NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-12-01
Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolu; Yang, Hao
2017-12-01
The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.
Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons
Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William
2010-01-01
Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636
Tokunaga self-similarity arises naturally from time invariance
NASA Astrophysics Data System (ADS)
Kovchegov, Yevgeniy; Zaliapin, Ilya
2018-04-01
The Tokunaga condition is an algebraic rule that provides a detailed description of the branching structure in a self-similar tree. Despite a solid empirical validation and practical convenience, the Tokunaga condition lacks a theoretical justification. Such a justification is suggested in this work. We define a geometric branching process G (s ) that generates self-similar rooted trees. The main result establishes the equivalence between the invariance of G (s ) with respect to a time shift and a one-parametric version of the Tokunaga condition. In the parameter region where the process satisfies the Tokunaga condition (and hence is time invariant), G (s ) enjoys many of the symmetries observed in a critical binary Galton-Watson branching process and reproduces the latter for a particular parameter value.
On extreme events for non-spatial and spatial branching Brownian motions
NASA Astrophysics Data System (ADS)
Avan, Jean; Grosjean, Nicolas; Huillet, Thierry
2015-04-01
We study the impact of having a non-spatial branching mechanism with infinite variance on some parameters (height, width and first hitting time) of an underlying Bienaymé-Galton-Watson branching process. Aiming at providing a comparative study of the spread of an epidemics whose dynamics is given by the modulus of a branching Brownian motion (BBM) we then consider spatial branching processes in dimension d, not necessarily integer. The underlying branching mechanism is either a binary branching model or one presenting infinite variance. In particular we evaluate the chance p(x) of being hit if the epidemics started away at distance x. We compute the large x tail probabilities of this event, both when the branching mechanism is regular and when it exhibits very large fluctuations.
The Specific Features of design and process engineering in branch of industrial enterprise
NASA Astrophysics Data System (ADS)
Sosedko, V. V.; Yanishevskaya, A. G.
2017-06-01
Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.
Xu, Jason; Minin, Vladimir N
2015-07-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.
Xu, Jason; Minin, Vladimir N.
2016-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377
Gresik, Edward W; Koyama, Noriko; Hayashi, Toru; Kashimata, Masanori
2009-01-01
Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).
Lu, Nan; Xu, Zhaohe; Meng, Bingnan; Sun, Yuhan; Zhang, Jiangtao; Wang, Shaoming; Li, Yun
2014-04-21
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.
Portable data collection terminal in the automated power consumption measurement system
NASA Astrophysics Data System (ADS)
Vologdin, S. V.; Shushkov, I. D.; Bysygin, E. K.
2018-01-01
Aim of efficiency increasing, automation process of electric energy data collection and processing is very important at present time. High cost of classic electric energy billing systems prevent from its mass application. Udmurtenergo Branch of IDGC of Center and Volga Region developed electronic automated system called “Mobile Energy Billing” based on data collection terminals. System joins electronic components based on service-oriented architecture, WCF services. At present time all parts of Udmurtenergo Branch electric network are connected to “Mobile Energy Billing” project. System capabilities are expanded due to flexible architecture.
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.
2014-03-01
Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.
Observing Holliday junction branch migration one step at a time
NASA Astrophysics Data System (ADS)
Ha, Taekjip
2004-03-01
During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.
Partial branch and bound algorithm for improved data association in multiframe processing
NASA Astrophysics Data System (ADS)
Poore, Aubrey B.; Yan, Xin
1999-07-01
A central problem in multitarget, multisensor, and multiplatform tracking remains that of data association. Lagrangian relaxation methods have shown themselves to yield near optimal answers in real-time. The necessary improvement in the quality of these solutions warrants a continuing interest in these methods. These problems are NP-hard; the only known methods for solving them optimally are enumerative in nature with branch-and-bound being most efficient. Thus, the development of methods less than a full branch-and-bound are needed for improving the quality. Such methods as K-best, local search, and randomized search have been proposed to improve the quality of the relaxation solution. Here, a partial branch-and-bound technique along with adequate branching and ordering rules are developed. Lagrangian relaxation is used as a branching method and as a method to calculate the lower bound for subproblems. The result shows that the branch-and-bound framework greatly improves the resolution quality of the Lagrangian relaxation algorithm and yields better multiple solutions in less time than relaxation alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, John; Jankovsky, Zachary; Metzroth, Kyle G
2018-04-04
The purpose of the ADAPT code is to generate Dynamic Event Trees (DET) using a user specified set of simulators. ADAPT can utilize any simulation tool which meets a minimal set of requirements. ADAPT is based on the concept of DET which uses explicit modeling of the deterministic dynamic processes that take place during a nuclear reactor plant system (or other complex system) evolution along with stochastic modeling. When DET are used to model various aspects of Probabilistic Risk Assessment (PRA), all accident progression scenarios starting from an initiating event are considered simultaneously. The DET branching occurs at user specifiedmore » times and/or when an action is required by the system and/or the operator. These outcomes then decide how the dynamic system variables will evolve in time for each DET branch. Since two different outcomes at a DET branching may lead to completely different paths for system evolution, the next branching for these paths may occur not only at separate times, but can be based on different branching criteria. The computational infrastructure allows for flexibility in ADAPT to link with different system simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination), analysis of results, and user friendly graphical capabilities. The ADAPT system is designed for a distributed computing environment; the scheduler can track multiple concurrent branches simultaneously. The scheduler is modularized so that the DET branching strategy can be modified (e.g. biasing towards the worst-case scenario/event). Independent database systems store data from the simulation tasks and the DET structure so that the event tree can be constructed and analyzed later. ADAPT is provided with a user-friendly client which can easily sort through and display the results of an experiment, precluding the need for the user to manually inspect individual simulator runs.« less
Origin of Broad Visible Emission from Branched Polysilane and Polygermane Chains
NASA Astrophysics Data System (ADS)
Watanabe, Akira; Sato, Takaaki; Matsuda, Minoru
2001-11-01
The emission properties of branched polysilane and polygermane are studied using time-resolved emission spectroscopy. As branched polymers, the organosilicon cluster (OSI) and organogermanium cluster (OGE) are investigated, which are prepared from tetrachlorosilane and tetrachlorogermane, respectively, and have a hyperbranched structure. The broad visible emissions of OSI and OGE are explained by the energy diagram based on a configuration coordinate model, and the excited states are attributed to a localized state around the branching point. The molecular orbital (MO) calculation suggested the formation of a localized state by the distortion around the branching point in the excited state. The potential barrier for the nonradiative relaxation process was determined from the temperature dependence of the emission lifetime.
Bally, Florence; Serra, Christophe A; Brochon, Cyril; Hadziioannou, Georges
2011-11-15
Polymerization reactions can benefit from continuous-flow microprocess in terms of kinetics control, reactants mixing or simply efficiency when high-throughput screening experiments are carried out. In this work, we perform for the first time the synthesis of branched macromolecular architecture through a controlled/'living' polymerization technique, in tubular microreactor. Just by tuning process parameters, such as flow rates of the reactants, we manage to generate a library of polymers with various macromolecular characteristics. Compared to conventional batch process, polymerization kinetics shows a faster initiation step and more interestingly an improved branching efficiency. Due to reduced diffusion pathway, a characteristic of microsystems, it is thus possible to reach branched polymers exhibiting a denser architecture, and potentially a higher functionality for later applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A dynamic processes study of PM retention by trees under different wind conditions.
Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan
2018-02-01
Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Branching-ratio approximation for the self-exciting Hawkes process
NASA Astrophysics Data System (ADS)
Hardiman, Stephen J.; Bouchaud, Jean-Philippe
2014-12-01
We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximization. We employ our method to support recent theoretical and experimental results indicating that the best fitting Hawkes model to describe S&P futures price changes is in fact critical (now and in the recent past) in light of the long memory of financial market activity.
CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.
Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey
2017-01-01
The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.
Phenomenological picture of fluctuations in branching random walks
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Munier, S.
2014-10-01
We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.
Chen, Rui; Hyrien, Ollivier
2011-01-01
This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356
Xue, Peipei; Zeng, Fanfan; Duan, Qiuhong; Xiao, Juanjuan; Liu, Lin; Yuan, Ping; Fan, Linni; Sun, Huimin; Malyarenko, Olesya S; Lu, Hui; Xiu, Ruijuan; Liu, Shaoqing; Shao, Chen; Zhang, Jianmin; Yan, Wei; Wang, Zhe; Zheng, Jianyong; Zhu, Feng
2017-06-01
Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging
Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff
2013-01-01
Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935
Arginine-glycine-aspartic acid functional branched semi-interpenetrating hydrogels.
Plenderleith, Richard A; Pateman, Christopher J; Rodenburg, Cornelia; Haycock, John W; Claeyssens, Frederik; Sammon, Chris; Rimmer, Stephen
2015-10-14
For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require post-processing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography.
Tsujimoto; Shigeyama; Yoshii
2000-03-01
We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms=20 M middle dot in circle, a unique feature in the observed distribution of [Ba/Mg] versus [Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -3.7=&sqbl0;Mg&solm0;H&sqbr0;=-2.3, with two distinct processes. The first branch, which we call the y-branch, is associated with the production of Ba and Mg from individual massive supernovae. The derived mass of Ba synthesized in SNe II is 8.5x10-6 M middle dot in circle for Mms=20 M middle dot in circle and 4.5x10-8 M middle dot in circle for Mms=25 M middle dot in circle. We conclude that SNe II with Mms approximately 20 M middle dot in circle are the dominant source of r-process nucleosynthesis in the early Galaxy. An SN-induced chemical evolution model with this Mms-dependent Ba yield creates the y-branch, reflecting the different nucleosynthesis yields of [Ba/Mg] for each SN II with Mms greater, similar20 M middle dot in circle. The second branch, which we call the i-branch, is associated with the elemental abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms<20 M middle dot in circle that do not synthesize r-process elements, and it applies to stars with observed Mg abundances in the range &sqbl0;Mg&solm0;H&sqbr0;<-2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II that are associated with stars of progenitor mass Mms=20 M middle dot in circle are infertile sources for the production of r-process elements. We predict the existence of this i-branch for other r-process elements, such as europium (Eu), to the extent that their production site is in common with Ba.
Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren
2016-03-09
Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.
Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud
Packard, Adam; Georgas, Kylie; Michos, Odyssé; Riccio, Paul; Cebrian, Cristina; Combes, Alexander N.; Ju, Adler; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina; Zong, Hui; Little, Melissa H.; Costantini, Frank
2013-01-01
Summary The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Though development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term “mitosis-associated cell dispersal”. Pre-mitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; while one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis. PMID:24183650
NASA Astrophysics Data System (ADS)
Beeson, H. W.; McCoy, S. W.; Willett, S.
2016-12-01
Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.
Superlinear scaling of offspring at criticality in branching processes
NASA Astrophysics Data System (ADS)
Saichev, A.; Sornette, D.
2014-01-01
For any branching process, we demonstrate that the typical total number rmp(ντ) of events triggered over all generations within any sufficiently large time window τ exhibits, at criticality, a superlinear dependence rmp(ντ)˜(ντ)γ (with γ >1) on the total number ντ of the immigrants arriving at the Poisson rate ν. In branching processes in which immigrants (or sources) are characterized by fertilities distributed according to an asymptotic power-law tail with tail exponent 1<γ ⩽2, the exponent of the superlinear law for rmp(ντ) is identical to the exponent γ of the distribution of fertilities. For γ >2 and for standard branching processes without power-law distribution of fertilities, rmp(ντ)˜(ντ)2. This scaling law replaces and tames the divergence ντ /(1-n) of the mean total number R¯t(τ) of events, as the branching ratio (defined as the average number of triggered events of first generation per source) tends to 1. The derivation uses the formalism of generating probability functions. The corresponding prediction is confirmed by numerical calculations, and an heuristic derivation enlightens its underlying mechanism. We also show that R¯t(τ) is always linear in ντ even at criticality (n =1). Our results thus illustrate the fundamental difference between the mean total number, which is controlled by a few extremely rare realizations, and the typical behavior represented by rmp(ντ).
Mammalian evolution may not be strictly bifurcating.
Hallström, Björn M; Janke, Axel
2010-12-01
The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1-4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100-80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation.
Mammalian Evolution May not Be Strictly Bifurcating
Hallström, Björn M.; Janke, Axel
2010-01-01
The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845
Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.
Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L
2010-09-22
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks
Kim, Kwangsoo; Jin, Seong-il
2015-01-01
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734
Branch-based centralized data collection for smart grids using wireless sensor networks.
Kim, Kwangsoo; Jin, Seong-il
2015-05-21
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
Pareto genealogies arising from a Poisson branching evolution model with selection.
Huillet, Thierry E
2014-02-01
We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β < α). Depending on the range of α we derive the large N limit coalescents structure, leading either to a discrete-time Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.
NASA Astrophysics Data System (ADS)
Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon
The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.
Kinetics analysis and quantitative calculations for the successive radioactive decay process
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang
2015-01-01
The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.
The coalescent of a sample from a binary branching process.
Lambert, Amaury
2018-04-25
At time 0, start a time-continuous binary branching process, where particles give birth to a single particle independently (at a possibly time-dependent rate) and die independently (at a possibly time-dependent and age-dependent rate). A particular case is the classical birth-death process. Stop this process at time T>0. It is known that the tree spanned by the N tips alive at time T of the tree thus obtained (called a reduced tree or coalescent tree) is a coalescent point process (CPP), which basically means that the depths of interior nodes are independent and identically distributed (iid). Now select each of the N tips independently with probability y (Bernoulli sample). It is known that the tree generated by the selected tips, which we will call the Bernoulli sampled CPP, is again a CPP. Now instead, select exactly k tips uniformly at random among the N tips (a k-sample). We show that the tree generated by the selected tips is a mixture of Bernoulli sampled CPPs with the same parent CPP, over some explicit distribution of the sampling probability y. An immediate consequence is that the genealogy of a k-sample can be obtained by the realization of k random variables, first the random sampling probability Y and then the k-1 node depths which are iid conditional on Y=y. Copyright © 2018. Published by Elsevier Inc.
A tool for simulating parallel branch-and-bound methods
NASA Astrophysics Data System (ADS)
Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail
2016-01-01
The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
The control of branching morphogenesis
Iber, Dagmar; Menshykau, Denis
2013-01-01
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663
Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N
2015-12-01
Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.
Critical spreading dynamics of parity conserving annihilating random walks with power-law branching
NASA Astrophysics Data System (ADS)
Laise, T.; dos Anjos, F. C.; Argolo, C.; Lyra, M. L.
2018-09-01
We investigate the critical spreading of the parity conserving annihilating random walks model with Lévy-like branching. The random walks are considered to perform normal diffusion with probability p on the sites of a one-dimensional lattice, annihilating in pairs by contact. With probability 1 - p, each particle can also produce two offspring which are placed at a distance r from the original site following a power-law Lévy-like distribution P(r) ∝ 1 /rα. We perform numerical simulations starting from a single particle. A finite-time scaling analysis is employed to locate the critical diffusion probability pc below which a finite density of particles is developed in the long-time limit. Further, we estimate the spreading dynamical exponents related to the increase of the average number of particles at the critical point and its respective fluctuations. The critical exponents deviate from those of the counterpart model with short-range branching for small values of α. The numerical data suggest that continuously varying spreading exponents sets up while the branching process still results in a diffusive-like spreading.
Monte Carlo algorithms for Brownian phylogenetic models.
Horvilleur, Benjamin; Lartillot, Nicolas
2014-11-01
Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. The program is freely available at www.phylobayes.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
12 CFR 28.21 - Service of process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Service of process. 28.21 Section 28.21 Banks... Federal Branches and Agencies of Foreign Banks § 28.21 Service of process. A foreign bank operating at any Federal branch or agency is subject to service of process at the location of the Federal branch or agency. ...
Maruta, Naomichi; Marumoto, Moegi
2017-01-01
Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293
Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun
2015-01-01
Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855
Hao, Ruixia; Li, Jianbing; Zhou, Yuwen; Cheng, Shuiyuan; Zhang, Yi
2009-05-01
The relationship between nonylphenol (NP) isomer structure and its biodegradability within the wastewater treatment process of sequencing batch reactor (SBR) was investigated. The GC-MS method was used for detecting the NP isomers existing in the SBR influent, activated sludge and effluent. Fifteen NP isomers were detected in the influent, with significant biodegradability variations being observed among these isomers. It was found that the NP isomers associated with retention time of 10.553, 10.646, 10.774, and 10.906 min in the GC-MS analysis showed higher biodegradability, while the isomers with retention time of 10.475, 10.800, and 10.857 min illustrated lower biodegradability. Through analyzing the mass spectrograms, the chemical structures of four selected NP isomers in the wastewater were further deduced. The higher correlation coefficients of 0.9421 and 0.9085 were observed between the NP isomer biodegradation rates and the molecular connectivity indexes with the order of two and four, respectively. Such correlation analysis indicated that a more complex side branch structure (such as a larger side carbon-chain branch or more branches in the nonyl) of NP isomer would lead to lower biodegradability, and a longer nonyl chain of the isomer would result in a higher biodegradability.
Swain, Eric D.; Wexler, Eliezer J.
1996-01-01
Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream stages calculated by BRANCH, aquifer properties, and stresses. This process is repeated until convergence criteria are met for head and stage. Because time steps used in ground-water modeling can be much longer than time intervals used in surface- water simulations, provision has been made for handling multiple BRANCH time intervals within one MODFLOW time step. An option was also added to BRANCH to allow the simulation of channel drying and rewetting. Testing of the coupled model was verified by using data from previous studies; by comparing results with output from a simpler, four-point implicit, open-channel flow model linked with MODFLOW; and by comparison to field studies of L-31N canal in southern Florida.
NASA Astrophysics Data System (ADS)
Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad
2018-06-01
In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.
Lauri, P. É.; Kelner, J. J.; Trottier, C.; Costes, E.
2010-01-01
Background and Aims Secondary growth is a main physiological sink. However, the hierarchy between the processes which compete with secondary growth is still a matter of debate, especially on fruit trees where fruit weight dramatically increases with time. It was hypothesized that tree architecture, here mediated by branch age, is likely to have a major effect on the dynamics of secondary growth within a growing season. Methods Three variables were monitored on 6-year-old ‘Golden Delicious’ apple trees from flowering time to harvest: primary shoot growth, fruit volume, and cross-section area of branch portions of consecutive ages. Analyses were done through an ANOVA-type analysis in a linear mixed model framework. Key Results Secondary growth exhibited three consecutive phases characterized by unequal relative area increment over the season. The age of the branch had the strongest effect, with the highest and lowest relative area increment for the current-year shoots and the trunk, respectively. The growth phase had a lower effect, with a shift of secondary growth through the season from leafy shoots towards older branch portions. Eventually, fruit load had an effect on secondary growth mainly after primary growth had ceased. Conclusions The results support the idea that relationships between production of photosynthates and allocation depend on both primary growth and branch architectural position. Fruit load mainly interacted with secondary growth later in the season, especially on old branch portions. PMID:20228088
Lauri, P E; Kelner, J J; Trottier, C; Costes, E
2010-04-01
Secondary growth is a main physiological sink. However, the hierarchy between the processes which compete with secondary growth is still a matter of debate, especially on fruit trees where fruit weight dramatically increases with time. It was hypothesized that tree architecture, here mediated by branch age, is likely to have a major effect on the dynamics of secondary growth within a growing season. Three variables were monitored on 6-year-old 'Golden Delicious' apple trees from flowering time to harvest: primary shoot growth, fruit volume, and cross-section area of branch portions of consecutive ages. Analyses were done through an ANOVA-type analysis in a linear mixed model framework. Secondary growth exhibited three consecutive phases characterized by unequal relative area increment over the season. The age of the branch had the strongest effect, with the highest and lowest relative area increment for the current-year shoots and the trunk, respectively. The growth phase had a lower effect, with a shift of secondary growth through the season from leafy shoots towards older branch portions. Eventually, fruit load had an effect on secondary growth mainly after primary growth had ceased. The results support the idea that relationships between production of photosynthates and allocation depend on both primary growth and branch architectural position. Fruit load mainly interacted with secondary growth later in the season, especially on old branch portions.
Finite-size scaling of survival probability in branching processes
NASA Astrophysics Data System (ADS)
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro
2015-04-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G (y ) =2 y ey /(ey-1 ) , with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.
NASA Astrophysics Data System (ADS)
Alboabidallah, Ahmed; Martin, John; Lavender, Samantha; Abbott, Victor
2017-09-01
Terrestrial Laser Scanning (TLS) processing for biomass mapping involves large data volumes, and often includes relatively slow 3D object fitting steps that increase the processing time. This study aimed to test new features that can speed up the overall processing time. A new type of 3D voxel is used, where the horizontal layers are parallel to the Digital Terrain Model. This voxel type allows procedures to extract tree diameters using just one layer, but still gives direct tree-height estimations. Layer intersection is used to emphasize the trunks as upright standing objects, which are detected in the spatially segmented intersection of the breast-height voxels and then extended upwards and downwards. The diameters were calculated by fitting elliptical cylinders to the laser points in the detected trunk segments. Non-trunk segments, used in sub-tree- structures, were found using the parent-child relationships between successive layers. The branches were reconstructed by skeletonizing each sub-tree branch, and the biomass was distributed statistically amongst the weighted skeletons. The procedure was applied to nine plots within the UK. The average correlation coefficients between reconstructed and directly measured tree diameters, heights and branches were R2 = 0.92, 0.97 and 0.59 compared to 0.91, 0.95, and 0.63 when cylindrical fitting was used. The average time to apply the method reduced from 5hrs:18mins per plot, for the conventional methods, to 2hrs:24mins when the same hardware and software libraries were used with the 3D voxels. These results indicate that this 3D voxel method can produce, much more quickly, results of a similar accuracy that would improve efficiency if applied to projects with large volume TLS datasets.
Aberration-free superresolution imaging via binary speckle pattern encoding and processing
NASA Astrophysics Data System (ADS)
Ben-Eliezer, Eyal; Marom, Emanuel
2007-04-01
We present an approach that provides superresolution beyond the classical limit as well as image restoration in the presence of aberrations; in particular, the ability to obtain superresolution while extending the depth of field (DOF) simultaneously is tested experimentally. It is based on an approach, recently proposed, shown to increase the resolution significantly for in-focus images by speckle encoding and decoding. In our approach, an object multiplied by a fine binary speckle pattern may be located anywhere along an extended DOF region. Since the exact magnification is not known in the presence of defocus aberration, the acquired low-resolution image is electronically processed via a parallel-branch decoding scheme, where in each branch the image is multiplied by the same high-resolution synchronized time-varying binary speckle but with different magnification. Finally, a hard-decision algorithm chooses the branch that provides the highest-resolution output image, thus achieving insensitivity to aberrations as well as DOF variations. Simulation as well as experimental results are presented, exhibiting significant resolution improvement factors.
A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process
NASA Technical Reports Server (NTRS)
Wang, Yi; Tamai, Tetsuo
2009-01-01
Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.
A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun
2016-01-01
Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429
A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
NASA Astrophysics Data System (ADS)
Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun
2016-09-01
Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.
Witten, Michael R; Jacobsen, Eric N
2015-06-05
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis.
Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Ju, Wenyun; Sun, Kai
In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less
Ehlinger, M; Rapp, E; Cognet, J-M; Clavert, P; Bonnomet, F; Kahn, J-L; Kempf, J-F
2005-05-01
We conducted an anatomic study of the transverse branch of the dorsal ulnar nerve to describe its morphology and position in relation to arthroscopic exploration portals. Forty-five non-side-matched anatomic specimens of unknown age and gender were preserved in formol. The dorsal branch of the ulnar nerve was identified and dissected proximally to distally in order to reveal the different terminal branches. The morphometric analysis included measurement of the length and diameter of the transverse branch and measurement of wrist width. We also measured the smallest distance between the transverse branch and the ulnar styloid process, and between the branch and usual arthroscopic portals (4-5, 6R, 6U) in the axis of the forearm. The transverse branch was inconstant. It was found in 12 of the 45 dissection specimens (27%). In two-thirds of the specimens, the branch ran over less than 50% of the wrist width, tangentially to the radiocarpal joint. Mean nerve diameter was 1 mm. It was found 5-6 mm from the ulnar styloid process and was distal to it in 83% of the specimens. The dissections demonstrated two anatomic variants. Type A corresponded to a branch running distally to the ulnar styloid process, parallel to the joint line (10/12 specimens). Type B exhibited a trajectory proximal to the ulnar styloid process, crossing the ulnar head (2/12 specimens). The relations with the arthroscopic portals (4-5, 6R, 6U) showed that the mean distance from the branch to the portal was 3.75 mm for the 4-5 portal (distally in 11/12 specimens), 3.68 mm for the 6R portal (distally in 10/12 specimens), and 4.83 mm for the 6U portal (distally in 7 specimens and proximally in 5). To our knowledge, there has been only one report specifically devoted to this transverse branch. Two other reports simply mention its existence. According to the literature, the transverse branch of the dorsal ulnar nerve occurs in 60-80% of the cases. We found two anatomic variations different than those described in the literature. Based on our findings and data reported previously, we propose a new classification, describing two main types. In Type 1, the transverse branch arises proximally to the ulnar styloid process;type 1A and type IB are described in relation to the direction of the branch. In Type II, the branch arises distally to the ulnar styloid process;type IIA and type IIB again being described in relation to the direction of the branch. On the tangential trajectory over the radiocarpal joint, the morphometric data show a zone of risk described by a rectangle measuring 10 mm wide (6 mm distal and 4 mm proximal to the ulnar styloid process) and covering 50% of the wrist width. The relations with arthroscopic portals describe a zone of risk corresponding to a 5-7 mm radius circle centered on the portals (4-5, 6R, 6U), which includes 83% of the transverse branches.
Determinate growth and modularity in a gorgonian octocoral.
Lasker, Howard R; Boller, Michael L; Castanaro, John; Sánchez, Juan Armando
2003-12-01
Growth rates of branches of colonies of the gorgonian Pseudopterogorgia elisabethae were monitored for 2 years on a reef at San Salvador Island, Bahamas. Images of 261 colonies were made at 6-month intervals and colony and branch growth analyzed. Branch growth rates differed between colonies and between the time intervals in which the measurements were made. Colonies developed a plumelike morphology through a pattern of branch origination and determinate growth in which branch growth rates were greatest at the time the branch originated and branches seldom grew beyond a length of 8 cm. A small number of branches had greater growth rates, did not stop growing, and were sites for the origination of subsequent "generations" of branches. The rate of branch origination decreased with each generation of branching, and branch growth rates were lower on larger colonies, leading to determinate colony growth. Although colonial invertebrates like P. elisabethae grow through the addition of polyps, branches behave as modules with determinate growth. Colony form and size is generated by the iterative addition of branches.
Atomic temporal interval relations in branching time: calculation and application
NASA Astrophysics Data System (ADS)
Anger, Frank D.; Ladkin, Peter B.; Rodriguez, Rita V.
