls (RPCs) which include input output (I/O) requests between clients and Object Storage Targets (OSTs). The objective of this application is to provide time-series visuals of these calls and storage patterns of users on Kraken, a University of Tennessee High Performance Computing (HPC) resource in Oak Ridge National Laboratory (ORNL).

  17. [Application of 3D visualization technique in breast cancer surgery with immediate breast reconstruction using laparoscopically harvested pedicled latissimus dorsi muscle flap].

    PubMed

    Zhang, Pu-Sheng; Wang, Li-Kun; Luo, Yun-Feng; Shi, Fu-Jun; He, Lin-Yun; Zeng, Cheng-Bing; Zhang, Yu; Fang, Chi-Hua

    2017-08-20

    To study the value of 3D visualization technique in breast-preserving surgery for breast cancer with immediate breast reconstruction using laparoscopically harvested pedicled latissimus dorsi muscle flap. From January, 2015 to May, 2016, 30 patients with breast cancer underwent breast-preserving surgery with immediate breast reconstruction using pedicled latissimus dorsi muscle flap. The CT data of the arterial phase and venous phase were collected preoperatively and imported into the self-developed medical image 3D visualization system for image segmentation and 3D reconstruction. The 3D models were imported into the simulation surgery platform for virtual surgery to prepare for subsequent surgeries. The cosmetic outcomes of the patients were evaluated 6 months after the surgery. Another 18 patients with breast cancer who underwent laparoscopic latissimus dorsi muscle breast reconstruction without using 3D visualization technique from January to December, 2014 served as the control group. The data of the operative time, intraoperative blood loss and postoperative appearance of the breasts were analyzed. The reconstructed 3D model clearly displayed the anatomical structures of the breast, armpit, latissimus dorsi muscle and vessels and their anatomical relationship in all the 30 cases. Immediate breast reconstruction was performed successfully in all the cases with median operation time of 226 min (range, 210 to 420 min), a median blood loss of 95 mL (range, 73 to 132 mL). Evaluation of the appearance of the breast showed excellent results in 22 cases, good appearance in 6 cases and acceptable appearance in 2 cases. In the control group, the median operation time was 283 min (range, 256 to 313 min) and the median blood loss was 107 mL (range, 79 to 147 mL) with excellent appearance of the breasts in 10 cases, good appearance in 4 cases and acceptable appearance in 4 cases. 3D reconstruction technique can clearly display the morphology of the latissimus dorsi and the thoracic dorsal artery, allows calculation of the volume of the breast and the latissimus dorsi, and helps in defining the scope of resection of the latissimus dorsi to avoid injuries of the pedicled vessels. This technique also helps to shorten the operation time, reduce intraoperative bleeding, and improve the appearance of the reconstructed breast using pedicled latissimus dorsi muscle flap.

  18. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  19. Influence of Gsd for 3d City Modeling and Visualization from Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Alam, Zafare; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Ministry of Municipal and Rural Affairs (MOMRA), aims to establish solid infrastructure required for 3D city modelling, for decision making to set a mark in urban development. MOMRA is responsible for the large scale mapping 1:1,000; 1:2,500; 1:10,000 and 1:20,000 scales for 10cm, 20cm and 40 GSD with Aerial Triangulation data. As 3D city models are increasingly used for the presentation exploration, and evaluation of urban and architectural designs. Visualization capabilities and animations support of upcoming 3D geo-information technologies empower architects, urban planners, and authorities to visualize and analyze urban and architectural designs in the context of the existing situation. To make use of this possibility, first of all 3D city model has to be created for which MOMRA uses the Aerial Triangulation data and aerial imagery. The main concise for 3D city modelling in the Kingdom of Saudi Arabia exists due to uneven surface and undulations. Thus real time 3D visualization and interactive exploration support planning processes by providing multiple stakeholders such as decision maker, architects, urban planners, authorities, citizens or investors with a three - dimensional model. Apart from advanced visualization, these 3D city models can be helpful for dealing with natural hazards and provide various possibilities to deal with exotic conditions by better and advanced viewing technological infrastructure. Riyadh on one side is 5700m above sea level and on the other hand Abha city is 2300m, this uneven terrain represents a drastic change of surface in the Kingdom, for which 3D city models provide valuable solutions with all possible opportunities. In this research paper: influence of different GSD (Ground Sample Distance) aerial imagery with Aerial Triangulation is used for 3D visualization in different region of the Kingdom, to check which scale is more sophisticated for obtaining better results and is cost manageable, with GSD (7.5cm, 10cm, 20cm and 40cm). The comparison test is carried out in Bentley environment to check the best possible results obtained through operating different batch processes.

  20. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  1. Comparative evaluation of monocular augmented-reality display for surgical microscopes.

    PubMed

    Rodriguez Palma, Santiago; Becker, Brian C; Lobes, Louis A; Riviere, Cameron N

    2012-01-01

    Medical augmented reality has undergone much development recently. However, there is a lack of studies quantitatively comparing the different display options available. This paper compares the effects of different graphical overlay systems in a simple micromanipulation task with "soft" visual servoing. We compared positioning accuracy in a real-time visually-guided task using Micron, an active handheld tremor-canceling microsurgical instrument, using three different displays: 2D screen, 3D screen, and microscope with monocular image injection. Tested with novices and an experienced vitreoretinal surgeon, display of virtual cues in the microscope via an augmented reality injection system significantly decreased 3D error (p < 0.05) compared to the 2D and 3D monitors when confounding factors such as magnification level were normalized.

  2. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue.

    PubMed

    Hoffman, David M; Girshick, Ahna R; Akeley, Kurt; Banks, Martin S

    2008-03-28

    Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues-accommodation and blur in the retinal image-specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one's ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays.

  3. STRING 3: An Advanced Groundwater Flow Visualization Tool

    NASA Astrophysics Data System (ADS)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of neighboring faces is extracted. Similar algorithms help to find the 2D boundary of cuts through the 3D model. As interactivity plays a big role for an exploration tool the speed of the drawing routines is also important. To achieve this, different pathlet rendering solutions have been developed and benchmarked. These provide a trade-off between the usage of geometry and fragment shaders. We show that point sprite shaders have superior performance and visual quality over geometry-based approaches. Admittedly, the point sprite-based approach has many non-trivial problems of joining the different parts of the pathlet geometry. This research is funded by the Federal Ministry for Economic Affairs and Energy (Germany). [1] T. Seidel, C. König, M. Schäfer, I. Ostermann, T. Biedert, D. Hietel (2014). Intuitive visualization of transient groundwater flow. Computers & Geosciences, Vol. 67, pp. 173-179 [2] I. Michel, S. Schröder, T. Seidel, C. König (2015). Intuitive Visualization of Transient Flow: Towards a Full 3D Tool. Geophysical Research Abstracts, Vol. 17, EGU2015-1670 [3] S. Schröder, I. Michel, T. Seidel, C.M. König (2015). STRING 3: Full 3D visualization of groundwater Flow. In Proceedings of IAMG 2015 Freiberg, pp. 813-822

  4. Magnetic resonance angiography of fetal vasculature at 3.0 T.

    PubMed

    Neelavalli, Jaladhar; Krishnamurthy, Uday; Jella, Pavan K; Mody, Swati S; Yadav, Brijesh K; Hendershot, Kelly; Hernandez-Andrade, Edgar; Yeo, Lami; Cabrera, Maria D; Haacke, Ewart M; Hassan, Sonia S; Romero, Roberto

    2016-12-01

    Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy. • 3D-visualization of fetal vasculature is feasible using non-contrast MRA at 3.0 T. • Visualization of placental vasculature is also possible with this method. • Fetal MRA can serve as a vascular localizer for quantitative MRI studies. • This method can be extended to 1.5 T.

  5. Interactive displays in medical art

    NASA Technical Reports Server (NTRS)

    Mcconathy, Deirdre Alla; Doyle, Michael

    1989-01-01

    Medical illustration is a field of visual communication with a long history. Traditional medical illustrations are static, 2-D, printed images; highly realistic depictions of the gross morphology of anatomical structures. Today medicine requires the visualization of structures and processes that have never before been seen. Complex 3-D spatial relationships require interpretation from 2-D diagnostic imagery. Pictures that move in real time have become clinical and research tools for physicians. Medical illustrators are involved with the development of interactive visual displays for three different, but not discrete, functions: as educational materials, as clinical and research tools, and as data bases of standard imagery used to produce visuals. The production of interactive displays in the medical arts is examined.

  6. The advantage of CT scans and 3D visualizations in the analysis of three child mummies from the Graeco-Roman Period.

    PubMed

    Villa, Chiara; Davey, Janet; Craig, Pamela J G; Drummer, Olaf H; Lynnerup, Niels

    2015-01-01

    Three child mummies from the Graeco-Roman Period (332 BCE - c. 395 CE) were examined using CT scans and 3D visualizations generated with Vitrea 2 and MIMICS graphic workstations with the aim of comparing the results with previous X-ray examinations performed by Dawson and Gray in 1968. Although the previous analyses reported that the children had been excerebrated and eviscerated, no evidence of incisions or breaches of the cranial cavity were found; 3D visualizations were generated showing the brain and the internal organs to be in situ. A larger number of skeletal post-mortem damages were identified, such as dislocation of mandible, ribs, and vertebrae, probably suffered at the time of embalming procedure. Different radio-opaque granular particles were observed throughout bodies (internally and externally) and could be explained as presence of natron, used as external desiccating agent by the embalmers, or as adipocerous alteration, a natural alteration of body fat. Age-at-death was estimated using the 3D visualization of the teeth, the state of fusion of the vertebrae and the presence of the secondary centers of the long bones: two mummies died at the age of 4 years ± 12 months, the third one at the age of 6 years ± 24 months. Hyperdontia or polydontia, a dental anomaly, could also be identified in one child using 3D visualizations of the teeth: two supernumerary teeth were found behind the maxillary permanent central incisors which had not been noticed in the Dawson and Gray's X-ray analysis. In conclusion, CT-scan investigations and especially 3D visualizations are important tools in the non-invasive analysis of the mummies and, in this case, provided revised and additional information compared to the only X-ray examination.

  7. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  8. The essence of student visual-spatial literacy and higher order thinking skills in undergraduate biology.

    PubMed

    Milner-Bolotin, Marina; Nashon, Samson Madera

    2012-02-01

    Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.

  9. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    NASA Astrophysics Data System (ADS)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  10. Virtual reality and 3D visualizations in heart surgery education.

    PubMed

    Friedl, Reinhard; Preisack, Melitta B; Klas, Wolfgang; Rose, Thomas; Stracke, Sylvia; Quast, Klaus J; Hannekum, Andreas; Gödje, Oliver

    2002-01-01

    Computer assisted teaching plays an increasing role in surgical education. The presented paper describes the development of virtual reality (VR) and 3D visualizations for educational purposes concerning aortocoronary bypass grafting and their prototypical implementation into a database-driven and internet-based educational system in heart surgery. A multimedia storyboard has been written and digital video has been encoded. Understanding of these videos was not always satisfying; therefore, additional 3D and VR visualizations have been modelled as VRML, QuickTime, QuickTime Virtual Reality and MPEG-1 applications. An authoring process in terms of integration and orchestration of different multimedia components to educational units has been started. A virtual model of the heart has been designed. It is highly interactive and the user is able to rotate it, move it, zoom in for details or even fly through. It can be explored during the cardiac cycle and a transparency mode demonstrates coronary arteries, movement of the heart valves, and simultaneous blood-flow. Myocardial ischemia and the effect of an IMA-Graft on myocardial perfusion is simulated. Coronary artery stenoses and bypass-grafts can be interactively added. 3D models of anastomotique techniques and closed thrombendarterectomy have been developed. Different visualizations have been prototypically implemented into a teaching application about operative techniques. Interactive virtual reality and 3D teaching applications can be used and distributed via the World Wide Web and have the power to describe surgical anatomy and principles of surgical techniques, where temporal and spatial events play an important role, in a way superior to traditional teaching methods.

  11. CytoViz: an artistic mapping of network measurements as living organisms in a VR application

    NASA Astrophysics Data System (ADS)

    López Silva, Brenda A.; Renambot, Luc

    2007-02-01

    CytoViz is an artistic, real-time information visualization driven by statistical information gathered during gigabit network transfers to the Scalable Adaptive Graphical Environment (SAGE) at various events. Data streams are mapped to cellular organisms defining their structure and behavior as autonomous agents. Network bandwidth drives the growth of each entity and the latency defines its physics-based independent movements. The collection of entity is bound within the 3D representation of the local venue. This visual and animated metaphor allows the public to experience the complexity of high-speed network streams that are used in the scientific community. Moreover, CytoViz displays the presence of discoverable Bluetooth devices carried by nearby persons. The concept is to generate an event-specific, real-time visualization that creates informational 3D patterns based on actual local presence. The observed Bluetooth traffic is put in opposition of the wide-area networking traffic by overlaying 2D animations on top of the 3D world. Each device is mapped to an animation fading over time while displaying the name of the detected device and its unique physical address. CytoViz was publicly presented at two major international conferences in 2005 (iGrid2005 in San Diego, CA and SC05 in Seattle, WA).

  12. New software for 3D fracture network analysis and visualization

    NASA Astrophysics Data System (ADS)

    Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.

    2013-12-01

    This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  13. A generalized 3D framework for visualization of planetary data.

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; De Wolfe, A. W.; Putnam, B.; Lindholm, D. M.; Nguyen, D.

    2016-12-01

    As the volume and variety of data returned from planetary exploration missions continues to expand, new tools and technologies are needed to explore the data and answer questions about the formation and evolution of the solar system. We have developed a 3D visualization framework that enables the exploration of planetary data from multiple instruments on the MAVEN mission to Mars. This framework not only provides the opportunity for cross-instrument visualization, but is extended to include model data as well, helping to bridge the gap between theory and observation. This is made possible through the use of new web technologies, namely LATIS, a data server that can stream data and spacecraft ephemerides to a web browser, and Cesium, a Javascript library for 3D globes. The common visualization framework we have developed is flexible and modular so that it can easily be adapted for additional missions. In addition to demonstrating the combined data and modeling capabilities of the system for the MAVEN mission, we will display the first ever near real-time `QuickLook', interactive, 4D data visualization for the Magnetospheric Multiscale Mission (MMS). In this application, data from all four spacecraft can be manipulated and visualized as soon as the data is ingested into the MMS Science Data Center, less than one day after collection.

  14. Fast interactive real-time volume rendering of real-time three-dimensional echocardiography: an implementation for low-end computers

    NASA Technical Reports Server (NTRS)

    Saracino, G.; Greenberg, N. L.; Shiota, T.; Corsi, C.; Lamberti, C.; Thomas, J. D.

    2002-01-01

    Real-time three-dimensional echocardiography (RT3DE) is an innovative cardiac imaging modality. However, partly due to lack of user-friendly software, RT3DE has not been widely accepted as a clinical tool. The object of this study was to develop and implement a fast and interactive volume renderer of RT3DE datasets designed for a clinical environment where speed and simplicity are not secondary to accuracy. Thirty-six patients (20 regurgitation, 8 normal, 8 cardiomyopathy) were imaged using RT3DE. Using our newly developed software, all 3D data sets were rendered in real-time throughout the cardiac cycle and assessment of cardiac function and pathology was performed for each case. The real-time interactive volume visualization system is user friendly and instantly provides consistent and reliable 3D images without expensive workstations or dedicated hardware. We believe that this novel tool can be used clinically for dynamic visualization of cardiac anatomy.

  15. 3D visualization of solar wind ion data from the Chang'E-1 exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Sun, Yankui; Tang, Zesheng

    2011-10-01

    Chang'E-1 (abbreviation CE-1), China's first Moon-orbiting spacecraft launched in 2007, carried equipment called the Solar Wind Ion Detector (abbreviation SWID), which sent back tens of gigabytes of solar wind ion differential number flux data. These data are essential for furthering our understanding of the cislunar space environment. However, to fully comprehend and analyze these data presents considerable difficulties, not only because of their huge size (57 GB), but also because of their complexity. Therefore, a new 3D visualization method is developed to give a more intuitive representation than traditional 1D and 2D visualizations, and in particular to offer a better indication of the direction of the incident ion differential number flux and the relative spatial position of CE-1 with respect to the Sun, the Earth, and the Moon. First, a coordinate system named Selenocentric Solar Ecliptic (SSE) which is more suitable for our goal is chosen, and solar wind ion differential number flux vectors in SSE are calculated from Geocentric Solar Ecliptic System (GSE) and Moon Center Coordinate (MCC) coordinates of the spacecraft, and then the ion differential number flux distribution in SSE is visualized in 3D space. This visualization method is integrated into an interactive visualization analysis software tool named vtSWIDs, developed in MATLAB, which enables researchers to browse through numerous records and manipulate the visualization results in real time. The tool also provides some useful statistical analysis functions, and can be easily expanded.

  16. Does 3D produce more symptoms of visually induced motion sickness?

    PubMed

    Naqvi, Syed Ali Arsalan; Badruddin, Nasreen; Malik, Aamir Saeed; Hazabbah, Wan; Abdullah, Baharudin

    2013-01-01

    3D stereoscopy technology with high quality images and depth perception provides entertainment to its viewers. However, the technology is not mature yet and sometimes may have adverse effects on viewers. Some viewers have reported discomfort in watching videos with 3D technology. In this research we performed an experiment showing a movie in 2D and 3D environments to participants. Subjective and objective data are recorded and compared in both conditions. Results from subjective reporting shows that Visually Induced Motion Sickness (VIMS) is significantly higher in 3D condition. For objective measurement, ECG data is recorded to find the Heart Rate Variability (HRV), where the LF/HF ratio, which is the index of sympathetic nerve activity, is analyzed to find the changes in the participants' feelings over time. The average scores of nausea, disorientation and total score of SSQ show that there is a significant difference in the 3D condition from 2D. However, LF/HF ratio is not showing significant difference throughout the experiment.

  17. Interactive 3D visualization speeds well, reservoir planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzet, G.A.

    1997-11-24

    Texaco Exploration and Production has begun making expeditious analyses and drilling decisions that result from interactive, large screen visualization of seismic and other three dimensional data. A pumpkin shaped room or pod inside a 3,500 sq ft, state-of-the-art facility in Southwest Houston houses a supercomputer and projection equipment Texaco said will help its people sharply reduce 3D seismic project cycle time, boost production from existing fields, and find more reserves. Oil and gas related applications of the visualization center include reservoir engineering, plant walkthrough simulation for facilities/piping design, and new field exploration. The center houses a Silicon Graphics Onyx2 infinitemore » reality supercomputer configured with 8 processors, 3 graphics pipelines, and 6 gigabytes of main memory.« less

  18. Application of advanced virtual reality and 3D computer assisted technologies in tele-3D-computer assisted surgery in rhinology.

    PubMed

    Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj

    2008-03-01

    The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.

  19. Trans3D: a free tool for dynamical visualization of EEG activity transmission in the brain.

    PubMed

    Blinowski, Grzegorz; Kamiński, Maciej; Wawer, Dariusz

    2014-08-01

    The problem of functional connectivity in the brain is in the focus of attention nowadays, since it is crucial for understanding information processing in the brain. A large repertoire of measures of connectivity have been devised, some of them being capable of estimating time-varying directed connectivity. Hence, there is a need for a dedicated software tool for visualizing the propagation of electrical activity in the brain. To this aim, the Trans3D application was developed. It is an open access tool based on widely available libraries and supporting both Windows XP/Vista/7(™), Linux and Mac environments. Trans3D can create animations of activity propagation between electrodes/sensors, which can be placed by the user on the scalp/cortex of a 3D model of the head. Various interactive graphic functions for manipulating and visualizing components of the 3D model and input data are available. An application of the Trans3D tool has helped to elucidate the dynamics of the phenomena of information processing in motor and cognitive tasks, which otherwise would have been very difficult to observe. Trans3D is available at: http://www.eeg.pl/. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Compression and accelerated rendering of volume data using DWT

    NASA Astrophysics Data System (ADS)

    Kamath, Preyas; Akleman, Ergun; Chan, Andrew K.

    1998-09-01

    2D images cannot convey information on object depth and location relative to the surfaces. The medical community is increasingly using 3D visualization techniques to view data from CT scans, MRI etc. 3D images provide more information on depth and location in the spatial domain to help surgeons making better diagnoses of the problem. 3D images can be constructed from 2D images using 3D scalar algorithms. With recent advances in communication techniques, it is possible for doctors to diagnose and plan treatment of a patient who lives at a remote location. It is made possible by transmitting relevant data of the patient via telephone lines. If this information is to be reconstructed in 3D, then 2D images must be transmitted. However 2D dataset storage occupies a lot of memory. In addition, visualization algorithms are slow. We describe in this paper a scheme which reduces the data transfer time by only transmitting information that the doctor wants. Compression is achieved by reducing the amount of data transfer. This is possible by using the 3D wavelet transform applied to 3D datasets. Since the wavelet transform is localized in frequency and spatial domain, we transmit detail only in the region where the doctor needs it. Since only ROM (Region of Interest) is reconstructed in detail, we need to render only ROI in detail, thus we can reduce the rendering time.

  1. Development of a 3-D Nuclear Event Visualization Program Using Unity

    NASA Astrophysics Data System (ADS)

    Kuhn, Victoria

    2017-09-01

    Simulations have become increasingly important for science and there is an increasing emphasis on the visualization of simulations within a Virtual Reality (VR) environment. Our group is exploring this capability as a visualization tool not just for those curious about science, but also for educational purposes for K-12 students. Using data collected in 3-D by a Time Projection Chamber (TPC), we are able to visualize nuclear and cosmic events. The Unity game engine was used to recreate the TPC to visualize these events and construct a VR application. The methods used to create these simulations will be presented along with an example of a simulation. I will also present on the development and testing of this program, which I carried out this past summer at MSU as part of an REU program. We used data from the S πRIT TPC, but the software can be applied to other 3-D detectors. This work is supported by the U.S. Department of Energy under Grant Nos. DE-SC0014530, DE-NA0002923 and US NSF under Grant No. PHY-1565546.

  2. Characterizing Time Series Data Diversity for Wind Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong

    Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less

  3. The GPlates Portal: Cloud-based interactive 3D and 4D visualization of global geological and geophysical data and models in a browser

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Qin, Xiaodong; Sandwell, David; Dutkiewicz, Adriana; Williams, Simon; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2017-04-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other, and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The portal has been visited over half a million times since its inception in October 2015, as tracked by google analytics, and the globes have been featured in numerous media articles around the world. This demonstrates the high demand for fast visualization of global spatial big data, both for the present-day as well as through geological time. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. This technology offers many future opportunities for providing additional functionality, especially on-the-fly big data analytics. Müller, R.D., Qin, X., Sandwell, D.T., Dutkiewicz, A., Williams, S.E., Flament, N., Maus, S. and Seton, M, 2016, The GPlates Portal: Cloud-based interactive 3D visualization of global geophysical and geological data in a web browser, PLoS ONE 11(3): e0150883. doi:10.1371/ journal.pone.0150883

  4. 3D printing meets computational astrophysics: deciphering the structure of η Carinae's inner colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  5. Evaluating a Novel 3D Stereoscopic Visual Display for Transanal Endoscopic Surgery: A Randomized Controlled Crossover Study.

    PubMed

    Di Marco, Aimee N; Jeyakumar, Jenifa; Pratt, Philip J; Yang, Guang-Zhong; Darzi, Ara W

    2016-01-01

    To compare surgical performance with transanal endoscopic surgery (TES) using a novel 3-dimensional (3D) stereoscopic viewer against the current modalities of a 3D stereoendoscope, 3D, and 2-dimensional (2D) high-definition monitors. TES is accepted as the primary treatment for selected rectal tumors. Current TES systems offer a 2D monitor, or 3D image, viewed directly via a stereoendoscope, necessitating an uncomfortable operating position. To address this and provide a platform for future image augmentation, a 3D stereoscopic display was created. Forty participants, of mixed experience level, completed a simulated TES task using 4 visual displays (novel stereoscopic viewer and currently utilized stereoendoscope, 3D, and 2D high-definition monitors) in a randomly allocated order. Primary outcome measures were: time taken, path length, and accuracy. Secondary outcomes were: task workload and participant questionnaire results. Median time taken and path length were significantly shorter for the novel viewer versus 2D and 3D, and not significantly different to the traditional stereoendoscope. Significant differences were found in accuracy, task workload, and questionnaire assessment in favor of the novel viewer, as compared to all 3 modalities. This novel 3D stereoscopic viewer allows surgical performance in TES equivalent to that achieved using the current stereoendoscope and superior to standard 2D and 3D displays, but with lower physical and mental demands for the surgeon. Participants expressed a preference for this system, ranking it more highly on a questionnaire. Clinical translation of this work has begun with the novel viewer being used in 5 TES patients.

  6. Scalable large format 3D displays

    NASA Astrophysics Data System (ADS)

    Chang, Nelson L.; Damera-Venkata, Niranjan

    2010-02-01

    We present a general framework for the modeling and optimization of scalable large format 3-D displays using multiple projectors. Based on this framework, we derive algorithms that can robustly optimize the visual quality of an arbitrary combination of projectors (e.g. tiled, superimposed, combinations of the two) without manual adjustment. The framework creates for the first time a new unified paradigm that is agnostic to a particular configuration of projectors yet robustly optimizes for the brightness, contrast, and resolution of that configuration. In addition, we demonstrate that our algorithms support high resolution stereoscopic video at real-time interactive frame rates achieved on commodity graphics hardware. Through complementary polarization, the framework creates high quality multi-projector 3-D displays at low hardware and operational cost for a variety of applications including digital cinema, visualization, and command-and-control walls.

  7. A zero-footprint 3D visualization system utilizing mobile display technology for timely evaluation of stroke patients

    NASA Astrophysics Data System (ADS)

    Park, Young Woo; Guo, Bing; Mogensen, Monique; Wang, Kevin; Law, Meng; Liu, Brent

    2010-03-01

    When a patient is accepted in the emergency room suspected of stroke, time is of the utmost importance. The infarct brain area suffers irreparable damage as soon as three hours after the onset of stroke symptoms. A CT scan is one of standard first line of investigations with imaging and is crucial to identify and properly triage stroke cases. The availability of an expert Radiologist in the emergency environment to diagnose the stroke patient in a timely manner only increases the challenges within the clinical workflow. Therefore, a truly zero-footprint web-based system with powerful advanced visualization tools for volumetric imaging including 2D. MIP/MPR, 3D display can greatly facilitate this dynamic clinical workflow for stroke patients. Together with mobile technology, the proper visualization tools can be delivered at the point of decision anywhere and anytime. We will present a small pilot project to evaluate the use of mobile technologies using devices such as iPhones in evaluating stroke patients. The results of the evaluation as well as any challenges in setting up the system will also be discussed.

  8. Improved Surgery Planning Using 3-D Printing: a Case Study.

    PubMed

    Singhal, A J; Shetty, V; Bhagavan, K R; Ragothaman, Ananthan; Shetty, V; Koneru, Ganesh; Agarwala, M

    2016-04-01

    The role of 3-D printing is presented for improved patient-specific surgery planning. Key benefits are time saved and surgery outcome. Two hard-tissue surgery models were 3-D printed, for orthopedic, pelvic surgery, and craniofacial surgery. We discuss software data conversion in computed tomography (CT)/magnetic resonance (MR) medical image for 3-D printing. 3-D printed models save time in surgery planning and help visualize complex pre-operative anatomy. Time saved in surgery planning can be as much as two thirds. In addition to improved surgery accuracy, 3-D printing presents opportunity in materials research. Other hard-tissue and soft-tissue cases in maxillofacial, abdominal, thoracic, cardiac, orthodontics, and neurosurgery are considered. We recommend using 3-D printing as standard protocol for surgery planning and for teaching surgery practices. A quick turnaround time of a 3-D printed surgery model, in improved accuracy in surgery planning, is helpful for the surgery team. It is recommended that these costs be within 20 % of the total surgery budget.

  9. An MR-compatible stereoscopic in-room 3D display for MR-guided interventions.

    PubMed

    Brunner, Alexander; Groebner, Jens; Umathum, Reiner; Maier, Florian; Semmler, Wolfhard; Bock, Michael

    2014-08-01

    A commercial three-dimensional (3D) monitor was modified for use inside the scanner room to provide stereoscopic real-time visualization during magnetic resonance (MR)-guided interventions, and tested in a catheter-tracking phantom experiment at 1.5 T. Brightness, uniformity, radio frequency (RF) emissions and MR image interferences were measured. Due to modifications, the center luminance of the 3D monitor was reduced by 14%, and the addition of a Faraday shield further reduced the remaining luminance by 31%. RF emissions could be effectively shielded; only a minor signal-to-noise ratio (SNR) decrease of 4.6% was observed during imaging. During the tracking experiment, the 3D orientation of the catheter and vessel structures in the phantom could be visualized stereoscopically.

  10. Audio-Visual Perception of 3D Cinematography: An fMRI Study Using Condition-Based and Computation-Based Analyses

    PubMed Central

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli. PMID:24194828

  11. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    PubMed

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.

  12. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves.

    PubMed

    Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M

    2008-12-01

    Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.

  13. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue

    PubMed Central

    Hoffman, David M.; Girshick, Ahna R.; Akeley, Kurt; Banks, Martin S.

    2010-01-01

    Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues—accommodation and blur in the retinal image—specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one’s ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays. PMID:18484839

  14. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender (an open source visualization suite widely used in the entertainment and gaming industries) for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  15. High-Performance 3D Articulated Robot Display

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Kurien, James A.; Abramyan, Lucy

    2011-01-01

    In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle over or on the terrain correctly. For long traverses over terrain, the visualization can stream in terrain piecewise in order to maintain the current area of interest for the operator without incurring unreasonable resource constraints on the computing platform. The visualization software is designed to run on laptops that can operate in field-testing environments without Internet access, which is a frequently encountered situation when testing in remote locations that simulate planetary environments such as Mars and other planetary bodies.

  16. Evaluation of stereoscopic display with visual function and interview

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio

    1999-05-01

    The influence of binocular stereoscopic (3D) television display on the human eye were compared with one of a 2D display, using human visual function testing and interviews. A 40- inch double lenticular display was used for 2D/3D comparison experiments. Subjects observed the display for 30 minutes at a distance 1.0 m, with a combination of 2D material and one of 3D material. The participants were twelve young adults. Main optometric test with visual function measured were visual acuity, refraction, phoria, near vision point, accommodation etc. The interview consisted of 17 questions. Testing procedures were performed just before watching, just after watching, and forty-five minutes after watching. Changes in visual function are characterized as prolongation of near vision point, decrease of accommodation and increase in phoria. 3D viewing interview results show much more visual fatigue in comparison with 2D results. The conclusions are: 1) change in visual function is larger and visual fatigue is more intense when viewing 3D images. 2) The evaluation method with visual function and interview proved to be very satisfactory for analyzing the influence of stereoscopic display on human eye.

  17. Trend-Centric Motion Visualization: Designing and Applying a New Strategy for Analyzing Scientific Motion Collections.

    PubMed

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F

    2014-12-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.

  18. Usability of Three-dimensional Augmented Visual Cues Delivered by Smart Glasses on (Freezing of) Gait in Parkinson’s Disease

    PubMed Central

    Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R.; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J. A.

    2017-01-01

    External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson’s disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability. PMID:28659862

  19. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  20. Evaluation of search strategies for microcalcifications and masses in 3D images

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.

    2018-03-01

    Medical imaging is quickly evolving towards 3D image modalities such as computed tomography (CT), magnetic resonance imaging (MRI) and digital breast tomosynthesis (DBT). These 3D image modalities add volumetric information but further increase the need for radiologists to search through the image data set. Although much is known about search strategies in 2D images less is known about the functional consequences of different 3D search strategies. We instructed readers to use two different search strategies: drillers had their eye movements restricted to a few regions while they quickly scrolled through the image stack, scanners explored through eye movements the 2D slices. We used real-time eye position monitoring to ensure observers followed the drilling or the scanning strategy while approximately preserving the percentage of the volumetric data covered by the useful field of view. We investigated search for two signals: a simulated microcalcification and a larger simulated mass. Results show an interaction between the search strategy and lesion type. In particular, scanning provided significantly better detectability for microcalcifications at the cost of 5 times more time to search while there was little change in the detectability for the larger simulated masses. Analyses of eye movements support the hypothesis that the effectiveness of a search strategy in 3D imaging arises from the interaction of the fixational sampling of visual information and the signals' visibility in the visual periphery.

  1. 3D visualization of unsteady 2D airplane wake vortices

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Zheng, Z. C.

    1994-01-01

    Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.

  2. Stereoscopic-3D display design: a new paradigm with Intel Adaptive Stable Image Technology [IA-SIT

    NASA Astrophysics Data System (ADS)

    Jain, Sunil

    2012-03-01

    Stereoscopic-3D (S3D) proliferation on personal computers (PC) is mired by several technical and business challenges: a) viewing discomfort due to cross-talk amongst stereo images; b) high system cost; and c) restricted content availability. Users expect S3D visual quality to be better than, or at least equal to, what they are used to enjoying on 2D in terms of resolution, pixel density, color, and interactivity. Intel Adaptive Stable Image Technology (IA-SIT) is a foundational technology, successfully developed to resolve S3D system design challenges and deliver high quality 3D visualization at PC price points. Optimizations in display driver, panel timing firmware, backlight hardware, eyewear optical stack, and synch mechanism combined can help accomplish this goal. Agnostic to refresh rate, IA-SIT will scale with shrinking of display transistors and improvements in liquid crystal and LED materials. Industry could profusely benefit from the following calls to action:- 1) Adopt 'IA-SIT S3D Mode' in panel specs (via VESA) to help panel makers monetize S3D; 2) Adopt 'IA-SIT Eyewear Universal Optical Stack' and algorithm (via CEA) to help PC peripheral makers develop stylish glasses; 3) Adopt 'IA-SIT Real Time Profile' for sub-100uS latency control (via BT Sig) to extend BT into S3D; and 4) Adopt 'IA-SIT Architecture' for Monitors and TVs to monetize via PC attach.

  3. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  4. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    USGS Publications Warehouse

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  5. GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications.

    PubMed

    Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L

    2015-10-15

    A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations. GenomeD3Plot is being utilized in the recently released Islandviewer 3 (www.pathogenomics.sfu.ca/islandviewer/) to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general. GenomeD3Plot is licensed under the GNU-GPL v3 at https://github.com/brinkmanlab/GenomeD3Plot/. brinkman@sfu.ca. © The Author 2015. Published by Oxford University Press.

  6. On the Usability and Usefulness of 3d (geo)visualizations - a Focus on Virtual Reality Environments

    NASA Astrophysics Data System (ADS)

    Çöltekin, A.; Lokka, I.; Zahner, M.

    2016-06-01

    Whether and when should we show data in 3D is an on-going debate in communities conducting visualization research. A strong opposition exists in the information visualization (Infovis) community, and seemingly unnecessary/unwarranted use of 3D, e.g., in plots, bar or pie charts, is heavily criticized. The scientific visualization (Scivis) community, on the other hand, is more supportive of the use of 3D as it allows `seeing' invisible phenomena, or designing and printing things that are used in e.g., surgeries, educational settings etc. Geographic visualization (Geovis) stands between the Infovis and Scivis communities. In geographic information science, most visuo-spatial analyses have been sufficiently conducted in 2D or 2.5D, including analyses related to terrain and much of the urban phenomena. On the other hand, there has always been a strong interest in 3D, with similar motivations as in Scivis community. Among many types of 3D visualizations, a popular one that is exploited both for visual analysis and visualization is the highly realistic (geo)virtual environments. Such environments may be engaging and memorable for the viewers because they offer highly immersive experiences. However, it is not yet well-established if we should opt to show the data in 3D; and if yes, a) what type of 3D we should use, b) for what task types, and c) for whom. In this paper, we identify some of the central arguments for and against the use of 3D visualizations around these three considerations in a concise interdisciplinary literature review.

  7. Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis.

    PubMed

    Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui

    2014-07-11

    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.

  8. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  9. A 3D particle visualization system for temperature management

    NASA Astrophysics Data System (ADS)

    Lange, B.; Rodriguez, N.; Puech, W.; Rey, H.; Vasques, X.

    2011-01-01

    This paper deals with a 3D visualization technique proposed to analyze and manage energy efficiency from a data center. Data are extracted from sensors located in the IBM Green Data Center in Montpellier France. These sensors measure different information such as hygrometry, pressure and temperature. We want to visualize in real-time the large among of data produced by these sensors. A visualization engine has been designed, based on particles system and a client server paradigm. In order to solve performance problems, a Level Of Detail solution has been developed. These methods are based on the earlier work introduced by J. Clark in 1976. In this paper we introduce a particle method used for this work and subsequently we explain different simplification methods applied to improve our solution.

