Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
Approximation algorithms for planning and control
NASA Technical Reports Server (NTRS)
Boddy, Mark; Dean, Thomas
1989-01-01
A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.
A faster 1.375-approximation algorithm for sorting by transpositions.
Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H
2015-11-01
Sorting by Transpositions is an NP-hard problem for which several polynomial-time approximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-approximation [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-approximation O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.
Time and Memory Efficient Online Piecewise Linear Approximation of Sensor Signals.
Grützmacher, Florian; Beichler, Benjamin; Hein, Albert; Kirste, Thomas; Haubelt, Christian
2018-05-23
Piecewise linear approximation of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear approximation techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear approximation algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the approximation quality compared to other state-of-the-art piecewise linear approximation techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.
NASA Technical Reports Server (NTRS)
Shakib, Farzin; Hughes, Thomas J. R.
1991-01-01
A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.
Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees
Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael
2014-01-01
Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210
Optimizing Approximate Weighted Matching on Nvidia Kepler K40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh
Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less
A Constant-Factor Approximation Algorithm for the Link Building Problem
NASA Astrophysics Data System (ADS)
Olsen, Martin; Viglas, Anastasios; Zvedeniouk, Ilia
In this work we consider the problem of maximizing the PageRank of a given target node in a graph by adding k new links. We consider the case that the new links must point to the given target node (backlinks). Previous work [7] shows that this problem has no fully polynomial time approximation schemes unless P = NP. We present a polynomial time algorithm yielding a PageRank value within a constant factor from the optimal. We also consider the naive algorithm where we choose backlinks from nodes with high PageRank values compared to the outdegree and show that the naive algorithm performs much worse on certain graphs compared to the constant factor approximation scheme.
Approximating the 0-1 Multiple Knapsack Problem with Agent Decomposition and Market Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smolinski, B.
The 0-1 multiple knapsack problem appears in many domains from financial portfolio management to cargo ship stowing. Methods for solving it range from approximate algorithms, such as greedy algorithms, to exact algorithms, such as branch and bound. Approximate algorithms have no bounds on how poorly they perform and exact algorithms can suffer from exponential time and space complexities with large data sets. This paper introduces a market model based on agent decomposition and market auctions for approximating the 0-1 multiple knapsack problem, and an algorithm that implements the model (M(x)). M(x) traverses the solution space rather than getting caught inmore » a local maximum, overcoming an inherent problem of many greedy algorithms. The use of agents ensures that infeasible solutions are not considered while traversing the solution space and that traversal of the solution space is not just random, but is also directed. M(x) is compared to a bound and bound algorithm (BB) and a simple greedy algorithm with a random shuffle (G(x)). The results suggest that M(x) is a good algorithm for approximating the 0-1 Multiple Knapsack problem. M(x) almost always found solutions that were close to optimal in a fraction of the time it took BB to run and with much less memory on large test data sets. M(x) usually performed better than G(x) on hard problems with correlated data.« less
Ho, ThienLuan; Oh, Seung-Rohk
2017-01-01
Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700
Software algorithm and hardware design for real-time implementation of new spectral estimator
2014-01-01
Background Real-time spectral analyzers can be difficult to implement for PC computer-based systems because of the potential for high computational cost, and algorithm complexity. In this work a new spectral estimator (NSE) is developed for real-time analysis, and compared with the discrete Fourier transform (DFT). Method Clinical data in the form of 216 fractionated atrial electrogram sequences were used as inputs. The sample rate for acquisition was 977 Hz, or approximately 1 millisecond between digital samples. Real-time NSE power spectra were generated for 16,384 consecutive data points. The same data sequences were used for spectral calculation using a radix-2 implementation of the DFT. The NSE algorithm was also developed for implementation as a real-time spectral analyzer electronic circuit board. Results The average interval for a single real-time spectral calculation in software was 3.29 μs for NSE versus 504.5 μs for DFT. Thus for real-time spectral analysis, the NSE algorithm is approximately 150× faster than the DFT. Over a 1 millisecond sampling period, the NSE algorithm had the capability to spectrally analyze a maximum of 303 data channels, while the DFT algorithm could only analyze a single channel. Moreover, for the 8 second sequences, the NSE spectral resolution in the 3-12 Hz range was 0.037 Hz while the DFT spectral resolution was only 0.122 Hz. The NSE was also found to be implementable as a standalone spectral analyzer board using approximately 26 integrated circuits at a cost of approximately $500. The software files used for analysis are included as a supplement, please see the Additional files 1 and 2. Conclusions The NSE real-time algorithm has low computational cost and complexity, and is implementable in both software and hardware for 1 millisecond updates of multichannel spectra. The algorithm may be helpful to guide radiofrequency catheter ablation in real time. PMID:24886214
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
Finding minimum-quotient cuts in planar graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.K.; Phillips, C.A.
Given a graph G = (V, E) where each vertex v {element_of} V is assigned a weight w(v) and each edge e {element_of} E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and {bar S} is c(S, {bar S})/min{l_brace}w(S), w(S){r_brace}, where c(S, {bar S}) is the sum of the costs of the edges crossing the cut and w(S) and w({bar S}) are the sum of the weights of the vertices in S and {bar S}, respectively. The problem of finding a cut whose quotient is minimum for a graph hasmore » in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,{bar S}) minimizing c(S,{bar S}) subject to the constraint bW {le} w(S) {le} (1 {minus} b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b {le} {1/2}. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao`s algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao`s most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less
Finding minimum-quotient cuts in planar graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.K.; Phillips, C.A.
Given a graph G = (V, E) where each vertex v [element of] V is assigned a weight w(v) and each edge e [element of] E is assigned a cost c(e), the quotient of a cut partitioning the vertices of V into sets S and [bar S] is c(S, [bar S])/min[l brace]w(S), w(S)[r brace], where c(S, [bar S]) is the sum of the costs of the edges crossing the cut and w(S) and w([bar S]) are the sum of the weights of the vertices in S and [bar S], respectively. The problem of finding a cut whose quotient is minimummore » for a graph has in recent years attracted considerable attention, due in large part to the work of Rao and Leighton and Rao. They have shown that an algorithm (exact or approximation) for the minimum-quotient-cut problem can be used to obtain an approximation algorithm for the more famous minimumb-balanced-cut problem, which requires finding a cut (S,[bar S]) minimizing c(S,[bar S]) subject to the constraint bW [le] w(S) [le] (1 [minus] b)W, where W is the total vertex weight and b is some fixed balance in the range 0 < b [le] [1/2]. Unfortunately, the minimum-quotient-cut problem is strongly NP-hard for general graphs, and the best polynomial-time approximation algorithm known for the general problem guarantees only a cut whose quotient is at mostO(lg n) times optimal, where n is the size of the graph. However, for planar graphs, the minimum-quotient-cut problem appears more tractable, as Rao has developed several efficient approximation algorithms for the planar version of the problem capable of finding a cut whose quotient is at most some constant times optimal. In this paper, we improve Rao's algorithms, both in terms of accuracy and speed. As our first result, we present two pseudopolynomial-time exact algorithms for the planar minimum-quotient-cut problem. As Rao's most accurate approximation algorithm for the problem -- also a pseudopolynomial-time algorithm -- guarantees only a 1.5-times-optimal cut, our algorithms represent a significant advance.« less
Algorithm for Compressing Time-Series Data
NASA Technical Reports Server (NTRS)
Hawkins, S. Edward, III; Darlington, Edward Hugo
2012-01-01
An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").
Kalman Filters for Time Delay of Arrival-Based Source Localization
NASA Astrophysics Data System (ADS)
Klee, Ulrich; Gehrig, Tobias; McDonough, John
2006-12-01
In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
Better approximation guarantees for job-shop scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, L.A.; Paterson, M.; Srinivasan, A.
1997-06-01
Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.
NASA Technical Reports Server (NTRS)
Desideri, J. A.; Steger, J. L.; Tannehill, J. C.
1978-01-01
The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.
Lipinski, Doug; Mohseni, Kamran
2010-03-01
A ridge tracking algorithm for the computation and extraction of Lagrangian coherent structures (LCS) is developed. This algorithm takes advantage of the spatial coherence of LCS by tracking the ridges which form LCS to avoid unnecessary computations away from the ridges. We also make use of the temporal coherence of LCS by approximating the time dependent motion of the LCS with passive tracer particles. To justify this approximation, we provide an estimate of the difference between the motion of the LCS and that of tracer particles which begin on the LCS. In addition to the speedup in computational time, the ridge tracking algorithm uses less memory and results in smaller output files than the standard LCS algorithm. Finally, we apply our ridge tracking algorithm to two test cases, an analytically defined double gyre as well as the more complicated example of the numerical simulation of a swimming jellyfish. In our test cases, we find up to a 35 times speedup when compared with the standard LCS algorithm.
Optimization of the Monte Carlo code for modeling of photon migration in tissue.
Zołek, Norbert S; Liebert, Adam; Maniewski, Roman
2006-10-01
The Monte Carlo method is frequently used to simulate light transport in turbid media because of its simplicity and flexibility, allowing to analyze complicated geometrical structures. Monte Carlo simulations are, however, time consuming because of the necessity to track the paths of individual photons. The time consuming computation is mainly associated with the calculation of the logarithmic and trigonometric functions as well as the generation of pseudo-random numbers. In this paper, the Monte Carlo algorithm was developed and optimized, by approximation of the logarithmic and trigonometric functions. The approximations were based on polynomial and rational functions, and the errors of these approximations are less than 1% of the values of the original functions. The proposed algorithm was verified by simulations of the time-resolved reflectance at several source-detector separations. The results of the calculation using the approximated algorithm were compared with those of the Monte Carlo simulations obtained with an exact computation of the logarithm and trigonometric functions as well as with the solution of the diffusion equation. The errors of the moments of the simulated distributions of times of flight of photons (total number of photons, mean time of flight and variance) are less than 2% for a range of optical properties, typical of living tissues. The proposed approximated algorithm allows to speed up the Monte Carlo simulations by a factor of 4. The developed code can be used on parallel machines, allowing for further acceleration.
Propagating Qualitative Values Through Quantitative Equations
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak
1992-01-01
In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.
Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms.
Friedrich, Tobias; Neumann, Frank
2015-01-01
Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints, we show that the GSEMO achieves a (1 - 1/e)-approximation in expected polynomial time. For the case of monotone functions where the constraints are given by the intersection of K ≥ 2 matroids, we show that the (1 + 1) EA achieves a (1/k + δ)-approximation in expected polynomial time for any constant δ > 0. Turning to nonmonotone symmetric submodular functions with k ≥ 1 matroid intersection constraints, we show that the GSEMO achieves a 1/((k + 2)(1 + ε))-approximation in expected time O(n(k + 6)log(n)/ε.
Real-time stereo matching using orthogonal reliability-based dynamic programming.
Gong, Minglun; Yang, Yee-Hong
2007-03-01
A novel algorithm is presented in this paper for estimating reliable stereo matches in real time. Based on the dynamic programming-based technique we previously proposed, the new algorithm can generate semi-dense disparity maps using as few as two dynamic programming passes. The iterative best path tracing process used in traditional dynamic programming is replaced by a local minimum searching process, making the algorithm suitable for parallel execution. Most computations are implemented on programmable graphics hardware, which improves the processing speed and makes real-time estimation possible. The experiments on the four new Middlebury stereo datasets show that, on an ATI Radeon X800 card, the presented algorithm can produce reliable matches for 60% approximately 80% of pixels at the rate of 10 approximately 20 frames per second. If needed, the algorithm can be configured for generating full density disparity maps.
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
Bin Packing, Number Balancing, and Rescaling Linear Programs
NASA Astrophysics Data System (ADS)
Hoberg, Rebecca
This thesis deals with several important algorithmic questions using techniques from diverse areas including discrepancy theory, machine learning and lattice theory. In Chapter 2, we construct an improved approximation algorithm for a classical NP-complete problem, the bin packing problem. In this problem, the goal is to pack items of sizes si ∈ [0,1] into as few bins as possible, where a set of items fits into a bin provided the sum of the item sizes is at most one. We give a polynomial-time rounding scheme for a standard linear programming relaxation of the problem, yielding a packing that uses at most OPT + O(log OPT) bins. This makes progress towards one of the "10 open problems in approximation algorithms" stated in the book of Shmoys and Williamson. In fact, based on related combinatorial lower bounds, Rothvoss conjectures that theta(logOPT) may be a tight bound on the additive integrality gap of this LP relaxation. In Chapter 3, we give a new polynomial-time algorithm for linear programming. Our algorithm is based on the multiplicative weights update (MWU) method, which is a general framework that is currently of great interest in theoretical computer science. An algorithm for linear programming based on MWU was known previously, but was not polynomial time--we remedy this by alternating between a MWU phase and a rescaling phase. The rescaling methods we introduce improve upon previous methods by reducing the number of iterations needed until one can rescale, and they can be used for any algorithm with a similar rescaling structure. Finally, we note that the MWU phase of the algorithm has a simple interpretation as gradient descent of a particular potential function, and we show we can speed up this phase by walking in a direction that decreases both the potential function and its gradient. In Chapter 4, we show that an approximate oracle for Minkowski's Theorem gives an approximate oracle for the number balancing problem, and conversely. Number balancing is the problem of minimizing | 〈a,x〉 | over x ∈ {-1,0,1}n \\ { 0}, given a ∈ [0,1]n. While an application of the pigeonhole principle shows that there always exists x with | 〈a,x〉| ≤ O(√ n/2n), the best known algorithm only guarantees |〈a,x〉| ≤ 2-ntheta(log n). We show that an oracle for Minkowski's Theorem with approximation factor rho would give an algorithm for NBP that guarantees | 〈a,x〉 | ≤ 2-ntheta(1/rho). In particular, this would beat the bound of Karmarkar and Karp provided rho ≤ O(logn/loglogn). In the other direction, we prove that any polynomial time algorithm for NBP that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.
Configuring Airspace Sectors with Approximate Dynamic Programming
NASA Technical Reports Server (NTRS)
Bloem, Michael; Gupta, Pramod
2010-01-01
In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.
Exact and approximate stochastic simulation of intracellular calcium dynamics.
Wieder, Nicolas; Fink, Rainer H A; Wegner, Frederic von
2011-01-01
In simulations of chemical systems, the main task is to find an exact or approximate solution of the chemical master equation (CME) that satisfies certain constraints with respect to computation time and accuracy. While Brownian motion simulations of single molecules are often too time consuming to represent the mesoscopic level, the classical Gillespie algorithm is a stochastically exact algorithm that provides satisfying results in the representation of calcium microdomains. Gillespie's algorithm can be approximated via the tau-leap method and the chemical Langevin equation (CLE). Both methods lead to a substantial acceleration in computation time and a relatively small decrease in accuracy. Elimination of the noise terms leads to the classical, deterministic reaction rate equations (RRE). For complex multiscale systems, hybrid simulations are increasingly proposed to combine the advantages of stochastic and deterministic algorithms. An often used exemplary cell type in this context are striated muscle cells (e.g., cardiac and skeletal muscle cells). The properties of these cells are well described and they express many common calcium-dependent signaling pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.
Gu, Zhining; Guo, Wei; Li, Chaoyang; Zhu, Xinyan; Guo, Tao
2018-01-01
Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target’s location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5–8.5 s for the transition between states and by approximately 24 s for the entire process. PMID:29495503
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Combinatorial approximation algorithms for MAXCUT using random walks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Kale, Satyen
We give the first combinatorial approximation algorithm for MaxCut that beats the trivial 0.5 factor by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially performs a number of random walks and aggregates the information to provide the partition. We can control the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5, there is an {tilde O}(n{sup b}) algorithm that outputs a (0.5 + {delta})-approximation for MaxCut, where {delta} = {delta}(b) is some positive constant. One of the components of our algorithm is a weakmore » local graph partitioning procedure that may be of independent interest. Given a starting vertex i and a conductance parameter {phi}, unless a random walk of length {ell} = O(log n) starting from i mixes rapidly (in terms of {phi} and {ell}), we can find a cut of conductance at most {phi} close to the vertex. The work done per vertex found in the cut is sublinear in n.« less
Algorithms in Discrepancy Theory and Lattices
NASA Astrophysics Data System (ADS)
Ramadas, Harishchandra
This thesis deals with algorithmic problems in discrepancy theory and lattices, and is based on two projects I worked on while at the University of Washington in Seattle. A brief overview is provided in Chapter 1 (Introduction). Chapter 2 covers joint work with Avi Levy and Thomas Rothvoss in the field of discrepancy minimization. A well-known theorem of Spencer shows that any set system with n sets over n elements admits a coloring of discrepancy O(√n). While the original proof was non-constructive, recent progress brought polynomial time algorithms by Bansal, Lovett and Meka, and Rothvoss. All those algorithms are randomized, even though Bansal's algorithm admitted a complicated derandomization. We propose an elegant deterministic polynomial time algorithm that is inspired by Lovett-Meka as well as the Multiplicative Weight Update method. The algorithm iteratively updates a fractional coloring while controlling the exponential weights that are assigned to the set constraints. A conjecture by Meka suggests that Spencer's bound can be generalized to symmetric matrices. We prove that n x n matrices that are block diagonal with block size q admit a coloring of discrepancy O(√n . √log(q)). Bansal, Dadush and Garg recently gave a randomized algorithm to find a vector x with entries in {-1,1} with ∥Ax∥infinity ≤ O(√log n) in polynomial time, where A is any matrix whose columns have length at most 1. We show that our method can be used to deterministically obtain such a vector. In Chapter 3, we discuss a result in the broad area of lattices and integer optimization, in joint work with Rebecca Hoberg, Thomas Rothvoss and Xin Yang. The number balancing (NBP) problem is the following: given real numbers a1,...,an in [0,1], find two disjoint subsets I1,I2 of [ n] so that the difference |sumi∈I1a i - sumi∈I2ai| of their sums is minimized. An application of the pigeonhole principle shows that there is always a solution where the difference is at most O √n/2n). Finding the minimum, however, is NP-hard. In polynomial time, the differencing algorithm by Karmarkar and Karp from 1982 can produce a solution with difference at most n-theta(log n), but no further improvement has been made since then. We show a relationship between NBP and Minkowski's Theorem. First we show that an approximate oracle for Minkowski's Theorem gives an approximate NBP oracle. Perhaps more surprisingly, we show that an approximate NBP oracle gives an approximate Minkowski oracle. In particular, we prove that any polynomial time algorithm that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.
NASA Astrophysics Data System (ADS)
Jiang, Fuhong; Zhang, Xingong; Bai, Danyu; Wu, Chin-Chia
2018-04-01
In this article, a competitive two-agent scheduling problem in a two-machine open shop is studied. The objective is to minimize the weighted sum of the makespans of two competitive agents. A complexity proof is presented for minimizing the weighted combination of the makespan of each agent if the weight α belonging to agent B is arbitrary. Furthermore, two pseudo-polynomial-time algorithms using the largest alternate processing time (LAPT) rule are presented. Finally, two approximation algorithms are presented if the weight is equal to one. Additionally, another approximation algorithm is presented if the weight is larger than one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-06-13
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less
A 3/2-Approximation Algorithm for Multiple Depot Multiple Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Xu, Zhou; Rodrigues, Brian
As an important extension of the classical traveling salesman problem (TSP), the multiple depot multiple traveling salesman problem (MDMTSP) is to minimize the total length of a collection of tours for multiple vehicles to serve all the customers, where each vehicle must start or stay at its distinct depot. Due to the gap between the existing best approximation ratios for the TSP and for the MDMTSP in literature, which are 3/2 and 2, respectively, it is an open question whether or not a 3/2-approximation algorithm exists for the MDMTSP. We have partially addressed this question by developing a 3/2-approximation algorithm, which runs in polynomial time when the number of depots is a constant.
Damrath, Martin; Korte, Sebastian; Hoeher, Peter Adam
2017-01-01
This paper introduces the equivalent discrete-time channel model (EDTCM) to the area of diffusion-based molecular communication (DBMC). Emphasis is on an absorbing receiver, which is based on the so-called first passage time concept. In the wireless communications community the EDTCM is well known. Therefore, it is anticipated that the EDTCM improves the accessibility of DBMC and supports the adaptation of classical wireless communication algorithms to the area of DBMC. Furthermore, the EDTCM has the capability to provide a remarkable reduction of computational complexity compared to random walk based DBMC simulators. Besides the exact EDTCM, three approximations thereof based on binomial, Gaussian, and Poisson approximation are proposed and analyzed in order to further reduce computational complexity. In addition, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is adapted to all four channel models. Numerical results show the performance of the exact EDTCM, illustrate the performance of the adapted BCJR algorithm, and demonstrate the accuracy of the approximations.
A learning approach to the bandwidth multicolouring problem
NASA Astrophysics Data System (ADS)
Akbari Torkestani, Javad
2016-05-01
In this article, a generalisation of the vertex colouring problem known as bandwidth multicolouring problem (BMCP), in which a set of colours is assigned to each vertex such that the difference between the colours, assigned to each vertex and its neighbours, is by no means less than a predefined threshold, is considered. It is shown that the proposed method can be applied to solve the bandwidth colouring problem (BCP) as well. BMCP is known to be NP-hard in graph theory, and so a large number of approximation solutions, as well as exact algorithms, have been proposed to solve it. In this article, two learning automata-based approximation algorithms are proposed for estimating a near-optimal solution to the BMCP. We show, for the first proposed algorithm, that by choosing a proper learning rate, the algorithm finds the optimal solution with a probability close enough to unity. Moreover, we compute the worst-case time complexity of the first algorithm for finding a 1/(1-ɛ) optimal solution to the given problem. The main advantage of this method is that a trade-off between the running time of algorithm and the colour set size (colouring optimality) can be made, by a proper choice of the learning rate also. Finally, it is shown that the running time of the proposed algorithm is independent of the graph size, and so it is a scalable algorithm for large graphs. The second proposed algorithm is compared with some well-known colouring algorithms and the results show the efficiency of the proposed algorithm in terms of the colour set size and running time of algorithm.
James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael
2009-01-01
A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.
Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.
Sardarmehni, Tohid; Heydari, Ali
2018-06-01
Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.
Fu, Yue; Chai, Tianyou
2016-12-01
Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.
Time-of-flight PET image reconstruction using origin ensembles.
Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven
2015-03-07
The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.
Time-of-flight PET image reconstruction using origin ensembles
NASA Astrophysics Data System (ADS)
Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven
2015-03-01
The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.
On Nash-Equilibria of Approximation-Stable Games
NASA Astrophysics Data System (ADS)
Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh
One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.
A Space-Saving Approximation Algorithm for Grammar-Based Compression
NASA Astrophysics Data System (ADS)
Sakamoto, Hiroshi; Maruyama, Shirou; Kida, Takuya; Shimozono, Shinichi
A space-efficient approximation algorithm for the grammar-based compression problem, which requests for a given string to find a smallest context-free grammar deriving the string, is presented. For the input length n and an optimum CFG size g, the algorithm consumes only O(g log g) space and O(n log*n) time to achieve O((log*n)log n) approximation ratio to the optimum compression, where log*n is the maximum number of logarithms satisfying log log…log n > 1. This ratio is thus regarded to almost O(log n), which is the currently best approximation ratio. While g depends on the string, it is known that g =Ω(log n) and g=\\\\Omega(\\\\log n) and g=O\\\\left(\\\\frac{n}{log_kn}\\\\right) for strings from k-letter alphabet[12].
A robust return-map algorithm for general multisurface plasticity
Adhikary, Deepak P.; Jayasundara, Chandana T.; Podgorney, Robert K.; ...
2016-06-16
Three new contributions to the field of multisurface plasticity are presented for general situations with an arbitrary number of nonlinear yield surfaces with hardening or softening. A method for handling linearly dependent flow directions is described. A residual that can be used in a line search is defined. An algorithm that has been implemented and comprehensively tested is discussed in detail. Examples are presented to illustrate the computational cost of various components of the algorithm. The overall result is that a single Newton-Raphson iteration of the algorithm costs between 1.5 and 2 times that of an elastic calculation. Examples alsomore » illustrate the successful convergence of the algorithm in complicated situations. For example, without using the new contributions presented here, the algorithm fails to converge for approximately 50% of the trial stresses for a common geomechanical model of sedementary rocks, while the current algorithm results in complete success. Since it involves no approximations, the algorithm is used to quantify the accuracy of an efficient, pragmatic, but approximate, algorithm used for sedimentary-rock plasticity in a commercial software package. Furthermore, the main weakness of the algorithm is identified as the difficulty of correctly choosing the set of initially active constraints in the general setting.« less
Algorithm for fuel conservative horizontal capture trajectories
NASA Technical Reports Server (NTRS)
Neuman, F.; Erzberger, H.
1981-01-01
A real time algorithm for computing constant altitude fuel-conservative approach trajectories for aircraft is described. The characteristics of the trajectory computed were chosen to approximate the extremal trajectories obtained from the optimal control solution to the problem and showed a fuel difference of only 0.5 to 2 percent for the real time algorithm in favor of the extremals. The trajectories may start at any initial position, heading, and speed and end at any other final position, heading, and speed. They consist of straight lines and a series of circular arcs of varying radius to approximate constant bank-angle decelerating turns. Throttle control is maximum thrust, nominal thrust, or zero thrust. Bank-angle control is either zero or aproximately 30 deg.
Progressive Classification Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Kocurek, Michael
2009-01-01
An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
NASA Astrophysics Data System (ADS)
Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin
2007-12-01
We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html. PMID:22679486
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Yu, Shuzhi; Hao, Fanchang; Leong, Hon Wai
2016-02-01
We consider the problem of sorting signed permutations by reversals, transpositions, transreversals, and block-interchanges. The problem arises in the study of species evolution via large-scale genome rearrangement operations. Recently, Hao et al. gave a 2-approximation scheme called genome sorting by bridges (GSB) for solving this problem. Their result extended and unified the results of (i) He and Chen - a 2-approximation algorithm allowing reversals, transpositions, and block-interchanges (by also allowing transversals) and (ii) Hartman and Sharan - a 1.5-approximation algorithm allowing reversals, transpositions, and transversals (by also allowing block-interchanges). The GSB result is based on introduction of three bridge structures in the breakpoint graph, the L-bridge, T-bridge, and X-bridge that models goodreversal, transposition/transreversal, and block-interchange, respectively. However, the paper by Hao et al. focused on proving the 2-approximation GSB scheme and only mention a straightforward [Formula: see text] algorithm. In this paper, we give an [Formula: see text] algorithm for implementing the GSB scheme. The key idea behind our faster GSB algorithm is to represent cycles in the breakpoint graph by their canonical sequences, which greatly simplifies the search for these bridge structures. We also give some comparison results (running time and computed distances) against the original GSB implementation.
On the development of efficient algorithms for three dimensional fluid flow
NASA Technical Reports Server (NTRS)
Maccormack, R. W.
1988-01-01
The difficulties of constructing efficient algorithms for three-dimensional flow are discussed. Reasonable candidates are analyzed and tested, and most are found to have obvious shortcomings. Yet, there is promise that an efficient class of algorithms exist between the severely time-step sized-limited explicit or approximately factored algorithms and the computationally intensive direct inversion of large sparse matrices by Gaussian elimination.
NASA Astrophysics Data System (ADS)
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
Optical structure disturbances localization algorithm for time-resolved diffuse optical tomography of biological objects is described. The key features of the presented algorithm are: the initial approximation for the spatial distribution of the optical characteristics based on the Homogeneity Index and the assumption that all the absorbing and scattering inhomogeneities in an investigated object are spherical and have the same absorption and scattering coefficients. The described algorithm can be used in the brain structures diagnosis, in traumatology and optical mammography.