1991-03-01
A practical method of reasoning about intervals in a branching-time model which is dense, unbounded, future-branching, without rejoining branches is presented. The discussion is based on heuristic constraint- propagation techniques using the relation algebra of binary temporal relations among the intervals over the branching-time model. This technique has been applied with success to models of intervals over linear time by Allen and others, and is of cubic-time complexity. To extend it to branding-time models, it is necessary to calculate compositions of the relations; thus, the table of compositions for the 'atomic' relations is computed, enabling the rapid determination of the composition of arbitrary relations, expressed as disjunctions or unions of the atomic relations.
SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules
Lysko, Daniel E.; Putt, Mary
2014-01-01
Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713
NASA Astrophysics Data System (ADS)
Yuanyuan, Zhang
The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2017-02-01
Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.
Hard X-ray Emission along the Z Track in GX 17 + 2
NASA Astrophysics Data System (ADS)
Ding, G. Q.; Huang, C. P.
2015-09-01
Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17 + 2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z' track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ˜(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA + HEXTE spectra in 3-200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ˜2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.
Optimal Limited Contingency Planning
NASA Technical Reports Server (NTRS)
Meuleau, Nicolas; Smith, David E.
2003-01-01
For a given problem, the optimal Markov policy over a finite horizon is a conditional plan containing a potentially large number of branches. However, there are applications where it is desirable to strictly limit the number of decision points and branches in a plan. This raises the question of how one goes about finding optimal plans containing only a limited number of branches. In this paper, we present an any-time algorithm for optimal k-contingency planning. It is the first optimal algorithm for limited contingency planning that is not an explicit enumeration of possible contingent plans. By modelling the problem as a partially observable Markov decision process, it implements the Bellman optimality principle and prunes the solution space. We present experimental results of applying this algorithm to some simple test cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph Berkmans, A.; Jagannatham, M.; Priyanka, S.
Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode containsmore » ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.« less
Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin
2016-07-07
Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toulmin, Anita; Baltierra-Jasso, Laura E; Morten, Michael J; Sabir, Tara; McGlynn, Peter; Schröder, Gunnar F; Smith, Brian O; Magennis, Steven W
2017-09-19
DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19 F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.
Enhancements to the Branched Lagrangian Transport Modeling System
Jobson, Harvey E.
1997-01-01
The Branched Lagrangian Transport Model (BLTM) has received wide use within the U.S. Geological Survey over the past 10 years. This report documents the enhancements and modifications that have been made to this modeling system since it was first introduced. The programs in the modeling system are arranged into five levels?programs to generate time-series of meteorological data (EQULTMP, SOLAR), programs to process time-series data (INTRP, MRG), programs to build input files for transport model (BBLTM, BQUAL2E), the model with defined reaction kinetics (BLTM, QUAL2E), and post processor plotting programs (CTPLT, CXPLT). An example application is presented to illustrate how the modeling system can be used to simulate 10 water-quality constituents in the Chattahoochee River below Atlanta, Georgia.
Witten, Michael R.; Jacobsen, Eric N.
2016-01-01
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis. PMID:25952578
NASA Technical Reports Server (NTRS)
Millar, T. J.; Defrees, D. J.; Mclean, A. D.; Herbst, E.
1988-01-01
The approach of Bates to the determination of neutral product branching ratios in ion-electron dissociative recombination reactions has been utilized in conjunction with quantum chemical techniques to redetermine branching ratios for a wide variety of important reactions of this class in dense interstellar clouds. The branching ratios have then been used in a pseudo time-dependent model calculation of the gas phase chemistry of a dark cloud resembling TMC-1 and the results compared with an analogous model containing previously used branching ratios. In general, the changes in branching ratios lead to stronger effects on calculated molecular abundances at steady state than at earlier times and often lead to reductions in the calculated abundances of complex molecules. However, at the so-called 'early time' when complex molecule synthesis is most efficient, the abundances of complex molecules are hardly affected by the newly used branching ratios.
Job shop scheduling model for non-identic machine with fixed delivery time to minimize tardiness
NASA Astrophysics Data System (ADS)
Kusuma, K. K.; Maruf, A.
2016-02-01
Scheduling non-identic machines problem with low utilization characteristic and fixed delivery time are frequent in manufacture industry. This paper propose a mathematical model to minimize total tardiness for non-identic machines in job shop environment. This model will be categorized as an integer linier programming model and using branch and bound algorithm as the solver method. We will use fixed delivery time as main constraint and different processing time to process a job. The result of this proposed model shows that the utilization of production machines can be increase with minimal tardiness using fixed delivery time as constraint.
Kweon, Tae Dong; Kim, Ji Young; Lee, Hye Yeon; Kim, Myung Hwa; Lee, Youn-Woo
2014-01-01
Cervical medial branch blocks are used to treat patients with chronic neck pain. The aim of this study was to clarify the anatomical aspects of the cervical medial branches to improve the accuracy and safety of radiofrequency denervation. Twenty cervical specimens were harvested from 20 adult cadavers. The anatomical parameters of the C4-C7 cervical medial branches were measured. The 3-dimensional computed tomography reconstruction images of the bone were also analyzed. Based on cadaveric analysis, most of the cervical dorsal rami gave off 1 medial branch; however, the cervical dorsal rami gave off 2 medial branches in 27%, 15%, 2%, and 0% at the vertebral level C4, C5, C6, and C7, respectively. The diameters of the medial branches varied from 1.0 to 1.2 mm, and the average distance from the notch of inferior articular process to the medial branches was about 2 mm. Most of the bifurcation sites were located at the medial side of the posterior tubercle of the transverse process. On the analysis of 3-dimensional computed tomography reconstruction images, cervical medial branches (C4 to C6) passed through the upper 49% to 53% of a line between the tips of 2 consecutive superior articular processes (anterior line). Also, cervical medial branches passed through the upper 28% to 35% of a line between the midpoints of 2 consecutive facet joints (midline). The present anatomical study may help improve accuracy and safety during radiofrequency denervation of the cervical medial branches.
Allegra Mascaro, Anna Letizia; Cesare, Paolo; Sacconi, Leonardo; Grasselli, Giorgio; Mandolesi, Georgia; Maco, Bohumil; Knott, Graham W; Huang, Lieven; De Paola, Vincenzo; Strata, Piergiorgio; Pavone, Francesco S
2013-06-25
Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-15
... Human Resources and Housing Branch, New Executive Office Building, Room 10235, Washington, DC 20503 (202... appellant and the BVA must be informed so that the appellant's rights may be adequately protected and so... required by basic Constitutional due-process and by Title 38 U.S.C. 7107(b). From time to time, hearing...
Framework for cascade size calculations on random networks
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Schweitzer, Frank
2018-04-01
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.
Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling
Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A
2014-01-01
Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286
Dynamic wavefront creation for processing units using a hybrid compactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less
VAX-11 Programs for Computing Available Potential Energy from CTD Data.
1981-08-01
the plots can be plotted as many times as desired. The use of the translators is described at the end of section 3. The multiple branch structure of...are listed later in this section, and short * versions of them may be obtained on the terminal any time the program prompts the user for branch number...input, by typing 0/. Within each branch there may be options which are accessible by varying parameters input by the user at the time the branch
Statistical distributions of earthquake numbers: consequence of branching process
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2010-03-01
We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
NASA Astrophysics Data System (ADS)
Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.
2018-03-01
Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.
Measurement of the absolute branching fraction of Ds0 *(2317 )±→π0Ds±
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leiber, S.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. Q.; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, X.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2018-03-01
The process e+e-→Ds*+Ds0 *(2317 )-+c .c . is observed for the first time with the data sample of 567 pb-1 collected with the BESIII detector operating at the BEPCII collider at a center-of-mass energy √{s }=4.6 GeV . The statistical significance of the Ds0 *(2317 )± signal is 5.8 σ and the mass is measured to be (2318.3 ±1.2 ±1.2 ) MeV /c2 . The absolute branching fraction B (Ds0 *(2317 )±→π0Ds±) is measured as 1.00-0.14+0.00(stat)-0.14+0.00(syst) for the first time. The uncertainties are statistical and systematic, respectively.
Pauli, B; Althaus, S; Von Tscharner, C
1975-08-01
Migrating fourth-stage larvae of Strongylus vulgaris, a parasite of equines, damage the intima of the anterior mesenteric artery and its larger branches and induce thrombus formation on the injured sites. As the time of larval passage through each of these branches has been exactly determined in earlier experiments, the aim of the present studies is to contribute to a more complete understanding of repair mechanisms in the process of time after thrombotic vascular injuries. five foals were separated individually to specially cleaned stables and given anthelmintic treatment till the age of one year. One foal was infected per os with 350, the second with 500 and the remaining three with 1,000 third-stage larvae of Strongylus vulgaris...
Effects of hemin, CO2, and pH on the branching of Candida albicans filamentous forms.
Jakab, Ágnes; Antal, Károly; Emri, Tamás; Boczonádi, Imre; Imre, Alexandra; Gebri, Enikő; Majoros, László; Pfliegler, Walter Péter; Szarka, Máté; Balla, György; Balla, József; Pócsi, István
2016-12-01
Morphological transitions of wild-type and oxidative stress-tolerant Candida albicans strains were followed in the RPMI-FBS culture medium at pH values and CO 2 levels characteristic for the anatomical niches inhabited by this opportunistic human pathogen fungus, including the oral cavity as well as the intestinal and vaginal lumens. Selected cultures were also supplemented with hemin modeling bleedings. Germination as well as elongation and branching of hyphae were monitored in the cultures using time-lapse video microscopy. Unexpectedly, branching time, which is defined as the time taken until the first branch of hypha emerges for the first time after germination, correlated well with alterations in the environmental conditions meanwhile no such correlations were found for germination time (time lasted until the appearance of the germination tube). Based on these observations, hypotheses were set up to estimate the significance of branching time in the pathogenesis of both superficial and systemic candidiases.
NASA Astrophysics Data System (ADS)
Zhai, Wei-Dong; Yan, Xiu-Li; Qi, Di
2017-10-01
We investigated the surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary in early spring 2009 and 2010. The two surveys were carried out shortly after spring-tide days, and covered both the channel-like South Branch and the freshwater-blocked North Branch. In the North Branch, with a water residence time of approximately one month, we detected remarkable partial pressures of CO2 (pCO2) of 930-1518 μatm with a salinity range of 4.5-17.4, which were substantially higher than the South Branch pCO2 values of 700-1100 μatm at salinities of less than 0.88. The North Branch pCO2 distribution pattern is unique compared with many other estuaries where aquatic pCO2 normally declines with salinity increase. Furthermore, the biogeochemical additions of ammonium (7.4-65.7 μmol kg-1) and alkalinity (196-695 μmol kg-1) were identified in salinities between 4 and 16 in the North Branch. Based on field data analyses and simplified stoichiometric equations, we suggest that the relatively high North Branch pCO2 values and estuarine additions of dissolved inorganic nitrogen/carbon in the mid-salinity area were strongly associated with each other. These signals were primarily controlled by biogeochemical processes in the North Branch, combining biogenic organic matter decomposition (i.e. respiration), ammonia oxidation, CaCO3 dissolution, and CO2 degassing. In the upper reach of the South Branch, notable salinity values of 0.20-0.88 were detected, indicating saltwater spillover from the North Branch. These spillover waters had minor contributions (1.5-6.9%) to the springtime nutrient, dissolved inorganic carbon, and alkalinity export fluxes from Changjiang to the adjacent East China Sea. This is the first attempt to understand the biogeochemical controls of the unique pCO2 distributions in the North Branch, and to evaluate the effects of saltwater spillover from the North Branch on dry-season export fluxes of biogenic elements to the adjacent East China Sea.
Molina, Manuel; Mota, Manuel; Ramos, Alfonso
2015-01-01
This work deals with mathematical modeling through branching processes. We consider sexually reproducing animal populations where, in each generation, the number of progenitor couples is determined in a non-predictable environment. By using a class of two-sex branching processes, we describe their demographic dynamics and provide several probabilistic and inferential contributions. They include results about the extinction of the population and the estimation of the offspring distribution and its main moments. We also present an application to salmonid populations.
Mesoscopic description of random walks on combs
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner
2015-12-01
Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.
Branching processes in disease epidemics
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet
Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a model of infectious diseases where a `reservoir' of infection exists that infects a susceptible host population at a constant rate. The final chapter of the thesis describes a general framework of modeling infectious diseases in a network of populations using multitype branching processes.
Freeman, B M; Chaves-Campos, J
2016-06-01
Fallen branches are often incorporated into Atta cephalotes (L.) foraging trails to optimize leaf tissue transport rates and economize trail maintenance. Recent studies in lowlands show laden A. cephalotes travel faster across fallen branches than on ground, but more slowly ascending or descending a branch. The latter is likely because (1) it is difficult to travel up or downhill and (2) bottlenecks occur when branches are narrower than preceding trail. Hence, both branch height and width should determine whether branches decrease net travel times, but no study has evaluated it yet. Laden A. cephalotes were timed in relation to branch width and height across segments preceding, accessing, across, and departing a fallen branch in the highlands of Costa Rica. Ants traveled faster on branches than on cleared segments of trunk-trail, but accelerated when ascending or descending the branch-likely because of the absence of bottlenecks during the day in the highlands. Branch size did not affect ant speed in observed branches; the majority of which (22/24) varied from 11 to 120 mm in both height and width (average 66 mm in both cases). To determine whether ants exclude branches outside this range, ants were offered the choice between branches within this range and branches that were taller/wider than 120 mm. Ants strongly preferred the former. Our results indicate that A. cephalotes can adjust their speed to compensate for the difficulty of traveling on branch slopes. More generally, branch size should be considered when studying ant foraging efficiency.
Yang, Guorui; Wang, Ling; Peng, Shengjie; Wang, Jianan; Ji, Dongxiao; Yan, Wei; Ramakrishna, Seeram
2017-12-01
1D branched TiO 2 nanomaterials play a significant role in efficient photocatalysis and high-performance lithium ion batteries. In contrast to the typical methods which generally have to employ epitaxial growth, the direct in situ growth of hierarchically branched TiO 2 nanofibers by a combination of the electrospinning technique and the alkali-hydrothermal process is presented in this work. Such the branched nanofibers exhibit improvement in terms of photocatalytic hydrogen evolution (0.41 mmol g -1 h -1 ), in comparison to the conventional TiO 2 nanofibers (0.11 mmol g -1 h -1 ) and P25 (0.082 mmol g -1 h -1 ). Furthermore, these nanofibers also deliver higher lithium specific capacity at different current densities, and the specific capacity at the rate of 2 C is as high as 201. 0 mAh g -1 , roughly two times higher than that of the pristine TiO 2 nanofibers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures
NASA Astrophysics Data System (ADS)
Wang, Yuan; Zhou, Yun; Meng, Chuanmin; Gao, Zhao; Cao, Xiuxia; Li, Xuhai; Xu, Liang; Zhu, Wenjun; Peng, Xusheng; Zhang, Botao; Lin, Yifeng; Liu, Lixin
2016-10-01
Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.
Modeling electron transfer in photosystem I.
Makita, Hiroki; Hastings, Gary
2016-06-01
Nanosecond to millisecond time-resolved absorption spectroscopy has been used to study electron transfer processes in photosystem I particles from Synechocystis sp. PCC 6803 with eight different quinones incorporated into the A1 binding site, at both 298 and 77K. A detailed kinetic model was constructed and solved within the context of Marcus electron transfer theory, and it was found that all of the data could be well described only if the in situ midpoint potentials of the quinones fell in a tightly defined range. For photosystem I with phylloquinone incorporated into the A1 binding site all of the time-resolved optical data is best modeled when the in situ midpoint potential of phylloquinone on the A/B branch is -635/-690 mV, respectively. With the midpoint potential of the F(X) iron sulfur cluster set at -680 mV, this indicates that forward electron transfer from A(1)(-) to F(X) is slightly endergonic/exergonic on the A/B branch, respectively. Additionally, for forward electron transfer from A(1)(-) to F(X), on both the A and B branches the reorganization energy is close to 0.7 eV. Reorganization energies of 0.4 or 1.0 eV are not possible. For the eight different quinones incorporated, the same kinetic model was used, allowing us to establish in situ redox potentials for all of the incorporated quinones on both branches. A linear correlation was found between the in situ and in vitro midpoint potentials of the quinones on both branches. Copyright © 2016 Elsevier B.V. All rights reserved.
Thruster-Specific Force Estimation and Trending of Cassini Hydrazine Thrusters at Saturn
NASA Technical Reports Server (NTRS)
Stupik, Joan; Burk, Thomas A.
2016-01-01
The Cassini spacecraft has been in orbit around Saturn since 2004 and has since been approved for both a first and second extended mission. As hardware reaches and exceeds its documented life expectancy, it becomes vital to closely monitor hardware performance. The performance of the 1-N hydrazine attitude control thrusters is especially important to study, because the spacecraft is currently operating on the back-up thruster branch. Early identification of hardware degradation allows more time to develop mitigation strategies. There is no direct measure of an individual thruster's thrust magnitude, but these values can be estimated by post-processing spacecraft telemetry. This paper develops an algorithm to calculate the individual thrust magnitudes using Euler's equation. The algorithm correctly shows the known degradation in the first thruster branch, validating the approach. Results for the current thruster branch show nominal performance as of August, 2015.
BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE
Bray, D.
1973-01-01
The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915
On understanding nuclear reaction network flows with branchings on directed graphs
NASA Astrophysics Data System (ADS)
Meyer, Bradley S.
2018-04-01
Nuclear reaction network flow diagrams are useful for understanding which reactions are governing the abundance changes at a particular time during nucleosynthesis. This is especially true when the flows are largely unidirectional, such as during the s-process of nucleosynthesis. In explosive nucleosynthesis, when reaction flows are large, and when forward reactions are nearly balanced by their reverses, reaction flows no longer give a clear picture of the abundance evolution in the network. This paper presents a way of understanding network evolution in terms of sums of branchings on a directed graph, which extends the concept of reaction flows to allow for multiple reaction pathways.
Reynisson, Pall Jens; Scali, Marta; Smistad, Erik; Hofstad, Erlend Fagertun; Leira, Håkon Olav; Lindseth, Frank; Nagelhus Hernes, Toril Anita; Amundsen, Tore; Sorger, Hanne; Langø, Thomas
2015-01-01
Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. Conclusion The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system. PMID:26657513
β -decay studies of very neutron-rich Pd and Ag isotopes
NASA Astrophysics Data System (ADS)
Smith, Karl
2014-03-01
The rapid-neutron capture process (r-process) is attributed as the source of nearly half the elements heavier than iron. To gain insight into the r-process nucleosynthesis, uncertainties such as the nuclear physics involved must be minimized. An experiment was performed to measure properties of neutron-rich nuclei just below the N = 82 shell closure believed to be responsible for production of the A = 130 peak in the solar r-process abundance pattern. β-decay half-lives and neutron branching ratios, Pn values, were measured for Pd and Ag isotopes at the GSI Fragment Separator (FRS). The FRS provided in-flight separation and identification of fission fragments produced by a 900 MeV/u 238U beam. Ions of interest were implanted in the Silicon Implantation detector and Beta Absorber (SIMBA) array. The large pixelation of the array allowed for position-time correlation between implants and the corresponding β-decays. The parent nucleus may decay to an excited state in the daughter, above the neutron separation energy emitting a neutron. These neutrons were moderated and detected in Beta deLayEd Neutron (BELEN) detector surrounding SIMBA. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.
Stadler, Tanja; Degnan, James H.; Rosenberg, Noah A.
2016-01-01
Classic null models for speciation and extinction give rise to phylogenies that differ in distribution from empirical phylogenies. In particular, empirical phylogenies are less balanced and have branching times closer to the root compared to phylogenies predicted by common null models. This difference might be due to null models of the speciation and extinction process being too simplistic, or due to the empirical datasets not being representative of random phylogenies. A third possibility arises because phylogenetic reconstruction methods often infer gene trees rather than species trees, producing an incongruity between models that predict species tree patterns and empirical analyses that consider gene trees. We investigate the extent to which the difference between gene trees and species trees under a combined birth–death and multispecies coalescent model can explain the difference in empirical trees and birth–death species trees. We simulate gene trees embedded in simulated species trees and investigate their difference with respect to tree balance and branching times. We observe that the gene trees are less balanced and typically have branching times closer to the root than the species trees. Empirical trees from TreeBase are also less balanced than our simulated species trees, and model gene trees can explain an imbalance increase of up to 8% compared to species trees. However, we see a much larger imbalance increase in empirical trees, about 100%, meaning that additional features must also be causing imbalance in empirical trees. This simulation study highlights the necessity of revisiting the assumptions made in phylogenetic analyses, as these assumptions, such as equating the gene tree with the species tree, might lead to a biased conclusion. PMID:26968785
Jannat, Behrooz; Oveisi, Mohammad Reza; Sadeghi, Naficeh; Hajimahmoodi, Mannan; Behzad, Masoomeh; Nahavandi, Bahman; Tehrani, Shirin; Sadeghi, Fatemeh; Oveisi, Morvarid
2013-01-01
Sesame (Sesamum indicum L.) seed and oil have long been used widely as healthy foods to supply energy and prevent aging. Some of the main active anti-oxidative constituents in sesame seeds are γ-tocopherol and phenols. The purpose of this study was to investigate the relationship between roasting temperature and time with γ-tocopherol and total phenolic compounds (TPC) of sesame seeds when roasted in a domestic electric oven. Eight cultivars of sesame seeds in this study were Darab, Dezful, Karaj, Moghan, Naz- Branching, Naz-NonBranching, Siah and Varamin. Each cultivar was divided into ten group based on the roasting time (10, 15 and 20 min) and temperatures (180, 200 and 220 °C)andunroasted one. The high-performance liquid chromatography (HPLC) and spectrophotometeric methods were used for γ-tocopherol (n = 80) and TPC (n = 80) analysis, respectively. The γ-tocopherol content ranged from 329 ± 5 mg/L in Naz-Branching sesame oil to 1114±7 mg/L in Siah sesame oil and 169±6 to 577±1 mg/kg in sesame seed respectively. γ-tocopherol content of six cultivars increased significantly (p < 0.05) as the roasting temperature and time; until 200 °C for 10 min, but they were decreased by roasting at 220 °C in longer time. Also TPC increased significantly as the roasting temperature. The amount of TPC varied in different sesame cultivars from 20.109 ± 3.967 μM to 129.300±3.493 in Varamin and Naz- Branching sesame seed cultivars, respectively, also TPC increased from 70.953 ± 5.863 μM in unroasted Naz-Branching sesame seed to 129.300 ± 3.493 μM after roasting in 200 °C for 20 min. The present study showed that Iranian sesame seed can be considered as a good source of natural antioxidant specially after roasting. The optimum temperature and time roasting to obtain the most γ-tocopherol and total phenolic content was 200 °C for 10 and 20 min, respectively. PMID:24523755
Jannat, Behrooz; Oveisi, Mohammad Reza; Sadeghi, Naficeh; Hajimahmoodi, Mannan; Behzad, Masoomeh; Nahavandi, Bahman; Tehrani, Shirin; Sadeghi, Fatemeh; Oveisi, Morvarid
2013-01-01
Sesame (Sesamum indicum L.) seed and oil have long been used widely as healthy foods to supply energy and prevent aging. Some of the main active anti-oxidative constituents in sesame seeds are γ-tocopherol and phenols. The purpose of this study was to investigate the relationship between roasting temperature and time with γ-tocopherol and total phenolic compounds (TPC) of sesame seeds when roasted in a domestic electric oven. Eight cultivars of sesame seeds in this study were Darab, Dezful, Karaj, Moghan, Naz- Branching, Naz-NonBranching, Siah and Varamin. Each cultivar was divided into ten group based on the roasting time (10, 15 and 20 min) and temperatures (180, 200 and 220 °C)andunroasted one. The high-performance liquid chromatography (HPLC) and spectrophotometeric methods were used for γ-tocopherol (n = 80) and TPC (n = 80) analysis, respectively. The γ-tocopherol content ranged from 329 ± 5 mg/L in Naz-Branching sesame oil to 1114±7 mg/L in Siah sesame oil and 169±6 to 577±1 mg/kg in sesame seed respectively. γ-tocopherol content of six cultivars increased significantly (p < 0.05) as the roasting temperature and time; until 200 °C for 10 min, but they were decreased by roasting at 220 °C in longer time. Also TPC increased significantly as the roasting temperature. The amount of TPC varied in different sesame cultivars from 20.109 ± 3.967 μM to 129.300±3.493 in Varamin and Naz- Branching sesame seed cultivars, respectively, also TPC increased from 70.953 ± 5.863 μM in unroasted Naz-Branching sesame seed to 129.300 ± 3.493 μM after roasting in 200 °C for 20 min. The present study showed that Iranian sesame seed can be considered as a good source of natural antioxidant specially after roasting. The optimum temperature and time roasting to obtain the most γ-tocopherol and total phenolic content was 200 °C for 10 and 20 min, respectively.
Probing the inner core's African hemisphere boundary with P'P'
NASA Astrophysics Data System (ADS)
Day, Elizabeth; Ward, James; Bastow, Ian; Irving, Jessica
2017-04-01
Geophysical observations of the inner core today improve our understanding not just of the processes occurring in the core at the present, but also those that occurred in the past. As the inner core freezes it may record clues as to the state of the Earth at the time of growth; the texture in the inner core may also be modified through post-solidification deformation. The seismic structure of the inner core is not simple; the dominant pattern is one of anisotropic and isotropic differences between the Eastern and Western 'hemispheres' of the inner core. Additionally, there is evidence for an innermost inner core, layering of the uppermost inner core, and possibly super-rotation of the inner core relative to the mantle. Most body wave studies of inner core structure use PKP-PKIKP differential travel times to constrain velocity variations within the inner core. However, body wave studies are inherently limited by the geometry of seismic sources and stations, and thus there are some areas of the inner core that are relatively under-sampled, even in today's data-rich world. Here, we examine the differential travel times of the different branches of P'P' (PKIKPPKIKP, or P'P'df, and PKPPKP), comparing the arrival time of inner core turning branch P'P'df with the arrival times of branches that turn in the outer core. By using P'P' we are able to exploit different ray geometries and sample different regions of the inner core to those areas accessible to studies which utilize PKIKP. We use both linear and non-linear stacking methods to make observations of the small amplitude P'P' phases. We identify the three P'P' branches, as well as pre- and post-cursors to the main arrivals, which can cause confusion. To facilitate identifying each P'P' branch we make AxiSEM synthetics, carry out beamforming, and use bootstrapping to access the robustness of our observations, which focus on the inner core's hemisphere boundary beneath Africa. Our measurements match the broad scale hemispherical pattern of anisotropy in the inner core, but also show some small scale variations.