  10. FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Noh, Y. H.; Um, J. G.; Choi, Y.

    2014-12-01

    A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  11. On the comparison of visual discomfort generated by S3D and 2D content based on eye-tracking features

    NASA Astrophysics Data System (ADS)

    Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2014-03-01

    The changing of TV systems from 2D to 3D mode is the next expected step in the telecommunication world. Some works have already been done to perform this progress technically, but interaction of the third dimension with humans is not yet clear. Previously, it was found that any increased load of visual system can create visual fatigue, like prolonged TV watching, computer work or video gaming. But watching S3D can cause another nature of visual fatigue, since all S3D technologies creates illusion of the third dimension based on characteristics of binocular vision. In this work we propose to evaluate and compare the visual fatigue from watching 2D and S3D content. This work shows the difference in accumulation of visual fatigue and its assessment for two types of content. In order to perform this comparison eye-tracking experiments using six commercially available movies were conducted. Healthy naive participants took part into the test and gave their answers feeling the subjective evaluation. It was found that watching stereo 3D content induce stronger feeling of visual fatigue than conventional 2D, and the nature of video has an important effect on its increase. Visual characteristics obtained by using eye-tracking were investigated regarding their relation with visual fatigue.

  12. Short-term visual deprivation, tactile acuity, and haptic solid shape discrimination.

    PubMed

    Crabtree, Charles E; Norman, J Farley

    2014-01-01

    Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task - perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task - the participants' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation.

  13. 3D reconstruction and spatial auralization of the "Painted Dolmen" of Antelas

    NASA Astrophysics Data System (ADS)

    Dias, Paulo; Campos, Guilherme; Santos, Vítor; Casaleiro, Ricardo; Seco, Ricardo; Sousa Santos, Beatriz

    2008-02-01

    This paper presents preliminary results on the development of a 3D audiovisual model of the Anta Pintada (painted dolmen) of Antelas, a Neolithic chamber tomb located in Oliveira de Frades and listed as Portuguese national monument. The final aim of the project is to create a highly accurate Virtual Reality (VR) model of this unique archaeological site, capable of providing not only visual but also acoustic immersion based on its actual geometry and physical properties. The project started in May 2006 with in situ data acquisition. The 3D geometry of the chamber was captured using a Laser Range Finder. In order to combine the different scans into a complete 3D visual model, reconstruction software based on the Iterative Closest Point (ICP) algorithm was developed using the Visualization Toolkit (VTK). This software computes the boundaries of the room on a 3D uniform grid and populates its interior with "free-space nodes", through an iterative algorithm operating like a torchlight illuminating a dark room. The envelope of the resulting set of "free-space nodes" is used to generate a 3D iso-surface approximating the interior shape of the chamber. Each polygon of this surface is then assigned the acoustic absorption coefficient of the corresponding boundary material. A 3D audiovisual model operating in real-time was developed for a VR Environment comprising head-mounted display (HMD) I-glasses SVGAPro, an orientation sensor (tracker) InterTrax 2 with 3 Degrees Of Freedom (3DOF) and stereo headphones. The auralisation software is based on a geometric model. This constitutes a first approach, since geometric acoustics have well-known limitations in rooms with irregular surfaces. The immediate advantage lies in their inherent computational efficiency, which allows real-time operation. The program computes the early reflections forming the initial part of the chamber's impulse response (IR), which carry the most significant cues for source localisation. These early reflections are processed through Head Related Transfer Functions (HRTF) updated in real-time according to the orientation of the user's head, so that sound waves appear to come from the correct location in space, in agreement with the visual scene. The late-reverberation tail of the IR is generated by an algorithm designed to match the reverberation time of the chamber, calculated from the actual acoustic absorption coefficients of its surfaces. The sound output to the headphones is obtained by convolving the IR with anechoic recordings of the virtual audio source.

  14. Research on Visualization of Ground Laser Radar Data Based on Osg

    NASA Astrophysics Data System (ADS)

    Huang, H.; Hu, C.; Zhang, F.; Xue, H.

    2018-04-01

    Three-dimensional (3D) laser scanning is a new advanced technology integrating light, machine, electricity, and computer technologies. It can conduct 3D scanning to the whole shape and form of space objects with high precision. With this technology, you can directly collect the point cloud data of a ground object and create the structure of it for rendering. People use excellent 3D rendering engine to optimize and display the 3D model in order to meet the higher requirements of real time realism rendering and the complexity of the scene. OpenSceneGraph (OSG) is an open source 3D graphics engine. Compared with the current mainstream 3D rendering engine, OSG is practical, economical, and easy to expand. Therefore, OSG is widely used in the fields of virtual simulation, virtual reality, science and engineering visualization. In this paper, a dynamic and interactive ground LiDAR data visualization platform is constructed based on the OSG and the cross-platform C++ application development framework Qt. In view of the point cloud data of .txt format and the triangulation network data file of .obj format, the functions of 3D laser point cloud and triangulation network data display are realized. It is proved by experiments that the platform is of strong practical value as it is easy to operate and provides good interaction.

  15. Persistent Monitoring of Urban Infrasound Phenomenology. Report 1: Modeling an Urban Environment for Acoustical Analyses using the 3-D Finite-Difference Time-Domain Program PSTOP3D

    DTIC Science & Technology

    2015-08-01

    a definition of the building footprints with an associated height attribute. This would be enough information to construct an extruded building ...contract was undertaken with CyberCity 3D (2012), a commercial company located in El Segundo, CA, to construct the buildings . The company specializes in...visualization of planning functions. CyberCity 3D used 6 in. stereoscopic aerial photography to construct 3-D models of the buildings . These models were quite

  16. [Visualization of Anterolateral Ligament of the Knee Using 3D Reconstructed Variable Refocus Flip Angle-Turbo Spin Echo T2 Weighted Image].

    PubMed

    Yokosawa, Kenta; Sasaki, Kana; Muramatsu, Koichi; Ono, Tomoya; Izawa, Hiroyuki; Hachiya, Yudo

    2016-05-01

    Anterolateral ligament (ALL) is one of the lateral structures in the knee that contributes to the internal rotational stability of tibia. ALL has been referred to in some recent reports to re-emphasize its importance. We visualized the ALL on 3D-MRI in 32 knees of 27 healthy volunteers (23 male knees, 4 female knees; mean age: 37 years). 3D-MRIs were performed using 1.5-T scanner [T(2) weighted image (WI), SPACE: Sampling Perfection with Application optimized Contrast using different flip angle Evolutions] in the knee extended positions. The visualization rate of the ALL, the mean angle to the lateral collateral ligament (LCL), and the width and the thickness of the ALL at the joint level were investigated. The visualization rate was 100%. The mean angle to the LCL was 10.6 degrees. The mean width and the mean thickness of the ALL were 6.4 mm and 1.0 mm, respectively. The ALL is a very thin ligament with a somewhat oblique course between the lateral femoral epicondyle and the mid-third area of lateral tibial condyle. Therefore, the slice thickness and the slice angle can easily affect the ALL visualization. 3D-MRI enables acquiring thin-slice imaging data over a relatively short time, and arbitrary sections aligned with the course of the ALL can later be selected.

  17. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  18. Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo

    2011-09-01

    Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.

  19. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  20. Three-dimensional Talairach-Tournoux brain atlas

    NASA Astrophysics Data System (ADS)

    Fang, Anthony; Nowinski, Wieslaw L.; Nguyen, Bonnie T.; Bryan, R. Nick

    1995-04-01

    The Talairach-Tournoux Stereotaxic Atlas of the human brain is a frequently consulted resource in stereotaxic neurosurgery and computer-based neuroradiology. Its primary application lies in the 2-D analysis and interpretation of neurological images. However, for the purpose of the analysis and visualization of shapes and forms, accurate mensuration of volumes, or 3-D models matching, a 3-D representation of the atlas is essential. This paper proposes and describes, along with its difficulties, a 3-D geometric extension of the atlas. We introduce a `zero-potential' surface smoothing technique, along with a space-dependent convolution kernel and space-dependent normalization. The mesh-based atlas structures are hierarchically organized, and anatomically conform to the original atlas. Structures and their constituents can be independently selected and manipulated in real-time within an integrated system. The extended atlas may be navigated by itself, or interactively registered with patient data with the proportional grid system (piecewise linear) transformation. Visualization of the geometric atlas along with patient data gives a remarkable visual `feel' of the biological structures, not usually perceivable to the untrained eyes in conventional 2-D atlas to image analysis.

  1. 3DScapeCS: application of three dimensional, parallel, dynamic network visualization in Cytoscape

    PubMed Central

    2013-01-01

    Background The exponential growth of gigantic biological data from various sources, such as protein-protein interaction (PPI), genome sequences scaffolding, Mass spectrometry (MS) molecular networking and metabolic flux, demands an efficient way for better visualization and interpretation beyond the conventional, two-dimensional visualization tools. Results We developed a 3D Cytoscape Client/Server (3DScapeCS) plugin, which adopted Cytoscape in interpreting different types of data, and UbiGraph for three-dimensional visualization. The extra dimension is useful in accommodating, visualizing, and distinguishing large-scale networks with multiple crossed connections in five case studies. Conclusions Evaluation on several experimental data using 3DScapeCS and its special features, including multilevel graph layout, time-course data animation, and parallel visualization has proven its usefulness in visualizing complex data and help to make insightful conclusions. PMID:24225050

  2. Scientific Visualization Made Easy for the Scientist

    NASA Astrophysics Data System (ADS)

    Westerhoff, M.; Henderson, B.

    2002-12-01

    amirar is an application program used in creating 3D visualizations and geometric models of 3D image data sets from various application areas, e.g. medicine, biology, biochemistry, chemistry, physics, and engineering. It has demonstrated significant adoption in the market place since becoming commercially available in 2000. The rapid adoption has expanded the features being requested by the user base and broadened the scope of the amira product offering. The amira product offering includes amira Standard, amiraDevT, used to extend the product capabilities by users, amiraMolT, used for molecular visualization, amiraDeconvT, used to improve quality of image data, and amiraVRT, used in immersive VR environments. amira allows the user to construct a visualization tailored to his or her needs without requiring any programming knowledge. It also allows 3D objects to be represented as grids suitable for numerical simulations, notably as triangular surfaces and volumetric tetrahedral grids. The amira application also provides methods to generate such grids from voxel data representing an image volume, and it includes a general-purpose interactive 3D viewer. amiraDev provides an application-programming interface (API) that allows the user to add new components by C++ programming. amira supports many import formats including a 'raw' format allowing immediate access to your native uniform data sets. amira uses the power and speed of the OpenGLr and Open InventorT graphics libraries and 3D graphics accelerators to allow you to access over 145 modules, enabling you to process, probe, analyze and visualize your data. The amiraMolT extension adds powerful tools for molecular visualization to the existing amira platform. amiraMolT contains support for standard molecular file formats, tools for visualization and analysis of static molecules as well as molecular trajectories (time series). amiraDeconv adds tools for the deconvolution of 3D microscopic images. Deconvolution is the process of increasing image quality and resolution by computationally compensating artifacts of the recording process. amiraDeconv supports 3D wide field microscopy as well as 3D confocal microscopy. It offers both non-blind and blind image deconvolution algorithms. Non-blind deconvolution uses an individual measured point spread function, while non-blind algorithms work on the basis of only a few recording parameters (like numerical aperture or zoom factor). amiraVR is a specialized and extended version of the amira visualization system which is dedicated for use in immersive installations, such as large-screen stereoscopic projections, CAVEr or Holobenchr systems. Among others, it supports multi-threaded multi-pipe rendering, head-tracking, advanced 3D interaction concepts, and 3D menus allowing interaction with any amira object in the same way as on the desktop. With its unique set of features, amiraVR represents both a VR (Virtual Reality) ready application for scientific and medical visualization in immersive environments, and a development platform that allows building VR applications.

  3. Progressive 3D shape abstraction via hierarchical CSG tree

    NASA Astrophysics Data System (ADS)

    Chen, Xingyou; Tang, Jin; Li, Chenglong

    2017-06-01

    A constructive solid geometry(CSG) tree model is proposed to progressively abstract 3D geometric shape of general object from 2D image. Unlike conventional ones, our method applies to general object without the need for massive CAD models, and represents the object shapes in a coarse-to-fine manner that allows users to view temporal shape representations at any time. It stands in a transitional position between 2D image feature and CAD model, benefits from state-of-the-art object detection approaches and better initializes CAD model for finer fitting, estimates 3D shape and pose parameters of object at different levels according to visual perception objective, in a coarse-to-fine manner. Two main contributions are the application of CSG building up procedure into visual perception, and the ability of extending object estimation result into a more flexible and expressive model than 2D/3D primitive shapes. Experimental results demonstrate the feasibility and effectiveness of the proposed approach.

  4. Precise photorealistic visualization for restoration of historic buildings based on tacheometry data

    NASA Astrophysics Data System (ADS)

    Ragia, Lemonia; Sarri, Froso; Mania, Katerina

    2018-03-01

    This paper puts forward a 3D reconstruction methodology applied to the restoration of historic buildings taking advantage of the speed, range and accuracy of a total geodetic station. The measurements representing geo-referenced points produced an interactive and photorealistic geometric mesh of a monument named `Neoria.' `Neoria' is a Venetian building located by the old harbor at Chania, Crete, Greece. The integration of tacheometry acquisition and computer graphics puts forward a novel integrated software framework for the accurate 3D reconstruction of a historical building. The main technical challenge of this work was the production of a precise 3D mesh based on a sufficient number of tacheometry measurements acquired fast and at low cost, employing a combination of surface reconstruction and processing methods. A fully interactive application based on game engine technologies was developed. The user can visualize and walk through the monument and the area around it as well as photorealistically view it at different times of day and night. Advanced interactive functionalities are offered to the user in relation to identifying restoration areas and visualizing the outcome of such works. The user could visualize the coordinates of the points measured, calculate distances and navigate through the complete 3D mesh of the monument. The geographical data are stored in a database connected with the application. Features referencing and associating the database with the monument are developed. The goal was to utilize a small number of acquired data points and present a fully interactive visualization of a geo-referenced 3D model.

  5. Precise photorealistic visualization for restoration of historic buildings based on tacheometry data

    NASA Astrophysics Data System (ADS)

    Ragia, Lemonia; Sarri, Froso; Mania, Katerina

    2018-04-01

    This paper puts forward a 3D reconstruction methodology applied to the restoration of historic buildings taking advantage of the speed, range and accuracy of a total geodetic station. The measurements representing geo-referenced points produced an interactive and photorealistic geometric mesh of a monument named `Neoria.' `Neoria' is a Venetian building located by the old harbor at Chania, Crete, Greece. The integration of tacheometry acquisition and computer graphics puts forward a novel integrated software framework for the accurate 3D reconstruction of a historical building. The main technical challenge of this work was the production of a precise 3D mesh based on a sufficient number of tacheometry measurements acquired fast and at low cost, employing a combination of surface reconstruction and processing methods. A fully interactive application based on game engine technologies was developed. The user can visualize and walk through the monument and the area around it as well as photorealistically view it at different times of day and night. Advanced interactive functionalities are offered to the user in relation to identifying restoration areas and visualizing the outcome of such works. The user could visualize the coordinates of the points measured, calculate distances and navigate through the complete 3D mesh of the monument. The geographical data are stored in a database connected with the application. Features referencing and associating the database with the monument are developed. The goal was to utilize a small number of acquired data points and present a fully interactive visualization of a geo-referenced 3D model.

  6. 6 DOF Nonlinear AUV Simulation Toolbox

    DTIC Science & Technology

    1997-01-01

    is to supply a flexible 3D -simulation platform for motion visualization, in-lab debugging and testing of mission-specific strategies as well as those...Explorer are modular designed [Smith] in order to cut time and cost for vehicle recontlguration. A flexible 3D -simulation platform is desired to... 3D models. Current implemented modules include a nonlinear dynamic model for the OEX, shared memory and semaphore manager tools, shared memory monitor

  7. Tomo-PIV measurements of the flow field in the wake of a sphere

    NASA Astrophysics Data System (ADS)

    Eshbal, Lior; David, Tom; Rinsky, Vladislav; van Hout, Rene; Greenblatt, David

    2017-11-01

    A sphere can be considered as a prototypical 3D bluff body. In order to improve our understanding of its 3D wake flow, a combination of time-resolved planar particle image velocimetry (PIV) and tomographic PIV (tomo-PIV) was implemented. Experiments were performed in a closed-loop water channel facility and sphere Reynolds numbers ReD = UD/ ν = 400, 800, 1200 and 2000, where U is the free-stream velocity, ν the kinematic viscosity and D the sphere diameter. The measurement volume (Height x Length x Width, 5 x 5 x 1.5 D3) comprised the sphere and the downstream wake. Tomo-PIV snap-shots were correlated with the time-resolved PIV such that the 3D temporal evolution of the shed vortices became clear. At ReD = 400, this procedure revealed shed hairpin vortices having a vertical plane of symmetry in agreement with many dye visualization studies. However, the measurements also revealed weaker induced hairpins resulting from the interaction of the near-wake flow and the surrounding free stream. These induced vortices were not visible in previous dye and smoke visualizations and have only been observed in simulations. Data processing of the data at higher ReD is currently ongoing. Israel Science Foundation Grant No. 1596/14.

  8. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  9. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    NASA Astrophysics Data System (ADS)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  10. Trend-Centric Motion Visualization: Designing and Applying a new Strategy for Analyzing Scientific Motion Collections

    PubMed Central

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M.; Nuckley, David; Carlis, John; Keefe, Daniel F

    2017-01-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection’s trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool’s effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics. PMID:26356978

  11. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; Thomas, J. D.

    2000-01-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  12. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography.

    PubMed

    Qin, J X; Shiota, T; Thomas, J D

    2000-11-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  13. Interactive visual optimization and analysis for RFID benchmarking.

    PubMed

    Wu, Yingcai; Chung, Ka-Kei; Qu, Huamin; Yuan, Xiaoru; Cheung, S C

    2009-01-01

    Radio frequency identification (RFID) is a powerful automatic remote identification technique that has wide applications. To facilitate RFID deployment, an RFID benchmarking instrument called aGate has been invented to identify the strengths and weaknesses of different RFID technologies in various environments. However, the data acquired by aGate are usually complex time varying multidimensional 3D volumetric data, which are extremely challenging for engineers to analyze. In this paper, we introduce a set of visualization techniques, namely, parallel coordinate plots, orientation plots, a visual history mechanism, and a 3D spatial viewer, to help RFID engineers analyze benchmark data visually and intuitively. With the techniques, we further introduce two workflow procedures (a visual optimization procedure for finding the optimum reader antenna configuration and a visual analysis procedure for comparing the performance and identifying the flaws of RFID devices) for the RFID benchmarking, with focus on the performance analysis of the aGate system. The usefulness and usability of the system are demonstrated in the user evaluation.

  14. [Evaluation of Motion Sickness Induced by 3D Video Clips].

    PubMed

    Matsuura, Yasuyuki; Takada, Hiroki

    2016-01-01

    The use of stereoscopic images has been spreading rapidly. Nowadays, stereoscopic movies are nothing new to people. Stereoscopic systems date back to 280 A.D. when Euclid first recognized the concept of depth perception by humans. Despite the increase in the production of three-dimensional (3D) display products and many studies on stereoscopic vision, the effect of stereoscopic vision on the human body has been insufficiently understood. However, symptoms such as eye fatigue and 3D sickness have been the concerns when viewing 3D films for a prolonged period of time; therefore, it is important to consider the safety of viewing virtual 3D contents as a contribution to society. It is generally explained to the public that accommodation and convergence are mismatched during stereoscopic vision and that this is the main reason for the visual fatigue and visually induced motion sickness (VIMS) during 3D viewing. We have devised a method to simultaneously measure lens accommodation and convergence. We used this simultaneous measurement device to characterize 3D vision. Fixation distance was compared between accommodation and convergence during the viewing of 3D films with repeated measurements. Time courses of these fixation distances and their distributions were compared in subjects who viewed 2D and 3D video clips. The results indicated that after 90 s of continuously viewing 3D images, the accommodative power does not correspond to the distance of convergence. In this paper, remarks on methods to measure the severity of motion sickness induced by viewing 3D films are also given. From the epidemiological viewpoint, it is useful to obtain novel knowledge for reduction and/or prevention of VIMS. We should accumulate empirical data on motion sickness, which may contribute to the development of relevant fields in science and technology.

  15. A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits.

    PubMed

    Simner, Julia; Mayo, Neil; Spiller, Mary-Jane

    2009-01-01

    Individuals with 'time-space' synaesthesia have conscious awareness of mappings between time and space (e.g., they may see months arranged in an ellipse, or years as columns or spirals). These mappings exist in the 3D space around the body or in a virtual space within the mind's eye. Our study shows that these extra-ordinary mappings derive from, or give rise to, superior abilities in the two domains linked by this cross-modal phenomenon (i.e., abilities relating to time, and visualised space). We tested ten time-space synaesthetes with a battery of temporal and visual/spatial tests. Our temporal battery (the Edinburgh [Public and Autobiographical] Events Battery - EEB) assessed both autobiographical and non-autobiographical memory for events. Our visual/spatial tests assessed the ability to manipulate real or imagined objects in 3D space (the Three Dimensional Constructional Praxis test; Visual Object and Space Perception Battery, University of Southern California Mental Rotation Test) as well as assessing visual memory recall (Visual Patterns Test - VPT). Synaesthetes' performance was superior to the control population in every assessment, but was not superior in tasks that do not draw upon abilities related to their mental calendars. Our paper discusses the implications of this temporal-spatial advantage as it relates to normal processing, synaesthetic processing, and to the savant-like condition of hyperthymestic syndrome (Parker et al., 2006).

  16. Comparing the Microsoft Kinect to a traditional mouse for adjusting the viewed tissue densities of three-dimensional anatomical structures

    NASA Astrophysics Data System (ADS)

    Juhnke, Bethany; Berron, Monica; Philip, Adriana; Williams, Jordan; Holub, Joseph; Winer, Eliot

    2013-03-01

    Advancements in medical image visualization in recent years have enabled three-dimensional (3D) medical images to be volume-rendered from magnetic resonance imaging (MRI) and computed tomography (CT) scans. Medical data is crucial for patient diagnosis and medical education, and analyzing these three-dimensional models rather than two-dimensional (2D) slices would enable more efficient analysis by surgeons and physicians, especially non-radiologists. An interaction device that is intuitive, robust, and easily learned is necessary to integrate 3D modeling software into the medical community. The keyboard and mouse configuration does not readily manipulate 3D models because these traditional interface devices function within two degrees of freedom, not the six degrees of freedom presented in three dimensions. Using a familiar, commercial-off-the-shelf (COTS) device for interaction would minimize training time and enable maximum usability with 3D medical images. Multiple techniques are available to manipulate 3D medical images and provide doctors more innovative ways of visualizing patient data. One such example is windowing. Windowing is used to adjust the viewed tissue density of digital medical data. A software platform available at the Virtual Reality Applications Center (VRAC), named Isis, was used to visualize and interact with the 3D representations of medical data. In this paper, we present the methodology and results of a user study that examined the usability of windowing 3D medical imaging using a Kinect™ device compared to a traditional mouse.

  17. Augmented Virtuality: A Real-time Process for Presenting Real-world Visual Sensory Information in an Immersive Virtual Environment for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    McFadden, D.; Tavakkoli, A.; Regenbrecht, J.; Wilson, B.

    2017-12-01

    Virtual Reality (VR) and Augmented Reality (AR) applications have recently seen an impressive growth, thanks to the advent of commercial Head Mounted Displays (HMDs). This new visualization era has opened the possibility of presenting researchers from multiple disciplines with data visualization techniques not possible via traditional 2D screens. In a purely VR environment researchers are presented with the visual data in a virtual environment, whereas in a purely AR application, a piece of virtual object is projected into the real world with which researchers could interact. There are several limitations to the purely VR or AR application when taken within the context of remote planetary exploration. For example, in a purely VR environment, contents of the planet surface (e.g. rocks, terrain, or other features) should be created off-line from a multitude of images using image processing techniques to generate 3D mesh data that will populate the virtual surface of the planet. This process usually takes a tremendous amount of computational resources and cannot be delivered in real-time. As an alternative, video frames may be superimposed on the virtual environment to save processing time. However, such rendered video frames will lack 3D visual information -i.e. depth information. In this paper, we present a technique to utilize a remotely situated robot's stereoscopic cameras to provide a live visual feed from the real world into the virtual environment in which planetary scientists are immersed. Moreover, the proposed technique will blend the virtual environment with the real world in such a way as to preserve both the depth and visual information from the real world while allowing for the sensation of immersion when the entire sequence is viewed via an HMD such as Oculus Rift. The figure shows the virtual environment with an overlay of the real-world stereoscopic video being presented in real-time into the virtual environment. Notice the preservation of the object's shape, shadows, and depth information. The distortions shown in the image are due to the rendering of the stereoscopic data into a 2D image for the purposes of taking screenshots.

  18. Real-Time Aerodynamic Flow and Data Visualization in an Interactive Virtual Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2005-01-01

    Significant advances have been made to non-intrusive flow field diagnostics in the past decade. Camera based techniques are now capable of determining physical qualities such as surface deformation, surface pressure and temperature, flow velocities, and molecular species concentration. In each case, extracting the pertinent information from the large volume of acquired data requires powerful and efficient data visualization tools. The additional requirement for real time visualization is fueled by an increased emphasis on minimizing test time in expensive facilities. This paper will address a capability titled LiveView3D, which is the first step in the development phase of an in depth, real time data visualization and analysis tool for use in aerospace testing facilities.

  19. Obstructed bi-leaflet prosthetic mitral valve imaging with real-time three-dimensional transesophageal echocardiography.

    PubMed

    Shimbo, Mai; Watanabe, Hiroyuki; Kimura, Shunsuke; Terada, Mai; Iino, Takako; Iino, Kenji; Ito, Hiroshi

    2015-01-01

    Real-time three-dimensional transesophageal echocardiography (RT3D-TEE) can provide unique visualization and better understanding of the relationship among cardiac structures. Here, we report the case of an 85-year-old woman with an obstructed mitral prosthetic valve diagnosed promptly by RT3D-TEE, which clearly showed a leaflet stuck in the closed position. The opening and closing angles of the valve leaflets measured by RT3D-TEE were compatible with those measured by fluoroscopy. Moreover, RT3D-TEE revealed, in the ring of the prosthetic valve, thrombi that were not visible on fluoroscopy. RT3D-TEE might be a valuable diagnostic technique for prosthetic mitral valve thrombosis. © 2014 Wiley Periodicals, Inc.

  20. Virtual probing system for medical volume data

    NASA Astrophysics Data System (ADS)

    Xiao, Yongfei; Fu, Yili; Wang, Shuguo

    2007-12-01

    Because of the huge computation in 3D medical data visualization, looking into its inner data interactively is always a problem to be resolved. In this paper, we present a novel approach to explore 3D medical dataset in real time by utilizing a 3D widget to manipulate the scanning plane. With the help of the 3D texture property in modern graphics card, a virtual scanning probe is used to explore oblique clipping plane of medical volume data in real time. A 3D model of the medical dataset is also rendered to illustrate the relationship between the scanning-plane image and the other tissues in medical data. It will be a valuable tool in anatomy education and understanding of medical images in the medical research.

  1. Stereoscopic visual fatigue assessment and modeling

    NASA Astrophysics Data System (ADS)

    Wang, Danli; Wang, Tingting; Gong, Yue

    2014-03-01

    Evaluation of stereoscopic visual fatigue is one of the focuses in the user experience research. It is measured in either subjective or objective methods. Objective measures are more preferred for their capability to quantify the degree of human visual fatigue without being affected by individual variation. However, little research has been conducted on the integration of objective indicators, or the sensibility of each objective indicator in reflecting subjective fatigue. The paper proposes a simply effective method to evaluate visual fatigue more objectively. The stereoscopic viewing process is divided into series of sessions, after each of which viewers rate their visual fatigue with subjective scores (SS) according to a five-grading scale, followed by tests of the punctum maximum accommodation (PMA) and visual reaction time (VRT). Throughout the entire viewing process, their eye movements are recorded by an infrared camera. The pupil size (PS) and percentage of eyelid closure over the pupil over time (PERCLOS) are extracted from the videos processed by the algorithm. Based on the method, an experiment with 14 subjects was conducted to assess visual fatigue induced by 3D images on polarized 3D display. The experiment consisted of 10 sessions (5min per session), each containing the same 75 images displayed randomly. The results show that PMA, VRT and PERCLOS are the most efficient indicators of subjective visual fatigue and finally a predictive model is derived from the stepwise multiple regressions.

  2. Using Saliency-Weighted Disparity Statistics for Objective Visual Comfort Assessment of Stereoscopic Images

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlan; Luo, Ting; Jiang, Gangyi; Jiang, Qiuping; Ying, Hongwei; Lu, Jing

    2016-06-01

    Visual comfort assessment (VCA) for stereoscopic images is a particularly significant yet challenging task in 3D quality of experience research field. Although the subjective assessment given by human observers is known as the most reliable way to evaluate the experienced visual discomfort, it is time-consuming and non-systematic. Therefore, it is of great importance to develop objective VCA approaches that can faithfully predict the degree of visual discomfort as human beings do. In this paper, a novel two-stage objective VCA framework is proposed. The main contribution of this study is that the important visual attention mechanism of human visual system is incorporated for visual comfort-aware feature extraction. Specifically, in the first stage, we first construct an adaptive 3D visual saliency detection model to derive saliency map of a stereoscopic image, and then a set of saliency-weighted disparity statistics are computed and combined to form a single feature vector to represent a stereoscopic image in terms of visual comfort. In the second stage, a high dimensional feature vector is fused into a single visual comfort score by performing random forest algorithm. Experimental results on two benchmark databases confirm the superior performance of the proposed approach.

  3. The effects of stereo disparity on the behavioural and electrophysiological correlates of perception of audio-visual motion in depth.

    PubMed

    Harrison, Neil R; Witheridge, Sian; Makin, Alexis; Wuerger, Sophie M; Pegna, Alan J; Meyer, Georg F

    2015-11-01

    Motion is represented by low-level signals, such as size-expansion in vision or loudness changes in the auditory modality. The visual and auditory signals from the same object or event may be integrated and facilitate detection. We explored behavioural and electrophysiological correlates of congruent and incongruent audio-visual depth motion in conditions where auditory level changes, visual expansion, and visual disparity cues were manipulated. In Experiment 1 participants discriminated auditory motion direction whilst viewing looming or receding, 2D or 3D, visual stimuli. Responses were faster and more accurate for congruent than for incongruent audio-visual cues, and the congruency effect (i.e., difference between incongruent and congruent conditions) was larger for visual 3D cues compared to 2D cues. In Experiment 2, event-related potentials (ERPs) were collected during presentation of the 2D and 3D, looming and receding, audio-visual stimuli, while participants detected an infrequent deviant sound. Our main finding was that audio-visual congruity was affected by retinal disparity at an early processing stage (135-160ms) over occipito-parietal scalp. Topographic analyses suggested that similar brain networks were activated for the 2D and 3D congruity effects, but that cortical responses were stronger in the 3D condition. Differences between congruent and incongruent conditions were observed between 140-200ms, 220-280ms, and 350-500ms after stimulus onset. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  5. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.

    PubMed

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  6. Real time 3D structural and Doppler OCT imaging on graphics processing units

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczyńska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr

    2013-03-01

    In this report the application of graphics processing unit (GPU) programming for real-time 3D Fourier domain Optical Coherence Tomography (FdOCT) imaging with implementation of Doppler algorithms for visualization of the flows in capillary vessels is presented. Generally, the time of the data processing of the FdOCT data on the main processor of the computer (CPU) constitute a main limitation for real-time imaging. Employing additional algorithms, such as Doppler OCT analysis, makes this processing even more time consuming. Lately developed GPUs, which offers a very high computational power, give a solution to this problem. Taking advantages of them for massively parallel data processing, allow for real-time imaging in FdOCT. The presented software for structural and Doppler OCT allow for the whole processing with visualization of 2D data consisting of 2000 A-scans generated from 2048 pixels spectra with frame rate about 120 fps. The 3D imaging in the same mode of the volume data build of 220 × 100 A-scans is performed at a rate of about 8 frames per second. In this paper a software architecture, organization of the threads and optimization applied is shown. For illustration the screen shots recorded during real time imaging of the phantom (homogeneous water solution of Intralipid in glass capillary) and the human eye in-vivo is presented.

  7. Interrogation of patient data delivered to the operating theatre during hepato-pancreatic surgery using high-performance computing.

    PubMed

    John, Nigel W; McCloy, Rory F; Herrman, Simone

    2004-01-01

    The Op3D visualization system allows, for the first time, a surgeon in the operating theatre to interrogate patient-specific medical data sets rendered in three dimensions using high-performance computing. The hypothesis of this research is that the success rate of hepato-pancreatic surgical resections can be improved by replacing the light box with an interactive 3D representation of the medical data in the operating theatre. A laptop serves as the client computer and an easy-to-use interface has been developed for the surgeon to interact with and interrogate the patient data. To date, 16 patients have had 3D reconstructions of their DICOM data sets, including preoperative interrogation and planning of surgery. Interrogation of the 3D images live in theatre and comparison with the surgeons' operative findings (including intraoperative ultrasound) led to the operation being abandoned in 25% of cases, adoption of an alternative surgical approach in 25% of cases, and helpful image guidance for successful resection in 50% of cases. The clinical value of the latest generation of scanners and digital imaging techniques cannot be realized unless appropriate dissemination of the images takes place. This project has succeeded in translating the image technology into a user-friendly form and delivers 3D reconstructions of patient-specific data to the "sharp end"-the surgeon undertaking the tumor resection in theatre, in a manner that allows interaction and interpretation. More time interrogating the 3D data sets preoperatively would help reduce the incidence of abandoned operations-this is part of the surgeons' learning curve. We have developed one of the first practical applications to benefit from remote visualization, and certainly the first medical visualization application of this kind.

  8. A Review on Real-Time 3D Ultrasound Imaging Technology

    PubMed Central

    Zeng, Zhaozheng

    2017-01-01

    Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail. PMID:28459067

  9. A Review on Real-Time 3D Ultrasound Imaging Technology.

    PubMed

    Huang, Qinghua; Zeng, Zhaozheng

    2017-01-01

    Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail.

  10. 3D Printing Meets Astrophysics: A New Way to Visualize and Communicate Science

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Steffen, Wolfgang; Clementel, Nicola; Gull, Theodore R.

    2015-08-01

    3D printing has the potential to improve the astronomy community’s ability to visualize, understand, interpret, and communicate important scientific results. I summarize recent efforts to use 3D printing to understand in detail the 3D structure of a complex astrophysical system, the supermassive binary star Eta Carinae and its surrounding bipolar ‘Homunculus’ nebula. Using mapping observations of molecular hydrogen line emission obtained with the ESO Very Large Telescope, we obtained a full 3D model of the Homunculus, allowing us to 3D print, for the first time, a detailed replica of a nebula (Steffen et al. 2014, MNRAS, 442, 3316). I also present 3D prints of output from supercomputer simulations of the colliding stellar winds in the highly eccentric binary located near the center of the Homunculus (Madura et al. 2015, arXiv:1503.00716). These 3D prints, the first of their kind, reveal previously unknown ‘finger-like’ structures at orbital phases shortly after periastron (when the two stars are closest to each other) that protrude outward from the spiral wind-wind collision region. The results of both efforts have received significant media attention in recent months, including two NASA press releases (http://www.nasa.gov/content/goddard/astronomers-bring-the-third-dimension-to-a-doomed-stars-outburst/ and http://www.nasa.gov/content/goddard/nasa-observatories-take-an-unprecedented-look-into-superstar-eta-carinae/), demonstrating the potential of using 3D printing for astronomy outreach and education. Perhaps more importantly, 3D printing makes it possible to bring the wonders of astronomy to new, often neglected, audiences, i.e. the blind and visually impaired.

  11. Hand Path Priming in Manual Obstacle Avoidance: Evidence that the Dorsal Stream Does Not Only Control Visually Guided Actions in Real Time

    ERIC Educational Resources Information Center

    Jax, Steven A.; Rosenbaum, David A.