On size-constrained minimum s–t cut problems and size-constrained dense subgraph problems
Chen, Wenbin; Samatova, Nagiza F.; Stallmann, Matthias F.; ...
2015-10-30
In some application cases, the solutions of combinatorial optimization problems on graphs should satisfy an additional vertex size constraint. In this paper, we consider size-constrained minimum s–t cut problems and size-constrained dense subgraph problems. We introduce the minimum s–t cut with at-least-k vertices problem, the minimum s–t cut with at-most-k vertices problem, and the minimum s–t cut with exactly k vertices problem. We prove that they are NP-complete. Thus, they are not polynomially solvable unless P = NP. On the other hand, we also study the densest at-least-k-subgraph problem (DalkS) and the densest at-most-k-subgraph problem (DamkS) introduced by Andersen andmore » Chellapilla [1]. We present a polynomial time algorithm for DalkS when k is bounded by some constant c. We also present two approximation algorithms for DamkS. In conclusion, the first approximation algorithm for DamkS has an approximation ratio of n-1/k-1, where n is the number of vertices in the input graph. The second approximation algorithm for DamkS has an approximation ratio of O (n δ), for some δ < 1/3.« less
Abid, Abdulbasit
2013-03-01
This paper presents a thorough discussion of the proposed field-programmable gate array (FPGA) implementation for fringe pattern demodulation using the one-dimensional continuous wavelet transform (1D-CWT) algorithm. This algorithm is also known as wavelet transform profilometry. Initially, the 1D-CWT is programmed using the C programming language and compiled into VHDL using the ImpulseC tool. This VHDL code is implemented on the Altera Cyclone IV GX EP4CGX150DF31C7 FPGA. A fringe pattern image with a size of 512×512 pixels is presented to the FPGA, which processes the image using the 1D-CWT algorithm. The FPGA requires approximately 100 ms to process the image and produce a wrapped phase map. For performance comparison purposes, the 1D-CWT algorithm is programmed using the C language. The C code is then compiled using the Intel compiler version 13.0. The compiled code is run on a Dell Precision state-of-the-art workstation. The time required to process the fringe pattern image is approximately 1 s. In order to further reduce the execution time, the 1D-CWT is reprogramed using Intel Integrated Primitive Performance (IPP) Library Version 7.1. The execution time was reduced to approximately 650 ms. This confirms that at least sixfold speedup was gained using FPGA implementation over a state-of-the-art workstation that executes heavily optimized implementation of the 1D-CWT algorithm.
A forecast-based STDP rule suitable for neuromorphic implementation.
Davies, S; Galluppi, F; Rast, A D; Furber, S B
2012-08-01
Artificial neural networks increasingly involve spiking dynamics to permit greater computational efficiency. This becomes especially attractive for on-chip implementation using dedicated neuromorphic hardware. However, both spiking neural networks and neuromorphic hardware have historically found difficulties in implementing efficient, effective learning rules. The best-known spiking neural network learning paradigm is Spike Timing Dependent Plasticity (STDP) which adjusts the strength of a connection in response to the time difference between the pre- and post-synaptic spikes. Approaches that relate learning features to the membrane potential of the post-synaptic neuron have emerged as possible alternatives to the more common STDP rule, with various implementations and approximations. Here we use a new type of neuromorphic hardware, SpiNNaker, which represents the flexible "neuromimetic" architecture, to demonstrate a new approach to this problem. Based on the standard STDP algorithm with modifications and approximations, a new rule, called STDP TTS (Time-To-Spike) relates the membrane potential with the Long Term Potentiation (LTP) part of the basic STDP rule. Meanwhile, we use the standard STDP rule for the Long Term Depression (LTD) part of the algorithm. We show that on the basis of the membrane potential it is possible to make a statistical prediction of the time needed by the neuron to reach the threshold, and therefore the LTP part of the STDP algorithm can be triggered when the neuron receives a spike. In our system these approximations allow efficient memory access, reducing the overall computational time and the memory bandwidth required. The improvements here presented are significant for real-time applications such as the ones for which the SpiNNaker system has been designed. We present simulation results that show the efficacy of this algorithm using one or more input patterns repeated over the whole time of the simulation. On-chip results show that the STDP TTS algorithm allows the neural network to adapt and detect the incoming pattern with improvements both in the reliability of, and the time required for, consistent output. Through the approximations we suggest in this paper, we introduce a learning rule that is easy to implement both in event-driven simulators and in dedicated hardware, reducing computational complexity relative to the standard STDP rule. Such a rule offers a promising solution, complementary to standard STDP evaluation algorithms, for real-time learning using spiking neural networks in time-critical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua
2017-06-01
Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.
Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan
2011-12-01
In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.
NASA Technical Reports Server (NTRS)
Lee, Zhong-Ping; Carder, Kendall L.
2001-01-01
A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.
Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation
NASA Technical Reports Server (NTRS)
Liandrat, J.; Tchamitchian, PH.
1990-01-01
The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.
Online Coregularization for Multiview Semisupervised Learning
Li, Guohui; Huang, Kuihua
2013-01-01
We propose a novel online coregularization framework for multiview semisupervised learning based on the notion of duality in constrained optimization. Using the weak duality theorem, we reduce the online coregularization to the task of increasing the dual function. We demonstrate that the existing online coregularization algorithms in previous work can be viewed as an approximation of our dual ascending process using gradient ascent. New algorithms are derived based on the idea of ascending the dual function more aggressively. For practical purpose, we also propose two sparse approximation approaches for kernel representation to reduce the computational complexity. Experiments show that our derived online coregularization algorithms achieve risk and accuracy comparable to offline algorithms while consuming less time and memory. Specially, our online coregularization algorithms are able to deal with concept drift and maintain a much smaller error rate. This paper paves a way to the design and analysis of online coregularization algorithms. PMID:24194680
Shen, Peiping; Zhang, Tongli; Wang, Chunfeng
2017-01-01
This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1979-01-01
A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.
Algorithms for sorting unsigned linear genomes by the DCJ operations.
Jiang, Haitao; Zhu, Binhai; Zhu, Daming
2011-02-01
The double cut and join operation (abbreviated as DCJ) has been extensively used for genomic rearrangement. Although the DCJ distance between signed genomes with both linear and circular (uni- and multi-) chromosomes is well studied, the only known result for the NP-complete unsigned DCJ distance problem is an approximation algorithm for unsigned linear unichromosomal genomes. In this article, we study the problem of computing the DCJ distance on two unsigned linear multichromosomal genomes (abbreviated as UDCJ). We devise a 1.5-approximation algorithm for UDCJ by exploiting the distance formula for signed genomes. In addition, we show that UDCJ admits a weak kernel of size 2k and hence an FPT algorithm running in O(2(2k)n) time.
Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166
Li, Jianjun; Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
NASA Astrophysics Data System (ADS)
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenvi, Neil; Yang, Yang; Yang, Weitao
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r{sup 6}), the THC-ppRPA algorithm scales asymptotically as only O(r{sup 4}), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditionalmore » ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.« less
NASA Astrophysics Data System (ADS)
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-07-01
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r6), the THC-ppRPA algorithm scales asymptotically as only O(r4), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.
Convergence Rates of Finite Difference Stochastic Approximation Algorithms
2016-06-01
dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810
Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.
NASA Astrophysics Data System (ADS)
Chen, Xinjia; Lacy, Fred; Carriere, Patrick
2015-05-01
Sequential test algorithms are playing increasingly important roles for quick detecting network intrusions such as portscanners. In view of the fact that such algorithms are usually analyzed based on intuitive approximation or asymptotic analysis, we develop an exact computational method for the performance analysis of such algorithms. Our method can be used to calculate the probability of false alarm and average detection time up to arbitrarily pre-specified accuracy.
Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo
2015-09-01
This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.
NASA Astrophysics Data System (ADS)
Ivković, Zoran; Lloyd, Errol L.
Classic bin packing seeks to pack a given set of items of possibly varying sizes into a minimum number of identical sized bins. A number of approximation algorithms have been proposed for this NP-hard problem for both the on-line and off-line cases. In this chapter we discuss fully dynamic bin packing, where items may arrive (Insert) and depart (Delete) dynamically. In accordance with standard practice for fully dynamic algorithms, it is assumed that the packing may be arbitrarily rearranged to accommodate arriving and departing items. The goal is to maintain an approximately optimal solution of provably high quality in a total amount of time comparable to that used by an off-line algorithm delivering a solution of the same quality.
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
ERIC Educational Resources Information Center
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.
Yoon, Yourim; Kim, Yong-Hyuk
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.
Optimal mapping of neural-network learning on message-passing multicomputers
NASA Technical Reports Server (NTRS)
Chu, Lon-Chan; Wah, Benjamin W.
1992-01-01
A minimization of learning-algorithm completion time is sought in the present optimal-mapping study of the learning process in multilayer feed-forward artificial neural networks (ANNs) for message-passing multicomputers. A novel approximation algorithm for mappings of this kind is derived from observations of the dominance of a parallel ANN algorithm over its communication time. Attention is given to both static and dynamic mapping schemes for systems with static and dynamic background workloads, as well as to experimental results obtained for simulated mappings on multicomputers with dynamic background workloads.
Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge
Yoon, Yourim
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720
NASA Astrophysics Data System (ADS)
Zurek, Sebastian; Guzik, Przemyslaw; Pawlak, Sebastian; Kosmider, Marcin; Piskorski, Jaroslaw
2012-12-01
We explore the relation between correlation dimension, approximate entropy and sample entropy parameters, which are commonly used in nonlinear systems analysis. Using theoretical considerations we identify the points which are shared by all these complexity algorithms and show explicitly that the above parameters are intimately connected and mutually interdependent. A new geometrical interpretation of sample entropy and correlation dimension is provided and the consequences for the interpretation of sample entropy, its relative consistency and some of the algorithms for parameter selection for this quantity are discussed. To get an exact algorithmic relation between the three parameters we construct a very fast algorithm for simultaneous calculations of the above, which uses the full time series as the source of templates, rather than the usual 10%. This algorithm can be used in medical applications of complexity theory, as it can calculate all three parameters for a realistic recording of 104 points within minutes with the use of an average notebook computer.
Orio, Patricio; Soudry, Daniel
2012-01-01
Background The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. Main Contributions We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used. PMID:22629320
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-01-01
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-12-15
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.
NASA Astrophysics Data System (ADS)
Shefer, V. A.
2014-12-01
Two methods that the author developed earlier for finding the intermediate perturbed orbit of a small celestial body from three pairs of range and range rate observations [1, 2] are applied to the determination of orbits of Near-Earth asteroids. The methods are based on using the superosculating orbits with three- and fourth-order tangency. The degrees of approximation of the real motion by the constructed intermediate orbits near the middle measurement time are two and three orders of magnitude higher than by the Keplerian orbit determined with the help of traditional methods. We calculated the orbits of the asteroids 99942 Apophis, 1566 Icarus, 4179 Toutatis, 2007 DN41 and 2012 DA14. For the sake of brevity, we call the method based on the orbit with third-order tangency as Algorithm A1 and the method based on the orbit with fourth-order tangency -- as Algorithm A2. The results of the calculations are compared with the results of the calculations by the version of the methods mentioned that allows us to construct the unperturbed Keplerian orbit. We call this version of the methods as Algorithm A. The observational data were simulated using the nominal trajectories of the selected asteroids. These trajectories were obtained by the numerical integration of the differential equations of motion subject to the perturbations from the eight major planets, Pluto, and the Moon. The integration was carried out with the help of the 15-order Everhart procedure [3]. The main results of the calculations are the following. When the reference time interval is shortened by half (for small sizes of this interval), the errors in the compared algorithms A, A1, A2 decrease approximately by the factors 4, 16, 64 in coordinates and by the factors 2, 8, 16 in velocities, respectively. Such behavior of the errors is most clearly seen with the asteroids 2007 DN41 and 2012 DA14. This leads to a significant increase in the accuracy of the real motion approximation by the intermediate orbits constructed using the A1 and A2 algorithms (2-4 orders of magnitude in coordinates and 4-7 orders of magnitude in velocities higher) compared to the accuracy of the approximation by Keplerian orbits with decreasing the reference arc of the trajectory. Here, the higher is the efficiency of the algorithms A1 and A2, the smaller are the values of the topocentric distances, i.e., the greater are the perturbations caused by the Earth's gravitation. The advantage of Algorithm A2 over Algorithm A1 in accuracy extends approximately one order of magnitude. The minimal methodic errors of the position vector by using the A1 and A2 algorithms range from several meters in the case of the asteroid Apophis to several millimeters in the case of the asteroid 2012 DA14. Hence, the numerical examples analyzed in this work lead us to conclude that the proposed in [1, 2] methods for determination of an intermediate perturbed orbit from range and range rate measurements at three time points allow for significantly raising the accuracy of the calculation of the initial asteroid orbits in comparison with the algorithm based on the finding the unperturbed Keplerian orbit. The shorter is the orbital arc specified by the extreme time points, the greater is the advantage of the algorithms suggested over the algorithms of the traditional approach in the accuracy. The advantage of the algorithms suggested in the accuracy increases with raising the perturbations too, which is especially important for calculation of the initial trajectories of the space objects detected in the Earth's neighbourhood. The work was supported by the Ministry of Education and Science of the Russian Federation, project no. 2014/223(1567).
NASA Astrophysics Data System (ADS)
Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.
2015-01-01
Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.
Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density
NASA Technical Reports Server (NTRS)
Lodhi, M. A. K.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.
Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering
NASA Astrophysics Data System (ADS)
Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki
2018-03-01
We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.
Operating room scheduling using hybrid clustering priority rule and genetic algorithm
NASA Astrophysics Data System (ADS)
Santoso, Linda Wahyuni; Sinawan, Aisyah Ashrinawati; Wijaya, Andi Rahadiyan; Sudiarso, Andi; Masruroh, Nur Aini; Herliansyah, Muhammad Kusumawan
2017-11-01
Operating room is a bottleneck resource in most hospitals so that operating room scheduling system will influence the whole performance of the hospitals. This research develops a mathematical model of operating room scheduling for elective patients which considers patient priority with limit number of surgeons, operating rooms, and nurse team. Clustering analysis was conducted to the data of surgery durations using hierarchical and non-hierarchical methods. The priority rule of each resulting cluster was determined using Shortest Processing Time method. Genetic Algorithm was used to generate daily operating room schedule which resulted in the lowest values of patient waiting time and nurse overtime. The computational results show that this proposed model reduced patient waiting time by approximately 32.22% and nurse overtime by approximately 32.74% when compared to actual schedule.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.
Strehl, Robert; Ilie, Silvana
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
Madsen, Thomas; Braun, Danielle; Peng, Gang; Parmigiani, Giovanni; Trippa, Lorenzo
2018-06-25
The Elston-Stewart peeling algorithm enables estimation of an individual's probability of harboring germline risk alleles based on pedigree data, and serves as the computational backbone of important genetic counseling tools. However, it remains limited to the analysis of risk alleles at a small number of genetic loci because its computing time grows exponentially with the number of loci considered. We propose a novel, approximate version of this algorithm, dubbed the peeling and paring algorithm, which scales polynomially in the number of loci. This allows extending peeling-based models to include many genetic loci. The algorithm creates a trade-off between accuracy and speed, and allows the user to control this trade-off. We provide exact bounds on the approximation error and evaluate it in realistic simulations. Results show that the loss of accuracy due to the approximation is negligible in important applications. This algorithm will improve genetic counseling tools by increasing the number of pathogenic risk alleles that can be addressed. To illustrate we create an extended five genes version of BRCAPRO, a widely used model for estimating the carrier probabilities of BRCA1 and BRCA2 risk alleles and assess its computational properties. © 2018 WILEY PERIODICALS, INC.
Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V
2003-01-01
In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.
NASA Astrophysics Data System (ADS)
Cary, John R.; Abell, D.; Amundson, J.; Bruhwiler, D. L.; Busby, R.; Carlsson, J. A.; Dimitrov, D. A.; Kashdan, E.; Messmer, P.; Nieter, C.; Smithe, D. N.; Spentzouris, P.; Stoltz, P.; Trines, R. M.; Wang, H.; Werner, G. R.
2006-09-01
As the size and cost of particle accelerators escalate, high-performance computing plays an increasingly important role; optimization through accurate, detailed computermodeling increases performance and reduces costs. But consequently, computer simulations face enormous challenges. Early approximation methods, such as expansions in distance from the design orbit, were unable to supply detailed accurate results, such as in the computation of wake fields in complex cavities. Since the advent of message-passing supercomputers with thousands of processors, earlier approximations are no longer necessary, and it is now possible to compute wake fields, the effects of dampers, and self-consistent dynamics in cavities accurately. In this environment, the focus has shifted towards the development and implementation of algorithms that scale to large numbers of processors. So-called charge-conserving algorithms evolve the electromagnetic fields without the need for any global solves (which are difficult to scale up to many processors). Using cut-cell (or embedded) boundaries, these algorithms can simulate the fields in complex accelerator cavities with curved walls. New implicit algorithms, which are stable for any time-step, conserve charge as well, allowing faster simulation of structures with details small compared to the characteristic wavelength. These algorithmic and computational advances have been implemented in the VORPAL7 Framework, a flexible, object-oriented, massively parallel computational application that allows run-time assembly of algorithms and objects, thus composing an application on the fly.
Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning
Fu, QiMing
2016-01-01
To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704
Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning.
Zhong, Shan; Liu, Quan; Fu, QiMing
2016-01-01
To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2 -regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency.
Automated segmentation and feature extraction of product inspection items
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-03-01
X-ray film and linescan images of pistachio nuts on conveyor trays for product inspection are considered. The final objective is the categorization of pistachios into good, blemished and infested nuts. A crucial step before classification is the separation of touching products and the extraction of features essential for classification. This paper addresses new detection and segmentation algorithms to isolate touching or overlapping items. These algorithms employ a new filter, a new watershed algorithm, and morphological processing to produce nutmeat-only images. Tests on a large database of x-ray film and real-time x-ray linescan images of around 2900 small, medium and large nuts showed excellent segmentation results. A new technique to detect and segment dark regions in nutmeat images is also presented and tested on approximately 300 x-ray film and approximately 300 real-time linescan x-ray images with 95-97 percent detection and correct segmentation. New algorithms are described that determine nutmeat fill ratio and locate splits in nutmeat. The techniques formulated in this paper are of general use in many different product inspection and computer vision problems.
Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711
Bounded-Degree Approximations of Stochastic Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar
2017-06-01
We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identifymore » the r-best approximations among these classes, enabling robust decision making.« less
Compression of strings with approximate repeats.
Allison, L; Edgoose, T; Dix, T I
1998-01-01
We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Complexity of Quantum Impurity Problems
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Gosset, David
2017-12-01
We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less
NASA Technical Reports Server (NTRS)
Krosel, S. M.; Milner, E. J.
1982-01-01
The application of Predictor corrector integration algorithms developed for the digital parallel processing environment are investigated. The algorithms are implemented and evaluated through the use of a software simulator which provides an approximate representation of the parallel processing hardware. Test cases which focus on the use of the algorithms are presented and a specific application using a linear model of a turbofan engine is considered. Results are presented showing the effects of integration step size and the number of processors on simulation accuracy. Real time performance, interprocessor communication, and algorithm startup are also discussed.
NASA Astrophysics Data System (ADS)
Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad
2017-12-01
This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less
Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy
NASA Astrophysics Data System (ADS)
Magen, Avner; Moharrami, Mohammad
This work provides a Linear Programming-based Polynomial Time Approximation Scheme (PTAS) for two classical NP-hard problems on graphs when the input graph is guaranteed to be planar, or more generally Minor Free. The algorithm applies a sufficiently large number (some function of when approximation is required) of rounds of the so-called Sherali-Adams Lift-and-Project system. needed to obtain a -approximation, where f is some function that depends only on the graph that should be avoided as a minor. The problem we discuss are the well-studied problems, the and problems. An curious fact we expose is that in the world of minor-free graph, the is harder in some sense than the.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicroy, D.D.
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used,more » as well as a detailed flow chart and listing of the algorithm are contained.« less
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
Volumetric ambient occlusion for real-time rendering and games.
Szirmay-Kalos, L; Umenhoffer, T; Toth, B; Szecsi, L; Sbert, M
2010-01-01
This new algorithm, based on GPUs, can compute ambient occlusion to inexpensively approximate global-illumination effects in real-time systems and games. The first step in deriving this algorithm is to examine how ambient occlusion relates to the physically founded rendering equation. The correspondence stems from a fuzzy membership function that defines what constitutes nearby occlusions. The next step is to develop a method to calculate ambient occlusion in real time without precomputation. The algorithm is based on a novel interpretation of ambient occlusion that measures the relative volume of the visible part of the surface's tangent sphere. The new formula's integrand has low variation and thus can be estimated accurately with a few samples.
NASA Astrophysics Data System (ADS)
Jiang, Junfeng; An, Jianchang; Liu, Kun; Ma, Chunyu; Li, Zhichen; Liu, Tiegen
2017-09-01
We propose a fast positioning algorithm for the asymmetric dual Mach-Zehnder interferometric infrared fiber vibration sensor. Using the approximately derivation method and the enveloping detection method, we successfully eliminate the asymmetry of the interference outputs and improve the processing speed. A positioning measurement experiment was carried out to verify the effectiveness of the proposed algorithm. At the sensing length of 85 km, the experimental results show that the mean positioning error is 18.9 m and the mean processing time is 116 ms. The processing speed is improved by 5 times compared to what can be achieved by using the traditional time-frequency analysis-based positioning method.
Delving Into Dissipative Quantum Dynamics: From Approximate to Numerically Exact Approaches
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ta
In this thesis, I explore dissipative quantum dynamics of several prototypical model systems via various approaches, ranging from approximate to numerically exact schemes. In particular, in the realm of the approximate I explore the accuracy of Pade-resummed master equations and the fewest switches surface hopping (FSSH) algorithm for the spin-boson model, and non-crossing approximations (NCA) for the Anderson-Holstein model. Next, I develop new and exact Monte Carlo approaches and test them on the spin-boson model. I propose well-defined criteria for assessing the accuracy of Pade-resummed quantum master equations, which correctly demarcate the regions of parameter space where the Pade approximation is reliable. I continue the investigation of spin-boson dynamics by benchmark comparisons of the semiclassical FSSH algorithm to exact dynamics over a wide range of parameters. Despite small deviations from golden-rule scaling in the Marcus regime, standard surface hopping algorithm is found to be accurate over a large portion of parameter space. The inclusion of decoherence corrections via the augmented FSSH algorithm improves the accuracy of dynamical behavior compared to exact simulations, but the effects are generally not dramatic for the cases I consider. Next, I introduce new methods for numerically exact real-time simulation based on real-time diagrammatic Quantum Monte Carlo (dQMC) and the inchworm algorithm. These methods optimally recycle Monte Carlo information from earlier times to greatly suppress the dynamical sign problem. In the context of the spin-boson model, I formulate the inchworm expansion in two distinct ways: the first with respect to an expansion in the system-bath coupling and the second as an expansion in the diabatic coupling. In addition, a cumulant version of the inchworm Monte Carlo method is motivated by the latter expansion, which allows for further suppression of the growth of the sign error. I provide a comprehensive comparison of the performance of the inchworm Monte Carlo algorithms to other exact methodologies as well as a discussion of the relative advantages and disadvantages of each. Finally, I investigate the dynamical interplay between the electron-electron interaction and the electron-phonon coupling within the Anderson-Holstein model via two complementary NCAs: the first is constructed around the weak-coupling limit and the second around the polaron limit. The influence of phonons on spectral and transport properties is explored in equilibrium, for non-equilibrium steady state and for transient dynamics after a quench. I find the two NCAs disagree in nontrivial ways, indicating that more reliable approaches to the problem are needed. The complementary frameworks used here pave the way for numerically exact methods based on inchworm dQMC algorithms capable of treating open systems simultaneously coupled to multiple fermionic and bosonic baths.
A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osei-Kuffuor, Daniel; Fattebert, Jean-Luc
2014-01-01
Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N 3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix,more » based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.« less
Approximate ground states of the random-field Potts model from graph cuts
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay
2018-05-01
While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.
Markov-modulated Markov chains and the covarion process of molecular evolution.
Galtier, N; Jean-Marie, A
2004-01-01
The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1980-01-01
A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.
Approximate matching of structured motifs in DNA sequences.
El-Mabrouk, Nadia; Raffinot, Mathieu; Duchesne, Jean-Eudes; Lajoie, Mathieu; Luc, Nicolas
2005-04-01
Several methods have been developed for identifying more or less complex RNA structures in a genome. All these methods are based on the search for conserved primary and secondary sub-structures. In this paper, we present a simple formal representation of a helix, which is a combination of sequence and folding constraints, as a constrained regular expression. This representation allows us to develop a well-founded algorithm that searches for all approximate matches of a helix in a genome. The algorithm is based on an alignment graph constructed from several copies of a pushdown automaton, arranged one on top of another. This is a first attempt to take advantage of the possibilities of pushdown automata in the context of approximate matching. The worst time complexity is O(krpn), where k is the error threshold, n the size of the genome, p the size of the secondary expression, and r its number of union symbols. We then extend the algorithm to search for pseudo-knots and secondary structures containing an arbitrary number of helices.
Real-time deblurring of handshake blurred images on smartphones
NASA Astrophysics Data System (ADS)
Pourreza-Shahri, Reza; Chang, Chih-Hsiang; Kehtarnavaz, Nasser
2015-02-01
This paper discusses an Android app for the purpose of removing blur that is introduced as a result of handshakes when taking images via a smartphone. This algorithm utilizes two images to achieve deblurring in a computationally efficient manner without suffering from artifacts associated with deconvolution deblurring algorithms. The first image is the normal or auto-exposure image and the second image is a short-exposure image that is automatically captured immediately before or after the auto-exposure image is taken. A low rank approximation image is obtained by applying singular value decomposition to the auto-exposure image which may appear blurred due to handshakes. This approximation image does not suffer from blurring while incorporating the image brightness and contrast information. The eigenvalues extracted from the low rank approximation image are then combined with those from the shortexposure image. It is shown that this deblurring app is computationally more efficient than the adaptive tonal correction algorithm which was previously developed for the same purpose.
A fast rebinning algorithm for 3D positron emission tomography using John's equation
NASA Astrophysics Data System (ADS)
Defrise, Michel; Liu, Xuan
1999-08-01
Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.
Fast, large-scale hologram calculation in wavelet domain
NASA Astrophysics Data System (ADS)
Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi
2018-04-01
We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.
NASA Astrophysics Data System (ADS)
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of image matching algorithm and sub-pixel fitting algorithm in target tracking
NASA Astrophysics Data System (ADS)
Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu
2015-03-01
Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image was processed by mean filter and median filter, then image matching was processed. The result show that when the noise is little, mean filter and median filter can achieve a good result. But when the noise density of salt and pepper noise is bigger than 0.4, or the variance of Gaussian noise is bigger than 0.0015, the result of image matching will be wrong.