NASA Astrophysics Data System (ADS)
Canale, Philip Louis
Studies were undertaken to gain an understanding as to the mechanistic, rheological, thermal, and mechanical property effects that can be expected by reactively extruding biodegradable polyesters with dicumyl peroxide (DCP). The two main polymers used were poly(epsilon-caprolactone), (PCL), and proprietary copolyester, Eastar 14766. The reactive extrusions were carried out at 160°C at various DCP levels. The percent branching and type of branching, (tetraor tri-functional), were determined by SEC and by the comparison of branched distributions to statistical models. It was found that PCL quantitatively formed tetra-functional branches while the Eastar 14766 formed a combination of tri- and tetra-functional branch points. The Eastar 14766 was also shown to be more reactive than the PCL, with half as much DCP being required to achieve equivalent amounts of branching. Thermal properties were studied by differential scanning calorimetry. In a multi-phase, upper critical solution temperature (UCST) system, such as Eastar 14766, the branches resulted in a compatiblization effect. This was shown as an increase in the glass transition temperature rising with the DCP level used in the reactive extrusion. The crystallization temperature decreased, and the heat of melting increased as the amount of branching/DCP level increased. The latter was attributed to the lower stereo regularity and/or the lower crystallization rate. The crystallization temperature increase is attributed to increased kinetics required, due to slower phase separation or increased viscosity. Branching/DCP level was shown to have a smaller effect on PCL, with the largest effect being an 11% relative decrease in heat of melting at the highest DCP level. Rheology studies showed that both Eastar 14766 and PCL displayed typical branching behavior with increases in melt elasticity and zero shear viscosity. An estimate of the plateau modulus revealed the entanglement molecular weight for Eastar 14766 to be approximately three times lower than that of PCL. This explained why Eastar 14766 had a larger enhancement in zero shear viscosity and elasticity than PCL. It was also noted, qualitatively, that branching in both materials produced a broadened elastic modulus curve. This was attributed to the difference in the molecular weight/relaxation time relationship between linear and branched materials. Tensile modulus and elongation studies showed PCL to be insensitive to branching. However, studies with Eastar 14766 showed tensile strength and elongation at break to be increased 30 and 10% respectively with branching. Tensile modulus on the other hand, remained relatively unchanged. These effects were attributed to phase changes due to increased compatibilization of the copolymer. A brief study of a 50/50 blend of Eastar 14766 and Poly(lactic acid) with and without DCP showed that the blend with DCP had a similar tensile strength. However, the ultimate elongation increased by 150% and the modulus decreased of 26%. This shows the possible utility of reactive blending with peroxides in order to achieve a higher degree of compatibilization in a blend.
Spatial mapping and quantification of developmental branching morphogenesis.
Short, Kieran; Hodson, Mark; Smyth, Ian
2013-01-15
Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it. As a consequence, although many developmentally important genes are proposed to influence branching morphogenesis, we have no way of objectively assessing their individual contributions to this process. We report the development of a method for accurately quantifying many aspects of branching morphogenesis and we demonstrate its application to the study of organ development. As proof of principle we have employed this approach to analyse the developing mouse lung and kidney, describing the spatial characteristics of the branching ureteric bud and pulmonary epithelia. To demonstrate further its capacity to profile unrecognised genetic contributions to organ development, we examine Tgfb2 mutant kidneys, identifying elements of both developmental delay and specific spatial dysmorphology caused by haplo-insufficiency for this gene. This technical advance provides a crucial resource that will enable rigorous characterisation of the genetic and environmental factors that regulate this essential and evolutionarily conserved developmental mechanism.
Heat Transfer Processes Linking Fire Behavior and Tree Mortality
NASA Astrophysics Data System (ADS)
Michaletz, S. T.; Johnson, E. A.
2004-12-01
Traditional methods for predicting post-fire tree mortality employ statistical models which neglect the processes linking fire behavior to physiological mortality mechanisms. Here we present a physical process approach which predicts tree mortality by linking fireline intensity with lateral (vascular cambium) and apical (vegetative bud) meristem necrosis. We use a linefire plume model with independently validated conduction and lumped capacitance heat transfer analyses to predict lethal meristem temperatures in tree stems, branches, and buds. These models show that meristem necrosis in large diameter (Bi ≥ 0.3) stems/branches is governed by meristem height, bark thickness, and bark water content, while meristem necrosis in small diameter (Bi < 0.3) branches/buds is governed by meristem height, branch/bud size, branch/bud water content, and foliage architecture. To investigate effects of interspecfic variation in these properties, we compare model results for Picea glauca (Moench) Voss and Pinus contorta Loudon var. latifolia Engelm. at fireline intensities from 50 to 3000 kWm-1. Parameters are obtained from allometric models which relate stem/branch diameter to bark thickness and height, as well as bark and bud water content data collected in the southern Canadian Rocky Mountains. Variation in foliage architecture is quantified using forced convection heat transfer coefficients measured in a laminar flow wind tunnel at Re from 100 to 2000, typical for branches/buds in a linefire plume. Results indicate that in unfoliated stems/branches, P. glauca meristems are more protected due to thicker bark, whereas in foliated branches/buds, P. contorta meristems are more protected due to larger bud size and foliage architecture.
Kaethner, R J; Stuermer, C A
1992-08-01
In a variety of species, developing retinal axons branch initially more widely in their visual target centers and only gradually restrict their terminal arbors to smaller and defined territories. Retinotectal axons in fish, however, appeared to grow in a directed manner and to arborize only at their retinotopic target sites. To visualize the dynamics of retinal axon growth and arbor formation in fish, time-lapse recordings were made of individual retinal ganglion cell axons in the tectum in live zebrafish embryos. Axons were labeled with the fluorescent carbocyanine dyes Dil or DiO inserted as crystals into defined regions of the retina, viewed with 40x and 100x objectives with an SIT camera, and recorded, with exposure times of 200 msec at 30 or 60 sec intervals, over time periods of up to 13 hr. (1) Growth cones advanced rapidly, but the advance was punctuated by periods of rest. During the rest periods, the growth cones broadened and developed filopodia, but during extension they were more streamlined. (2) Growth cones traveled unerringly into the direction of their retinotopic targets without branching en route. At their target and only there, the axons began to form terminal arborizations, a process that involved the emission and retraction of numerous short side branches. The area that was permanently occupied or touched by transient branches of the terminal arbor--"the exploration field"--was small and almost circular and covered not more than 5.3% of the entire tectal surface area, but represented up to six times the size of the arbor at any one time. These findings are consistent with the idea that retinal axons are guided to their retinotopic target sites by sets of positional markers, with a graded distribution over the axes of the tectum.
Simple model of inhibition of chain-branching combustion processes
NASA Astrophysics Data System (ADS)
Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.
2017-11-01
A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.
Measurement of the absolute branching fraction of D s 0 * ( 2317 ) ± → π 0 D s ±
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
The process e +e - →more » $$D_{s}^*$$ +$$D_{s0}^*$$(2317) - +c.c. is observed for the first time with the data sample of 567 pb -1 collected with the BESIII detector operating at the BEPCII collider at a center-of-mass energy ps = 4.6 GeV. The statistical significance of the D s0(2317) ± signal is 5.8 and the mass is measured to be (2318.3 ± 1.2 ± 1.2) MeV/c 2. The absolute branching fraction B($$D_{s0}^*$$(2317) ± → π 0$$D_s^±$$) is measured as $$1.00_{-0.14}^{+0.00}$$(stat)$$_{-0.14}^{+0.00}$$(syst) for the first time. The uncertainties are statistical and systematic, respectively.« less
Measurement of the absolute branching fraction of D s 0 * ( 2317 ) ± → π 0 D s ±
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2018-03-01
The process e +e - →more » $$D_{s}^*$$ +$$D_{s0}^*$$(2317) - +c.c. is observed for the first time with the data sample of 567 pb -1 collected with the BESIII detector operating at the BEPCII collider at a center-of-mass energy ps = 4.6 GeV. The statistical significance of the D s0(2317) ± signal is 5.8 and the mass is measured to be (2318.3 ± 1.2 ± 1.2) MeV/c 2. The absolute branching fraction B($$D_{s0}^*$$(2317) ± → π 0$$D_s^±$$) is measured as $$1.00_{-0.14}^{+0.00}$$(stat)$$_{-0.14}^{+0.00}$$(syst) for the first time. The uncertainties are statistical and systematic, respectively.« less
NASA Astrophysics Data System (ADS)
Rana, Dipankar; Gangopadhyay, Gautam
2003-01-01
We have analyzed the energy transfer process in a dendrimer supermolecule using a classical random walk model and an Eyring model of membrane permeation. Here the energy transfer is considered as a multiple barrier crossing process by thermal hopping on the backbone of a cayley tree. It is shown that the mean residence time and mean first passage time, which involve explicit local escape rates, depend upon the temperature, size of the molecule, core branching, and the nature of the potential energy landscape along the cayley tree architecture. The effect of branching tries to create a uniform distribution of mean residence time over the generations and the distribution depends upon the interplay of funneling and local rates of transitions. The calculation of flux at the steady state from the Eyring model also gives a useful idea about the rate when the dendrimeric system is considered as an open system where the core is absorbing the transported energy like a photosynthetic reaction center and a continuous supply of external energy is maintained at the peripheral nodes. The effect of the above parameters of the system are shown to depend on the steady-state flux that has a qualitative resemblence with the result of the mean first passage time approach.
Ruthazer, Edward S; Bachleda, Amelia R; Olavarria, Jaime F
2010-12-15
We combined fixed-tissue and time-lapse analyses to investigate the axonal branching phenomena underlying the development of topographically organized ipsilateral projections from area 17 to area 18a in the rat. These complementary approaches allowed us to relate static, large-scale information provided by traditional fixed-tissue analysis to highly dynamic, local, small-scale branching phenomena observed with two-photon time-lapse microscopy in acute slices of visual cortex. Our fixed-tissue data revealed that labeled area 17 fibers invaded area 18a gray matter at topographically restricted sites, reaching superficial layers in significant numbers by postnatal day 6 (P6). Moreover, most parental axons gave rise to only one or occasionally a small number of closely spaced interstitial branches beneath 18a. Our time-lapse data showed that many filopodium-like branches emerged along parental axons in white matter or deep layers in area 18a. Most of these filopodial branches were transient, often disappearing after several minutes to hours of exploratory extension and retraction. These dynamic behaviors decreased significantly from P4, when the projection is first forming, through the second postnatal week, suggesting that the expression of, or sensitivity to, cortical cues promoting new branch addition in the white matter is developmentally down-regulated coincident with gray matter innervation. Together, these data demonstrate that the development of topographically organized corticocortical projections in rats involves extensive exploratory branching along parental axons and invasion of cortex by only a small number of interstitial branches, rather than the widespread innervation of superficial cortical layers by an initially exuberant population of branches. © 2010 Wiley-Liss, Inc.
Ruthazer, Edward S.; Bachleda, Amelia R.; Olavarria, Jaime F.
2013-01-01
We combined fixed-tissue and time-lapse analyses to investigate the axonal branching phenomena underlying the development of topographically organized ipsilateral projections from area 17 to area 18a in the rat. These complementary approaches allowed us to relate static, large-scale information provided by traditional fixed-tissue analysis to highly dynamic, local, small-scale branching phenomena observed with two-photon time-lapse microscopy in acute slices of visual cortex. Our fixed-tissue data revealed that labeled area 17 fibers invaded area 18a gray matter at topographically restricted sites, reaching superficial layers in significant numbers by postnatal day 6 (P6). Moreover, most parental axons gave rise to only one or occasionally a small number of closely spaced interstitial branches beneath 18a. Our time-lapse data showed that many filopodium-like branches emerged along parental axons in white matter or deep layers in area 18a. Most of these filopo-dial branches were transient, often disappearing after several minutes to hours of exploratory extension and retraction. These dynamic behaviors decreased significantly from P4, when the projection is first forming, through the second postnatal week, suggesting that the expression of, or sensitivity to, cortical cues promoting new branch addition in the white matter is developmentally down-regulated coincident with gray matter innervation. Together, these data demonstrate that the development of topographically organized corticocortical projections in rats involves extensive exploratory branching along parental axons and invasion of cortex by only a small number of interstitial branches, rather than the widespread innervation of superficial cortical layers by an initially exuberant population of branches. PMID:21031561
Comparison of Sprint Reaction and Visual Reaction Times of Athletes in Different Branches
ERIC Educational Resources Information Center
Akyüz, Murat; Uzaldi, Basar Basri; Akyüz, Öznur; Dogru, Yeliz
2017-01-01
The aims of this study are to analyse sprint reaction and visual reaction times of female athletes of different branches competing in Professional leagues and to show the differences between them. 42 voluntary female athletes from various branches of Professional leagues of Istanbul (volleyball, basketball, handball) were included in the…
NASA Astrophysics Data System (ADS)
Zetterlind, Virgil E., III; Magee, Eric P.
2002-06-01
This study extends branch point tolerant phase reconstructor research to examine the effect of finite time delays and measurement error on system performance. Branch point tolerant phase reconstruction is particularly applicable to atmospheric laser weapon and communication systems, which operate in extended turbulence. We examine the relative performance of a least squares reconstructor, least squares plus hidden phase reconstructor, and a Goldstein branch point reconstructor for various correction time-delays and measurement noise scenarios. Performance is evaluated using a wave-optics simulation that models a 100km atmospheric propagation of a point source beacon to a transmit/receive aperture. Phase-only corrections are then calculated using the various reconstructor algorithms and applied to an outgoing uniform field. Point Strehl is used as the performance metric. Results indicate that while time delays and measurement noise reduce the performance of branch point tolerant reconstructors, these reconstructors can still outperform least squares implementations in many cases. We also show that branch point detection becomes the limiting factor in measurement noise corrupted scenarios.
Lirman
2000-08-23
Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gheorghescu, Anna Kaskova; Tywoniuk, Bartlomiej; Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4
Cadmium (Cd) has several industrial applications, and is found in tobacco products, a notable source of human exposure. Vascular endothelial cells are key targets of Cd toxicity. Here, we aim to quantify the alteration to vascular branching pattern following Cd exposure in the chick extra-embryonic membrane (EEM) using fractal analysis, and explore molecular cues to angiogenesis such as VEGF-A and VEGF-R2 expression following Cd treatment. Chicken embryos were incubated for 60 h to Hamburger–Hamilton developmental stage 16–17, then explanted and treated with 50 μL of 50 μmol cadmium acetate (CdAc) or an equivalent volume of equimolar sodium acetate (NaAc). Imagesmore » of embryos and their area vasculosa (AV) were captured and analyzed at 4 different time points (4, 8, 24 and 48 h) following treatment. Vascular branching in the AV was quantified using its fractal dimension (D{sub f}), estimated using a box counting method. Gallinaceous VEGF ELISA was used to measure the VEGF-A concentration in the EEM following treatment, with determination of the relative expression of VEGF-A and VEGF-R2 using quantitative real-time RT-PCR. Vascular branching increased monotonically in the control group at all time points. The anti-angiogenic effect of Cd exposure on the AV was reflected by a significant reduction in D{sub f} when compared with controls. D{sub f} was more markedly reduced in cultures with abnormal embryos. The expression of VEGF-A protein, and VEGF-A and VEGF-R2 mRNA were reduced in Cd-exposed EEMs. Both molecules contribute to growth, vessel sprouting and branching processes, which supports our findings using fractal analysis. - Highlights: • The chick area vasculosa was undersized in embryos exposed to 50 μM cadmium acetate. • Fractal dimension was reduced in the AV after Cd exposure, indicating decreased branching. • VEGF-A protein was decreased in Cd-treated extraembryonic membranes. • VEGF-A and VEGF-R2 mRNA was decreased in Cd-treated extraembryonic membranes. • Vascular effects were more notable in malformed embryo's AVs after Cd exposure.« less
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
NASA Astrophysics Data System (ADS)
Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon
For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.
Bera, Maitreyee; Ortel, Terry W.
2018-01-12
The U.S. Geological Survey, in cooperation with DuPage County Stormwater Management Department, is testing a near real-time streamflow simulation system that assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek and West Branch DuPage River drainage basins in DuPage County, Illinois. As part of this effort, the U.S. Geological Survey maintains a database of hourly meteorological and hydrologic data for use in this near real-time streamflow simulation system. Among these data are next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data, which are retrieved from the North Central River Forecasting Center of the National Weather Service. The DuPage County streamflow simulation system uses these quantitative precipitation forecast data to create streamflow predictions for the two simulated drainage basins. This report discusses in detail how these data are processed for inclusion in the Watershed Data Management files used in the streamflow simulation system for the Salt Creek and West Branch DuPage River drainage basins.
Huang, Xueqing; Ding, Jia; Effgen, Sigi; Turck, Franziska; Koornneef, Maarten
2013-08-01
Shoot branching is a major determinant of plant architecture. Genetic variants for reduced stem branching in the axils of cauline leaves of Arabidopsis were found in some natural accessions and also at low frequency in the progeny of multiparent crosses. Detailed genetic analysis using segregating populations derived from backcrosses with the parental lines and bulked segregant analysis was used to identify the allelic variation controlling reduced stem branching. Eight quantitative trait loci (QTLs) contributing to natural variation for reduced stem branching were identified (REDUCED STEM BRANCHING 1-8 (RSB1-8)). Genetic analysis showed that RSB6 and RSB7, corresponding to flowering time genes FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), epistatically regulate stem branching. Furthermore, FLOWERING LOCUS T (FT), which corresponds to RSB8 as demonstrated by fine-mapping, transgenic complementation and expression analysis, caused pleiotropic effects not only on flowering time, but, in the specific background of active FRI and FLC alleles, also on the RSB trait. The consequence of allelic variation only expressed in late-flowering genotypes revealed novel and thus far unsuspected roles of several genes well characterized for their roles in flowering time control. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Habasaki, Junko; Ueda, Akira
2011-02-28
Molecular dynamics simulations have been performed to study the glass transition for the soft core system with a pair potential φ(n)(r) = ε(σ∕r)(n) of n = 12. Using the compressibility factor, PV/Nk(B)T=P̃(ρ*), its phase diagram can be represented as a function of a reduced density, ρ∗ = ρ(ε∕k(B)T)(3∕n), where ρ = Nσ(3)∕V. In the present work, NVE relaxations to the glassy or crystalline states starting from the unstable states in the phase diagram have been revisited in details and compared with other processes. Relaxation processes can be characterized by the time dependence of the dynamical compressibility factor (PV/Nk(B)T)(t) (≡g(ρ(t)*)) on the phase diagram. In some cases, g(ρ(t)*) reached a crystal branch in the phase diagram; however, metastable states are found in many cases. With connecting points for the metastable states in the phase diagram, we can define a glass branch where the dynamics of particles are almost frozen. The structures observed there have common properties characterized as glasses. Although overlaps of glass forming process and nanocrystallization process are observed in some cases, these behaviors are distinguishable to each other by the characteristics of structures. There are several routes to the glass branch and we suggest that all of them are the glass transition.
The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees
NASA Astrophysics Data System (ADS)
Garavaglia, Alessandro; van der Hofstad, Remco; Woeginger, Gerhard
2017-09-01
Continuous-time branching processes describe the evolution of a population whose individuals generate a random number of children according to a birth process. Such branching processes can be used to understand preferential attachment models in which the birth rates are linear functions. We are motivated by citation networks, where power-law citation counts are observed as well as aging in the citation patterns. To model this, we introduce fitness and age-dependence in these birth processes. The multiplicative fitness moderates the rate at which children are born, while the aging is integrable, so that individuals receives a finite number of children in their lifetime. We show the existence of a limiting degree distribution for such processes. In the preferential attachment case, where fitness and aging are absent, this limiting degree distribution is known to have power-law tails. We show that the limiting degree distribution has exponential tails for bounded fitnesses in the presence of integrable aging, while the power-law tail is restored when integrable aging is combined with fitness with unbounded support with at most exponential tails. In the absence of integrable aging, such processes are explosive.
Clune, John W.; Denver, Judith M.
2012-01-01
Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.
"GSFC FSB Application of Perspective-Based Inspections"
NASA Technical Reports Server (NTRS)
Shell, Elaine; Shull, Forrest
2004-01-01
The scope of work described in our proposal consisted of developing inspection standards targeted to Branch-specific types of defects (gained from analysis of Branch project defect histories), and including Branch-relevant perspectives and questions to guide defect detection. The tailored inspection guidelines were to be applied on real Branch projects with support as needed from the technology infusion team. This still accurately describes the scope of work performed. It was originally proposed that the Perspective-Based inspection standard would be applied on three projects within the Branch: GPM, JWST, and SDO. Rather than apply the proposed standard to all three, we inserted a new step, in which the standard was instead applied on a single pilot project, cFE (described above). This decision was a good match for the Branch goals since, due to the "design for reuse" nature of cFE, inspections played an even more crucial than usual role in that development process. Also, since cFE is being designed to provide general-purpose functionality, key representatives fiom our target projects were involved in inspections of cFE to provide perspectives from different missions. In this way, they could get some exposure to and the chance to provide feedback on the proposed standards before applying them on their own projects. The Branch-baselined standards will still be applied on GPM, JWST, and SDO, although outside the time frame of this funding. Finally, we originally proposed using the analysis of Branch defect sources to indicate in which phases Perspective-Based inspections could provide the best potential for future improvement, although experience on previous Branch projects suggested that our efforts would likely be focused on requirements and code inspections. In the actual work, we focused exclusively on requirements inspections, as this was the highest-priority work currently being done on our cFE pilot project.
Software Engineering Research/Developer Collaborations (C104)
NASA Technical Reports Server (NTRS)
Shell, Elaine; Shull, Forrest
2005-01-01
The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with the technology provider (Dr. Forrest Shull) past the end of the grant, to allow a more rigorous quantitative evaluation.
Allman, Elizabeth S; Degnan, James H; Rhodes, John A
2011-06-01
Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.
Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J
2015-03-15
Extrusion processing of cereal starch granules with high (>50%) amylose content is a promising approach to create nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine. Whilst high amylose content seems to be required, the structural features responsible for the slow digestion of extrudates are not fully understood. We report the effects of partial enzyme digestion of extruded maize starches on amylopectin branch length profiles, double and single helix contents, crystallinity and lamellar periodicity. Comparing results for three extruded maize starches (27, 57, and 84% apparent amylose) that differ in amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. Enzyme resistance is shown to originate from a combination of molecular and mesoscopic factors, including both recrystallization and an increase in very short branches during the digestion process. This is in contrast to the behaviour of the same starches in the granular form (Shrestha et al., 2012) where molecular and mesoscopic factors are secondary to microscopic structures in determining enzyme susceptibility. Based on the structure of residual material after long-time digestion (>8h), a model for resistant starch from processed high amylose maize starches is proposed based on a fringed micelle structure with lateral aggregation and enzyme susceptibility both limited by attached clusters of branch points. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard
2014-01-01
Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning. PMID:25071813
Time Dependent Models of Grain Formation Around Carbon Stars
NASA Technical Reports Server (NTRS)
Egan, M. P.; Shipman, R. F.
1996-01-01
Carbon-rich Asymptotic Giant Branch stars are sites of dust formation and undergo mass loss at rates ranging from 10(exp -7) to 10(exp -4) solar mass/yr. The state-of-the-art in modeling these processes is time-dependent models which simultaneously solve the grain formation and gas dynamics problem. We present results from such a model, which also includes an exact solution of the radiative transfer within the system.
Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng
2017-10-01
This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches
NASA Astrophysics Data System (ADS)
Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.
2016-08-01
Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.
Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches.
Michiels van Kessenich, L; de Arcangelis, L; Herrmann, H J
2016-08-18
Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.
Ultrasonically enhanced extraction of bioactive principles from Quillaja Saponaria Molina.
Gaete-Garretón, L; Vargas-Hernández, Yolanda; Cares-Pacheco, María G; Sainz, Javier; Alarcón, John
2011-07-01
A study of ultrasonic enhancement in the extraction of bioactive principles from Quillaja Saponaria Molina (Quillay) is presented. The effects influencing the extraction process were studied through a two-level factorial design. The effects considered in the experimental design were: granulometry, extraction time, acoustic Power, raw matter/solvent ratio (concentration) and acoustic impedance. It was found that for aqueous extraction the main factors affecting the ultrasonically-assisted process were: granulometry, raw matter/solvent ratio and extraction time. The extraction ratio was increased by Ultrasonics effect and a reduction in extraction time was verified without any influence in the product quality. In addition the process can be carried out at lower temperatures than the conventional method. As the process developed uses chips from the branches of trees, and not only the bark, this research contributes to make the saponin exploitation process a sustainable industry. Copyright © 2010 Elsevier B.V. All rights reserved.
Derrida, Bernard; Meerson, Baruch; Sasorov, Pavel V
2016-04-01
Consider a one-dimensional branching Brownian motion and rescale the coordinate and time so that the rates of branching and diffusion are both equal to 1. If X_{1}(t) is the position of the rightmost particle of the branching Brownian motion at time t, the empirical velocity c of this rightmost particle is defined as c=X_{1}(t)/t. Using the Fisher-Kolmogorov-Petrovsky-Piscounov equation, we evaluate the probability distribution P(c,t) of this empirical velocity c in the long-time t limit for c>2. It is already known that, for a single seed particle, P(c,t)∼exp[-(c^{2}/4-1)t] up to a prefactor that can depend on c and t. Here we show how to determine this prefactor. The result can be easily generalized to the case of multiple seed particles and to branching random walks associated with other traveling-wave equations.
A master equation approach to actin polymerization applied to endocytosis in yeast.
Wang, Xinxin; Carlsson, Anders E
2017-12-01
We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin "nucleation promoting factors" (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs.
NASA Technical Reports Server (NTRS)
2003-01-01
Spanning over 4 decades, NASA's bolt tension monitoring technology has benefited automakers, airplane builders, and other major manufacturers that rely on the devices to evaluate the performance of computerized torque wrenches and other assembly line mechanisms. In recent years, the advancement of ultrasonic sensors has drastically eased this process for users, ensuring that proper tension and torque are being applied to bolts and fasteners, with less time needed for data analysis. Langley Research Center s Nondestructive Evaluation Branch is one of the latest NASA programs to incorporate ultrasonic sensors within a bolt tension measurement instrument. As a multi-disciplined research group focused on spacecraft and aerospace transportation safety, one of the branch s many commitments includes transferring problem solutions to industry. In 1998, the branch carried out this obligation in a licensing agreement with Micro Control, Inc., of West Bloomfield, Michigan. Micro Control, an automotive inspection company, obtained the licenses to two Langley patents to provide an improved-but-inexpensive means of ultrasonic tension measurement.
A master equation approach to actin polymerization applied to endocytosis in yeast
Wang, Xinxin
2017-01-01
We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin “nucleation promoting factors” (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs. PMID:29240771
Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids
USDA-ARS?s Scientific Manuscript database
Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...
Harris, W A; Holt, C E; Bonhoeffer, F
1987-09-01
Time-lapse video recordings were made of individual retinal ganglion cell fibres growing to and terminating in the optic tectum of Xenopus embryos. The fibres were stained by inserting a crystal of the lipophilic fluorescent dye, DiI, into the developing retina. Growth cones were observed in the optic tract and tectum using 20 ms flashes of light to induce fluorescence approximately once every minute. Fluorescent images were captured with a SIT camera, processed and saved on a time-lapse video recorder. The main conclusions from observing normal growing fibres are as follows. (1) Axons in the optic tract grow at a steady rate directly toward their targets without retracting or branching. (2) As axons approach the tectum they slow down and their growth cones become more complex. (3) Most terminal branches in the tectum are formed by back branching rather than by bifurcation of leading growth cones. In a second experiment, labelled growing axons were separated from their cell bodies by removing the retina. Such isolated axons continued to grow for up to 3 h in vivo and were capable of recognizing the tectum and arborizing there. This result shows that growth cones must contain the machinery needed to sense and respond to their specific pathways and targets.
Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.
Piotrowski-Daspit, Alexandra S; Nelson, Celeste M
2016-07-10
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
Are triggering rates of labquakes universal? Inferring triggering rates from incomplete information
NASA Astrophysics Data System (ADS)
Baró, Jordi; Davidsen, Jörn
2017-12-01
The acoustic emission activity associated with recent rock fracture experiments under different conditions has indicated that some features of event-event triggering are independent of the details of the experiment and the materials used and are often even indistinguishable from tectonic earthquakes. While the event-event triggering rates or aftershock rates behave pretty much identical for all rock fracture experiments at short times, this is not the case for later times. Here, we discuss how these differences can be a consequence of the aftershock identification method used and show that the true aftershock rates might have two distinct regimes. Specifically, tests on a modified Epidemic-Type Aftershock Sequence model show that the model rates cannot be correctly inferred at late times based on temporal information only if the activity rates or the branching ratio are high. We also discuss both the effect of the two distinct regimes in the aftershock rates and the effect of the background rate on the inter-event time distribution. Our findings should be applicable for inferring event-event triggering rates for many other types of triggering and branching processes as well.
Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi
2015-01-01
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057
DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Quanhao; Wang, Yuming; Hu, Youqiu
2016-07-10
2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump ismore » here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.« less
Pan, Ling-Yun; Pan, Gen-Cai; Zhang, Yong-Lai; Gao, Bing-Rong; Dai, Zhen-Wen
2013-02-01
As the priority of interconnects and active components in nanoscale optical and electronic devices, three-dimensional hyper-branched nanostructures came into focus of research. Recently, a novel crystallization route, named as "nonclassical crystallization," has been reported for three-dimensional nanostructuring. In this process, Quantum dots are used as building blocks for the construction of the whole hyper-branched structures instead of ions or single-molecules in conventional crystallization. The specialty of these nanostructures is the inheritability of pristine quantum dots' physical integrity because of their polycrystalline structures, such as quantum confinement effect and thus the luminescence. Moreover, since a longer diffusion length could exist in polycrystalline nanostructures due to the dramatically decreased distance between pristine quantum dots, the exciton-exciton interaction would be different with well dispersed quantum dots and single crystal nanostructures. This may be a benefit for electron transport in solar cell application. Therefore, it is very necessary to investigate the exciton-exciton interaction in such kind of polycrystalline nanostructures and their optical properites for solar cell application. In this research, we report a novel CdTe hyper-branched nanostructures based on self-assembly of CdTe quantum dots. Each branch shows polycrystalline with pristine quantum dots as the building units. Both steady state and time-resolved spectroscopy were performed to investigate the properties of carrier transport. Steady state optical properties of pristine quantum dots are well inherited by formed structures. While a suppressed multi-exciton recombination rate was observed. This result supports the percolation of carriers through the branches' network.
Wartime Personnel Assessment Model (WARPAM) (Version 1.0). Programmer’s Manual
1991-01-31
UUCUM. YES YES WIESLAM NO TIME a No OUTPUT TO j R N8 REMAI PR.U ILE POrN SUBROUTINE MOVES TO NuIaA NEXT TIME PERIOD. BRANCH OR END PROCESSING FIGURE 10...8217CST’)I &.AND.(TYP.NE.’CSB’))GOTO 1.5 j j +1 I VARHLD(J1I) - TP VARHLD(J,2) - CATBRG VARHLD(J,3) - SEXI 210 VARHLD(J,4) - TYPI VARHLD(J,5) - REQT
Omi, Takahiro; Hirata, Yoshito; Aihara, Kazuyuki
2017-07-01
A Hawkes process model with a time-varying background rate is developed for analyzing the high-frequency financial data. In our model, the logarithm of the background rate is modeled by a linear model with a relatively large number of variable-width basis functions, and the parameters are estimated by a Bayesian method. Our model can capture not only the slow time variation, such as in the intraday seasonality, but also the rapid one, which follows a macroeconomic news announcement. By analyzing the tick data of the Nikkei 225 mini, we find that (i) our model is better fitted to the data than the Hawkes models with a constant background rate or a slowly varying background rate, which have been commonly used in the field of quantitative finance; (ii) the improvement in the goodness-of-fit to the data by our model is significant especially for sessions where considerable fluctuation of the background rate is present; and (iii) our model is statistically consistent with the data. The branching ratio, which quantifies the level of the endogeneity of markets, estimated by our model is 0.41, suggesting the relative importance of exogenous factors in the market dynamics. We also demonstrate that it is critically important to appropriately model the time-dependent background rate for the branching ratio estimation.
Posture and activity recognition and energy expenditure estimation in a wearable platform.
Sazonov, Edward; Hegde, Nagaraj; Browning, Raymond C; Melanson, Edward L; Sazonova, Nadezhda A
2015-07-01
The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here, we describe the use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time recognition of various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we compare the use of support vector machines (SVM), multinomial logistic discrimination (MLD), and multilayer perceptrons (MLP) for posture and activity classification followed by activity-branched EE estimation. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a 4-h stay in a room calorimeter. MLD and MLP demonstrated activity classification accuracy virtually identical to SVM (∼ 95%) while reducing the running time and the memory requirements by a factor of >10 3. Comparison of per-minute EE estimation using activity-branched models resulted in accurate EE prediction (RMSE = 0.78 kcal/min for SVM and MLD activity classification, 0.77 kcal/min for MLP versus RMSE of 0.75 kcal/min for manual annotation). These results suggest that low-power computational algorithms can be successfully used for real-time physical activity monitoring and EE estimation on a wearable platform.
NASA Astrophysics Data System (ADS)
Omi, Takahiro; Hirata, Yoshito; Aihara, Kazuyuki
2017-07-01
A Hawkes process model with a time-varying background rate is developed for analyzing the high-frequency financial data. In our model, the logarithm of the background rate is modeled by a linear model with a relatively large number of variable-width basis functions, and the parameters are estimated by a Bayesian method. Our model can capture not only the slow time variation, such as in the intraday seasonality, but also the rapid one, which follows a macroeconomic news announcement. By analyzing the tick data of the Nikkei 225 mini, we find that (i) our model is better fitted to the data than the Hawkes models with a constant background rate or a slowly varying background rate, which have been commonly used in the field of quantitative finance; (ii) the improvement in the goodness-of-fit to the data by our model is significant especially for sessions where considerable fluctuation of the background rate is present; and (iii) our model is statistically consistent with the data. The branching ratio, which quantifies the level of the endogeneity of markets, estimated by our model is 0.41, suggesting the relative importance of exogenous factors in the market dynamics. We also demonstrate that it is critically important to appropriately model the time-dependent background rate for the branching ratio estimation.
The effect of federal health policy on occupational medicine.
McCunney, R J; Cikins, W
1990-01-01
All three branches of the federal government affect occupational medicine. Notable examples include: 1) the Department of Transportation ruling (1988) requiring drug testing in diverse areas of the transportation industry (executive branch); 2) the Workplace Drug Act (1988) calling for organizations to have a policy towards drug and alcohol abuse (legislative branch); and 3) the Supreme Court ruling on the constitutionality of drug testing in the transportation industry (1989) and that infectious diseases are a handicap in accordance with the 1973 Federal Rehabilitation Act (1987). The executive branch plays a major role in occupational medicine primarily through the Occupational Safety and Health Administration (OSHA), which issues standards based on a rule making process; the executive branch can also affect occupational medicine indirectly, as evidenced by President Reagan's Executive Order 12291 calling for Office of Management and Budget oversight of regulatory initiatives. The legislative branch enacts laws, conducts hearings, and requests reports on the operations of federal agencies. The judicial branch addresses occupational health issues when people affected by an executive ruling want to challenge the ruling; or in the case of the Supreme Court, when deliberating an issue over which two circuit courts of appeal have come to divergent opinions. The Occupational Medicine profession can participate in the political process through awareness of proposed legislation and by responding accordingly with letters, resolutions, or testimony. Similar options exist within the executive branch by participating in the rule-making process. A representative of the Governmental Affairs Committee, through periodic visits with key Washington representatives, can keep members of the American College of Occupational Medicine informed about federal legislative and regulatory activities. In appropriate cases, the organization can then take a formal position on governmental activities that affect the speciality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Sheng; Piao Yunsong; Liu Yang
2009-12-15
In a given path with multiple branches, in principle, it can be expected that there are some fork points, where one branch is bifurcated into different branches, or various branches converge into one or several branches. In this paper, it is shown that if there is a web formed by such branches in a given field space, in which each branch can be responsible for a period of slow roll inflation, a multiverse separated by a domain wall network will come into being, some of which might correspond to our observable universe. We discuss this scenario and show possible observationsmore » of a given observer at late time.« less
Bud development and shoot morphology in relation to crown location
Kukk, Maarja; Sõber, Anu
2015-01-01
Plant architecture is shaped by endogenous growth processes interacting with the local environment. The current study investigated crown development in young black alder trees, assessing the effects of local light conditions and branch height on individual bud mass and contents. In addition, we examined the characteristics of parent shoots [the cross-sectional area (CSA) of stem and total leaf area, shoot length, the number of nodes, the number and total mass of buds per shoot] and leaf–stem as well as bud–stem allometry, as several recent studies link bud development to hydraulic architecture. We sampled shoots from top branches and two lower-crown locations: one subjected to deep shade and the other resembling the upper branches in light availability. Sampling was carried out three times between mid-July and late October, spanning from the early stages of bud growth to dormancy. Individual bud mass and shoot characteristics varied in response to light conditions, whereas leaf–stem allometry depended on branch height, most likely compensating for the increasing length of hydraulic pathways. Despite the differences in individual bud mass, the number of preformed leaves varied little across the crown, indicating that the plasticity in shoot characteristics was mainly achieved by neoformation. The relationship between total bud mass and stem CSA scaled similarly across crown locations. However, scaling slopes gradually decreased throughout the sampling period, driven by bud rather than by stem growth. This suggests that the allometry of total bud mass and CSA of stem is regulated locally, instead of resulting from crown-level processes. PMID:26187607
Application Profile Matching Method for Employees Online Recruitment
NASA Astrophysics Data System (ADS)
Sunarti; Rangga, Rahmadian Y.; Marlim, Yulvia Nora
2017-12-01
Employees is one of the determinant factors of company’s success. Thus, reliable human resources are needed to support the survival of the company. This research takes case study at PT. Asuransi Bina Dana Arta, Tbk Pekanbaru Branch. Employee recruitment system at PT. Asuransi Bina Dana Arta, Tbk Pekanbaru Branch still uses manual system as seen in application letter files file so it needs long time to determine accepted and rejected the application. For that it needs to built a system or application that allows companies in determining employees who accepted or rejected easily. Pofile Matching Method is a process of competency assessment that is done by comparing the value of written, psychological and interview test between one applicationt with other. PT. Asuransi Bina Dana Arta, Tbk Pekanbaru branch set the percentage to calculate NCF (Core Factor Value) by 60% and NSF (Secondary Factor Value) by 40%, and set the percentage to calculate the total value of written test by 40%, the total value of psycho test by 30%, and the total value of interview 30%. The final result of this study is to determine the rank or ranking of each applicant based on the greater value which, the greater that score of final result of an application get, the greater the chance of the applicant occupy a position or vacancy. Online Recruitment application uses profile matching method can help employee selection process and employee acceptance decisions quickly. This system can be viewed by directors or owners anywhere because it is online and used for other company branch
Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour
2000-01-01
A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the state line were dominantly cow and horse with one ribotype from bird. Escherichia coli was detected in only one well sample. Bacterial ribotypes in water from that upgradient well indicated human and dog feces as sources for bacteria, and that on site wastewater treatment may not always be adequate in these highly permeable soils. Greater concentrations of nitrate in Cave Springs Branch and O'Brien Spring relative to the poultry-processing plant wastewater outfall may be due, in part, to conversion of ammonia from poultry processing plant wastewater. The poultry-processing plant wastewater outfall sample collected in March 2000 contained greater concentrations of ammonia and total organic nitrogen plus ammonia than the spring, stream, and well samples collected during August 1999. Cave Springs Branch and Honey Creek contributed approximately equal loads of nitrogen to Honey Creek below the confluence and the greatest loads of nitrogen were introduced to Cave Springs Branch by the poultry processing plant wastewater outfall and O'Brien Spring. Nitrate concentrations in upgradient well samples ranged from 0.38 to 4.60 milligrams per liter, indicating that there are sources of ground-water nitrogen other than Cave Springs Branch, such as animal waste, fertilizer, or human waste. Nitrogen compounds in water from wells downgradient of Cave Springs Branch may be from Cave Springs Branch, fertilizers, animal waste, or human waste.
Turing mechanism underlying a branching model for lung morphogenesis.
Xu, Hui; Sun, Mingzhu; Zhao, Xin
2017-01-01
The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.
β -decay of very neutron-rich Pd and Ag nuclei
NASA Astrophysics Data System (ADS)
Smith, Karl; S323 / S410 Collaboration
2013-10-01
The astrophysical origin of about half of the elements heavier than iron have been attributed to the rapid neutron capture process. The modeling of such a process requires not only the correct astrophysical conditions but also reliable nuclear physics. The properties of neutron-rich nuclei in the region just below the N = 82 shell closure are of particular interest as they are responsible for the A = 130 peak in the solar abundance pattern. An experiment to investigate half-lives and β-delayed neutron emission branching ratios of very neutron-rich Pd and Ag isotopes was performed at the GSI projectile FRagment Separator (FRS). The FRS was used to separate products from in-flight fission of a 900 MeV/u 238U beam. Ions of interest were then implanted in the Silicon IMplantation detector and Beta Absorber (SIMBA) array. The high pixelation of the implantation detectors allowed for time-position correlation of the order of several seconds between implants and decays. Neutrons emitted during the decay were detected by the BEta deLayEd Neutron detector (BELEN) which surrounded the SIMBA array. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.
Scheduling multirobot operations in manufacturing by truncated Petri nets
NASA Astrophysics Data System (ADS)
Chen, Qin; Luh, J. Y.
1995-08-01
Scheduling of operational sequences in manufacturing processes is one of the important problems in automation. Methods of applying Petri nets to model and analyze the problem with constraints on precedence relations, multiple resources allocation, etc. have been available in literature. Searching for an optimum schedule can be implemented by combining the branch-and-bound technique with the execution of the timed Petri net. The process usually produces a large Petri net which is practically not manageable. This disadvantage, however, can be handled by a truncation technique which divides the original large Petri net into several smaller size subnets. The complexity involved in the analysis of each subnet individually is greatly reduced. However, when the locally optimum schedules of the resulting subnets are combined together, it may not yield an overall optimum schedule for the original Petri net. To circumvent this problem, algorithms are developed based on the concepts of Petri net execution and modified branch-and-bound process. The developed technique is applied to a multi-robot task scheduling problem of the manufacturing work cell.
Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel
2015-01-01
The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868
Absolute measurement of hadronic branching fractions of the Ds+ meson.
Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L
2008-04-25
The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.
Absolute Measurement of Hadronic Branching Fractions of the Ds+ Meson
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.
2008-04-01
The branching fractions of Ds± meson decays serve to normalize many measurements of processes involving charm quarks. Using 298pb-1 of e+e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight Ds± decays with a double tag technique. In particular we determine the branching fraction B(Ds+→K-K+π+)=(5.50±0.23±0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K-K+π+ decay mode.
Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira
2010-06-16
This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New analytic results for speciation times in neutral models.
Gernhard, Tanja
2008-05-01
In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the "critical branching process." We develop an analytic way-as opposed to the common simulation approach-for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.
Automatic Generation of Cycle-Approximate TLMs with Timed RTOS Model Support
NASA Astrophysics Data System (ADS)
Hwang, Yonghyun; Schirner, Gunar; Abdi, Samar
This paper presents a technique for automatically generating cycle-approximate transaction level models (TLMs) for multi-process applications mapped to embedded platforms. It incorporates three key features: (a) basic block level timing annotation, (b) RTOS model integration, and (c) RTOS overhead delay modeling. The inputs to TLM generation are application C processes and their mapping to processors in the platform. A processor data model, including pipelined datapath, memory hierarchy and branch delay model is used to estimate basic block execution delays. The delays are annotated to the C code, which is then integrated with a generated SystemC RTOS model. Our abstract RTOS provides dynamic scheduling and inter-process communication (IPC) with processor- and RTOS-specific pre-characterized timing. Our experiments using a MP3 decoder and a JPEG encoder show that timed TLMs, with integrated RTOS models, can be automatically generated in less than a minute. Our generated TLMs simulated three times faster than real-time and showed less than 10% timing error compared to board measurements.
Diurnal patterns of branch movement in a desert shrub (Larrea tridentata) track hydraulic stress
NASA Astrophysics Data System (ADS)
Hallmark, A.
2016-12-01
Near-surface, repeat digital photography has emerged as a powerful tool to collect continuous observations of plant traits of individuals and communities across daily, seasonal, and annual time scales. To date, this technology has largely been used to detect patterns of vegetative phenology or "canopy greenness." Little work has been done to use digital photographs to quantify changes in canopy structure or shifts in canopy function on shorter time scales. In this study, we tracked the position of creosote (Larrea tridentata) branches using a timeseries of photos taken in a creosote-dominated shrubland in central New Mexico, USA where radiation, temperature, humidity, soil water content, soil water potential, and stem water potential were also measured. We found that both living and dead woody branches displayed dramatic diurnal patterns of movement, with shrubs only 1-2 m in height sometimes undergoing vertical shifts in branch position of over 0.25 m and changes in branch angle of over 20 degrees. Although circadian rhythms in plants are often attributed to cyclical patterns of photoperiod or temperature, we found that creosote branch movements were best correlated with diurnal changes in stem water potential and atmospheric humidity and that this correlation was stronger under wetter soil conditions. Branches were straighter and oriented in higher positions in times of low hydraulic stress, possibly preparing the creosote to better capture moisture via stemflow. Branches were oriented lower to the ground in times of high hydraulic stress, possibly providing more shade and reducing soil evaporation beneath the base of the shrub. To our knowledge, this is the first study to describe diurnal patterns of branch movements in creosote and is the most extensive dataset of observations of diurnal movements in any woody plant. It provides more knowledge about the biology of a desert shrub, but also offers novel methods for using repeat digital photography to gain inferences about plant form and function.
Lyzohub, V H; Zaval's'ka, T V; Savchenko, O V; Tyravs'ka, Iu V
2013-01-01
Branched-chain amino acids play the key role in many metabolism processes in organism generally and in cardiovascular protection. It was discovered its importance in mitochondrial biogenesis, antioxidant and antiaging processes, its antihypertension and antiarrhythmic effects, its role in obesity and diabetes mellitus.
NASA Astrophysics Data System (ADS)
Yu, Qi; Wang, Xinghao; Li, Qiu; Gong, Yimin; Dai, Zhenwen
2018-06-01
Natural radiative lifetimes for five even-parity levels of Tm III were measured by time-resolved laser-induced fluorescence method. The branching fraction measurements were performed based on the emission spectra of a hollow cathode lamp. By combining the measured branching fractions and the lifetime values reported in this work and in literature, experimental transition probabilities and oscillator strengths for 11 transitions were derived for the first time.
NASA Astrophysics Data System (ADS)
Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.
2018-01-01
The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.
Irimia, Jose M.; Tagliabracci, Vincent S.; Meyer, Catalina M.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.
2015-01-01
Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. PMID:26216881
Gervais, Louis; Casanova, Jordi
2011-04-01
Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here, we establish the relative contributions of the Drosophila homologues of FGF [Branchless (BNL)] and SRF [Blistered (BS)] in terminal tracheal branching. Conversely to an extended view, we show that BNL triggers terminal branching initiation in a DSRF-independent mechanism and that DSRF transcription induced by BNL signalling is required to maintain terminal branch elongation. Moreover, we report that increased and continuous FGF signalling can trigger tracheal cells to develop full-length terminal branches in the absence of DSRF transcription. Our results indicate that DSRF acts as an amplifying step to sustain the progression of terminal branch elongation even in the wild-type conditions of FGF signalling.
Cost-effective and monitoring-active technique for TDM-passive optical networks
NASA Astrophysics Data System (ADS)
Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang
2014-08-01
A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.
2015-12-01
The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.
NASA Technical Reports Server (NTRS)
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
Virus replication as a phenotypic version of polynucleotide evolution.
Antoneli, Fernando; Bosco, Francisco; Castro, Diogo; Janini, Luiz Mario
2013-04-01
In this paper, we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius et al. (Bull. Math. Biol. 46:239-262, 1985), in their study of polynucleotide evolution. By taking into account beneficial effects, we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model, which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull et al. (J. Virol. 18:2930-2939, 2007), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium", and transient. Finally, based on these quantitative results, we are able to draw some qualitative conclusions.
Inference of epidemiological parameters from household stratified data
Walker, James N.; Ross, Joshua V.
2017-01-01
We consider a continuous-time Markov chain model of SIR disease dynamics with two levels of mixing. For this so-called stochastic households model, we provide two methods for inferring the model parameters—governing within-household transmission, recovery, and between-household transmission—from data of the day upon which each individual became infectious and the household in which each infection occurred, as might be available from First Few Hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo that allows us to calculate a joint posterior distribution for all parameters and hence the household reproduction number and the early growth rate of the epidemic. The first method performs exact Bayesian inference using a standard data-augmentation approach; the second performs approximate Bayesian inference based on a likelihood approximation derived from branching processes. These methods are compared for computational efficiency and posteriors from each are compared. The branching process is shown to be a good approximation and remains computationally efficient as the amount of data is increased. PMID:29045456
Neutron capture studies with a short flight path
NASA Astrophysics Data System (ADS)
Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René
The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.
Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study
NASA Astrophysics Data System (ADS)
Acosta, M.; Pavelka, M.
2012-04-01
Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity and seasonal dynamics than branches from the lower whorls. The results presented in this study serve primarily to demonstrate the importance of branch location within canopy from the point of view of the CO2 efflux. CO2 efflux from branch woody-tissue exhibited vertical differentiation among whorls that must be taken into account when collecting, analysis and interpreting data. The determination of CO2 efflux from individual components at ecosystem level is still needed to gain a better understanding of the carbon budget issues. Such data are important for evaluating effect of global climate or other possible influences on carbon cycling and sequestration in forest ecosystems. Acknowledgment: This work was support by the projects CZ.1.05/1.1.00/02.0073 from the Ministry of Education, Youth and Sports and LM2010007 from the Ministry of the Environmental of Czech Republic
Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Powers, Charles E.
2009-01-01
This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.
Seeing believes: Watching entangled sculpted branched DNA in real time
NASA Astrophysics Data System (ADS)
Jee, Ah-Young; Guan, Juan; Chen, Kejia; Granick, Steve
2015-03-01
The importance of branching in polymer physics is universally accepted but the details are disputed. We have sculpted DNA to various degrees of branching and used single-molecule tracking to image its diffusion in real time when entangled. By ligating three identical or varying length DNA segments, we construct symmetric and asymmetric ?Y? branches from elements of lambda-DNA with 16 um contour length, allowing for single-molecule visualization of equilibrium dynamics. Using home-written software, a full statistical distribution based on at least hundreds of trajectories is quantified with focus on discriminating arm-retraction from branch point motion. Some part of our observations is consistent with the anticipated ?relaxation through arm retraction? mechanism but other observations do not appear to be anticipated theoretically. Currently working as a researcher in Institute for Basic Science.
Uchida, Daisuke; Kato, Hironari; Muro, Shinichiro; Noma, Yasuhiro; Yamamoto, Naoki; Horiguchi, Shigeru; Harada, Ryo; Tsutsumi, Koichiro; Kawamoto, Hirofumi; Okada, Hiroyuki; Yamamoto, Kazuhide
2015-07-01
The treatment of biliary stricture is crucially important for continuing stable chemotherapy for unresectable biliary carcinoma; however, there is no consensus regarding the use of hilar biliary drainage. In this study, we examined the efficacy of endoscopic over 3-branched biliary drainage using self-expandable metallic stents (SEMSs) in patients with unresectable malignant hilar biliary stricture (HBS). A total of 77 patients with unresectable HBS treated with a SEMS and chemotherapy were retrospectively reviewed. There were 59 patients with cholangiocarcinoma and 18 patients with gallbladder carcinoma. The patients were divided into 2 groups (4- or 3-branched group and 2- or 1-branched group) and compared with respect to the duration of stent patency and overall survival. A comparison of the patients' baseline characteristics showed no significant differences between the 4- or 3-branched group and the 2- or 1-branched group. Neither the duration of patency nor survival time exhibited significant differences between the 2 groups, although, among the patients achieving disease control , the duration of patency period and survival time of the 4- or 3-branched group were significantly higher than those observed in the 2- or 1-branched group (P=0.0231 and 0.0466). The use of endoscopic over 3-branched biliary drainage with a SEMS may improve the duration of patency in patients with HBS.
Wave excitations of drifting two-dimensional electron gas under strong inelastic scattering
NASA Astrophysics Data System (ADS)
Korotyeyev, V. V.; Kochelap, V. A.; Varani, L.
2012-10-01
We have analyzed low-temperature behavior of two-dimensional electron gas in polar heterostructures subjected to a high electric field. When the optical phonon emission is the fastest relaxation process, we have found existence of collective wave-like excitations of the electrons. These wave-like excitations are periodic in time oscillations of the electrons in both real and momentum spaces. The excitation spectra are of multi-branch character with considerable spatial dispersion. There are one acoustic-type and a number of optical-type branches of the spectra. Their small damping is caused by quasi-elastic scattering of the electrons and formation of relevant space charge. Also there exist waves with zero frequency and finite spatial periods—the standing waves. The found excitations of the electron gas can be interpreted as synchronous in time and real space manifestation of well-known optical-phonon-transient-time-resonance. Estimates of parameters of the excitations for two polar heterostructures, GaN/AlGaN and ZnO/MgZnO, have shown that excitation frequencies are in THz-frequency range, while standing wave periods are in sub-micrometer region.
Probing the Inner Core with P'P'
NASA Astrophysics Data System (ADS)
Day, E. A.; Irving, J. C. E.
2015-12-01
Geophysical observations of the inner core today improve our understanding not just of the processes occurring in the core at the present, but also those that have occurred in the past. As the inner core freezes it may record clues as to the state of the Earth at the time of growth, although the texture of the inner core may also be modified through post-solidification mechanisms. The seismic structure of the inner core is not simple; the dominant pattern is one of anisotropic and isotropic differences between the Eastern and Western 'hemispheres' of the inner core. Additionally, there is evidence for an innermost inner core, layering of the uppermost inner core, and possibly super-rotation of the inner core relative to the mantle. Most body wave studies of inner core structure use PKP-PKIKP differential travel times to constrain velocity variations within the inner core. However, body wave studies are inherently limited by the geometry of fixed sources and stations, and thus there are some areas of the inner core that are relatively under-sampled, even in today's data-rich world. Here, we examine the differential travel times of the different branches of P'P' (PKIKPPKIKP and PKPPKP), comparing the arrival time of inner core sensitive branch, P'P'df, with the arrival times of branches that only reach the outer core. By using P'P' we are able to exploit alternative ray geometries and sample different regions of the inner core to those areas accessible to studies which utilize PKIKP. We use both linear and non-linear stacking methods to make observations of small amplitude P'P' phases. These measurements match the broad scale hemispherical pattern of anisotropy in the inner core.