    2007-01-01

    According to a prominent theory of human perception and performance (M. A. Goodale & A. D. Milner, 1992), the dorsal, action-related stream only controls visually guided actions in real time. Such a system would be predicted to show little or no action priming from previous experience. The 3 experiments reported here were designed to determine…

  12. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  13. Short-Term Visual Deprivation, Tactile Acuity, and Haptic Solid Shape Discrimination

    PubMed Central

    Crabtree, Charles E.; Norman, J. Farley

    2014-01-01

    Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task – perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task – the participants' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation. PMID:25397327

  14. Magnetic stimulation of visual cortex impairs perceptual learning.

    PubMed

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Visualising Earth's Mantle based on Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, E.; Pugmire, D.; Lefebvre, M. P.; Hill, J.; Komatitsch, D.; Peter, D. B.; Podhorszki, N.; Tromp, J.

    2017-12-01

    Recent advances in 3D wave propagation solvers and high-performance computing have enabled regional and global full-waveform inversions. Interpretation of tomographic models is often done on visually. Robust and efficient visualization tools are necessary to thoroughly investigate large model files, particularly at the global scale. In collaboration with Oak Ridge National Laboratory (ORNL), we have developed effective visualization tools and used for visualization of our first-generation global model, GLAD-M15 (Bozdag et al. 2016). VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/) is used for initial exploration of the models and for extraction of seismological features. The broad capability of VisIt, and its demonstrated scalability proved valuable for experimenting with different visualization techniques, and in the creation of timely results. Utilizing VisIt's plugin-architecture, a data reader plugin was developed, which reads the ADIOS (https://www.olcf.ornl.gov/center-projects/adios/) format of our model files. Blender (https://www.blender.org) is used for the setup of lighting, materials, camera paths and rendering of geometry. Python scripting was used to control the orchestration of different geometries, as well as camera animation for 3D movies. While we continue producing 3D contour plots and movies for various seismic parameters to better visualize plume- and slab-like features as well as anisotropy throughout the mantle, our aim is to make visualization an integral part of our global adjoint tomography workflow to routinely produce various 2D cross-sections to facilitate examination of our models after each iteration. This will ultimately form the basis for use of pattern recognition techniques in our investigations. Simulations for global adjoint tomography are performed on ORNL's Titan system and visualization is done in parallel on ORNL's post-processing cluster Rhea.

  16. Principle and engineering implementation of 3D visual representation and indexing of medical diagnostic records (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Liehang; Sun, Jianyong; Yang, Yuanyuan; Ling, Tonghui; Wang, Mingqing; Zhang, Jianguo

    2017-03-01

    Purpose: Due to the generation of a large number of electronic imaging diagnostic records (IDR) year after year in a digital hospital, The IDR has become the main component of medical big data which brings huge values to healthcare services, professionals and administration. But a large volume of IDR presented in a hospital also brings new challenges to healthcare professionals and services as there may be too many IDRs for each patient so that it is difficult for a doctor to review all IDR of each patient in a limited appointed time slot. In this presentation, we presented an innovation method which uses an anatomical 3D structure object visually to represent and index historical medical status of each patient, which is called Visual Patient (VP) in this presentation, based on long term archived electronic IDR in a hospital, so that a doctor can quickly learn the historical medical status of the patient, quickly point and retrieve the IDR he or she interested in a limited appointed time slot. Method: The engineering implementation of VP was to build 3D Visual Representation and Index system called VP system (VPS) including components of natural language processing (NLP) for Chinese, Visual Index Creator (VIC), and 3D Visual Rendering Engine.There were three steps in this implementation: (1) an XML-based electronic anatomic structure of human body for each patient was created and used visually to index the all of abstract information of each IDR for each patient; (2)a number of specific designed IDR parsing processors were developed and used to extract various kinds of abstract information of IDRs retrieved from hospital information systems; (3) a 3D anatomic rendering object was introduced visually to represent and display the content of VIO for each patient. Results: The VPS was implemented in a simulated clinical environment including PACS/RIS to show VP instance to doctors. We setup two evaluation scenario in a hospital radiology department to evaluate whether radiologists accept the VPS and how the VP impact the radiologists' efficiency and accuracy in reviewing historic medical records of the patients. We got a statistical results showing that more than 70% participated radiologist would like to use the VPS in their radiological imaging services. In comparison testing of using VPS and RIS/PACS in reviewing historic medical records of the patients, we got a statistical result showing that the efficiency of using VPS was higher than that of using PACS/RIS. New Technologies and Results to be presented: This presentation presented an innovation method to use an anatomical 3D structure object, called VP, visually to represent and index historical medical records such as IDR of each patient and a doctor can quickly learn the historical medical status of the patient through VPS. The evaluation results showed that VPS has better performance than RIS-integrated PACS in efficiency of reviewing historic medical records of the patients. Conclusions: In this presentation, we presented an innovation method called VP to use an anatomical 3D structure object visually to represent and index historical IDR of each patient and briefed an engineering implementation to build a VPS to implement the major features and functions of VP. We setup two evaluation scenarios in a hospital radiology department to evaluate VPS and achieved evaluation results showed that VPS has better performance than RIS-integrated PACS in efficiency of reviewing historic medical records of the patients.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  18. A 3D visualization of spatial relationship between geological structure and groundwater chemical profile around Iwate volcano, Japan: based on the ARCGIS 3D Analyst

    NASA Astrophysics Data System (ADS)

    Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.

    2009-12-01

    We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.

  19. 3D geospatial visualizations: Animation and motion effects on spatial objects

    NASA Astrophysics Data System (ADS)

    Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos

    2018-02-01

    Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.

  20. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    PubMed

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  1. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Datamore » were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.« less

  2. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    NASA Technical Reports Server (NTRS)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  3. Chemistry of wood in 3D: new infrared imaging

    Treesearch

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Casey Crooks; Marli Oliveira; Carol Hirschmugl

    2015-01-01

    Chemical detection, mapping and imaging in three dimensions will help refine our understanding of wood properties and durability. We describe here a pioneering infrared method to create visual 3D images of the chemicals in wood, providing for the first time, spatial and architectural information at the cellular level without liquid extraction or prior fixation....

  4. In-situ straining and time-resolved electron tomography data acquisition in a transmission electron microscope.

    PubMed

    Hata, S; Miyazaki, S; Gondo, T; Kawamoto, K; Horii, N; Sato, K; Furukawa, H; Kudo, H; Miyazaki, H; Murayama, M

    2017-04-01

    This paper reports the preliminary results of a new in-situ three-dimensional (3D) imaging system for observing plastic deformation behavior in a transmission electron microscope (TEM) as a directly relevant development of the recently reported straining-and-tomography holder [Sato K et al. (2015) Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography. Microsc. 64: 369-375]. We designed an integrated system using the holder and newly developed straining and image-acquisition software and then developed an experimental procedure for in-situ straining and time-resolved electron tomography (ET) data acquisition. The software for image acquisition and 3D visualization was developed based on the commercially available ET software TEMographyTM. We achieved time-resolved 3D visualization of nanometer-scale plastic deformation behavior in a Pb-Sn alloy sample, thus demonstrating the capability of this system for potential applications in materials science. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Visual completion from 2D cross-sections: Implications for visual theory and STEM education and practice.

    PubMed

    Gagnier, Kristin Michod; Shipley, Thomas F

    2016-01-01

    Accurately inferring three-dimensional (3D) structure from only a cross-section through that structure is not possible. However, many observers seem to be unaware of this fact. We present evidence for a 3D amodal completion process that may explain this phenomenon and provide new insights into how the perceptual system processes 3D structures. Across four experiments, observers viewed cross-sections of common objects and reported whether regions visible on the surface extended into the object. If they reported that the region extended, they were asked to indicate the orientation of extension or that the 3D shape was unknowable from the cross-section. Across Experiments 1, 2, and 3, participants frequently inferred 3D forms from surface views, showing a specific prior to report that regions in the cross-section extend straight back into the object, with little variance in orientation. In Experiment 3, we examined whether 3D visual inferences made from cross-sections are similar to other cases of amodal completion by examining how the inferences were influenced by observers' knowledge of the objects. Finally, in Experiment 4, we demonstrate that these systematic visual inferences are unlikely to result from demand characteristics or response biases. We argue that these 3D visual inferences have been largely unrecognized by the perception community, and have implications for models of 3D visual completion and science education.

  6. Evaluation of Interactive Visualization on Mobile Computing Platforms for Selection of Deep Brain Stimulation Parameters

    PubMed Central

    Butson, Christopher R.; Tamm, Georg; Jain, Sanket; Fogal, Thomas; Krüger, Jens

    2012-01-01

    In recent years there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson’s disease patients who received DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen from the software versus the stimulation protocol that was chosen via clinical practice (independently of the study). Lastly, we compared the amount of time required to reach these settings using the software versus the time required through standard practice. We found that the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas other than DBS. PMID:22450824

  7. Usefulness of 3-dimensional stereotactic surface projection FDG PET images for the diagnosis of dementia

    PubMed Central

    Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun

    2016-01-01

    Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593

  8. Rapid fusion of 2D X-ray fluoroscopy with 3D multislice CT for image-guided electrophysiology procedures

    NASA Astrophysics Data System (ADS)

    Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.

    2007-03-01

    Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.

  9. Real-time 3D visualization of volumetric video motion sensor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.; Stansfield, S.; Shawver, D.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to bemore » immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.« less

  10. Visualization techniques to aid in the analysis of multi-spectral astrophysical data sets

    NASA Technical Reports Server (NTRS)

    Domik, Gitta; Alam, Salim; Pinkney, Paul

    1992-01-01

    This report describes our project activities for the period Sep. 1991 - Oct. 1992. Our activities included stabilizing the software system STAR, porting STAR to IDL/widgets (improved user interface), targeting new visualization techniques for multi-dimensional data visualization (emphasizing 3D visualization), and exploring leading-edge 3D interface devices. During the past project year we emphasized high-end visualization techniques, by exploring new tools offered by state-of-the-art visualization software (such as AVS3 and IDL4/widgets), by experimenting with tools still under research at the Department of Computer Science (e.g., use of glyphs for multidimensional data visualization), and by researching current 3D input/output devices as they could be used to explore 3D astrophysical data. As always, any project activity is driven by the need to interpret astrophysical data more effectively.

  11. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D

    PubMed Central

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron

    2017-01-01

    Abstract Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. PMID:28814063

  12. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    PubMed

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  13. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  14. Transforming GIS data into functional road models for large-scale traffic simulation.

    PubMed

    Wilkie, David; Sewall, Jason; Lin, Ming C

    2012-06-01

    There exists a vast amount of geographic information system (GIS) data that model road networks around the world as polylines with attributes. In this form, the data are insufficient for applications such as simulation and 3D visualization-tools which will grow in power and demand as sensor data become more pervasive and as governments try to optimize their existing physical infrastructure. In this paper, we propose an efficient method for enhancing a road map from a GIS database to create a geometrically and topologically consistent 3D model to be used in real-time traffic simulation, interactive visualization of virtual worlds, and autonomous vehicle navigation. The resulting representation provides important road features for traffic simulations, including ramps, highways, overpasses, legal merge zones, and intersections with arbitrary states, and it is independent of the simulation methodologies. We test the 3D models of road networks generated by our algorithm on real-time traffic simulation using both macroscopic and microscopic techniques.

  15. Attention and Visual Motor Integration in Young Children with Uncorrected Hyperopia.

    PubMed

    Kulp, Marjean Taylor; Ciner, Elise; Maguire, Maureen; Pistilli, Maxwell; Candy, T Rowan; Ying, Gui-Shuang; Quinn, Graham; Cyert, Lynn; Moore, Bruce

    2017-10-01

    Among 4- and 5-year-old children, deficits in measures of attention, visual-motor integration (VMI) and visual perception (VP) are associated with moderate, uncorrected hyperopia (3 to 6 diopters [D]) accompanied by reduced near visual function (near visual acuity worse than 20/40 or stereoacuity worse than 240 seconds of arc). To compare attention, visual motor, and visual perceptual skills in uncorrected hyperopes and emmetropes attending preschool or kindergarten and evaluate their associations with visual function. Participants were 4 and 5 years of age with either hyperopia (≥3 to ≤6 D, astigmatism ≤1.5 D, anisometropia ≤1 D) or emmetropia (hyperopia ≤1 D; astigmatism, anisometropia, and myopia each <1 D), without amblyopia or strabismus. Examiners masked to refractive status administered tests of attention (sustained, receptive, and expressive), VMI, and VP. Binocular visual acuity, stereoacuity, and accommodative accuracy were also assessed at near. Analyses were adjusted for age, sex, race/ethnicity, and parent's/caregiver's education. Two hundred forty-four hyperopes (mean, +3.8 ± [SD] 0.8 D) and 248 emmetropes (+0.5 ± 0.5 D) completed testing. Mean sustained attention score was worse in hyperopes compared with emmetropes (mean difference, -4.1; P < .001 for 3 to 6 D). Mean Receptive Attention score was worse in 4 to 6 D hyperopes compared with emmetropes (by -2.6, P = .01). Hyperopes with reduced near visual acuity (20/40 or worse) had worse scores than emmetropes (-6.4, P < .001 for sustained attention; -3.0, P = .004 for Receptive Attention; -0.7, P = .006 for VMI; -1.3, P = .008 for VP). Hyperopes with stereoacuity of 240 seconds of arc or worse scored significantly worse than emmetropes (-6.7, P < .001 for sustained attention; -3.4, P = .03 for Expressive Attention; -2.2, P = .03 for Receptive Attention; -0.7, P = .01 for VMI; -1.7, P < .001 for VP). Overall, hyperopes with better near visual function generally performed similarly to emmetropes. Moderately hyperopic children were found to have deficits in measures of attention. Hyperopic children with reduced near visual function also had lower scores on VMI and VP than emmetropic children.

  16. Three-dimensional versus two-dimensional ultrasound for assessing levonorgestrel intrauterine device location: A pilot study.

    PubMed

    Andrade, Carla Maria Araujo; Araujo Júnior, Edward; Torloni, Maria Regina; Moron, Antonio Fernandes; Guazzelli, Cristina Aparecida Falbo

    2016-02-01

    To compare the rates of success of two-dimensional (2D) and three-dimensional (3D) sonographic (US) examinations in locating and adequately visualizing levonorgestrel intrauterine devices (IUDs) and to explore factors associated with the unsuccessful viewing on 2D US. Transvaginal 2D and 3D US examinations were performed on all patients 1 month after insertion of levonorgestrel IUDs. The devices were considered adequately visualized on 2D US if both the vertical (shadow, upper and lower extremities) and the horizontal (two echogenic lines) shafts were identified. 3D volumes were also captured to assess the location of levonorgestrel IUDs on 3D US. Thirty women were included. The rates of adequate device visualization were 40% on 2D US (95% confidence interval [CI], 24.6; 57.7) and 100% on 3D US (95% CI, 88.6; 100.0). The device was not adequately visualized in all six women who had a retroflexed uterus, but it was adequately visualized in 12 of the 24 women (50%) who had a nonretroflexed uterus (95% CI, -68.6; -6.8). We found that 3D US is better than 2D US for locating and adequately visualizing levonorgestrel IUDs. Other well-designed studies with adequate power should be conducted to confirm this finding. © 2015 Wiley Periodicals, Inc.

  17. Interactive Volume Exploration of Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory Approach.

    PubMed

    Hadwiger, M; Beyer, J; Jeong, Won-Ki; Pfister, H

    2012-12-01

    This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.

  18. A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations

    PubMed Central

    Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary

    2016-01-01

    There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699

  19. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients

    PubMed Central

    Lledó, Luis D.; Díez, Jorge A.; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J.; Sabater-Navarro, José M.; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates were very similar. In conclusion, the using of 2D environments in virtual therapy may be a more appropriate and comfortable way to perform tasks for upper limb rehabilitation of post-stroke patients, in terms of accuracy in order to effectuate optimal kinematic trajectories. PMID:27616992

  20. Psycho-physiological effects of visual artifacts by stereoscopic display systems

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Yoshitake, Junki; Morikawa, Hiroyuki; Kawai, Takashi; Yamada, Osamu; Iguchi, Akihiko

    2011-03-01

    The methods available for delivering stereoscopic (3D) display using glasses can be classified as time-multiplexing and spatial-multiplexing. With both methods, intrinsic visual artifacts result from the generation of the 3D image pair on a flat panel display device. In the case of the time-multiplexing method, an observer perceives three artifacts: flicker, the Mach-Dvorak effect, and a phantom array. These only occur under certain conditions, with flicker appearing in any conditions, the Mach-Dvorak effect during smooth pursuit eye movements (SPM), and a phantom array during saccadic eye movements (saccade). With spatial-multiplexing, the artifacts are temporal-parallax (due to the interlaced video signal), binocular rivalry, and reduced spatial resolution. These artifacts are considered one of the major impediments to the safety and comfort of 3D display users. In this study, the implications of the artifacts for the safety and comfort are evaluated by examining the psychological changes they cause through subjective symptoms of fatigue and the depth sensation. Physiological changes are also measured as objective responses based on analysis of heart and brain activation by visual artifacts. Further, to understand the characteristics of each artifact and the combined effects of the artifacts, four experimental conditions are developed and tested. The results show that perception of artifacts differs according to the visual environment and the display method. Furthermore visual fatigue and the depth sensation are influenced by the individual characteristics of each artifact. Similarly, heart rate variability and regional cerebral oxygenation changes by perception of artifacts in conditions.

  1. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    NASA Astrophysics Data System (ADS)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets containing the same object in different LoD may be combined and integrated. In this study GIS tools used for 3D modeling issues were examined. In this context, the availability of the GIS tools for obtaining different LoDs of CityGML standard. Additionally a 3D GIS application that covers a small part of the city of Istanbul was implemented for communicating the thematic information rather than photorealistic visualization by using 3D model. An abstract model was created by using a commercial GIS software modeling tools and the results of the implementation were also presented in the study.

  2. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  3. A comparison of the sensitivity of EQ-5D, SF-6D and TTO utility values to changes in vision and perceived visual function in patients with primary open-angle glaucoma

    PubMed Central

    2012-01-01

    Background Economic viability of treatments for primary open-angle glaucoma (POAG) should be assessed objectively to prioritise health care interventions. This study aims to identify the methods for eliciting utility values (UVs) most sensitive to differences in visual field and visual functioning in patients with POAG. As a secondary objective, the dimensions of generic health-related and vision-related quality of life most affected by progressive vision loss will be identified. Methods A total of 132 POAG patients were recruited. Three sets of utility values (EuroQoL EQ-5D, Short Form SF-6D, Time Trade Off) and a measure of perceived visual functioning from the National Eye Institute Visual Function Questionnaire (VFQ-25) were elicited during face-to-face interviews. The sensitivity of UVs to differences in the binocular visual field, visual acuity and visual functioning measures was analysed using non-parametric statistical methods. Results Median utilities were similar across Integrated Visual Field score quartiles for EQ-5D (P = 0.08) whereas SF-6D and Time-Trade-Off UVs significantly decreased (p = 0.01 and p = 0.001, respectively). The VFQ-25 score varied across Integrated Visual Field and binocular visual acuity groups and was associated with all three UVs (P ≤ 0.001); most of its vision-specific sub-scales were associated with the vision markers. The most affected dimension was driving. A relationship with vision markers was found for the physical component of SF-36 and not for any dimension of EQ-5D. Conclusions The Time-Trade-Off was more sensitive than EQ-5D and SF-6D to changes in vision and visual functioning associated with glaucoma progression but could not measure quality of life changes in the mildest disease stages. PMID:22909264

  4. Data Fusion and Visualization with the OpenEarth Framework (OEF)

    NASA Astrophysics Data System (ADS)

    Nadeau, D. R.; Baru, C.; Fouch, M. J.; Crosby, C. J.

    2010-12-01

    Data fusion is an increasingly important problem to solve as we strive to integrate data from multiple sources and build better models of the complex processes operating at the Earth’s surface and its interior. These data are often large, multi-dimensional, and subject to differing conventions for file formats, data structures, coordinate spaces, units of measure, and metadata organization. When visualized, these data require differing, and often conflicting, conventions for visual representations, dimensionality, icons, color schemes, labeling, and interaction. These issues make the visualization of fused Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data fusion and visualization suite of software being developed at the Supercomputer Center at the University of California, San Diego. Funded by the NSF, the project is leveraging virtual globe technology from NASA’s WorldWind to create interactive 3D visualization tools that combine layered data from a variety of sources to create a holistic view of features at, above, and beneath the Earth’s surface. The OEF architecture is cross-platform, multi-threaded, modular, and based upon Java. The OEF’s modular approach yields a collection of compatible mix-and-match components for assembling custom applications. Available modules support file format handling, web service communications, data management, data filtering, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats. Each one imports data into a general-purpose data representation that supports multidimensional grids, topography, points, lines, polygons, images, and more. From there these data then may be manipulated, merged, filtered, reprojected, and visualized. Visualization features support conventional and new visualization techniques for looking at topography, tomography, maps, and feature geometry. 3D grid data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery along with data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers and a common 3D+time coordinate space. Data management within the OEF handles and hides the quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Derived data are computed automatically to support interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization is accelerated by 3D graphics hardware found on today’s computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.

  5. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  6. Saliency Detection of Stereoscopic 3D Images with Application to Visual Discomfort Prediction

    NASA Astrophysics Data System (ADS)

    Li, Hong; Luo, Ting; Xu, Haiyong

    2017-06-01

    Visual saliency detection is potentially useful for a wide range of applications in image processing and computer vision fields. This paper proposes a novel bottom-up saliency detection approach for stereoscopic 3D (S3D) images based on regional covariance matrix. As for S3D saliency detection, besides the traditional 2D low-level visual features, additional 3D depth features should also be considered. However, only limited efforts have been made to investigate how different features (e.g. 2D and 3D features) contribute to the overall saliency of S3D images. The main contribution of this paper is that we introduce a nonlinear feature integration descriptor, i.e., regional covariance matrix, to fuse both 2D and 3D features for S3D saliency detection. The regional covariance matrix is shown to be effective for nonlinear feature integration by modelling the inter-correlation of different feature dimensions. Experimental results demonstrate that the proposed approach outperforms several existing relevant models including 2D extended and pure 3D saliency models. In addition, we also experimentally verified that the proposed S3D saliency map can significantly improve the prediction accuracy of experienced visual discomfort when viewing S3D images.

  7. Towards clinical translation of augmented orthopedic surgery: from pre-op CT to intra-op x-ray via RGBD sensing

    NASA Astrophysics Data System (ADS)

    Tucker, Emerson; Fotouhi, Javad; Unberath, Mathias; Lee, Sing Chun; Fuerst, Bernhard; Johnson, Alex; Armand, Mehran; Osgood, Greg M.; Navab, Nassir

    2018-03-01

    Pre-operative CT data is available for several orthopedic and trauma interventions, and is mainly used to identify injuries and plan the surgical procedure. In this work we propose an intuitive augmented reality environment allowing visualization of pre-operative data during the intervention, with an overlay of the optical information from the surgical site. The pre-operative CT volume is first registered to the patient by acquiring a single C-arm X-ray image and using 3D/2D intensity-based registration. Next, we use an RGBD sensor on the C-arm to fuse the optical information of the surgical site with patient pre-operative medical data and provide an augmented reality environment. The 3D/2D registration of the pre- and intra-operative data allows us to maintain a correct visualization each time the C-arm is repositioned or the patient moves. An overall mean target registration error (mTRE) and standard deviation of 5.24 +/- 3.09 mm was measured averaged over 19 C-arm poses. The proposed solution enables the surgeon to visualize pre-operative data overlaid with information from the surgical site (e.g. surgeon's hands, surgical tools, etc.) for any C-arm pose, and negates issues of line-of-sight and long setup times, which are present in commercially available systems.

  8. Experimental Evidence for Improved Neuroimaging Interpretation Using Three-Dimensional Graphic Models

    ERIC Educational Resources Information Center

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…

  9. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    NASA Astrophysics Data System (ADS)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  10. Semantic extraction and processing of medical records for patient-oriented visual index

    NASA Astrophysics Data System (ADS)

    Zheng, Weilin; Dong, Wenjie; Chen, Xiangjiao; Zhang, Jianguo

    2012-02-01

    To have comprehensive and completed understanding healthcare status of a patient, doctors need to search patient medical records from different healthcare information systems, such as PACS, RIS, HIS, USIS, as a reference of diagnosis and treatment decisions for the patient. However, it is time-consuming and tedious to do these procedures. In order to solve this kind of problems, we developed a patient-oriented visual index system (VIS) to use the visual technology to show health status and to retrieve the patients' examination information stored in each system with a 3D human model. In this presentation, we present a new approach about how to extract the semantic and characteristic information from the medical record systems such as RIS/USIS to create the 3D Visual Index. This approach includes following steps: (1) Building a medical characteristic semantic knowledge base; (2) Developing natural language processing (NLP) engine to perform semantic analysis and logical judgment on text-based medical records; (3) Applying the knowledge base and NLP engine on medical records to extract medical characteristics (e.g., the positive focus information), and then mapping extracted information to related organ/parts of 3D human model to create the visual index. We performed the testing procedures on 559 samples of radiological reports which include 853 focuses, and achieved 828 focuses' information. The successful rate of focus extraction is about 97.1%.

  11. A comparison of visuomotor cue integration strategies for object placement and prehension.

    PubMed

    Greenwald, Hal S; Knill, David C

    2009-01-01

    Visual cue integration strategies are known to depend on cue reliability and how rapidly the visual system processes incoming information. We investigated whether these strategies also depend on differences in the information demands for different natural tasks. Using two common goal-oriented tasks, prehension and object placement, we determined whether monocular and binocular information influence estimates of three-dimensional (3D) orientation differently depending on task demands. Both tasks rely on accurate 3D orientation estimates, but 3D position is potentially more important for grasping. Subjects placed an object on or picked up a disc in a virtual environment. On some trials, the monocular cues (aspect ratio and texture compression) and binocular cues (e.g., binocular disparity) suggested slightly different 3D orientations for the disc; these conflicts either were present upon initial stimulus presentation or were introduced after movement initiation, which allowed us to quantify how information from the cues accumulated over time. We analyzed the time-varying orientations of subjects' fingers in the grasping task and those of the object in the object placement task to quantify how different visual cues influenced motor control. In the first experiment, different subjects performed each task, and those performing the grasping task relied on binocular information more when orienting their hands than those performing the object placement task. When subjects in the second experiment performed both tasks in interleaved sessions, binocular cues were still more influential during grasping than object placement, and the different cue integration strategies observed for each task in isolation were maintained. In both experiments, the temporal analyses showed that subjects processed binocular information faster than monocular information, but task demands did not affect the time course of cue processing. How one uses visual cues for motor control depends on the task being performed, although how quickly the information is processed appears to be task invariant.

  12. Augmented Reality in Scientific Publications-Taking the Visualization of 3D Structures to the Next Level.

    PubMed

    Wolle, Patrik; Müller, Matthias P; Rauh, Daniel

    2018-03-16

    The examination of three-dimensional structural models in scientific publications allows the reader to validate or invalidate conclusions drawn by the authors. However, either due to a (temporary) lack of access to proper visualization software or a lack of proficiency, this information is not necessarily available to every reader. As the digital revolution is quickly progressing, technologies have become widely available that overcome the limitations and offer to all the opportunity to appreciate models not only in 2D, but also in 3D. Additionally, mobile devices such as smartphones and tablets allow access to this information almost anywhere, at any time. Since access to such information has only recently become standard practice, we want to outline straightforward ways to incorporate 3D models in augmented reality into scientific publications, books, posters, and presentations and suggest that this should become general practice.

  13. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    PubMed

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.

  14. Visualizing Complex Environments in the Geo- and BioSciences

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Fox, P. A.; Zhong, H.; Eleish, A.; Ma, X.; Zednik, S.; Morrison, S. M.; Moore, E. K.; Muscente, D.; Meyer, M.; Hazen, R. M.

    2017-12-01

    Earth's living and non-living components have co-evolved for 4 billion years through numerous positive and negative feedbacks. Earth and life scientists have amassed vast amounts of data in diverse fields related to planetary evolution through deep time-mineralogy and petrology, paleobiology and paleontology, paleotectonics and paleomagnetism, geochemistry and geochrononology, genomics and proteomics, and more. Integrating the data from these complimentary disciplines is very useful in gaining an understanding of the evolution of our planet's environment. The integrated data however, represent many extremely complex environments. In order to gain insights and make discoveries using this data, it is important for us to model and visualize these complex environments. As part of work in understanding the "Co-Evolution of Geo and Biospheres using Data Driven Methodologies," we have developed several visualizations to help represent the information stored in the datasets from complimentary disciplines. These visualizations include 2D and 3D force directed Networks, Chord Diagrams, 3D Klee Diagrams. Evolving Network Diagrams, Skyline Diagrams and Tree Diagrams. Combining these visualizations with the results of machine learning and data analysis methods leads to a powerful way to discover patterns and relationships about the Earth's past and today's changing environment.

  15. PACS-based interface for 3D anatomical structure visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Koehl, Christophe; Soler, Luc; Marescaux, Jacques

    2002-05-01

    The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.

  16. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  17. A graph-theoretical analysis algorithm for quantifying the transition from sensory input to motor output by an emotional stimulus.

    PubMed

    Karmonik, Christof; Fung, Steve H; Dulay, M; Verma, A; Grossman, Robert G

    2013-01-01

    Graph-theoretical analysis algorithms have been used for identifying subnetworks in the human brain during the Default Mode State. Here, these methods are expanded to determine the interaction of the sensory and the motor subnetworks during the performance of an approach-avoidance paradigm utilizing the correlation strength between the signal intensity time courses as measure of synchrony. From functional magnetic resonance imaging (fMRI) data of 9 healthy volunteers, two signal time courses, one from the primary visual cortex (sensory input) and one from the motor cortex (motor output) were identified and a correlation difference map was calculated. Graph networks were created from this map and visualized with spring-embedded layouts and 3D layouts in the original anatomical space. Functional clusters in these networks were identified with the MCODE clustering algorithm. Interactions between the sensory sub-network and the motor sub-network were quantified through the interaction strengths of these clusters. The percentages of interactions involving the visual cortex ranged from 85 % to 18 % and the motor cortex ranged from 40 % to 9 %. Other regions with high interactions were: frontal cortex (19 ± 18 %), insula (17 ± 22 %), cuneus (16 ± 15 %), supplementary motor area (SMA, 11 ± 18 %) and subcortical regions (11 ± 10 %). Interactions between motor cortex, SMA and visual cortex accounted for 12 %, between visual cortex and cuneus for 8 % and between motor cortex, SMA and cuneus for 6 % of all interactions. These quantitative findings are supported by the visual impressions from the 2D and 3D network layouts.

  18. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  19. A Fast 3-Dimensional Magnetic Resonance Imaging Reconstruction for Surgical Planning of Uterine Myomectomy

    PubMed Central

    2017-01-01

    Background Uterine myoma is the most common benign gynecologic tumor in reproductive-aged women. During myomectomy for women who want to preserve fertility, it is advisable to detect and remove all myomas to decrease the risk of additional surgery. However, finding myomas during surgery is often challenging, especially for deep-seated myomas. Therefore, three-dimensional (3D) preoperative localization of myomas can be helpful for the surgical planning for myomectomy. However, the previously reported manual 3D segmenting method takes too much time and effort for clinical use. The objective of this study was to propose a new method of rapid 3D visualization of uterine myoma using a uterine template. Methods Magnetic resonance images were listed according to the slide spacing on each plane of the multiplanar reconstruction, and images that were determined to be myomas were selected by simply scrolling the mouse down. By using the selected images, a 3D grid with a slide spacing interval was constructed and filled on its plane and finally registered to a uterine template. Results The location of multiple myomas in the uterus was visualized in 3D and this proposed method is over 95% faster than the existing manual-segmentation method. Not only the size and location of the myomas, but also the shortest distance between the uterine surface and the myomas, can be calculated. This technique also enables the surgeon to know the number of total, removed, and remaining myomas on the 3D image. Conclusion This proposed 3D reconstruction method with a uterine template enables faster 3D visualization of myomas. PMID:29215821

  20. Real time 3D scanner: investigations and results

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Pflug, Leopold

    1993-12-01

    This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.

  1. Dissection of C. elegans behavioral genetics in 3-D environments

    PubMed Central

    Kwon, Namseop; Hwang, Ara B.; You, Young-Jai; V. Lee, Seung-Jae; Ho Je, Jung

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments. PMID:25955271

  2. Respiratory motion estimation in x-ray angiography for improved guidance during coronary interventions

    NASA Astrophysics Data System (ADS)

    Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.

    2015-05-01

    During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).

  3. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  4. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  5. First responder tracking and visualization for command and control toolkit

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Petrov, Plamen; Meisinger, Roger

    2010-04-01

    In order for First Responder Command and Control personnel to visualize incidents at urban building locations, DHS sponsored a small business research program to develop a tool to visualize 3D building interiors and movement of First Responders on site. 21st Century Systems, Inc. (21CSI), has developed a toolkit called Hierarchical Grid Referenced Normalized Display (HiGRND). HiGRND utilizes three components to provide a full spectrum of visualization tools to the First Responder. First, HiGRND visualizes the structure in 3D. Utilities in the 3D environment allow the user to switch between views (2D floor plans, 3D spatial, evacuation routes, etc.) and manually edit fast changing environments. HiGRND accepts CAD drawings and 3D digital objects and renders these in the 3D space. Second, HiGRND has a First Responder tracker that uses the transponder signals from First Responders to locate them in the virtual space. We use the movements of the First Responder to map the interior of structures. Finally, HiGRND can turn 2D blueprints into 3D objects. The 3D extruder extracts walls, symbols, and text from scanned blueprints to create the 3D mesh of the building. HiGRND increases the situational awareness of First Responders and allows them to make better, faster decisions in critical urban situations.

  6. Terrestrial laser scanning and a degenerated cylinder model to determine gross morphological change of cadavers under conditions of natural decomposition.

    PubMed

    Zhang, Xiao; Glennie, Craig L; Bucheli, Sibyl R; Lindgren, Natalie K; Lynne, Aaron M

    2014-08-01

    Decomposition can be a highly variable process with stages that are difficult to quantify. Using high accuracy terrestrial laser scanning a repeated three-dimensional (3D) documentation of volumetric changes of a human body during early decomposition is recorded. To determine temporal volumetric variations as well as 3D distribution of the changed locations in the body over time, this paper introduces the use of multiple degenerated cylinder models to provide a reasonable approximation of body parts against which 3D change can be measured and visualized. An iterative closest point algorithm is used for 3D registration, and a method for determining volumetric change is presented. Comparison of the laser scanning estimates of volumetric change shows good agreement with repeated in-situ measurements of abdomen and limb circumference that were taken diurnally. The 3D visualizations of volumetric changes demonstrate that bloat is a process with a beginning, middle, and end rather than a state of presence or absence. Additionally, the 3D visualizations show conclusively that cadaver bloat is not isolated to the abdominal cavity, but also occurs in the limbs. Detailed quantification of the bloat stage of decay has the potential to alter how the beginning and end of bloat are determined by researchers and can provide further insight into the effects of the ecosystem on decomposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Visualization of Coastal Data Through KML

    NASA Astrophysics Data System (ADS)

    Damsma, T.; Baart, F.; de Boer, G.; van Koningsveld, M.; Bruens, A.