Jou, Jonathan D; Jain, Swati; Georgiev, Ivelin S; Donald, Bruce R
2016-06-01
Sparse energy functions that ignore long range interactions between residue pairs are frequently used by protein design algorithms to reduce computational cost. Current dynamic programming algorithms that fully exploit the optimal substructure produced by these energy functions only compute the GMEC. This disproportionately favors the sequence of a single, static conformation and overlooks better binding sequences with multiple low-energy conformations. Provable, ensemble-based algorithms such as A* avoid this problem, but A* cannot guarantee better performance than exhaustive enumeration. We propose a novel, provable, dynamic programming algorithm called Branch-Width Minimization* (BWM*) to enumerate a gap-free ensemble of conformations in order of increasing energy. Given a branch-decomposition of branch-width w for an n-residue protein design with at most q discrete side-chain conformations per residue, BWM* returns the sparse GMEC in O([Formula: see text]) time and enumerates each additional conformation in merely O([Formula: see text]) time. We define a new measure, Total Effective Search Space (TESS), which can be computed efficiently a priori before BWM* or A* is run. We ran BWM* on 67 protein design problems and found that TESS discriminated between BWM*-efficient and A*-efficient cases with 100% accuracy. As predicted by TESS and validated experimentally, BWM* outperforms A* in 73% of the cases and computes the full ensemble or a close approximation faster than A*, enumerating each additional conformation in milliseconds. Unlike A*, the performance of BWM* can be predicted in polynomial time before running the algorithm, which gives protein designers the power to choose the most efficient algorithm for their particular design problem.
Two time scale output feedback regulation for ill-conditioned systems
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1986-01-01
Issues pertaining to the well-posedness of a two time scale approach to the output feedback regulator design problem are examined. An approximate quadratic performance index which reflects a two time scale decomposition of the system dynamics is developed. It is shown that, under mild assumptions, minimization of this cost leads to feedback gains providing a second-order approximation of optimal full system performance. A simplified approach to two time scale feedback design is also developed, in which gains are separately calculated to stabilize the slow and fast subsystem models. By exploiting the notion of combined control and observation spillover suppression, conditions are derived assuring that these gains will stabilize the full-order system. A sequential numerical algorithm is described which obtains output feedback gains minimizing a broad class of performance indices, including the standard LQ case. It is shown that the algorithm converges to a local minimum under nonrestrictive assumptions. This procedure is adapted to and demonstrated for the two time scale design formulations.
Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento
We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reactionmore » rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.« less
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staschus, K.
1985-01-01
In this dissertation, efficient algorithms for electric-utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase that quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of nondispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The probabilistic second phase uses a Generalized Benders Decomposition approach. Extensive computational tests of the algorithms aremore » reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80% in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali results from this implementation.« less
The large discretization step method for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Haras, Zigo; Taasan, Shlomo
1995-01-01
A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.
Fixed-point image orthorectification algorithms for reduced computational cost
NASA Astrophysics Data System (ADS)
French, Joseph Clinton
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Motkova, A. V.
2018-01-01
A strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters is considered. The solution criterion is the minimum of the sum (over both clusters) of weighted sums of squared distances from the elements of each cluster to its geometric center. The weights of the sums are equal to the cardinalities of the desired clusters. The center of one cluster is given as input, while the center of the other is unknown and is determined as the point of space equal to the mean of the cluster elements. A version of the problem is analyzed in which the cardinalities of the clusters are given as input. A polynomial-time 2-approximation algorithm for solving the problem is constructed.
A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng
2017-01-01
Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ-connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm. PMID:28587084
A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors.
Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng
2017-05-25
Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ -connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm.
A generalized memory test algorithm
NASA Technical Reports Server (NTRS)
Milner, E. J.
1982-01-01
A general algorithm for testing digital computer memory is presented. The test checks that (1) every bit can be cleared and set in each memory work, and (2) bits are not erroneously cleared and/or set elsewhere in memory at the same time. The algorithm can be applied to any size memory block and any size memory word. It is concise and efficient, requiring the very few cycles through memory. For example, a test of 16-bit-word-size memory requries only 384 cycles through memory. Approximately 15 seconds were required to test a 32K block of such memory, using a microcomputer having a cycle time of 133 nanoseconds.
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.; Stevens, K.
1984-01-01
Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.
2014-10-21
linear combinations of paths. This project featured research on two classes of routing problems , namely traveling salesman problems and multicommodity...flows. One highlight of this research was our discovery of a polynomial-time algorithm for the metric traveling salesman s-t path problem whose...metric TSP would resolve one of the most venerable open problems in the theory of approximation algorithms. Our research on traveling salesman
Characteristic-based algorithms for flows in thermo-chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; Halt, David
1990-01-01
A generalized finite-rate chemistry algorithm with Steger-Warming, Van Leer, and Roe characteristic-based flux splittings is presented in three-dimensional generalized coordinates for the Navier-Stokes equations. Attention is placed on convergence to steady-state solutions with fully coupled chemistry. Time integration schemes including explicit m-stage Runge-Kutta, implicit approximate-factorization, relaxation and LU decomposition are investigated and compared in terms of residual reduction per unit of CPU time. Practical issues such as code vectorization and memory usage on modern supercomputers are discussed.
Linear and nonlinear trending and prediction for AVHRR time series data
NASA Technical Reports Server (NTRS)
Smid, J.; Volf, P.; Slama, M.; Palus, M.
1995-01-01
The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Algorithm 782 : codes for rank-revealing QR factorizations of dense matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C. H.; Quintana-Orti, G.; Mathematics and Computer Science
1998-06-01
This article describes a suite of codes as well as associated testing and timing drivers for computing rank-revealing QR (RRQR) factorizations of dense matrices. The main contribution is an efficient block algorithm for approximating an RRQR factorization, employing a windowed version of the commonly used Golub pivoting strategy and improved versions of the RRQR algorithms for triangular matrices originally suggested by Chandrasekaran and Ipsen and by Pan and Tang, respectively, We highlight usage and features of these codes.
Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation
NASA Astrophysics Data System (ADS)
Medina, H.; Mutu, R.
2017-07-01
An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.
Parallel algorithm for computation of second-order sequential best rotations
NASA Astrophysics Data System (ADS)
Redif, Soydan; Kasap, Server
2013-12-01
Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.
Linear-time general decoding algorithm for the surface code
NASA Astrophysics Data System (ADS)
Darmawan, Andrew S.; Poulin, David
2018-05-01
A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.
Reverse engineering gene regulatory networks from measurement with missing values.
Ogundijo, Oyetunji E; Elmas, Abdulkadir; Wang, Xiaodong
2016-12-01
Gene expression time series data are usually in the form of high-dimensional arrays. Unfortunately, the data may sometimes contain missing values: for either the expression values of some genes at some time points or the entire expression values of a single time point or some sets of consecutive time points. This significantly affects the performance of many algorithms for gene expression analysis that take as an input, the complete matrix of gene expression measurement. For instance, previous works have shown that gene regulatory interactions can be estimated from the complete matrix of gene expression measurement. Yet, till date, few algorithms have been proposed for the inference of gene regulatory network from gene expression data with missing values. We describe a nonlinear dynamic stochastic model for the evolution of gene expression. The model captures the structural, dynamical, and the nonlinear natures of the underlying biomolecular systems. We present point-based Gaussian approximation (PBGA) filters for joint state and parameter estimation of the system with one-step or two-step missing measurements . The PBGA filters use Gaussian approximation and various quadrature rules, such as the unscented transform (UT), the third-degree cubature rule and the central difference rule for computing the related posteriors. The proposed algorithm is evaluated with satisfying results for synthetic networks, in silico networks released as a part of the DREAM project, and the real biological network, the in vivo reverse engineering and modeling assessment (IRMA) network of yeast Saccharomyces cerevisiae . PBGA filters are proposed to elucidate the underlying gene regulatory network (GRN) from time series gene expression data that contain missing values. In our state-space model, we proposed a measurement model that incorporates the effect of the missing data points into the sequential algorithm. This approach produces a better inference of the model parameters and hence, more accurate prediction of the underlying GRN compared to when using the conventional Gaussian approximation (GA) filters ignoring the missing data points.
Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm.
Xu, J
2001-01-01
In many morphological shape decomposition algorithms, either a shape can only be decomposed into shape components of extremely simple forms or a time consuming search process is employed to determine a decomposition. In this paper, we present a morphological shape decomposition algorithm that decomposes a two-dimensional (2-D) binary shape into a collection of convex polygonal components. A single convex polygonal approximation for a given image is first identified. This first component is determined incrementally by selecting a sequence of basic shape primitives. These shape primitives are chosen based on shape information extracted from the given shape at different scale levels. Additional shape components are identified recursively from the difference image between the given image and the first component. Simple operations are used to repair certain concavities caused by the set difference operation. The resulting hierarchical structure provides descriptions for the given shape at different detail levels. The experiments show that the decomposition results produced by the algorithm seem to be in good agreement with the natural structures of the given shapes. The computational cost of the algorithm is significantly lower than that of an earlier search-based convex decomposition algorithm. Compared to nonconvex decomposition algorithms, our algorithm allows accurate approximations for the given shapes at low coding costs.
Baek, Hyun Jae; Shin, JaeWook; Jin, Gunwoo; Cho, Jaegeol
2017-10-24
Photoplethysmographic signals are useful for heart rate variability analysis in practical ambulatory applications. While reducing the sampling rate of signals is an important consideration for modern wearable devices that enable 24/7 continuous monitoring, there have not been many studies that have investigated how to compensate the low timing resolution of low-sampling-rate signals for accurate heart rate variability analysis. In this study, we utilized the parabola approximation method and measured it against the conventional cubic spline interpolation method for the time, frequency, and nonlinear domain variables of heart rate variability. For each parameter, the intra-class correlation, standard error of measurement, Bland-Altman 95% limits of agreement and root mean squared relative error were presented. Also, elapsed time taken to compute each interpolation algorithm was investigated. The results indicated that parabola approximation is a simple, fast, and accurate algorithm-based method for compensating the low timing resolution of pulse beat intervals. In addition, the method showed comparable performance with the conventional cubic spline interpolation method. Even though the absolute value of the heart rate variability variables calculated using a signal sampled at 20 Hz were not exactly matched with those calculated using a reference signal sampled at 250 Hz, the parabola approximation method remains a good interpolation method for assessing trends in HRV measurements for low-power wearable applications.
CAD system for footwear design based on whole real 3D data of last surface
NASA Astrophysics Data System (ADS)
Song, Wanzhong; Su, Xianyu
2000-10-01
Two major parts of application of CAD in footwear design are studied: the development of last surface; computer-aided design of planar shoe-template. A new quasi-experiential development algorithm of last surface based on triangulation approximation is presented. This development algorithm consumes less time and does not need any interactive operation for precisely development compared with other development algorithm of last surface. Based on this algorithm, a software, SHOEMAKERTM, which contains computer aided automatic measurement, automatic development of last surface and computer aide design of shoe-template has been developed.
An approximate dynamic programming approach to resource management in multi-cloud scenarios
NASA Astrophysics Data System (ADS)
Pietrabissa, Antonio; Priscoli, Francesco Delli; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo
2017-03-01
The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers' requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.
Grover's unstructured search by using a transverse field
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Rieffel, Eleanor; Wang, Zhihui
2017-04-01
We design a circuit-based quantum algorithm to search for a needle in a haystack, giving the same quadratic speedup achieved by Grover's original algorithm. In our circuit-based algorithm, the problem Hamiltonian (oracle) and a transverse field (instead of Grover's diffusion operator) are applied to the system alternatively. We construct a periodic time sequence such that the resultant unitary drives a closed transition between two states, which have high degrees of overlap with the initial state (even superposition of all states) and the target state, respectively. Let N =2n be the size of the search space. The transition rate in our algorithm is of order Θ(1 /√{ N}) , and the overlaps are of order Θ(1) , yielding a nearly optimal query complexity of T =√{ N}(π / 2√{ 2}) . Our algorithm is inspired by a class of algorithms proposed by Farhi et al., namely the Quantum Approximate Optimization Algorithm (QAOA); our method offers a route to optimizing the parameters in QAOA by restricting them to be periodic in time.
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Sparse Solutions for Single Class SVMs: A Bi-Criterion Approach
NASA Technical Reports Server (NTRS)
Das, Santanu; Oza, Nikunj C.
2011-01-01
In this paper we propose an innovative learning algorithm - a variation of One-class nu Support Vector Machines (SVMs) learning algorithm to produce sparser solutions with much reduced computational complexities. The proposed technique returns an approximate solution, nearly as good as the solution set obtained by the classical approach, by minimizing the original risk function along with a regularization term. We introduce a bi-criterion optimization that helps guide the search towards the optimal set in much reduced time. The outcome of the proposed learning technique was compared with the benchmark one-class Support Vector machines algorithm which more often leads to solutions with redundant support vectors. Through out the analysis, the problem size for both optimization routines was kept consistent. We have tested the proposed algorithm on a variety of data sources under different conditions to demonstrate the effectiveness. In all cases the proposed algorithm closely preserves the accuracy of standard one-class nu SVMs while reducing both training time and test time by several factors.
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-07
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.
Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks
NASA Astrophysics Data System (ADS)
Sun, Wei; Chang, K. C.
2005-05-01
Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1988-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1990-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson Andrew; Schaefer, Jacob Robert
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.
Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Flight-test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson Andrew; Schaefer, Jacob Robert
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These results show that the algorithm has good performance in a relevant environment.
Single-step methods for predicting orbital motion considering its periodic components
NASA Astrophysics Data System (ADS)
Lavrov, K. N.
1989-01-01
Modern numerical methods for integration of ordinary differential equations can provide accurate and universal solutions to celestial mechanics problems. The implicit single sequence algorithms of Everhart and multiple step computational schemes using a priori information on periodic components can be combined to construct implicit single sequence algorithms which combine their advantages. The construction and analysis of the properties of such algorithms are studied, utilizing trigonometric approximation of the solutions of differential equations containing periodic components. The algorithms require 10 percent more machine memory than the Everhart algorithms, but are twice as fast, and yield short term predictions valid for five to ten orbits with good accuracy and five to six times faster than algorithms using other methods.
Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data
NASA Astrophysics Data System (ADS)
Veerakachen, Watcharee; Raksapatcharawong, Mongkol
2015-09-01
Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.
Wiener Chaos and Nonlinear Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lototsky, S.V.
2006-11-15
The paper discusses two algorithms for solving the Zakai equation in the time-homogeneous diffusion filtering model with possible correlation between the state process and the observation noise. Both algorithms rely on the Cameron-Martin version of the Wiener chaos expansion, so that the approximate filter is a finite linear combination of the chaos elements generated by the observation process. The coefficients in the expansion depend only on the deterministic dynamics of the state and observation processes. For real-time applications, computing the coefficients in advance improves the performance of the algorithms in comparison with most other existing methods of nonlinear filtering. Themore » paper summarizes the main existing results about these Wiener chaos algorithms and resolves some open questions concerning the convergence of the algorithms in the noise-correlated setting. The presentation includes the necessary background on the Wiener chaos and optimal nonlinear filtering.« less
Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matulef, Kevin Michael
The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewermore » resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.« less
Efficient Mean Field Variational Algorithm for Data Assimilation (Invited)
NASA Astrophysics Data System (ADS)
Vrettas, M. D.; Cornford, D.; Opper, M.
2013-12-01
Data assimilation algorithms combine available observations of physical systems with the assumed model dynamics in a systematic manner, to produce better estimates of initial conditions for prediction. Broadly they can be categorized in three main approaches: (a) sequential algorithms, (b) sampling methods and (c) variational algorithms which transform the density estimation problem to an optimization problem. However, given finite computational resources, only a handful of ensemble Kalman filters and 4DVar algorithms have been applied operationally to very high dimensional geophysical applications, such as weather forecasting. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the ';optimal' posterior distribution over the continuous time states, within a family of non-stationary Gaussian processes. Our initial work on variational Bayesian approaches to data assimilation, unlike the well-known 4DVar method which seeks only the most probable solution, computes the best time varying Gaussian process approximation to the posterior smoothing distribution for dynamical systems that can be represented by stochastic differential equations. This approach was based on minimising the Kullback-Leibler divergence, over paths, between the true posterior and our Gaussian process approximation. Whilst the observations were informative enough to keep the posterior smoothing density close to Gaussian the algorithm proved very effective on low dimensional systems (e.g. O(10)D). However for higher dimensional systems, the high computational demands make the algorithm prohibitively expensive. To overcome the difficulties presented in the original framework and make our approach more efficient in higher dimensional systems we have been developing a new mean field version of the algorithm which treats the state variables at any given time as being independent in the posterior approximation, while still accounting for their relationships in the mean solution arising from the original system dynamics. Here we present this new mean field approach, illustrating its performance on a range of benchmark data assimilation problems whose dimensionality varies from O(10) to O(10^3)D. We emphasise that the variational Bayesian approach we adopt, unlike other variational approaches, provides a natural bound on the marginal likelihood of the observations given the model parameters which also allows for inference of (hyper-) parameters such as observational errors, parameters in the dynamical model and model error representation. We also stress that since our approach is intrinsically parallel it can be implemented very efficiently to address very long data assimilation time windows. Moreover, like most traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem therefore its complexity can be tuned to the available computational resources. We finish with a sketch of possible future directions.
Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher
2015-01-01
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations. PMID:25919667
Automated Dynamic Demand Response Implementation on a Micro-grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuppannagari, Sanmukh R.; Kannan, Rajgopal; Chelmis, Charalampos
In this paper, we describe a system for real-time automated Dynamic and Sustainable Demand Response with sparse data consumption prediction implemented on the University of Southern California campus microgrid. Supply side approaches to resolving energy supply-load imbalance do not work at high levels of renewable energy penetration. Dynamic Demand Response (D 2R) is a widely used demand-side technique to dynamically adjust electricity consumption during peak load periods. Our D 2R system consists of accurate machine learning based energy consumption forecasting models that work with sparse data coupled with fast and sustainable load curtailment optimization algorithms that provide the ability tomore » dynamically adapt to changing supply-load imbalances in near real-time. Our Sustainable DR (SDR) algorithms attempt to distribute customer curtailment evenly across sub-intervals during a DR event and avoid expensive demand peaks during a few sub-intervals. It also ensures that each customer is penalized fairly in order to achieve the targeted curtailment. We develop near linear-time constant-factor approximation algorithms along with Polynomial Time Approximation Schemes (PTAS) for SDR curtailment that minimizes the curtailment error defined as the difference between the target and achieved curtailment values. Our SDR curtailment problem is formulated as an Integer Linear Program that optimally matches customers to curtailment strategies during a DR event while also explicitly accounting for customer strategy switching overhead as a constraint. We demonstrate the results of our D 2R system using real data from experiments performed on the USC smartgrid and show that 1) our prediction algorithms can very accurately predict energy consumption even with noisy or missing data and 2) our curtailment algorithms deliver DR with extremely low curtailment errors in the 0.01-0.05 kWh range.« less
NASA Technical Reports Server (NTRS)
Vicroy, D. D.; Knox, C. E.
1983-01-01
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Person, L. H., Jr.
1981-01-01
The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.
Optimal remediation of unconfined aquifers: Numerical applications and derivative calculations
NASA Astrophysics Data System (ADS)
Mansfield, Christopher M.; Shoemaker, Christine A.
1999-05-01
This paper extends earlier work on derivative-based optimization for cost-effective remediation to unconfined aquifers, which have more complex, nonlinear flow dynamics than confined aquifers. Most previous derivative-based optimization of contaminant removal has been limited to consideration of confined aquifers; however, contamination is more common in unconfined aquifers. Exact derivative equations are presented, and two computationally efficient approximations, the quasi-confined (QC) and head independent from previous (HIP) unconfined-aquifer finite element equation derivative approximations, are presented and demonstrated to be highly accurate. The derivative approximations can be used with any nonlinear optimization method requiring derivatives for computation of either time-invariant or time-varying pumping rates. The QC and HIP approximations are combined with the nonlinear optimal control algorithm SALQR into the unconfined-aquifer algorithm, which is shown to compute solutions for unconfined aquifers in CPU times that were not significantly longer than those required by the confined-aquifer optimization model. Two of the three example unconfined-aquifer cases considered obtained pumping policies with substantially lower objective function values with the unconfined model than were obtained with the confined-aquifer optimization, even though the mean differences in hydraulic heads predicted by the unconfined- and confined-aquifer models were small (less than 0.1%). We suggest a possible geophysical index based on differences in drawdown predictions between unconfined- and confined-aquifer models to estimate which aquifers require unconfined-aquifer optimization and which can be adequately approximated by the simpler confined-aquifer analysis.
NASA Astrophysics Data System (ADS)
Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho
2018-06-01
In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.
A Linear Kernel for Co-Path/Cycle Packing
NASA Astrophysics Data System (ADS)
Chen, Zhi-Zhong; Fellows, Michael; Fu, Bin; Jiang, Haitao; Liu, Yang; Wang, Lusheng; Zhu, Binhai
Bounded-Degree Vertex Deletion is a fundamental problem in graph theory that has new applications in computational biology. In this paper, we address a special case of Bounded-Degree Vertex Deletion, the Co-Path/Cycle Packing problem, which asks to delete as few vertices as possible such that the graph of the remaining (residual) vertices is composed of disjoint paths and simple cycles. The problem falls into the well-known class of 'node-deletion problems with hereditary properties', is hence NP-complete and unlikely to admit a polynomial time approximation algorithm with approximation factor smaller than 2. In the framework of parameterized complexity, we present a kernelization algorithm that produces a kernel with at most 37k vertices, improving on the super-linear kernel of Fellows et al.'s general theorem for Bounded-Degree Vertex Deletion. Using this kernel,and the method of bounded search trees, we devise an FPT algorithm that runs in time O *(3.24 k ). On the negative side, we show that the problem is APX-hard and unlikely to have a kernel smaller than 2k by a reduction from Vertex Cover.
RES: Regularized Stochastic BFGS Algorithm
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales.
Seiffertt, John; Sanyal, Suman; Wunsch, Donald C
2008-08-01
The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research.
A time reversal algorithm in acoustic media with Dirac measure approximations
NASA Astrophysics Data System (ADS)
Bretin, Élie; Lucas, Carine; Privat, Yannick
2018-04-01
This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t = 0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.
Transitionless driving on adiabatic search algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Sangchul, E-mail: soh@qf.org.qa; Kais, Sabre, E-mail: kais@purdue.edu; Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian,more » approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.« less
1978-12-01
Poisson processes . The method is valid for Poisson processes with any given intensity function. The basic thinning algorithm is modified to exploit several refinements which reduce computer execution time by approximately one-third. The basic and modified thinning programs are compared with the Poisson decomposition and gap-statistics algorithm, which is easily implemented for Poisson processes with intensity functions of the form exp(a sub 0 + a sub 1t + a sub 2 t-squared. The thinning programs are competitive in both execution
EEG Artifact Removal Using a Wavelet Neural Network
NASA Technical Reports Server (NTRS)
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
Baseline mathematics and geodetics for tracking operations
NASA Technical Reports Server (NTRS)
James, R.
1981-01-01
Various geodetic and mapping algorithms are analyzed as they apply to radar tracking systems and tested in extended BASIC computer language for real time computer applications. Closed-form approaches to the solution of converting Earth centered coordinates to latitude, longitude, and altitude are compared with classical approximations. A simplified approach to atmospheric refractivity called gradient refraction is compared with conventional ray tracing processes. An extremely detailed set of documentation which provides the theory, derivations, and application of algorithms used in the programs is included. Validation methods are also presented for testing the accuracy of the algorithms.
NASA Astrophysics Data System (ADS)
Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann
2013-06-01
In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.
A simplified Integer Cosine Transform and its application in image compression
NASA Technical Reports Server (NTRS)
Costa, M.; Tong, K.
1994-01-01
A simplified version of the integer cosine transform (ICT) is described. For practical reasons, the transform is considered jointly with the quantization of its coefficients. It differs from conventional ICT algorithms in that the combined factors for normalization and quantization are approximated by powers of two. In conventional algorithms, the normalization/quantization stage typically requires as many integer divisions as the number of transform coefficients. By restricting the factors to powers of two, these divisions can be performed by variable shifts in the binary representation of the coefficients, with speed and cost advantages to the hardware implementation of the algorithm. The error introduced by the factor approximations is compensated for in the inverse ICT operation, executed with floating point precision. The simplified ICT algorithm has potential applications in image-compression systems with disparate cost and speed requirements in the encoder and decoder ends. For example, in deep space image telemetry, the image processors on board the spacecraft could take advantage of the simplified, faster encoding operation, which would be adjusted on the ground, with high-precision arithmetic. A dual application is found in compressed video broadcasting. Here, a fast, high-performance processor at the transmitter would precompensate for the factor approximations in the inverse ICT operation, to be performed in real time, at a large number of low-cost receivers.
Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan
2016-12-28
The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.
Multi-INT Complex Event Processing using Approximate, Incremental Graph Pattern Search
2012-06-01
graph pattern search and SPARQL queries . Total execution time for 10 executions each of 5 random pattern searches in synthetic data sets...01/11 1000 10000 100000 RDF triples Time (secs) 10 20 Graph pattern algorithm SPARQL queries Initial Performance Comparisons 09/18/11 2011 Thrust Area
NASA Technical Reports Server (NTRS)
Eigen, D. J.; Fromm, F. R.; Northouse, R. A.
1974-01-01
A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderburg, J. D.
1977-01-01
A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.
Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl
2016-09-15
We present a robust and non-heuristic algorithm that finds all extremum points of the error distribution function of numerically Laplace-transformed orbital energy denominators. The extremum point search is one of the two key steps for finding the minimax approximation. If pre-tabulation of initial guesses is supposed to be avoided, strategies for a sufficiently robust algorithm have not been discussed so far. We compare our non-heuristic approach with a bracketing and bisection algorithm and demonstrate that 3 times less function evaluations are required altogether when applying it to typical non-relativistic and relativistic quantum chemical systems.
Adaptive Metropolis Sampling with Product Distributions
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Lee, Chiu Fan
2005-01-01
The Metropolis-Hastings (MH) algorithm is a way to sample a provided target distribution pi(z). It works by repeatedly sampling a separate proposal distribution T(x,x') to generate a random walk {x(t)}. We consider a modification of the MH algorithm in which T is dynamically updated during the walk. The update at time t uses the {x(t' less than t)} to estimate the product distribution that has the least Kullback-Leibler distance to pi. That estimate is the information-theoretically optimal mean-field approximation to pi. We demonstrate through computer experiments that our algorithm produces samples that are superior to those of the conventional MH algorithm.
NASA Astrophysics Data System (ADS)
Zittersteijn, M.; Vananti, A.; Schildknecht, T.; Dolado Perez, J. C.; Martinot, V.
2016-11-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). The MTT problem quickly becomes an NP-hard combinatorial optimization problem. This means that the effort required to solve the MTT problem increases exponentially with the number of tracked objects. In an attempt to find an approximate solution of sufficient quality, several Population-Based Meta-Heuristic (PBMH) algorithms are implemented and tested on simulated optical measurements. These first results show that one of the tested algorithms, namely the Elitist Genetic Algorithm (EGA), consistently displays the desired behavior of finding good approximate solutions before reaching the optimum. The results further suggest that the algorithm possesses a polynomial time complexity, as the computation times are consistent with a polynomial model. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the association and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.
Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound
Jurkonis, R.; Janušauskas, A.; Marozas, V.; Jegelevičius, D.; Daukantas, S.; Patašius, M.; Paunksnis, A.; Lukoševičius, A.
2012-01-01
Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation. PMID:22654643
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Yang, Haizhao
2017-07-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
Adaptive DFT-based Interferometer Fringe Tracking
NASA Technical Reports Server (NTRS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2004-01-01
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-01-01
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks. PMID:27916917
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels.
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-11-30
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks.