Rosi Dagit; A. James Downer
2002-01-01
A total of 62 coast live oaks (Quercus agrifolia) were monitored since they were initially boxed for transplantation in 1993. At that time, only branches injured during the moving process and deadwood were removed, leaving the entire canopy intact. This was a departure from the usual transplanting methodology that traditionally removes up to 70...
Materials Processes (MP) Engineering Internship Projects
NASA Technical Reports Server (NTRS)
Tomsik, Elizabeth
2017-01-01
This poster illustrates my major and minor projects worked on during my entire time interning at KSC in the Materials Science Branch. My major projects consist of three Failure Analyses, a research project on Magnesium Alloys, and the manufacturing and mechanical testing of the Advanced Plant Habitat. My three Failure Analyses are Umbilical Testing Ground Plates, Lithium Ion Battery Locking Spring Blade, and a Liquid Oxygen Poppet.
The stochastic dance of early HIV infection
NASA Astrophysics Data System (ADS)
Merrill, Stephen J.
2005-12-01
The stochastic nature of early HIV infection is described in a series of models, each of which captures aspects of the dance of HIV during the early stages of infection. It is to this highly variable target that the immune response must respond. The adaptability of the various components of the immune response is an important aspect of the system's operation, as the nature of the pathogens that the response will be required to respond to and the order in which those responses must be made cannot be known beforehand. As HIV infection has direct influence over cells responsible for the immune response, the dance predicts that the immune response will be also in a variable state of readiness and capability for this task of adaptation. The description of the stochastic dance of HIV here will use the tools of stochastic models, and for the most part, simulation. The justification for this approach is that the early stages and the development of HIV diversity require that the model to be able to describe both individual sample path and patient-to-patient variability. In addition, as early viral dynamics are best described using branching processes, the explosive growth of these models both predicts high variability and rapid response of HIV to changes in system parameters.In this paper, a basic viral growth model based on a time dependent continuous-time branching process is used to describe the growth of HIV infected cells in the macrophage and lymphocyte populations. Immigration from the reservoir population is added to the basic model to describe the incubation time distribution. This distribution is deduced directly from the modeling assumptions and the model of viral growth. A system of two branching processes, one in the infected macrophage population and one in the infected lymphocyte population is used to provide a description of the relationship between the development of HIV diversity as it relates to tropism (host cell preference). The role of the immune response to HIV and HIV infected cells is used to describe the movement of the infection from a few infected macrophages to a disease of infected CD4+ T lymphocytes.
Quantifying Standing Dead Tree Volume and Structural Loss with Voxelized Terrestrial Lidar Data
NASA Astrophysics Data System (ADS)
Popescu, S. C.; Putman, E.
2017-12-01
Standing dead trees (SDTs) are an important forest component and impact a variety of ecosystem processes, yet the carbon pool dynamics of SDTs are poorly constrained in terrestrial carbon cycling models. The ability to model wood decay and carbon cycling in relation to detectable changes in tree structure and volume over time would greatly improve such models. The overall objective of this study was to provide automated aboveground volume estimates of SDTs and automated procedures to detect, quantify, and characterize structural losses over time with terrestrial lidar data. The specific objectives of this study were: 1) develop an automated SDT volume estimation algorithm providing accurate volume estimates for trees scanned in dense forests; 2) develop an automated change detection methodology to accurately detect and quantify SDT structural loss between subsequent terrestrial lidar observations; and 3) characterize the structural loss rates of pine and oak SDTs in southeastern Texas. A voxel-based volume estimation algorithm, "TreeVolX", was developed and incorporates several methods designed to robustly process point clouds of varying quality levels. The algorithm operates on horizontal voxel slices by segmenting the slice into distinct branch or stem sections then applying an adaptive contour interpolation and interior filling process to create solid reconstructed tree models (RTMs). TreeVolX estimated large and small branch volume with an RMSE of 7.3% and 13.8%, respectively. A voxel-based change detection methodology was developed to accurately detect and quantify structural losses and incorporated several methods to mitigate the challenges presented by shifting tree and branch positions as SDT decay progresses. The volume and structural loss of 29 SDTs, composed of Pinus taeda and Quercus stellata, were successfully estimated using multitemporal terrestrial lidar observations over elapsed times ranging from 71 - 753 days. Pine and oak structural loss rates were characterized by estimating the amount of volumetric loss occurring in 20 equal-interval height bins of each SDT. Results showed that large pine snags exhibited more rapid structural loss in comparison to medium-sized oak snags in this study.
Controlled growth of novel hyper-branched nanostructures in nanoporous alumina membrane.
Zhang, Junping; Day, Cynthia S; Carroll, David L
2009-12-07
This paper proposes a novel approach to fabricate hyper-branched anodic aluminium oxide (AAO) nanostructures with different branches on the vertically-aligned trunk and at the trunk terminal. Silver nanowires with different dimensional and multifunctional complexity have been prepared from this hyper-branched AAO template by varying the electrodeposition time. These kinds of novel nanostructure may be used to build blocks for nanoelectronic and nanophotonic devices.
Cloud Image Data Center for Healthcare Network in Taiwan.
Weng, Shao-Jen; Lai, Lai-Shiun; Gotcher, Donald; Wu, Hsin-Hung; Xu, Yeong-Yuh; Yang, Ching-Wen
2016-04-01
This paper investigates how a healthcare network in Taiwan uses a practical cloud image data center (CIDC) to communicate with its constituent hospital branches. A case study approach was used. The study was carried out in the central region of Taiwan, with four hospitals belonging to the Veterans Hospital healthcare network. The CIDC provides synchronous and asynchronous consultation among these branches. It provides storage, platforms, and services on demand to the hospitals. Any branch-client can pull up the patient's medical images from any hospital off this cloud. Patients can be examined at the branches, and the images and reports can be further evaluated by physicians in the main Taichung Veterans General Hospital (TVGH) to enhance the usage and efficiency of equipment in the various branches, thereby shortening the waiting time of patients. The performance of the CIDC over 5 years shows: (1) the total number of cross-hospital images accessed with CDC in the branches was 132,712; and (2) TVGH assisted the branches in keying in image reports using the CIDC 4,424 times; and (3) Implementation of the system has improved management, efficiency, speed and quality of care. Therefore, the results lead to the recommendation of continuing and expanding the cloud computing architecture to improve information sharing among branches in the healthcare network.
Rizik, David G; Klag, Joseph M; Tenaglia, Alan; Hatten, Thomas R; Barnhart, Marianne; Warnack, Boris
2009-12-01
Provisional T-stenting is a widely used strategy for the treatment of coronary artery bifurcation lesions. However, the use of conventional stents in this setting is limited by multiple factors; this includes technical considerations such as wire wrap when accessing the involved vessel, and stent overlap at or near the carina of the lesion. In addition, current slotted tube stent technology tends to be associated with gaps in the coverage of the side branch ostium, which may result in restenosis in that segment of the lesion. The Pathfinder device, now more commonly referred to as the Xience Side Branch Access System (Xience SBA) is a drug-eluting stent (DES) designed specifically to assist in the treatment of bifurcation lesions by allowing wire access into the side branch, irrespective of the treatment strategy to be employed. The Xience SBA drug-eluting stent was compared with the standard Vision coronary stent system using a provisional T-stenting strategy in a perfused synthetic model of the coronary vasculature with side branch angulations of 30 degrees , 50 degrees , 70 degrees , and 90 degrees . Stent delivery was performed under fluoroscopic guidance. Following the procedure, high-resolution 2D Faxitron imaging was used to evaluate deployment accuracy of the side branch stent relative to the main branch stent. Deployment of the Xience SBA was accomplished in the same total time as the standard stents in a provisional T-stenting approach (14.9 vs. 14.6 minutes). However, the time required to achieve stent deployment in the main branch was less with the Xience SBA (4.0 vs. 6.6 minutes), and as a result, total contrast usage (49.4 vs. 69.4 cm(3)) and fluoroscopy time (5.1 vs. 6.2 minutes) was lower. Additionally, the Xience SBA had a lower incidence of wire wrap (22% vs. 89%) and less distal protrusion of the side branch stent into the main branch (0.54 vs. 1.21 mm). Significant gaps in ostial side branch coverage were not seen in either group. The Xience Side Branch Access DES is a viable device for consistently accessing coronary bifurcation lesions; it allows for easy wire access into the side branch. This may assist the operator in overcoming those well-recognized limitations associated with use of standard one- or two-stent strategies. In this perfused synthetic coronary model, Xience SBA deployment required less contrast usage and shorter fluoroscopy times. Further testing of this device is warranted.
Branching, Superdiffusion and Stress Relaxation in Surfactant Micelles
NASA Astrophysics Data System (ADS)
Sureshkumar, R.; Dhakal, S.; Syracuse University Team
2016-11-01
We investigate the mechanism of branch formation and its effects on the dynamics and rheology of a model cationic micellar fluid using molecular dynamics (MD) simulations. Branched structures are formed upon increasing counter ion density. A sharp decrease in the solution viscosity with increasing salinity has long been attributed to the sliding motion of micellar branches along the main chain. Simulations not only provide firm evidence of branch sliding in real time, but also show enhanced diffusion of surfactants by virtue of such motion. Insights into the mechanism of stress relaxation associated with branch sliding will be discussed. Specifically, an externally imposed stress damps out more quickly in a branched system compared to that in an unbranched one. NSF Grants 1049489, 1049454.
Bowers, Janice E.
2006-01-01
The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure. ?? Springer 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, J.Z.; Bian, J.G.; Chai, Z.W.
1998-10-01
The processes {psi}(2S){r_arrow}{gamma}{pi}{sup +}{pi}{sup {minus}} , {gamma}K{sup +}K{sup {minus}} , and {gamma}p{ovr p} have been studied using a sample of 3.79{times}10{sup 6} {psi}(2S) decays. We determine the total width of the {chi}{sub c0} to be {Gamma}{sup tot}{sub {chi}{sub c0}} =14.3{plus_minus}2.0{plus_minus}3.0 MeV . We present the first measurement of the branching fraction B({chi}{sub c0}{r_arrow}p{ovr p})=( 15.9{plus_minus}4.3{plus_minus}5.3){times}10{sup {minus}5} , where the first error is statistical and the second one is systematic. Branching fractions of {chi}{sub c0,2}{r_arrow}{pi}{sup +}{pi}{sup {minus}} and K{sup +}K{sup {minus}} are also reported. {copyright} {ital 1998} {ital The American Physical Society }
Federal budget process: An overview
NASA Astrophysics Data System (ADS)
Frizzell, Virgil A., Jr.
Much geophysical research funding originates from the federal government, and many who obtain federal funding consider the executive branch to be its source. In fact, the federal budget results from a complex ballet between the executive and legislative branches. Because it is both little understood and essential to our work, this report will review the fundamentals of the three-year budgetary process.The Constitution assigns the power of the purse to the Congress. Before the 1920s, executive branch agencies and departments submitted their own separate budgets to Congress, and deliberate planning and priority setting was minimal. In 1921 Congress empowered the president to submit an executive branch budget reflecting his priorities for the next fiscal year. Following this protocol, former President Reagan submitted his budget for Fiscal Year 1990 in January, and President Bush outlined his FY'90 priorities in February.
NASA Astrophysics Data System (ADS)
Wang, Yaoping; Chui, Cheekong K.; Cai, Yiyu; Mak, KoonHou
1998-06-01
This study presents an approach to build a 3D vascular system of coronary for the development of a virtual cardiology simulator. The 3D model of the coronary arterial tree is reconstructed from the geometric information segmented from the Visible Human data set for physical analysis of catheterization. The process of segmentation is guided by a 3D topologic hierarchy structure of coronary vessels which is obtained from a mechanical model by using Coordinate Measuring Machine (CMM) probing. This mechanical professional model includes all major coronary arterials ranging from right coronary artery to atrioventricular branch and from left main trunk to left anterior descending branch. All those branches are considered as the main operating sites for cardiology catheterization. Along with the primary arterial vasculature and accompanying secondary and tertiary networks obtained from a previous work, a more complete vascular structure can then be built for the simulation of catheterization. A novel method has been developed for real time Finite Element Analysis of catheter navigation based on this featured vasculature of vessels.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.
2013-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.
adrift, a novel bnl-induced Drosophila gene, required for tracheal pathfinding into the CNS.
Englund, C; Uv, A E; Cantera, R; Mathies, L D; Krasnow, M A; Samakovlis, C
1999-04-01
Neurons and glial cells provide guidance cues for migrating neurons. We show here that migrating epithelial cells also contact specific neurons and glia during their pathfinding, and we describe the first gene required in the process. In wild-type Drosophila embryos, the ganglionic tracheal branch navigates a remarkably complex path along specific neural and glial substrata, switching substrata five times before reaching its ultimate target in the CNS. In adrift mutants, ganglionic branches migrate normally along the intersegmental nerve, but sporadically fail to switch to the segmental nerve and enter the CNS; they wind up meandering along the ventral epidermis instead. adrift encodes a novel nuclear protein with an evolutionarily conserved motif. The gene is required in the trachea and is expressed in the leading cells of migrating ganglionic branches where it is induced by the branchless FGF pathway. We propose that Adrift regulates expression of tracheal genes required for pathfinding on the segmental nerve, and FGF induction of adrift expression in migrating tracheal cells promotes the switch from the intersegmental to the segmental nerve.
Xia, Xinhui; Chao, Dongliang; Zhang, Yongqi; Zhan, Jiye; Zhong, Yu; Wang, Xiuli; Wang, Yadong; Shen, Ze Xiang; Tu, Jiangping; Fan, Hong Jin
2016-06-01
A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2 O3 nanoflakes, Co3 O4 nanowires, Co3 O4 -CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2 O3 /CNTs core/branch composite arrays as the host for Na(+) storage are investigated in detail. This V2 O3 /CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g(-1) at 0.1 A g(-1) and outstanding high-rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g(-1) , and 70% after 10 000 cycles at 10 A g(-1) ). Kinetics analysis reveals that the Na(+) storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jackson, Alexander W; Chandrasekharan, Prashant; Shi, Jian; Rannard, Steven P; Liu, Quan; Yang, Chang-Tong; He, Tao
2015-01-01
Branched copolymer nanoparticles (D(h) =20-35 nm) possessing 1,4,7, 10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid macrocycles within their cores have been synthesized and applied as magnetic resonance imaging (MRI) nanosized contrast agents in vivo. These nanoparticles have been generated from novel functional monomers via reversible addition-fragmentation chain transfer polymerization. The process is very robust and synthetically straightforward. Chelation with gadolinium and preliminary in vivo experiments have demonstrated promising characteristics as MRI contrast agents with prolonged blood retention time, good biocompatibility, and an intravascular distribution. The ability of these nanoparticles to perfuse and passively target tumor cells through the enhanced permeability and retention effect is also demonstrated. These novel highly functional nanoparticle platforms have succinimidyl ester-activated benzoate functionalities within their corona, which make them suitable for future peptide conjugation and subsequent active cell-targeted MRI or the conjugation of fluorophores for bimodal imaging. We have also demonstrated that these branched copolymer nanoparticles are able to noncovalently encapsulate hydrophobic guest molecules, which could allow simultaneous bioimaging and drug delivery.
Generalized Fluid System Simulation Program, Version 5.0-Educational
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.
Active learning of neuron morphology for accurate automated tracing of neurites
Gala, Rohan; Chapeton, Julio; Jitesh, Jayant; Bhavsar, Chintan; Stepanyants, Armen
2014-01-01
Automating the process of neurite tracing from light microscopy stacks of images is essential for large-scale or high-throughput quantitative studies of neural circuits. While the general layout of labeled neurites can be captured by many automated tracing algorithms, it is often not possible to differentiate reliably between the processes belonging to different cells. The reason is that some neurites in the stack may appear broken due to imperfect labeling, while others may appear fused due to the limited resolution of optical microscopy. Trained neuroanatomists routinely resolve such topological ambiguities during manual tracing tasks by combining information about distances between branches, branch orientations, intensities, calibers, tortuosities, colors, as well as the presence of spines or boutons. Likewise, to evaluate different topological scenarios automatically, we developed a machine learning approach that combines many of the above mentioned features. A specifically designed confidence measure was used to actively train the algorithm during user-assisted tracing procedure. Active learning significantly reduces the training time and makes it possible to obtain less than 1% generalization error rates by providing few training examples. To evaluate the overall performance of the algorithm a number of image stacks were reconstructed automatically, as well as manually by several trained users, making it possible to compare the automated traces to the baseline inter-user variability. Several geometrical and topological features of the traces were selected for the comparisons. These features include the total trace length, the total numbers of branch and terminal points, the affinity of corresponding traces, and the distances between corresponding branch and terminal points. Our results show that when the density of labeled neurites is sufficiently low, automated traces are not significantly different from manual reconstructions obtained by trained users. PMID:24904306
NASA Astrophysics Data System (ADS)
Hajijamali-Arani, Zeinab; Jazi, Bahram
2017-04-01
The wave propagation in a cylindrical metallic waveguide including a dielectric tube is investigated. Two electron beams with opposite velocities are injected in the system as energy sources. It is shown that one of the electron beams is responsible for Cherenkov radiation, the other one is as the stabilizer. The dispersion relation of the waves, impedance of the waves, operating frequency of the system and time growth rate of THz waves are investigated. The effects of relative permittivity constant of dielectric tube, the geometrical dimensions, and the accelerating voltage on time growth rate are investigated. The effective factors on the frequency spectra of the waveguide will be presented too. It is obtained that the time growth rate of the waves increases with increasing the dielectric permittivity and thickness of the dielectric tube. In addition, with increasing the accelerating voltage the time growth rate has opposite behavior in some of the branches of the dispersion graphs. The power obtained in the excitation process for one branch of the dispersion graphs is presented. The graph of variations of transported power with respect to the wave frequency is plotted.
NASA Astrophysics Data System (ADS)
Jang, Sa-Han
Galton-Watson branching processes of relevance to human population dynamics are the subject of this thesis. We begin with an historical survey of the invention of the invention of this model in the middle of the 19th century, for the purpose of modelling the extinction of unusual surnames in France and Britain. We then review the principal developments and refinements of this model, and their applications to a wide variety of problems in biology and physics. Next, we discuss in detail the case where the probability generating function for a Galton-Watson branching process is a geometric series, which can be summed in closed form to yield a fractional linear generating function that can be iterated indefinitely in closed form. We then describe the matrix method of Keyfitz and Tyree, and use it to determine how large a matrix must be chosen to model accurately a Galton-Watson branching process for a very large number of generations, of the order of hundreds or even thousands. Finally, we show that any attempt to explain the recent evidence for the existence thousands of generations ago of a 'mitochondrial Eve' and a 'Y-chromosomal Adam' in terms of a the standard Galton-Watson branching process, or indeed any statistical model that assumes equality of probabilities of passing one's genes to one's descendents in later generations, is unlikely to be successful. We explain that such models take no account of the advantages that the descendents of the most successful individuals in earlier generations enjoy over their contemporaries, which must play a key role in human evolution.
Robinson, Nicholas P
2013-01-01
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
Disassortativity of random critical branching trees
NASA Astrophysics Data System (ADS)
Kim, J. S.; Kahng, B.; Kim, D.
2009-06-01
Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.
NASA Astrophysics Data System (ADS)
Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho
2017-04-01
Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.
Maloney, Kelly O.; Shull, Dustin R.
2015-01-01
We estimated discharge and suspended sediment (SS) yield in a minimally disturbed watershed in North Central Pennsylvania, USA, and compared a typical storm (September storm, 4.80 cm) to a large storm (Superstorm Sandy, 7.47 cm rainfall). Depending on branch, Sandy contributed 9.7–19.9 times more discharge and 11.5–37.4 times more SS than the September storm. During the September storm, the upper two branches accounted for 60.6% of discharge and 88.8% of SS at Lower Branch; during Sandy these percentages dropped to 36.1% for discharge and 30.1% for SS. The branch with close proximity roads had over two-three times per area SS yield than the branch without such roads. Hysteresis loops showed typical clockwise patterns for the September storm and more complicated patterns for Sandy, reflecting the multipeak event. Estimates of SS and hysteresis in minimally disturbed watersheds provide useful information that can be compared spatially and temporally to facilitate management.
Heat conductivity in graphene and related materials: A time-domain modal analysis
NASA Astrophysics Data System (ADS)
Gill-Comeau, Maxime; Lewis, Laurent J.
2015-11-01
We use molecular dynamics (MD) simulations to study heat conductivity in single-layer graphene and graphite. We analyze the MD trajectories through a time-domain modal analysis and show that this is essential for obtaining a reliable representation of the heat flow in graphene and graphite as it permits the proper treatment of collective vibrational excitations, in contrast to a frequency-domain formulation. Our temperature-dependent results are in very good agreement with experiment and, for temperatures in the range 300-1200 K, we find that the ZA branch allows more heat flow than all other branches combined while the contributions of the TA, LA, and ZO branches are comparable at all temperatures. Conductivity mappings reveal strong collective excitations associated with low-frequency ZA modes. We demonstrate that these collective effects are a consequence of the quadratic nature of the ZA branch as they also show up in graphite but are reduced in strained graphene, where the dispersion becomes linear, and are absent in diamond, where acoustic branches are linear. In general, neglecting collective excitations yields errors similar to those from the single-mode relaxation-time approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpentier, J.L.; Di Bono, P.J.; Tournebise, P.J.
The efficient bounding method for DC contingency analysis is improved using reciprocity properties. Knowing the consequences of the outage of a branch, these properties provide the consequences on that branch of various kinds of outages. This is used in order to reduce computation times and to get rid of some difficulties, such as those occurring when a branch flow is close to its limit before outage. Compensation, sparse vector, sparse inverse and bounding techniques are also used. A program has been implemented for single branch outages and tested on actual French EHV 650 bus network. Computation times are 60% ofmore » the Efficient Bounding method. The relevant algorithm is described in detail in the first part of this paper. In the second part, reciprocity properties and bounding formulas are extended for multiple branch outages and for multiple generator or load outages. An algorithm is proposed in order to handle all these cases simultaneously.« less
Characterization of structural and electrical properties of ZnO tetrapods
NASA Astrophysics Data System (ADS)
Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng
2011-12-01
ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.
NASA Astrophysics Data System (ADS)
Pierre, Cynthia; Torkelson, John
2009-03-01
A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).
Schuettpelz, Eric; Pryer, Kathleen M
2006-06-01
The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.
Simultaneous extraction of centerlines, stenosis, and thrombus detection in renal CT angiography
NASA Astrophysics Data System (ADS)
Subramanyan, Krishna; Durgan, Jacob; Hodgkiss, Thomas D.; Chandra, Shalabh
2004-05-01
The Renal Artery Stenosis (RAS) is the major cause of renovascular hypertension and CT angiography has shown tremendous promise as a noninvasive method for reliably detecting renal artery stenosis. The purpose of this study was to validate the semi-automated methods to assist in extraction of renal branches and characterizing the associated renal artery stenosis. Automatically computed diagnostic images such as straight MIP, curved MPR, cross-sections, and diameters from multi-slice CT are presented and evaluated for its acceptance. We used vessel-tracking image processing methods to extract the aortic-renal vessel tree in a CT data in axial slice images. Next, from the topology and anatomy of the aortic vessel tree, the stenosis, and thrombus section and branching of the renal arteries are extracted. The results are presented in curved MPR and continuously variable MIP images. In this study, 15 patients were scanned with contrast on Mx8000 CT scanner (Philips Medical Systems), with 1.0 mm thickness, 0.5mm slice spacing, and 120kVp and a stack of 512x512x150 volume sets were reconstructed. The automated image processing took less than 50 seconds to compute the centerline and borders of the aortic/renal vessel tree. The overall assessment of manual and automatically generated stenosis yielded a weighted kappa statistic of 0.97 at right renal arteries, 0.94 at the left renal branches. The thrombus region contoured manually and semi-automatically agreed upon at 0.93. The manual time to process each case is approximately 25 to 30 minutes.
Pascual-Font, Arán; Cubillos, Luis; Vázquez, Teresa; McHanwell, Steve; Sañudo, José R; Maranillo, Eva
2016-05-01
It has been generally accepted that the branches of the internal branch of the superior laryngeal nerve to the interarytenoid muscle are exclusively sensory. However, some experimental studies have suggested that these branches may contain motor axons, and therefore that the interarytenoid muscle is supplied by both the superior and recurrent laryngeal nerves. The aim of this work was to determine whether motor axons to the interarytenoid muscles are present in both laryngeal nerves. Basic research. Twelve human internal branches of the superior laryngeal nerve were dissected, and its branches to the interarytenoid muscle were removed and processed for choline-acetyltransferase immunohistochemistry, a method not used previously in studying the nerve fiber composition of the laryngeal nerves. The internal branch of the superior laryngeal nerve divided into two to five branches to the interarytenoid muscle. All branches contained motor axons, with the proportion of motor axons varying from 6% to 31%. The present study confirms that the internal branch of the superior laryngeal nerve provides a motor innervation to the interarytenoid muscles. N/A. Laryngoscope, 126:1117-1122, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Qi, Shiyong; Li, Li; Liu, Ranlu; Qiao, Baomin; Zhang, Zhihong; Xu, Yong
2014-02-01
To determine the impact of staghorn calculi branch number on outcomes of percutaneous nephrolithotomy (PNL). Retrospectively, we evaluated 371 patients (386 renal units) who underwent PNL for staghorn calculi. All calculi were showed with CT three-dimensional reconstruction (3DR) imaging preoperatively. From 3DR images, the number of stone branching into minor renal calices was recorded. According to the number, patients were divided into four groups. Group 1: the branch number 2-4; Group 2: the branch number 5-7; Group 3: the branch number 8-10; Group 4: the branch number >10. The number of percutaneous tract, operative time, staged PNL, intraoperative blood loss, postoperative hospital stay, complications, main stone composition, and stone clearance rate were compared. A significantly higher ratio of multitract (p<0.001) and staged PNL (p<0.001), a longer operative time (p<0.001) and postoperative hospital stay (p=0.043), and a lower rate of stone clearance (p<0.05) were found in PNL for calculi with a stone branch number ≥5. There was no statistical difference in intraoperative blood loss (p=0.101) and main stone composition (p=0.546). There was no statistically meaningful difference among the four groups based on the Clavien complication system (p=0.46). With the stone branch number more than five, the possibility of multitract and staged PNL, lower rate of stone clearance, and a longer postoperative hospital stay increases for staghorn calculi.
NASA Astrophysics Data System (ADS)
Zhu, Tao; Ren, Ji-Rong; Mo, Shu-Fan
2009-12-01
In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(vec x, t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the “exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the “exclusion principle" is also protected by topology.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.
1991-01-01
A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.
NASA Astrophysics Data System (ADS)
Tirmizi, Shakeel H.; Gill, William N.