    2009-12-01

    As a country that lies mostly below sea level, the Netherlands has a history of coastal engineering, and is world renowned for its leading role in Integrated Coastal Zone Management (ICZM). Within the framework of Building with Nature (a Dutch ICZM research program) an OPeNDAP server is used to host several datasets of the Dutch coast. Among these sets are bathymetric data, cross-shore profiles, water level time series of which some date back to the eighteenth century. The challenge with hosting this amount of data is more in dissemination and accessibility rather than a technical one (tracing, accessing, gathering, unifying and storing). With so many data in different sets, how can one easily know when and where data is available, and of what quality it is? Recent work using Google Earth as a visual front-end for this database has proven very encouraging. Taking full advantage of the four dimensional (3D+time) visualization capabilities allows researchers, consultants and the general public to view, access and interact with the data. Within MATLAB a set of generic tools are developed for easy creation of among others:

    • A high resolution, time animated, historic bathymetry of the entire Dutch coast.
    • 3D curvilinear computation grids.
    • A 3D contour plot of the Westerschelde Estuary.
    • Time animated wind and water flow fields, both with traditional quiver diagrams and arrows that move with the flow field.
    • Various overviews of markers containing direct web links to data and metadata on OPeNDAP server. Wind field (arrows) and water level elevation for model calculations of Katrina (animated over 14 days) Coastal cross sections (with exaggerated hight) and 2D positions of high and low water lines (animated over 40 years)

    • Synthesizing 3D Surfaces from Parameterized Strip Charts

      NASA Technical Reports Server (NTRS)

      Robinson, Peter I.; Gomez, Julian; Morehouse, Michael; Gawdiak, Yuri

      2004-01-01

      We believe 3D information visualization has the power to unlock new levels of productivity in the monitoring and control of complex processes. Our goal is to provide visual methods to allow for rapid human insight into systems consisting of thousands to millions of parameters. We explore this hypothesis in two complex domains: NASA program management and NASA International Space Station (ISS) spacecraft computer operations. We seek to extend a common form of visualization called the strip chart from 2D to 3D. A strip chart can display the time series progression of a parameter and allows for trends and events to be identified. Strip charts can be overlayed when multiple parameters need to visualized in order to correlate their events. When many parameters are involved, the direct overlaying of strip charts can become confusing and may not fully utilize the graphing area to convey the relationships between the parameters. We provide a solution to this problem by generating 3D surfaces from parameterized strip charts. The 3D surface utilizes significantly more screen area to illustrate the differences in the parameters and the overlayed strip charts, and it can rapidly be scanned by humans to gain insight. The selection of the third dimension must be a parallel or parameterized homogenous resource in the target domain, defined using a finite, ordered, enumerated type, and not a heterogeneous type. We demonstrate our concepts with examples from the NASA program management domain (assessing the state of many plans) and the computers of the ISS (assessing the state of many computers). We identify 2D strip charts in each domain and show how to construct the corresponding 3D surfaces. The user can navigate the surface, zooming in on regions of interest, setting a mark and drilling down to source documents from which the data points have been derived. We close by discussing design issues, related work, and implementation challenges.

    • 3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE

      NASA Astrophysics Data System (ADS)

      Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel

      2018-04-01

      Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.

    • 3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE

      NASA Astrophysics Data System (ADS)

      Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel

      2018-03-01

      Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.

    • Three dimensional audio versus head down TCAS displays

      NASA Technical Reports Server (NTRS)

      Begault, Durand R.; Pittman, Marc T.

      1994-01-01

      The advantage of a head up auditory display was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: Standard head down traffic collision avoidance system (TCAS) display, and three-dimensional (3-D) audio TCAS presentation. Ten commercial airline crews were tested under full mission simulation conditions at the NASA Ames Crew-Vehicle Systems Research Facility Advanced Concepts Flight Simulator. Scenario software generated targets corresponding to aircraft which activated a 3-D aural advisory or a TCAS advisory. Results showed a significant difference in target acquisition time between the two conditions, favoring the 3-D audio TCAS condition by 500 ms.

    • Effects of blurring and vertical misalignment on visual fatigue of stereoscopic displays

      NASA Astrophysics Data System (ADS)

      Baek, Sangwook; Lee, Chulhee

      2015-03-01

      In this paper, we investigate two error issues in stereo images, which may produce visual fatigue. When two cameras are used to produce 3D video sequences, vertical misalignment can be a problem. Although this problem may not occur in professionally produced 3D programs, it is still a major issue in many low-cost 3D programs. Recently, efforts have been made to produce 3D video programs using smart phones or tablets, which may present the vertical alignment problem. Also, in 2D-3D conversion techniques, the simulated frame may have blur effects, which can also introduce visual fatigue in 3D programs. In this paper, to investigate the relationship between these two errors (vertical misalignment and blurring in one image), we performed a subjective test using simulated 3D video sequences that include stereo video sequences with various vertical misalignments and blurring in a stereo image. We present some analyses along with objective models to predict the degree of visual fatigue from vertical misalignment and blurring.

    • Usability of stereoscopic view in teleoperation

      NASA Astrophysics Data System (ADS)

      Boonsuk, Wutthigrai

      2015-03-01

      Recently, there are tremendous growths in the area of 3D stereoscopic visualization. The 3D stereoscopic visualization technology has been used in a growing number of consumer products such as the 3D televisions and the 3D glasses for gaming systems. This technology refers to the idea that human brain develops depth of perception by retrieving information from the two eyes. Our brain combines the left and right images on the retinas and extracts depth information. Therefore, viewing two video images taken at slightly distance apart as shown in Figure 1 can create illusion of depth [8]. Proponents of this technology argue that the stereo view of 3D visualization increases user immersion and performance as more information is gained through the 3D vision as compare to the 2D view. However, it is still uncertain if additional information gained from the 3D stereoscopic visualization can actually improve user performance in real world situations such as in the case of teleoperation.

    • A 3D photographic capsule endoscope system with full field of view

      NASA Astrophysics Data System (ADS)

      Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Kung, Yi-Chinn; Tao, Kuan-Heng

      2013-09-01

      Current capsule endoscope uses one camera to capture the surface image in the intestine. It can only observe the abnormal point, but cannot know the exact information of this abnormal point. Using two cameras can generate 3D images, but the visual plane changes while capsule endoscope rotates. It causes that two cameras can't capture the images information completely. To solve this question, this research provides a new kind of capsule endoscope to capture 3D images, which is 'A 3D photographic capsule endoscope system'. The system uses three cameras to capture images in real time. The advantage is increasing the viewing range up to 2.99 times respect to the two camera system. The system can accompany 3D monitor provides the exact information of symptom points, helping doctors diagnose the disease.

    • Automatic transfer function generation for volume rendering of high-resolution x-ray 3D digital mammography images

      NASA Astrophysics Data System (ADS)

      Alyassin, Abdal M.

      2002-05-01

      3D Digital mammography (3DDM) is a new technology that provides high resolution X-ray breast tomographic data. Like any other tomographic medical imaging modalities, viewing a stack of tomographic images may require time especially if the images are of large matrix size. In addition, it may cause difficulty to conceptually construct 3D breast structures. Therefore, there is a need to readily visualize the data in 3D. However, one of the issues that hinder the usage of volume rendering (VR) is finding an automatic way to generate transfer functions that efficiently map the important diagnostic information in the data. We have developed a method that randomly samples the volume. Based on the mean and the standard deviation of these samples, the technique determines the lower limit and upper limit of a piecewise linear ramp transfer function. We have volume rendered several 3DDM data using this technique and compared visually the outcome with the result from a conventional automatic technique. The transfer function generated through the proposed technique provided superior VR images over the conventional technique. Furthermore, the improvement in the reproducibility of the transfer function correlated with the number of samples taken from the volume at the expense of the processing time.

    • Comparison of animated jet stream visualizations

      NASA Astrophysics Data System (ADS)

      Nocke, Thomas; Hoffmann, Peter

      2016-04-01

      The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

    • Non-contrast enhanced MR venography using 3D fresh blood imaging (FBI): initial experience.

      PubMed

      Yokoyama, K; Nitatori, T; Inaoka, S; Takahara, T; Hachiya, J

      2001-01-01

      This study examined the efficacy of 3D-fresh blood imaging (FBI) in patients with venous disease in the iliac region to lower extremity. Fourteen patients with venous disease were examined [8 deep venous thrombosis (DVT) and 6 varix] by 3D-FBI and 2D-TOF MRA. All FBI images and 2D-TOF images were evaluated in terms of visualization of the disease and compared with conventional X-ray venography (CV). The total scan time of 3D-FBI ranged from 3 min 24 sec to 4 min 52 sec. 3D-FBI was positive in all 23 anatomical levels in which DVT was diagnosed by CV (100% sensitivity) as well as 2D-TOF. The delineation of collateral veins was superior or equal to that of 2D-TOF. 3D-FBI allowed depiction of varices in five of six cases; however, in one case, the evaluation was limited because the separation of arteries from veins was difficult. The 3D-FBI technique, which allows iliac to peripheral MR venography without contrast medium within a short acquisition time, is considered clinically useful.

    • NOTE: The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

      NASA Astrophysics Data System (ADS)

      Shaw, Adam; Nunn, John

      2010-06-01

      In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45° to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 °C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.

    • The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields.

      PubMed

      Shaw, Adam; Nunn, John

      2010-06-07

      In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 degrees to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 degrees C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.

    • Realistic tissue visualization using photoacoustic image

      NASA Astrophysics Data System (ADS)

      Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

      2018-02-01

      Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  1. A systematized WYSIWYG pipeline for digital stereoscopic 3D filmmaking

    NASA Astrophysics Data System (ADS)

    Mueller, Robert; Ward, Chris; Hušák, Michal

    2008-02-01

    Digital tools are transforming stereoscopic 3D content creation and delivery, creating an opportunity for the broad acceptance and success of stereoscopic 3D films. Beginning in late 2005, a series of mostly CGI features has successfully initiated the public to this new generation of highly-comfortable, artifact-free digital 3D. While the response has been decidedly favorable, a lack of high-quality live-action films could hinder long-term success. Liveaction stereoscopic films have historically been more time-consuming, costly, and creatively-limiting than 2D films - thus a need arises for a live-action 3D filmmaking process which minimizes such limitations. A unique 'systematized' what-you-see-is-what-you-get (WYSIWYG) pipeline is described which allows the efficient, intuitive and accurate capture and integration of 3D and 2D elements from multiple shoots and sources - both live-action and CGI. Throughout this pipeline, digital tools utilize a consistent algorithm to provide meaningful and accurate visual depth references with respect to the viewing audience in the target theater environment. This intuitive, visual approach introduces efficiency and creativity to the 3D filmmaking process by eliminating both the need for a 'mathematician mentality' of spreadsheets and calculators, as well as any trial and error guesswork, while enabling the most comfortable, 'pixel-perfect', artifact-free 3D product possible.

  2. 4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers

    NASA Astrophysics Data System (ADS)

    Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Todorich, Bozho; Shieh, Christine; Kuo, Anthony; Toth, Cynthia; Izatt, Joseph A.

    2016-03-01

    Ophthalmic surgeons manipulate micron-scale tissues using stereopsis through an operating microscope and instrument shadowing for depth perception. While ophthalmic microsurgery has benefitted from rapid advances in instrumentation and techniques, the basic principles of the stereo operating microscope have not changed since the 1930's. Optical Coherence Tomography (OCT) has revolutionized ophthalmic imaging and is now the gold standard for preoperative and postoperative evaluation of most retinal and many corneal procedures. We and others have developed initial microscope-integrated OCT (MIOCT) systems for concurrent OCT and operating microscope imaging, but these are limited to 2D real-time imaging and require offline post-processing for 3D rendering and visualization. Our previously presented 4D MIOCT system can record and display the 3D surgical field stereoscopically through the microscope oculars using a dual-channel heads-up display (HUD) at up to 10 micron-scale volumes per second. In this work, we show that 4D MIOCT guidance improves the accuracy of depth-based microsurgical maneuvers (with statistical significance) in mock surgery trials in a wet lab environment. Additionally, 4D MIOCT was successfully performed in 38/45 (84%) posterior and 14/14 (100%) anterior eye human surgeries, and revealed previously unrecognized lesions that were invisible through the operating microscope. These lesions, such as residual and potentially damaging retinal deformation during pathologic membrane peeling, were visualized in real-time by the surgeon. Our integrated system provides an enhanced 4D surgical visualization platform that can improve current ophthalmic surgical practice and may help develop and refine future microsurgical techniques.

  3. Characteristics of visual fatigue under the effect of 3D animation.

    PubMed

    Chang, Yu-Shuo; Hsueh, Ya-Hsin; Tung, Kwong-Chung; Jhou, Fong-Yi; Lin, David Pei-Cheng

    2015-01-01

    Visual fatigue is commonly encountered in modern life. Clinical visual fatigue characteristics caused by 2-D and 3-D animations may be different, but have not been characterized in detail. This study tried to distinguish the differential effects on visual fatigue caused by 2-D and 3-D animations. A total of 23 volunteers were subjected to accommodation and vergence assessments, followed by a 40-min video game program designed to aggravate their asthenopic symptoms. The volunteers were then assessed for accommodation and vergence parameters again and directed to watch a 5-min 3-D video program, and then assessed again for the parameters. The results support that the 3-D animations caused similar characteristics in vision fatigue parameters in some specific aspects as compared to that caused by 2-D animations. Furthermore, 3-D animations may lead to more exhaustion in both ciliary and extra-ocular muscles, and such differential effects were more evident in the high demand of near vision work. The current results indicated that an arbitrary set of indexes may be promoted in the design of 3-D display or equipments.

  4. D Modelling and Visualization Based on the Unity Game Engine - Advantages and Challenges

    NASA Astrophysics Data System (ADS)

    Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A. P.; Karim, H.; Rahman, A. A.

    2017-11-01

    3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema) is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine) as highlighted in this paper.

  5. Contrast-enhanced time-resolved MRA for follow-up of intracranial aneurysms treated with the pipeline embolization device.

    PubMed

    Boddu, S R; Tong, F C; Dehkharghani, S; Dion, J E; Saindane, A M

    2014-01-01

    Endovascular reconstruction and flow diversion by using the Pipeline Embolization Device is an effective treatment for complex cerebral aneurysms. Accurate noninvasive alternatives to DSA for follow-up after Pipeline Embolization Device treatment are desirable. This study evaluated the accuracy of contrast-enhanced time-resolved MRA for this purpose, hypothesizing that contrast-enhanced time-resolved MRA will be comparable with DSA and superior to 3D-TOF MRA. During a 24-month period, 37 Pipeline Embolization Device-treated intracranial aneurysms in 26 patients underwent initial follow-up by using 3D-TOF MRA, contrast-enhanced time-resolved MRA, and DSA. MRA was performed on a 1.5T unit by using 3D-TOF and time-resolved imaging of contrast kinetics. All patients underwent DSA a median of 0 days (range, 0-68) after MRA. Studies were evaluated for aneurysm occlusion, quality of visualization of the reconstructed artery, and measurable luminal diameter of the Pipeline Embolization Device, with DSA used as the reference standard. The sensitivity, specificity, and positive and negative predictive values of contrast-enhanced time-resolved MRA relative to DSA for posttreatment aneurysm occlusion were 96%, 85%, 92%, and 92%. Contrast-enhanced time-resolved MRA demonstrated superior quality of visualization (P = .0001) and a higher measurable luminal diameter (P = .0001) of the reconstructed artery compared with 3D-TOF MRA but no significant difference compared with DSA. Contrast-enhanced time-resolved MRA underestimated the luminal diameter of the reconstructed artery by 0.965 ± 0.497 mm (27% ± 13%) relative to DSA. Contrast-enhanced time-resolved MRA is a reliable noninvasive method for monitoring intracranial aneurysms following flow diversion and vessel reconstruction by using the Pipeline Embolization Device. © 2014 by American Journal of Neuroradiology.

  6. [3D-TOF MR-angiography with high spatial resolution for surgical planning in insular lobe gliomas].

    PubMed

    Bykanov, A E; Pitskhelauri, D I; Pronin, I N; Tonoyan, A S; Kornienko, V N; Zakharova, N E; Turkin, A M; Sanikidze, A Z; Shkarubo, M A; Shkatova, A M; Shults, E I

    2015-01-01

    Despite the obvious progress in modern neurosurgery, surgery for glial tumors of the insular lobe is often associated with a high risk of postoperative neurological deficit, which is primarily caused by damage to perforating arteries of the M1 segment of the middle cerebral artery. The work is aimed at evaluating the effectiveness of high resolution time-of-flight (3D-TOF) MR angiography in imaging of medial and lateral lenticulostriate arteries and determining their relationship to tumor edge in patients with gliomas of the insula. 3D-TOF MR angiography data were analyzed in 20 patients with primarily diagnosed cerebral gliomas involving the insula. All patients underwent non-contrast enhanced 3D-TOF MR angiography. In 6 cases, 3D-TOF MRA was performed before and after contrast enhancement. 3D-TOF angiography before intravenous contrast injection was capable of visualizing the medial lenticulostriate arteries in 19 patients (95% of all cases) and lateral lenticulostriate arteries in 18 patients (90% of all cases). Contrast-enhanced 3D-TOF angiography allows for better visualization of both the proximal and distal segments of lenticulostriate arteries. Three variants of relationship between the tumor and lenticulostriate arteries were identified. Variant I: the tumor grew over the arteries without their displacement in 2 cases (10% of the total number of observations); variant II: the tumor caused medial displacement of arteries without growing over them in 11 cases (55% of the total number of observations); variant III: the tumor partially grew over and displaced arteries in 2 cases (10%). In 25% of cases (5 patients), tumor was poorly visualized on 3D-TOF MR angiograms because their signal characteristics did not differ from those of the medulla (tumor tissue was T1 isointense). As a result, it was impossible to determine the relationship between the tumor and lenticulostriate arteries. High spatial resolution time-of-flight MR angiography can be recommended for preoperative imaging of lenticulostriate arteries to plan the extent of neurosurgical resection in patients with glial tumors of the insular lobe.

  7. 3D Planetary Data Visualization with CesiumJS

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; DeWolfe, A. W.; Nguyen, D.; Sanchez, F.; Lindholm, D. M.

    2017-12-01

    Complex spacecraft orbits and multi-instrument observations can be challenging to visualize with traditional 2D plots. To facilitate the exploration of planetary science data, we have developed a set of web-based interactive 3D visualizations for the MAVEN and MMS missions using the free CesiumJS library. The Mars Atmospheric and Volatile Evolution (MAVEN) mission has been collecting data at Mars since September 2014. The MAVEN3D project allows playback of one day's orbit at a time, displaying the spacecraft's position and orientation. Selected science data sets can be overplotted on the orbit track, including vectors for magnetic field and ion flow velocities. We also provide an overlay the M-GITM model on the planet itself. MAVEN3D is available at the MAVEN public website at: https://lasp.colorado.edu/maven/sdc/public/pages/maven3d/ The Magnetospheric MultiScale Mission (MMS) consists of one hundred instruments on four spacecraft flying in formation around Earth, investigating the interactions between the solar wind and Earth's magnetic field. While the highest temporal resolution data isn't received and processed until later, continuous daily observations of the particle and field environments are made available as soon as they are received. Traditional `quick-look' static plots have long been the first interaction with data from a mission of this nature. Our new 3D Quicklook viewer allows data from all four spacecraft to be viewed in an interactive web application as soon as the data is ingested into the MMS Science Data Center, less than one day after collection, in order to better help identify scientifically interesting data.

  8. Multi-Mission Simulation and Visualization for Real-Time Telemetry Display, Playback and EDL Event Reconstruction

    NASA Technical Reports Server (NTRS)

    Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.

    2012-01-01

    he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.

  9. Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys

    PubMed Central

    Liu, Bing

    2017-01-01

    Despite the enduring interest in motion integration, a direct measure of the space–time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus–response correlations across space and time, computing the linear space–time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms. SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space–time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use all available motion signals uniformly, but rather weights motion preferentially in a narrow band at approximately one-third the radius of the stimulus. Although not universal, the filter predicts responses to other types of stimuli, demonstrating a remarkable degree of generalization that may lead to a deeper understanding of visual motion processing. PMID:28003348

  10. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  11. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.

    PubMed

    Cirillo, Mario; Scomazzoni, Francesco; Cirillo, Luigi; Cadioli, Marcello; Simionato, Franco; Iadanza, Antonella; Kirchin, Miles; Righi, Claudio; Anzalone, Nicoletta

    2013-12-01

    To compare 3T elliptical-centric CE MRA with 3T TOF MRA for the detection and characterization of unruptured intracranial aneurysms (UIAs), by using digital subtracted angiography (DSA) as reference. Twenty-nine patients (12 male, 17 female; mean age: 62 years) with 41 aneurysms (34 saccular, 7 fusiform; mean diameter: 8.85 mm [range 2.0-26.4mm]) were evaluated with MRA at 3T each underwent 3D TOF-MRA examination without contrast and then a 3D contrast-enhanced (CE-MRA) examination with 0.1mmol/kg bodyweight gadobenate dimeglumine and k-space elliptic mapping (Contrast ENhanced Timing Robust Angiography [CENTRA]). Both TOF and CE-MRA images were used to evaluate morphologic features that impact the risk of rupture and the selection of a treatment. Almost half (20/41) of UIAs were located in the internal carotid artery, 7 in the anterior communicating artery, 9 in the middle cerebral artery and 4 in the vertebro-basilar arterial system. All patients also underwent DSA before or after the MR examination. The CE-MRA results were in all cases consistent with the DSA dataset. No differences were noted between 3D TOF-MRA and CE-MRA concerning the detection and location of the 41 aneurysms or visualization of the parental artery. Differences were apparent concerning the visualization of morphologic features, especially for large aneurysms (>13 mm). An irregular sac shape was demonstrated for 21 aneurysms on CE-MRA but only 13/21 aneurysms on 3D TOF-MRA. Likewise, CE-MRA permitted visualization of an aneurismal neck and calculation of the sac/neck ratio for all 34 aneurysms with a neck demonstrated at DSA. Conversely, a neck was visible for only 24/34 aneurysms at 3D TOF-MRA. 3D CE-MRA detected 15 aneurysms with branches originating from the sac and/or neck, whereas branches were recognized in only 12/15 aneurysms at 3D TOF-MRA. For evaluation of intracranial aneurysms at 3T, 3D CE-MRA is superior to 3D TOF-MRA for assessment of sac shape, detection of aneurysmal neck, and visualization of branches originating from the sac or neck itself, if the size of the aneurysm is greater than 13 mm. 3T 3D CE-MRA is as accurate and effective as DSA for the evaluation of UIAs. Copyright © 2013. Published by Elsevier Ireland Ltd.

  12. Advancements to Visualization Control System (VCS, part of UV-CDAT), a Visualization Package Designed for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.

    2017-12-01

    Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as upgrades that we are planning in the near future which will improve its ease of use and reliability and extend its capabilities.

  13. Visual Analytics approach for Lightning data analysis and cell nowcasting

    NASA Astrophysics Data System (ADS)

    Peters, Stefan; Meng, Liqiu; Betz, Hans-Dieter

    2013-04-01

    Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong wind and tornadoes, are responsible for most weather damages (Bonelli & Marcacci 2008). Thus to understand, identify, track and predict lightning cells is essential. An important aspect for decision makers is an appropriate visualization of weather analysis results including the representation of dynamic lightning cells. This work focuses on the visual analysis of lightning data and lightning cell nowcasting which aim to detect and understanding spatial-temporal patterns of moving thunderstorms. Lightnings are described by 3D coordinates and the exact occurrence time of lightnings. The three-dimensionally resolved total lightning data used in our experiment are provided by the European lightning detection network LINET (Betz et al. 2009). In all previous works, lightning point data, detected lightning cells and derived cell tracks are visualized in 2D. Lightning cells are either displayed as 2D convex hulls with or without the underlying lightning point data. Due to recent improvements of lightning data detection and accuracy, there is a growing demand on multidimensional and interactive visualization in particular for decision makers. In a first step lightning cells are identified and tracked. Then an interactive graphic user interface (GUI) is developed to investigate the dynamics of the lightning cells: e.g. changes of cell density, location, extension as well as merging and splitting behavior in 3D over time. In particular a space time cube approach is highlighted along with statistical analysis. Furthermore a lightning cell nowcasting is conducted and visualized. The idea thereby is to predict the following cell features for the next 10-60 minutes including location, centre, extension, density, area, volume, lifetime and cell feature probabilities. The main focus will be set to a suitable interactive visualization of the predicted featured within the GUI. The developed visual exploring tool for the purpose of supporting decision making is investigated for two determined user groups: lightning experts and interested lay public. Betz HD, Schmidt K, Oettinger WP (2009) LINET - An International VLF/LF Lightning Detection Network in Europe. In: Betz HD, Schumann U, Laroche P (eds) Lightning: Principles, Instruments and Applications. Springer Netherlands, Dordrecht, pp 115-140 Bonelli P, Marcacci P (2008) Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy. Nat. Hazards Earth Syst. Sci 8(5):1187-1198

  14. Tactical 3D Model Generation using Structure-From-Motion on Video from Unmanned Systems

    DTIC Science & Technology

    2015-04-01

    available SfM application known as VisualSFM .6,7 VisualSFM is an end-user, “off-the-shelf” implementation of SfM that is easy to configure and used for...most 3D model generation applications from imagery. While the usual interface with VisualSFM is through their graphical user interface (GUI), we will be...of our system.5 There are two types of 3D model generation available within VisualSFM ; sparse and dense reconstruction. Sparse reconstruction begins

  15. SU-E-J-214: MR Protocol Development to Visualize Sirius MRI Markers in Prostate Brachytherapy Patients for MR-Based Post-Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, T; Wang, J; Frank, S

    Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGRmore » sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3.2±1.6mm in patients with no endorectal coil, 2.3±0.8mm in patients with 30cc-PFC-filled endorectal-coil and 5.0±1.8mm in patients with 50cc-PFC-filled endorectal-coil. Conclusion: An MR protocol to visualize positive-contrast Sirius markers to assist in the identification of negative-contrast seeds was demonstrated. S Frank is a co-founder of C4 Imaging LLC, the manufacturer of the MRI markers.« less

  16. Vertical visual features have a strong influence on cuttlefish camouflage.

    PubMed

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  17. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity

    NASA Astrophysics Data System (ADS)

    Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.

    2018-04-01

    We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity

  18. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement.

    PubMed

    Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes.

  19. Neural correlates of olfactory and visual memory performance in 3D-simulated mazes after intranasal insulin application.

    PubMed

    Brünner, Yvonne F; Rodriguez-Raecke, Rea; Mutic, Smiljana; Benedict, Christian; Freiherr, Jessica

    2016-10-01

    This fMRI study intended to establish 3D-simulated mazes with olfactory and visual cues and examine the effect of intranasally applied insulin on memory performance in healthy subjects. The effect of insulin on hippocampus-dependent brain activation was explored using a double-blind and placebo-controlled design. Following intranasal administration of either insulin (40IU) or placebo, 16 male subjects participated in two experimental MRI sessions with olfactory and visual mazes. Each maze included two separate runs. The first was an encoding maze during which subjects learned eight olfactory or eight visual cues at different target locations. The second was a recall maze during which subjects were asked to remember the target cues at spatial locations. For eleven included subjects in the fMRI analysis we were able to validate brain activation for odor perception and visuospatial tasks. However, we did not observe an enhancement of declarative memory performance in our behavioral data or hippocampal activity in response to insulin application in the fMRI analysis. It is therefore possible that intranasal insulin application is sensitive to the methodological variations e.g. timing of task execution and dose of application. Findings from this study suggest that our method of 3D-simulated mazes is feasible for studying neural correlates of olfactory and visual memory performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Interactive 3D visualization for theoretical virtual observatories

    NASA Astrophysics Data System (ADS)

    Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-06-01

    Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  1. An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training

    NASA Astrophysics Data System (ADS)

    Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel

    2017-03-01

    Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic visualization platform for exploring and understanding human anatomy. This system can present medical imaging data in three dimensions and allows for direct physical interaction and manipulation by the viewer. This should provide numerous benefits over traditional, 2D display and interaction modalities, and in our analysis, we aim to quantify and qualify users' visual and motor interactions with the virtual environment when employing this interactive display as a 3D didactic tool.

  2. [Clinical analysis of real-time iris recognition guided LASIK with femtosecond laser flap creation for myopic astigmatism].

    PubMed

    Jie, Li-ming; Wang, Qian; Zheng, Lin

    2013-08-01

    To assess the safety, efficacy, stability and changes in cylindrical degree and axis after real-time iris recognition guided LASIK with femtosecond laser flap creation for the correction of myopic astigmatism. Retrospective case series. This observational case study comprised 136 patients (249 eyes) with myopic astigmatism in a 6-month trial. Patients were divided into 3 groups according to the pre-operative cylindrical degree: Group 1, -0.75 to -1.25 D, 106 eyes;Group 2, -1.50 to -2.25 D, 89 eyes and Group 3, -2.50 to -5.00 D, 54 eyes. They were also grouped by pre-operative astigmatism axis:Group A, with the rule astigmatism (WTRA), 156 eyes; Group B, against the rule astigmatism (ATRA), 64 eyes;Group C, oblique axis astigmatism, 29 eyes. After femtosecond laser flap created, real-time iris recognized excimer ablation was performed. The naked visual acuity, the best-corrected visual acuity, the degree and axis of astigmatism were analyzed and compared at 1, 3 and 6 months postoperatively. Static iris recognition detected that eye cyclotorsional misalignment was 2.37° ± 2.16°, dynamic iris recognition detected that the intraoperative cyclotorsional misalignment range was 0-4.3°. Six months after operation, the naked visual acuity was 0.5 or better in 100% cases. No eye lost ≥ 1 line of best spectacle-corrected visual acuity (BSCVA). Six months after operation, the naked vision of 227 eyes surpassed the BSCVA, and 87 eyes gained 1 line of BSCVA. The degree of astigmatism decreased from (-1.72 ± 0.77) D (pre-operation) to (-0.29 ± 0.25) D (post-operation). Six months after operation, WTRA from 157 eyes (pre-operation) decreased to 43 eyes (post-operation), ATRA from 63 eyes (pre-operation) decreased to 28 eyes (post-operation), oblique astigmatism increased from 29 eyes to 34 eyes and 144 eyes became non-astigmatism. The real-time iris recognition guided LASIK with femtosecond laser flap creation can compensate deviation from eye cyclotorsion, decrease iatrogenic astigmatism, and provides more precise treatment for the degree and axis of astigmatism .It is an effective and safe procedure for the treatment of myopic astigmatism.

  3. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography.

    PubMed

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Véronique

    2014-10-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment, the epidermis was not removed. In conclusion, HD-OCT imaging permits real-time 3-D visualization of the impact of selected agents on human skin allografts. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Stereoscopic augmented reality for laparoscopic surgery.

    PubMed

    Kang, Xin; Azizian, Mahdi; Wilson, Emmanuel; Wu, Kyle; Martin, Aaron D; Kane, Timothy D; Peters, Craig A; Cleary, Kevin; Shekhar, Raj

    2014-07-01

    Conventional laparoscopes provide a flat representation of the three-dimensional (3D) operating field and are incapable of visualizing internal structures located beneath visible organ surfaces. Computed tomography (CT) and magnetic resonance (MR) images are difficult to fuse in real time with laparoscopic views due to the deformable nature of soft-tissue organs. Utilizing emerging camera technology, we have developed a real-time stereoscopic augmented-reality (AR) system for laparoscopic surgery by merging live laparoscopic ultrasound (LUS) with stereoscopic video. The system creates two new visual cues: (1) perception of true depth with improved understanding of 3D spatial relationships among anatomical structures, and (2) visualization of critical internal structures along with a more comprehensive visualization of the operating field. The stereoscopic AR system has been designed for near-term clinical translation with seamless integration into the existing surgical workflow. It is composed of a stereoscopic vision system, a LUS system, and an optical tracker. Specialized software processes streams of imaging data from the tracked devices and registers those in real time. The resulting two ultrasound-augmented video streams (one for the left and one for the right eye) give a live stereoscopic AR view of the operating field. The team conducted a series of stereoscopic AR interrogations of the liver, gallbladder, biliary tree, and kidneys in two swine. The preclinical studies demonstrated the feasibility of the stereoscopic AR system during in vivo procedures. Major internal structures could be easily identified. The system exhibited unobservable latency with acceptable image-to-video registration accuracy. We presented the first in vivo use of a complete system with stereoscopic AR visualization capability. This new capability introduces new visual cues and enhances visualization of the surgical anatomy. The system shows promise to improve the precision and expand the capacity of minimally invasive laparoscopic surgeries.

  5. 3D Visualization for Planetary Missions

    NASA Astrophysics Data System (ADS)

    DeWolfe, A. W.; Larsen, K.; Brain, D.

    2018-04-01

    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  6. Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.

    PubMed

    Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir

    2016-06-01

    This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.

  7. Delta: a new web-based 3D genome visualization and analysis platform.

    PubMed

    Tang, Bixia; Li, Feifei; Li, Jing; Zhao, Wenming; Zhang, Zhihua

    2018-04-15

    Delta is an integrative visualization and analysis platform to facilitate visually annotating and exploring the 3D physical architecture of genomes. Delta takes Hi-C or ChIA-PET contact matrix as input and predicts the topologically associating domains and chromatin loops in the genome. It then generates a physical 3D model which represents the plausible consensus 3D structure of the genome. Delta features a highly interactive visualization tool which enhances the integration of genome topology/physical structure with extensive genome annotation by juxtaposing the 3D model with diverse genomic assay outputs. Finally, by visually comparing the 3D model of the β-globin gene locus and its annotation, we speculated a plausible transitory interaction pattern in the locus. Experimental evidence was found to support this speculation by literature survey. This served as an example of intuitive hypothesis testing with the help of Delta. Delta is freely accessible from http://delta.big.ac.cn, and the source code is available at https://github.com/zhangzhwlab/delta. zhangzhihua@big.ac.cn. Supplementary data are available at Bioinformatics online.

  8. Bringing 3D Printing to Geophysical Science Education

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  9. Prevalence of amblyopia and refractive errors in an unscreened population of children.

    PubMed

    Polling, Jan-Roelof; Loudon, Sjoukje E; Klaver, Caroline C W

    2012-11-01

    To describe the frequency of refractive errors and amblyopia in unscreened children aged 2 months to 12 years from a rural town in Poland. Five hundred ninety-one children were identified by medical records and examined in a standardized manner.Visual acuity was measured using LogMAR charts; refractive error was determined using retinoscopy or autorefraction after cycloplegia. Myopia was defined as spherical equivalent (SE) ≤ -0.50 D, emmetropia as SE between -0.5 D and+0.5 D, mild hyperopia as SE between +0.5 D and +2.0 D, and high hyperopia as SE Q+2.0 D. Amblyopia was classified as best-corrected visual acuity ≥0.3 (≤ 20/40) LogMAR, in combination with a 2 LogMAR line difference between the two eyes and the presence of an amblyogenic factor. Refractive errors ranged from 84.2% in children aged up to 2 years to 75.5% in those aged 10 to 12 years.Refractive error showed a myopic shift with age; myopia prevalence increased from 2.2% in those aged 6 to 7 years to 6.3% in those aged 10 to 12 years. Of the examined children, 77 (16.3%) had refractive errors, with visual loss; of these,60 (78%) did not use corrections. The prevalence of amblyopia was 3.1%, and refractive error attributed to the amblyopiain 9 of 13 (69%) children. Refractive errors are common in Caucasian children and often remain undiagnosed. The prevalence of amblyopia was three times higher in this unscreened population compared with screened populations. Greater awarenessof these common treatable visual conditions in children is warranted.

  10. Time within time: 3D printed sculptures within holographic art practice

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Ren; Richardson, Martin

    2015-03-01

    Holography is a time-based medium, which uses its own aesthetics and techniques to interpret colour and light. This exclusive descriptive language does not simply represent a particular scenario in the moment of recording, but also documents the performance light during the shooting process. Nowadays 3D graphic software and Internet offer practitioners greater mobility in both the development and the delivery of their artwork. Furthermore, the diverse web-based social media presents unlimited and various spaces to facilitate artists in the exchange of creative knowledge, it enables them to collaborate on their projects with external connections - audience, specialists, etc. Within the analogue holography art practice, there is a primary lack of interface, or, in other words, it cannot utilise any digital creative tools. 3D printing makes it possible to bridge the gap between cyber space and the holographic world; even more so, as this emerging technique also becomes a platform, which can connect computational data and light information. The application of 3D printing in contemporary art will reshape the process of creation, as well as the form of visual narrative itself. New technologies continually and increasingly involve the projection of another artistic dimension, and the term "visual" embarks on challenging the generally accepted notion of understanding art and interacting with it. As new pathways of practice are established, it will take years to build a complete understanding of this medium in order to be able to take a full advantage of the benefits its use offers. This paper is aimed at looking for the potential new ways of artistic expression, deriving from the interrelation between analogue holography and 3D printing. It will also attempt an articulate assessment of 3D printing within the dynamic holographic aesthetics.

  11. High End Visualization of Geophysical Datasets Using Immersive Technology: The SIO Visualization Center.

    NASA Astrophysics Data System (ADS)

    Newman, R. L.