Papadopoulou, Maria P; Nikolos, Ioannis K; Karatzas, George P
2010-01-01
Artificial Neural Networks (ANNs) comprise a powerful tool to approximate the complicated behavior and response of physical systems allowing considerable reduction in computation time during time-consuming optimization runs. In this work, a Radial Basis Function Artificial Neural Network (RBFN) is combined with a Differential Evolution (DE) algorithm to solve a water resources management problem, using an optimization procedure. The objective of the optimization scheme is to cover the daily water demand on the coastal aquifer east of the city of Heraklion, Crete, without reducing the subsurface water quality due to seawater intrusion. The RBFN is utilized as an on-line surrogate model to approximate the behavior of the aquifer and to replace some of the costly evaluations of an accurate numerical simulation model which solves the subsurface water flow differential equations. The RBFN is used as a local approximation model in such a way as to maintain the robustness of the DE algorithm. The results of this procedure are compared to the corresponding results obtained by using the Simplex method and by using the DE procedure without the surrogate model. As it is demonstrated, the use of the surrogate model accelerates the convergence of the DE optimization procedure and additionally provides a better solution at the same number of exact evaluations, compared to the original DE algorithm.
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required for the upwind PNS code are approximately equal to an explicit PNS MacCormack's code and existing implicit PNS solvers.
Approximate dynamic programming for optimal stationary control with control-dependent noise.
Jiang, Yu; Jiang, Zhong-Ping
2011-12-01
This brief studies the stochastic optimal control problem via reinforcement learning and approximate/adaptive dynamic programming (ADP). A policy iteration algorithm is derived in the presence of both additive and multiplicative noise using Itô calculus. The expectation of the approximated cost matrix is guaranteed to converge to the solution of some algebraic Riccati equation that gives rise to the optimal cost value. Moreover, the covariance of the approximated cost matrix can be reduced by increasing the length of time interval between two consecutive iterations. Finally, a numerical example is given to illustrate the efficiency of the proposed ADP methodology.
Dual Key Speech Encryption Algorithm Based Underdetermined BSS
Zhao, Huan; Chen, Zuo; Zhang, Xixiang
2014-01-01
When the number of the mixed signals is less than that of the source signals, the underdetermined blind source separation (BSS) is a significant difficult problem. Due to the fact that the great amount data of speech communications and real-time communication has been required, we utilize the intractability of the underdetermined BSS problem to present a dual key speech encryption method. The original speech is mixed with dual key signals which consist of random key signals (one-time pad) generated by secret seed and chaotic signals generated from chaotic system. In the decryption process, approximate calculation is used to recover the original speech signals. The proposed algorithm for speech signals encryption can resist traditional attacks against the encryption system, and owing to approximate calculation, decryption becomes faster and more accurate. It is demonstrated that the proposed method has high level of security and can recover the original signals quickly and efficiently yet maintaining excellent audio quality. PMID:24955430
NASA Astrophysics Data System (ADS)
Byun, Hye Suk; El-Naggar, Mohamed Y.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2017-10-01
Kinetic Monte Carlo (KMC) simulations are used to study long-time dynamics of a wide variety of systems. Unfortunately, the conventional KMC algorithm is not scalable to larger systems, since its time scale is inversely proportional to the simulated system size. A promising approach to resolving this issue is the synchronous parallel KMC (SPKMC) algorithm, which makes the time scale size-independent. This paper introduces a formal derivation of the SPKMC algorithm based on local transition-state and time-dependent Hartree approximations, as well as its scalable parallel implementation based on a dual linked-list cell method. The resulting algorithm has achieved a weak-scaling parallel efficiency of 0.935 on 1024 Intel Xeon processors for simulating biological electron transfer dynamics in a 4.2 billion-heme system, as well as decent strong-scaling parallel efficiency. The parallel code has been used to simulate a lattice of cytochrome complexes on a bacterial-membrane nanowire, and it is broadly applicable to other problems such as computational synthesis of new materials.
Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.
Wei, Qinglai; Lewis, Frank L; Sun, Qiuye; Yan, Pengfei; Song, Ruizhuo
2017-05-01
In this paper, a novel discrete-time deterministic Q -learning algorithm is developed. In each iteration of the developed Q -learning algorithm, the iterative Q function is updated for all the state and control spaces, instead of updating for a single state and a single control in traditional Q -learning algorithm. A new convergence criterion is established to guarantee that the iterative Q function converges to the optimum, where the convergence criterion of the learning rates for traditional Q -learning algorithms is simplified. During the convergence analysis, the upper and lower bounds of the iterative Q function are analyzed to obtain the convergence criterion, instead of analyzing the iterative Q function itself. For convenience of analysis, the convergence properties for undiscounted case of the deterministic Q -learning algorithm are first developed. Then, considering the discounted factor, the convergence criterion for the discounted case is established. Neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of the deterministic Q -learning algorithm. Finally, simulation results and comparisons are given to illustrate the performance of the developed algorithm.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicroy, D.D.; Knox, C.E.
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modelingmore » required for the DC-10 airplane is described.« less
An algorithm for the numerical solution of linear differential games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polovinkin, E S; Ivanov, G E; Balashov, M V
2001-10-31
A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented andmore » estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.« less
Computational Modeling of Proteins based on Cellular Automata: A Method of HP Folding Approximation.
Madain, Alia; Abu Dalhoum, Abdel Latif; Sleit, Azzam
2018-06-01
The design of a protein folding approximation algorithm is not straightforward even when a simplified model is used. The folding problem is a combinatorial problem, where approximation and heuristic algorithms are usually used to find near optimal folds of proteins primary structures. Approximation algorithms provide guarantees on the distance to the optimal solution. The folding approximation approach proposed here depends on two-dimensional cellular automata to fold proteins presented in a well-studied simplified model called the hydrophobic-hydrophilic model. Cellular automata are discrete computational models that rely on local rules to produce some overall global behavior. One-third and one-fourth approximation algorithms choose a subset of the hydrophobic amino acids to form H-H contacts. Those algorithms start with finding a point to fold the protein sequence into two sides where one side ignores H's at even positions and the other side ignores H's at odd positions. In addition, blocks or groups of amino acids fold the same way according to a predefined normal form. We intend to improve approximation algorithms by considering all hydrophobic amino acids and folding based on the local neighborhood instead of using normal forms. The CA does not assume a fixed folding point. The proposed approach guarantees one half approximation minus the H-H endpoints. This lower bound guaranteed applies to short sequences only. This is proved as the core and the folds of the protein will have two identical sides for all short sequences.
Exact and approximate solutions to the oblique shock equations for real-time applications
NASA Technical Reports Server (NTRS)
Hartley, T. T.; Brandis, R.; Mossayebi, F.
1991-01-01
The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.
The Approximability of Learning and Constraint Satisfaction Problems
2010-10-07
further improved this result to NP ⊆ naPCP1,3/4+²(O(log(n)),3). Around the same time, Zwick [141] showed that naPCP1,5/8(O(log(n)),3)⊆ BPP by giving a...randomized polynomial-time 5/8-approximation algorithm for satisfiable 3CSP. Therefore unless NP⊆ BPP , the best s must be bigger than 5/8. Zwick... BPP [141]. We think that Question 5.1.2 addresses an important missing part in understanding the 3-query PCP systems. In addition, as is mentioned the
Testing trivializing maps in the Hybrid Monte Carlo algorithm
Engel, Georg P.; Schaefer, Stefan
2011-01-01
We test a recent proposal to use approximate trivializing maps in a field theory to speed up Hybrid Monte Carlo simulations. Simulating the CPN−1 model, we find a small improvement with the leading order transformation, which is however compensated by the additional computational overhead. The scaling of the algorithm towards the continuum is not changed. In particular, the effect of the topological modes on the autocorrelation times is studied. PMID:21969733
Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors
NASA Astrophysics Data System (ADS)
Alharbi, T.
2015-01-01
The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.
QR-decomposition based SENSE reconstruction using parallel architecture.
Ullah, Irfan; Nisar, Habab; Raza, Haseeb; Qasim, Malik; Inam, Omair; Omer, Hammad
2018-04-01
Magnetic Resonance Imaging (MRI) is a powerful medical imaging technique that provides essential clinical information about the human body. One major limitation of MRI is its long scan time. Implementation of advance MRI algorithms on a parallel architecture (to exploit inherent parallelism) has a great potential to reduce the scan time. Sensitivity Encoding (SENSE) is a Parallel Magnetic Resonance Imaging (pMRI) algorithm that utilizes receiver coil sensitivities to reconstruct MR images from the acquired under-sampled k-space data. At the heart of SENSE lies inversion of a rectangular encoding matrix. This work presents a novel implementation of GPU based SENSE algorithm, which employs QR decomposition for the inversion of the rectangular encoding matrix. For a fair comparison, the performance of the proposed GPU based SENSE reconstruction is evaluated against single and multicore CPU using openMP. Several experiments against various acceleration factors (AFs) are performed using multichannel (8, 12 and 30) phantom and in-vivo human head and cardiac datasets. Experimental results show that GPU significantly reduces the computation time of SENSE reconstruction as compared to multi-core CPU (approximately 12x speedup) and single-core CPU (approximately 53x speedup) without any degradation in the quality of the reconstructed images. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sorting signed permutations by short operations.
Galvão, Gustavo Rodrigues; Lee, Orlando; Dias, Zanoni
2015-01-01
During evolution, global mutations may alter the order and the orientation of the genes in a genome. Such mutations are referred to as rearrangement events, or simply operations. In unichromosomal genomes, the most common operations are reversals, which are responsible for reversing the order and orientation of a sequence of genes, and transpositions, which are responsible for switching the location of two contiguous portions of a genome. The problem of computing the minimum sequence of operations that transforms one genome into another - which is equivalent to the problem of sorting a permutation into the identity permutation - is a well-studied problem that finds application in comparative genomics. There are a number of works concerning this problem in the literature, but they generally do not take into account the length of the operations (i.e. the number of genes affected by the operations). Since it has been observed that short operations are prevalent in the evolution of some species, algorithms that efficiently solve this problem in the special case of short operations are of interest. In this paper, we investigate the problem of sorting a signed permutation by short operations. More precisely, we study four flavors of this problem: (i) the problem of sorting a signed permutation by reversals of length at most 2; (ii) the problem of sorting a signed permutation by reversals of length at most 3; (iii) the problem of sorting a signed permutation by reversals and transpositions of length at most 2; and (iv) the problem of sorting a signed permutation by reversals and transpositions of length at most 3. We present polynomial-time solutions for problems (i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv). Moreover, we show that the expected approximation ratio of the 5-approximation algorithm is not greater than 3 for random signed permutations with more than 12 elements. Finally, we present experimental results that show that the approximation ratios of the approximation algorithms cannot be smaller than 3. In particular, this means that the approximation ratio of the 3-approximation algorithm is tight.
Xiaofeng Yang; Guanghao Sun; Ishibashi, Koichiro
2017-07-01
The non-contact measurement of the respiration rate (RR) and heart rate (HR) using a Doppler radar has attracted more attention in the field of home healthcare monitoring, due to the extremely low burden on patients, unconsciousness and unconstraint. Most of the previous studies have performed the frequency-domain analysis of radar signals to detect the respiration and heartbeat frequency. However, these procedures required long period time (approximately 30 s) windows to obtain a high-resolution spectrum. In this study, we propose a time-domain peak detection algorithm for the fast acquisition of the RR and HR within a breathing cycle (approximately 5 s), including inhalation and exhalation. Signal pre-processing using an analog band-pass filter (BPF) that extracts respiration and heartbeat signals was performed. Thereafter, the HR and RR were calculated using a peak position detection method, which was carried out via LABVIEW. To evaluate the measurement accuracy, we measured the HR and RR of seven subjects in the laboratory. As a reference of HR and RR, the persons wore contact sensors i.e., an electrocardiograph (ECG) and a respiration band. The time domain peak-detection algorithm, based on the Doppler radar, exhibited a significant correlation coefficient of HR of 0.92 and a correlation coefficient of RR of 0.99, between the ECG and respiration band, respectively.
Approximate, computationally efficient online learning in Bayesian spiking neurons.
Kuhlmann, Levin; Hauser-Raspe, Michael; Manton, Jonathan H; Grayden, David B; Tapson, Jonathan; van Schaik, André
2014-03-01
Bayesian spiking neurons (BSNs) provide a probabilistic interpretation of how neurons perform inference and learning. Online learning in BSNs typically involves parameter estimation based on maximum-likelihood expectation-maximization (ML-EM) which is computationally slow and limits the potential of studying networks of BSNs. An online learning algorithm, fast learning (FL), is presented that is more computationally efficient than the benchmark ML-EM for a fixed number of time steps as the number of inputs to a BSN increases (e.g., 16.5 times faster run times for 20 inputs). Although ML-EM appears to converge 2.0 to 3.6 times faster than FL, the computational cost of ML-EM means that ML-EM takes longer to simulate to convergence than FL. FL also provides reasonable convergence performance that is robust to initialization of parameter estimates that are far from the true parameter values. However, parameter estimation depends on the range of true parameter values. Nevertheless, for a physiologically meaningful range of parameter values, FL gives very good average estimation accuracy, despite its approximate nature. The FL algorithm therefore provides an efficient tool, complementary to ML-EM, for exploring BSN networks in more detail in order to better understand their biological relevance. Moreover, the simplicity of the FL algorithm means it can be easily implemented in neuromorphic VLSI such that one can take advantage of the energy-efficient spike coding of BSNs.
Approximate matching of regular expressions.
Myers, E W; Miller, W
1989-01-01
Given a sequence A and regular expression R, the approximate regular expression matching problem is to find a sequence matching R whose optimal alignment with A is the highest scoring of all such sequences. This paper develops an algorithm to solve the problem in time O(MN), where M and N are the lengths of A and R. Thus, the time requirement is asymptotically no worse than for the simpler problem of aligning two fixed sequences. Our method is superior to an earlier algorithm by Wagner and Seiferas in several ways. First, it treats real-valued costs, in addition to integer costs, with no loss of asymptotic efficiency. Second, it requires only O(N) space to deliver just the score of the best alignment. Finally, its structure permits implementation techniques that make it extremely fast in practice. We extend the method to accommodate gap penalties, as required for typical applications in molecular biology, and further refine it to search for sub-strings of A that strongly align with a sequence in R, as required for typical data base searches. We also show how to deliver an optimal alignment between A and R in only O(N + log M) space using O(MN log M) time. Finally, an O(MN(M + N) + N2log N) time algorithm is presented for alignment scoring schemes where the cost of a gap is an arbitrary increasing function of its length.
Efficient Delaunay Tessellation through K-D Tree Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Peterka, Tom
Delaunay tessellations are fundamental data structures in computational geometry. They are important in data analysis, where they can represent the geometry of a point set or approximate its density. The algorithms for computing these tessellations at scale perform poorly when the input data is unbalanced. We investigate the use of k-d trees to evenly distribute points among processes and compare two strategies for picking split points between domain regions. Because resulting point distributions no longer satisfy the assumptions of existing parallel Delaunay algorithms, we develop a new parallel algorithm that adapts to its input and prove its correctness. We evaluatemore » the new algorithm using two late-stage cosmology datasets. The new running times are up to 50 times faster using k-d tree compared with regular grid decomposition. Moreover, in the unbalanced data sets, decomposing the domain into a k-d tree is up to five times faster than decomposing it into a regular grid.« less
NASA Technical Reports Server (NTRS)
Brown, Nelson
2013-01-01
A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.
GPU-accelerated computing for Lagrangian coherent structures of multi-body gravitational regimes
NASA Astrophysics Data System (ADS)
Lin, Mingpei; Xu, Ming; Fu, Xiaoyu
2017-04-01
Based on a well-established theoretical foundation, Lagrangian Coherent Structures (LCSs) have elicited widespread research on the intrinsic structures of dynamical systems in many fields, including the field of astrodynamics. Although the application of LCSs in dynamical problems seems straightforward theoretically, its associated computational cost is prohibitive. We propose a block decomposition algorithm developed on Compute Unified Device Architecture (CUDA) platform for the computation of the LCSs of multi-body gravitational regimes. In order to take advantage of GPU's outstanding computing properties, such as Shared Memory, Constant Memory, and Zero-Copy, the algorithm utilizes a block decomposition strategy to facilitate computation of finite-time Lyapunov exponent (FTLE) fields of arbitrary size and timespan. Simulation results demonstrate that this GPU-based algorithm can satisfy double-precision accuracy requirements and greatly decrease the time needed to calculate final results, increasing speed by approximately 13 times. Additionally, this algorithm can be generalized to various large-scale computing problems, such as particle filters, constellation design, and Monte-Carlo simulation.
RNA folding kinetics using Monte Carlo and Gillespie algorithms.
Clote, Peter; Bayegan, Amir H
2018-04-01
RNA secondary structure folding kinetics is known to be important for the biological function of certain processes, such as the hok/sok system in E. coli. Although linear algebra provides an exact computational solution of secondary structure folding kinetics with respect to the Turner energy model for tiny ([Formula: see text]20 nt) RNA sequences, the folding kinetics for larger sequences can only be approximated by binning structures into macrostates in a coarse-grained model, or by repeatedly simulating secondary structure folding with either the Monte Carlo algorithm or the Gillespie algorithm. Here we investigate the relation between the Monte Carlo algorithm and the Gillespie algorithm. We prove that asymptotically, the expected time for a K-step trajectory of the Monte Carlo algorithm is equal to [Formula: see text] times that of the Gillespie algorithm, where [Formula: see text] denotes the Boltzmann expected network degree. If the network is regular (i.e. every node has the same degree), then the mean first passage time (MFPT) computed by the Monte Carlo algorithm is equal to MFPT computed by the Gillespie algorithm multiplied by [Formula: see text]; however, this is not true for non-regular networks. In particular, RNA secondary structure folding kinetics, as computed by the Monte Carlo algorithm, is not equal to the folding kinetics, as computed by the Gillespie algorithm, although the mean first passage times are roughly correlated. Simulation software for RNA secondary structure folding according to the Monte Carlo and Gillespie algorithms is publicly available, as is our software to compute the expected degree of the network of secondary structures of a given RNA sequence-see http://bioinformatics.bc.edu/clote/RNAexpNumNbors .
NASA Technical Reports Server (NTRS)
Hedgley, D. R.
1978-01-01
An efficient algorithm for selecting the degree of a polynomial that defines a curve that best approximates a data set was presented. This algorithm was applied to both oscillatory and nonoscillatory data without loss of generality.
Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J
2015-06-28
We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.
Addition of Improved Shock-Capturing Schemes to OVERFLOW 2.1
NASA Technical Reports Server (NTRS)
Burning, Pieter G.; Nichols, Robert H.; Tramel, Robert W.
2009-01-01
Existing approximate Riemann solvers do not perform well when the grid is not aligned with strong shocks in the flow field. Three new approximate Riemann algorithms are investigated to improve solution accuracy and stability in the vicinity of strong shocks. The new algorithms are compared to the existing upwind algorithms in OVERFLOW 2.1. The new algorithms use a multidimensional pressure gradient based switch to transition to a more numerically dissipative algorithm in the vicinity of strong shocks. One new algorithm also attempts to artificially thicken captured shocks in order to alleviate the errors in the solution introduced by "stair-stepping" of the shock resulting from the approximate Riemann solver. This algorithm performed well for all the example cases and produced results that were almost insensitive to the alignment of the grid and the shock.
Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K
2018-06-01
This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.
Description of a Normal-Force In-Situ Turbulence Algorithm for Airplanes
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2003-01-01
A normal-force in-situ turbulence algorithm for potential use on commercial airliners is described. The algorithm can produce information that can be used to predict hazardous accelerations of airplanes or to aid meteorologists in forecasting weather patterns. The algorithm uses normal acceleration and other measures of the airplane state to approximate the vertical gust velocity. That is, the fundamental, yet simple, relationship between normal acceleration and the change in normal force coefficient is exploited to produce an estimate of the vertical gust velocity. This simple approach is robust and produces a time history of the vertical gust velocity that would be intuitively useful to pilots. With proper processing, the time history can be transformed into the eddy dissipation rate that would be useful to meteorologists. Flight data for a simplified research implementation of the algorithm are presented for a severe turbulence encounter of the NASA ARIES Boeing 757 research airplane. The results indicate that the algorithm has potential for producing accurate in-situ turbulence measurements. However, more extensive tests and analysis are needed with an operational implementation of the algorithm to make comparisons with other algorithms or methods.
Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices
NASA Astrophysics Data System (ADS)
Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.
2017-08-01
We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
Zuehlsdorff, T J; Hine, N D M; Payne, M C; Haynes, P D
2015-11-28
We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.
Resource-constrained scheduling with hard due windows and rejection penalties
NASA Astrophysics Data System (ADS)
Garcia, Christopher
2016-09-01
This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.
Electronic Thermometer Readings
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Stennis' adaptive predictive algorithm for electronic thermometers uses sample readings during the initial rise in temperature and applies an algorithm that accurately and rapidly predicts the steady state temperature. The final steady state temperature of an object can be calculated based on the second-order logarithm of the temperature signals acquired by the sensor and predetermined variables from the sensor characteristics. These variables are calculated during tests of the sensor. Once the variables are determined, relatively little data acquisition and data processing time by the algorithm is required to provide a near-accurate approximation of the final temperature. This reduces the delay in the steady state response time of a temperature sensor. This advanced algorithm can be implemented in existing software or hardware with an erasable programmable read-only memory (EPROM). The capability for easy integration eliminates the expense of developing a whole new system that offers the benefits provided by NASA Stennis' technology.
NASA Astrophysics Data System (ADS)
Lee, Yang-Sub
A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.
Quantum algorithm for linear systems of equations.
Harrow, Aram W; Hassidim, Avinatan; Lloyd, Seth
2009-10-09
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.
NASA Astrophysics Data System (ADS)
Jamróz, Weronika
2016-06-01
The paper shows the way enrgy-based models aproximate mechanical properties of hiperelastic materials. Main goal of research was to create a method of finding a set of material constants that are included in a strain energy function that constitutes a heart of an energy-based model. The most optimal set of material constants determines the best adjustment of a theoretical stress-strain relation to the experimental one. This kind of adjustment enables better prediction of behaviour of a chosen material. In order to obtain more precised solution the approximation was made with use of data obtained in a modern experiment widely describen in [1]. To save computation time main algorithm is based on genetic algorithms.
A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng
2009-11-01
Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.
Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning
NASA Astrophysics Data System (ADS)
Schumacher, André; Haanpää, Harri
We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with
Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Giorgos, E-mail: garab@math.uoc.gr; Katsoulakis, Markos A., E-mail: markos@math.umass.edu; Plechac, Petr, E-mail: plechac@math.udel.edu
2012-10-01
We present a mathematical framework for constructing and analyzing parallel algorithms for lattice kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. Rather than focusing on constructing exactly the stochastic trajectories, our approach relies on approximating the evolution of observables, such as density, coverage, correlations and so on. More specifically, we develop a spatial domain decomposition of the Markov operator (generator) that describes the evolution of all observables according to the kinetic Monte Carlo algorithm. This domain decompositionmore » corresponds to a decomposition of the Markov generator into a hierarchy of operators and can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). Based on this operator decomposition, we formulate parallel Fractional step kinetic Monte Carlo algorithms by employing the Trotter Theorem and its randomized variants; these schemes, (a) are partially asynchronous on each fractional step time-window, and (b) are characterized by their communication schedule between processors. The proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules. We carry out a detailed benchmarking of the parallel KMC schemes using available exact solutions, for example, in Ising-type systems and we demonstrate the capabilities of the method to simulate complex spatially distributed reactions at very large scales on GPUs. Finally, we discuss work load balancing between processors and propose a re-balancing scheme based on probabilistic mass transport methods.« less
Approximation Algorithms for Multicommodity Flow and Shop Scheduling Problems
1992-09-01
DARPA N00014-89-J-1988 11. SUPPLEMENTARY NOTES Ŗa. oIs7RIBU ric.c / AVAILAaILITY STATEMENT, 1.2. 3ISTRIBUT;CN C:. E In this thesis , we give efficient...University Thesis Supervisor Accepted by Campbell L. Searle Chairman, Departmental Committee on Graduate Students Approximation Algorithms for Multicommodity...partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis , we give efficient approximation algorithms for
Giancarlo, Raffaele; Scaturro, Davide; Utro, Filippo
2008-10-29
Inferring cluster structure in microarray datasets is a fundamental task for the so-called -omic sciences. It is also a fundamental question in Statistics, Data Analysis and Classification, in particular with regard to the prediction of the number of clusters in a dataset, usually established via internal validation measures. Despite the wealth of internal measures available in the literature, new ones have been recently proposed, some of them specifically for microarray data. We consider five such measures: Clest, Consensus (Consensus Clustering), FOM (Figure of Merit), Gap (Gap Statistics) and ME (Model Explorer), in addition to the classic WCSS (Within Cluster Sum-of-Squares) and KL (Krzanowski and Lai index). We perform extensive experiments on six benchmark microarray datasets, using both Hierarchical and K-means clustering algorithms, and we provide an analysis assessing both the intrinsic ability of a measure to predict the correct number of clusters in a dataset and its merit relative to the other measures. We pay particular attention both to precision and speed. Moreover, we also provide various fast approximation algorithms for the computation of Gap, FOM and WCSS. The main result is a hierarchy of those measures in terms of precision and speed, highlighting some of their merits and limitations not reported before in the literature. Based on our analysis, we draw several conclusions for the use of those internal measures on microarray data. We report the main ones. Consensus is by far the best performer in terms of predictive power and remarkably algorithm-independent. Unfortunately, on large datasets, it may be of no use because of its non-trivial computer time demand (weeks on a state of the art PC). FOM is the second best performer although, quite surprisingly, it may not be competitive in this scenario: it has essentially the same predictive power of WCSS but it is from 6 to 100 times slower in time, depending on the dataset. The approximation algorithms for the computation of FOM, Gap and WCSS perform very well, i.e., they are faster while still granting a very close approximation of FOM and WCSS. The approximation algorithm for the computation of Gap deserves to be singled-out since it has a predictive power far better than Gap, it is competitive with the other measures, but it is at least two order of magnitude faster in time with respect to Gap. Another important novel conclusion that can be drawn from our analysis is that all the measures we have considered show severe limitations on large datasets, either due to computational demand (Consensus, as already mentioned, Clest and Gap) or to lack of precision (all of the other measures, including their approximations). The software and datasets are available under the GNU GPL on the supplementary material web page.
Yu, Qiang; Wei, Dingbang; Huo, Hongwei
2018-06-18
Given a set of t n-length DNA sequences, q satisfying 0 < q ≤ 1, and l and d satisfying 0 ≤ d < l < n, the quorum planted motif search (qPMS) finds l-length strings that occur in at least qt input sequences with up to d mismatches and is mainly used to locate transcription factor binding sites in DNA sequences. Existing qPMS algorithms have been able to efficiently process small standard datasets (e.g., t = 20 and n = 600), but they are too time consuming to process large DNA datasets, such as ChIP-seq datasets that contain thousands of sequences or more. We analyze the effects of t and q on the time performance of qPMS algorithms and find that a large t or a small q causes a longer computation time. Based on this information, we improve the time performance of existing qPMS algorithms by selecting a sample sequence set D' with a small t and a large q from the large input dataset D and then executing qPMS algorithms on D'. A sample sequence selection algorithm named SamSelect is proposed. The experimental results on both simulated and real data show (1) that SamSelect can select D' efficiently and (2) that the qPMS algorithms executed on D' can find implanted or real motifs in a significantly shorter time than when executed on D. We improve the ability of existing qPMS algorithms to process large DNA datasets from the perspective of selecting high-quality sample sequence sets so that the qPMS algorithms can find motifs in a short time in the selected sample sequence set D', rather than take an unfeasibly long time to search the original sequence set D. Our motif discovery method is an approximate algorithm.
Parallel algorithm for determining motion vectors in ice floe images by matching edge features
NASA Technical Reports Server (NTRS)
Manohar, M.; Ramapriyan, H. K.; Strong, J. P.