1989-06-01
The dynamics of spontaneous pattern formation are studied experimentally by observing and recording the evolution of ice crystal patterns which grow freely in a supercooled melt. The sequence of evolution to dendrites is recorded in real time using cine-micrography. In the range of subcoolings from 0.06 to 0.29°C, all the patterns evolved as follows: Smooth disk → Perturbed disk → Disk dendrite → Partially developed dendrite → Fully developed dendrite. The initial smooth disk, the main branch and the side branches all developed perturbations beyond a critical size which depends on the subcooling. The combined effect of the destabilizing thermal gradients ahead of the growing crystal and the stabilizing Gibbs-Thompson capillarity effect dictates the critical size of the unstable structures in terms of the mean curvature of the interface. Detailed analysis of the evolving patterns was done using digital image analysis on the PRIME computer to determine both the manner in which the dendritic growth process replicates itself and the role which the shape and the movement of the interface play in the pattern formation process. Total arc length ST, total area A and the complexity ratio ξ = ST⧸√ A of evolving patterns were computed as a function of time and undercooling for each crystal image. These results permitted us to make some comparisons with theoretical models on pattern evolution. Three distinct phases of evolution were identified: the initial phase when the crystal structure is smooth and free of any perturbations and the complexity ratio is almost a constant, an intermediate phase when the crystal structure develops perturbations which grow quickly in number and in size and the complexity ratio increases rapidly and a final phase when the pattern approaches that of a fully developed dendrite which, on a global scale grows in a shape-perserving manner and has a slowly increasing complexity ratio which seems to approach an asymptote. Two factors were found to be responsible for the symmetric dendritic patterns. These are: first, hexagonal symmetry due to the hexagonal closed packed structure, leads to strong anisotropy in molecular attachment kinetics and in surface free energy; second, the competition among side branches causes smaller side branches to melt when they are trapped between larger ones which generate latent heat and prevent the small branches from gaining access to the fresh cold fluid ahead of them. These two factors lead to a channelling effect which prevents the growth of perturbations from occurring randomly and thus directs the evolving crystal structure into patterns which are regular and reproducible. Theoretical models which are local in nature fail to take into account side branch competition, and this is one of their major weaknesses.
Dick, Amanda A; Harlow, Timothy J; Gogarten, J Peter
2017-02-01
Long Branch Attraction (LBA) is a well-known artifact in phylogenetic reconstruction when dealing with branch length heterogeneity. Here we show another phenomenon, Short Branch Attraction (SBA), which occurs when BLAST searches, a phenetic analysis, are used as a surrogate method for phylogenetic analysis. This error also results from branch length heterogeneity, but this time it is the short branches that are attracting. The SBA artifact is reciprocal and can be returned 100% of the time when multiple branches differ in length by a factor of more than two. SBA is an intended feature of BLAST searches, but becomes an issue, when top scoring BLAST hit analyses are used to infer Horizontal Gene Transfers (HGTs), assign taxonomic category with environmental sequence data in phylotyping, or gather homologous sequences for building gene families. SBA can lead researchers to believe that there has been a HGT event when only vertical descent has occurred, cause slowly evolving taxa to be over-represented and quickly evolving taxa to be under-represented in phylotyping, or systematically exclude quickly evolving taxa from analyses. SBA also contributes to the changing results of top scoring BLAST hit analyses as the database grows, because more slowly evolving taxa, or short branches, are added over time, introducing more potential for SBA. SBA can be detected by examining reciprocal best BLAST hits among a larger group of taxa, including the known closest phylogenetic neighbors. Therefore, one should look for this phenomenon when conducting best BLAST hit analyses as a surrogate method to identify HGTs, in phylotyping, or when using BLAST to gather homologous sequences. Copyright © 2016 Elsevier Inc. All rights reserved.
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Strategy of Irrigation Branch in Russia
NASA Astrophysics Data System (ADS)
Zeyliger, A.; Ermolaeva, O.
2012-04-01
At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges supervising parameters of system, fast proper response to changes in behaviour of controlled system, and all this on a firm support on the creative professional approach of the staff to execution of the professional duties. Development of such professional environment cannot be solved for a short time interval and within the framework of several projects, and will demand the interconnected and purposeful actions directed on extensive information - technological development of administrative and operational segments of irrigation branch. For this purpose it is necessary to develop, create and use the interconnected elements of information - technological developments shown by us in four directions and entitled: 1) Technologies; 2) Infrastructure; 3) Staff; 4) Tools. These four elements will be discussed in a contribution.
Simple blood-feeding method for live imaging of gut tube remodeling in regenerating planarians.
Hosoda, Kazutaka; Morimoto, Mizuki; Motoishi, Minako; Nishimura, Osamu; Agata, Kiyokazu; Umesono, Yoshihiko
2016-04-01
Live cell imaging is a powerful technique to study cellular dynamics in vivo during animal development and regeneration. However, few live imaging methods have been reported for studying planarian regeneration. Here, we developed a simple method for steady visualization of gut tube remodeling during regeneration of a living freshwater planarian, Dugesia japonica. When planarians were fed blood several times, gut branches were well-visualized in living intact animals under normal bright-field illumination. Interestingly, tail fragments derived from these colored planarians enabled successive observation of the processes of the formation of a single anterior gut branch in the prepharyngeal region from the preexisting two posterior gut branches in the same living animals during head regeneration. Furthermore, we combined this method and RNA interference (RNAi) and thereby showed that a D. japonica raf-related gene (DjrafA) and mek-related gene (DjmekA) we identified both play a major role in the activation of extracellular signal-regulated kinase (ERK) signaling during planarian regeneration, as indicated by their RNAi-induced defects on gut tube remodeling in a time-saving initial screening using blood-feeding without immunohistochemical detection of the gut. Thus, this blood-feeding method is useful for live imaging of gut tube remodeling, and provides an advance for the field of regeneration study in planarians. © 2016 Japanese Society of Developmental Biologists.
Producibility and Production Aspects of the Market Analysis Process
1989-06-01
for most TROSCOM general purpose systems and equipment are the U.S. Army Quartermaster Center and School, Fort Lee, VA ( fuels handling and storage...established a Mission Area Proponency Branch staffed with military R&D Coordinator Officers (formerly TRISOs - Technical Requirements Integration Staff...time is spent reacting, rather than acting, i.e., the amount of work required to supply numerous reports on delinquent contractors and on Technical
[On the extinction of populations with several types in a random environment].
Bacaër, Nicolas
2018-03-01
This study focuses on the extinction rate of a population that follows a continuous-time multi-type branching process in a random environment. Numerical computations in a particular example inspired by an epidemic model suggest an explicit formula for this extinction rate, but only for certain parameter values. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Anninos, Dionysios; Denef, Frederik
2016-06-30
We show that the late time Hartle-Hawking wave function for a free massless scalar in a fixed de Sitter background encodes a sharp ultrametric structure for the standard Euclidean distance on the space of field configurations. This implies a hierarchical, tree-like organization of the state space, reflecting its genesis as a branched diffusion process. In conclusion, an equivalent mathematical structure organizes the state space of the Sherrington-Kirkpatrick model of a spin glass.
Effect of Modularity on the Field Artillery Branch
2009-03-01
and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S...Macgregor proposed several principles which reinforced the ongoing thought process in the Pentagon at the time. Macgregor posited: Like Caesar’s Legions...Commanders and to transform the Army into a more expeditionary organization. The U.S. Army 2008 Posture Statement in Addendum G , Modularity, states as its
NASA Astrophysics Data System (ADS)
Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.
2013-12-01
The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.
JPRS Report. Soviet Union, EKO: Economics & Organization of Industrial Production No. 7, July 1987.
1987-12-03
to the question of the interest in plasma equip- ment in various branches of the national economy. Plasma processes occupy a leading position among...the principally new technologies that are based on process - ing concentrated flows of energy. Even today there are more than 50 of them. An entire...branch of chemistry has been formed—plasma chemistry, for which it is typical to have processes with an average mass temperature of the working gas
2017-09-01
For the first time since the creation of the Special Forces branch in 1987, the Army authorized the creation of a new branch, the Cyber branch. With...management model. The purpose of our research is to evaluate the effectiveness of that model to recruit Cyber Operations Officers and to examine the...performance (MOPs) and measures of effectiveness (MOEs) based on data collected from: Army institutions; a survey of the Cyber Branch population; and the
VESGEN Software for Mapping and Quantification of Vascular Regulators
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.
2012-01-01
VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.
Measurement of the most exotic beta-delayed neutron emitters at N=50 and N=126
NASA Astrophysics Data System (ADS)
Dillmann, Iris
2017-09-01
Beta-delayed neutron (βn)-emission will be the dominant decay mechanism of neutron-rich nuclei and plays an important role in the stellar nucleosynthesis of heavy elements in the ``r process''. It leads to a detour of the material β-decaying back to stability and the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. Thus the neutron branching ratio of very neutron-rich isotopes is a crucial parameter in astrophysical simulations. In addition, β-decay half-lives can be deduced from the time-dependent detection of βn's. I will talk about two recent experimental campaigns. The neutron detector BELEN was used at GSI Darmstadt to measure half-lives and neutron-branching ratios of the heaviest presently accessible βn-emitters at N=126. For isotopes between 204Au and 220Bi nine half-lives and eight neutron-branching ratios were measured for the first time and provide an important input for benchmarking theoretical models in this mass region. Its successor is the BRIKEN detector (``Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications''), the most efficient neutron detector used so far for nuclear structure studies. In conjunction with two clover detectors and the ``Advanced Implantation Detector Array'' (AIDA) the setup has been used a few months ago to measure the most neutron-rich isotopes around 78Ni, 132Sn, and the Rare Earth Region. Some preliminary results are shown from the campaign covering the 78Ni region where the neutron-branching ratio of 78Ni and 28 more isotopes were measured for the first time, as well as the half-lives of 20 isotopes. The BRIKEN campaign aims to (re-)measure almost all βn-emitters between 76Co and 167Eu, many of them for the first time. An extension of the campaign to lighter masses is planned. This work has been supported by the NSERC and NRC in Canada, the US DOE, the Spanish Ministerio de Economia y Competitividad, and the European Commission under the FP7/EURATOM CHANDA program.
McDonald, Thomas O; Michor, Franziska
2017-07-15
SIApopr (Simulating Infinite-Allele populations) is an R package to simulate time-homogeneous and inhomogeneous stochastic branching processes under a very flexible set of assumptions using the speed of C ++. The software simulates clonal evolution with the emergence of driver and passenger mutations under the infinite-allele assumption. The software is an application of the Gillespie Stochastic Simulation Algorithm expanded to a large number of cell types and scenarios, with the intention of allowing users to easily modify existing models or create their own. SIApopr is available as an R library on Github ( https://github.com/olliemcdonald/siapopr ). Supplementary data are available at Bioinformatics online. michor@jimmy.harvard.edu. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The critical domain size of stochastic population models.
Reimer, Jody R; Bonsall, Michael B; Maini, Philip K
2017-02-01
Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.
Cybulski, Olgierd; Babin, Volodymyr; Hołyst, Robert
2004-01-01
We analyze the Fleming-Viot process. The system is confined in a box, whose boundaries act as a sink of Brownian particles. The death rate at the boundaries is matched by the branching (birth) rate in the system and thus the number of particles is kept constant. We show that such a process is described by the Renyi entropy whose production is minimized in the stationary state. The entropy production in this process is a monotonically decreasing function of time irrespective of the initial conditions. The first Laplacian eigenvalue is shown to be equal to the Renyi entropy production in the stationary state. As an example we simulate the process in a two-dimensional box.
Interactive Design and Visualization of Branched Covering Spaces.
Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene
2018-01-01
Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.
The sensory but not muscular pelvic nerve branch is necessary for parturition in the rat.
Martínez-Gómez, M; Cruz, Y; Pacheco, P; Aguilar-Roblero, R; Hudson, R
1998-03-01
In the rat the pelvic nerve consists of a viscerocutaneous (sensory) branch which receives information from pelvic viscera and the midline perineal region, and a somatomotor (muscular) branch which innervates the ilio- and pubococcygeous muscles. To investigate the contribution of these branches to the parturition process, the length of gestation and course of delivery were closely monitored in 43 pregnant, Wistar-strain rats randomly assigned to five groups: untreated control animals, animals in which the somatomotor branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals in which the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals treated similarly to the previous group but with young delivered by C-section at term, and sham-operated controls. Sectioning the viscerocutaneous branch seriously disrupted parturition and resulted in major dystocia and a high percentage of stillbirths in all females. In contrast, sectioning the somatomotor branch had no apparent effect on parturition and no significant differences were found between females of this group and sham or control dams on any of the measures recorded. It is concluded that the viscerocutaneous branch of the pelvic nerve is vital for the normal course of parturition in the rat but that the somatomotor branch plays little role, if any.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenger, Andreas
2009-01-01
The study of processes involving flavour-changing neutral currents provides a particularly promising probe for New Physics beyond the Standard Model of particle physics. These processes are forbidden at tree level and proceed through loop processes, which are strongly suppressed in the Standard Model. Cross-sections for these processes can be significantly enhanced by contributions from new particles as they are proposed in most extentions of the Standard Model. This thesis presents searches for two flavour-changing neutral current decays, B± ! K±μ+μ- and B0 d ! K¤μ+μ-. The analysis was performed on 4.1 fb-1 of data collected by the DØ detector inmore » Run II of the Fermilab Tevatron. Candidate events for the decay B± ! K±μ+μ- were selected using a multi-variate analysis technique and the number of signal events determined by a fit to the invariant mass spectrum. Normalising to the known branching fraction for B± ! J/ÃK±, a branching fraction of B(B± ! K± μ+μ-) = 6.45 ± 2.24 (stat) ± 1.19 (syst) × 10-7 (1) was measured. The branching fraction for the decay B0 d ! K¤μ+μ- was determined in a similar way. Normalizing to the known branching fraction for B0 d ! J/ÃK¤, a branching fraction of B(B0 d ! K¤ μ+μ-) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10-7 (2) was measured. All measurements are in agreement with the Standard Model.« less
76 FR 21945 - Proposed Collection; Comment Request for Form 8848
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
... proposed and/or continuing information collections, as required by the Paperwork Reduction Act of 1995... 8848, Consent to Extend the Time To Assess the Branch Profits Tax Under Regulations Sections 1.884-2(a... To Extend the Time To Assess the Branch Profits Tax Under Regulations Sections 1.884-2(a) and (c...
NASA Astrophysics Data System (ADS)
Liu, Jian; Ma, Yushu; Dou, Shidan; Wang, Yi; La, Dongsheng; Liu, Jianghong; Ma, Zhenhe
2016-07-01
A blockage of the middle cerebral artery (MCA) on the cortical branch will seriously affect the blood supply of the cerebral cortex. Real-time monitoring of MCA hemodynamic parameters is critical for therapy and rehabilitation. Optical coherence tomography (OCT) is a powerful imaging modality that can produce not only structural images but also functional information on the tissue. We use OCT to detect hemodynamic changes after MCA branch occlusion. We injected a selected dose of endothelin-1 (ET-1) at a depth of 1 mm near the MCA and let the blood vessels follow a process first of occlusion and then of slow reperfusion as realistically as possible to simulate local cerebral ischemia. During this period, we used optical microangiography and Doppler OCT to obtain multiple hemodynamic MCA parameters. The change trend of these parameters from before to after ET-1 injection clearly reflects the dynamic regularity of the MCA. These results show the mechanism of the cerebral ischemia-reperfusion process after a transient middle cerebral artery occlusion and confirm that OCT can be used to monitor hemodynamic parameters.
A Core Plug and Play Architecture for Reusable Flight Software Systems
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Flight Software Branch, at Goddard Space Flight Center (GSFC), has been working on a run-time approach to facilitate a formal software reuse process. The reuse process is designed to enable rapid development and integration of high-quality software systems and to more accurately predict development costs and schedule. Previous reuse practices have been somewhat successful when the same teams are moved from project to project. But this typically requires taking the software system in an all-or-nothing approach where useful components cannot be easily extracted from the whole. As a result, the system is less flexible and scalable with limited applicability to new projects. This paper will focus on the rationale behind, and implementation of the run-time executive. This executive is the core for the component-based flight software commonality and reuse process adopted at Goddard.
Hazardous Waste and Wastewater Characterization Survey, Columbus AFB, Mississippi
1988-06-01
behind bldg 322 (Liquid Fuels Maintenance Branch). These wastes are then picked up by a waste oil contractor. All other drummed wastes are disposed of...is responsible for custody of the waste until a contractor (currently, Chemical Waste Management) comes to pick up the waste. Prior to disposal...chemicals are used up in the process. Any leftover chemicals are drained and stored in containers for use at a later time. All empty containers are
Messinger, Terence; Paybins, Katherine S.
2003-01-01
Large-scale surface mining using valley fills has changed hydrologic storage and processes in the Ballard Fork Watershed in West Virginia. Total unit flow for the 2-year study period (November 15, 1999?November 14, 2001) on the Unnamed Tributary (extensively mined) (11,700 cubic feet per second per square mile) was almost twice that on Spring Branch (unmined) (6,260 cubic feet per second per square mile), and about 1.75 times that on Ballard Fork (downstream, partly mined) (6,690 cubic feet per second per square mile). Unit flow from the Unnamed Tributary exceeded that from the other two streams for all flows analyzed (5?95 percent duration). Unit flow from Ballard Fork exceeded unit flow from Spring Branch about 80 percent of the time, but was about the same for high flows (less than 20 percent duration). The proportional differences among sites were greatest at low flows. Spring Branch was dry for several days in October and November 2000 and for most of October 2001, and the Unnamed Tributary had flow throughout the study period. The increase in flows from mined parts of the Ballard Fork Watershed appears to result from decreases in evapotranspiration caused by removal of trees and soil during mining. During both years, evapotranspiration from the Spring Branch Watershed greatly exceeded that from the Unnamed Tributary Watershed during May through October, when leaves were open. Evapotranspiration from the Unnamed Tributary Watershed slightly exceeded that from the Spring Branch Watershed in February and March during both years. Evapotranspiration, as a percentage of total rainfall, decreased from the first to the second, drier, year from the Unnamed Tributary Watershed (from 61 percent to 49 percent) but changed little from the Spring Branch (from 77 to 76 percent) and Ballard Fork (73 to 76 percent) Watersheds. Precipitation and flow during the study period at three nearby long-term sites, the U.S. Geological Survey stream-gaging station East Fork Twelvepole Creek near Dunlow, West Virginia, and two National Oceanic Atmospheric Administration rain gages at Madison and Dunlow, West Virginia, were less than long-term annual averages. Relations observed among the three streams in the Ballard Fork Watershed during this study may not represent those in years when annual precipitation and flow are closer to long-term averages.
Wright-Fisher diffusion bridges.
Griffiths, Robert C; Jenkins, Paul A; Spanò, Dario
2017-10-06
The trajectory of the frequency of an allele which begins at x at time 0 and is known to have frequency z at time T can be modelled by the bridge process of the Wright-Fisher diffusion. Bridges when x=z=0 are particularly interesting because they model the trajectory of the frequency of an allele which appears at a time, then is lost by random drift or mutation after a time T. The coalescent genealogy back in time of a population in a neutral Wright-Fisher diffusion process is well understood. In this paper we obtain a new interpretation of the coalescent genealogy of the population in a bridge from a time t∈(0,T). In a bridge with allele frequencies of 0 at times 0 and T the coalescence structure is that the population coalesces in two directions from t to 0 and t to T such that there is just one lineage of the allele under consideration at times 0 and T. The genealogy in Wright-Fisher diffusion bridges with selection is more complex than in the neutral model, but still with the property of the population branching and coalescing in two directions from time t∈(0,T). The density of the frequency of an allele at time t is expressed in a way that shows coalescence in the two directions. A new algorithm for exact simulation of a neutral Wright-Fisher bridge is derived. This follows from knowing the density of the frequency in a bridge and exact simulation from the Wright-Fisher diffusion. The genealogy of the neutral Wright-Fisher bridge is also modelled by branching Pólya urns, extending a representation in a Wright-Fisher diffusion. This is a new very interesting representation that relates Wright-Fisher bridges to classical urn models in a Bayesian setting. Copyright © 2017 Elsevier Inc. All rights reserved.
Cadaveric Study of the Articular Branches of the Shoulder Joint.
Eckmann, Maxim S; Bickelhaupt, Brittany; Fehl, Jacob; Benfield, Jonathan A; Curley, Jonathan; Rahimi, Ohmid; Nagpal, Ameet S
This cadaveric study investigated the anatomic relationships of the articular branches of the suprascapular (SN), axillary (AN), and lateral pectoral nerves (LPN), which are potential targets for shoulder analgesia. Sixteen embalmed cadavers and 1 unembalmed cadaver, including 33 shoulders total, were dissected. Following dissections, fluoroscopic images were taken to propose an anatomical landmark to be used in shoulder articular branch blockade. Thirty-three shoulders from 17 total cadavers were studied. In a series of 16 shoulders, 16 (100%) of 16 had an intact SN branch innervating the posterior head of the humerus and shoulder capsule. Suprascapular sensory branches coursed laterally from the spinoglenoid notch then toward the glenohumeral joint capsule posteriorly. Axillary nerve articular branches innervated the posterolateral head of the humerus and shoulder capsule in the same 16 (100%) of 16 shoulders. The AN gave branches ascending circumferentially from the quadrangular space to the posterolateral humerus, deep to the deltoid, and inserting at the inferior portion of the posterior joint capsule. In 4 previously dissected and 17 distinct shoulders, intact LPNs could be identified in 14 (67%) of 21 specimens. Of these, 12 (86%) of 14 had articular branches innervating the anterior shoulder joint, and 14 (100%) of 14 LPN articular branches were adjacent to acromial branches of the thoracoacromial blood vessels over the superior aspect of the coracoid process. Articular branches from the SN, AN, and LPN were identified. Articular branches of the SN and AN insert into the capsule overlying the glenohumeral joint posteriorly. Articular branches of the LPN exist and innervate a portion of the anterior shoulder joint.
Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction
NASA Astrophysics Data System (ADS)
Jang, Youn Jeong; Jang, Ji-Wook; Choi, Sun Hee; Kim, Jae Young; Kim, Ju Hun; Youn, Duck Hyun; Kim, Won Yong; Han, Suenghoon; Sung Lee, Jae
2015-04-01
Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode.Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode. Electronic supplementary information (ESI) available: The detailed schematic diagram for the HMA process, XRD results, the temperature profile during HMA, derivative XANES results, TEM images, J-V curves, lists of previously reported copper oxide photocathode, and parameters extracted from EIS. See DOI: 10.1039/c5nr00208g
Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben
2013-02-13
Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.
Time and distance to clear wood in pruned red alder saplings.
Dean S. DeBell; Constance A. Harrington; Barbara L. Gartner; Ryan. Singleton
2006-01-01
Pruning trials in young alder stands were sampled to evaluate response to pruning. Effects of pruning (1) live branches on different dates, and (2) dead branches with or without damaging the branch collar were assessed on trees pruned in 3- and 6-year-old plantations, respectively. Six years after pruning, stem sections were collected and dissected in the longitudinal-...
ERIC Educational Resources Information Center
Hill, Christopher; Thabet, Rawy Abdelrahman
2018-01-01
Purpose: International branch campuses (IBCs) are complex entities and while much has been written about their expansion and development, the literature is largely from an external perspective. There have been few longitudinal studies examining the development of an IBC over time. The purpose of this paper is to review the development of one IBC…
[Study of quality of a branch laboratory--an opinion of a laboratory manager].
Yazawa, Naoyuki
2006-11-01
At the stage of establishing a branch laboratory, quality evaluation is extremely difficult. Even the results of a control survey by the headquarters of the branch laboratory are unhelpful. For a clinical laboratory, the most important function is to provide reliable data all the time, and to maintain the reliability of clinical doctors with informed responses. We mostly refer to control surveys and daily quality control data to evaluate a clinical laboratory, but we rarely check its fundamental abilities, such as planning events, preserving statistical data about the standard range, using the right method for quality control and others. This is generally disregarded and it is taken for granted that they will be correct the first time. From my six years of experience working with X's branch laboratory, I realized that there might be some relation between the quality of a branch laboratory and the fundamental abilities of the company itself. I would never argue that all branch laboratories are ineffective, but they should be conscious of fundamental activities. The referring laboratory, not the referral laboratory, should be responsible for ensuring that the referral laboratory's examination results and findings are correct.
Vere-Jones' self-similar branching model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saichev, A.; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095; Sornette, D.
2005-11-01
Motivated by its potential application to earthquake statistics as well as for its intrinsic interest in the theory of branching processes, we study the exactly self-similar branching process introduced recently by Vere-Jones. This model extends the ETAS class of conditional self-excited branching point-processes of triggered seismicity by removing the problematic need for a minimum (as well as maximum) earthquake size. To make the theory convergent without the need for the usual ultraviolet and infrared cutoffs, the distribution of magnitudes m{sup '} of daughters of first-generation of a mother of magnitude m has two branches m{sup '}
[Problems of world outlook and methodology of science integration in biological studies].
Khododova, Iu D
1981-01-01
Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.
Cash efficiency for bank branches.
Cabello, Julia García
2013-01-01
Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.
Zhao, Min; Tian, Dehu; Shao, Xinzhong; Li, Dacun; Li, Jianfeng; Liu, Jingda; Zhao, Liang; Li, Hailei; Wang, Xiaolei; Zhang, Wentong; Wu, Jinying; Yuan, Zuoxiong
2013-07-01
To study the anatomical basis of micro transverse flap pedicled with the superfical palmar branch of radial artery from the palmar wrist for using this free flap to repair soft tissue defect of the finger. Thirty-eight fresh upper limb specimens (22 males and 16 females; aged 26-72 years with an average of 36 years; at left and right sides in 19 limbs respectively) were dissected and observed under operating microscope. Two specimens were made into casting mould of artery with bones, and 2 specimens were injected with red emulsion in radial artery. Thirty-four specimens were injected with 1% gentian violet solution in the superfical palmar branch of the radial artery. A transverse oval flap in the palmar wrist was designed, the axis of the flap was the distal palmar crease. The origin, distribution, and anastomosis of the superfical palmar branch of the radial artery were observed. The superficial palmar branch of the radial artery was constantly existed, it usually arises from the main trunk of the radial artery, 1.09-3.60 cm to proximal styloid process of radius. There were about 2-5 branches between the origin and the tubercle of scaphoid bone. The origin diameter was 1.00-3.00 mm, and the distal diameter at the styloid process of radius was 1.00-2.90 mm. The venous return of flap passed through 2 routes, and the innervations of the flap mainly from the palmar cutaneous branch of the median nerve. The area of the flap was 4 cm x 2 cm-6 cm x 2 cm. The origin and courses of the superficial palmar branch of the radial artery is constant, and its diameter is similar to that of the digital artery. A transverse oval flap pedicled with the superfical palmar branch of radial artery in the palmar wrist can be designed to repair defects of the finger.
3D PIC-MCC simulations of positive streamers in air gaps
NASA Astrophysics Data System (ADS)
Jiang, M.; Li, Y.; Wang, H.; Liu, C.
2017-10-01
Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.
Lebon, Eric; Pellegrino, Anne; Tardieu, Francois; Lecoeur, Jeremie
2004-03-01
Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2). Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit. Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal-time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD. The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra- and inter-shoot trophic competition.
Damage Tolerance Assessment Branch
NASA Technical Reports Server (NTRS)
Walker, James L.
2013-01-01
The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.