    2002-12-01

    How many images can you display at one time with Power Point without getting "postage stamps"? Do you have fantastic datasets that you cannot view because your computer is too slow/small? Do you assume a few 2-D images of a 3-D picture are sufficient? High-end visualization centers can minimize and often eliminate these problems. The new visualization center [http://siovizcenter.ucsd.edu] at Scripps Institution of Oceanography [SIO] immerses users into a virtual world by projecting 3-D images onto a Panoram GVR-120E wall-sized floor-to-ceiling curved screen [7' x 23'] that has 3.2 mega-pixels of resolution. The Infinite Reality graphics subsystem is driven by a single-pipe SGI Onyx 3400 with a system bandwidth of 44 Gbps. The Onyx is powered by 16 MIPS R12K processors and 16 GB of addressable memory. The system is also equipped with transmitters and LCD shutter glasses which permit stereographic 3-D viewing of high-resolution images. This center is ideal for groups of up to 60 people who can simultaneously view these large-format images. A wide range of hardware and software is available, giving the users a totally immersive working environment in which to display, analyze, and discuss large datasets. The system enables simultaneous display of video and audio streams from sources such as SGI megadesktop and stereo megadesktop, S-VHS video, DVD video, and video from a Macintosh or PC. For instance, one-third of the screen might be displaying S-VHS video from a remotely-operated-vehicle [ROV], while the remaining portion of the screen might be used for an interactive 3-D flight over the same parcel of seafloor. The video and audio combinations using this system are numerous, allowing users to combine and explore data and images in innovative ways, greatly enhancing scientists' ability to visualize, understand and collaborate on complex datasets. In the not-distant future, with the rapid growth in networking speeds in the US, it will be possible for Earth Sciences Departments to collaborate effectively while limiting the amount of physical travel required. This includes porting visualization content to the popular, low-cost Geowall visualization systems, and providing web-based access to databanks filled with stock geoscience visualizations.

  12. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569

  13. Timing of target discrimination in human frontal eye fields.

    PubMed

    O'Shea, Jacinta; Muggleton, Neil G; Cowey, Alan; Walsh, Vincent

    2004-01-01

    Frontal eye field (FEF) neurons discharge in response to behaviorally relevant stimuli that are potential targets for saccades. Distinct visual and motor processes have been dissociated in the FEF of macaque monkeys, but little is known about the visual processing capacity of FEF in humans. We used double-pulse transcranial magnetic stimulation [(d)TMS] to investigate the timing of target discrimination during visual conjunction search. We applied dual TMS pulses separated by 40 msec over the right FEF and vertex. These were applied in five timing conditions to sample separate time windows within the first 200 msec of visual processing. (d)TMS impaired search performance, reflected in reduced d' scores. This effect was limited to a time window between 40 and 80 msec after search array onset. These parameters correspond with single-cell activity in FEF that predicts monkeys' behavioral reports on hit, miss, false alarm, and correct rejection trials. Our findings demonstrate a crucial early role for human FEF in visual target discrimination that is independent of saccade programming.

  14. Reliability of visual and instrumental color matching.

    PubMed

    Igiel, Christopher; Lehmann, Karl Martin; Ghinea, Razvan; Weyhrauch, Michael; Hangx, Ysbrand; Scheller, Herbert; Paravina, Rade D

    2017-09-01

    The aim of this investigation was to evaluate intra-rater and inter-rater reliability of visual and instrumental shade matching. Forty individuals with normal color perception participated in this study. The right maxillary central incisor of a teaching model was prepared and restored with 10 feldspathic all-ceramic crowns of different shades. A shade matching session consisted of the observer (rater) visually selecting the best match by using VITA classical A1-D4 (VC) and VITA Toothguide 3D Master (3D) shade guides and the VITA Easyshade Advance intraoral spectrophotometer (ES) to obtain both VC and 3D matches. Three shade matching sessions were held with 4 to 6 weeks between sessions. Intra-rater reliability was assessed based on the percentage of agreement for the three sessions for the same observer, whereas the inter-rater reliability was calculated as mean percentage of agreement between different observers. The Fleiss' Kappa statistical analysis was used to evaluate visual inter-rater reliability. The mean intra-rater reliability for the visual shade selection was 64(11) for VC and 48(10) for 3D. The corresponding ES values were 96(4) for both VC and 3D. The percentages of observers who matched the same shade with VC and 3D were 55(10) and 43(12), respectively, while corresponding ES values were 88(8) for VC and 92(4) for 3D. The results for visual shade matching exhibited a high to moderate level of inconsistency for both intra-rater and inter-rater comparisons. The VITA Easyshade Advance intraoral spectrophotometer exhibited significantly better reliability compared with visual shade selection. This study evaluates the ability of observers to consistently match the same shade visually and with a dental spectrophotometer in different sessions. The intra-rater and inter-rater reliability (agreement of repeated shade matching) of visual and instrumental tooth color matching strongly suggest the use of color matching instruments as a supplementary tool in everyday dental practice to enhance the esthetic outcome. © 2017 Wiley Periodicals, Inc.

  15. Differential patterns of 2D location versus depth decoding along the visual hierarchy.

    PubMed

    Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D

    2017-02-15

    Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Visual Feedback of Tongue Movement for Novel Speech Sound Learning

    PubMed Central

    Katz, William F.; Mehta, Sonya

    2015-01-01

    Pronunciation training studies have yielded important information concerning the processing of audiovisual (AV) information. Second language (L2) learners show increased reliance on bottom-up, multimodal input for speech perception (compared to monolingual individuals). However, little is known about the role of viewing one's own speech articulation processes during speech training. The current study investigated whether real-time, visual feedback for tongue movement can improve a speaker's learning of non-native speech sounds. An interactive 3D tongue visualization system based on electromagnetic articulography (EMA) was used in a speech training experiment. Native speakers of American English produced a novel speech sound (/ɖ/; a voiced, coronal, palatal stop) before, during, and after trials in which they viewed their own speech movements using the 3D model. Talkers' productions were evaluated using kinematic (tongue-tip spatial positioning) and acoustic (burst spectra) measures. The results indicated a rapid gain in accuracy associated with visual feedback training. The findings are discussed with respect to neural models for multimodal speech processing. PMID:26635571

  17. Intuitive presentation of clinical forensic data using anonymous and person-specific 3D reference manikins.

    PubMed

    Urschler, Martin; Höller, Johannes; Bornik, Alexander; Paul, Tobias; Giretzlehner, Michael; Bischof, Horst; Yen, Kathrin; Scheurer, Eva

    2014-08-01

    The increasing use of CT/MR devices in forensic analysis motivates the need to present forensic findings from different sources in an intuitive reference visualization, with the aim of combining 3D volumetric images along with digital photographs of external findings into a 3D computer graphics model. This model allows a comprehensive presentation of forensic findings in court and enables comparative evaluation studies correlating data sources. The goal of this work was to investigate different methods to generate anonymous and patient-specific 3D models which may be used as reference visualizations. The issue of registering 3D volumetric as well as 2D photographic data to such 3D models is addressed to provide an intuitive context for injury documentation from arbitrary modalities. We present an image processing and visualization work-flow, discuss the major parts of this work-flow, compare the different investigated reference models, and show a number of cases studies that underline the suitability of the proposed work-flow for presenting forensically relevant information in 3D visualizations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Animation Strategies for Smooth Transformations Between Discrete Lods of 3d Building Models

    NASA Astrophysics Data System (ADS)

    Kada, Martin; Wichmann, Andreas; Filippovska, Yevgeniya; Hermes, Tobias

    2016-06-01

    The cartographic 3D visualization of urban areas has experienced tremendous progress over the last years. An increasing number of applications operate interactively in real-time and thus require advanced techniques to improve the quality and time response of dynamic scenes. The main focus of this article concentrates on the discussion of strategies for smooth transformation between two discrete levels of detail (LOD) of 3D building models that are represented as restricted triangle meshes. Because the operation order determines the geometrical and topological properties of the transformation process as well as its visual perception by a human viewer, three different strategies are proposed and subsequently analyzed. The simplest one orders transformation operations by the length of the edges to be collapsed, while the other two strategies introduce a general transformation direction in the form of a moving plane. This plane either pushes the nodes that need to be removed, e.g. during the transformation of a detailed LOD model to a coarser one, towards the main building body, or triggers the edge collapse operations used as transformation paths for the cartographic generalization.

  19. Predicting Vision-Related Disability in Glaucoma.

    PubMed

    Abe, Ricardo Y; Diniz-Filho, Alberto; Costa, Vital P; Wu, Zhichao; Medeiros, Felipe A

    2018-01-01

    To present a new methodology for investigating predictive factors associated with development of vision-related disability in glaucoma. Prospective, observational cohort study. Two hundred thirty-six patients with glaucoma followed up for an average of 4.3±1.5 years. Vision-related disability was assessed by the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at baseline and at the end of follow-up. A latent transition analysis model was used to categorize NEI VFQ-25 results and to estimate the probability of developing vision-related disability during follow-up. Patients were tested with standard automated perimetry (SAP) at 6-month intervals, and evaluation of rates of visual field change was performed using mean sensitivity (MS) of the integrated binocular visual field. Baseline disease severity, rate of visual field loss, and duration of follow-up were investigated as predictive factors for development of disability during follow-up. The relationship between baseline and rates of visual field deterioration and the probability of vision-related disability developing during follow-up. At baseline, 67 of 236 (28%) glaucoma patients were classified as disabled based on NEI VFQ-25 results, whereas 169 (72%) were classified as nondisabled. Patients classified as nondisabled at baseline had 14.2% probability of disability developing during follow-up. Rates of visual field loss as estimated by integrated binocular MS were almost 4 times faster for those in whom disability developed versus those in whom it did not (-0.78±1.00 dB/year vs. -0.20±0.47 dB/year, respectively; P < 0.001). In the multivariate model, each 1-dB lower baseline binocular MS was associated with 34% higher odds of disability developing over time (odds ratio [OR], 1.34; 95% confidence interval [CI], 1.06-1.70; P = 0.013). In addition, each 0.5-dB/year faster rate of loss of binocular MS during follow-up was associated with a more than 3.5 times increase in the risk of disability developing (OR, 3.58; 95% CI, 1.56-8.23; P = 0.003). A new methodology for classification and analysis of change in patient-reported quality-of-life outcomes allowed construction of models for predicting vision-related disability in glaucoma. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  20. User Centered, Application Independent Visualization of National Airspace Data

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Hinton, Susan E.

    2011-01-01

    This paper describes an application independent software tool, IV4D, built to visualize animated and still 3D National Airspace System (NAS) data specifically for aeronautics engineers who research aggregate, as well as single, flight efficiencies and behavior. IV4D was origin ally developed in a joint effort between the National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (A FRL) to support the visualization of air traffic data from the Airspa ce Concept Evaluation System (ACES) simulation program. The three mai n challenges tackled by IV4D developers were: 1) determining how to d istill multiple NASA data formats into a few minimal dataset types; 2 ) creating an environment, consisting of a user interface, heuristic algorithms, and retained metadata, that facilitates easy setup and fa st visualization; and 3) maximizing the user?s ability to utilize the extended range of visualization available with AFRL?s existing 3D te chnologies. IV4D is currently being used by air traffic management re searchers at NASA?s Ames and Langley Research Centers to support data visualizations.

  1. Vision System Measures Motions of Robot and External Objects

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Matthies, Larry

    2008-01-01

    A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem (the subsystem that estimates the motion of the camera pair relative to the stationary background) utilizes the 3D information from stereoscopy and the 2D information from optical flow. It computes the relationship between the 3D and 2D motions and uses a least-mean-squares technique to estimate motion parameters. The least-mean-squares technique is suitable for real-time implementation when the number of external-moving-object pixels is smaller than the number of stationary-background pixels.

  2. Denoising imaging polarimetry by adapted BM3D method.

    PubMed

    Tibbs, Alexander B; Daly, Ilse M; Roberts, Nicholas W; Bull, David R

    2018-04-01

    In addition to the visual information contained in intensity and color, imaging polarimetry allows visual information to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and compares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm, Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.

  3. A streaming-based solution for remote visualization of 3D graphics on mobile devices.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea

    2007-01-01

    Mobile devices such as Personal Digital Assistants, Tablet PCs, and cellular phones have greatly enhanced user capability to connect to remote resources. Although a large set of applications are now available bridging the gap between desktop and mobile devices, visualization of complex 3D models is still a task hard to accomplish without specialized hardware. This paper proposes a system where a cluster of PCs, equipped with accelerated graphics cards managed by the Chromium software, is able to handle remote visualization sessions based on MPEG video streaming involving complex 3D models. The proposed framework allows mobile devices such as smart phones, Personal Digital Assistants (PDAs), and Tablet PCs to visualize objects consisting of millions of textured polygons and voxels at a frame rate of 30 fps or more depending on hardware resources at the server side and on multimedia capabilities at the client side. The server is able to concurrently manage multiple clients computing a video stream for each one; resolution and quality of each stream is tailored according to screen resolution and bandwidth of the client. The paper investigates in depth issues related to latency time, bit rate and quality of the generated stream, screen resolutions, as well as frames per second displayed.

  4. Real-time colouring and filtering with graphics shaders

    NASA Astrophysics Data System (ADS)

    Vohl, D.; Fluke, C. J.; Barnes, D. G.; Hassan, A. H.

    2017-11-01

    Despite the popularity of the Graphics Processing Unit (GPU) for general purpose computing, one should not forget about the practicality of the GPU for fast scientific visualization. As astronomers have increasing access to three-dimensional (3D) data from instruments and facilities like integral field units and radio interferometers, visualization techniques such as volume rendering offer means to quickly explore spectral cubes as a whole. As most 3D visualization techniques have been developed in fields of research like medical imaging and fluid dynamics, many transfer functions are not optimal for astronomical data. We demonstrate how transfer functions and graphics shaders can be exploited to provide new astronomy-specific explorative colouring methods. We present 12 shaders, including four novel transfer functions specifically designed to produce intuitive and informative 3D visualizations of spectral cube data. We compare their utility to classic colour mapping. The remaining shaders highlight how common computation like filtering, smoothing and line ratio algorithms can be integrated as part of the graphics pipeline. We discuss how this can be achieved by utilizing the parallelism of modern GPUs along with a shading language, letting astronomers apply these new techniques at interactive frame rates. All shaders investigated in this work are included in the open source software shwirl (Vohl 2017).

  5. A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data.

    PubMed

    Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme

    2015-09-18

    Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data

    PubMed Central

    Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme

    2015-01-01

    Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. PMID:25990738

  7. Direct cortical control of 3D neuroprosthetic devices.

    PubMed

    Taylor, Dawn M; Tillery, Stephen I Helms; Schwartz, Andrew B

    2002-06-07

    Three-dimensional (3D) movement of neuroprosthetic devices can be controlled by the activity of cortical neurons when appropriate algorithms are used to decode intended movement in real time. Previous studies assumed that neurons maintain fixed tuning properties, and the studies used subjects who were unaware of the movements predicted by their recorded units. In this study, subjects had real-time visual feedback of their brain-controlled trajectories. Cell tuning properties changed when used for brain-controlled movements. By using control algorithms that track these changes, subjects made long sequences of 3D movements using far fewer cortical units than expected. Daily practice improved movement accuracy and the directional tuning of these units.

  8. A Hybrid Synthetic Vision System for the Tele-operation of Unmanned Vehicles

    NASA Technical Reports Server (NTRS)

    Delgado, Frank; Abernathy, Mike

    2004-01-01

    A system called SmartCam3D (SC3D) has been developed to provide enhanced situational awareness for operators of a remotely piloted vehicle. SC3D is a Hybrid Synthetic Vision System (HSVS) that combines live sensor data with information from a Synthetic Vision System (SVS). By combining the dual information sources, the operators are afforded the advantages of each approach. The live sensor system provides real-time information for the region of interest. The SVS provides information rich visuals that will function under all weather and visibility conditions. Additionally, the combination of technologies allows the system to circumvent some of the limitations from each approach. Video sensor systems are not very useful when visibility conditions are hampered by rain, snow, sand, fog, and smoke, while a SVS can suffer from data freshness problems. Typically, an aircraft or satellite flying overhead collects the data used to create the SVS visuals. The SVS data could have been collected weeks, months, or even years ago. To that extent, the information from an SVS visual could be outdated and possibly inaccurate. SC3D was used in the remote cockpit during flight tests of the X-38 132 and 131R vehicles at the NASA Dryden Flight Research Center. SC3D was also used during the operation of military Unmanned Aerial Vehicles. This presentation will provide an overview of the system, the evolution of the system, the results of flight tests, and future plans. Furthermore, the safety benefits of the SC3D over traditional and pure synthetic vision systems will be discussed.

  9. Automated UAV-based mapping for airborne reconnaissance and video exploitation

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Firoozfam, Pezhman; Goldstein, Norman; Wu, Linda; Dutkiewicz, Melanie; Pace, Paul; Naud, J. L. Pierre

    2009-05-01

    Airborne surveillance and reconnaissance are essential for successful military missions. Such capabilities are critical for force protection, situational awareness, mission planning, damage assessment and others. UAVs gather huge amount of video data but it is extremely labour-intensive for operators to analyse hours and hours of received data. At MDA, we have developed a suite of tools towards automated video exploitation including calibration, visualization, change detection and 3D reconstruction. The on-going work is to improve the robustness of these tools and automate the process as much as possible. Our calibration tool extracts and matches tie-points in the video frames incrementally to recover the camera calibration and poses, which are then refined by bundle adjustment. Our visualization tool stabilizes the video, expands its field-of-view and creates a geo-referenced mosaic from the video frames. It is important to identify anomalies in a scene, which may include detecting any improvised explosive devices (IED). However, it is tedious and difficult to compare video clips to look for differences manually. Our change detection tool allows the user to load two video clips taken from two passes at different times and flags any changes between them. 3D models are useful for situational awareness, as it is easier to understand the scene by visualizing it in 3D. Our 3D reconstruction tool creates calibrated photo-realistic 3D models from video clips taken from different viewpoints, using both semi-automated and automated approaches. The resulting 3D models also allow distance measurements and line-of- sight analysis.

  10. Intelligent Visualization of Geo-Information on the Future Web

    NASA Astrophysics Data System (ADS)

    Slusallek, P.; Jochem, R.; Sons, K.; Hoffmann, H.

    2012-04-01

    Visualization is a key component of the "Observation Web" and will become even more important in the future as geo data becomes more widely accessible. The common statement that "Data that cannot be seen, does not exist" is especially true for non-experts, like most citizens. The Web provides the most interesting platform for making data easily and widely available. However, today's Web is not well suited for the interactive visualization and exploration that is often needed for geo data. Support for 3D data was added only recently and at an extremely low level (WebGL), but even the 2D visualization capabilities of HTML e.g. (images, canvas, SVG) are rather limited, especially regarding interactivity. We have developed XML3D as an extension to HTML-5. It allows for compactly describing 2D and 3D data directly as elements of an HTML-5 document. All graphics elements are part of the Document Object Model (DOM) and can be manipulated via the same set of DOM events and methods that millions of Web developers use on a daily basis. Thus, XML3D makes highly interactive 2D and 3D visualization easily usable, not only for geo data. XML3D is supported by any WebGL-capable browser but we also provide native implementations in Firefox and Chromium. As an example, we show how OpenStreetMap data can be mapped directly to XML3D and visualized interactively in any Web page. We show how this data can be easily augmented with additional data from the Web via a few lines of Javascript. We also show how embedded semantic data (via RDFa) allows for linking the visualization back to the data's origin, thus providing an immersive interface for interacting with and modifying the original data. XML3D is used as key input for standardization within the W3C Community Group on "Declarative 3D for the Web" chaired by the DFKI and has recently been selected as one of the Generic Enabler for the EU Future Internet initiative.

  11. Desktop Cloud Visualization: the new technology to remote access 3D interactive applications in the Cloud.

    PubMed

    Torterolo, Livia; Ruffino, Francesco

    2012-01-01

    In the proposed demonstration we will present DCV (Desktop Cloud Visualization): a unique technology that allows users to remote access 2D and 3D interactive applications over a standard network. This allows geographically dispersed doctors work collaboratively and to acquire anatomical or pathological images and visualize them for further investigations.

  12. A survey of visually induced symptoms and associated factors in spectators of three dimensional stereoscopic movies

    PubMed Central

    2012-01-01

    Background The increasing popularity of commercial movies showing three dimensional (3D) computer generated images has raised concern about image safety and possible side effects on population health. This study aims to (1) quantify the occurrence of visually induced symptoms suffered by the spectators during and after viewing a commercial 3D movie and (2) to assess individual and environmental factors associated to those symptoms. Methods A cross-sectional survey was carried out using a paper based, self administered questionnaire. The questionnaire includes individual and movie characteristics and selected visually induced symptoms (tired eyes, double vision, headache, dizziness, nausea and palpitations). Symptoms were queried at 3 different times: during, right after and after 2 hours from the movie. Results We collected 953 questionnaires. In our sample, 539 (60.4%) individuals reported 1 or more symptoms during the movie, 392 (43.2%) right after and 139 (15.3%) at 2 hours from the movie. The most frequently reported symptoms were tired eyes (during the movie by 34.8%, right after by 24.0%, after 2 hours by 5.7% of individuals) and headache (during the movie by 13.7%, right after by 16.8%, after 2 hours by 8.3% of individuals). Individual history for frequent headache was associated with tired eyes (OR = 1.34, 95%CI = 1.01-1.79), double vision (OR = 1.96; 95%CI = 1.13-3.41), headache (OR = 2.09; 95%CI = 1.41-3.10) during the movie and of headache after the movie (OR = 1.64; 95%CI = 1.16-2.32). Individual susceptibility to car sickness, dizziness, anxiety level, movie show time, animation 3D movie were also associated to several other symptoms. Conclusions The high occurrence of visually induced symptoms resulting from this survey suggests the need of raising public awareness on possible discomfort that susceptible individuals may suffer during and after the vision of 3D movies. PMID:22974235

  13. Distributed augmented reality with 3-D lung dynamics--a planning tool concept.

    PubMed

    Hamza-Lup, Felix G; Santhanam, Anand P; Imielińska, Celina; Meeks, Sanford L; Rolland, Jannick P

    2007-01-01

    Augmented reality (AR) systems add visual information to the world by using advanced display techniques. The advances in miniaturization and reduced hardware costs make some of these systems feasible for applications in a wide set of fields. We present a potential component of the cyber infrastructure for the operating room of the future: a distributed AR-based software-hardware system that allows real-time visualization of three-dimensional (3-D) lung dynamics superimposed directly on the patient's body. Several emergency events (e.g., closed and tension pneumothorax) and surgical procedures related to lung (e.g., lung transplantation, lung volume reduction surgery, surgical treatment of lung infections, lung cancer surgery) could benefit from the proposed prototype.

  14. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    PubMed Central

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-01-01

    Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818

  15. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data.

    PubMed

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-10-15

    Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  16. A Case-Based Study with Radiologists Performing Diagnosis Tasks in Virtual Reality.

    PubMed

    Venson, José Eduardo; Albiero Berni, Jean Carlo; Edmilson da Silva Maia, Carlos; Marques da Silva, Ana Maria; Cordeiro d'Ornellas, Marcos; Maciel, Anderson

    2017-01-01

    In radiology diagnosis, medical images are most often visualized slice by slice. At the same time, the visualization based on 3D volumetric rendering of the data is considered useful and has increased its field of application. In this work, we present a case-based study with 16 medical specialists to assess the diagnostic effectiveness of a Virtual Reality interface in fracture identification over 3D volumetric reconstructions. We developed a VR volume viewer compatible with both the Oculus Rift and handheld-based head mounted displays (HMDs). We then performed user experiments to validate the approach in a diagnosis environment. In addition, we assessed the subjects' perception of the 3D reconstruction quality, ease of interaction and ergonomics, and also the users opinion on how VR applications can be useful in healthcare. Among other results, we have found a high level of effectiveness of the VR interface in identifying superficial fractures on head CTs.

  17. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  18. Toward the establishment of design guidelines for effective 3D perspective interfaces

    NASA Astrophysics Data System (ADS)

    Fitzhugh, Elisabeth; Dixon, Sharon; Aleva, Denise; Smith, Eric; Ghrayeb, Joseph; Douglas, Lisa

    2009-05-01

    The propagation of information operation technologies, with correspondingly vast amounts of complex network information to be conveyed, significantly impacts operator workload. Information management research is rife with efforts to develop schemes to aid operators to identify, review, organize, and retrieve the wealth of available data. Data may take on such distinct forms as intelligence libraries, logistics databases, operational environment models, or network topologies. Increased use of taxonomies and semantic technologies opens opportunities to employ network visualization as a display mechanism for diverse information aggregations. The broad applicability of network visualizations is still being tested, but in current usage, the complexity of densely populated abstract networks suggests the potential utility of 3D. Employment of 2.5D in network visualization, using classic perceptual cues, creates a 3D experience within a 2D medium. It is anticipated that use of 3D perspective (2.5D) will enhance user ability to visually inspect large, complex, multidimensional networks. Current research for 2.5D visualizations demonstrates that display attributes, including color, shape, size, lighting, atmospheric effects, and shadows, significantly impact operator experience. However, guidelines for utilization of attributes in display design are limited. This paper discusses pilot experimentation intended to identify potential problem areas arising from these cues and determine how best to optimize perceptual cue settings. Development of optimized design guidelines will ensure that future experiments, comparing network displays with other visualizations, are not confounded or impeded by suboptimal attribute characterization. Current experimentation is anticipated to support development of cost-effective, visually effective methods to implement 3D in military applications.

  19. Interactive Visualization of National Airspace Data in 4D (IV4D)

    DTIC Science & Technology

    2010-08-01

    Research Laboratory) JView graphics engine. All of the software, IV4D/Viewer/JView, is written in Java and is platform independent, meaning that it...both parts. 11 3.3.1.1 Airspace Volumes Once appropriate CSV or ACES XML airspace boundary files are selected from a standard Java File Chooser...persistence mechanism, Hibernate , was replaced with JDBC specific code and, over time, quite a bit of JDBC support code was added to the Viewer and to

  20. A framework for breast cancer visualization using augmented reality x-ray vision technique in mobile technology

    NASA Astrophysics Data System (ADS)

    Rahman, Hameedur; Arshad, Haslina; Mahmud, Rozi; Mahayuddin, Zainal Rasyid

    2017-10-01

    Breast Cancer patients who require breast biopsy has increased over the past years. Augmented Reality guided core biopsy of breast has become the method of choice for researchers. However, this cancer visualization has limitations to the extent of superimposing the 3D imaging data only. In this paper, we are introducing an Augmented Reality visualization framework that enables breast cancer biopsy image guidance by using X-Ray vision technique on a mobile display. This framework consists of 4 phases where it initially acquires the image from CT/MRI and process the medical images into 3D slices, secondly it will purify these 3D grayscale slices into 3D breast tumor model using 3D modeling reconstruction technique. Further, in visualization processing this virtual 3D breast tumor model has been enhanced using X-ray vision technique to see through the skin of the phantom and the final composition of it is displayed on handheld device to optimize the accuracy of the visualization in six degree of freedom. The framework is perceived as an improved visualization experience because the Augmented Reality x-ray vision allowed direct understanding of the breast tumor beyond the visible surface and direct guidance towards accurate biopsy targets.

  1. Human factors guidelines for applications of 3D perspectives: a literature review

    NASA Astrophysics Data System (ADS)

    Dixon, Sharon; Fitzhugh, Elisabeth; Aleva, Denise

    2009-05-01

    Once considered too processing-intense for general utility, application of the third dimension to convey complex information is facilitated by the recent proliferation of technological advancements in computer processing, 3D displays, and 3D perspective (2.5D) renderings within a 2D medium. The profusion of complex and rapidly-changing dynamic information being conveyed in operational environments has elevated interest in possible military applications of 3D technologies. 3D can be a powerful mechanism for clearer information portrayal, facilitating rapid and accurate identification of key elements essential to mission performance and operator safety. However, implementation of 3D within legacy systems can be costly, making integration prohibitive. Therefore, identifying which tasks may benefit from 3D or 2.5D versus simple 2D visualizations is critical. Unfortunately, there is no "bible" of human factors guidelines for usability optimization of 2D, 2.5D, or 3D visualizations nor for determining which display best serves a particular application. Establishing such guidelines would provide an invaluable tool for designers and operators. Defining issues common to each will enhance design effectiveness. This paper presents the results of an extensive review of open source literature addressing 3D information displays, with particular emphasis on comparison of true 3D with 2D and 2.5D representations and their utility for military tasks. Seventy-five papers are summarized, highlighting militarily relevant applications of 3D visualizations and 2.5D perspective renderings. Based on these findings, human factors guidelines for when and how to use these visualizations, along with recommendations for further research are discussed.

  2. The role of extra-foveal processing in 3D imaging

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.

    2017-03-01

    The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).

  3. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    PubMed Central

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2008-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444

  4. DspaceOgre 3D Graphics Visualization Tool

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  5. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  6. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.

    PubMed

    Kim, K; Lee, S

    2015-05-01

    Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Effects of Fasting During Ramadan Month on Cognitive Function in Muslim Athletes

    PubMed Central

    Tian, Ho-Heng; Aziz, Abdul-Rashid; Png, Weileen; Wahid, Mohamed Faizul; Yeo, Donald; Constance Png, Ai-Li

    2011-01-01

    Purpose Our study aimed to profile the effect of fasting during the Ramadan month on cognitive function in a group of healthy Muslim athletes. Methods Eighteen male athletes underwent computerized neuropsychological testing during (fasting) and after (non-fasting) Ramadan. Diet was standardized, and tests were performed at 0900h and 1600h to characterize potential time-of-day (TOD) interactions. Psychomotor function (processing speed), vigilance (visual attention), visual learning and memory, working memory (executive function), verbal learning and memory were examined. Capillary glucose, body temperature, urine specific gravity, and sleep volume were also recorded. Results Fasting effects were observed for psychomotor function (Cohen's d=1.3, P=0.01) and vigilance (d=0.6, P=0.004), with improved performance at 0900h during fasting; verbal learning and memory was poorer at 1600h (d=-0.8, P=0.03). A TOD effect was present for psychomotor function (d=-0.4, P<0.001), visual learning (d=-0.5, P=0.04), verbal learning and memory (d=-1.3, P=0.001), with poorer performances at 1600h. There was no significant fasting effect on visual learning and working memory. Conclusions Our results show that the effect of fasting on cognition is heterogeneous and domain-specific. Performance in functions requiring sustained rapid responses was better in the morning, declining in the late afternoon, whereas performance in non-speed dependent accuracy measures was more resilient. PMID:22375233

  8. Virtual Reality Website of Indonesia National Monument and Its Environment

    NASA Astrophysics Data System (ADS)

    Wardijono, B. A.; Hendajani, F.; Sudiro, S. A.

    2017-02-01

    National Monument (Monumen Nasional) is an Indonesia National Monument building where located in Jakarta. This monument is a symbol of Jakarta and it is a pride monument of the people in Jakarta and Indonesia country. This National Monument also has a museum about the history of the Indonesian country. To provide information to the general public, in this research we created and developed models of 3D graphics from the National Monument and the surrounding environment. Virtual Reality technology was used to display the visualization of the National Monument and the surrounding environment in 3D graphics form. Latest programming technology makes it possible to display 3D objects via the internet browser. This research used Unity3D and WebGL to make virtual reality models that can be implemented and showed on a Website. The result from this research is the development of 3-dimensional Website of the National Monument and its objects surrounding the environment that can be displayed through the Web browser. The virtual reality of whole objects was divided into a number of scenes, so that it can be displayed in real time visualization.

  9. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  10. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    PubMed

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  11. Dual-dimensional microscopy: real-time in vivo three-dimensional observation method using high-resolution light-field microscopy and light-field display.

    PubMed

    Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho

    2018-06-01

    Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    NASA Technical Reports Server (NTRS)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  13. Visualizing Terrestrial and Aquatic Systems in 3-D

    EPA Science Inventory

    The environmental modeling community has a long-standing need for affordable, easy-to-use tools that support 3-D visualization of complex spatial and temporal model output. The Visualization of Terrestrial and Aquatic Systems project (VISTAS) aims to help scientists produce effe...

  14. Holographic space: presence and absence in time

    NASA Astrophysics Data System (ADS)

    Chang, Yin-Ren; Richardson, Martin

    2017-03-01

    In terms of contemporary art, time-based media generally refers to artworks that have duration as a dimension and unfold to the viewer over time, that could be a video, slide, film, computer-based technologies or audio. As part of this category, holography pushes this visual-oriented narrative a step further, which brings a real 3D image to invite and allow audiences revisiting the scene of the past, at the moment of recording in space and time. Audiences could also experience the kinetic holographic aesthetics through constantly moving the viewing point or illumination source, which creates dynamic visual effects. In other words, when the audience and hologram remain still, the holographic image can only be perceived statically. This unique form of expression is not created by virtual simulation; the principal of wavefront reconstruction process made holographic art exceptional from other time-based media. This project integrates 3D printing technology to explore the nature of material aesthetics, transiting between material world and holographic space. In addition, this series of creation also reveals the unique temporal quality of a hologram's presence and absence, an ambiguous relationship existing in this media.

  15. Spatial 3D infrastructure: display-independent software framework, high-speed rendering electronics, and several new displays

    NASA Astrophysics Data System (ADS)

    Chun, Won-Suk; Napoli, Joshua; Cossairt, Oliver S.; Dorval, Rick K.; Hall, Deirdre M.; Purtell, Thomas J., II; Schooler, James F.; Banker, Yigal; Favalora, Gregg E.

    2005-03-01

    We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays - such as multiplanar, multiview, and electroholographic displays - naturally require different rendering methods. The adoption of these displays in the marketplace will be accelerated by a common software framework. The authors designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface. SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL supports legacy interfaces such as the OpenGL API. The authors" first implementation of SpatialGL uses multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality"s high-performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64 processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 x 768 x 3 digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality"s multiplanar Perspecta Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

  16. 3D Surface Reconstruction and Volume Calculation of Rills

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.

  17. Software Aids Visualization of Computed Unsteady Flow

    NASA Technical Reports Server (NTRS)

    Kao, David; Kenwright, David

    2003-01-01

    Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.

  18. D Web Visualization of Environmental Information - Integration of Heterogeneous Data Sources when Providing Navigation and Interaction

    NASA Astrophysics Data System (ADS)

    Herman, L.; Řezník, T.

    2015-08-01

    3D information is essential for a number of applications used daily in various domains such as crisis management, energy management, urban planning, and cultural heritage, as well as pollution and noise mapping, etc. This paper is devoted to the issue of 3D modelling from the levels of buildings to cities. The theoretical sections comprise an analysis of cartographic principles for the 3D visualization of spatial data as well as a review of technologies and data formats used in the visualization of 3D models. Emphasis was placed on the verification of available web technologies; for example, X3DOM library was chosen for the implementation of a proof-of-concept web application. The created web application displays a 3D model of the city district of Nový Lískovec in Brno, the Czech Republic. The developed 3D visualization shows a terrain model, 3D buildings, noise pollution, and other related information. Attention was paid to the areas important for handling heterogeneous input data, the design of interactive functionality, and navigation assistants. The advantages, limitations, and future development of the proposed concept are discussed in the conclusions.

  19. 3D topology of orientation columns in visual cortex revealed by functional optical coherence tomography.

    PubMed

    Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu

    2018-04-01

    Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.

  20. Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients.

    PubMed

    Wu, Zhichao; Saunders, Luke J; Daga, Fábio B; Diniz-Filho, Alberto; Medeiros, Felipe A

    2017-06-01

    To determine the time required to detect statistically significant progression for different rates of visual field loss using standard automated perimetry (SAP) when considering different frequencies of testing using a follow-up scheme that resembles clinical practice. Observational cohort study. One thousand seventy-two eyes of 665 patients with glaucoma followed up over an average of 4.3±0.9 years. Participants with 5 or more visual field tests over a 2- to 5-year period were included to derive the longitudinal measurement variability of SAP mean deviation (MD) using linear regressions. Estimates of variability then were used to reconstruct real-world visual field data by computer simulation to evaluate the time required to detect progression for various rates of visual field loss and different frequencies of testing. The evaluation was performed using a follow-up scheme that resembled clinical practice by requiring a set of 2 baseline tests and a confirmatory test to identify progression. Time (in years) required to detect progression. The time required to detect a statistically significant negative MD slope decreased as the frequency of testing increased, albeit not proportionally. For example, 80% of eyes with an MD loss of -2 dB/year would be detected after 3.3, 2.4, and 2.1 years when testing is performed once, twice, and thrice per year, respectively. For eyes with an MD loss of -0.5 dB/year, progression can be detected with 80% power after 7.3, 5.7, and 5.0 years, respectively. This study provides information on the time required to detect progression using MD trend analysis in glaucoma eyes when different testing frequencies are used. The smaller gains in the time to detect progression when testing is increased from twice to thrice per year suggests that obtaining 2 reliable tests at baseline followed by semiannual testing and confirmation of progression through repeat testing in the initial years of follow-up may provide a good compromise for detecting progression, while minimizing the burden on health care resources in clinical practice. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. An introduction to Space Weather Integrated Modeling

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  2. Thyroid gland visualization with 3D/4D ultrasound: integrated hands-on imaging in anatomical dissection laboratory.