1988-01-01
A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less
Sythesis of MCMC and Belief Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Sungsoo; Chertkov, Michael; Shin, Jinwoo
Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of accuracy over loopy graphs. In this paper, we introduce MCMC algorithms correcting the approximation error of BP, i.e., we provide a way to compensate for BP errors via a consecutive BP-aware MCMC. Our framework is based on the Loop Calculus (LC) approach whichmore » allows to express the BP error as a sum of weighted generalized loops. Although the full series is computationally intractable, it is known that a truncated series, summing up all 2-regular loops, is computable in polynomial-time for planar pair-wise binary GMs and it also provides a highly accurate approximation empirically. Motivated by this, we first propose a polynomial-time approximation MCMC scheme for the truncated series of general (non-planar) pair-wise binary models. Our main idea here is to use the Worm algorithm, known to provide fast mixing in other (related) problems, and then design an appropriate rejection scheme to sample 2-regular loops. Furthermore, we also design an efficient rejection-free MCMC scheme for approximating the full series. The main novelty underlying our design is in utilizing the concept of cycle basis, which provides an efficient decomposition of the generalized loops. In essence, the proposed MCMC schemes run on transformed GM built upon the non-trivial BP solution, and our experiments show that this synthesis of BP and MCMC outperforms both direct MCMC and bare BP schemes.« less
Keohane, Bernie M; Mason, Steve M; Baguley, David M
2004-02-01
A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.
Metaheuristic optimisation methods for approximate solving of singular boundary value problems
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong
2017-07-01
This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.
Approximate Computing Techniques for Iterative Graph Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh
Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with lowmore » impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.« less
NASA Astrophysics Data System (ADS)
Zimovets, Artem; Matviychuk, Alexander; Ushakov, Vladimir
2016-12-01
The paper presents two different approaches to reduce the time of computer calculation of reachability sets. First of these two approaches use different data structures for storing the reachability sets in the computer memory for calculation in single-threaded mode. Second approach is based on using parallel algorithms with reference to the data structures from the first approach. Within the framework of this paper parallel algorithm of approximate reachability set calculation on computer with SMP-architecture is proposed. The results of numerical modelling are presented in the form of tables which demonstrate high efficiency of parallel computing technology and also show how computing time depends on the used data structure.
nu-Anomica: A Fast Support Vector Based Novelty Detection Technique
NASA Technical Reports Server (NTRS)
Das, Santanu; Bhaduri, Kanishka; Oza, Nikunj C.; Srivastava, Ashok N.
2009-01-01
In this paper we propose nu-Anomica, a novel anomaly detection technique that can be trained on huge data sets with much reduced running time compared to the benchmark one-class Support Vector Machines algorithm. In -Anomica, the idea is to train the machine such that it can provide a close approximation to the exact decision plane using fewer training points and without losing much of the generalization performance of the classical approach. We have tested the proposed algorithm on a variety of continuous data sets under different conditions. We show that under all test conditions the developed procedure closely preserves the accuracy of standard one-class Support Vector Machines while reducing both the training time and the test time by 5 - 20 times.
NASA Technical Reports Server (NTRS)
Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.
1979-01-01
A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.
Investigations of quantum heuristics for optimization
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor; Hadfield, Stuart; Jiang, Zhang; Mandra, Salvatore; Venturelli, Davide; Wang, Zhihui
We explore the design of quantum heuristics for optimization, focusing on the quantum approximate optimization algorithm, a metaheuristic developed by Farhi, Goldstone, and Gutmann. We develop specific instantiations of the of quantum approximate optimization algorithm for a variety of challenging combinatorial optimization problems. Through theoretical analyses and numeric investigations of select problems, we provide insight into parameter setting and Hamiltonian design for quantum approximate optimization algorithms and related quantum heuristics, and into their implementation on hardware realizable in the near term.
Producing approximate answers to database queries
NASA Technical Reports Server (NTRS)
Vrbsky, Susan V.; Liu, Jane W. S.
1993-01-01
We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.
Optimizing Retransmission Threshold in Wireless Sensor Networks
Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang
2016-01-01
The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
Grout, Ray; Kolla, Hemanth; Minion, Michael; ...
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. Here, we demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
NASA Astrophysics Data System (ADS)
Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky
2018-03-01
The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher- order accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited tomore » recovering from soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual on the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehen- sive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.
Real-time terrain rendering for interactive visualization remains a demanding task. We present a novel algorithm with several advantages over previous methods: our method is unusually stingy with polygons yet achieves real-time performance and is scalable to arbitrary regions and resolutions. The method provides a continuous terrain mesh of specified triangle count having provably minimum error in restricted but reasonably general classes of permissible meshes and error metrics. Our method provides an elegant solution to guaranteeing certain elusive types of consistency in scenes produced by multiple scene generators which share a common finest-resolution database but which otherwise operate entirely independently. Thismore » consistency is achieved by exploiting the freedom of choice of error metric allowed by the algorithm to provide, for example, multiple exact lines-of-sight in real-time. Our methods rely on an off-line pre-processing phase to construct a multi-scale data structure consisting of triangular terrain approximations enhanced ({open_quotes}thickened{close_quotes}) with world-space error information. In real time, this error data is efficiently transformed into screen-space where it is used to guide a greedy top-down triangle subdivision algorithm which produces the desired minimal error continuous terrain mesh. Our algorithm has been implemented and it operates at real-time rates.« less
Towards a PTAS for the generalized TSP in grid clusters
NASA Astrophysics Data System (ADS)
Khachay, Michael; Neznakhina, Katherine
2016-10-01
The Generalized Traveling Salesman Problem (GTSP) is a combinatorial optimization problem, which is to find a minimum cost cycle visiting one point (city) from each cluster exactly. We consider a geometric case of this problem, where n nodes are given inside the integer grid (in the Euclidean plane), each grid cell is a unit square. Clusters are induced by cells `populated' by nodes of the given instance. Even in this special setting, the GTSP remains intractable enclosing the classic Euclidean TSP on the plane. Recently, it was shown that the problem has (1.5+8√2+ɛ)-approximation algorithm with complexity bound depending on n and k polynomially, where k is the number of clusters. In this paper, we propose two approximation algorithms for the Euclidean GTSP on grid clusters. For any fixed k, both algorithms are PTAS. Time complexity of the first one remains polynomial for k = O(log n) while the second one is a PTAS, when k = n - O(log n).
NASA Astrophysics Data System (ADS)
Maass, Bolko
2016-12-01
This paper describes an efficient and easily implemented algorithmic approach to extracting an approximation to an image's dominant projected illumination direction, based on intermediary results from a segmentation-based crater detection algorithm (CDA), at a computational cost that is negligible in comparison to that of the prior stages of the CDA. Most contemporary CDAs built for spacecraft navigation use this illumination direction as a means of improving performance or even require it to function at all. Deducing the illumination vector from the image alone reduces the reliance on external information such as the accurate knowledge of the spacecraft inertial state, accurate time base and solar system ephemerides. Therefore, a method such as the one described in this paper is a prerequisite for true "Lost in Space" operation of a purely segmentation-based crater detecting and matching method for spacecraft navigation. The proposed method is verified using ray-traced lunar elevation model data, asteroid image data, and in a laboratory setting with a camera in the loop.
Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev
2017-06-01
Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.
Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G.; Khanna, Sanjeev
2017-01-01
Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. PMID:29151821
Solving the infeasible trust-region problem using approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, John E.; Perez, Victor M.; Eldred, Michael Scott
2004-07-01
The use of optimization in engineering design has fueled the development of algorithms for specific engineering needs. When the simulations are expensive to evaluate or the outputs present some noise, the direct use of nonlinear optimizers is not advisable, since the optimization process will be expensive and may result in premature convergence. The use of approximations for both cases is an alternative investigated by many researchers including the authors. When approximations are present, a model management is required for proper convergence of the algorithm. In nonlinear programming, the use of trust-regions for globalization of a local algorithm has been provenmore » effective. The same approach has been used to manage the local move limits in sequential approximate optimization frameworks as in Alexandrov et al., Giunta and Eldred, Perez et al. , Rodriguez et al., etc. The experience in the mathematical community has shown that more effective algorithms can be obtained by the specific inclusion of the constraints (SQP type of algorithms) rather than by using a penalty function as in the augmented Lagrangian formulation. The presence of explicit constraints in the local problem bounded by the trust region, however, may have no feasible solution. In order to remedy this problem the mathematical community has developed different versions of a composite steps approach. This approach consists of a normal step to reduce the amount of constraint violation and a tangential step to minimize the objective function maintaining the level of constraint violation attained at the normal step. Two of the authors have developed a different approach for a sequential approximate optimization framework using homotopy ideas to relax the constraints. This algorithm called interior-point trust-region sequential approximate optimization (IPTRSAO) presents some similarities to the two normal-tangential steps algorithms. In this paper, a description of the similarities is presented and an expansion of the two steps algorithm is presented for the case of approximations.« less
On the parallel solution of parabolic equations
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Youcef
1989-01-01
Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.
Open shop scheduling problem to minimize total weighted completion time
NASA Astrophysics Data System (ADS)
Bai, Danyu; Zhang, Zhihai; Zhang, Qiang; Tang, Mengqian
2017-01-01
A given number of jobs in an open shop scheduling environment must each be processed for given amounts of time on each of a given set of machines in an arbitrary sequence. This study aims to achieve a schedule that minimizes total weighted completion time. Owing to the strong NP-hardness of the problem, the weighted shortest processing time block (WSPTB) heuristic is presented to obtain approximate solutions for large-scale problems. Performance analysis proves the asymptotic optimality of the WSPTB heuristic in the sense of probability limits. The largest weight block rule is provided to seek optimal schedules in polynomial time for a special case. A hybrid discrete differential evolution algorithm is designed to obtain high-quality solutions for moderate-scale problems. Simulation experiments demonstrate the effectiveness of the proposed algorithms.
Evaluation of stochastic differential equation approximation of ion channel gating models.
Bruce, Ian C
2009-04-01
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
Chaos control of Hastings-Powell model by combining chaotic motions.
Danca, Marius-F; Chattopadhyay, Joydev
2016-04-01
In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.
Chaos control of Hastings-Powell model by combining chaotic motions
NASA Astrophysics Data System (ADS)
Danca, Marius-F.; Chattopadhyay, Joydev
2016-04-01
In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.
NASA Technical Reports Server (NTRS)
Goldberg, Mitchell D.; Fleming, Henry E.
1994-01-01
An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.
Solving radiative transfer with line overlaps using Gauss-Seidel algorithms
NASA Astrophysics Data System (ADS)
Daniel, F.; Cernicharo, J.
2008-09-01
Context: The improvement in observational facilities requires refining the modelling of the geometrical structures of astrophysical objects. Nevertheless, for complex problems such as line overlap in molecules showing hyperfine structure, a detailed analysis still requires a large amount of computing time and thus, misinterpretation cannot be dismissed due to an undersampling of the whole space of parameters. Aims: We extend the discussion of the implementation of the Gauss-Seidel algorithm in spherical geometry and include the case of hyperfine line overlap. Methods: We first review the basics of the short characteristics method that is used to solve the radiative transfer equations. Details are given on the determination of the Lambda operator in spherical geometry. The Gauss-Seidel algorithm is then described and, by analogy to the plan-parallel case, we see how to introduce it in spherical geometry. Doing so requires some approximations in order to keep the algorithm competitive. Finally, line overlap effects are included. Results: The convergence speed of the algorithm is compared to the usual Jacobi iterative schemes. The gain in the number of iterations is typically factors of 2 and 4 for the two implementations made of the Gauss-Seidel algorithm. This is obtained despite the introduction of approximations in the algorithm. A comparison of results obtained with and without line overlaps for N2H^+, HCN, and HNC shows that the J=3-2 line intensities are significantly underestimated in models where line overlap is neglected.
More reliable protein NMR peak assignment via improved 2-interval scheduling.
Chen, Zhi-Zhong; Lin, Guohui; Rizzi, Romeo; Wen, Jianjun; Xu, Dong; Xu, Ying; Jiang, Tao
2005-03-01
Protein NMR peak assignment refers to the process of assigning a group of "spin systems" obtained experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has been formulated as an interval scheduling problem (ISP), where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are known to originate from consecutive amino acids from P is viewed as a "job" j(s), the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of executing job j(s) in the subinterval of I corresponding to P, and the goal is to maximize the total profit of executing the jobs (on a single machine) during I. The interval scheduling problem is max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job j(s) usually requires at most 10 consecutive time units, and typically the jobs that require one or two consecutive time units are the most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient 13/7-approximation algorithm for the special case of the interval scheduling problem where each job takes one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e., jobs that need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the well-known interval scheduling problem that breaks the ratio 2 barrier.
Label inspection of approximate cylinder based on adverse cylinder panorama
NASA Astrophysics Data System (ADS)
Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo
2013-12-01
This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.
Budinich, M
1996-02-15
Unsupervised learning applied to an unstructured neural network can give approximate solutions to the traveling salesman problem. For 50 cities in the plane this algorithm performs like the elastic net of Durbin and Willshaw (1987) and it improves when increasing the number of cities to get better than simulated annealing for problems with more than 500 cities. In all the tests this algorithm requires a fraction of the time taken by simulated annealing.
Contextual classification of multispectral image data: Approximate algorithm
NASA Technical Reports Server (NTRS)
Tilton, J. C. (Principal Investigator)
1980-01-01
An approximation to a classification algorithm incorporating spatial context information in a general, statistical manner is presented which is computationally less intensive. Classifications that are nearly as accurate are produced.
Scalable algorithms for three-field mixed finite element coupled poromechanics
NASA Astrophysics Data System (ADS)
Castelletto, Nicola; White, Joshua A.; Ferronato, Massimiliano
2016-12-01
We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.
NASA Technical Reports Server (NTRS)
Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.
1982-01-01
An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.
Kernel-Based Approximate Dynamic Programming Using Bellman Residual Elimination
2010-02-01
framework is the ability to utilize stochastic system models, thereby allowing the system to make sound decisions even if there is randomness in the system ...approximate policy when a system model is unavailable. We present theoretical analysis of all BRE algorithms proving convergence to the optimal policy in...policies based on MDPs is that there may be parameters of the system model that are poorly known and/or vary with time as the system operates. System
Self Improving Methods for Materials and Process Design
1998-08-31
using inductive coupling techniques. The first phase of the work focuses on developing an artificial neural network learning for function approximation...developing an artificial neural network learning algorithm for time-series prediction. The third phase of the work focuses on model selection. We have
Chen, C P; Wan, J Z
1999-01-01
A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.
Performance analysis of a dual-tree algorithm for computing spatial distance histograms
Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni
2011-01-01
Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753
Nonlinear dynamic macromodeling techniques for audio systems
NASA Astrophysics Data System (ADS)
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Gutierrez, Juan B; Lai, Ming-Jun; Slavov, George
2015-12-01
We study a time dependent partial differential equation (PDE) which arises from classic models in ecology involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence analysis of the algorithm is presented. We present some simulations of population development over some irregular domains. Finally, we discuss applications in epidemiology and other ecological problems. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dyer, Oliver T.; Ball, Robin C.
2017-03-01
We develop a new algorithm for the Brownian dynamics of soft matter systems that evolves time by spatially correlated Monte Carlo moves. The algorithm uses vector wavelets as its basic moves and produces hydrodynamics in the low Reynolds number regime propagated according to the Oseen tensor. When small moves are removed, the correlations closely approximate the Rotne-Prager tensor, itself widely used to correct for deficiencies in Oseen. We also include plane wave moves to provide the longest range correlations, which we detail for both infinite and periodic systems. The computational cost of the algorithm scales competitively with the number of particles simulated, N, scaling as N In N in homogeneous systems and as N in dilute systems. In comparisons to established lattice Boltzmann and Brownian dynamics algorithms, the wavelet method was found to be only a factor of order 1 times more expensive than the cheaper lattice Boltzmann algorithm in marginally semi-dilute simulations, while it is significantly faster than both algorithms at large N in dilute simulations. We also validate the algorithm by checking that it reproduces the correct dynamics and equilibrium properties of simple single polymer systems, as well as verifying the effect of periodicity on the mobility tensor.
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2016-03-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit at the cost of reduced duty cycle. The error reduction allows the clinical target volume to planning target volume (CTV-PTV) margin to be reduced, leading to decreased normal-tissue toxicity and possible dose escalation. The CTV-PTV margin is also evaluated to quantify clinical benefits of EKF-GPRN+ prediction.
The NLO jet vertex in the small-cone approximation for kt and cone algorithms
NASA Astrophysics Data System (ADS)
Colferai, D.; Niccoli, A.
2015-04-01
We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet "radius" R = 0 .5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.
Krill herd and piecewise-linear initialization algorithms for designing Takagi-Sugeno systems
NASA Astrophysics Data System (ADS)
Hodashinsky, I. A.; Filimonenko, I. V.; Sarin, K. S.
2017-07-01
A method for designing Takagi-Sugeno fuzzy systems is proposed which uses a piecewiselinear initialization algorithm for structure generation and a metaheuristic krill herd algorithm for parameter optimization. The obtained systems are tested against real data sets. The influence of some parameters of this algorithm on the approximation accuracy is analyzed. Estimates of the approximation accuracy and the number of fuzzy rules are compared with four known methods of design.
Typical performance of approximation algorithms for NP-hard problems
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-11-01
Typical performance of approximation algorithms is studied for randomized minimum vertex cover problems. A wide class of random graph ensembles characterized by an arbitrary degree distribution is discussed with the presentation of a theoretical framework. Herein, three approximation algorithms are examined: linear-programming relaxation, loopy-belief propagation, and the leaf-removal algorithm. The former two algorithms are analyzed using a statistical-mechanical technique, whereas the average-case analysis of the last one is conducted using the generating function method. These algorithms have a threshold in the typical performance with increasing average degree of the random graph, below which they find true optimal solutions with high probability. Our study reveals that there exist only three cases, determined by the order of the typical performance thresholds. In addition, we provide some conditions for classification of the graph ensembles and demonstrate explicitly some examples for the difference in thresholds.
Mean Field Variational Bayesian Data Assimilation
NASA Astrophysics Data System (ADS)
Vrettas, M.; Cornford, D.; Opper, M.
2012-04-01
Current data assimilation schemes propose a range of approximate solutions to the classical data assimilation problem, particularly state estimation. Broadly there are three main active research areas: ensemble Kalman filter methods which rely on statistical linearization of the model evolution equations, particle filters which provide a discrete point representation of the posterior filtering or smoothing distribution and 4DVAR methods which seek the most likely posterior smoothing solution. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the most probably posterior distribution over the states, within the family of non-stationary Gaussian processes. Our original work on variational Bayesian approaches to data assimilation sought the best approximating time varying Gaussian process to the posterior smoothing distribution for stochastic dynamical systems. This approach was based on minimising the Kullback-Leibler divergence between the true posterior over paths, and our Gaussian process approximation. So long as the observation density was sufficiently high to bring the posterior smoothing density close to Gaussian the algorithm proved very effective, on lower dimensional systems. However for higher dimensional systems, the algorithm was computationally very demanding. We have been developing a mean field version of the algorithm which treats the state variables at a given time as being independent in the posterior approximation, but still accounts for their relationships between each other in the mean solution arising from the original dynamical system. In this work we present the new mean field variational Bayesian approach, illustrating its performance on a range of classical data assimilation problems. We discuss the potential and limitations of the new approach. We emphasise that the variational Bayesian approach we adopt, in contrast to other variational approaches, provides a bound on the marginal likelihood of the observations given parameters in the model which also allows inference of parameters such as observation errors, and parameters in the model and model error representation, particularly if this is written as a deterministic form with small additive noise. We stress that our approach can address very long time window and weak constraint settings. However like traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem. We finish with a sketch of the future directions for our approach.
Improved Regional Seismic Event Locations Using 3-D Velocity Models
1999-12-15
regional velocity model to estimate event hypocenters. Travel times for the regional phases are calculated using a sophisticated eikonal finite...can greatly improve estimates of event locations. Our algorithm calculates travel times using a finite difference approximation of the eikonal ...such as IASP91 or J-B. 3-D velocity models require more sophisticated travel time modeling routines; thus, we use a 3-D eikonal equation solver
Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko
2010-12-01
In this paper, we present a system that estimates and visualizes muscle tensions in real time using optical motion capture and electromyography (EMG). The system overlays rendered musculoskeletal human model on top of a live video image of the subject. The subject therefore has an impression that he/she sees the muscles with tension information through the cloth and skin. The main technical challenge lies in real-time estimation of muscle tension. Since existing algorithms using mathematical optimization to distribute joint torques to muscle tensions are too slow for our purpose, we develop a new algorithm that computes a reasonable approximation of muscle tensions based on the internal connections between muscles known as neuronal binding. The algorithm can estimate the tensions of 274 muscles in only 16 ms, and the whole visualization system runs at about 15 fps. The developed system is applied to assisting sport training, and the user case studies show its usefulness. Possible applications include interfaces for assisting rehabilitation. Copyright © 2010 Elsevier Ltd. All rights reserved.
Using multi-class queuing network to solve performance models of e-business sites.
Zheng, Xiao-ying; Chen, De-ren
2004-01-01
Due to e-business's variety of customers with different navigational patterns and demands, multi-class queuing network is a natural performance model for it. The open multi-class queuing network(QN) models are based on the assumption that no service center is saturated as a result of the combined loads of all the classes. Several formulas are used to calculate performance measures, including throughput, residence time, queue length, response time and the average number of requests. The solution technique of closed multi-class QN models is an approximate mean value analysis algorithm (MVA) based on three key equations, because the exact algorithm needs huge time and space requirement. As mixed multi-class QN models, include some open and some closed classes, the open classes should be eliminated to create a closed multi-class QN so that the closed model algorithm can be applied. Some corresponding examples are given to show how to apply the algorithms mentioned in this article. These examples indicate that multi-class QN is a reasonably accurate model of e-business and can be solved efficiently.
NASA Astrophysics Data System (ADS)
Jia, Zhongxiao; Yang, Yanfei
2018-05-01
In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).
Sachetto Oliveira, Rafael; Martins Rocha, Bernardo; Burgarelli, Denise; Meira, Wagner; Constantinides, Christakis; Weber Dos Santos, Rodrigo
2018-02-01
The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy. Copyright © 2017 John Wiley & Sons, Ltd.
Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.
2008-11-06
This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use,more » a filtering algorithm based on linear approximations of the real observations is proposed.« less
Short superstrings and the structure of overlapping strings.
Armen, C; Stein, C
1995-01-01
Given a collection of strings S = [s1,...,sn] over an alphabet sigma, a superstring alpha of S is a string containing each si as a substring, that is, for each i, 1 < or = i < or = n, alpha contains a block of magnitude of si consecutive characters that match si exactly. The shortest superstring problem is the problem of finding a superstring alpha of minimum length. The shortest superstring problem has applications in both computational biology and data compression. The shortest superstring problem is NP-hard (Gallant et al., 1980); in fact, it was recently shown to be MAX SNP-hard (Blum et al., 1994). Given the importance of the applications, several heuristics and approximation algorithms have been proposed. Constant factor approximation algorithms have been given in Blum et al. (1994) (factor of 3), Teng and Yao (1993) (factor of 2 8/9), Czumaj et al. (1994) (factor of 2 5/6), and Kosaraju et al. (1994) (factor of 2 50/63). Informally, the key to any algorithm for the shortest superstring problem is to identify sets of strings with large amounts of similarity, or overlap. Although the previous algorithms and their analyses have grown increasingly sophisticated, they reveal remarkably little about the structure of strings with large amounts of overlap. In this sense, they are solving a more general problem than the one at hand. In this paper, we study the structure of strings with large amounts of overlap and use our understanding to give an algorithm that finds a superstring whose length is no more than 2 3/4 times that of the optimal superstring. Our algorithm runs in O(magnitude of S + n3) time, which matches that of previous algorithms. We prove several interesting properties about short periodic strings, allowing us to answer questions of the following form: Given a string with some periodic structure, characterize all the possible periodic strings that can have a large amount of overlap with the first string.
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2005-01-01
No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate.
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
NASA Astrophysics Data System (ADS)
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally, locally and un-identifiable model classes, and then to model updating of a two degree-of-freedom nonlinear structure with Duffing nonlinearities in its interstory force-deflection relationship.
NASA Astrophysics Data System (ADS)
Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai
2014-05-01
We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.
Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process
NASA Astrophysics Data System (ADS)
Ledalla, Siva Rama Krishna; Tirupathi, Balaji; Sriram, Venkatesh
2018-06-01
Layered manufacturing machines use the stereolithography (STL) file to build parts. When a curved surface is converted from a computer aided design (CAD) file to STL, it results in a geometrical distortion and chordal error. Parts manufactured with this file, might not satisfy geometric dimensioning and tolerance requirements due to approximated geometry. Current algorithms built in CAD packages have export options to globally reduce this distortion, which leads to an increase in the file size and pre-processing time. In this work, different mesh subdivision algorithms are applied on STL file of a complex geometric features using MeshLab software. The mesh subdivision algorithms considered in this work are modified butterfly subdivision technique, loops sub division technique and general triangular midpoint sub division technique. A comparative study is made with respect to volume and the build time using the above techniques. It is found that triangular midpoint sub division algorithm is more suitable for the geometry under consideration. Only the wheel cap part is then manufactured on Stratasys MOJO FDM machine. The surface roughness of the part is measured on Talysurf surface roughness tester.
NASA Astrophysics Data System (ADS)
Pan, Jun-Yang; Xie, Yi
2015-02-01
With tremendous advances in modern techniques, Einstein's general relativity has become an inevitable part of deep space missions. We investigate the relativistic algorithm for time transfer between the proper time τ of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard computer because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, H.B. III; Rosenkrantz, D.J.; Stearns, R.E.
We study both the complexity and approximability of various graph and combinatorial problems specified using two dimensional narrow periodic specifications (see [CM93, HW92, KMW67, KO91, Or84b, Wa93]). The following two general kinds of results are presented. (1) We prove that a number of natural graph and combinatorial problems are NEXPTIME- or EXPSPACE-complete when instances are so specified; (2) In contrast, we prove that the optimization versions of several of these NEXPTIME-, EXPSPACE-complete problems have polynomial time approximation algorithms with constant performance guarantees. Moreover, some of these problems even have polynomial time approximation schemes. We also sketch how our NEXPTIME-hardness resultsmore » can be used to prove analogous NEXPTIME-hardness results for problems specified using other kinds of succinct specification languages. Our results provide the first natural problems for which there is a proven exponential (and possibly doubly exponential) gap between the complexities of finding exact and approximate solutions.« less
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-08-01
In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.
Extended Islands of Tractability for Parsimony Haplotyping
NASA Astrophysics Data System (ADS)
Fleischer, Rudolf; Guo, Jiong; Niedermeier, Rolf; Uhlmann, Johannes; Wang, Yihui; Weller, Mathias; Wu, Xi
Parsimony haplotyping is the problem of finding a smallest size set of haplotypes that can explain a given set of genotypes. The problem is NP-hard, and many heuristic and approximation algorithms as well as polynomial-time solvable special cases have been discovered. We propose improved fixed-parameter tractability results with respect to the parameter "size of the target haplotype set" k by presenting an O *(k 4k )-time algorithm. This also applies to the practically important constrained case, where we can only use haplotypes from a given set. Furthermore, we show that the problem becomes polynomial-time solvable if the given set of genotypes is complete, i.e., contains all possible genotypes that can be explained by the set of haplotypes.
Kernel Temporal Differences for Neural Decoding
Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2015-01-01
We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504
Efficient Approximation Algorithms for Weighted $b$-Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.
2016-01-01
We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for themore » problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.« less
Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan
2016-04-22
The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.