Cluster observations and simulations of He+ EMIC triggered emissions
NASA Astrophysics Data System (ADS)
Grison, B.; Shoji, M.; Santolik, O.; Omura, Y.
2012-12-01
EMIC triggered emissions have been reported in the inner magnetosphere at the edge of the plasmapause nightside [Pickett et al., 2010]. The generation mechanism proposed by Omura et al. [2010] is very similar to the one of the whistler chorus emissions and simulation results agree with observations and theory [Shoji et Omura, 2011]. The main characteristics of these emissions generated in the magnetic equatorial plane region are a frequency with time dispersion and a high level of coherence. The start frequency of previously mentioned observations is above half of the proton gyrofrequency. It means that the emissions are generated on the proton branch. On the He+ branch, generation of triggered emissions, in the same region, requests more energetic protons and the triggering process starts below the He+ gyrofrequency. It makes their identification in Cluster data rather difficult. Recent simulation results confirm the possibility of EMIC triggered emission on the He+ branch. In the present contribution we propose to compare a Cluster event to simulation results in order to investigate the possibility to identify observations to a He+ triggered emission. The impact of the observed waves on particle precipitation is also investigated.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems. This supplement gives the input and output data files for the examples.
Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation
Chappell, John C.; Cluceru, Julia G.; Nesmith, Jessica E.; Mouillesseaux, Kevin P.; Bradley, Vanessa B.; Hartland, Caitlin M.; Hashambhoy-Ramsay, Yasmin L.; Walpole, Joseph; Peirce, Shayn M.; Mac Gabhann, Feilim; Bautch, Victoria L.
2016-01-01
Aims In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. Methods and results Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages—sprout initiation, extension, connection, and stability—that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1−/− mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1−/− vascular networks, with an overall outcome of reduced numbers of new conduits. Conclusions These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies. PMID:27142980
ERIC Educational Resources Information Center
Martin, Robert
1981-01-01
Discusses the problems posed by a semantic analysis of the future tense in French, addressing particularly its double use as a tense and as a mood. The distinction between linear and branching time, or, certainty and possibility, central to this discussion, leads to a comparative analysis of future and conditional. (MES)
Observation of the helicity-selection-rule suppressed decay of the χc 2 charmonium state
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2017-12-01
The decays of χc 2→K+K-π0, KSK±π∓, and π+π-π0 are studied with the ψ (3686 ) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc 2→K*K ¯, χc 2→a2±(1320 )π∓/a20(1320 )π0 , and χc 2→ρ (770 )±π∓ are measured. Here, K*K ¯ denotes both K*±K∓ and its isospin-conjugated process K*0K¯ 0+c .c . , and K* denotes the resonances K*(892 ), K2*(1430 ), and K3*(1780 ). The observations indicate a strong violation of the helicity selection rule in χc 2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc 2→K*(892 )K ¯ are more than ten times larger than the upper limit of χc 2→ρ (770 )±π∓, which is so far the first direct observation of a significant U -spin symmetry breaking effect in charmonium decays.
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2018-02-01
Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major cause of neonatal mortality in newborns with congenital diaphragmatic hernia (CDH). Integrin-mediated cell-matrix interactions play an essential role in the fetal lung mesenchyme by stimulating branching morphogenesis. Mice lacking integrin subunits α3 (Itga3) and α6 (Itga6) exhibit severe PH. Furthermore, Itga8-knockout mice show defective airway branching, suggesting that Itga3, Itga6, and Itga8 are crucial for fetal lung development. We hypothesized that expression of Itga3, Itga6, and Itga8 is decreased in the branching airway mesenchyme of hypoplastic rat lungs in the nitrofen-induced CDH model. Time-mated rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D15, D18, and D21, and dissected lungs were divided into control and nitrofen-exposed specimens ( n = 12 per time-point and group, respectively). Pulmonary gene expression of Itga3, Itga6, and Itga8 was analyzed by quantitative real-time polymerase chain reaction. Immunofluorescence double-staining for Itga3, Itga6, and Itga8 was combined with the mesenchymal marker Fgf10 to evaluate protein expression and localization in branching airway tissue. Relative mRNA expression of Itga3, Itga6, and Itga8 was significantly decreased in lungs of nitrofen-exposed fetuses on D15, D18, and D21 compared with controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Itga3, Itga6, and Itga8 mainly in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18, and D21 compared with controls. Decreased expression of Itga3, Itga6, and Itga8 in the pulmonary mesenchyme may lead to disruptions in airway branching morphogenesis, thus contributing to PH in the nitrofen-induced CDH model. Georg Thieme Verlag KG Stuttgart · New York.
Resource Constrained Planning of Multiple Projects with Separable Activities
NASA Astrophysics Data System (ADS)
Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya
In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.
Sampling through time and phylodynamic inference with coalescent and birth–death models
Volz, Erik M.; Frost, Simon D. W.
2014-01-01
Many population genetic models have been developed for the purpose of inferring population size and growth rates from random samples of genetic data. We examine two popular approaches to this problem, the coalescent and the birth–death-sampling model (BDM), in the context of estimating population size and birth rates in a population growing exponentially according to the birth–death branching process. For sequences sampled at a single time, we found the coalescent and the BDM gave virtually indistinguishable results in terms of the growth rates and fraction of the population sampled, even when sampling from a small population. For sequences sampled at multiple time points, we find that the birth–death model estimators are subject to large bias if the sampling process is misspecified. Since BDMs incorporate a model of the sampling process, we show how much of the statistical power of BDMs arises from the sequence of sample times and not from the genealogical tree. This motivates the development of a new coalescent estimator, which is augmented with a model of the known sampling process and is potentially more precise than the coalescent that does not use sample time information. PMID:25401173
The fundamental theorem of asset pricing under default and collateral in finite discrete time
NASA Astrophysics Data System (ADS)
Alvarez-Samaniego, Borys; Orrillo, Jaime
2006-08-01
We consider a financial market where time and uncertainty are modeled by a finite event-tree. The event-tree has a length of N, a unique initial node at the initial date, and a continuum of branches at each node of the tree. Prices and returns of J assets are modeled, respectively, by a R2JxR2J-valued stochastic process . In this framework we prove a version of the Fundamental Theorem of Asset Pricing which applies to defaultable securities backed by exogenous collateral suffering a contingent linear depreciation.
Jonathan, M C; van Brussel, M; Scheffers, M S; Kabel, M A
2015-11-05
In the conversion of starch to fermentable glucose for bioethanol production, hydrolysis of amylopectin by α-amylases and glucoamylases is the slowest step. In this process, α-1,6-branched gluco-oligosaccharides accumulate and are slowly degraded. Glucoamylases that are able to degrade such branched oligosaccharides faster are economically beneficial. This research aimed at the isolation and characterisation of branched gluco-oligosaccharides produced from amylopectin digestion by α-amylase, to be used as substrates for comparing their degradation by glucoamylases. Branched gluco-oligosaccharides with a DP between five and twelve were purified using size exclusion chromatography. These structures were characterised after labelling with 2-aminobenzamide using UHPLC-MS(n) analysis. Further, the purified oligosaccharides were used to evaluate the mode-of-action of a glucoamylase from Hypocrea jecorina. The enzyme cleaves the α-1,4-linkage adjacent to the α-1,6-linkage at a lower rate than that of α-1,4-linkages in linear oligosaccharides. Hence, the branched gluco-oligosaccharides are a suitable substrate to evaluate glucoamylase activity on branched structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Composite Overview and Composite Aerocover Overview
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad
2014-01-01
Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC
Aryee, Samuel; Walumbwa, Fred O; Seidu, Emmanuel Y M; Otaye, Lilian E
2012-03-01
We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance.
Intralaryngeal neuroanatomy of the recurrent laryngeal nerve of the rabbit
Ryan, Stephen; McNicholas, Walter T; O'Regan, Ronan G; Nolan, Philip
2003-01-01
We undertook this study to determine the detailed neuroanatomy of the terminal branches of the recurrent laryngeal nerve (RLN) in the rabbit to facilitate future neurophysiological recordings from identified branches of this nerve. The whole larynx was isolated post mortem in 17 adult New Zealand White rabbits and prepared using a modified Sihler's technique, which stains axons and renders other tissues transparent so that nerve branches can be seen in whole mount preparations. Of the 34 hemi-laryngeal preparations processed, 28 stained well and these were dissected and used to characterize the neuroanatomy of the RLN. In most cases (23/28) the posterior cricoarytenoid muscle (PCA) was supplied by a single branch arising from the RLN, though in five PCA specimens there were two or three separate branches to the PCA. The interarytenoid muscle (IA) was supplied by two parallel filaments arising from the main trunk of the RLN rostral to the branch(es) to the PCA. The lateral cricoarytenoid muscle (LCA) commonly received innervation from two fine twigs branching from the RLN main trunk and travelling laterally towards the LCA. The remaining fibres of the RLN innervated the thyroarytenoid muscle (TA) and comprised two distinct branches, one supplying the pars vocalis and the other branching extensively to supply the remainder of the TA. No communicating anastomosis between the RLN and superior laryngeal nerve within the larynx was found. Our results suggest it is feasible to make electrophysiological recordings from identified terminal branches of the RLN supplying laryngeal adductor muscles separate from the branch or branches to the PCA. However, the very small size of the motor nerves to the IA and LCA suggests that it would be very difficult to record selectively from the nerve supply to individual laryngeal adductor muscles. PMID:12739619
The shock-heated atmosphere of an asymptotic giant branch star resolved by ALMA
NASA Astrophysics Data System (ADS)
Vlemmings, Wouter; Khouri, Theo; O'Gorman, Eamon; De Beck, Elvire; Humphreys, Elizabeth; Lankhaar, Boy; Maercker, Matthias; Olofsson, Hans; Ramstedt, Sofia; Tafoya, Daniel; Takigawa, Aki
2017-12-01
Our current understanding of the chemistry and mass-loss processes in Sun-like stars at the end of their evolution depends critically on the description of convection, pulsations and shocks in the extended stellar atmosphere1. Three-dimensional hydrodynamical stellar atmosphere models provide observational predictions2, but so far the resolution to constrain the complex temperature and velocity structures seen in the models has been lacking. Here we present submillimetre continuum and line observations that resolve the atmosphere of the asymptotic giant branch star W Hydrae. We show that hot gas with chromospheric characteristics exists around the star. Its filling factor is shown to be small. The existence of such gas requires shocks with a cooling time longer than commonly assumed. A shocked hot layer will be an important ingredient in current models of stellar convection, pulsation and chemistry at the late stages of stellar evolution.
Assortative Mating for Emotional Intelligence.
Śmieja, Magdalena; Stolarski, Maciej
2018-01-01
Assortative mating has been studied on a broad range of variables, including intelligence and personality traits. In the present study we analysed the effect of assortative mating for ability emotional intelligence (EI) on a sample of heterosexual couples ( N = 382), including dating and married couples. Correlation analyses revealed moderate similarity of Pearson's r = .27 for general EI score, and was slightly weaker (from .18 to .23) for branch scores. Regression analyses showed that the Perception branch was the strongest single predictor of a partner's general EI score, both in males and females. Continuous parameter estimation (CPEM) revealed that the magnitude of the correlation does not increase with age, thus it is highly possible that the obtained similarity reflects initial assortment (i.e., similarity at the starting point of the relationship), rather than convergence (i.e., increasing similarity with time). It seems that EI is a significant factor influencing mate assortment processes.
DOT National Transportation Integrated Search
2010-07-01
The Federal Aviation Administrations (FAA) predecessor organization, the Department of : Commerce Aeronautics Branch took an early interest in China, as it did with other nations. As : early as November 1931, the Aeronautics Branch published pr...
Petit, Giai; Savi, Tadeja; Consolini, Martina; Anfodillo, Tommaso; Nardini, Andrea
2016-11-01
Efficient leaf water supply is fundamental for assimilation processes and tree growth. Renovating the architecture of the xylem transport system requires an increasing carbon investment while growing taller, and any deficiency of carbon availability may result in increasing hydraulic constraints to water flow. Therefore, plants need to coordinate carbon assimilation and biomass allocation to guarantee an efficient and safe long-distance transport system. We tested the hypothesis that reduced branch elongation rates together with carbon-saving adjustments of xylem anatomy hydraulically compensate for the reduction in biomass allocation to xylem. We measured leaf biomass, hydraulic and anatomical properties of wood segments along the main axis of branches in 10 slow growing (SG) and 10 fast growing (FG) Fraxinus ornus L. trees. Branches of SG trees had five times slower branch elongation rate (7 vs 35 cm year -1 ), and produced a higher leaf biomass (P < 0.0001) and thinner xylem rings with fewer but larger vessels (P < 0.0001). On the contrary, we found no differences between SG and FG trees in terms of leaf-specific conductivity (P > 0.05) and xylem safety (Ψ 50 ≈ -3.2 MPa). Slower elongation rate coupled with thinner annual rings and larger vessels allows the reduction of carbon costs associated with growth, while maintaining similar leaf-specific conductivity and xylem safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Martínez-Bello, Liliam; Moritz, Thomas; López-Díaz, Isabel
2015-01-01
Gibberellins (GAs) are phytohormones that regulate a wide range of developmental processes in plants. Levels of active GAs are regulated by biosynthetic and catabolic enzymes like the GA 2-oxidases (GA2oxs). In tomato (Solanum lycopersicum L.) C19 GA2oxs are encoded by a small multigenic family of five members with some degree of redundancy. In order to investigate their roles in tomato, the silencing of all five genes in transgenic plants was induced. A significant increase in active GA4 content was found in the ovaries of transgenic plants. In addition, the transgenic unfertilized ovaries were much bigger than wild-type ovaries (about 30 times) and a certain proportion (5–37%) were able to develop parthenocarpically. Among the GA2ox family, genes GA2ox1 and -2 seem to be the most relevant for this phenotype since their expression was induced in unfertilized ovaries and repressed in developing fruits, inversely correlating with ovary growth. Interestingly, transgenic lines exhibited a significant inhibition of branching and a higher content of active GA4 in axillary buds. This phenotype was reverted, in transgenic plants, by the application of paclobutrazol, a GA biosynthesis inhibitor, suggesting a role for GAs as repressors of branching. In summary, this work demonstrates that GA 2-oxidases regulate gibberellin levels in ovaries and axillary buds of tomato plants and their silencing is responsible for parthenocarpic fruit growth and branching inhibition. PMID:26093022
Observation of a metric type N solar radio burst
Kong, Xiangliang; Chen, Yao; Feng, Shiwei; ...
2016-10-10
Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter "N" in the radio dynamic spectrum and reveal a magnetic mirror effect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature (>10 9 K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations ofmore » the three branches at a given frequency increase gradually and may be due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite senses of polarization. We also find that the sense of polarization of the radio burst is in contradiction to the O-mode and there exists a fairly large time delay (~3–5 s) between the fundamental and harmonic components. Possible explanations accounting for these observations are presented. Finally, assuming the classical plasma emission mechanism, we can infer coronal parameters such as electron density and magnetic field near the radio source and make diagnostics on the magnetic mirror process.« less
Data acquisition and processing system for the HT-6M tokamak fusion experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Y.T.; Liu, G.C.; Pang, J.Q.
1987-08-01
This paper describes a high-speed data acquisition and processing system which has been successfully operated on the HT-6M tokamak fusion experimental device. The system collects, archives and analyzes up to 512 kilobytes of data from each shot of the experiment. A shot lasts 50-150 milliseconds and occurs every 5-10 minutes. The system consists of two PDP-11/24 computer systems. One PDP-11/24 is used for real-time data taking and on-line data analysis. It is based upon five CAMAC crates organized into a parallel branch. Another PDP-11/24 is used for off-line data processing. Both data acquisition software RSX-DAS and data processing software RSX-DAPmore » have modular, multi-tasking and concurrent processing features.« less
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, Paul T.
1996-01-01
A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, P.T.
1996-09-24
A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Information-educational environment with adaptive control of learning process
NASA Astrophysics Data System (ADS)
Modjaev, A. D.; Leonova, N. M.
2017-01-01
Recent years, a new scientific branch connected with the activities in social sphere management developing intensively and it is called "Social Cybernetics". In the framework of this scientific branch, theory and methods of management of social sphere are formed. Considerable attention is paid to the management, directly in real time. However, the decision of such management tasks is largely constrained by the lack of or insufficiently deep study of the relevant sections of the theory and methods of management. The article discusses the use of cybernetic principles in solving problems of control in social systems. Applying to educational activities a model of composite interrelated objects representing the behaviour of students at various stages of educational process is introduced. Statistical processing of experimental data obtained during the actual learning process is being done. If you increase the number of features used, additionally taking into account the degree and nature of variability of levels of current progress of students during various types of studies, new properties of students' grouping are discovered. L-clusters were identified, reflecting the behaviour of learners with similar characteristics during lectures. It was established that the characteristics of the clusters contain information about the dynamics of learners' behaviour, allowing them to be used in additional lessons. The ways of solving the problem of adaptive control based on the identified dynamic characteristics of the learners are planned.
Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie; Fu, Hengzhi
2016-01-01
In order to better understand the detachment mechanism of secondary dendrite arm during peritectic solidification, the detachment of secondary dendrite arm from the primary dendrite arms in directionally solidified Sn-36at.%Ni peritectic alloys is investigated at different deceleration rates. Extensive detachment of secondary dendrite arms from primary stem is observed below peritectic reaction temperature TP. And an analytical model is established to characterize the detachment process in terms of the secondary dendrite arm spacing λ2, the root radius of detached arms and the specific surface area (SV) of dendrites. It is found that the detachment mechanism is caused by not only curvature difference between the tips and roots of secondary branches, but also that between the thicker secondary branches and the thinner ones. Besides, this detachment process is significantly accelerated by the temperature gradient zone melting (TGZM) effect during peritectic solidification. It is demonstrated that the reaction constant (f) which is used to characterize the kinetics of peritectic reaction is crucial for the determination of the detachment process. The value of f not only changes with growth rate but also with solidification time at a given deceleration rate. In conclusion, these findings help the better understanding of the detachment mechanism. PMID:27270334
NASA Astrophysics Data System (ADS)
Wang, Xinghao; Yu, Qi; Li, Qiu; Gao, Yang; Dai, Zhenwen
2018-04-01
The radiative lifetime measurements by the time-resolved laser-induced fluorescence technique are reported for 24 levels of Co I with the energy range of 283 45.86-55 922.3 cm-1, amongst which the lifetimes of 20 levels are reported for the first time. The branching fraction measurements by the emission spectrum of a hollow cathode lamp were performed for 11 levels of them together with other two levels reported in the literature, and branching fractions of 39 transitions were obtained. By combining them with lifetime values, the transition probabilities and absolute oscillator strengths of these lines were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondracek, Mark Frank
1994-11-01
Measurements of the production cross section times branching ratio for W + γ and Z + γ processes, where the W decays into a muon and neutrino and the Z decays into a muon pair, have been made from the analysis of 18.6±0.7 pb -1 of high-P T muon data from proton-antiproton (pmore » $$\\bar{p}$$) collisions. The data were collected with the Collider Detector at Fermilab (CDF) during the 1992-93 run. In a search for central photons (|η| < 1.1) with transverse energy above 7 GeV and angular separation from the muon by at least ΔR = 0. 7, where ΔR = √(Δ Φ 2+ Δη 2) , we find 7 W γ and 4 Zγ candidates. This translates into cross section times branching ratios of 9.0 ± 6.4 pb for the Wγ process and 6.6 ± 3.4 pb for the Zγ process. Separate measurements were made for photon E T values above 11 Ge V and 15 Ge V. The cross section times branching ratio results were used to calculate a series of cross section ratios. An analysis designed to search for anomalous couplings between the gauge bosons was also carried out using these results. Assuming only one anomalous coupling to be non-zero at a time, the 95% CL limits on W γ anomalous couplings are, -3.7 < Δ κ< 3.7, -1.2 < λ< 1.2, -3.8 < $$\\tilde{κ}$$, < 3.8 and -1.2 < $$\\tilde{λ}$$ < 1.2. For ZZγ anomalous couplings the experimental limits are measured to be, at the 95% CL, -4.6 < h$$Z\\atop{30}$$ (h$$Z\\atop{10}$$ ) < 4.6 and -1.1 < h$$Z\\atop{40}$$ (h$$Z\\atop{20}$$) < 1.1. For Zγγ anomalous couplings the experimental limits are measured to be, at the 95% CL, -4.9 < h$$γ\\atop{30}$$ ($$γ\\atop{10}$$) < 4.9 and -1.2 < $$γ\\atop{40}$$ ( $$γ\\atop{20}$$ ) < 1.2. Limits are placed on electromagnetic multi pole moments for both the W and Z bosons using the measured limits of the anomalous couplings, and are presented in this thesis. All of the measurements presented in this thesis are consistent with Standard Model expectations.« less
ERIC Educational Resources Information Center
Eroglu, Yeser; Özsoy, Selami
2017-01-01
This study is conducted to reveal the role of gender in attending leisure time activities and to determine gender perceptions about sports branches. For this purpose, an application was performed with the participation of 7 female students from Abant Izzet Baysal University School of Physical Education and Sport. For 8 weeks, volunteer…
Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.
Casals, Marc; Ottewill, Adrian
2012-09-14
Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepehri, Aliasghar; Loeffler, Troy D.; Chen, Bin, E-mail: binchen@lsu.edu
2014-08-21
A new method has been developed to generate bending angle trials to improve the acceptance rate and the speed of configurational-bias Monte Carlo. Whereas traditionally the trial geometries are generated from a uniform distribution, in this method we attempt to use the exact probability density function so that each geometry generated is likely to be accepted. In actual practice, due to the complexity of this probability density function, a numerical representation of this distribution function would be required. This numerical table can be generated a priori from the distribution function. This method has been tested on a united-atom model ofmore » alkanes including propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear and branched molecules. It has been shown from these test cases that reasonable approximations can be made especially for the highly branched molecules to reduce drastically the dimensionality and correspondingly the amount of the tabulated data that is needed to be stored. Despite these approximations, the dependencies between the various geometrical variables can be still well considered, as evident from a nearly perfect acceptance rate achieved. For all cases, the bending angles were shown to be sampled correctly by this method with an acceptance rate of at least 96% for 2,2-dimethylpropane to more than 99% for propane. Since only one trial is required to be generated for each bending angle (instead of thousands of trials required by the conventional algorithm), this method can dramatically reduce the simulation time. The profiling results of our Monte Carlo simulation code show that trial generation, which used to be the most time consuming process, is no longer the time dominating component of the simulation.« less
Polymer thermal optical switch for a flexible photonic circuit.
Sun, Yue; Cao, Yue; Wang, Qi; Yi, Yunji; Sun, Xiaoqiang; Wu, Yuanda; Wang, Fei; Zhang, Daming
2018-01-01
Flexible and wearable optoelectronic devices are the new trend for an active lifestyle. These devices are polymer-based for flexibility. We demonstrated flexible polymer waveguide optical switches for a flexible photonic integrated circuit. The optical switches are composed of a single-mode inverted waveguide with dimensions of 5 μm waveguide width, 3 μm ridge height, and 3 μm slab height. A Mach-Zehnder structure was used in the device, with the Y-branch horizontal length of 0.1 cm, the distance between two heating branches of 30 μm, and the heating branch length of 1 cm. The optical field of the device was simulated by beam propagation to optimize the electrode position. The switching properties of the flexible optical switch with different working conditions, such as contact to the polymer, silicon, and skin, were simulated. The device was prepared based on the photo curved polymer and lithography method. The end faces of the flexible film device were processed using an excimer laser with optimized parameters of 28 mJ/cm 2 and 15 Hz. The response rise time and fall time on the PMMA substrate were measured as 1.98 ms and 2.71 ms, respectively. The power consumption was 16 mW and the extinction ratio was 11 dB. The response rise and fall times on the Si substrate were measured as 1.08 ms and 1.62 ms, respectively. The power consumption was 17 mW and the extinction ratio was 11 dB. The demonstrated properties indicate that this flexible optical waveguide structure can be used in the light control area of a wearable device.
NASA Technical Reports Server (NTRS)
Chawner, David M.; Gomez, Ray J.
2010-01-01
In the Applied Aerosciences and CFD branch at Johnson Space Center, computational simulations are run that face many challenges. Two of which are the ability to customize software for specialized needs and the need to run simulations as fast as possible. There are many different tools that are used for running these simulations and each one has its own pros and cons. Once these simulations are run, there needs to be software capable of visualizing the results in an appealing manner. Some of this software is called open source, meaning that anyone can edit the source code to make modifications and distribute it to all other users in a future release. This is very useful, especially in this branch where many different tools are being used. File readers can be written to load any file format into a program, to ease the bridging from one tool to another. Programming such a reader requires knowledge of the file format that is being read as well as the equations necessary to obtain the derived values after loading. When running these CFD simulations, extremely large files are being loaded and having values being calculated. These simulations usually take a few hours to complete, even on the fastest machines. Graphics processing units (GPUs) are usually used to load the graphics for computers; however, in recent years, GPUs are being used for more generic applications because of the speed of these processors. Applications run on GPUs have been known to run up to forty times faster than they would on normal central processing units (CPUs). If these CFD programs are extended to run on GPUs, the amount of time they would require to complete would be much less. This would allow more simulations to be run in the same amount of time and possibly perform more complex computations.
Statistical physics approach to earthquake occurrence and forecasting
NASA Astrophysics Data System (ADS)
de Arcangelis, Lucilla; Godano, Cataldo; Grasso, Jean Robert; Lippiello, Eugenio
2016-04-01
There is striking evidence that the dynamics of the Earth crust is controlled by a wide variety of mutually dependent mechanisms acting at different spatial and temporal scales. The interplay of these mechanisms produces instabilities in the stress field, leading to abrupt energy releases, i.e., earthquakes. As a consequence, the evolution towards instability before a single event is very difficult to monitor. On the other hand, collective behavior in stress transfer and relaxation within the Earth crust leads to emergent properties described by stable phenomenological laws for a population of many earthquakes in size, time and space domains. This observation has stimulated a statistical mechanics approach to earthquake occurrence, applying ideas and methods as scaling laws, universality, fractal dimension, renormalization group, to characterize the physics of earthquakes. In this review we first present a description of the phenomenological laws of earthquake occurrence which represent the frame of reference for a variety of statistical mechanical models, ranging from the spring-block to more complex fault models. Next, we discuss the problem of seismic forecasting in the general framework of stochastic processes, where seismic occurrence can be described as a branching process implementing space-time-energy correlations between earthquakes. In this context we show how correlations originate from dynamical scaling relations between time and energy, able to account for universality and provide a unifying description for the phenomenological power laws. Then we discuss how branching models can be implemented to forecast the temporal evolution of the earthquake occurrence probability and allow to discriminate among different physical mechanisms responsible for earthquake triggering. In particular, the forecasting problem will be presented in a rigorous mathematical framework, discussing the relevance of the processes acting at different temporal scales for different levels of prediction. In this review we also briefly discuss how the statistical mechanics approach can be applied to non-tectonic earthquakes and to other natural stochastic processes, such as volcanic eruptions and solar flares.