    PubMed

    Carter, John L; Patel, Ankura; Hocum, Gabriel; Benninger, Brion

    2017-05-01

    In teaching anatomy, clinical imaging has been utilized to supplement the traditional dissection laboratory promoting education through visualization of spatial relationships of anatomical structures. Viewing the thyroid gland using 3D/4D ultrasound can be valuable to physicians as well as students learning anatomy. The objective of this study was to investigate the perceptions of first-year medical students regarding the integration of 3D/4D ultrasound visualization of spatial anatomy during anatomical education. 108 first-year medical students were introduced to 3D/4D ultrasound imaging of the thyroid gland through a detailed 20-min tutorial taught in small group format. Students then practiced 3D/4D ultrasound imaging on volunteers and donor cadavers before assessment through acquisition and identification of thyroid gland on at least three instructor-verified images. A post-training survey was administered assessing student impression. All students visualized the thyroid gland using 3D/4D ultrasound. Students revealed 88.0% strongly agreed or agreed 3D/4D ultrasound is useful revealing the thyroid gland and surrounding structures and 87.0% rated the experience "Very Easy" or "Easy", demonstrating benefits and ease of use including 3D/4D ultrasound in anatomy courses. When asked, students felt 3D/4D ultrasound is useful in teaching the structure and surrounding anatomy of the thyroid gland, they overwhelmingly responded "Strongly Agree" or "Agree" (90.2%). This study revealed that 3D/4D ultrasound was successfully used and preferred over 2D ultrasound by medical students during anatomy dissection courses to accurately identify the thyroid gland. In addition, 3D/4D ultrasound may nurture and further reinforce stereostructural spatial relationships of the thyroid gland taught during anatomy dissection.

  3. Novel System for Real-Time Integration of 3-D Echocardiography and Fluoroscopy for Image-Guided Cardiac Interventions: Preclinical Validation and Clinical Feasibility Evaluation.

    PubMed

    Arujuna, Aruna V; Housden, R James; Ma, Yingliang; Rajani, Ronak; Gao, Gang; Nijhof, Niels; Cathier, Pascal; Bullens, Roland; Gijsbers, Geert; Parish, Victoria; Kapetanakis, Stamatis; Hancock, Jane; Rinaldi, C Aldo; Cooklin, Michael; Gill, Jaswinder; Thomas, Martyn; O'neill, Mark D; Razavi, Reza; Rhode, Kawal S

    2014-01-01

    Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures.

  4. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  5. A new multimodal interactive way of subjective scoring of 3D video quality of experience

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Lee, Kwanghyun; Lee, Sanghoon; Bovik, Alan C.

    2014-03-01

    People that watch today's 3D visual programs, such as 3D cinema, 3D TV and 3D games, experience wide and dynamically varying ranges of 3D visual immersion and 3D quality of experience (QoE). It is necessary to be able to deploy reliable methodologies that measure each viewers subjective experience. We propose a new methodology that we call Multimodal Interactive Continuous Scoring of Quality (MICSQ). MICSQ is composed of a device interaction process between the 3D display and a separate device (PC, tablet, etc.) used as an assessment tool, and a human interaction process between the subject(s) and the device. The scoring process is multimodal, using aural and tactile cues to help engage and focus the subject(s) on their tasks. Moreover, the wireless device interaction process makes it possible for multiple subjects to assess 3D QoE simultaneously in a large space such as a movie theater, and at di®erent visual angles and distances.

  6. HyFinBall: A Two-Handed, Hybrid 2D/3D Desktop VR Interface for Visualization

    DTIC Science & Technology

    2013-01-01

    user study . This is done in the context of a rich, visual analytics interface containing coordinated views with 2D and 3D visualizations and...the user interface (hardware and software), the design space, as well as preliminary results of a formal user study . This is done in the context of a ... virtual reality , user interface , two-handed interface , hybrid user interface , multi-touch, gesture,

  7. Basic as well as detailed neurosonograms can be performed by offline analysis of three-dimensional fetal brain volumes.

    PubMed

    Bornstein, E; Monteagudo, A; Santos, R; Strock, I; Tsymbal, T; Lenchner, E; Timor-Tritsch, I E

    2010-07-01

    To evaluate the feasibility and the processing time of offline analysis of three-dimensional (3D) brain volumes to perform a basic, as well as a detailed, targeted, fetal neurosonogram. 3D fetal brain volumes were obtained in 103 consecutive healthy fetuses that underwent routine anatomical survey at 20-23 postmenstrual weeks. Transabdominal gray-scale and power Doppler volumes of the fetal brain were acquired by one of three experienced sonographers (an average of seven volumes per fetus). Acquisition was first attempted in the sagittal and coronal planes. When the fetal position did not enable easy and rapid access to these planes, axial acquisition at the level of the biparietal diameter was performed. Offline analysis of each volume was performed by two of the authors in a blinded manner. A systematic technique of 'volume manipulation' was used to identify a list of 25 brain dimensions/structures comprising a complete basic evaluation, intracranial biometry and a detailed targeted fetal neurosonogram. The feasibility and reproducibility of obtaining diagnostic-quality images of the different structures was evaluated, and processing times were recorded, by the two examiners. Diagnostic-quality visualization was feasible in all of the 25 structures, with an excellent visualization rate (85-100%) reported in 18 structures, a good visualization rate (69-97%) reported in five structures and a low visualization rate (38-54%) reported in two structures, by the two examiners. An average of 4.3 and 5.4 volumes were used to complete the examination by the two examiners, with a mean processing time of 7.2 and 8.8 minutes, respectively. The overall agreement rate for diagnostic visualization of the different brain structures between the two examiners was 89.9%, with a kappa coefficient of 0.5 (P < 0.001). In experienced hands, offline analysis of 3D brain volumes is a reproducible modality that can identify all structures necessary to complete both a basic and a detailed second-trimester fetal neurosonogram. Copyright 2010 ISUOG. Published by John Wiley & Sons, Ltd.

  8. Neurovascular Study of the Trigeminal Nerve at 3 T MRI

    PubMed Central

    Gonzalez, Nadia; Muñoz, Alexandra; Bravo, Fernando; Sarroca, Daniel; Morales, Carlos

    2015-01-01

    This study aimed to show a novel visualization method to investigate neurovascular compression of the trigeminal nerve (TN) using a volume-rendering fusion imaging technique of 3D fast imaging employing steady-state acquisition (3D FIESTA) and coregistered 3D time of flight MR angiography (3D TOF MRA) sequences, which we called “neurovascular study of the trigeminal nerve”. We prospectively studied 30 patients with unilateral trigeminal neuralgia (TN) and 50 subjects without symptoms of TN (control group), on a 3 Tesla scanner. All patients were assessed using 3D FIESTA and 3D TOF MRA sequences centered on the pons, as well as a standard brain protocol including axial T1, T2, FLAIR and GRE sequences to exclude other pathologies that could cause TN. Post-contrast T1-weighted sequences were also performed. All cases showing arterial imprinting on the trigeminal nerve (n = 11) were identified on the ipsilateral side of the pain. No significant relationship was found between the presence of an artery in contact with the trigeminal nerve and TN. Eight cases were found showing arterial contact on the ipsilateral side of the pain and five cases of arterial contact on the contralateral side. The fusion imaging technique of 3D FIESTA and 3D TOF MRA sequences, combining the high anatomical detail provided by the 3D FIESTA sequence with the 3D TOF MRA sequence and its capacity to depict arterial structures, results in a tool that enables quick and efficient visualization and assessment of the relationship between the trigeminal nerve and the neighboring vascular structures. PMID:25924169

  9. Aurally aided visual search performance in a dynamic environment

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.

    2008-04-01

    Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.

  10. Investigation Of Integrating Three-Dimensional (3-D) Geometry Into The Visual Anatomical Injury Descriptor (Visual AID) Using WebGL

    DTIC Science & Technology

    2011-08-01

    generated using the Zygote Human Anatomy 3-D model (3). Use of a reference anatomy independent of personal identification, such as Zygote, allows Visual...Zygote Human Anatomy 3D Model, 2010. http://www.zygote.com/ (accessed July 26, 2011). 4. Khronos Group Web site. Khronos to Create New Open Standard for...understanding of the information at hand. In order to fulfill the medical illustration track, I completed a concentration in science, focusing on human

  11. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  12. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-01-01

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  13. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, J.; Jones, G.L.

    1996-12-31

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting andmore » detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.« less

  14. Sandia MEMS Visualization Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor; Jorgensen, Craig R.; Young, Andrew I.

    This is a revision to the Sandia MEMS Visualization Tools. It replaces all previous versions. New features in this version: Support for AutoCAD 2014 and 2015 . This CD contains an integrated set of electronic files that: a) Provides a 2D Process Visualizer that generates cross-section images of devices constructed using the SUMMiT V fabrication process. b) Provides a 3D Visualizer that generates 3D images of devices constructed using the SUMMiT V fabrication process. c) Provides a MEMS 3D Model generator that creates 3D solid models of devices constructed using the SUMMiT V fabrication process. While there exists some filesmore » on the CD that are used in conjunction with software package AutoCAD , these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  15. [Effects of infrasound on visual electrophysiology in mice].

    PubMed

    Shi, Li; Zhang, Zuo-ming; Chen, Jing-zao; Liu, Jing

    2003-04-01

    To investigate the possible effects of infrasound on visual functions. One hundred and fifty mature male Kunming-mice were divided into 5 groups, in which one was control and the other four were exposed to infrasound of 8 Hz, 90 dB; 8 Hz, 130 dB; 16 Hz, 90 dB and 16 Hz, 130 dB 2 h/d respectively. The exposure time for them were 0, 1, 4, 7, 14 and 21 d respectively, each group was divided into 6 sub-groups. Electroretinogram (ERG), oscillatory potentials (OPs), and visual evoked potential (VEP) were recorded after exposure. The visual electrophysiological indices after 8 Hz, 90 dB and 16 Hz, 90 dB exposures were similar except for a little difference at some temporal points (P<0.05). Most of the indices in 8 Hz, 130 dB group changed after 7 d exposure, and the longer the exposure, the more obvious changes were observed (P<0.01). The indices in 16 Hz, 130 dB group changed obviously after 1 d and reversed with increase of exposure time (P<0.01). The effect of infrasound on visual functions are related to its frequency and intensity. Infrasound of different frequencies causes different levels of retinal resonance, which leads to different degrees of cellular lesion and produces different electrical potentials.

  16. Visualization of Sliding and Deformation of Orbital Fat During Eye Rotation

    PubMed Central

    Hötte, Gijsbert J.; Schaafsma, Peter J.; Botha, Charl P.; Wielopolski, Piotr A.; Simonsz, Huibert J.

    2016-01-01

    Purpose Little is known about the way orbital fat slides and/or deforms during eye movements. We compared two deformation algorithms from a sequence of MRI volumes to visualize this complex behavior. Methods Time-dependent deformation data were derived from motion-MRI volumes using Lucas and Kanade Optical Flow (LK3D) and nonrigid registration (B-splines) deformation algorithms. We compared how these two algorithms performed regarding sliding and deformation in three critical areas: the sclera-fat interface, how the optic nerve moves through the fat, and how the fat is squeezed out under the tendon of a relaxing rectus muscle. The efficacy was validated using identified tissue markers such as the lens and blood vessels in the fat. Results Fat immediately behind the eye followed eye rotation by approximately one-half. This was best visualized using the B-splines technique as it showed less ripping of tissue and less distortion. Orbital fat flowed around the optic nerve during eye rotation. In this case, LK3D provided better visualization as it allowed orbital fat tissue to split. The resolution was insufficient to visualize fat being squeezed out between tendon and sclera. Conclusion B-splines performs better in tracking structures such as the lens, while LK3D allows fat tissue to split as should happen as the optic nerve slides through the fat. Orbital fat follows eye rotation by one-half and flows around the optic nerve during eye rotation. Translational Relevance Visualizing orbital fat deformation and sliding offers the opportunity to accurately locate a region of cicatrization and permit an individualized surgical plan. PMID:27540495

  17. Supernova Remnant in 3-D

    NASA Image and Video Library

    2009-01-06

    For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several NASA telescopes.

  18. Natural 3D content on glasses-free light-field 3D cinema

    NASA Astrophysics Data System (ADS)

    Balogh, Tibor; Nagy, Zsolt; Kovács, Péter Tamás.; Adhikarla, Vamsi K.

    2013-03-01

    This paper presents a complete framework for capturing, processing and displaying the free viewpoint video on a large scale immersive light-field display. We present a combined hardware-software solution to visualize free viewpoint 3D video on a cinema-sized screen. The new glasses-free 3D projection technology can support larger audience than the existing autostereoscopic displays. We introduce and describe our new display system including optical and mechanical design considerations, the capturing system and render cluster for producing the 3D content, and the various software modules driving the system. The indigenous display is first of its kind, equipped with front-projection light-field HoloVizio technology, controlling up to 63 MP. It has all the advantages of previous light-field displays and in addition, allows a more flexible arrangement with a larger screen size, matching cinema or meeting room geometries, yet simpler to set-up. The software system makes it possible to show 3D applications in real-time, besides the natural content captured from dense camera arrangements as well as from sparse cameras covering a wider baseline. Our software system on the GPU accelerated render cluster, can also visualize pre-recorded Multi-view Video plus Depth (MVD4) videos on this light-field glasses-free cinema system, interpolating and extrapolating missing views.

  19. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers

    NASA Astrophysics Data System (ADS)

    Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.

    2016-04-01

    High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.

  20. Synchrotron x-ray imaging of pulmonary alveoli in respiration in live intact mice

    NASA Astrophysics Data System (ADS)

    Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira

    2015-03-01

    Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 +/- 14 (mean +/- s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 +/- 4.7% (mean +/- s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 +/- 4.3% (mean +/- s.d.)) than in the apices (5.7 +/- 3.2% (mean +/- s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 +/- 3.8% (mean +/- s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.

  1. Molecular Dynamics Visualization (MDV): Stereoscopic 3D Display of Biomolecular Structure and Interactions Using the Unity Game Engine.

    PubMed

    Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L

    2018-06-21

    Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.

  2. Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.

    2013-04-01

    This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to higher number of dimensions. Easy integration with other applications by using the very simple comma separated values file format for storing multi-dimensional images. Implementation of χ2 test as a criterion for deciding whether an object is fractal or not. User friendly graphical interface. Hyper-Fractal Analysis-Test on the Sierpinski hypertetrahedron 4D gasket (Df=ln(5)/ln(2)≅2.32). Running time: In a first approximation, the algorithm is linear [2]. References: [1] V. Grossu, D. Felea, C. Besliu, Al. Jipa, C.C. Bordeianu, E. Stan, T. Esanu, Computer Physics Communications, 181 (2010) 831-832. [2] I.V. Grossu, C. Besliu, M.V. Rusu, Al. Jipa, C. C. Bordeianu, D. Felea, Computer Physics Communications, 180 (2009) 1999-2001. [3] J. Ruiz de Miras, J. Navas, P. Villoslada, F.J. Esteban, Computer Methods and Programs in Biomedicine, 104 Issue 3 (2011) 452-460.

  3. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  4. Eyes on the Earth 3D

    NASA Technical Reports Server (NTRS)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  5. A Review on Stereoscopic 3D: Home Entertainment for the Twenty First Century

    NASA Astrophysics Data System (ADS)

    Karajeh, Huda; Maqableh, Mahmoud; Masa'deh, Ra'ed

    2014-12-01

    In the last few years, stereoscopic developed very rapidly and employed in many different fields such as entertainment. Due to the importance of entertainment aspect of stereoscopic 3D (S3D) applications, a review of the current state of S3D development in entertainment technology is conducted. In this paper, a novel survey of the stereoscopic entertainment aspects is presented by discussing the significant development of a 3D cinema, the major development of 3DTV, the issues related to 3D video content and 3D video games. Moreover, we reviewed some problems that can be caused in the viewers' visual system from watching stereoscopic contents. Some stereoscopic viewers are not satisfied as they are frustrated from wearing glasses, have visual fatigue, complain from unavailability of 3D contents, and/or complain from some sickness. Therefore, we will discuss stereoscopic visual discomfort and to what extend the viewer will have an eye fatigue while watching 3D contents or playing 3D games. The suggested solutions in the literature for this problem are discussed.

  6. Influence of the beta-blocking atenolol and other medications on visual reaction time.

    PubMed

    Harms, D; Pachale, E; Nechvatal, D

    1981-11-01

    Visual reaction time as a measure of vigilance and of the psychophysiological condition of subjects, was determined after combined physical and mental stress to examine the influence of beta blockade. Using the technique of electro-oculography, 40 subjects aged 25.7 +/- 6 years, with a mean blood pressure of 126/79 torr, were studied in a double-blind crossover design after application of placebo or 50 mg atenolol for 3 d. Visual reaction time was defined as the time between display of a peripheral light signal and the start of the eye movement that shifts the direction of gaze from the reference point to the stimulus. The results of the study show that, under these experimental conditions, there is a positive effect of beta blocker medication on vigilance. Findings of other authors are discussed. To prove the sensitivity of the test method in a preliminary study, the effects of the well-known drugs fenethylline-hydrochioride, diazepam, oxazepam, and alcohol on visual reaction time were investigated.

  7. Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds.

    PubMed

    Spits, Christine; Wallace, Luke; Reinke, Karin

    2017-04-20

    Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential.

  8. VISUAL3D - An EIT network on visualization of geomodels

    NASA Astrophysics Data System (ADS)

    Bauer, Tobias

    2017-04-01

    When it comes to interpretation of data and understanding of deep geological structures and bodies at different scales then modelling tools and modelling experience is vital for deep exploration. Geomodelling provides a platform for integration of different types of data, including new kinds of information (e.g., new improved measuring methods). EIT Raw Materials, initiated by the EIT (European Institute of Innovation and Technology) and funded by the European Commission, is the largest and strongest consortium in the raw materials sector worldwide. The VISUAL3D network of infrastructure is an initiative by EIT Raw Materials and aims at bringing together partners with 3D-4D-visualisation infrastructure and 3D-4D-modelling experience. The recently formed network collaboration interlinks hardware, software and expert knowledge in modelling visualization and output. A special focus will be the linking of research, education and industry and integrating multi-disciplinary data and to visualize the data in three and four dimensions. By aiding network collaborations we aim at improving the combination of geomodels with differing file formats and data characteristics. This will create an increased competency in modelling visualization and the ability to interchange and communicate models more easily. By combining knowledge and experience in geomodelling with expertise in Virtual Reality visualization partners of EIT Raw Materials but also external parties will have the possibility to visualize, analyze and validate their geomodels in immersive VR-environments. The current network combines partners from universities, research institutes, geological surveys and industry with a strong background in geological 3D-modelling and 3D visualization and comprises: Luleå University of Technology, Geological Survey of Finland, Geological Survey of Denmark and Greenland, TUBA Freiberg, Uppsala University, Geological Survey of France, RWTH Aachen, DMT, KGHM Cuprum, Boliden, Montan Universität Leoben, Slovenian National Building and Civil Engineering Institute, Tallinn University of Technology and Turku University. The infrastructure within the network comprises different types of capturing and visualization hardware, ranging from high resolution cubes, VR walls, VR goggle solutions, high resolution photogrammetry, UAVs, lidar-scanners, and many more.

  9. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    PubMed

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact.

  10. Immersive Earth Science: Data Visualization in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Skolnik, S.; Ramirez-Linan, R.

    2017-12-01

    Utilizing next generation technology, Navteca's exploration of 3D and volumetric temporal data in Virtual Reality (VR) takes advantage of immersive user experiences where stakeholders are literally inside the data. No longer restricted by the edges of a screen, VR provides an innovative way of viewing spatially distributed 2D and 3D data that leverages a 360 field of view and positional-tracking input, allowing users to see and experience data differently. These concepts are relevant to many sectors, industries, and fields of study, as real-time collaboration in VR can enhance understanding and mission with VR visualizations that display temporally-aware 3D, meteorological, and other volumetric datasets. The ability to view data that is traditionally "difficult" to visualize, such as subsurface features or air columns, is a particularly compelling use of the technology. Various development iterations have resulted in Navteca's proof of concept that imports and renders volumetric point-cloud data in the virtual reality environment by interfacing PC-based VR hardware to a back-end server and popular GIS software. The integration of the geo-located data in VR and subsequent display of changeable basemaps, overlaid datasets, and the ability to zoom, navigate, and select specific areas show the potential for immersive VR to revolutionize the way Earth data is viewed, analyzed, and communicated.

  11. A web-based solution for 3D medical image visualization

    NASA Astrophysics Data System (ADS)

    Hou, Xiaoshuai; Sun, Jianyong; Zhang, Jianguo

    2015-03-01

    In this presentation, we present a web-based 3D medical image visualization solution which enables interactive large medical image data processing and visualization over the web platform. To improve the efficiency of our solution, we adopt GPU accelerated techniques to process images on the server side while rapidly transferring images to the HTML5 supported web browser on the client side. Compared to traditional local visualization solution, our solution doesn't require the users to install extra software or download the whole volume dataset from PACS server. By designing this web-based solution, it is feasible for users to access the 3D medical image visualization service wherever the internet is available.

  12. AntigenMap 3D: an online antigenic cartography resource.

    PubMed

    Barnett, J Lamar; Yang, Jialiang; Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2012-05-01

    Antigenic cartography is a useful technique to visualize and minimize errors in immunological data by projecting antigens to 2D or 3D cartography. However, a 2D cartography may not be sufficient to capture the antigenic relationship from high-dimensional immunological data. AntigenMap 3D presents an online, interactive, and robust 3D antigenic cartography construction and visualization resource. AntigenMap 3D can be applied to identify antigenic variants and vaccine strain candidates for pathogens with rapid antigenic variations, such as influenza A virus. http://sysbio.cvm.msstate.edu/AntigenMap3D

  13. Person and gesture tracking with smart stereo cameras

    NASA Astrophysics Data System (ADS)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems implemented on this platform, and discuss some deployed applications.

  14. Automatic visualization of 3D geometry contained in online databases

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; John, Nigel W.

    2003-04-01

    In this paper, the application of the Virtual Reality Modeling Language (VRML) for efficient database visualization is analyzed. With the help of JAVA programming, three examples of automatic visualization from a database containing 3-D Geometry are given. The first example is used to create basic geometries. The second example is used to create cylinders with a defined start point and end point. The third example is used to processs data from an old copper mine complex in Cheshire, United Kingdom. Interactive 3-D visualization of all geometric data in an online database is achieved with JSP technology.

  15. Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data

    PubMed Central

    Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.

    2005-01-01

    The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787

  16. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  17. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiong; Gluch, Jürgen; Krüger, Peter

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have amore » direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. - Highlights: • The unstained whole pine pollen was visualized by high-resolution laboratory-based HXRM for the first time. • The comparison study of pollen grains by LM, SEM and high-resolution laboratory-based HXRM. • Phase contrast imaging provides significantly higher contrast of the raw images compared to absorption contrast imaging. • Surface and internal structure of the pine pollen including exine, intine and cellular structures are clearly visualized. • 3D volume data of unstained whole pollen grains are acquired and the specific volumes of the different layer are calculated.« less

  18. 3DVEM Software Modules for Efficient Management of Point Clouds and Photorealistic 3d Models

    NASA Astrophysics Data System (ADS)

    Fabado, S.; Seguí, A. E.; Cabrelles, M.; Navarro, S.; García-De-San-Miguel, D.; Lerma, J. L.

    2013-07-01

    Cultural heritage managers in general and information users in particular are not usually used to deal with high-technological hardware and software. On the contrary, information providers of metric surveys are most of the times applying latest developments for real-life conservation and restoration projects. This paper addresses the software issue of handling and managing either 3D point clouds or (photorealistic) 3D models to bridge the gap between information users and information providers as regards the management of information which users and providers share as a tool for decision-making, analysis, visualization and management. There are not many viewers specifically designed to handle, manage and create easily animations of architectural and/or archaeological 3D objects, monuments and sites, among others. 3DVEM - 3D Viewer, Editor & Meter software will be introduced to the scientific community, as well as 3DVEM - Live and 3DVEM - Register. The advantages of managing projects with both sets of data, 3D point cloud and photorealistic 3D models, will be introduced. Different visualizations of true documentation projects in the fields of architecture, archaeology and industry will be presented. Emphasis will be driven to highlight the features of new userfriendly software to manage virtual projects. Furthermore, the easiness of creating controlled interactive animations (both walkthrough and fly-through) by the user either on-the-fly or as a traditional movie file will be demonstrated through 3DVEM - Live.

  19. Visualization of endosome dynamics in living nerve terminals with four-dimensional fluorescence imaging.

    PubMed

    Stewart, Richard S; Kiss, Ilona M; Wilkinson, Robert S

    2014-04-16

    Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections.

  20. Wavefront-optimized laser in situ keratomileusis with the Allegretto Wave Eye-Q excimer laser and the FEMTO LDV Crystal Line femtosecond laser: 6 month visual and refractive results.

    PubMed

    Ziaei, Mohammed; Mearza, Ali A; Allamby, David

    2015-08-01

    To present the first reported series of patients undergoing myopic LASIK with the FEMTO LDV Crystal Line femtosecond laser and the WaveLight Allegretto Eye-Q excimer laser. We report the uncorrected and corrected distance visual acuity (UDVA and CDVA), refractive predictability, efficacy and safety of laser in situ keratomileusis (LASIK) performed with the above laser platforms. This prospective interventional case series study evaluated consecutive eyes with low to moderate myopic astigmatism that underwent LASIK with the FEMTO LDV Crystal Line femtosecond laser and the WaveLight Allegretto Eye-Q 400 Hz excimer laser. Visual and refractive changes as well as complications were evaluated after wavefront-optimized laser treatment. Four hundred and forty four patients (887 eyes) reached the 6-month time gate. Mean age at time of procedure was 31 years (range: 20-59). Mean pre-op spherical-equivalent (SE) was -3.44 diopters (D)±1.34D (range: -0.50 to -7.00) whilst the postoperative spherical equivalent decreased to -0.08±0.31D (range -2.25 to 1.00). At 6-month follow up, 96.9% of patients had monocular uncorrected distance visual acuity of 20/20 or better with 95.2% of patients within ±0.5D of intended refractive outcome. All patients achieved 20/20 binocular distance uncorrected visual acuity. No significant intra-operative or postoperative complications were encountered during the 6-month follow-up period. The combination of the above laser platforms provides safe, effective and predictable results in correcting compound myopic astigmatism with excellent visual outcomes. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Creating Physical 3D Stereolithograph Models of Brain and Skull

    PubMed Central

    Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.

    2007-01-01

    The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879

  2. Celeris: A GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization

    NASA Astrophysics Data System (ADS)

    Tavakkol, Sasan; Lynett, Patrick

    2017-08-01

    In this paper, we introduce an interactive coastal wave simulation and visualization software, called Celeris. Celeris is an open source software which needs minimum preparation to run on a Windows machine. The software solves the extended Boussinesq equations using a hybrid finite volume-finite difference method and supports moving shoreline boundaries. The simulation and visualization are performed on the GPU using Direct3D libraries, which enables the software to run faster than real-time. Celeris provides a first-of-its-kind interactive modeling platform for coastal wave applications and it supports simultaneous visualization with both photorealistic and colormapped rendering capabilities. We validate our software through comparison with three standard benchmarks for non-breaking and breaking waves.

  3. RealSurf - A Tool for the Interactive Visualization of Mathematical Models

    NASA Astrophysics Data System (ADS)

    Stussak, Christian; Schenzel, Peter

    For applications in fine art, architecture and engineering it is often important to visualize and to explore complex mathematical models. In former times there were static models of them collected in museums respectively in mathematical institutes. In order to check their properties for esthetical reasons it could be helpful to explore them interactively in 3D in real time. For the class of implicitly given algebraic surfaces we developed the tool RealSurf. Here we give an introduction to the program and some hints for the design of interesting surfaces.

  4. Efficient in-situ visualization of unsteady flows in climate simulation

    NASA Astrophysics Data System (ADS)

    Vetter, Michael; Olbrich, Stephan

    2017-04-01

    The simulation of climate data tends to produce very large data sets, which hardly can be processed in classical post-processing visualization applications. Typically, the visualization pipeline consisting of the processes data generation, visualization mapping and rendering is distributed into two parts over the network or separated via file transfer. Within most traditional post-processing scenarios the simulation is done on a supercomputer whereas the data analysis and visualization is done on a graphics workstation. That way temporary data sets with huge volume have to be transferred over the network, which leads to bandwidth bottlenecks and volume limitations. The solution to this issue is the avoidance of temporary storage, or at least significant reduction of data complexity. Within the Climate Visualization Lab - as part of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP) at the University of Hamburg, in cooperation with the German Climate Computing Center (DKRZ) - we develop and integrate an in-situ approach. Our software framework DSVR is based on the separation of the process chain between the mapping and the rendering processes. It couples the mapping process directly to the simulation by calling methods of a parallelized data extraction library, which create a time-based sequence of geometric 3D scenes. This sequence is stored on a special streaming server with an interactive post-filtering option and then played-out asynchronously in a separate 3D viewer application. Since the rendering is part of this viewer application, the scenes can be navigated interactively. In contrast to other in-situ approaches where 2D images are created as part of the simulation or synchronous co-visualization takes place, our method supports interaction in 3D space and in time, as well as fixed frame rates. To integrate in-situ processing based on our DSVR framework and methods in the ICON climate model, we are continuously evolving the data structures and mapping algorithms of the framework to support the ICON model's native grid structures, since DSVR originally was designed for rectilinear grids only. We now have implemented a new output module to ICON to take advantage of the DSVR visualization. The visualization can be configured as most output modules by using a specific namelist and is exemplarily integrated within the non-hydrostatic atmospheric model time loop. With the integration of a DSVR based in-situ pathline extraction within ICON, a further milestone is reached. The pathline algorithm as well as the grid data structures have been optimized for the domain decomposition used for the parallelization of ICON based on MPI and OpenMP. The software implementation and evaluation is done on the supercomputers at DKRZ. In principle, the data complexity is reduced from O(n3) to O(m), where n is the grid resolution and m the number of supporting point of all pathlines. The stability and scalability evaluation is done using Atmospheric Model Intercomparison Project (AMIP) runs. We will give a short introduction in our software framework, as well as a short overview on the implementation and usage of DSVR within ICON. Furthermore, we will present visualization and evaluation results of sample applications.

  5. The Role of Research Institutions in Building Visual Content for the Geowall

    NASA Astrophysics Data System (ADS)

    Newman, R. L.; Kilb, D.; Nayak, A.; Kent, G.

    2003-12-01

    The advent of the low-cost Geowall (http://www.geowall.org) allows researchers and students to study 3-D geophysical datasets in a collaborative setting. Although 3-D visual objects can aid the understanding of geological principles in the classroom, it is often difficult for staff to develop their own custom visual objects. This is a fundamentally important aspect that research institutions that store large (terabyte) geophysical datasets can address. At Scripps Institution of Oceanography (SIO) we regularly explore gigabyte 3-D visual objects in the SIO Visualization Center (http://siovizcenter.ucsd.edu). Exporting these datasets for use with the Geowall has become routine with current software applications such as IVS's Fledermaus and iView3D. We have developed visualizations that incorporate topographic, bathymetric, and 3-D volumetric crustal datasets to demonstrate fundamental principles of earth science including plate tectonics, seismology, sea-level change, and neotectonics. These visualizations are available for download either via FTP or a website, and have been incorporated into graduate and undergraduate classes at both SIO and the University of California, San Diego. Additionally, staff at the Visualization Center develop content for external schools and colleges such as the Preuss School, a local middle/high school, where a Geowall was installed in February 2003 and curriculum developed for 8th grade students. We have also developed custom visual objects for researchers and educators at diverse education institutions across the globe. At SIO we encourage graduate students and researchers alike to develop visual objects of their datasets through innovative classes and competitions. This not only assists the researchers themselves in understanding their data but also increases the number of visual objects freely available to geoscience educators worldwide.

  6. Comparison of accuracies of an intraoral spectrophotometer and conventional visual method for shade matching using two shade guide systems.

    PubMed

    Parameswaran, Vidhya; Anilkumar, S; Lylajam, S; Rajesh, C; Narayan, Vivek

    2016-01-01

    This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome.

  7. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  8. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  9. Human microbiome visualization using 3D technology.

    PubMed

    Moore, Jason H; Lari, Richard Cowper Sal; Hill, Douglas; Hibberd, Patricia L; Madan, Juliette C

    2011-01-01

    High-throughput sequencing technology has opened the door to the study of the human microbiome and its relationship with health and disease. This is both an opportunity and a significant biocomputing challenge. We present here a 3D visualization methodology and freely-available software package for facilitating the exploration and analysis of high-dimensional human microbiome data. Our visualization approach harnesses the power of commercial video game development engines to provide an interactive medium in the form of a 3D heat map for exploration of microbial species and their relative abundance in different patients. The advantage of this approach is that the third dimension provides additional layers of information that cannot be visualized using a traditional 2D heat map. We demonstrate the usefulness of this visualization approach using microbiome data collected from a sample of premature babies with and without sepsis.

  10. Neuronal adaptation to simulated and optically-induced astigmatic defocus.

    PubMed

    Ohlendorf, Arne; Tabernero, Juan; Schaeffel, Frank

    2011-03-25

    It is well established that spatial adaptation can improve visual acuity over time in the presence of spherical defocus. It is less well known how far adaptation to astigmatic defocus can enhance visual acuity. We adapted subjects to "simulated" and optically-induced "real" astigmatic defocus, and studied how much they adapt and how selective adaptation was for the axis of astigmatism. Ten subjects with a mean age of 26.7±2.4years (range 23-30) were enrolled in the study, three of them myopic (average spherical equivalent (SE)±SD: -3.08±1.42D) and seven emmetropic (average SE±SD: -0.11±0.18D). All had a corrected minimum visual acuity (VA) of logVA 0.0. For adaptation, subjects watched a movie at 4m distance for 10min that was convolved frame-by-frame with an astigmatic point spread function, equivalent to +3D defocus, or they watched an unfiltered movie but with spectacle frames with a 0/+3D astigmatic trial lenses. Subsequently, visual acuity was determined at the same distance, using high contrast letter acuity charts. Four experiments were performed. In experiment (1), simulated astigmatic defocus was presented both for adaptation and testing, in experiment (2) optically-induced astigmatic defocus was presented both for adaptation and testing of visual acuity. In all these cases, the +3D power meridian was at 0°. In experiments (3) and (4), the +3D power meridian was at 0° during adaptation but rotated to 90° during testing. Astigmatic defocus was simulated in experiment (3) but optically-induced in experiment (4). Experiments 1 and 2: adaptation to either simulated or real astigmatic defocus increased visual acuity in both test paradigms, simulated (change in VA 0.086±0.069 log units; p<0.01) and lens-induced astigmatic defocus (change in VA 0.068±0.031 log units; p<0.001). Experiments 3 and 4: when the axis was rotated, the improvement in visual acuity failed to reach significance, both for simulated (change in VA 0.042±0.079 log units; p=0.13) and lens-induced astigmatic defocus (change in VA 0.038±0.086 log units; p=0.19). Adaptation to astigmatic defocus occurs for both simulated and real defocus, and the effects of adaptation seem to be selective for the axis of astigmatism. These observations suggest that adaptation involves a re-adjustment of the spatial filters selectively for astigmatic meridians, although the underlying mechanism must be more complicated than just changes in shapes of the receptive fields of retinal or cortical neurons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Raised Relief Mars Globe Brings the Red Planet Closer

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Mars Globe 20x is the first digitally produced raised relief globe to be sold at retail establishments. The rises and dips of the Martian landscape have been multiplied by 20 to make the shapes more noticeable to human touch and sight. They make this globe, with its over 1 million elevation points, a visually stunning introduction to the planet. Spectrum 3D used the NASA digital land elevation data to aim lasers that then shaped and defined the master globe s surface. Subsequent copies were then made by creating a master globe mold. The molded copies are hand finished by workers who remove errant edges or lines that may appear on the raw globes and then paint the surfaces. The result is a globe that measures in at 18 inches in diameter, roughly 1:15,729,473 scale of the actual planet. The exaggerated raised relief is like having a 3-D digital microscope for planetary shapes. This makes the landmarks easier to learn and understand, as it provides easy visuals for orientation. People have a natural propensity for understanding 3-D shapes more easily than numbers or words. The 3-D globes appeal to both the kinetic and visual learning aspects of the brain, making it easy for people to readily memorize the landmarks and to make a mental model that they will remember for a long time.