Karami, Ebrahim; Shehata, Mohamed S; Smith, Andrew
2018-05-04
Medical research suggests that the anterior-posterior (AP)-diameter of the inferior vena cava (IVC) and its associated temporal variation as imaged by bedside ultrasound is useful in guiding fluid resuscitation of the critically-ill patient. Unfortunately, indistinct edges and gaps in vessel walls are frequently present which impede accurate estimation of the IVC AP-diameter for both human operators and segmentation algorithms. The majority of research involving use of the IVC to guide fluid resuscitation involves manual measurement of the maximum and minimum AP-diameter as it varies over time. This effort proposes using a time-varying circle fitted inside the typically ellipsoid IVC as an efficient, consistent and novel approach to tracking and approximating the AP-diameter even in the context of poor image quality. In this active-circle algorithm, a novel evolution functional is proposed and shown to be a useful tool for ultrasound image processing. The proposed algorithm is compared with an expert manual measurement, and state-of-the-art relevant algorithms. It is shown that the algorithm outperforms other techniques and performs very close to manual measurement. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cooper, D. B.; Yalabik, N.
1975-01-01
Approximation of noisy data in the plane by straight lines or elliptic or single-branch hyperbolic curve segments arises in pattern recognition, data compaction, and other problems. The efficient search for and approximation of data by such curves were examined. Recursive least-squares linear curve-fitting was used, and ellipses and hyperbolas are parameterized as quadratic functions in x and y. The error minimized by the algorithm is interpreted, and central processing unit (CPU) times for estimating parameters for fitting straight lines and quadratic curves were determined and compared. CPU time for data search was also determined for the case of straight line fitting. Quadratic curve fitting is shown to require about six times as much CPU time as does straight line fitting, and curves relating CPU time and fitting error were determined for straight line fitting. Results are derived on early sequential determination of whether or not the underlying curve is a straight line.
Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis
2007-07-01
This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.
Rational-spline approximation with automatic tension adjustment
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Kerr, P. A.
1984-01-01
An algorithm for weighted least-squares approximation with rational splines is presented. A rational spline is a cubic function containing a distinct tension parameter for each interval defined by two consecutive knots. For zero tension, the rational spline is identical to a cubic spline; for very large tension, the rational spline is a linear function. The approximation algorithm incorporates an algorithm which automatically adjusts the tension on each interval to fulfill a user-specified criterion. Finally, an example is presented comparing results of the rational spline with those of the cubic spline.
Indexing Volumetric Shapes with Matching and Packing
Koes, David Ryan; Camacho, Carlos J.
2014-01-01
We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707
Compressible, multiphase semi-implicit method with moment of fluid interface representation
Jemison, Matthew; Sussman, Mark; Arienti, Marco
2014-09-16
A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less
Iterative updating of model error for Bayesian inversion
NASA Astrophysics Data System (ADS)
Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew
2018-02-01
In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.
Multi-level methods and approximating distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.
2016-07-15
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less
A policy iteration approach to online optimal control of continuous-time constrained-input systems.
Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L
2013-09-01
This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.
Suboptimal LQR-based spacecraft full motion control: Theory and experimentation
NASA Astrophysics Data System (ADS)
Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.
2016-05-01
This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.
An application of artificial neural networks to experimental data approximation
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1993-01-01
As an initial step in the evaluation of networks, a feedforward architecture is trained to approximate experimental data by the backpropagation algorithm. Several drawbacks were detected and an alternative learning algorithm was then developed to partially address the drawbacks. This noniterative algorithm has a number of advantages over the backpropagation method and is easily implemented on existing hardware.
NASA Astrophysics Data System (ADS)
Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei
2018-04-01
We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.
Quantum search algorithms on a regular lattice
NASA Astrophysics Data System (ADS)
Hein, Birgit; Tanner, Gregor
2010-07-01
Quantum algorithms for searching for one or more marked items on a d-dimensional lattice provide an extension of Grover’s search algorithm including a spatial component. We demonstrate that these lattice search algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family of quantum random walks. We give approximations for both the level splitting at the avoided crossing and the effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible to give the leading order behavior for the search time and the localization probability in the limit of large lattice size including the leading order coefficients. For d=2 and d=3, these coefficients are calculated explicitly. Closed form expressions are given for higher dimensions.
Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L
2017-10-01
The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-07-01
We search for continuous gravitational waves (CGWs) produced by individual supermassive black hole binaries in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array with an average cadence of approximately 1.6 d over the period between 2011 April and 2015 July, including an approximately daily average between 2013 February and 2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity across the gravitational wave frequency range of 0.008-5μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲1.4 × 10-14 at a reference frequency of 20 nHz.
NASA Astrophysics Data System (ADS)
Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.
2018-05-01
We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.
Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey
2013-01-01
Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and long-time simulation with an approximate accounting of hydrodynamic interactions. PMID:24089734
Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.
Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian
2015-09-01
Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions
Xu, Kuan; Austin, Anthony P.; Wei, Ke
2017-12-21
In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.
A Fast Algorithm for the Convolution of Functions with Compact Support Using Fourier Extensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kuan; Austin, Anthony P.; Wei, Ke
In this paper, we present a new algorithm for computing the convolution of two compactly supported functions. The algorithm approximates the functions to be convolved using Fourier extensions and then uses the fast Fourier transform to efficiently compute Fourier extension approximations to the pieces of the result. Finally, the complexity of the algorithm is O(N(log N) 2), where N is the number of degrees of freedom used in each of the Fourier extensions.
Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments
NASA Astrophysics Data System (ADS)
Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.
2008-04-01
We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.
Diagnostics of Dielectric Materials with Several Relaxation Times
NASA Astrophysics Data System (ADS)
Karpov, A. G.; Klemeshev, V. A.
2018-04-01
A set of means for detection and preprocessing of dielectrometric information has been suggested for studying the polarization/depolarization of dielectrics. Special attention has been paid to the processing of dielectrometric data for inhomogeneous materials using dielectric diagrams. Rapid analysis has been carried out the results of which can be used as initial approximations in more accurate (more complicated and time-consuming) iterative algorithms for model fitting.
Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H
2017-06-01
We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .
A Variational Formulation of Macro-Particle Algorithms for Kinetic Plasma Simulations
NASA Astrophysics Data System (ADS)
Shadwick, B. A.
2013-10-01
Macro-particle based simulations methods are in widespread use in plasma physics; their computational efficiency and intuitive nature are largely responsible for their longevity. In the main, these algorithms are formulated by approximating the continuous equations of motion. For systems governed by a variational principle (such as collisionless plasmas), approximations of the equations of motion is known to introduce anomalous behavior, especially in system invariants. We present a variational formulation of particle algorithms for plasma simulation based on a reduction of the distribution function onto a finite collection of macro-particles. As in the usual Particle-In-Cell (PIC) formulation, these macro-particles have a definite momentum and are spatially extended. The primary advantage of this approach is the preservation of the link between symmetries and conservation laws. For example, nothing in the reduction introduces explicit time dependence to the system and, therefore, the continuous-time equations of motion exactly conserve energy; thus, these models are free of grid-heating. In addition, the variational formulation allows for constructing models of arbitrary spatial and temporal order. In contrast, the overall accuracy of the usual PIC algorithm is at most second due to the nature of the force interpolation between the gridded field quantities and the (continuous) particle position. Again in contrast to the usual PIC algorithm, here the macro-particle shape is arbitrary; the spatial extent is completely decoupled from both the grid-size and the ``smoothness'' of the shape; smoother particle shapes are not necessarily larger. For simplicity, we restrict our discussion to one-dimensional, non-relativistic, un-magnetized, electrostatic plasmas. We comment on the extension to the electromagnetic case. Supported by the US DoE under contract numbers DE-FG02-08ER55000 and DE-SC0008382.
Understanding Human Motion Skill with Peak Timing Synergy
NASA Astrophysics Data System (ADS)
Ueno, Ken; Furukawa, Koichi
The careful observation of motion phenomena is important in understanding the skillful human motion. However, this is a difficult task due to the complexities in timing when dealing with the skilful control of anatomical structures. To investigate the dexterity of human motion, we decided to concentrate on timing with respect to motion, and we have proposed a method to extract the peak timing synergy from multivariate motion data. The peak timing synergy is defined as a frequent ordered graph with time stamps, which has nodes consisting of turning points in motion waveforms. A proposed algorithm, PRESTO automatically extracts the peak timing synergy. PRESTO comprises the following 3 processes: (1) detecting peak sequences with polygonal approximation; (2) generating peak-event sequences; and (3) finding frequent peak-event sequences using a sequential pattern mining method, generalized sequential patterns (GSP). Here, we measured right arm motion during the task of cello bowing and prepared a data set of the right shoulder and arm motion. We successfully extracted the peak timing synergy on cello bowing data set using the PRESTO algorithm, which consisted of common skills among cellists and personal skill differences. To evaluate the sequential pattern mining algorithm GSP in PRESTO, we compared the peak timing synergy by using GSP algorithm and the one by using filtering by reciprocal voting (FRV) algorithm as a non time-series method. We found that the support is 95 - 100% in GSP, while 83 - 96% in FRV and that the results by GSP are better than the one by FRV in the reproducibility of human motion. Therefore we show that sequential pattern mining approach is more effective to extract the peak timing synergy than non-time series analysis approach.
Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J
2012-10-01
The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.
Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds
NASA Technical Reports Server (NTRS)
Jardin, Matthew R.
2004-01-01
A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air-traffic-control automation, thousands of wind-optimal routes may need to be computed and checked for conflicts in just a few minutes. These factors motivated the need for a more efficient wind-optimal routing algorithm.
NASA Technical Reports Server (NTRS)
Hunter, H. E.
1972-01-01
The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
A Note on Alternating Minimization Algorithm for the Matrix Completion Problem
Gamarnik, David; Misra, Sidhant
2016-06-06
Here, we consider the problem of reconstructing a low-rank matrix from a subset of its entries and analyze two variants of the so-called alternating minimization algorithm, which has been proposed in the past.We establish that when the underlying matrix has rank one, has positive bounded entries, and the graph underlying the revealed entries has diameter which is logarithmic in the size of the matrix, both algorithms succeed in reconstructing the matrix approximately in polynomial time starting from an arbitrary initialization.We further provide simulation results which suggest that the second variant which is based on the message passing type updates performsmore » significantly better.« less
Chaos control of Hastings–Powell model by combining chaotic motions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danca, Marius-F., E-mail: danca@rist.ro; Chattopadhyay, Joydev, E-mail: joydev@isical.ac.in
2016-04-15
In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings–Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can bemore » approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: “losing + losing = winning.” If “loosing” is replaced with “chaos” and, “winning” with “order” (as the opposite to “chaos”), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write “chaos + chaos = regular.” Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.« less
A consensus algorithm for approximate string matching and its application to QRS complex detection
NASA Astrophysics Data System (ADS)
Alba, Alfonso; Mendez, Martin O.; Rubio-Rincon, Miguel E.; Arce-Santana, Edgar R.
2016-08-01
In this paper, a novel algorithm for approximate string matching (ASM) is proposed. The novelty resides in the fact that, unlike most other methods, the proposed algorithm is not based on the Hamming or Levenshtein distances, but instead computes a score for each symbol in the search text based on a consensus measure. Those symbols with sufficiently high scores will likely correspond to approximate instances of the pattern string. To demonstrate the usefulness of the proposed method, it has been applied to the detection of QRS complexes in electrocardiographic signals with competitive results when compared against the classic Pan-Tompkins (PT) algorithm. The proposed method outperformed PT in 72% of the test cases, with no extra computational cost.
A 1.375-approximation algorithm for sorting by transpositions.
Elias, Isaac; Hartman, Tzvika
2006-01-01
Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.
Towards syntactic characterizations of approximation schemes via predicate and graph decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, H.B. III; Stearns, R.E.; Jacob, R.
1998-12-01
The authors present a simple extensible theoretical framework for devising polynomial time approximation schemes for problems represented using natural syntactic (algebraic) specifications endowed with natural graph theoretic restrictions on input instances. Direct application of the technique yields polynomial time approximation schemes for all the problems studied in [LT80, NC88, KM96, Ba83, DTS93, HM+94a, HM+94] as well as the first known approximation schemes for a number of additional combinatorial problems. One notable aspect of the work is that it provides insights into the structure of the syntactic specifications and the corresponding algorithms considered in [KM96, HM+94]. The understanding allows them tomore » extend the class of syntactic specifications for which generic approximation schemes can be developed. The results can be shown to be tight in many cases, i.e. natural extensions of the specifications can be shown to yield non-approximable problems. The results provide a non-trivial characterization of a class of problems having a PTAS and extend the earlier work on this topic by [KM96, HM+94].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuehlsdorff, T. J., E-mail: tjz21@cam.ac.uk; Payne, M. C.; Hine, N. D. M.
2015-11-28
We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on amore » small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.« less
Faster Heavy Ion Transport for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.
2013-01-01
The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z < 2), mesons, and leptons, it is important to maintain overall computational efficiency. In this work, the heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.
Fast template matching with polynomials.
Omachi, Shinichiro; Omachi, Masako
2007-08-01
Template matching is widely used for many applications in image and signal processing. This paper proposes a novel template matching algorithm, called algebraic template matching. Given a template and an input image, algebraic template matching efficiently calculates similarities between the template and the partial images of the input image, for various widths and heights. The partial image most similar to the template image is detected from the input image for any location, width, and height. In the proposed algorithm, a polynomial that approximates the template image is used to match the input image instead of the template image. The proposed algorithm is effective especially when the width and height of the template image differ from the partial image to be matched. An algorithm using the Legendre polynomial is proposed for efficient approximation of the template image. This algorithm not only reduces computational costs, but also improves the quality of the approximated image. It is shown theoretically and experimentally that the computational cost of the proposed algorithm is much smaller than the existing methods.
Optimal Budget Allocation for Sample Average Approximation
2011-06-01
an optimization algorithm applied to the sample average problem. We examine the convergence rate of the estimator as the computing budget tends to...regime for the optimization algorithm . 1 Introduction Sample average approximation (SAA) is a frequently used approach to solving stochastic programs...appealing due to its simplicity and the fact that a large number of standard optimization algorithms are often available to optimize the resulting sample
Bindu, G; Semenov, S
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.
Fast graph-based relaxed clustering for large data sets using minimal enclosing ball.
Qian, Pengjiang; Chung, Fu-Lai; Wang, Shitong; Deng, Zhaohong
2012-06-01
Although graph-based relaxed clustering (GRC) is one of the spectral clustering algorithms with straightforwardness and self-adaptability, it is sensitive to the parameters of the adopted similarity measure and also has high time complexity O(N(3)) which severely weakens its usefulness for large data sets. In order to overcome these shortcomings, after introducing certain constraints for GRC, an enhanced version of GRC [constrained GRC (CGRC)] is proposed to increase the robustness of GRC to the parameters of the adopted similarity measure, and accordingly, a novel algorithm called fast GRC (FGRC) based on CGRC is developed in this paper by using the core-set-based minimal enclosing ball approximation. A distinctive advantage of FGRC is that its asymptotic time complexity is linear with the data set size N. At the same time, FGRC also inherits the straightforwardness and self-adaptability from GRC, making the proposed FGRC a fast and effective clustering algorithm for large data sets. The advantages of FGRC are validated by various benchmarking and real data sets.
A Fast Implementation of the ISODATA Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2005-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to ISODATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
A Fast Implementation of the Isodata Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Le Moigne, Jacqueline; Mount, David M.; Netanyahu, Nathan S.
2007-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to IsoDATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle
Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...
2017-05-18
We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
SEC proton prediction model: verification and analysis.
Balch, C C
1999-06-01
This paper describes a model that has been used at the NOAA Space Environment Center since the early 1970s as a guide for the prediction of solar energetic particle events. The algorithms for proton event probability, peak flux, and rise time are described. The predictions are compared with observations. The current model shows some ability to distinguish between proton event associated flares and flares that are not associated with proton events. The comparisons of predicted and observed peak flux show considerable scatter, with an rms error of almost an order of magnitude. Rise time comparisons also show scatter, with an rms error of approximately 28 h. The model algorithms are analyzed using historical data and improvements are suggested. Implementation of the algorithm modifications reduces the rms error in the log10 of the flux prediction by 21%, and the rise time rms error by 31%. Improvements are also realized in the probability prediction by deriving the conditional climatology for proton event occurrence given flare characteristics.
Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza
We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less
NASA Astrophysics Data System (ADS)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; Govind, Niranjan; Yang, Chao
2017-12-01
We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.
Adaptive DFT-Based Interferometer Fringe Tracking
NASA Astrophysics Data System (ADS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
NASA Astrophysics Data System (ADS)
Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw
2016-11-01
In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.
Adaptive DFT-Based Interferometer Fringe Tracking
NASA Astrophysics Data System (ADS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2005-12-01
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
Numerical Algorithms Based on Biorthogonal Wavelets
NASA Technical Reports Server (NTRS)
Ponenti, Pj.; Liandrat, J.
1996-01-01
Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.
Bernhardt, Paul W.; Zhang, Daowen; Wang, Huixia Judy
2014-01-01
Joint modeling techniques have become a popular strategy for studying the association between a response and one or more longitudinal covariates. Motivated by the GenIMS study, where it is of interest to model the event of survival using censored longitudinal biomarkers, a joint model is proposed for describing the relationship between a binary outcome and multiple longitudinal covariates subject to detection limits. A fast, approximate EM algorithm is developed that reduces the dimension of integration in the E-step of the algorithm to one, regardless of the number of random effects in the joint model. Numerical studies demonstrate that the proposed approximate EM algorithm leads to satisfactory parameter and variance estimates in situations with and without censoring on the longitudinal covariates. The approximate EM algorithm is applied to analyze the GenIMS data set. PMID:25598564
Rational approximations to rational models: alternative algorithms for category learning.
Sanborn, Adam N; Griffiths, Thomas L; Navarro, Daniel J
2010-10-01
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models is thus explaining how optimal solutions can be approximated by psychological processes. We outline a general strategy for answering this question, namely to explore the psychological plausibility of approximation algorithms developed in computer science and statistics. In particular, we argue that Monte Carlo methods provide a source of rational process models that connect optimal solutions to psychological processes. We support this argument through a detailed example, applying this approach to Anderson's (1990, 1991) rational model of categorization (RMC), which involves a particularly challenging computational problem. Drawing on a connection between the RMC and ideas from nonparametric Bayesian statistics, we propose 2 alternative algorithms for approximate inference in this model. The algorithms we consider include Gibbs sampling, a procedure appropriate when all stimuli are presented simultaneously, and particle filters, which sequentially approximate the posterior distribution with a small number of samples that are updated as new data become available. Applying these algorithms to several existing datasets shows that a particle filter with a single particle provides a good description of human inferences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, Deepjyoti; Backhaus, Scott N.; Chertkov, Michael
Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/ormore » line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.« less
Data inversion algorithm development for the hologen occultation experiment
NASA Technical Reports Server (NTRS)
Gordley, Larry L.; Mlynczak, Martin G.
1986-01-01
The successful retrieval of atmospheric parameters from radiometric measurement requires not only the ability to do ideal radiometric calculations, but also a detailed understanding of instrument characteristics. Therefore a considerable amount of time was spent in instrument characterization in the form of test data analysis and mathematical formulation. Analyses of solar-to-reference interference (electrical cross-talk), detector nonuniformity, instrument balance error, electronic filter time-constants and noise character were conducted. A second area of effort was the development of techniques for the ideal radiometric calculations required for the Halogen Occultation Experiment (HALOE) data reduction. The computer code for these calculations must be extremely complex and fast. A scheme for meeting these requirements was defined and the algorithms needed form implementation are currently under development. A third area of work included consulting on the implementation of the Emissivity Growth Approximation (EGA) method of absorption calculation into a HALOE broadband radiometer channel retrieval algorithm.
Automatic mesh refinement and parallel load balancing for Fokker-Planck-DSMC algorithm
NASA Astrophysics Data System (ADS)
Küchlin, Stephan; Jenny, Patrick
2018-06-01
Recently, a parallel Fokker-Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers was developed by the authors. Fokker-Planck-DSMC (FP-DSMC) is an augmentation of the classical DSMC algorithm, which mitigates the near-continuum deficiencies in terms of computational cost of pure DSMC. At each time step, based on a local Knudsen number criterion, the discrete DSMC collision operator is dynamically switched to the Fokker-Planck operator, which is based on the integration of continuous stochastic processes in time, and has fixed computational cost per particle, rather than per collision. In this contribution, we present an extension of the previous implementation with automatic local mesh refinement and parallel load-balancing. In particular, we show how the properties of discrete approximations to space-filling curves enable an efficient implementation. Exemplary numerical studies highlight the capabilities of the new code.
Adaptive DIT-Based Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2004-01-01
An automatic fringe tracking system has been developed and implemented at the Infrared Optical Telescope Array (IOTA). In testing during May 2002, the system successfully minimized the optical path differences (OPDs) for all three baselines at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHZ PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. Preliminary analysis on an extension of this algorithm indicates a potential for predictive tracking, although at present, real-time implementation of this extension would require significantly more computational capacity.
Approximate Bayesian Computation in the estimation of the parameters of the Forbush decrease model
NASA Astrophysics Data System (ADS)
Wawrzynczak, A.; Kopka, P.
2017-12-01
Realistic modeling of the complicated phenomena as Forbush decrease of the galactic cosmic ray intensity is a quite challenging task. One aspect is a numerical solution of the Fokker-Planck equation in five-dimensional space (three spatial variables, the time and particles energy). The second difficulty arises from a lack of detailed knowledge about the spatial and time profiles of the parameters responsible for the creation of the Forbush decrease. Among these parameters, the central role plays a diffusion coefficient. Assessment of the correctness of the proposed model can be done only by comparison of the model output with the experimental observations of the galactic cosmic ray intensity. We apply the Approximate Bayesian Computation (ABC) methodology to match the Forbush decrease model to experimental data. The ABC method is becoming increasing exploited for dynamic complex problems in which the likelihood function is costly to compute. The main idea of all ABC methods is to accept samples as an approximate posterior draw if its associated modeled data are close enough to the observed one. In this paper, we present application of the Sequential Monte Carlo Approximate Bayesian Computation algorithm scanning the space of the diffusion coefficient parameters. The proposed algorithm is adopted to create the model of the Forbush decrease observed by the neutron monitors at the Earth in March 2002. The model of the Forbush decrease is based on the stochastic approach to the solution of the Fokker-Planck equation.
A distributed-memory approximation algorithm for maximum weight perfect bipartite matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydin; Li, Xiaoye S.
We design and implement an efficient parallel approximation algorithm for the problem of maximum weight perfect matching in bipartite graphs, i.e. the problem of finding a set of non-adjacent edges that covers all vertices and has maximum weight. This problem differs from the maximum weight matching problem, for which scalable approximation algorithms are known. It is primarily motivated by finding good pivots in scalable sparse direct solvers before factorization where sequential implementations of maximum weight perfect matching algorithms, such as those available in MC64, are widely used due to the lack of scalable alternatives. To overcome this limitation, we proposemore » a fully parallel distributed memory algorithm that first generates a perfect matching and then searches for weightaugmenting cycles of length four in parallel and iteratively augments the matching with a vertex disjoint set of such cycles. For most practical problems the weights of the perfect matchings generated by our algorithm are very close to the optimum. An efficient implementation of the algorithm scales up to 256 nodes (17,408 cores) on a Cray XC40 supercomputer and can solve instances that are too large to be handled by a single node using the sequential algorithm.« less
Research on Modeling of Propeller in a Turboprop Engine
NASA Astrophysics Data System (ADS)
Huang, Jiaqin; Huang, Xianghua; Zhang, Tianhong
2015-05-01
In the simulation of engine-propeller integrated control system for a turboprop aircraft, a real-time propeller model with high-accuracy is required. A study is conducted to compare the real-time and precision performance of propeller models based on strip theory and lifting surface theory. The emphasis in modeling by strip theory is focused on three points as follows: First, FLUENT is adopted to calculate the lift and drag coefficients of the propeller. Next, a method to calculate the induced velocity which occurs in the ground rig test is presented. Finally, an approximate method is proposed to obtain the downwash angle of the propeller when the conventional algorithm has no solution. An advanced approximation of the velocities induced by helical horseshoe vortices is applied in the model based on lifting surface theory. This approximate method will reduce computing time and remain good accuracy. Comparison between the two modeling techniques shows that the model based on strip theory which owns more advantage on both real-time and high-accuracy can meet the requirement.
Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM
NASA Astrophysics Data System (ADS)
Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng
2015-07-01
We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.
Technical Note: Improving the VMERGE treatment planning algorithm for rotational radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddy, Melissa R., E-mail: mrgaddy@ncsu.edu; Papp,
2016-07-15
Purpose: The authors revisit the VMERGE treatment planning algorithm by Craft et al. [“Multicriteria VMAT optimization,” Med. Phys. 39, 686–696 (2012)] for arc therapy planning and propose two changes to the method that are aimed at improving the achieved trade-off between treatment time and plan quality at little additional planning time cost, while retaining other desirable properties of the original algorithm. Methods: The original VMERGE algorithm first computes an “ideal,” high quality but also highly time consuming treatment plan that irradiates the patient from all possible angles in a fine angular grid with a highly modulated beam and then makesmore » this plan deliverable within practical treatment time by an iterative fluence map merging and sequencing algorithm. We propose two changes to this method. First, we regularize the ideal plan obtained in the first step by adding an explicit constraint on treatment time. Second, we propose a different merging criterion that comprises of identifying and merging adjacent maps whose merging results in the least degradation of radiation dose. Results: The effect of both suggested modifications is evaluated individually and jointly on clinical prostate and paraspinal cases. Details of the two cases are reported. Conclusions: In the authors’ computational study they found that both proposed modifications, especially the regularization, yield noticeably improved treatment plans for the same treatment times than what can be obtained using the original VMERGE method. The resulting plans match the quality of 20-beam step-and-shoot IMRT plans with a delivery time of approximately 2 min.« less
Variational Trajectory Optimization Tool Set: Technical description and user's manual
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.
1993-01-01
The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Jiri; Lin, Lin; Shao, Meiyue
We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
Brabec, Jiri; Lin, Lin; Shao, Meiyue; ...
2015-10-06
We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less
The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View
NASA Technical Reports Server (NTRS)
Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.
2017-01-01
Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Optimization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A level-p QAOA circuit consists of steps in which a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamiltonians are applied are the parameters of the algorithm. As p increases, however, the parameter search space grows quickly. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here, we analytically and numerically study parameter setting for QAOA applied to MAXCUT. For level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MAXCUT, the Ring of Disagrees, or the 1D antiferromagnetic ring, we provide an analysis for arbitrarily high level. Using a Fermionic representation, the evolution of the system under QAOA translates into quantum optimal control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for any p. It also greatly simplifies numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.
Litigated Metal Clusters - Structures, Energy and Reactivity
2016-04-01
projection superposition approximation ( PSA ) algorithm through a more careful consideration of how to calculate cross sections for elongated molecules...superposition approximation ( PSA ) is now complete. We have made it available free of charge to the scientific community on a dedicated website at UCSB. We...by AFOSR. We continued to improve the projection superposition approximation ( PSA ) algorithm through a more careful consideration of how to calculate
Control system estimation and design for aerospace vehicles with time delay
NASA Technical Reports Server (NTRS)
Allgaier, G. R.; Williams, T. L.
1972-01-01
The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.
Spiral trajectory design: a flexible numerical algorithm and base analytical equations.