  12. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    PubMed

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  13. Comparative analysis of visual outcomes with 4 intraocular lenses: Monofocal, multifocal, and extended range of vision.

    PubMed

    Pedrotti, Emilio; Carones, Francesco; Aiello, Francesco; Mastropasqua, Rodolfo; Bruni, Enrico; Bonacci, Erika; Talli, Pietro; Nucci, Carlo; Mariotti, Cesare; Marchini, Giorgio

    2018-02-01

    To compare the visual acuity, refractive outcomes, and quality of vision in patients with bilateral implantation of 4 intraocular lenses (IOLs). Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, and Carones Ophthalmology Center, Milano, Italy. Prospective case series. The study included patients who had bilateral cataract surgery with the implantation of 1 of 4 IOLs as follows: Tecnis 1-piece monofocal (monofocal IOL), Tecnis Symfony extended range of vision (extended-range-of-vision IOL), Restor +2.5 diopter (D) (+2.5 D multifocal IOL), and Restor +3.0 D (+3.0 D multifocal IOL). Visual acuity, refractive outcome, defocus curve, objective optical quality, contrast sensitivity, spectacle independence, and glare perception were evaluated 6 months after surgery. The study comprised 185 patients. The extended-range-of-vision IOL (55 patients) showed better distance visual outcomes than the monofocal IOL (30 patients) and high-addition apodized diffractive-refractive multifocal IOLs (P ≤ .002). The +3.0 D multifocal IOL (50 patients) showed the best near visual outcomes (P < .001). The +2.5 D multifocal IOL (50 patients) and extended-range-of-vision IOL provided significantly better intermediate visual outcomes than the other 2 IOLs, with significantly better vision for a defocus level of -1.5 D (P < .001). Better spectacle independence was shown for the +2.5 D multifocal IOL and extended-range-of-vision IOL (P < .001). The extended-range-of-vision IOL and +2.5 D multifocal IOL provided significantly better intermediate visual restoration after cataract surgery than the monofocal IOL and +3.0 D multifocal IOL, with significantly better quality of vision with the extended-range-of-vision IOL. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Real-time 3D image reconstruction guidance in liver resection surgery.

    PubMed

    Soler, Luc; Nicolau, Stephane; Pessaux, Patrick; Mutter, Didier; Marescaux, Jacques

    2014-04-01

    Minimally invasive surgery represents one of the main evolutions of surgical techniques. However, minimally invasive surgery adds difficulty that can be reduced through computer technology. From a patient's medical image [US, computed tomography (CT) or MRI], we have developed an Augmented Reality (AR) system that increases the surgeon's intraoperative vision by providing a virtual transparency of the patient. AR is based on two major processes: 3D modeling and visualization of anatomical or pathological structures appearing in the medical image, and the registration of this visualization onto the real patient. We have thus developed a new online service, named Visible Patient, providing efficient 3D modeling of patients. We have then developed several 3D visualization and surgical planning software tools to combine direct volume rendering and surface rendering. Finally, we have developed two registration techniques, one interactive and one automatic providing intraoperative augmented reality view. From January 2009 to June 2013, 769 clinical cases have been modeled by the Visible Patient service. Moreover, three clinical validations have been realized demonstrating the accuracy of 3D models and their great benefit, potentially increasing surgical eligibility in liver surgery (20% of cases). From these 3D models, more than 50 interactive AR-assisted surgical procedures have been realized illustrating the potential clinical benefit of such assistance to gain safety, but also current limits that automatic augmented reality will overcome. Virtual patient modeling should be mandatory for certain interventions that have now to be defined, such as liver surgery. Augmented reality is clearly the next step of the new surgical instrumentation but remains currently limited due to the complexity of organ deformations during surgery. Intraoperative medical imaging used in new generation of automated augmented reality should solve this issue thanks to the development of Hybrid OR.

  15. The ultrasound brain helmet: early human feasibility study of multiple simultaneous 3D scans of cerebral vasculature

    NASA Astrophysics Data System (ADS)

    Lindsey, Brooks D.; Ivancevich, Nikolas M.; Whitman, John; Light, Edward; Fronheiser, Matthew; Nicoletto, Heather A.; Laskowitz, Daniel T.; Smith, Stephen W.

    2009-02-01

    We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time 3D scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64° pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128° sector, two simultaneous parasagittal images merged into a 128° × 64° C-mode plane, and a simultaneous 64° axial image. Real-time 3D color Doppler images acquired in initial clinical studies after contrast injection demonstrate flow in several representative blood vessels. An offline Doppler rendering of data from two transducers simultaneously scanning via the temporal windows provides an early visualization of the flow in vessels on both sides of the brain. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission, thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.

  16. Real Time Data Acquisition and Online Signal Processing for Magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Rongen, H.; Hadamschek, V.; Schiek, M.

    2006-06-01

    To establish improved therapies for patients suffering from severe neurological and psychiatric diseases, a demand controlled and desynchronizing brain-pacemaker has been developed with techniques from statistical physics and nonlinear dynamics. To optimize the novel therapeutic approach, brain activity is investigated with a Magnetoencephalography (MEG) system prior to surgery. For this, a real time data acquisition system for a 148 channel MEG and online signal processing for artifact rejection, filtering, cross trial phase resetting analysis and three-dimensional (3-D) reconstruction of the cerebral current sources was developed. The developed PCI bus hardware is based on a FPGA and DSP design, using the benefits from both architectures. The reconstruction and visualization of the 3-D volume data is done by the PC which hosts the real time DAQ and pre-processing board. The framework of the MEG-online system is introduced and the architecture of the real time DAQ board and online reconstruction is described. In addition we show first results with the MEG-Online system for the investigation of dynamic brain activities in relation to external visual stimulation, based on test data sets.

  17. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.

  18. Risk factors for poor visual outcome in patients with idiopathic intracranial hypertension.

    PubMed

    Wall, Michael; Falardeau, Julie; Fletcher, William A; Granadier, Robert J; Lam, Byron L; Longmuir, Reid A; Patel, Anil D; Bruce, Beau B; He, Hua; McDermott, Michael P

    2015-09-01

    Determine potential risk factors for progressive visual field loss in the Idiopathic Intracranial Hypertension Treatment Trial, a randomized placebo-controlled trial of acetazolamide in patients with idiopathic intracranial hypertension and mild visual loss concurrently receiving a low sodium, weight reduction diet. Logistic regression and classification tree analyses were used to evaluate potential risk factors for protocol-defined treatment failure (>2 dB perimetric mean deviation [PMD] change in patients with baseline PMD -2 to -3.5 dB or >3 dB PMD change with baseline PMD -3.5 to -7 dB). Seven participants (6 on diet plus placebo) met criteria for treatment failure. The odds ratio for patients with grades III to V papilledema vs those with grades I and II was 8.66 (95% confidence interval [CI] 1.65-∞, p = 0.025). A 1-unit decrease in the number of letters correct on the ETDRS (Early Treatment Diabetic Retinopathy Study) chart at baseline was associated with an increase in the odds of treatment failure by a factor of 1.16 (95% CI 1.04-1.30, p = 0.005). Compared with female participants, the odds ratio for male participants was 26.21 (95% CI 1.61-433.00, p = 0.02). The odds of treatment failure were 10.59 times higher (95% CI 1.63-116.83, p = 0.010) for patients with >30 transient visual obscurations per month vs those with ≤30 per month. Male patients, those with high-grade papilledema, and those with decreased visual acuity at baseline were more likely to experience treatment failure. All but one of these patients were treated with diet alone. These patients should be monitored closely and be considered for aggressive treatment of their idiopathic intracranial hypertension. © 2015 American Academy of Neurology.

  19. Development and testing of a CW-EPR apparatus for imaging of short-lifetime nitroxyl radicals in mouse head

    NASA Astrophysics Data System (ADS)

    Sato-Akaba, Hideo; Fujii, Hirotada; Hirata, Hiroshi

    2008-08-01

    This article describes a method for reducing the acquisition time in three-dimensional (3D) continuous-wave electron paramagnetic resonance (CW-EPR) imaging. To visualize nitroxyl spin probes, which have a short lifetime in living organisms, the acquisition time for a data set of spectral projections should be shorter than the lifetime of the spin probes. To decrease the total time required for data acquisition, the duration of magnetic field scanning was reduced to 0.5 s. Moreover, the number of projections was decreased by using the concept of a uniform distribution. To demonstrate this faster data acquisition, two kinds of nitroxyl radicals with different decay rates were measured in mice. 3D EPR imaging of 4-hydroxy-2,2,6,6-tetramethylpiperidine-d 17-1- 15N-1-oxyl in mouse head was successfully carried out. 3D EPR imaging of nitroxyl spin probes with a half-life of a few minutes was achieved for the first time in live animals.

  20. Scalable Multi-Platform Distribution of Spatial 3d Contents

    NASA Astrophysics Data System (ADS)

    Klimke, J.; Hagedorn, B.; Döllner, J.

    2013-09-01

    Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.

  1. Visual deprivation alters dendritic bundle architecture in layer 4 of rat visual cortex.

    PubMed

    Gabbott, P L; Stewart, M G

    2012-04-05

    The effect of visual deprivation followed by light exposure on the tangential organisation of dendritic bundles passing through layer 4 of the rat visual cortex was studied quantitatively in the light microscope. Four groups of animals were investigated: (I) rats reared in an environment illuminated normally--group 52 dL; (II) rats reared in the dark until 21 days postnatum (DPN) and subsequently light exposed for 31 days-group 21/31; (III) rats dark reared until 52 DPN and then subsequently light exposed for 3 days--group 3 dL; and (IV) rats totally dark reared until 52 DPN--group 52 DPN. Each group contained five animals. Semithin 0.5-1-μm thick resin-embedded sections were collected from tangential sampling levels through the middle of layer 4 in area 17 and stained with Toluidine Blue. These sections were used to quantitatively analyse the composition and distribution of dendritic clusters in the tangential plane. The key result of this study indicates a significant reduction in the mean number of medium- and small-sized dendritic profiles (diameter less than 2 μm) contributing to clusters in layer 4 of groups 3 dL and 52 dD compared with group 21/31. No differences were detected in the mean number of large-sized dendritic profiles composing a bundle in these experimental groups. Moreover, the mean number of clusters and their tangential distribution in layer 4 did not vary significantly between all four groups. Finally, the clustering parameters were not significantly different between groups 21/31 and the normally reared group 52 dL. This study demonstrates, for the first time, that extended periods of dark rearing followed by light exposure can alter the morphological composition of dendritic bundles in thalamorecipient layer 4 of rat visual cortex. Because these changes occur in the primary region of thalamocortical input, they may underlie specific alterations in the processing of visual information both cortically and subcortically during periods of dark rearing and light exposure. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. A graphics to scalable vector graphics adaptation framework for progressive remote line rendering on mobile devices

    NASA Astrophysics Data System (ADS)

    Le, Minh Tuan; Nguyen, Congdu; Yoon, Dae-Il; Jung, Eun Ku; Kim, Hae-Kwang

    2007-12-01

    In this paper, we introduce a graphics to Scalable Vector Graphics (SVG) adaptation framework with a mechanism of vector graphics transmission to overcome the shortcoming of real-time representation and interaction experiences of 3D graphics application running on mobile devices. We therefore develop an interactive 3D visualization system based on the proposed framework for rapidly representing a 3D scene on mobile devices without having to download it from the server. Our system scenario is composed of a client viewer and a graphic to SVG adaptation server. The client viewer offers the user to access to the same 3D contents with different devices according to consumer interactions.

  3. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.

    PubMed

    Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A

    2016-03-01

    The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan time = 3:44 min. The conventional sequence achieved TE = 2.9 ms and scan time = 5:23 min. In subjects with aortic stenosis, we also compared both MRI methods with Doppler ultrasound (US) in the measurement of peak velocity, time to peak systolic velocity, and eject time. Bland-Altman analysis revealed that, when comparing peak velocities, the discrepancy between Doppler US and 4D spiral flow was significantly less than the discrepancy between Doppler and 4D Cartesian flow (2.75 cm/s vs. 10.25 cm/s), whereas the two MR methods were comparable (-5.75 s vs. -6 s) for time to peak. However, for the estimation of eject time, relative to Doppler US, the discrepancy for 4D conventional flow was smaller than that of 4D spiral flow (-16.25 s vs. -20 s). Relative to conventional 4D flow, 4D spiral flow achieves substantial reductions in both the TE and scan times; therefore, utility for it should be sought in a variety of in vivo and complex flow imaging applications. © 2015 Wiley Periodicals, Inc.

  4. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    ERIC Educational Resources Information Center

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  5. High resolution renderings and interactive visualization of the 2006 Huntington Beach experiment

    NASA Astrophysics Data System (ADS)

    Im, T.; Nayak, A.; Keen, C.; Samilo, D.; Matthews, J.

    2006-12-01

    The Visualization Center at the Scripps Institution of Oceanography investigates innovative ways to represent graphically interactive 3D virtual landscapes and to produce high resolution, high quality renderings of Earth sciences data and the sensors and instruments used to collect the data . Among the Visualization Center's most recent work is the visualization of the Huntington Beach experiment, a study launched in July 2006 by the Southern California Ocean Observing System (http://www.sccoos.org/) to record and synthesize data of the Huntington Beach coastal region. Researchers and students at the Visualization Center created visual presentations that combine bathymetric data provided by SCCOOS with USGS aerial photography and with 3D polygonal models of sensors created in Maya into an interactive 3D scene using the Fledermaus suite of visualization tools (http://www.ivs3d.com). In addition, the Visualization Center has produced high definition (HD) animations of SCCOOS sensor instruments (e.g. REMUS, drifters, spray glider, nearshore mooring, OCSD/USGS mooring and CDIP mooring) using the Maya modeling and animation software and rendered over multiple nodes of the OptIPuter Visualization Cluster at Scripps. These visualizations are aimed at providing researchers with a broader context of sensor locations relative to geologic characteristics, to promote their use as an educational resource for informal education settings and increasing public awareness, and also as an aid for researchers' proposals and presentations. These visualizations are available for download on the Visualization Center website at http://siovizcenter.ucsd.edu/sccoos/hb2006.php.

  6. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions

    PubMed Central

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-01-01

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter. PMID:27983669

  7. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.

    PubMed

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-12-15

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter.

  8. Use of cues in virtual reality depends on visual feedback.

    PubMed

    Fulvio, Jacqueline M; Rokers, Bas

    2017-11-22

    3D motion perception is of central importance to daily life. However, when tested in laboratory settings, sensitivity to 3D motion signals is found to be poor, leading to the view that heuristics and prior assumptions are critical for 3D motion perception. Here we explore an alternative: sensitivity to 3D motion signals is context-dependent and must be learned based on explicit visual feedback in novel environments. The need for action-contingent visual feedback is well-established in the developmental literature. For example, young kittens that are passively moved through an environment, but unable to move through it themselves, fail to develop accurate depth perception. We find that these principles also obtain in adult human perception. Observers that do not experience visual consequences of their actions fail to develop accurate 3D motion perception in a virtual reality environment, even after prolonged exposure. By contrast, observers that experience the consequences of their actions improve performance based on available sensory cues to 3D motion. Specifically, we find that observers learn to exploit the small motion parallax cues provided by head jitter. Our findings advance understanding of human 3D motion processing and form a foundation for future study of perception in virtual and natural 3D environments.

  9. Foveated model observers to predict human performance in 3D images

    NASA Astrophysics Data System (ADS)

    Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.

    2017-03-01

    We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.

  10. Neural Representation of Motion-In-Depth in Area MT

    PubMed Central

    Sanada, Takahisa M.

    2014-01-01

    Neural processing of 2D visual motion has been studied extensively, but relatively little is known about how visual cortical neurons represent visual motion trajectories that include a component toward or away from the observer (motion in depth). Psychophysical studies have demonstrated that humans perceive motion in depth based on both changes in binocular disparity over time (CD cue) and interocular velocity differences (IOVD cue). However, evidence for neurons that represent motion in depth has been limited, especially in primates, and it is unknown whether such neurons make use of CD or IOVD cues. We show that approximately one-half of neurons in macaque area MT are selective for the direction of motion in depth, and that this selectivity is driven primarily by IOVD cues, with a small contribution from the CD cue. Our results establish that area MT, a central hub of the primate visual motion processing system, contains a 3D representation of visual motion. PMID:25411481

  11. 3D Visualizations of Abstract DataSets

    DTIC Science & Technology

    2010-08-01

    contrasts no shadows, drop shadows and drop lines. 15. SUBJECT TERMS 3D displays, 2.5D displays, abstract network visualizations, depth perception , human...altitude perception in airspace management and airspace route planning—simulated reality visualizations that employ altitude and heading as well as...cues employed by display designers for depicting real-world scenes on a flat surface can be applied to create a perception of depth for abstract

  12. Integrating 3D Visualization and GIS in Planning Education

    ERIC Educational Resources Information Center

    Yin, Li

    2010-01-01

    Most GIS-related planning practices and education are currently limited to two-dimensional mapping and analysis although 3D GIS is a powerful tool to study the complex urban environment in its full spatial extent. This paper reviews current GIS and 3D visualization uses and development in planning practice and education. Current literature…

  13. Sub aquatic 3D visualization and temporal analysis utilizing ArcGIS online and 3D applications

    EPA Science Inventory

    We used 3D Visualization tools to illustrate some complex water quality data we’ve been collecting in the Great Lakes. These data include continuous tow data collected from our research vessel the Lake Explorer II, and continuous water quality data collected from an autono...

  14. A web-based 3D geological information visualization system

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  15. Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization

    NASA Astrophysics Data System (ADS)

    Johnston, Semay; Renambot, Luc; Sauter, Daniel

    2013-03-01

    Web Graphics Library (WebGL), the forthcoming web standard for rendering native 3D graphics in a browser, represents an important addition to the biomedical visualization toolset. It is projected to become a mainstream method of delivering 3D online content due to shrinking support for third-party plug-ins. Additionally, it provides a virtual reality (VR) experience to web users accommodated by the growing availability of stereoscopic displays (3D TV, desktop, and mobile). WebGL's value in biomedical visualization has been demonstrated by applications for interactive anatomical models, chemical and molecular visualization, and web-based volume rendering. However, a lack of instructional literature specific to the field prevents many from utilizing this technology. This project defines a WebGL design methodology for a target audience of biomedical artists with a basic understanding of web languages and 3D graphics. The methodology was informed by the development of an interactive web application depicting the anatomy and various pathologies of the human eye. The application supports several modes of stereoscopic displays for a better understanding of 3D anatomical structures.

  16. 4D ASL-based MR angiography for visualization of distal arteries and leptomeningeal collateral vessels in moyamoya disease: a comparison of techniques.

    PubMed

    Togao, Osamu; Hiwatashi, Akio; Obara, Makoto; Yamashita, Koji; Momosaka, Daichi; Nishimura, Ataru; Arimura, Koichi; Hata, Nobuhiro; Yoshimoto, Koji; Iihara, Koji; Van Cauteren, Marc; Honda, Hiroshi

    2018-05-08

    To evaluate the performance of four-dimensional pseudo-continuous arterial spin labeling (4D-pCASL)-based angiography using CENTRA-keyhole and view sharing (4D-PACK) in the visualization of flow dynamics in distal cerebral arteries and leptomeningeal anastomosis (LMA) collaterals in moyamoya disease in comparison with contrast inherent inflow-enhanced multiphase angiography (CINEMA), with reference to digital subtraction angiography (DSA). Thirty-two cerebral hemispheres from 19 patients with moyamoya disease (mean age, 29.7 ± 19.6 years; five males, 14 females) underwent both 4D-MR angiography and DSA. Qualitative evaluations included the visualization of anterograde middle cerebral artery (MCA) flow and retrograde flow via LMA collaterals with reference to DSA. Quantitative evaluations included assessments of the contrast-to-noise ratio (CNR) on these vessels. The linear mixed-effect model was used to compare the 4D-PACK and CINEMA methods. The vessel visualization scores were significantly higher with 4D-PACK than with CINEMA in the visualization of anterograde flow for both Observer 1 (CINEMA, 3.53 ± 1.39; 4D-PACK, 4.53 ± 0.80; p < 0.0001) and Observer 2 (CINEMA, 3.50±1.39; 4D-PACK, 4.31 ± 0.86; p = 0.0009). The scores were higher with 4D-PACK than with CINEMA in the visualization of retrograde flow for both Observer 1 (CINEMA, 3.44 ± 1.05; 4D-PACK, 4.47 ± 0.88; p < 0.0001) and Observer 2 (CINEMA, 3.19 ± 1.20; 4D-PACK, 4.38 ± 0.91; p < 0.0001). The maximum CNR in the anterograde flow was higher in 4D-PACK (40.1 ± 16.1, p = 0.0001) than in CINEMA (27.0 ± 16.6). The maximum CNR in the retrograde flow was higher in 4D-PACK (36.1 ± 10.0, p < 0.0001) than in CINEMA (15.4 ± 8.0). The 4D-PACK provided better visualization and higher CNRs in distal cerebral arteries and LMA collaterals compared with CINEMA in patients with this disease. • The 4D-PACK enables good visualization of distal cerebral arteries in moyamoya disease. • The 4D-PACK enables direct visualization of leptomeningeal collateral vessels in moyamoya disease. • Vessel visualization by 4D-PACK can be useful in assessing cerebral hemodynamics.

  17. Solid object visualization of 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas R.; Bailey, Michael J.

    2000-04-01

    Visualization of volumetric medical data is challenging. Rapid-prototyping (RP) equipment producing solid object prototype models of computer generated structures is directly applicable to visualization of medical anatomic data. The purpose of this study was to develop methods for transferring 3D Ultrasound (3DUS) data to RP equipment for visualization of patient anatomy. 3DUS data were acquired using research and clinical scanning systems. Scaling information was preserved and the data were segmented using threshold and local operators to extract features of interest, converted from voxel raster coordinate format to a set of polygons representing an iso-surface and transferred to the RP machine to create a solid 3D object. Fabrication required 30 to 60 minutes depending on object size and complexity. After creation the model could be touched and viewed. A '3D visualization hardcopy device' has advantages for conveying spatial relations compared to visualization using computer display systems. The hardcopy model may be used for teaching or therapy planning. Objects may be produced at the exact dimension of the original object or scaled up (or down) to facilitate matching the viewers reference frame more optimally. RP models represent a useful means of communicating important information in a tangible fashion to patients and physicians.

  18. Short-term EEG dynamics and neural generators evoked by navigational images

    PubMed Central

    Leroy, Axelle; Cevallos, Carlos; Cebolla, Ana-Maria; Caharel, Stéphanie; Dan, Bernard

    2017-01-01

    The ecological environment offered by virtual reality is primarily supported by visual information. The different image contents and their rhythmic presentation imply specific bottom-up and top-down processing. Because these processes already occur during passive observation we studied the brain responses evoked by the presentation of specific 3D virtual tunnels with respect to 2D checkerboard. For this, we characterized electroencephalograhy dynamics (EEG), the evoked potentials and related neural generators involved in various visual paradigms. Time-frequency analysis showed modulation of alpha-beta oscillations indicating the presence of stronger prediction and after-effects of the 3D-tunnel with respect to the checkerboard. Whatever the presented image, the generators of the P100 were situated bilaterally in the occipital cortex (BA18, BA19) and in the right inferior temporal cortex (BA20). In checkerboard but not 3D-tunnel presentation, the left fusiform gyrus (BA37) was additionally recruited. P200 generators were situated in the temporal cortex (BA21) and the cerebellum (lobule VI/Crus I) specifically for the checkerboard while the right parahippocampal gyrus (BA36) and the cerebellum (lobule IV/V and IX/X) were involved only during the 3D-tunnel presentation. For both type of image, P300 generators were localized in BA37 but also in BA19, the right BA21 and the cerebellar lobule VI for only the checkerboard and the left BA20-BA21 for only the 3D-tunnel. Stronger P300 delta-theta oscillations recorded in this later situation point to a prevalence of the effect of changing direction over the proper visual content of the 3D-tunnel. The parahippocampal gyrus (BA36) implicated in navigation was also identified when the 3D-tunnel was compared to their scrambled versions, highlighting an action-oriented effect linked to navigational content. PMID:28632774

  19. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    NASA Astrophysics Data System (ADS)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact closely with cell signaling to form organs or promote tumor invasion.

  20. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair.

    PubMed

    Li, Jian; Jahr, Holger; Zheng, Wei; Ren, Pei-Gen

    2017-09-07

    The reconstruction of critically sized bone defects remains a serious clinical problem because of poor angiogenesis within tissue-engineered scaffolds during repair, which gives rise to a lack of sufficient blood supply and causes necrosis of the new tissues. Rapid vascularization is a vital prerequisite for new tissue survival and integration with existing host tissue. The de novo generation of vasculature in scaffolds is one of the most important steps in making bone regeneration more efficient, allowing repairing tissue to grow into a scaffold. To tackle this problem, the genetic modification of a biomaterial scaffold is used to accelerate angiogenesis and osteogenesis. However, visualizing and tracking in vivo blood vessel formation in real-time and in three-dimensional (3D) scaffolds or new bone tissue is still an obstacle for bone tissue engineering. Multiphoton microscopy (MPM) is a novel bio-imaging modality that can acquire volumetric data from biological structures in a high-resolution and minimally-invasive manner. The objective of this study was to visualize angiogenesis with multiphoton microscopy in vivo in a genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. PLGA/nHAp scaffolds were functionalized for the sustained delivery of a growth factor pdgf-b gene carrying lentiviral vectors (LV-pdgfb) in order to facilitate angiogenesis and to enhance bone regeneration. In a scaffold-implanted calvarial critical bone defect mouse model, the blood vessel areas (BVAs) in PHp scaffolds were significantly higher than in PH scaffolds. Additionally, the expression of pdgf-b and angiogenesis-related genes, vWF and VEGFR2, increased correspondingly. MicroCT analysis indicated that the new bone formation in the PHp group dramatically improved compared to the other groups. To our knowledge, this is the first time multiphoton microscopy was used in bone tissue-engineering to investigate angiogenesis in a 3D bio-degradable scaffold in vivo and in real-time.

  1. Atlas-based system for functional neurosurgery

    NASA Astrophysics Data System (ADS)

    Nowinski, Wieslaw L.; Yeo, Tseng T.; Yang, Guo L.; Dow, Douglas E.

    1997-05-01

    This paper addresses the development of an atlas-based system for preoperative functional neurosurgery planning and training, intraoperative support and postoperative analysis. The system is based on Atlas of Stereotaxy of the Human Brain by Schaltenbrand and Wahren used for interactive segmentation and labeling of clinical data in 2D/3D, and for assisting stereotactic targeting. The atlas microseries are digitized, enhanced, segmented, labeled, aligned and organized into mutually preregistered atlas volumes 3D models of the structures are also constructed. The atlas may be interactively registered with the actual patient's data. Several other features are also provided including data reformatting, visualization, navigation, mensuration, and stereotactic path display and editing in 2D/3D. The system increases the accuracy of target definition, reduces the time of planning and time of the procedure itself. It also constitutes a research platform for the construction of more advanced neurosurgery supporting tools and brain atlases.

  2. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    PubMed Central

    Garcia-Cantero, Juan J.; Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes. PMID:28690511

  3. Thoracoscopic anatomical lung segmentectomy using 3D computed tomography simulation without tumour markings for non-palpable and non-visualized small lung nodules.

    PubMed

    Kato, Hirohisa; Oizumi, Hiroyuki; Suzuki, Jun; Hamada, Akira; Watarai, Hikaru; Sadahiro, Mitsuaki

    2017-09-01

    Although wedge resection can be curative for small lung tumours, tumour marking is sometimes required for resection of non-palpable or visually undetectable lung nodules as a method for identification of tumours. Tumour marking sometimes fails and occasionally causes serious complications. We have performed many thoracoscopic segmentectomies using 3D computed tomography simulation for undetectable small lung tumours without any tumour markings. The aim of this study was to investigate whether thoracoscopic segmentectomy planned with 3D computed tomography simulation could precisely remove non-palpable and visually undetectable tumours. Between January 2012 and March 2016, 58 patients underwent thoracoscopic segmentectomy using 3D computed tomography simulation for non-palpable, visually undetectable tumours. Surgical outcomes were evaluated. A total of 35, 14 and 9 patients underwent segmentectomy, subsegmentectomy and segmentectomy combined with adjacent subsegmentectomy, respectively. All tumours were correctly resected without tumour marking. The median tumour size and distance from the visceral pleura was 14 ± 5.2 mm (range 5-27 mm) and 11.6 mm (range 1-38.8 mm), respectively. Median values related to the procedures were operative time, 176 min (range 83-370 min); blood loss, 43 ml (range 0-419 ml); duration of chest tube placement, 1 day (range 1-8 days); and postoperative hospital stay, 5 days (range 3-12 days). Two cases were converted to open thoracotomy due to bleeding. Three cases required pleurodesis for pleural fistula. No recurrences occurred during the mean follow-up period of 44.4 months (range 5-53 months). Thoracoscopic segmentectomy using 3D computed tomography simulation was feasible and could be performed to resect undetectable tumours with no tumour markings. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Stereoscopy in Static Scientific Imagery in an Informal Education Setting: Does It Matter?

    NASA Astrophysics Data System (ADS)

    Price, C. Aaron; Lee, H.-S.; Malatesta, K.

    2014-12-01

    Stereoscopic technology (3D) is rapidly becoming ubiquitous across research, entertainment and informal educational settings. Children of today may grow up never knowing a time when movies, television and video games were not available stereoscopically. Despite this rapid expansion, the field's understanding of the impact of stereoscopic visualizations on learning is rather limited. Much of the excitement of stereoscopic technology could be due to a novelty effect, which will wear off over time. This study controlled for the novelty factor using a variety of techniques. On the floor of an urban science center, 261 children were shown 12 photographs and visualizations of highly spatial scientific objects and scenes. The images were randomly shown in either traditional (2D) format or in stereoscopic format. The children were asked two questions of each image—one about a spatial property of the image and one about a real-world application of that property. At the end of the test, the child was asked to draw from memory the last image they saw. Results showed no overall significant difference in response to the questions associated with 2D or 3D images. However, children who saw the final slide only in 3D drew more complex representations of the slide than those who did not. Results are discussed through the lenses of cognitive load theory and the effect of novelty on engagement.

  5. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    NASA Astrophysics Data System (ADS)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  6. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s.

    PubMed

    Wieser, Wolfgang; Draxinger, Wolfgang; Klein, Thomas; Karpf, Sebastian; Pfeiffer, Tom; Huber, Robert

    2014-09-01

    We present a 1300 nm OCT system for volumetric real-time live OCT acquisition and visualization at 1 billion volume elements per second. All technological challenges and problems associated with such high scanning speed are discussed in detail as well as the solutions. In one configuration, the system acquires, processes and visualizes 26 volumes per second where each volume consists of 320 x 320 depth scans and each depth scan has 400 usable pixels. This is the fastest real-time OCT to date in terms of voxel rate. A 51 Hz volume rate is realized with half the frame number. In both configurations the speed can be sustained indefinitely. The OCT system uses a 1310 nm Fourier domain mode locked (FDML) laser operated at 3.2 MHz sweep rate. Data acquisition is performed with two dedicated digitizer cards, each running at 2.5 GS/s, hosted in a single desktop computer. Live real-time data processing and visualization are realized with custom developed software on an NVidia GTX 690 dual graphics processing unit (GPU) card. To evaluate potential future applications of such a system, we present volumetric videos captured at 26 and 51 Hz of planktonic crustaceans and skin.

  7. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s

    PubMed Central

    Wieser, Wolfgang; Draxinger, Wolfgang; Klein, Thomas; Karpf, Sebastian; Pfeiffer, Tom; Huber, Robert

    2014-01-01

    We present a 1300 nm OCT system for volumetric real-time live OCT acquisition and visualization at 1 billion volume elements per second. All technological challenges and problems associated with such high scanning speed are discussed in detail as well as the solutions. In one configuration, the system acquires, processes and visualizes 26 volumes per second where each volume consists of 320 x 320 depth scans and each depth scan has 400 usable pixels. This is the fastest real-time OCT to date in terms of voxel rate. A 51 Hz volume rate is realized with half the frame number. In both configurations the speed can be sustained indefinitely. The OCT system uses a 1310 nm Fourier domain mode locked (FDML) laser operated at 3.2 MHz sweep rate. Data acquisition is performed with two dedicated digitizer cards, each running at 2.5 GS/s, hosted in a single desktop computer. Live real-time data processing and visualization are realized with custom developed software on an NVidia GTX 690 dual graphics processing unit (GPU) card. To evaluate potential future applications of such a system, we present volumetric videos captured at 26 and 51 Hz of planktonic crustaceans and skin. PMID:25401010

  8. Evaluation of three-dimensional computed tomography processing for deep inferior epigastric perforator flap breast reconstruction.

    PubMed

    Teoh, Raymond; Johnson, Raleigh F; Nishino, Thomas K; Ethridge, Richard T

    2007-01-01

    The deep inferior epigastric perforator flap procedure has become a popular alternative for women who require breast reconstruction. One of the difficulties with this procedure is identifying perforator arteries large enough to ensure that the harvested tissue is well vascularized. Current techniques involve imaging the perforator arteries with computed tomography (CT) to produce a grid mapping the locations of the perforator arteries relative to the umbilicus. To compare the time it takes to produce a map of the perforators using either two-dimensional (2D) or three-dimensional (3D) CT, and to see whether there is a benefit in using a 3D model. Patient CT abdomen and pelvis scans were acquired from a GE 64-slice scanner. CT image processing was performed with the GE 3D Advantage Workstation v4.2 software. Maps of the perforators were generated both as 2D and 3D representations. Perforators within a region 5 cm rostral and 7 cm caudal to the umbilicus were measured and the times to perform these measurements using both 2D and 3D images were recorded by a stopwatch. Although the 3D method took longer than the 2D method (mean [+/- SD] time 1:51+/-0:35 min versus 1:08+/-0:16 min per perforator artery, respectively), producing a 3D image provides much more information than the 2D images alone. Additionally, an actual-sized 3D image can be printed out, removing the need to make measurements and producing a grid. Although it took less time to create a grid of the perforators using 2D axial CT scans, the 3D reconstruction of the abdomen allows the plastic surgeons to better visualize the patient's anatomy and has definite clinical utility.