Pipe, James G; Zwart, Nicholas R
2014-01-01
Spiral-based trajectories for magnetic resonance imaging can be advantageous, but are often cumbersome to design or create. This work presents a flexible numerical algorithm for designing trajectories based on explicit definition of radial undersampling, and also gives several analytical expressions for charactering the base (critically sampled) class of these trajectories. Expressions for the gradient waveform, based on slew and amplitude limits, are developed such that a desired pitch in the spiral k-space trajectory is followed. The source code for this algorithm, written in C, is publicly available. Analytical expressions approximating the spiral trajectory (ignoring the radial component) are given to characterize measurement time, gradient heating, maximum gradient amplitude, and off-resonance phase for slew-limited and gradient amplitude-limited cases. Several numerically calculated trajectories are illustrated, and base Archimedean spirals are compared with analytically obtained results. Several different waveforms illustrate that the desired slew and amplitude limits are reached, as are the desired undersampling patterns, using the numerical method. For base Archimedean spirals, the results of the numerical and analytical approaches are in good agreement. A versatile numerical algorithm was developed, and was written in publicly available code. Approximate analytical formulas are given that help characterize spiral trajectories. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering
Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani
2012-01-01
Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386
Song, Xiaojun; Ta, Dean; Wang, Weiqi
2011-10-01
The parameters of ultrasonic guided waves (GWs) are very sensitive to mechanical and structural changes in long cortical bones. However, it is a challenge to obtain the group velocity and other parameters of GWs because of the presence of mixed multiple modes. This paper proposes a blind identification algorithm using the joint approximate diagonalization of eigen-matrices (JADE) and applies it to the separation of superimposed GWs in long bones. For the simulation case, the velocity of the single mode was calculated after separation. A strong agreement was obtained between the estimated velocity and the theoretical expectation. For the experiments in bovine long bones, by using the calculated velocity and a theoretical model, the cortical thickness (CTh) was obtained. For comparison with the JADE approach, an adaptive Gaussian chirplet time-frequency (ACGTF) method was also used to estimate the CTh. The results showed that the mean error of the CTh acquired by the JADE approach was 4.3%, which was smaller than that of the ACGTF method (13.6%). This suggested that the JADE algorithm may be used to separate the superimposed GWs and that the JADE algorithm could potentially be used to evaluate long bones. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
A general heuristic for genome rearrangement problems.
Dias, Ulisses; Galvão, Gustavo Rodrigues; Lintzmayer, Carla Négri; Dias, Zanoni
2014-06-01
In this paper, we present a general heuristic for several problems in the genome rearrangement field. Our heuristic does not solve any problem directly, it is rather used to improve the solutions provided by any non-optimal algorithm that solve them. Therefore, we have implemented several algorithms described in the literature and several algorithms developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known problems in the genome rearrangement field. A total of 13 algorithms were implemented for problems that use the notions of prefix and suffix operations. In addition, we worked on 5 algorithms for the classic problem of sorting by transposition and we conclude the experiments by presenting results for 3 approximation algorithms for the sorting by reversals and transpositions problem and 2 approximation algorithms for the sorting by reversals problem. Another algorithm with better approximation ratio can be found for the last genome rearrangement problem, but it is purely theoretical with no practical implementation. The algorithms we implemented in addition to our heuristic lead to the best practical results in each case. In particular, we were able to improve results on the sorting by transpositions problem, which is a very special case because many efforts have been made to generate algorithms with good results in practice and some of these algorithms provide results that equal the optimum solutions in many cases. Our source codes and benchmarks are freely available upon request from the authors so that it will be easier to compare new approaches against our results.
Adaptive Bayes classifiers for remotely sensed data
NASA Technical Reports Server (NTRS)
Raulston, H. S.; Pace, M. O.; Gonzalez, R. C.
1975-01-01
An algorithm is developed for a learning, adaptive, statistical pattern classifier for remotely sensed data. The estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest, and (2) a projection of the parameters in time and space. The results reported are for Gaussian data in which the mean vector of each class may vary with time or position after the classifier is trained.
A reconstruction algorithm for helical CT imaging on PI-planes.
Liang, Hongzhu; Zhang, Cishen; Yan, Ming
2006-01-01
In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.
An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Anerson, W. Kyle; Bonhaus, Daryl L.
1994-01-01
An implicit, Navier-Stokes solution algorithm is presented for the computation of turbulent flow on unstructured grids. The inviscid fluxes are computed using an upwind algorithm and the solution is advanced in time using a backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with a point-implicit relaxation scheme. This methodology provides a viable and robust algorithm for computing turbulent flows on unstructured meshes. Results are shown for subsonic flow over a NACA 0012 airfoil and for transonic flow over a RAE 2822 airfoil exhibiting a strong upper-surface shock. In addition, results are shown for 3 element and 4 element airfoil configurations. For the calculations, two one equation turbulence models are utilized. For the NACA 0012 airfoil, a pressure distribution and force data are compared with other computational results as well as with experiment. Comparisons of computed pressure distributions and velocity profiles with experimental data are shown for the RAE airfoil and for the 3 element configuration. For the 4 element case, comparisons of surface pressure distributions with experiment are made. In general, the agreement between the computations and the experiment is good.
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
NASA Astrophysics Data System (ADS)
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-04-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-01-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686
SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction
Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.
2015-01-01
Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831
Power law-based local search in spider monkey optimisation for lower order system modelling
NASA Astrophysics Data System (ADS)
Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala
2017-01-01
The nature-inspired algorithms (NIAs) have shown efficiency to solve many complex real-world optimisation problems. The efficiency of NIAs is measured by their ability to find adequate results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This paper presents a solution for lower order system modelling using spider monkey optimisation (SMO) algorithm to obtain a better approximation for lower order systems and reflects almost original higher order system's characteristics. Further, a local search strategy, namely, power law-based local search is incorporated with SMO. The proposed strategy is named as power law-based local search in SMO (PLSMO). The efficiency, accuracy and reliability of the proposed algorithm is tested over 20 well-known benchmark functions. Then, the PLSMO algorithm is applied to solve the lower order system modelling problem.
Approximated mutual information training for speech recognition using myoelectric signals.
Guo, Hua J; Chan, A D C
2006-01-01
A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.
A Christoffel function weighted least squares algorithm for collocation approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Akil; Jakeman, John D.; Zhou, Tao
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
A Christoffel function weighted least squares algorithm for collocation approximations
Narayan, Akil; Jakeman, John D.; Zhou, Tao
2016-11-28
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-02-01
A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.
Computational applications of the many-interacting-worlds interpretation of quantum mechanics.
Sturniolo, Simone
2018-05-01
While historically many quantum-mechanical simulations of molecular dynamics have relied on the Born-Oppenheimer approximation to separate electronic and nuclear behavior, recently a great deal of interest has arisen in quantum effects in nuclear dynamics as well. Due to the computational difficulty of solving the Schrödinger equation in full, these effects are often treated with approximate methods. In this paper, we present an algorithm to tackle these problems using an extension to the many-interacting-worlds approach to quantum mechanics. This technique uses a kernel function to rebuild the probability density, and therefore, in contrast with the approximation presented in the original paper, it can be naturally extended to n-dimensional systems. This opens up the possibility of performing quantum ground-state searches with steepest-descent methods, and it could potentially lead to real-time quantum molecular-dynamics simulations. The behavior of the algorithm is studied in different potentials and numbers of dimensions and compared both to the original approach and to exact Schrödinger equation solutions whenever possible.
Absolute phase estimation: adaptive local denoising and global unwrapping.
Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen
2008-10-10
The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America
Limited-memory adaptive snapshot selection for proper orthogonal decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill
2015-04-02
Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less
Real-time model learning using Incremental Sparse Spectrum Gaussian Process Regression.
Gijsberts, Arjan; Metta, Giorgio
2013-05-01
Novel applications in unstructured and non-stationary human environments require robots that learn from experience and adapt autonomously to changing conditions. Predictive models therefore not only need to be accurate, but should also be updated incrementally in real-time and require minimal human intervention. Incremental Sparse Spectrum Gaussian Process Regression is an algorithm that is targeted specifically for use in this context. Rather than developing a novel algorithm from the ground up, the method is based on the thoroughly studied Gaussian Process Regression algorithm, therefore ensuring a solid theoretical foundation. Non-linearity and a bounded update complexity are achieved simultaneously by means of a finite dimensional random feature mapping that approximates a kernel function. As a result, the computational cost for each update remains constant over time. Finally, algorithmic simplicity and support for automated hyperparameter optimization ensures convenience when employed in practice. Empirical validation on a number of synthetic and real-life learning problems confirms that the performance of Incremental Sparse Spectrum Gaussian Process Regression is superior with respect to the popular Locally Weighted Projection Regression, while computational requirements are found to be significantly lower. The method is therefore particularly suited for learning with real-time constraints or when computational resources are limited. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H
2006-11-15
The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.
Performance and state-space analyses of systems using Petri nets
NASA Technical Reports Server (NTRS)
Watson, James Francis, III
1992-01-01
The goal of any modeling methodology is to develop a mathematical description of a system that is accurate in its representation and also permits analysis of structural and/or performance properties. Inherently, trade-offs exist between the level detail in the model and the ease with which analysis can be performed. Petri nets (PN's), a highly graphical modeling methodology for Discrete Event Dynamic Systems, permit representation of shared resources, finite capacities, conflict, synchronization, concurrency, and timing between state changes. By restricting the state transition time delays to the family of exponential density functions, Markov chain analysis of performance problems is possible. One major drawback of PN's is the tendency for the state-space to grow rapidly (exponential complexity) compared to increases in the PN constructs. It is the state space, or the Markov chain obtained from it, that is needed in the solution of many problems. The theory of state-space size estimation for PN's is introduced. The problem of state-space size estimation is defined, its complexities are examined, and estimation algorithms are developed. Both top-down and bottom-up approaches are pursued, and the advantages and disadvantages of each are described. Additionally, the author's research in non-exponential transition modeling for PN's is discussed. An algorithm for approximating non-exponential transitions is developed. Since only basic PN constructs are used in the approximation, theory already developed for PN's remains applicable. Comparison to results from entropy theory show the transition performance is close to the theoretic optimum. Inclusion of non-exponential transition approximations improves performance results at the expense of increased state-space size. The state-space size estimation theory provides insight and algorithms for evaluating this trade-off.
Inverse Ising problem in continuous time: A latent variable approach
NASA Astrophysics Data System (ADS)
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
Back to the Future: Consistency-Based Trajectory Tracking
NASA Technical Reports Server (NTRS)
Kurien, James; Nayak, P. Pandurand; Norvig, Peter (Technical Monitor)
2000-01-01
Given a model of a physical process and a sequence of commands and observations received over time, the task of an autonomous controller is to determine the likely states of the process and the actions required to move the process to a desired configuration. We introduce a representation and algorithms for incrementally generating approximate belief states for a restricted but relevant class of partially observable Markov decision processes with very large state spaces. The algorithm presented incrementally generates, rather than revises, an approximate belief state at any point by abstracting and summarizing segments of the likely trajectories of the process. This enables applications to efficiently maintain a partial belief state when it remains consistent with observations and revisit past assumptions about the process' evolution when the belief state is ruled out. The system presented has been implemented and results on examples from the domain of spacecraft control are presented.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Johnston, Christopher O.
2011-01-01
Implementations of a model for equilibrium, steady-state ablation boundary conditions are tested for the purpose of providing strong coupling with a hypersonic flow solver. The objective is to remove correction factors or film cooling approximations that are usually applied in coupled implementations of the flow solver and the ablation response. Three test cases are considered - the IRV-2, the Galileo probe, and a notional slender, blunted cone launched at 10 km/s from the Earth's surface. A successive substitution is employed and the order of succession is varied as a function of surface temperature to obtain converged solutions. The implementation is tested on a specified trajectory for the IRV-2 to compute shape change under the approximation of steady-state ablation. Issues associated with stability of the shape change algorithm caused by explicit time step limits are also discussed.
Multiscale skeletal representation of images via Voronoi diagrams
NASA Astrophysics Data System (ADS)
Marston, R. E.; Shih, Jian C.
1995-08-01
Polygonal approximations to skeletal or stroke-based representations of 2D objects may consume less storage and be sufficient to describe their shape for many applications. Multi- scale descriptions of object outlines are well established but corresponding methods for skeletal descriptions have been slower to develop. In this paper we offer a method of generating scale-based skeletal representation via the Voronoi diagram. The method has the advantages of less time complexity, a closer relationship between the skeletons at each scale and better control over simplification of the skeleton at lower scales. This is because the algorithm starts by generating the skeleton at the coarsest scale first, then it produces each finer scale, in an iterative manner, directly from the level below. The skeletal approximations produced by the algorithm also benefit from a strong relationship with the object outline, due to the structure of the Voronoi diagram.
Constrained Low-Interference Relay Node Deployment for Underwater Acoustic Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Wenping
An Underwater Acoustic Wireless Sensor Network (UA-WSN) consists of many resource-constrained Underwater Sensor Nodes (USNs), which are deployed to perform collaborative monitoring tasks over a given region. One way to preserve network connectivity while guaranteing other network QoS is to deploy some Relay Nodes (RNs) in the networks, in which RNs' function is more powerful than USNs and their cost is more expensive. This paper addresses Constrained Low-interference Relay Node Deployment (C-LRND) problem for 3-D UA-WSNs in which the RNs are placed at a subset of candidate locations to ensure connectivity between the USNs, under both the number of RNs deployed and the value of total incremental interference constraints. We first prove that it is NP-hard, then present a general approximation algorithm framework and get two polynomial time O(1)-approximation algorithms.
A modified 3D algorithm for road traffic noise attenuation calculations in large urban areas.
Wang, Haibo; Cai, Ming; Yao, Yifan
2017-07-01
The primary objective of this study is the development and application of a 3D road traffic noise attenuation calculation algorithm. First, the traditional empirical method does not address problems caused by non-direct occlusion by buildings and the different building heights. In contrast, this study considers the volume ratio of the buildings and the area ratio of the projection of buildings adjacent to the road. The influence of the ground affection is analyzed. The insertion loss due to barriers (infinite length and finite barriers) is also synthesized in the algorithm. Second, the impact of different road segmentation is analyzed. Through the case of Pearl River New Town, it is recommended that 5° is the most appropriate scanning angle as the computational time is acceptable and the average error is approximately 3.1 dB. In addition, the algorithm requires only 1/17 of the time that the beam tracking method requires at the cost of more imprecise calculation results. Finally, the noise calculation for a large urban area with a high density of buildings shows the feasibility of the 3D noise attenuation calculation algorithm. The algorithm is expected to be applied in projects requiring large area noise simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helton, Jon C.; Brooks, Dusty Marie; Sallaberry, Cedric Jean-Marie.
Representations for margins associated with loss of assured safety (LOAS) for weak link (WL)/strong link (SL) systems involving multiple time-dependent failure modes are developed. The following topics are described: (i) defining properties for WLs and SLs, (ii) background on cumulative distribution functions (CDFs) for link failure time, link property value at link failure, and time at which LOAS occurs, (iii) CDFs for failure time margins defined by (time at which SL system fails) – (time at which WL system fails), (iv) CDFs for SL system property values at LOAS, (v) CDFs for WL/SL property value margins defined by (property valuemore » at which SL system fails) – (property value at which WL system fails), and (vi) CDFs for SL property value margins defined by (property value of failing SL at time of SL system failure) – (property value of this SL at time of WL system failure). Included in this presentation is a demonstration of a verification strategy based on defining and approximating the indicated margin results with (i) procedures based on formal integral representations and associated quadrature approximations and (ii) procedures based on algorithms for sampling-based approximations.« less
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
A novel algorithm for fast grasping of unknown objects using C-shape configuration
NASA Astrophysics Data System (ADS)
Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn
2018-02-01
Increasing grasping efficiency is very important for the robots to grasp unknown objects especially subjected to unfamiliar environments. To achieve this, a new algorithm is proposed based on the C-shape configuration. Specifically, the geometric model of the used under-actuated gripper is approximated as a C-shape. To obtain an appropriate graspable position, this C-shape configuration is applied to fit geometric model of an unknown object. The geometric model of unknown object is constructed by using a single-view partial point cloud. To examine the algorithm using simulations, a comparison of the commonly used motion planners is made. The motion planner with the highest number of solved runs, lowest computing time and the shortest path length is chosen to execute grasps found by this grasping algorithm. The simulation results demonstrate that excellent grasping efficiency is achieved by adopting our algorithm. To validate this algorithm, experiment tests are carried out using a UR5 robot arm and an under-actuated gripper. The experimental results show that steady grasping actions are obtained. Hence, this research provides a novel algorithm for fast grasping of unknown objects.
Geodesic regression for image time-series.
Niethammer, Marc; Huang, Yang; Vialard, François-Xavier
2011-01-01
Registration of image-time series has so far been accomplished (i) by concatenating registrations between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint estimation with additional temporal irregularity penalties. Here, we propose a generative model extending least squares linear regression to the space of images by using a second-order dynamic formulation for image registration. Unlike previous approaches, the formulation allows for a compact representation of an approximation to the full spatio-temporal trajectory through its initial values. The method also opens up possibilities to design image-based approximation algorithms. The resulting optimization problem is solved using an adjoint method.
Multidimensional stochastic approximation using locally contractive functions
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1975-01-01
A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.
Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.
ERIC Educational Resources Information Center
Alexopoulos, John; Abraham, Paul
2001-01-01
Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…
2014-01-01
We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
NASA Astrophysics Data System (ADS)
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
Vectorization of transport and diffusion computations on the CDC Cyber 205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Shumays, I.K.
1986-01-01
The development and testing of alternative numerical methods and computational algorithms specifically designed for the vectorization of transport and diffusion computations on a Control Data Corporation (CDC) Cyber 205 vector computer are described. Two solution methods for the discrete ordinates approximation to the transport equation are summarized and compared. Factors of 4 to 7 reduction in run times for certain large transport problems were achieved on a Cyber 205 as compared with run times on a CDC-7600. The solution of tridiagonal systems of linear equations, central to several efficient numerical methods for multidimensional diffusion computations and essential for fluid flowmore » and other physics and engineering problems, is also dealt with. Among the methods tested, a combined odd-even cyclic reduction and modified Cholesky factorization algorithm for solving linear symmetric positive definite tridiagonal systems is found to be the most effective for these systems on a Cyber 205. For large tridiagonal systems, computation with this algorithm is an order of magnitude faster on a Cyber 205 than computation with the best algorithm for tridiagonal systems on a CDC-7600.« less
Goldberg, Daniel N.; Narayanan, Sri Hari Krishna; Hascoet, Laurent; ...
2016-05-20
We apply an optimized method to the adjoint generation of a time-evolving land ice model through algorithmic differentiation (AD). The optimization involves a special treatment of the fixed-point iteration required to solve the nonlinear stress balance, which differs from a straightforward application of AD software, and leads to smaller memory requirements and in some cases shorter computation times of the adjoint. The optimization is done via implementation of the algorithm of Christianson (1994) for reverse accumulation of fixed-point problems, with the AD tool OpenAD. For test problems, the optimized adjoint is shown to have far lower memory requirements, potentially enablingmore » larger problem sizes on memory-limited machines. In the case of the land ice model, implementation of the algorithm allows further optimization by having the adjoint model solve a sequence of linear systems with identical (as opposed to varying) matrices, greatly improving performance. Finally, the methods introduced here will be of value to other efforts applying AD tools to ice models, particularly ones which solve a hybrid shallow ice/shallow shelf approximation to the Stokes equations.« less
Optimal sparse approximation with integrate and fire neurons.
Shapero, Samuel; Zhu, Mengchen; Hasler, Jennifer; Rozell, Christopher
2014-08-01
Sparse approximation is a hypothesized coding strategy where a population of sensory neurons (e.g. V1) encodes a stimulus using as few active neurons as possible. We present the Spiking LCA (locally competitive algorithm), a rate encoded Spiking Neural Network (SNN) of integrate and fire neurons that calculate sparse approximations. The Spiking LCA is designed to be equivalent to the nonspiking LCA, an analog dynamical system that converges on a ℓ(1)-norm sparse approximations exponentially. We show that the firing rate of the Spiking LCA converges on the same solution as the analog LCA, with an error inversely proportional to the sampling time. We simulate in NEURON a network of 128 neuron pairs that encode 8 × 8 pixel image patches, demonstrating that the network converges to nearly optimal encodings within 20 ms of biological time. We also show that when using more biophysically realistic parameters in the neurons, the gain function encourages additional ℓ(0)-norm sparsity in the encoding, relative both to ideal neurons and digital solvers.
Deception Algorithm. Appendices
1994-06-30
NOT. THE RAIN AND MUD MADE QUITE SLIPPERY. COULDHAVE BEEN QUITE A FEW INJURIES WHEN LUGGING THE DECOY AROUND. 1111 37106 HF7A HFCMT IN MOPP4 IT WAS... 10 TIMES. 1009 35115 HF5A FFCMT THE TARGET BACKGROUND HELPED GIVE AWAY THE DECOYS BECAUSE THEY WERE PUT UP ON THE SIDE OF A HILL. COLOR WAS DARKER...FFENGCMT I ENGAGED TARGETS THAT I THOUGHT WERE DECOYS APPROXIMATELY 10 TIMES BECAUSE OF RANGE TO TARGET. I COULD NOT ID MOST OF THE TIME AT NIGHT AT LONG
Minimum nonuniform graph partitioning with unrelated weights
NASA Astrophysics Data System (ADS)
Makarychev, K. S.; Makarychev, Yu S.
2017-12-01
We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.
Stability of recursive out-of-sequence measurement filters: an open problem
NASA Astrophysics Data System (ADS)
Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.
2011-06-01
In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.
Dynamical analysis of the avian-human influenza epidemic model using the semi-analytical method
NASA Astrophysics Data System (ADS)
Jabbari, Azizeh; Kheiri, Hossein; Bekir, Ahmet
2015-03-01
In this work, we present a dynamic behavior of the avian-human influenza epidemic model by using efficient computational algorithm, namely the multistage differential transform method(MsDTM). The MsDTM is used here as an algorithm for approximating the solutions of the avian-human influenza epidemic model in a sequence of time intervals. In order to show the efficiency of the method, the obtained numerical results are compared with the fourth-order Runge-Kutta method (RK4M) and differential transform method(DTM) solutions. It is shown that the MsDTM has the advantage of giving an analytical form of the solution within each time interval which is not possible in purely numerical techniques like RK4M.
Bindu, G.; Semenov, S.
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell’s equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889
2012-01-01
unknown functions q and V . To approximate both of them, we use a predictor / corrector -like scheme. First, given an approximation for V , we update q via...coefficient εr(x). This is our predictor -like step. On the corrector -like step we update the tail function V (x, s) via (5.7). Consider a partition of...10] and figures 5.13–5.16 in [6]. We point out that the adaptivity has used the solution of the approximately globally convergent algorithm as the
Linear time relational prototype based learning.
Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara
2012-10-01
Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
Recursive approach to the moment-based phase unwrapping method.
Langley, Jason A; Brice, Robert G; Zhao, Qun
2010-06-01
The moment-based phase unwrapping algorithm approximates the phase map as a product of Gegenbauer polynomials, but the weight function for the Gegenbauer polynomials generates artificial singularities along the edge of the phase map. A method is presented to remove the singularities inherent to the moment-based phase unwrapping algorithm by approximating the phase map as a product of two one-dimensional Legendre polynomials and applying a recursive property of derivatives of Legendre polynomials. The proposed phase unwrapping algorithm is tested on simulated and experimental data sets. The results are then compared to those of PRELUDE 2D, a widely used phase unwrapping algorithm, and a Chebyshev-polynomial-based phase unwrapping algorithm. It was found that the proposed phase unwrapping algorithm provides results that are comparable to those obtained by using PRELUDE 2D and the Chebyshev phase unwrapping algorithm.
Fast, Inclusive Searches for Geographic Names Using Digraphs
Donato, David I.
2008-01-01
An algorithm specifies how to quickly identify names that approximately match any specified name when searching a list or database of geographic names. Based on comparisons of the digraphs (ordered letter pairs) contained in geographic names, this algorithmic technique identifies approximately matching names by applying an artificial but useful measure of name similarity. A digraph index enables computer name searches that are carried out using this technique to be fast enough for deployment in a Web application. This technique, which is a member of the class of n-gram algorithms, is related to, but distinct from, the soundex, PHONIX, and metaphone phonetic algorithms. Despite this technique's tendency to return some counterintuitive approximate matches, it is an effective aid for fast, inclusive searches for geographic names when the exact name sought, or its correct spelling, is unknown.
Exact and approximate graph matching using random walks.
Gori, Marco; Maggini, Marco; Sarti, Lorenzo
2005-07-01
In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.
Short paths in expander graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinberg, J.; Rubinfeld, R.
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less
The Best m-Term Approximation and Greedy Algorithms
1997-01-01
in the paper DKT For a given basis we dene the Greedy Algorithm Gp as follows Let f X I cIf I and cIf p kcIf Ikp Then... DKT RA DeVore SV Konyagin and VV Temlyakov Hyperbolic Wavelet Approximation to appear DL R DeVore GLorentz
Real-time Interplanetary Shock Prediction System
NASA Astrophysics Data System (ADS)
Vandegriff, J. D.; Ho, G. C.; Plauger, J. M.
2002-05-01
We are creating a system to predict the arrival times and maximum intensities of energetic storm particle (ESP) events at the earth using particle fluxes measured by the EPAM instrument aboard NASA's ACE spacecraft. Real-time flux measurements, consisting of 5 minute averages made available 24 hours per day by the NOAA Space Environment Center, are fed into algorithms looking for characteristic changes in flux, velocity dispersion, and anisotropy. These quantities typically show changes up to 3 hours before shock passage, and thus we expect our system to deliver enhanced probabilities for shock arrival with approximately the same lead time. Forecasting information will be made publicly available through http://sd-www.jhuapl.edu/ACE/EPAM/, the Johns Hopkins University Applied Physics Lab web site for the ACE/EPAM instrument. Early results on the training of our algorithms and comparisons with past shock data will be presented.
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
NASA Technical Reports Server (NTRS)
Estes, R. H.
1977-01-01
A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables.
A structure preserving Lanczos algorithm for computing the optical absorption spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Meiyue; Jornada, Felipe H. da; Lin, Lin
2016-11-16
We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.
Approximate solution of the p-median minimization problem
NASA Astrophysics Data System (ADS)
Il'ev, V. P.; Il'eva, S. D.; Navrotskaya, A. A.
2016-09-01
A version of the facility location problem (the well-known p-median minimization problem) and its generalization—the problem of minimizing a supermodular set function—is studied. These problems are NP-hard, and they are approximately solved by a gradient algorithm that is a discrete analog of the steepest descent algorithm. A priori bounds on the worst-case behavior of the gradient algorithm for the problems under consideration are obtained. As a consequence, a bound on the performance guarantee of the gradient algorithm for the p-median minimization problem in terms of the production and transportation cost matrix is obtained.
Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows
NASA Astrophysics Data System (ADS)
Jittamai, Phongchai
This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T·E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T·E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and approximately 40% of the tested problems were solved optimally by the algorithms.
Fast Query-Optimized Kernel-Machine Classification
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; DeCoste, Dennis
2004-01-01
A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-12-01
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-08-24
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
History matching by spline approximation and regularization in single-phase areal reservoirs
NASA Technical Reports Server (NTRS)
Lee, T. Y.; Kravaris, C.; Seinfeld, J.
1986-01-01
An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard
2005-01-01
Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Kim, Hyunsoo; Park, Haesun
2007-06-15
Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.
Yanagisawa, Keisuke; Komine, Shunta; Kubota, Rikuto; Ohue, Masahito; Akiyama, Yutaka
2018-06-01
The need to accelerate large-scale protein-ligand docking in virtual screening against a huge compound database led researchers to propose a strategy that entails memorizing the evaluation result of the partial structure of a compound and reusing it to evaluate other compounds. However, the previous method required frequent disk accesses, resulting in insufficient acceleration. Thus, more efficient memory usage can be expected to lead to further acceleration, and optimal memory usage could be achieved by solving the minimum cost flow problem. In this research, we propose a fast algorithm for the minimum cost flow problem utilizing the characteristics of the graph generated for this problem as constraints. The proposed algorithm, which optimized memory usage, was approximately seven times faster compared to existing minimum cost flow algorithms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fast Katz and Commuters: Efficient Estimation of Social Relatedness in Large Networks
NASA Astrophysics Data System (ADS)
Esfandiar, Pooya; Bonchi, Francesco; Gleich, David F.; Greif, Chen; Lakshmanan, Laks V. S.; On, Byung-Won
Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes, and the top-k nodes with the best scores from a given source node. For the pairwise problem, we apply an iterative algorithm that computes upper and lower bounds for the measures we seek. This algorithm exploits a relationship between the Lanczos process and a quadrature rule. For the top-k problem, we propose an algorithm that only accesses a small portion of the graph and is related to techniques used in personalized PageRank computing. To test the scalability and accuracy of our algorithms we experiment with three real-world networks and find that these algorithms run in milliseconds to seconds without any preprocessing.
Algorithms of maximum likelihood data clustering with applications
NASA Astrophysics Data System (ADS)
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
Coagulation algorithms with size binning
NASA Technical Reports Server (NTRS)
Statton, David M.; Gans, Jason; Williams, Eric
1994-01-01
The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.
Fast katz and commuters : efficient estimation of social relatedness in large networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
On, Byung-Won; Lakshmanan, Laks V. S.; Greif, Chen
Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes, and the top-k nodes with the best scores from a given source node. For the pairwise problem, we apply an iterative algorithm that computes upper and lower bounds for the measures we seek. This algorithm exploits a relationship between the Lanczos process and amore » quadrature rule. For the top-k problem, we propose an algorithm that only accesses a small portion of the graph and is related to techniques used in personalized PageRank computing. To test the scalability and accuracy of our algorithms we experiment with three real-world networks and find that these algorithms run in milliseconds to seconds without any preprocessing.« less
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan
2018-02-01
Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.
Finite-difference time-domain simulation of GPR data
NASA Astrophysics Data System (ADS)
Chen, How-Wei; Huang, Tai-Min
1998-10-01
Simulation of digital ground penetrating radar (GPR) wave propagation in two-dimensional (2-D) media is developed, tested, implemented, and applied using a time-domain staggered-grid finite-difference (FD) numerical method. Three types of numerical algorithms for constructing synthetic common-shot, constant-offset radar profiles based on an actual transmitter-to-receiver configuration and based on the exploding reflector concept are demonstrated to mimic different types of radar survey geometries. Frequency-dependent attenuation is also incorporated to account for amplitude decay and time shift in the recorded responses. The algorithms are based on an explicit FD solution to Maxwell's curl equations. In addition, the first-order TE mode responses of wave propagation phenomena are considered due to the operating frequency of current GPR instruments. The staggered-grid technique is used to sample the fields and approximate the spatial derivatives with fourth-order FDs. The temporal derivatives are approximated by an explicit second-order difference time-marching scheme. By combining paraxial approximation of the one-way wave equation ( A2) and the damping mechanisms (sponge filter), we propose a new composite absorbing boundary conditions (ABC) algorithm that effectively absorb both incoming and outgoing waves. To overcome the angle- and frequency-dependent characteristic of the absorbing behaviors, each ABC has two types of absorption mechanism. The first ABC uses a modified Clayton and Enquist's A2 condition. Moreover, a fixed and a floating A2 ABC that operates at one grid point is proposed. The second ABC uses a damping mechanism. By superimposing artificial damping and by alternating the physical attenuation properties and impedance contrast of the media within the absorbing region, those waves impinging on the boundary can be effectively attenuated and can prevent waves from reflecting back into the grid. The frequency-dependent characteristic of the damping mechanism can be used to adjust the width of the absorbing zone around the computational domain. By applying any combination of absorbing mechanism, non-physical reflections from the computation domain boundary can be effectively minimized. The algorithm enables us to use very thin absorbing boundaries. The model can be parameterized through velocity, relative electrical permittivity (dielectric constants), electrical conductivity, magnetic permeability, loss tangent, Q values, and attenuation. According to this scheme, widely varying electrical properties of near-surface earth materials can be modeled. The capability of simulating common-source, constant-offset and zero-offset gathers is also demonstrated through various synthetic examples. The synthetic cases for typical GPR applications include buried objects such as pipes of different materials, AVO analysis for ground water exploration, archaeological site investigation, and stratigraphy studies. The algorithms are also applied to iterative modeling of GPR data acquired over a gymnasium construction site on the NCCU campus.
Smoothing spline ANOVA frailty model for recurrent event data.
Du, Pang; Jiang, Yihua; Wang, Yuedong
2011-12-01
Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. © 2011, The International Biometric Society.
Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results
NASA Technical Reports Server (NTRS)
Brown, Nelson
2012-01-01
The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.
Control of Complex Dynamic Systems by Neural Networks
NASA Technical Reports Server (NTRS)
Spall, James C.; Cristion, John A.
1993-01-01
This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.
Approximation algorithms for the min-power symmetric connectivity problem
NASA Astrophysics Data System (ADS)
Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad
2016-10-01
We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.
NASA Technical Reports Server (NTRS)
Kato, S.; Smith, G. L.; Barker, H. W.
2001-01-01
An algorithm is developed for the gamma-weighted discrete ordinate two-stream approximation that computes profiles of domain-averaged shortwave irradiances for horizontally inhomogeneous cloudy atmospheres. The algorithm assumes that frequency distributions of cloud optical depth at unresolved scales can be represented by a gamma distribution though it neglects net horizontal transport of radiation. This algorithm is an alternative to the one used in earlier studies that adopted the adding method. At present, only overcast cloudy layers are permitted.
Scalable learning method for feedforward neural networks using minimal-enclosing-ball approximation.
Wang, Jun; Deng, Zhaohong; Luo, Xiaoqing; Jiang, Yizhang; Wang, Shitong
2016-06-01
Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However, most FNNs training methods cannot be directly applied for very large datasets because they have high computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine) is developed accordingly. In HFSR-GCVM, a novel learning criterion using L2-norm penalty-based ε-insensitive function is formulated and the parameters in the hidden nodes are generated randomly independent of the training sets. Moreover, the learning of parameters in its output layer is proved equivalent to a special CCMEB problem in FNN hidden feature space. As most CCMEB approximation based machine learning algorithms, the proposed HFSR-GCVM training algorithm has the following merits: The maximal training time of the HFSR-GCVM training is linear with the size of training datasets and the maximal space consumption is independent of the size of training datasets. The experiments on regression tasks confirm the above conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Two-dimensional Version of the Niblett-Bostick Transformation for Magnetotelluric Interpretations
NASA Astrophysics Data System (ADS)
Esparza, F.
2005-05-01
An imaging technique for two-dimensional magnetotelluric interpretations is developed following the well known Niblett-Bostick transformation for one-dimensional profiles. The algorithm uses a Hopfield artificial neural network to process series and parallel magnetotelluric impedances along with their analytical influence functions. The adaptive, weighted average approximation preserves part of the nonlinearity of the original problem. No initial model in the usual sense is required for the recovery of a functional model. Rather, the built-in relationship between model and data considers automatically, all at the same time, many half spaces whose electrical conductivities vary according to the data. The use of series and parallel impedances, a self-contained pair of invariants of the impedance tensor, avoids the need to decide on best angles of rotation for TE and TM separations. Field data from a given profile can thus be fed directly into the algorithm without much processing. The solutions offered by the Hopfield neural network correspond to spatial averages computed through rectangular windows that can be chosen at will. Applications of the algorithm to simple synthetic models and to the COPROD2 data set illustrate the performance of the approximation.
Implicit flux-split schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Thomas, J. L.; Walters, R. W.; Van Leer, B.
1985-01-01
Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.
NASA Astrophysics Data System (ADS)
Wei, B. G.; Wu, X. Y.; Yao, Z. F.; Huang, H.
2017-11-01
Transformers are essential devices of the power system. The accurate computation of the highest temperature (HST) of a transformer’s windings is very significant, as for the HST is a fundamental parameter in controlling the load operation mode and influencing the life time of the insulation. Based on the analysis of the heat transfer processes and the thermal characteristics inside transformers, there is taken into consideration the influence of factors like the sunshine, external wind speed etc. on the oil-immersed transformers. Experimental data and the neural network are used for modeling and protesting of the HST, and furthermore, investigations are conducted on the optimization of the structure and algorithms of neutral network are conducted. Comparison is made between the measured values and calculated values by using the recommended algorithm of IEC60076 and by using the neural network algorithm proposed by the authors; comparison that shows that the value computed with the neural network algorithm approximates better the measured value than the value computed with the algorithm proposed by IEC60076.
Flight Test of an Adaptive Configuration Optimization System for Transport Aircraft
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Georgie, Jennifer; Barnicki, Joseph S.
1999-01-01
A NASA Dryden Flight Research Center program explores the practical application of real-time adaptive configuration optimization for enhanced transport performance on an L-1011 aircraft. This approach is based on calculation of incremental drag from forced-response, symmetric, outboard aileron maneuvers. In real-time operation, the symmetric outboard aileron deflection is directly optimized, and the horizontal stabilator and angle of attack are indirectly optimized. A flight experiment has been conducted from an onboard research engineering test station, and flight research results are presented herein. The optimization system has demonstrated the capability of determining the minimum drag configuration of the aircraft in real time. The drag-minimization algorithm is capable of identifying drag to approximately a one-drag-count level. Optimizing the symmetric outboard aileron position realizes a drag reduction of 2-3 drag counts (approximately 1 percent). Algorithm analysis of maneuvers indicate that two-sided raised-cosine maneuvers improve definition of the symmetric outboard aileron drag effect, thereby improving analysis results and consistency. Ramp maneuvers provide a more even distribution of data collection as a function of excitation deflection than raised-cosine maneuvers provide. A commercial operational system would require airdata calculations and normal output of current inertial navigation systems; engine pressure ratio measurements would be optional.
Interactive collision detection for deformable models using streaming AABBs.
Zhang, Xinyu; Kim, Young J
2007-01-01
We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.
Non-Equilibrium Dynamics with Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Dong, Qiaoyuan
This work is motivated by the fact that the investigation of non-equilibrium phenomena in strongly correlated electron systems has developed into one of the most active and exciting branches of condensed matter physics as it provides rich new insights that could not be obtained from the study of equilibrium situations. However, a theoretical description of those phenomena is missing. Therefore, in this thesis, we develop a numerical method that can be used to study two minimal models--the Hubbard model and the Anderson impurity model with general parameter range and time dependence. We begin by introducing the theoretical framework and the general features of the Hubbard model. We then describe the dynamical mean field theory (DMFT), which was first invented by Georges in 1992. It provides a feasible way to approach strongly correlated electron systems and reduces the complexity of the calculations via a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. We employ the non-equilibrium extension of DMFT and map the Hubbard model to the single impurity Anderson model (SIAM). Since the fundamental component of the DMFT method is a solver of the single impurity Anderson model, we continue with a description of the formalism to study the real-time dynamics of the impurity model staring at its thermal equilibrium state. We utilize the non-equilibrium strong-coupling perturbation theory and derive semi-analytical approximation methods such as the non-crossing approximation (NCA) and the one-crossing approximation (OCA). We then use the Quantum Monte-Carlo method (QMC) as a numerically exact method and present proper measurements of local observables, current and Green's functions. We perform simulations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibrium times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. However, this bare QMC solver suffers from a dynamical sign problem for long time propagations. To overcome the limitations of this bare treatment, we introduce the "Inchworm algorithm'', based on iteratively reusing the information obtained in previous steps to extend the propagation to longer times and stabilize the calculations. We show that this algorithm greatly reduces the required order for each simulation and re-scales the exponential challenge to quadratic in time. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state. We conclude with the applications of the unbiased inchworm impurity solver to DMFT calculations. We employ the methods for a study of the one-band paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the DMFT approximation becomes exact. We begin with a brief introduction of the Mott metal insulator phase diagram. We present the results of both real time Green's functions and spectral functions from our nonequilibrium calculations. We observe the metal-insulator crossover as the on-site interaction is increased and the formation of a quasi-particle peak as the temperature is lowered. We also illustrate the convergence of our algorithms in different aspects.
Hash Bit Selection for Nearest Neighbor Search.
Xianglong Liu; Junfeng He; Shih-Fu Chang
2017-11-01
To overcome the barrier of storage and computation when dealing with gigantic-scale data sets, compact hashing has been studied extensively to approximate the nearest neighbor search. Despite the recent advances, critical design issues remain open in how to select the right features, hashing algorithms, and/or parameter settings. In this paper, we address these by posing an optimal hash bit selection problem, in which an optimal subset of hash bits are selected from a pool of candidate bits generated by different features, algorithms, or parameters. Inspired by the optimization criteria used in existing hashing algorithms, we adopt the bit reliability and their complementarity as the selection criteria that can be carefully tailored for hashing performance in different tasks. Then, the bit selection solution is discovered by finding the best tradeoff between search accuracy and time using a modified dynamic programming method. To further reduce the computational complexity, we employ the pairwise relationship among hash bits to approximate the high-order independence property, and formulate it as an efficient quadratic programming method that is theoretically equivalent to the normalized dominant set problem in a vertex- and edge-weighted graph. Extensive large-scale experiments have been conducted under several important application scenarios of hash techniques, where our bit selection framework can achieve superior performance over both the naive selection methods and the state-of-the-art hashing algorithms, with significant accuracy gains ranging from 10% to 50%, relatively.
Convergence of the Ponderomotive Guiding Center approximation in the LWFA
NASA Astrophysics Data System (ADS)
Silva, Thales; Vieira, Jorge; Helm, Anton; Fonseca, Ricardo; Silva, Luis
2017-10-01
Plasma accelerators arose as potential candidates for future accelerator technology in the last few decades because of its predicted compactness and low cost. One of the proposed designs for plasma accelerators is based on Laser Wakefield Acceleration (LWFA). However, simulations performed for such systems have to solve the laser wavelength which is orders of magnitude lower than the plasma wavelength. In this context, the Ponderomotive Guiding Center (PGC) algorithm for particle-in-cell (PIC) simulations is a potent tool. The laser is approximated by its envelope which leads to a speed-up of around 100 times because the laser wavelength is not solved. The plasma response is well understood, and comparison with the full PIC code show an excellent agreement. However, for LWFA, the convergence of the self-injected beam parameters, such as energy and charge, was not studied before and has vital importance for the use of the algorithm in predicting the beam parameters. Our goal is to do a thorough investigation of the stability and convergence of the algorithm in situations of experimental relevance for LWFA. To this end, we perform simulations using the PGC algorithm implemented in the PIC code OSIRIS. To verify the PGC predictions, we compare the results with full PIC simulations. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No 653782.
Approximated affine projection algorithm for feedback cancellation in hearing aids.
Lee, Sangmin; Kim, In-Young; Park, Young-Cheol
2007-09-01
We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.
The TSP-approach to approximate solving the m-Cycles Cover Problem
NASA Astrophysics Data System (ADS)
Gimadi, Edward Kh.; Rykov, Ivan; Tsidulko, Oxana
2016-10-01
In the m-Cycles Cover problem it is required to find a collection of m vertex-disjoint cycles that covers all vertices of the graph and the total weight of edges in the cover is minimum (or maximum). The problem is a generalization of the Traveling salesmen problem. It is strongly NP-hard. We discuss a TSP-approach that gives polynomial approximate solutions for this problem. It transforms an approximation TSP algorithm into an approximation m-CCP algorithm. In this paper we present a number of successful transformations with proven performance guarantees for the obtained solutions.
The Parallel Implementation of Algorithms for Finding the Reflection Symmetry of the Binary Images
NASA Astrophysics Data System (ADS)
Fedotova, S.; Seredin, O.; Kushnir, O.
2017-05-01
In this paper, we investigate the exact method of searching an axis of binary image symmetry, based on brute-force search among all potential symmetry axes. As a measure of symmetry, we use the set-theoretic Jaccard similarity applied to two subsets of pixels of the image which is divided by some axis. Brute-force search algorithm definitely finds the axis of approximate symmetry which could be considered as ground-truth, but it requires quite a lot of time to process each image. As a first step of our contribution we develop the parallel version of the brute-force algorithm. It allows us to process large image databases and obtain the desired axis of approximate symmetry for each shape in database. Experimental studies implemented on "Butterflies" and "Flavia" datasets have shown that the proposed algorithm takes several minutes per image to find a symmetry axis. However, in case of real-world applications we need computational efficiency which allows solving the task of symmetry axis search in real or quasi-real time. So, for the task of fast shape symmetry calculation on the common multicore PC we elaborated another parallel program, which based on the procedure suggested before in (Fedotova, 2016). That method takes as an initial axis the axis obtained by superfast comparison of two skeleton primitive sub-chains. This process takes about 0.5 sec on the common PC, it is considerably faster than any of the optimized brute-force methods including ones implemented in supercomputer. In our experiments for 70 percent of cases the found axis coincides with the ground-truth one absolutely, and for the rest of cases it is very close to the ground-truth.
Filtering observations without the initial guess
NASA Astrophysics Data System (ADS)
Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.
2017-12-01
Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the presentation.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-02-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, I; Pember, R; Greenough, J
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less
Tiouririne, Mohamed; Dixon, Adam J; Mauldin, F William; Scalzo, David; Krishnaraj, Arun
2017-08-01
The aim of this study was to evaluate the imaging performance of a handheld ultrasound system and the accuracy of an automated lumbar spine computer-aided detection (CAD) algorithm in the spines of human subjects. This study was approved by the institutional review board of the University of Virginia. The authors designed a handheld ultrasound system with enhanced bone image quality and fully automated CAD of lumbar spine anatomy. The imaging performance was evaluated by imaging the lumbar spines of 68 volunteers with body mass index between 18.5 and 48 kg/m. The accuracy, sensitivity, and specificity of the lumbar spine CAD algorithm were assessed by comparing the algorithm's results to ground-truth segmentations of neuraxial anatomy provided by radiologists. The lumbar spine CAD algorithm detected the epidural space with a sensitivity of 94.2% (95% confidence interval [CI], 85.1%-98.1%) and a specificity of 85.5% (95% CI, 81.7%-88.6%) and measured its depth with an error of approximately ±0.5 cm compared with measurements obtained manually from the 2-dimensional ultrasound images. The spine midline was detected with a sensitivity of 93.9% (95% CI, 85.8%-97.7%) and specificity of 91.3% (95% CI, 83.6%-96.9%), and its lateral position within the ultrasound image was measured with an error of approximately ±0.3 cm. The bone enhancement imaging mode produced images with 5.1- to 10-fold enhanced bone contrast when compared with a comparable handheld ultrasound imaging system. The results of this study demonstrate the feasibility of CAD for assisting with real-time interpretation of ultrasound images of the lumbar spine at the bedside.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-05-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Development of an algorithm for automatic detection and rating of squeak and rattle events
NASA Astrophysics Data System (ADS)
Chandrika, Unnikrishnan Kuttan; Kim, Jay H.
2010-10-01
A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.
Welch, Catherine A; Petersen, Irene; Bartlett, Jonathan W; White, Ian R; Marston, Louise; Morris, Richard W; Nazareth, Irwin; Walters, Kate; Carpenter, James
2014-01-01
Most implementations of multiple imputation (MI) of missing data are designed for simple rectangular data structures ignoring temporal ordering of data. Therefore, when applying MI to longitudinal data with intermittent patterns of missing data, some alternative strategies must be considered. One approach is to divide data into time blocks and implement MI independently at each block. An alternative approach is to include all time blocks in the same MI model. With increasing numbers of time blocks, this approach is likely to break down because of co-linearity and over-fitting. The new two-fold fully conditional specification (FCS) MI algorithm addresses these issues, by only conditioning on measurements, which are local in time. We describe and report the results of a novel simulation study to critically evaluate the two-fold FCS algorithm and its suitability for imputation of longitudinal electronic health records. After generating a full data set, approximately 70% of selected continuous and categorical variables were made missing completely at random in each of ten time blocks. Subsequently, we applied a simple time-to-event model. We compared efficiency of estimated coefficients from a complete records analysis, MI of data in the baseline time block and the two-fold FCS algorithm. The results show that the two-fold FCS algorithm maximises the use of data available, with the gain relative to baseline MI depending on the strength of correlations within and between variables. Using this approach also increases plausibility of the missing at random assumption by using repeated measures over time of variables whose baseline values may be missing. PMID:24782349
Biological sequence compression algorithms.
Matsumoto, T; Sadakane, K; Imai, H
2000-01-01
Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.
A globally well-posed finite element algorithm for aerodynamics applications
NASA Technical Reports Server (NTRS)
Iannelli, G. S.; Baker, A. J.
1991-01-01
A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For the linear basis, the resultant approximation is at least second-order-accurate in time and space for synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second-order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and two-dimensional Euler and Navier-Stokes benchmark test problems.
Physiological time-series analysis: what does regularity quantify?
NASA Technical Reports Server (NTRS)
Pincus, S. M.; Goldberger, A. L.
1994-01-01
Approximate entropy (ApEn) is a recently developed statistic quantifying regularity and complexity that appears to have potential application to a wide variety of physiological and clinical time-series data. The focus here is to provide a better understanding of ApEn to facilitate its proper utilization, application, and interpretation. After giving the formal mathematical description of ApEn, we provide a multistep description of the algorithm as applied to two contrasting clinical heart rate data sets. We discuss algorithm implementation and interpretation and introduce a general mathematical hypothesis of the dynamics of a wide class of diseases, indicating the utility of ApEn to test this hypothesis. We indicate the relationship of ApEn to variability measures, the Fourier spectrum, and algorithms motivated by study of chaotic dynamics. We discuss further mathematical properties of ApEn, including the choice of input parameters, statistical issues, and modeling considerations, and we conclude with a section on caveats to ensure correct ApEn utilization.
SVD compression for magnetic resonance fingerprinting in the time domain.
McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A
2014-12-01
Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain
McGivney, Debra F.; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition (SVD), which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously. PMID:25029380
On the Stationarity of Multiple Autoregressive Approximants: Theory and Algorithms
1976-08-01
a I (3.4) Hannan and Terrell (1972) consider problems of a similar nature. Efficient estimates A(1),... , A(p) , and i of A(1)... ,A(p) and...34Autoregressive model fitting for control, Ann . Inst. Statist. Math., 23, 163-180. Hannan, E. J. (1970), Multiple Time Series, New York, John Wiley...Hannan, E. J. and Terrell , R. D. (1972), "Time series regression with linear constraints, " International Economic Review, 13, 189-200. Masani, P
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement. PMID:26305223
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.
Idris, Muhammad; Hussain, Shujaat; Siddiqi, Muhammad Hameed; Hassan, Waseem; Syed Muhammad Bilal, Hafiz; Lee, Sungyoung
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement.
Efficient algorithms for a class of partitioning problems
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf; Bokhari, Shahid H.
1990-01-01
The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.
NASA Astrophysics Data System (ADS)
Soni, V.; Hadjadj, A.; Roussel, O.
2017-12-01
In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.
Fundamentals and Recent Developments in Approximate Bayesian Computation
Lintusaari, Jarno; Gutmann, Michael U.; Dutta, Ritabrata; Kaski, Samuel; Corander, Jukka
2017-01-01
Abstract Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation; Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-based models.] PMID:28175922
Comparison of a single-view and a double-view aerosol optical depth retrieval algorithm
NASA Astrophysics Data System (ADS)
Henderson, Bradley G.; Chylek, Petr
2003-11-01
We compare the results of a single-view and a double-view aerosol optical depth (AOD) retrieval algorithm applied to image pairs acquired over NASA Stennis Space Center, Mississippi. The image data were acquired by the Department of Energy's (DOE) Multispectral Thermal Imager (MTI), a pushbroom satellite imager with 15 bands from the visible to the thermal infrared. MTI has the ability to acquire imagery in pairs in which the first image is a near-nadir view and the second image is off-nadir with a zenith angle of approximately 60°. A total of 15 image pairs were used in the analysis. For a given image pair, AOD retrieval is performed twice---once using a single-view algorithm applied to the near-nadir image, then again using a double-view algorithm. Errors for both retrievals are computed by comparing the results to AERONET AOD measurements obtained at the same time and place. The single-view algorithm showed an RMS error about the mean of 0.076 in AOD units, whereas the double-view algorithm showed a modest improvement with an RMS error of 0.06. The single-view errors show a positive bias which is presumed to be a result of the empirical relationship used to determine ground reflectance in the visible. A plot of AOD error of the double-view algorithm versus time shows a noticeable trend which is interpreted to be a calibration drift. When this trend is removed, the RMS error of the double-view algorithm drops to 0.030. The single-view algorithm qualitatively appears to perform better during the spring and summer whereas the double-view algorithm seems to be less sensitive to season.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.
Todor, Nicolae; Todor, Irina; Săplăcan, Gavril
2014-01-01
The linear combination of variables is an attractive method in many medical analyses targeting a score to classify patients. In the case of ROC curves the most popular problem is to identify the linear combination which maximizes area under curve (AUC). This problem is complete closed when normality assumptions are met. With no assumption of normality search algorithm are avoided because it is accepted that we have to evaluate AUC n(d) times where n is the number of distinct observation and d is the number of variables. For d = 2, using particularities of AUC formula, we described an algorithm which lowered the number of evaluations of AUC from n(2) to n(n-1) + 1. For d > 2 our proposed solution is an approximate method by considering equidistant points on the unit sphere in R(d) where we evaluate AUC. The algorithms were applied to data from our lab to predict response of treatment by a set of molecular markers in cervical cancers patients. In order to evaluate the strength of our algorithms a simulation was added. In the case of no normality presented algorithms are feasible. For many variables computation time could be increased but acceptable.
Gauge properties of the guiding center variational symplectic integrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Tang, W. M.; Qin, H.
Variational symplectic algorithms have recently been developed for carrying out long-time simulation of charged particles in magnetic fields [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008); H. Qin, X. Guan, and W. Tang, Phys. Plasmas (2009); J. Li, H. Qin, Z. Pu, L. Xie, and S. Fu, Phys. Plasmas 18, 052902 (2011)]. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed formore » this type of system. It is found that for explicit algorithms, an instability arises because the discrete symplectic structure does not become the continuous structure in the t{yields}0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the 'antisymmetric discretization gauge,' in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and {phi} are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss's law [J. Squire, H. Qin, and W. Tang (to be published)].« less
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank
2018-01-07
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
NASA Astrophysics Data System (ADS)
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank
2018-01-01
In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).
An interactive adaptive remeshing algorithm for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Slack, David C.; Walters, Robert W.; Lohner, R.
1990-01-01
An interactive adaptive remeshing algorithm utilizing a frontal grid generator and a variety of time integration schemes for the two-dimensional Euler equations on unstructured meshes is presented. Several device dependent interactive graphics interfaces have been developed along with a device independent DI-3000 interface which can be employed on any computer that has the supporting software including the Cray-2 supercomputers Voyager and Navier. The time integration methods available include: an explicit four stage Runge-Kutta and a fully implicit LU decomposition. A cell-centered finite volume upwind scheme utilizing Roe's approximate Riemann solver is developed. To obtain higher order accurate results a monotone linear reconstruction procedure proposed by Barth is utilized. Results for flow over a transonic circular arc and flow through a supersonic nozzle are examined.