  9. Selective 4D modelling framework for spatial-temporal land information management system

    NASA Astrophysics Data System (ADS)

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  10. 3D Visualization as a Communicative Aid in Pharmaceutical Advice-Giving over Distance

    PubMed Central

    Dahlbäck, Nils; Petersson, Göran Ingemar

    2011-01-01

    Background Medication misuse results in considerable problems for both patient and society. It is a complex problem with many contributing factors, including timely access to product information. Objective To investigate the value of 3-dimensional (3D) visualization paired with video conferencing as a tool for pharmaceutical advice over distance in terms of accessibility and ease of use for the advice seeker. Methods We created a Web-based communication service called AssistancePlus that allows an advisor to demonstrate the physical handling of a complex pharmaceutical product to an advice seeker with the aid of 3D visualization and audio/video conferencing. AssistancePlus was tested in 2 separate user studies performed in a usability lab, under realistic settings and emulating a real usage situation. In the first study, 10 pharmacy students were assisted by 2 advisors from the Swedish National Co-operation of Pharmacies’ call centre on the use of an asthma inhaler. The student-advisor interview sessions were filmed on video to qualitatively explore their experience of giving and receiving advice with the aid of 3D visualization. In the second study, 3 advisors from the same call centre instructed 23 participants recruited from the general public on the use of 2 products: (1) an insulin injection pen, and (2) a growth hormone injection syringe. First, participants received advice on one product in an audio-recorded telephone call and for the other product in a video-recorded AssistancePlus session (product order balanced). In conjunction with the AssistancePlus session, participants answered a questionnaire regarding accessibility, perceived expressiveness, and general usefulness of 3D visualization for advice-giving over distance compared with the telephone and were given a short interview focusing on their experience of the 3D features. Results In both studies, participants found the AssistancePlus service helpful in providing clear and exact instructions. In the second study, directly comparing AssistancePlus and the telephone, AssistancePlus was judged positively for ease of communication (P = .001), personal contact (P = .001), explanatory power (P < .001), and efficiency (P < .001). Participants in both studies said that they would welcome this type of service as an alternative to the telephone and to face-to-face interaction when a physical meeting is not possible or not convenient. However, although AssistancePlus was considered as easy to use as the telephone, they would choose AssistancePlus over the telephone only when the complexity of the question demanded the higher level of expressiveness it offers. For simpler questions, a simpler service was preferred. Conclusions 3D visualization paired with video conferencing can be useful for advice-giving over distance, specifically for issues that require a higher level of communicative expressiveness than the telephone can offer. 3D-supported advice-giving can increase the range of issues that can be handled over distance and thus improve access to product information. PMID:21771714

  11. Application of Digital Diagnosis and Treatment Technique in Benign Mandibular Diseases.

    PubMed

    Ju, Rui; Zeng, Wei; Lian, Xiaotian; Chen, Gang; Yin, Huaqiang; Tang, Wei

    2018-05-01

    To explore the feasibility of preoperative planning for treatment of benign mandibular lesions (BML) using digital technologies such as three-dimensional (3D) reconstruction, measurement, visualization as well as image contrast and design of neural positioning protection template (NPPT) in combination with 3D printing technology in the BML diagnosis and treatment. The 3D models of BML and inferior alveolar nerves (IAN) of 10 BML patients were reconstructed based on their digital imaging and communications in medicine (DICOM) data using MIMICS16.0 software. The models were used to visualize lesions and nerve contrast measurement and guide design of personalized NPPT and osteotomy after operation modality was determined in order to achieve accurate, minimally invasive operation with shortened intraoperative time. Intraoperative NPPT application could accurately locate lesions and their scope and assist osteotomy. The measurement results were consistent with those of preoperative reconstruction and measurement. The BML were curetted completely without damage IAN. The 10 BML patients had no numbness and other discomforts in the lower lip and mandibular teeth after operation. The digital diagnosis and treatment technology is an effective method for functional treatment of BML patients and its application could achieve personalized, minimally invasive and precise treatment and save intraoperation time.

  12. Dual lumen transducer probes for real-time 3-D interventional cardiac ultrasound.

    PubMed

    Lee, Warren; Idriss, Salim F; Wolf, Patrick D; Smith, Stephen W

    2003-09-01

    We have developed dual lumen probes incorporating a forward-viewing matrix array transducer with an integrated working lumen for delivery of tools in real-time 3-D (RT3-D) interventional echocardiography. The probes are of 14 Fr and 22 Fr sizes, with 112 channel 2-D arrays operating at 5 MHz. We obtained images of cardiac anatomy and simultaneous interventional device delivery with an in vivo sheep model, including: manipulation of a 0.36-mm diameter guidewire into the coronary sinus, guidance of a transseptal puncture using a 1.2-mm diameter Brockenbrough needle, and guidance of a right ventricular biopsy using 3 Fr biopsy forceps. We have also incorporated the 22 Fr probe within a 6-mm surgical trocar to obtain apical four-chamber ultrasound (US) scans from a subcostal position. Combining the imaging catheter with a working lumen in a single device may simplify cardiac interventional procedures by allowing clinicians to easily visualize cardiac structures and simultaneously direct interventional tools in a RT3-D image.

  13. Collaborative Visualization and Analysis of Multi-dimensional, Time-dependent and Distributed Data in the Geosciences Using the Unidata Integrated Data Viewer

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Murray, D.; McWhirter, J.

    2004-12-01

    Over the last five years, UNIDATA has developed an extensible and flexible software framework for analyzing and visualizing geoscience data and models. The Integrated Data Viewer (IDV), initially developed for visualization and analysis of atmospheric data, has broad interdisciplinary application across the geosciences including atmospheric, ocean, and most recently, earth sciences. As part of the NSF-funded GEON Information Technology Research project, UNAVCO has enhanced the IDV to display earthquakes, GPS velocity vectors, and plate boundary strain rates. These and other geophysical parameters can be viewed simultaneously with three-dimensional seismic tomography and mantle geodynamic model results. Disparate data sets of different formats, variables, geographical projections and scales can automatically be displayed in a common projection. The IDV is efficient and fully interactive allowing the user to create and vary 2D and 3D displays with contour plots, vertical and horizontal cross-sections, plan views, 3D isosurfaces, vector plots and streamlines, as well as point data symbols or numeric values. Data probes (values and graphs) can be used to explore the details of the data and models. The IDV is a freely available Java application using Java3D and VisAD and runs on most computers. UNIDATA provides easy-to-follow instructions for download, installation and operation of the IDV. The IDV primarily uses netCDF, a self-describing binary file format, to store multi-dimensional data, related metadata, and source information. The IDV is designed to work with OPeNDAP-equipped data servers that provide real-time observations and numerical models from distributed locations. Users can capture and share screens and animations, or exchange XML "bundles" that contain the state of the visualization and embedded links to remote data files. A real-time collaborative feature allows groups of users to remotely link IDV sessions via the Internet and simultaneously view and control the visualization. A Jython-based formulation facility allows computations on disparate data sets using simple formulas. Although the IDV is an advanced tool for research, its flexible architecture has also been exploited for educational purposes with the Virtual Geophysical Exploration Environment (VGEE) development. The VGEE demonstration added physical concept models to the IDV and curricula for atmospheric science education intended for the high school to graduate student levels.

  14. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  15. Affective three-dimensional brain-computer interface created using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-12-01

    To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.

  16. Learning-based saliency model with depth information.

    PubMed

    Ma, Chih-Yao; Hang, Hsueh-Ming

    2015-01-01

    Most previous studies on visual saliency focused on two-dimensional (2D) scenes. Due to the rapidly growing three-dimensional (3D) video applications, it is very desirable to know how depth information affects human visual attention. In this study, we first conducted eye-fixation experiments on 3D images. Our fixation data set comprises 475 3D images and 16 subjects. We used a Tobii TX300 eye tracker (Tobii, Stockholm, Sweden) to track the eye movement of each subject. In addition, this database contains 475 computed depth maps. Due to the scarcity of public-domain 3D fixation data, this data set should be useful to the 3D visual attention research community. Then, a learning-based visual attention model was designed to predict human attention. In addition to the popular 2D features, we included the depth map and its derived features. The results indicate that the extra depth information can enhance the saliency estimation accuracy specifically for close-up objects hidden in a complex-texture background. In addition, we examined the effectiveness of various low-, mid-, and high-level features on saliency prediction. Compared with both 2D and 3D state-of-the-art saliency estimation models, our methods show better performance on the 3D test images. The eye-tracking database and the MATLAB source codes for the proposed saliency model and evaluation methods are available on our website.

  17. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less

  18. Incorporating 3-dimensional models in online articles.

    PubMed

    Cevidanes, Lucia H S; Ruellas, Antonio C O; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-05-01

    The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. When submitting manuscripts, authors can now upload 3D models that will allow readers to interact with or download them. Such interaction with 3D models in online articles now will give readers and authors better understanding and visualization of the results. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    NASA Technical Reports Server (NTRS)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  20. The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action.

    PubMed

    Sakata, H; Taira, M; Kusunoki, M; Murata, A; Tanaka, Y

    1997-08-01

    Recent neurophysiological studies in alert monkeys have revealed that the parietal association cortex plays a crucial role in depth perception and visually guided hand movement. The following five classes of parietal neurons covering various aspects of these functions have been identified: (1) depth-selective visual-fixation (VF) neurons of the inferior parietal lobule (IPL), representing egocentric distance; (2) depth-movement sensitive (DMS) neurons of V5A and the ventral intraparietal (VIP) area representing direction of linear movement in 3-D space; (3) depth-rotation-sensitive (RS) neurons of V5A and the posterior parietal (PP) area representing direction of rotary movement in space; (4) visually responsive manipulation-related neurons (visual-dominant or visual-and-motor type) of the anterior intraparietal (AIP) area, representing 3-D shape or orientation (or both) of objects for manipulation; and (5) axis-orientation-selective (AOS) and surface-orientation-selective (SOS) neurons in the caudal intraparietal sulcus (cIPS) sensitive to binocular disparity and representing the 3-D orientation of the longitudinal axes and flat surfaces, respectively. Some AOS and SOS neurons are selective in both orientation and shape. Thus the dorsal visual pathway is divided into at least two subsystems, V5A, PP and VIP areas for motion vision and V6, LIP and cIPS areas for coding position and 3-D features. The cIPS sends the signals of 3-D features of objects to the AIP area, which is reciprocally connected to the ventral premotor (F5) area and plays an essential role in matching hand orientation and shaping with 3-D objects for manipulation.

  1. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios.

    PubMed

    Kovanci, Gökhan; Ghaffar, Mehmood; Sommer, Björn

    2016-12-21

    The CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is a tool which provides hybrid-dimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies – Three.js, D3.js and PHP – as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  2. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios.

    PubMed

    Kovanci, Gökhan; Ghaffar, Mehmood; Sommer, Björn

    2016-10-01

    The CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is a tool which provides hybriddimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies - Three.js, D3.js and PHP - as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  3. 'tomo_display' and 'vol_tools': IDL VM Packages for Tomography Data Reconstruction, Processing, and Visualization

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Gualda, G. A.

    2009-05-01

    One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk, and (3) generate MPEG movies for inclusion in presentations, publications, websites, etc. Both are freely available as run-time ('.sav') versions that can be run using the free IDL Virtual Machine TM, available from ITT Visual Information Solutions: http://www.ittvis.com/ProductServices/IDL/VirtualMachine.aspx The run-time versions of 'tomo_display' and 'vol_tools' can be downloaded from: http://cars.uchicago.edu/software/idl/tomography.html http://sites.google.com/site/voltools/

  4. Atlas and feature based 3D pathway visualization enhancement for skull base pre-operative fast planning from head CT

    NASA Astrophysics Data System (ADS)

    Aghdasi, Nava; Li, Yangming; Berens, Angelique; Moe, Kris S.; Bly, Randall A.; Hannaford, Blake

    2015-03-01

    Minimally invasive neuroendoscopic surgery provides an alternative to open craniotomy for many skull base lesions. These techniques provides a great benefit to the patient through shorter ICU stays, decreased post-operative pain and quicker return to baseline function. However, density of critical neurovascular structures at the skull base makes planning for these procedures highly complex. Furthermore, additional surgical portals are often used to improve visualization and instrument access, which adds to the complexity of pre-operative planning. Surgical approach planning is currently limited and typically involves review of 2D axial, coronal, and sagittal CT and MRI images. In addition, skull base surgeons manually change the visualization effect to review all possible approaches to the target lesion and achieve an optimal surgical plan. This cumbersome process relies heavily on surgeon experience and it does not allow for 3D visualization. In this paper, we describe a rapid pre-operative planning system for skull base surgery using the following two novel concepts: importance-based highlight and mobile portal. With this innovation, critical areas in the 3D CT model are highlighted based on segmentation results. Mobile portals allow surgeons to review multiple potential entry portals in real-time with improved visualization of critical structures located inside the pathway. To achieve this we used the following methods: (1) novel bone-only atlases were manually generated, (2) orbits and the center of the skull serve as features to quickly pre-align the patient's scan with the atlas, (3) deformable registration technique was used for fine alignment, (4) surgical importance was assigned to each voxel according to a surgical dictionary, and (5) pre-defined transfer function was applied to the processed data to highlight important structures. The proposed idea was fully implemented as independent planning software and additional data are used for verification and validation. The experimental results show: (1) the proposed methods provided greatly improved planning efficiency while optimal surgical plans were successfully achieved, (2) the proposed methods successfully highlighted important structures and facilitated planning, (3) the proposed methods require shorter processing time than classical segmentation algorithms, and (4) these methods can be used to improve surgical safety for surgical robots.

  5. Affective SSVEP BCI to effectively control 3D objects by using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-06-01

    3D objects with depth information can provide many benefits to users in education, surgery, and interactions. In particular, many studies have been done to enhance sense of reality in 3D interaction. Viewing and controlling stereoscopic 3D objects with crossed or uncrossed disparities, however, can cause visual fatigue due to the vergenceaccommodation conflict generally accepted in 3D research fields. In order to avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we apply a prism array-based display to presenting 3D objects. Emotional pictures were used as visual stimuli in control panels to increase information transfer rate and reduce false positives in controlling 3D objects. Involuntarily motivated selective attention by affective mechanism can enhance steady-state visually evoked potential (SSVEP) amplitude and lead to increased interaction efficiency. More attentional resources are allocated to affective pictures with high valence and arousal levels than to normal visual stimuli such as white-and-black oscillating squares and checkerboards. Among representative BCI control components (i.e., eventrelated potentials (ERP), event-related (de)synchronization (ERD/ERS), and SSVEP), SSVEP-based BCI was chosen in the following reasons. It shows high information transfer rates and takes a few minutes for users to control BCI system while few electrodes are required for obtaining reliable brainwave signals enough to capture users' intention. The proposed BCI methods are expected to enhance sense of reality in 3D space without causing critical visual fatigue to occur. In addition, people who are very susceptible to (auto) stereoscopic 3D may be able to use the affective BCI.

  6. "We Put on the Glasses and Moon Comes Closer!" Urban Second Graders Exploring the Earth, the Sun and Moon through 3D Technologies in a Science and Literacy Unit

    ERIC Educational Resources Information Center

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day…

  7. Digital Workflows for a 3d Semantic Representation of AN Ancient Mining Landscape

    NASA Astrophysics Data System (ADS)

    Hiebel, G.; Hanke, K.

    2017-08-01

    The ancient mining landscape of Schwaz/Brixlegg in the Tyrol, Austria witnessed mining from prehistoric times to modern times creating a first order cultural landscape when it comes to one of the most important inventions in human history: the production of metal. In 1991 a part of this landscape was lost due to an enormous landslide that reshaped part of the mountain. With our work we want to propose a digital workflow to create a 3D semantic representation of this ancient mining landscape with its mining structures to preserve it for posterity. First, we define a conceptual model to integrate the data. It is based on the CIDOC CRM ontology and CRMgeo for geometric data. To transform our information sources to a formal representation of the classes and properties of the ontology we applied semantic web technologies and created a knowledge graph in RDF (Resource Description Framework). Through the CRMgeo extension coordinate information of mining features can be integrated into the RDF graph and thus related to the detailed digital elevation model that may be visualized together with the mining structures using Geoinformation systems or 3D visualization tools. The RDF network of the triple store can be queried using the SPARQL query language. We created a snapshot of mining, settlement and burial sites in the Bronze Age. The results of the query were loaded into a Geoinformation system and a visualization of known bronze age sites related to mining, settlement and burial activities was created.

  8. PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space.

    PubMed

    Ma, Chihua; Luciani, Timothy; Terebus, Anna; Liang, Jie; Marai, G Elisabeta

    2017-02-15

    Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes. We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state information corresponding to particular peaks. We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases.

  9. Creating 3D visualizations of MRI data: A brief guide.

    PubMed

    Madan, Christopher R

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D 'glass brain' rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study's findings.

  10. Creating 3D visualizations of MRI data: A brief guide

    PubMed Central

    Madan, Christopher R.

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings. PMID:26594340

  11. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  12. Protein 3D Structure and Electron Microscopy Map Retrieval Using 3D-SURFER2.0 and EM-SURFER.

    PubMed

    Han, Xusi; Wei, Qing; Kihara, Daisuke

    2017-12-08

    With the rapid growth in the number of solved protein structures stored in the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB), it is essential to develop tools to perform real-time structure similarity searches against the entire structure database. Since conventional structure alignment methods need to sample different orientations of proteins in the three-dimensional space, they are time consuming and unsuitable for rapid, real-time database searches. To this end, we have developed 3D-SURFER and EM-SURFER, which utilize 3D Zernike descriptors (3DZD) to conduct high-throughput protein structure comparison, visualization, and analysis. Taking an atomic structure or an electron microscopy map of a protein or a protein complex as input, the 3DZD of a query protein is computed and compared with the 3DZD of all other proteins in PDB or EMDB. In addition, local geometrical characteristics of a query protein can be analyzed using VisGrid and LIGSITE CSC in 3D-SURFER. This article describes how to use 3D-SURFER and EM-SURFER to carry out protein surface shape similarity searches, local geometric feature analysis, and interpretation of the search results. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  13. An object oriented fully 3D tomography visual toolkit.

    PubMed

    Agostinelli, S; Paoli, G

    2001-04-01

    In this paper we present a modern object oriented component object model (COMM) C + + toolkit dedicated to fully 3D cone-beam tomography. The toolkit allows the display and visual manipulation of analytical phantoms, projection sets and volumetric data through a standard Windows graphical user interface. Data input/output is performed using proprietary file formats but import/export of industry standard file formats, including raw binary, Windows bitmap and AVI, ACR/NEMA DICOMM 3 and NCSA HDF is available. At the time of writing built-in implemented data manipulators include a basic phantom ray-tracer and a Matrox Genesis frame grabbing facility. A COMM plug-in interface is provided for user-defined custom backprojector algorithms: a simple Feldkamp ActiveX control, including source code, is provided as an example; our fast Feldkamp plug-in is also available.

  14. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem.

    PubMed

    McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S

    2015-09-30

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  15. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem

    PubMed Central

    McClay, Wilbert A.; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T.; Nagarajan, Srikantan S.

    2015-01-01

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432

  16. Volume-rendering on a 3D hyperwall: A molecular visualization platform for research, education and outreach.

    PubMed

    MacDougall, Preston J; Henze, Christopher E; Volkov, Anatoliy

    2016-11-01

    We present a unique platform for molecular visualization and design that uses novel subatomic feature detection software in tandem with 3D hyperwall visualization technology. We demonstrate the fleshing-out of pharmacophores in drug molecules, as well as reactive sites in catalysts, focusing on subatomic features. Topological analysis with picometer resolution, in conjunction with interactive volume-rendering of the Laplacian of the electronic charge density, leads to new insight into docking and catalysis. Visual data-mining is done efficiently and in parallel using a 4×4 3D hyperwall (a tiled array of 3D monitors driven independently by slave GPUs but displaying high-resolution, synchronized and functionally-related images). The visual texture of images for a wide variety of molecular systems are intuitive to experienced chemists but also appealing to neophytes, making the platform simultaneously useful as a tool for advanced research as well as for pedagogical and STEM education outreach purposes. Copyright © 2016. Published by Elsevier Inc.

  17. Real-Time Adaptive Control of Mixing in a Plane Shear Layer

    DTIC Science & Technology

    1994-02-02

    l’icoulement d’un fuide visqueux incompressible autour d’un cylinder fixe ou en rotation. Effet Magnus . J. Mdc. 14, 109-134. TANEDA, S. 1977 Visual study...Mokhtarian & Yokomizo 1990), and in lift enhancement schemes employing the Magnus effect (Swanson 1961). Rotation of all or part of a body may also have...coordinate system. In this work, the body-fitted grid is simply one of cylindrical polar coordinates and is time-independent, except for a = 3.25 where

  18. Toward a Scalable Visualization System for Network Traffic Monitoring

    NASA Astrophysics Data System (ADS)

    Malécot, Erwan Le; Kohara, Masayoshi; Hori, Yoshiaki; Sakurai, Kouichi

    With the multiplication of attacks against computer networks, system administrators are required to monitor carefully the traffic exchanged by the networks they manage. However, that monitoring task is increasingly laborious because of the augmentation of the amount of data to analyze. And that trend is going to intensify with the explosion of the number of devices connected to computer networks along with the global rise of the available network bandwidth. So system administrators now heavily rely on automated tools to assist them and simplify the analysis of the data. Yet, these tools provide limited support and, most of the time, require highly skilled operators. Recently, some research teams have started to study the application of visualization techniques to the analysis of network traffic data. We believe that this original approach can also allow system administrators to deal with the large amount of data they have to process. In this paper, we introduce a tool for network traffic monitoring using visualization techniques that we developed in order to assist the system administrators of our corporate network. We explain how we designed the tool and some of the choices we made regarding the visualization techniques to use. The resulting tool proposes two linked representations of the network traffic and activity, one in 2D and the other in 3D. As 2D and 3D visualization techniques have different assets, we resulted in combining them in our tool to take advantage of their complementarity. We finally tested our tool in order to evaluate the accuracy of our approach.

  19. 3D Printing of Biomolecular Models for Research and Pedagogy

    PubMed Central

    Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel

    2017-01-01

    The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403

  20. 4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing’s Reaction-Diffusion Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolu; Yang, Hao

    2017-12-01

    The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.

  1. The Effects of Modafinil and Ove-the-Counter Stimulants on Two- and Three- Dimensional Visual Localization

    DTIC Science & Technology

    2017-12-19

    information is accumulated (drift rate). Note that decision time is not equivalent to reaction time because reaction time includes non -decision time...countermeasures are not used. The magnitude of the performance loss is nearly equivalent to that measured using the psychomotor vigilance test, which is...model non -decision time parameter for Modafinil and No Modafinil groups as a function of measurement time for the 3D task

  2. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    PubMed Central

    2010-01-01

    Background In a recent study, two-dimensional (2D) network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D) network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method) revealed that genes implicated in many diseases (non-specific genes) tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes) tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks. PMID:21070623

  3. 3D Virtual Environment Used to Support Lighting System Management in a Building

    NASA Astrophysics Data System (ADS)

    Sampaio, A. Z.; Ferreira, M. M.; Rosário, D. P.

    The main aim of the research project, which is in progress at the UTL, is to develop a virtual interactive model as a tool to support decision-making in the planning of construction maintenance and facilities management. The virtual model gives the capacity to allow the user to transmit, visually and interactively, information related to the components of a building, defined as a function of the time variable. In addition, the analysis of solutions for repair work/substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The first component of the virtual prototype concerns the management of lamps in a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.

  4. 3D Viewing: Odd Perception - Illusion? reality? or both?

    NASA Astrophysics Data System (ADS)

    Kisimoto, K.; Iizasa, K.

    2008-12-01

    We live in the three dimensional space, don't we? It could be at least four dimensions, but that is another story. In either way our perceptual capability of 3D-Viewing is constrained by our 2D-perception (our intrinsic tools of perception). I carried out a few visual experiments using topographic data to show our intrinsic (or biological) disability (or shortcoming) in 3D-recognition of our world. Results of the experiments suggest: (1) 3D-surface model displayed on a 2D-computer screen (or paper) always has two interpretations of the 3D- surface geometry, if we choose one of the interpretation (in other word, if we are hooked by one perception of the two), we maintain its perception even if the 3D-model changes its viewing perspective in time shown on the screen, (2) more interesting is that 3D-real solid object (e.g.,made of clay) also gives above mentioned two interpretations of the geometry of the object, if we observe the object with one-eye. Most famous example of this viewing illusion is exemplified by a magician, who died in 2007, Jerry Andrus who made a super-cool paper crafted dragon which causes visual illusion to one-eyed viewer. I, by the experiments, confirmed this phenomenon in another perceptually persuasive (deceptive?) way. My conclusion is that this illusion is intrinsic, i.e. reality for human, because, even if we live in 3D-space, our perceptional tool (eyes) is composed of 2D sensors whose information is reconstructed or processed to 3D by our experience-based brain. So, (3) when we observe the 3D-surface-model on the computer screen, we are always one eye short even if we use both eyes. One last suggestion from my experiments is that recent highly sophisticated 3D- models might include too many information that human perceptions cannot handle properly, i.e. we might not be understanding the 3D world (geospace) at all, just illusioned.

  5. Bird's Eye View - A 3-D Situational Awareness Tool for the Space Station

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Chamitoff, Gregory

    2002-01-01

    Even as space-qualified computer hardware lags well behind the latest home computers, the possibility of using high-fidelity interactive 3-D graphics for displaying important on board information has finally arrived, and is being used on board the International Space Station (ISS). With the quantity and complexity of space-flight telemetry, 3-D displays can greatly enhance the ability of users, both onboard and on the ground, to interpret data quickly and accurately. This is particularly true for data related to vehicle attitude, position, configuration, and relation to other objects on the ground or in-orbit Bird's Eye View (BEV) is a 3-D real-time application that provides a high degree of Situational Awareness for the crew. Its purpose is to instantly convey important motion-related parameters to the crew and mission controllers by presenting 3-D simulated camera views of the International Space Station (ISS) in its actual environment Driven by actual telemetry, and running on board, as well as on the ground, the user can visualize the Space Station relative to the Earth, Sun, stars, various reference frames, and selected targets, such as ground-sites or communication satellites. Since the actual ISS configuration (geometry) is also modeled accurately, everything from the alignment of the solar panels to the expected view from a selected window can be visualized accurately. A virtual representation of the Space Station in real time has many useful applications. By selecting different cameras, the crew or mission control can monitor the station's orientation in space, position over the Earth, transition from day to night, direction to the Sun, the view from a particular window, or the motion of the robotic arm. By viewing the vehicle attitude and solar panel orientations relative to the Sun, the power status of the ISS can be easily visualized and understood. Similarly, the thermal impacts of vehicle attitude can be analyzed and visually confirmed. Communication opportunities can be displayed, and line-of-sight blockage due to interference by the vehicle structure (or the Earth) can be seen easily. Additional features in BEV display targets on the ground and in-orbit, including cities, communication sites, landmarks, satellites, and special sites of scientific interest for Earth observation and photography. Any target can be selected and tracked. This gives the user a continual line-of-sight to the target of current interest, and real-time knowledge about its visibility. Similarly, the vehicle ground-track, and an option to show "visibility circles" around displayed ground sites, provide continuous insight regarding current and future visibility to any target BEV was designed with inputs from many disciplines in the flight control and operations community both at NASA and from the International Partners. As such, BEV is setting the standards for interactive 3-D graphics for spacecraft applications. One important contribution of BEV is a generic graphical interface for camera control that can be used for any 3-D applications. This interface has become part of the International Display and Graphics Standards for the 16-nation ISS partnership. Many other standards related to camera properties, and the display of 3-D data, also have been defined by BEV. Future enhancements to BEV will include capabilities related to simulating ahead of the current time. This will give the user tools for analyzing off-nominal and future scenarios, as well as for planning future operations.

  6. Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds

    PubMed Central

    Spits, Christine; Wallace, Luke; Reinke, Karin

    2017-01-01

    Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential. PMID:28425957

  7. The SCEC/UseIT Intern Program: Creating Open-Source Visualization Software Using Diverse Resources

    NASA Astrophysics Data System (ADS)

    Francoeur, H.; Callaghan, S.; Perry, S.; Jordan, T.

    2004-12-01

    The Southern California Earthquake Center undergraduate IT intern program (SCEC UseIT) conducts IT research to benefit collaborative earth science research. Through this program, interns have developed real-time, interactive, 3D visualization software using open-source tools. Dubbed LA3D, a distribution of this software is now in use by the seismic community. LA3D enables the user to interactively view Southern California datasets and models of importance to earthquake scientists, such as faults, earthquakes, fault blocks, digital elevation models, and seismic hazard maps. LA3D is now being extended to support visualizations anywhere on the planet. The new software, called SCEC-VIDEO (Virtual Interactive Display of Earth Objects), makes use of a modular, plugin-based software architecture which supports easy development and integration of new data sets. Currently SCEC-VIDEO is in beta testing, with a full open-source release slated for the future. Both LA3D and SCEC-VIDEO were developed using a wide variety of software technologies. These, which included relational databases, web services, software management technologies, and 3-D graphics in Java, were necessary to integrate the heterogeneous array of data sources which comprise our software. Currently the interns are working to integrate new technologies and larger data sets to increase software functionality and value. In addition, both LA3D and SCEC-VIDEO allow the user to script and create movies. Thus program interns with computer science backgrounds have been writing software while interns with other interests, such as cinema, geology, and education, have been making movies that have proved of great use in scientific talks, media interviews, and education. Thus, SCEC UseIT incorporates a wide variety of scientific and human resources to create products of value to the scientific and outreach communities. The program plans to continue with its interdisciplinary approach, increasing the relevance of the software and expanding its use in the scientific community.

  8. 3-D interactive visualisation tools for Hi spectral line imaging

    NASA Astrophysics Data System (ADS)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2017-06-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.

  9. Synchrotron X-ray imaging of pulmonary alveoli in respiration in live intact mice.

    PubMed

    Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira

    2015-03-04

    Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 ± 14 (mean ± s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 ± 4.7% (mean ± s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 ± 4.3% (mean ± s.d.)) than in the apices (5.7 ± 3.2% (mean ± s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 ± 3.8% (mean ± s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.

  10. Comparison of accuracies of an intraoral spectrophotometer and conventional visual method for shade matching using two shade guide systems

    PubMed Central

    Parameswaran, Vidhya; Anilkumar, S.; Lylajam, S.; Rajesh, C.; Narayan, Vivek

    2016-01-01

    Background and Objectives: This in vitro study compared the shade matching abilities of an intraoral spectrophotometer and the conventional visual method using two shade guides. The results of previous investigations between color perceived by human observers and color assessed by instruments have been inconclusive. The objectives were to determine accuracies and interrater agreement of both methods and effectiveness of two shade guides with either method. Methods: In the visual method, 10 examiners with normal color vision matched target control shade tabs taken from the two shade guides (VITAPAN Classical™ and VITAPAN 3D Master™) with other full sets of the respective shade guides. Each tab was matched 3 times to determine repeatability of visual examiners. The spectrophotometric shade matching was performed by two independent examiners using an intraoral spectrophotometer (VITA Easyshade™) with five repetitions for each tab. Results: Results revealed that visual method had greater accuracy than the spectrophotometer. The spectrophotometer; however, exhibited significantly better interrater agreement as compared to the visual method. While VITAPAN Classical shade guide was more accurate with the spectrophotometer, VITAPAN 3D Master shade guide proved better with visual method. Conclusion: This in vitro study clearly delineates the advantages and limitations of both methods. There were significant differences between the methods with the visual method producing more accurate results than the spectrophotometric method. The spectrophotometer showed far better interrater agreement scores irrespective of the shade guide used. Even though visual shade matching is subjective, it is not inferior and should not be underrated. Judicious combination of both techniques is imperative to attain a successful and esthetic outcome. PMID:27746599

  11. Spatial Visualization by Realistic 3D Views

    ERIC Educational Resources Information Center

    Yue, Jianping

    2008-01-01

    In this study, the popular Purdue Spatial Visualization Test-Visualization by Rotations (PSVT-R) in isometric drawings was recreated with CAD software that allows 3D solid modeling and rendering to provide more realistic pictorial views. Both the original and the modified PSVT-R tests were given to students and their scores on the two tests were…

  12. Spatial Reasoning with External Visualizations: What Matters Is What You See, Not whether You Interact

    ERIC Educational Resources Information Center

    Keehner, Madeleine; Hegarty, Mary; Cohen, Cheryl; Khooshabeh, Peter; Montello, Daniel R.

    2008-01-01

    Three experiments examined the effects of interactive visualizations and spatial abilities on a task requiring participants to infer and draw cross sections of a three-dimensional (3D) object. The experiments manipulated whether participants could interactively control a virtual 3D visualization of the object while performing the task, and…

  13. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography

    PubMed Central

    Carrasco-Zevallos, O. M.; Keller, B.; Viehland, C.; Shen, L.; Waterman, G.; Todorich, B.; Shieh, C.; Hahn, P.; Farsiu, S.; Kuo, A. N.; Toth, C. A.; Izatt, J. A.

    2016-01-01

    Minimally-invasive microsurgery has resulted in improved outcomes for patients. However, operating through a microscope limits depth perception and fixes the visual perspective, which result in a steep learning curve to achieve microsurgical proficiency. We introduce a surgical imaging system employing four-dimensional (live volumetric imaging through time) microscope-integrated optical coherence tomography (4D MIOCT) capable of imaging at up to 10 volumes per second to visualize human microsurgery. A custom stereoscopic heads-up display provides real-time interactive volumetric feedback to the surgeon. We report that 4D MIOCT enhanced suturing accuracy and control of instrument positioning in mock surgical trials involving 17 ophthalmic surgeons. Additionally, 4D MIOCT imaging was performed in 48 human eye surgeries and was demonstrated to successfully visualize the pathology of interest in concordance with preoperative diagnosis in 93% of retinal surgeries and the surgical site of interest in 100% of anterior segment surgeries. In vivo 4D MIOCT imaging revealed sub-surface pathologic structures and instrument-induced lesions that were invisible through the operating microscope during standard surgical maneuvers. In select cases, 4D MIOCT guidance was necessary to resolve such lesions and prevent post-operative complications. Our novel surgical visualization platform achieves surgeon-interactive 4D visualization of live surgery which could expand the surgeon’s capabilities. PMID:27538478

  14. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carrasco-Zevallos, O. M.; Keller, B.; Viehland, C.; Shen, L.; Waterman, G.; Todorich, B.; Shieh, C.; Hahn, P.; Farsiu, S.; Kuo, A. N.; Toth, C. A.; Izatt, J. A.

    2016-08-01

    Minimally-invasive microsurgery has resulted in improved outcomes for patients. However, operating through a microscope limits depth perception and fixes the visual perspective, which result in a steep learning curve to achieve microsurgical proficiency. We introduce a surgical imaging system employing four-dimensional (live volumetric imaging through time) microscope-integrated optical coherence tomography (4D MIOCT) capable of imaging at up to 10 volumes per second to visualize human microsurgery. A custom stereoscopic heads-up display provides real-time interactive volumetric feedback to the surgeon. We report that 4D MIOCT enhanced suturing accuracy and control of instrument positioning in mock surgical trials involving 17 ophthalmic surgeons. Additionally, 4D MIOCT imaging was performed in 48 human eye surgeries and was demonstrated to successfully visualize the pathology of interest in concordance with preoperative diagnosis in 93% of retinal surgeries and the surgical site of interest in 100% of anterior segment surgeries. In vivo 4D MIOCT imaging revealed sub-surface pathologic structures and instrument-induced lesions that were invisible through the operating microscope during standard surgical maneuvers. In select cases, 4D MIOCT guidance was necessary to resolve such lesions and prevent post-operative complications. Our novel surgical visualization platform achieves surgeon-interactive 4D visualization of live surgery which could expand the surgeon’s capabilities.

  15. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  16. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    PubMed Central

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. PMID:26377458

  18. 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display.

    PubMed

    Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen

    2017-07-01

    Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Visualization and Tracking of Parallel CFD Simulations

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kremenetsky, Mark

    1995-01-01

    We describe a system for interactive visualization and tracking of a 3-D unsteady computational fluid dynamics (CFD) simulation on a parallel computer. CM/AVS, a distributed, parallel implementation of a visualization environment (AVS) runs on the CM-5 parallel supercomputer. A CFD solver is run as a CM/AVS module on the CM-5. Data communication between the solver, other parallel visualization modules, and a graphics workstation, which is running AVS, are handled by CM/AVS. Partitioning of the visualization task, between CM-5 and the workstation, can be done interactively in the visual programming environment provided by AVS. Flow solver parameters can also be altered by programmable interactive widgets. This system partially removes the requirement of storing large solution files at frequent time steps, a characteristic of the traditional 'simulate (yields) store (yields) visualize' post-processing approach.

  20. [Real-time three-dimensional (4D) ultrasound-guided prostatic biopsies on a phantom. Comparative study versus 2D guidance].

    PubMed

    Long, Jean-Alexandre; Daanen, Vincent; Moreau-Gaudry, Alexandre; Troccaz, Jocelyne; Rambeaud, Jean-Jacques; Descotes, Jean-Luc

    2007-11-01

    The objective of this study was to determine the added value of real-time three-dimensional (4D) ultrasound guidance of prostatic biopsies on a prostate phantom in terms of the precision of guidance and distribution. A prostate phantom was constructed. A real-time 3D ultrasonograph connected to a transrectal 5.9 MHz volumic transducer was used. Fourteen operators performed 336 biopsies with 2D guidance then 4D guidance according to a 12-biopsy protocol. Biopsy tracts were modelled by segmentation in a 3D ultrasound volume. Specific software allowed visualization of biopsy tracts in the reference prostate and evaluated the zone biopsied. A comparative study was performed to determine the added value of 4D guidance compared to 2D guidance by evaluating the precision of entry points and target points. The distribution was evaluated by measuring the volume investigated and by a redundancy ratio of the biopsy points. The precision of the biopsy protocol was significantly improved by 4D guidance (p = 0.037). No increase of the biopsy volume and no improvement of the distribution of biopsies were observed with 4D compared to 2D guidance. The real-time 3D ultrasound-guided prostate biopsy technique on a phantom model appears to improve the precision and reproducibility of a biopsy protocol, but the distribution of biopsies does not appear to be improved.

Top