James S. Meadows; J.C.G. Goelz; Daniel A. Skojac
2013-01-01
Epicormic branches are adventitious twigs that develop from dormant buds found along the main bole of hardwood trees. These buds may be released at any time during the life of the tree in response to various types of stimuli. Epicormic branches cause defects in the underlying wood and may cause significant reductions in both log grade and subsequent lumber value....
7 CFR 52.1844 - Definition of terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...
7 CFR 52.1844 - Definition of terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...
21 CFR 108.35 - Thermal processing of low-acid foods packaged in hermetically sealed containers.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-618), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch... Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740... the LACF Registration Coordinator (HFS-618), Center for Food Safety and Applied Nutrition, Food and...
Ho, Lam Si Tung; Xu, Jason; Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A
2018-03-01
Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth/birth-death process, a tractable bivariate extension of the birth-death process, where rates are allowed to be nonlinear. We develop an efficient algorithm to calculate its transition probabilities using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution.
Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.
Rabosky, Daniel L
2014-01-01
A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes.
Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees
Rabosky, Daniel L.
2014-01-01
A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes. PMID:24586858
Fuzzy branching temporal logic.
Moon, Seong-ick; Lee, Kwang H; Lee, Doheon
2004-04-01
Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example.
NASA Technical Reports Server (NTRS)
Cooper, D. B.; Yalabik, N.
1975-01-01
Approximation of noisy data in the plane by straight lines or elliptic or single-branch hyperbolic curve segments arises in pattern recognition, data compaction, and other problems. The efficient search for and approximation of data by such curves were examined. Recursive least-squares linear curve-fitting was used, and ellipses and hyperbolas are parameterized as quadratic functions in x and y. The error minimized by the algorithm is interpreted, and central processing unit (CPU) times for estimating parameters for fitting straight lines and quadratic curves were determined and compared. CPU time for data search was also determined for the case of straight line fitting. Quadratic curve fitting is shown to require about six times as much CPU time as does straight line fitting, and curves relating CPU time and fitting error were determined for straight line fitting. Results are derived on early sequential determination of whether or not the underlying curve is a straight line.
A VM-shared desktop virtualization system based on OpenStack
NASA Astrophysics Data System (ADS)
Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie
2018-04-01
With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundle, John B.; Klein, William
We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.
O'Brien, Barbara M J; Palumbos, Sierra D; Novakovic, Michaela; Shang, Xueying; Sundararajan, Lakshmi; Miller, David M
2017-12-15
The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches. Copyright © 2017 Elsevier Inc. All rights reserved.
Exact short-time height distribution for the flat Kardar-Parisi-Zhang interface
NASA Astrophysics Data System (ADS)
Smith, Naftali R.; Meerson, Baruch
2018-05-01
We determine the exact short-time distribution -lnPf(" close=")H ,t )">H ,t =Sf(H )/√{t } of the one-point height H =h (x =0 ,t ) of an evolving 1 +1 Kardar-Parisi-Zhang (KPZ) interface for flat initial condition. This is achieved by combining (i) the optimal fluctuation method, (ii) a time-reversal symmetry of the KPZ equation in 1 +1 dimension, and (iii) the recently determined exact short-time height distribution -lnPst(H ) of the latter, one encounters two branches: an analytic and a nonanalytic. The analytic branch is nonphysical beyond a critical value of H where a second-order dynamical phase transition occurs. Here we show that, remarkably, it is the analytic branch of Sst(H ) which determines the large-deviation function Sf(H ) of the flat interface via a simple mapping Sf(H )=2-3 /2Sst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romatschke, Paul
In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less
Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions
Romatschke, Paul
2016-06-24
In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosmer, P.; Estrade, A.; Montes, F.
The {beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {beta}-delayed neutron emission (P{sub n} values) for {sup 74}Co (18{+-}15%) and {sup 75-77}Ni (10{+-}2.8%, 14{+-}3.6%, and 30{+-}24%, respectively) for the first time, and remeasured the P{sub n} values of {sup 77-79}Cu, {sup 79,81}Zn, and {sup 82}Ga. For {sup 77-79}Cu and for {sup 81}Zn we obtain significantly larger P{sub n} values compared to previous work. While the new half-lives for the Ni isotopes frommore » this experiment had been reported before, we present here in addition the first half-life measurements of {sup 75}Co (30{+-}11 ms) and {sup 80}Cu (170{sub -50}{sup +110} ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A=78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae.« less
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
Energetic-particle drift motions in the outer dayside magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, R.C.
1987-01-01
Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B pockets in the geomagnetic field. These pockets are theoretically capable of temporarily trapping azimuthally-drifting electrons and modifying electron directional distributions. The Lawrence Livermore National Laboratory's scanning electron spectrometer aboard the OGO-5 satellite provided detailed energetic (E > 70 keV) electron pitch-angle distributions throughout the magnetosphere. Distributions obtained in the outer dayside magnetosphere over a wide range of longitudes show unusual flux features. This study analyzes drift-shell branching caused by themore » minimum-B pockets, and interprets the observed flux features in terms of an adiabatic-shell branching and rejoining process. The author examines the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field mode. He finds that shell branching and rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. He also finds a good correlation between the itch angles that mark the transition from branched to unbranched shells in the model and the distinctive features of the OGO-5 distributions.« less
Developmental Programming of Branching Morphogenesis in the Kidney
Schneider, Laura; Al-Awqati, Qais
2015-01-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110
Developmental Programming of Branching Morphogenesis in the Kidney.
Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais
2015-10-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.
Ryall, Krista L; Fidgen, Jeffrey G; Turgeon, Jean J
2011-06-01
The emerald ash borer, Agrilus planipennis Fairmaire, is an exotic invasive insect causing extensive mortality to ash trees, Fraxinus spp., in Canada and the United States. Detection of incipient populations of this pest is difficult because of its cryptic life stages and a multiyear time lag between initial attack and the appearance of signs or symptoms of infestation. We sampled branches from open-grown urban ash trees to develop a sample unit suitable for detecting low density A. planipennis infestation before any signs or symptoms are evident. The sample unit that maximized detection rates consisted of one 50-cm-long piece from the base of a branch ≥6 cm diameter in the midcrown. The optimal sample size was two such branches per tree. This sampling method detected ≈75% of asymptomatic trees known to be infested by using more intensive sampling and ≈3 times more trees than sampling one-fourth of the circumference of the trunk at breast height. The method is less conspicuous and esthetically damaging to a tree than the removal of bark from the main stem or the use of trap trees, and could be incorporated into routine sanitation or maintenance of city-owned trees to identify and delineate infested areas. This research indicates that branch sampling greatly reduces false negatives associated with visual surveys and window sampling at breast height. Detection of A. planipennis-infested asymptomatic trees through branch sampling in urban centers would provide landowners and urban foresters with more time to develop and implement management tactics.
Tracking individual action potentials throughout mammalian axonal arbors.
Radivojevic, Milos; Franke, Felix; Altermatt, Michael; Müller, Jan; Hierlemann, Andreas; Bakkum, Douglas J
2017-10-09
Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.
NASA Astrophysics Data System (ADS)
Elbanna, A. E.
2013-12-01
Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.
Kumar, S; Gadagkar, S R
2000-12-01
The neighbor-joining (NJ) method is widely used in reconstructing large phylogenies because of its computational speed and the high accuracy in phylogenetic inference as revealed in computer simulation studies. However, most computer simulation studies have quantified the overall performance of the NJ method in terms of the percentage of branches inferred correctly or the percentage of replications in which the correct tree is recovered. We have examined other aspects of its performance, such as the relative efficiency in correctly reconstructing shallow (close to the external branches of the tree) and deep branches in large phylogenies; the contribution of zero-length branches to topological errors in the inferred trees; and the influence of increasing the tree size (number of sequences), evolutionary rate, and sequence length on the efficiency of the NJ method. Results show that the correct reconstruction of deep branches is no more difficult than that of shallower branches. The presence of zero-length branches in realized trees contributes significantly to the overall error observed in the NJ tree, especially in large phylogenies or slowly evolving genes. Furthermore, the tree size does not influence the efficiency of NJ in reconstructing shallow and deep branches in our simulation study, in which the evolutionary process is assumed to be homogeneous in all lineages.
Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85
NASA Astrophysics Data System (ADS)
Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.
2013-09-01
We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.
Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.
Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N
2013-09-13
We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86 MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.
"Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis
2011-01-01
Background In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to statistical conclusions. Model checkers for branching time, by contrast, are able to prove properties in the presence of infinitely many paths. Results We have developed Antelope ("Analysis of Networks through TEmporal-LOgic sPEcifications", http://turing.iimas.unam.mx:8080/AntelopeWEB/), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. Antelope, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the Arabidopsis thaliana root stem cell niche. There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a given set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it reports the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs. Antelope tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators. Conclusions We illustrate the advantages of Antelope when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL. PMID:22192526
De Paolis, Marcella; Felix, Cordula; van Ditzhuijzen, Nienke; Fam, Jiang Ming; Karanasos, Antonis; de Boer, Sanneke; van Mieghem, Nicolas M; Daemen, Joost; Costa, Francesco; Bergoli, Luis Carlos; Ligthart, Jurgen M R; Regar, Evelyn; de Jaegere, Peter P; Zijlstra, Felix; van Geuns, Robert Jan; Diletti, Roberto
2016-10-15
Limited data are available on bioresorbable vascular scaffolds (BVS) performance in bifurcations lesions and on the impact of BVS wider struts on side-branch impairment. Patients with at least one coronary bifurcation lesion involving a side-branch ≥2mm in diameter and treated with at least one BVS were examined. Procedural and angiographic data were collected and a dedicated methodology for off-line quantitative coronary angiography (QCA) in bifurcation was applied (eleven-segment model), to assess side-branch impairment occurring any time during the procedure. Two- and three-dimensional QCA were used. Optical coherence tomography (OCT) analysis was performed in a subgroup of patients and long-term clinical outcomes reported. A total of 102 patients with 107 lesions, were evaluated. Device- and procedural-successes were 99.1% and 94.3%, respectively. Side-branch impairment occurring any time during the procedure was reported in 13 bifurcations (12.1%) and at the end of the procedure in 6.5%. Side-branch minimal lumen diameter (Pre: 1.45±0.41mm vs Final: 1.48±0.42mm, p=0.587) %diameter-stenosis (Pre: 26.93±16.89% vs Final: 27.80±15.57%, p=0.904) and minimal lumen area (Pre: 1.97±0.89mm(2) vs Final: 2.17±1.09mm(2), p=0.334), were not significantly affected by BVS implantation. Mean malapposed struts at the bifurcation polygon-of-confluence were 0.63±1.11. The results of the present investigation suggest feasibility and relative safety of BVS implantation in coronary bifurcations. BVS wide struts have a low impact on side-branch impairment when considering bifurcations with side-branch diameter≥2mm. Copyright © 2016. Published by Elsevier Ireland Ltd.
Self-catalytic branch growth of SnO 2 nanowire junctions
NASA Astrophysics Data System (ADS)
Chen, Y. X.; Campbell, L. J.; Zhou, W. L.
2004-10-01
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and [ 1 1 bar 0 ] . A self-catalytic vapor-liquid-solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.
Horban', A Ie
2013-09-01
The question of implementation of the state policy in the field of technology transfer in the medical branch to implement the law of Ukraine of 02.10.2012 No 5407-VI "On Amendments to the law of Ukraine" "On state regulation of activity in the field of technology transfers", namely to ensure the formation of branch database on technology and intellectual property rights owned by scientific institutions, organizations, higher medical education institutions and enterprises of healthcare sphere of Ukraine and established by budget are considered. Analysis of international and domestic experience in the processing of information about intellectual property rights and systems implementation support transfer of new technologies are made. The main conceptual principles of creation of this branch database of technology transfer and branch technology transfer network are defined.
Black hole thermodynamics and heat engines in conformal gravity
NASA Astrophysics Data System (ADS)
Xu, Hao; Sun, Yuan; Zhao, Liu
The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.
Anatomical medial surfaces with efficient resolution of branches singularities.
Gil, Debora; Vera, Sergio; Borràs, Agnés; Andaluz, Albert; González Ballester, Miguel A
2017-01-01
Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility of existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a confident application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an efficient GPU-CPU implementation using standard image processing tools. We show the method computational efficiency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Intelligent manipulation technique for multi-branch robotic systems
NASA Technical Reports Server (NTRS)
Chen, Alexander Y. K.; Chen, Eugene Y. S.
1990-01-01
New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.
An equivalent circuit model of supercapacitors for applications in wireless sensor networks
NASA Astrophysics Data System (ADS)
Yang, Hengzhao; Zhang, Ying
2011-04-01
Energy harvesting technologies have been extensively researched to develop long-lived wireless sensor networks. To better utilize the harvested energy, various energy storage systems are proposed. A simple circuit model is developed to describe supercapacitor behavior, which uses two resistor-capacitor branches with different time constants to characterize the charging and redistribution processes, and a variable leakage resistance (VLR) to characterize the self-discharge process. The voltage and temperature dependence of the VLR values is also discussed. Results show that the VLR model is more accurate than the energy recursive equation (ERE) models for short term wireless sensor network applications.
Characteristics of lightning leader propagation and ground attachment
NASA Astrophysics Data System (ADS)
Jiang, Rubin; Qie, Xiushu; Wang, Zhichao; Zhang, Hongbo; Lu, Gaopeng; Sun, Zhuling; Liu, Mingyuan; Li, Xun
2015-12-01
The grounding process and the associated leader behavior were analyzed by using high-speed video record and time-correlated electric field change for 37 natural negative cloud-to-ground flashes. Weak luminous grounded channel was recognized below the downward leader tip in the frame preceding the return stroke, which is inferred as upward connecting leader considering the physical process of lightning attachment, though not directly confirmed by sequential frames. For stepped leader-first return strokes, the upward connecting leaders tend to be induced by those downward leader branches with brighter luminosity and lower channel tip above ground, and they may accomplish the attachment with great possibility. The upward connecting leaders for 2 out of 61 leader-subsequent stroke sequences were captured in the frame prior to the return stroke, exhibiting relatively long channel lengths of 340 m and 105 m, respectively. The inducing downward subsequent leaders were of the chaotic type characterized by irregular electric field pulse train with duration of 0.2-0.3 ms. The transient drop of the high potential difference between stepped leader system and ground when the attachment occurred would macroscopically terminate the propagation of those ungrounded branches while would not effectively prevent the development of the existing space stem systems in the low-conductivity streamer zone apart from the leader tip. When the ungrounded branches are of poor connection with the main stroke channel, their further propagation toward ground would be feasible. These two factors may contribute to the occurrence of multiple grounding within the same leader-return stroke sequence.
NASA Astrophysics Data System (ADS)
Calabrese, Michelle A.
Surfactant wormlike micelles (WLMs) are of particular scientific interest due to their ability to branch, break, and reform under shear, which can lead to shear banding flow instabilities. The tunable self-assembly of WLMs makes them ubiquitous in applications ranging from consumer products to energy recovery fluids. Altering the topology of WLMs by inducing branching provides a microstructural pathway to design and optimize the flow properties for such targeted applications. The goal of this thesis is to understand the role of micellar branching on the resulting equilibrium and non-equilibrium properties, while advancing instrumentation and analysis methods in rheology and neutron scattering. The degree of branching in the mixed cationic/anionic surfactant solutions is controlled by the addition of sodium tosylate. The equilibrium properties are characterized via small angle neutron scattering (SANS), linear viscoelastic rheology, neutron spin echo, and dynamic light scattering. Combining rheology with spatiotemporally-resolved SANS enables unambiguous identification of non-equilibrium rheological and scattering signatures of branching and shear banding. The nonlinear WLM response is characterized via flow-SANS under steady shear, shear startup, and large amplitude oscillatory shear. New methods of time-resolved data analysis are developed, which improve experimental resolution by several-fold. Shear-induced orientation is a complex function of branching level, radial position, and deformation type. The structural mechanisms behind shear band formation are elucidated for steady and dynamic flows, which depend on branching level. Shear banding disappears at high branching levels for all deformation types. These responses are used to validate constitutive modeling predictions of dynamic shear banding for the first time. Finally, quantitative metrics to predict shear banding from rheology or flow-induced orientation are developed. Together, advanced rheological and neutron techniques provide a platform for creating structure-property relationships that predict flow and structural phenomena in WLMs and other soft materials. These methods have enabled characteristic differences in linear versus branched WLMs to be determined. This research is part of a broader effort to characterize branching in polymers and self-assembled systems, and may aid in the formulation of WLMs for specific applications. Finally, this work provides a basis for testing and developing microstructure-based constitutive equations that incorporate micellar breakage and branching.
NASA Technical Reports Server (NTRS)
Neupert, Werner M.
1991-01-01
The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.
Modern prospects of development of branch of solar power
NASA Astrophysics Data System (ADS)
Luchkina, Veronika
2017-10-01
Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.
NASA Astrophysics Data System (ADS)
Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas
2002-01-01
Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.
Seepage Bifurcation as a Critical Process
NASA Astrophysics Data System (ADS)
Yi, R.; Rothman, D.
2015-12-01
Channel networks form beautiful and surprisingly intricate geometries, yet diligently evade comprehensive mathematical understanding. Work in recent years has shed light on this problem. Networks driven by seepage flow, in particular, have been shown to grow in a field that can be described by the Laplace equation, providing us with an understanding of valley growth and shape. However, the process by which such networks branch to form these ramified shapes is yet a mystery. We focus our attention on a highly ramified seepage valley network in Bristol, Florida. We study the behavior of flux to valley heads as a function of valley length, and use this result to motivate our discussion of branch formation. We then hypothesize that a critical groundwater flux demarcates a transition point where topographic diffusion is overcome by branching processes, and we present network-wide flux calculations, cosmogenic data, and simulation to support our claim. Our results ultimately suggest a mechanism for seepage bifurcation, and inform our understanding of pattern formation in river networks.
SDF1 regulates leading process branching and speed of migrating interneurons
Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.
2011-01-01
Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183
Impact of individual nuclear masses on r -process abundances
Mumpower, M. R.; Surman, R.; Fang, D. -L.; ...
2015-09-15
We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of ±0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. As a result, we identify key nuclei whose masses have a substantial impact on abundancemore » predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities.« less
NASA Astrophysics Data System (ADS)
Akazawa, Housei
2016-06-01
The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.
Akazawa, Housei
2016-06-01
The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp
2016-06-15
The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.
Process connectivity in a naturally prograding river delta
NASA Astrophysics Data System (ADS)
Sendrowski, Alicia; Passalacqua, Paola
2017-03-01
River deltas are lowland systems that can display high hydrological connectivity. This connectivity can be structural (morphological connections), functional (control of fluxes), and process connectivity (information flow from system drivers to sinks). In this work, we quantify hydrological process connectivity in Wax Lake Delta, coastal Louisiana, by analyzing couplings among external drivers (discharge, tides, and wind) and water levels recorded at five islands and one channel over summer 2014. We quantify process connections with information theory, a branch of mathematics concerned with the communication of information. We represent process connections as a network; variables serve as network nodes and couplings as network links describing the strength, direction, and time scale of information flow. Comparing process connections at long (105 days) and short (10 days) time scales, we show that tides exhibit daily synchronization with water level, with decreasing strength from downstream to upstream, and that tides transfer information as tides transition from spring to neap. Discharge synchronizes with water level and the time scale of its information transfer compares well to physical travel times through the system, computed with a hydrodynamic model. Information transfer and physical transport show similar spatial patterns, although information transfer time scales are larger than physical travel times. Wind events associated with water level setup lead to increased process connectivity with highly variable information transfer time scales. We discuss the information theory results in the context of the hydrologic behavior of the delta, the role of vegetation as a connector/disconnector on islands, and the applicability of process networks as tools for delta modeling results.
Branching ratio to the 803 keV level in 210Poα decay
NASA Astrophysics Data System (ADS)
Shor, A.; Weissman, L.; Aviv, O.; Eisen, Y.; Brandis, M.; Paul, M.; Plompen, A.; Tessler, M.; Vaintraub, S.
2018-03-01
Precise knowledge of the branching ratio in the α decay of 210Po is important for accurate measurement of the 209Bi(n ,γ )Big210 cross section, the reaction involved in the termination of the astrophysical s process. The branching ratio was determined from independent measurements of α and γ spectra of bismuth samples simultaneously irradiated by neutrons near the core of the Soreq research reactor (IRR1). The branching ratio was found to be (1.15 ±0.09 ) ×10-5 , consistent with the results of several measurements performed six decades ago. As a by-product value the 209Bi(n ,γ )Big210 thermal cross section was measured to be 21.6 ±1.1 mb.
El Nino's Family Tree (Invited)
NASA Astrophysics Data System (ADS)
Philander, S. G.
2013-12-01
Fluctuations in tropical Pacific rainfall and sea surface temperature (SST) patterns involve different processes on different timescales, but nonetheless have certain features (traits) in common so that all can be viewed as members of the same family. Best-known are the children El Niño and La Niña who, in their performance of the Southern Oscillation, move warm surface waters adiabatically back and forth across the Pacific. They and their nephews and nieces in the Atlantic and Indian Ocean all depend on favorable background conditions, especially a suitable depth for the thermocline whose tilt they oscillate to produce SST changes. The parents El Padre and La Madre are in control of that depth and invoke diabatic processes to change it gradually over the course of decades, at times making it so deep that El Niño becomes permanent. This is the spontaneous, natural branch of the family. Another branch responds to external forcing (externally imposed variations in sunlight) and has as members the cycles of the seasons, of obliquity, and of the precession of the equinoxes. These cousins, aunts and uncles of El Niño are protagonists in the drama of the recurrent Ice Ages.
Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng
2017-10-01
Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Y.; Yang, Y.; Yang, X.
2018-04-01
For the purpose of extracting productions of some specific branching plants effectively and realizing its 3D reconstruction, Terrestrial LiDAR data was used as extraction source of production, and a 3D reconstruction method based on Terrestrial LiDAR technologies combined with the L-system was proposed in this article. The topology structure of the plant architectures was extracted using the point cloud data of the target plant with space level segmentation mechanism. Subsequently, L-system productions were obtained and the structural parameters and production rules of branches, which fit the given plant, was generated. A three-dimensional simulation model of target plant was established combined with computer visualization algorithm finally. The results suggest that the method can effectively extract a given branching plant topology and describes its production, realizing the extraction of topology structure by the computer algorithm for given branching plant and also simplifying the extraction of branching plant productions which would be complex and time-consuming by L-system. It improves the degree of automation in the L-system extraction of productions of specific branching plants, providing a new way for the extraction of branching plant production rules.
C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C-H Activation.
Tran, Gaël; Confair, Danielle; Hesp, Kevin D; Mascitti, Vincent; Ellman, Jonathan A
2017-09-01
Herein, we report a Rh(I)/bisphosphine/K 3 PO 4 catalytic system allowing for the first time the selective branched C-H alkylation of benzimidazoles with Michael acceptors. Branched alkylation with N,N-dimethyl acrylamide was successfully applied to the alkylation of a broad range of benzimidazoles incorporating a variety of N-substituents and with both electron-rich and -poor functionality displayed at different sites of the arene. Moreover, the introduction of a quaternary carbon was achieved by alkylation with ethyl methacrylate. The method was also shown to be applicable to the C2-selective branched alkylation of azabenzimidazoles.
Measurement of prominent eta-decay branching fractions.
Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V
2007-09-21
The decay psi(2S) --> etaJ/psi is used to measure, for the first time, all prominent eta-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for eta decays to gamma gamma, pi(+)pi(-)pi(0), 3pi(0), pi(+)pi(-)gamma and e(+)e(-)gamma, accounting for 99.9% of all eta decays. The precision of several of the branching fractions and their ratios is improved. Two channels, pi(+)pi(-)gamma and e(+)e(-)gamma, show results that differ at the level of three standard deviations from those previously determined.
Measurement of Prominent η-Decay Branching Fractions
NASA Astrophysics Data System (ADS)
Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.
2007-09-01
The decay ψ(2S)→ηJ/ψ is used to measure, for the first time, all prominent η-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for η decays to γγ, π+π-π0, 3π0, π+π-γ and e+e-γ, accounting for 99.9% of all η decays. The precision of several of the branching fractions and their ratios is improved. Two channels, π+π-γ and e+e-γ, show results that differ at the level of three standard deviations from those previously determined.
The Photoconversion of Phytochrome Includes an Unproductive Shunt Reaction Pathway.
Buhrke, David; Kuhlmann, Uwe; Michael, Norbert; Hildebrandt, Peter
2018-03-05
Phytochromes are modular bimodal photoswitches that control gene expression for morphogenetic processes in plants. These functions are triggered by photoinduced conversions between the inactive and active states of the photosensory module, denoted as Pr and Pfr, respectively. In the present time-resolved resonance Raman spectroscopic study of bacterial representatives of this photoreceptor family, we demonstrate that these phototransformations do not represent linear processes but include a branching reaction back to the initial state, prior to (de)activation of the output module. Thus, only a fraction of the photoreceptors undergoing the phototransformations can initiate the downstream signaling process, consistent with phytochrome's function as a sensor for more durable changes of light conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qi, Shi-yong; Zhang, Zhi-hong; Zhang, Chang-wen; Liu, Ran-lu; Shi, Qi-duo; Xu, Yong
2013-12-01
To investigate the impact of staghorn stone branch number on outcomes of percutaneous nephrolithotomy (PNL). From January 2009 to January 2013, the 371 patients with staghorn stones who were referred to our hospital for PNL were considered for this study. All calculi were showed with CT 3-dimentional reconstruction (3-DR) imaging. The computerized database of the patients had been reviewed. Our exclusion criterion was patients with congenital renal anomalies, such as horse-shoe and ectopic kidneys. And borderline stones that branched to one major calyx only were also not included. From 3-DR images, the number of stone branching into minor renal calices was recorded. We made "3" as the branch breakdown between groups. And the patients were divided into four groups. The number of percutaneous tract, operative time, staged PNL, intra-operative blood loss, complications, stone clearance rate, and postoperative hospital day were compared. The 371 patients (386 renal units) underwent PNL successfully, included 144 single-tract PNL, 242 multi-tract PNL, 97 staged PNL. The average operative time was (100 ± 50) minutes; the average intra-operative blood loss was (83 ± 67) ml. The stone clearance rate were 61.7% (3 days) and 79.5% (3 months). The postoperative hospital stay was (6.9 ± 3.4) days. A significantly higher ratio of multi-tract (χ(2) = 212.220, P < 0.01) and staged PNL (χ(2) = 49.679, P < 0.01), longer operative time (F = 4.652, P < 0.01) and postoperative hospital day (F = 2.067, P = 0.043) and lower rate of stone clearance (χ(2) = 10.691 and 47.369, P < 0.05) were found in PNL for calculi with stone branch number ≥ 5. There was no statistically meaningful difference among the 4 groups based on Clavien complication system (P = 0.460). The possibility of multi-tract and staged PNL, lower rate of stone clearance and longer postoperative hospital day increase for staghorn calculi with stone branch number more than 5.
NASA Astrophysics Data System (ADS)
Kunz, Robert; Haworth, Daniel; Dogan, Gulkiz; Kriete, Andres
2006-11-01
Three-dimensional, unsteady simulations of multiphase flow, gas exchange, and particle/aerosol deposition in the human lung are reported. Surface data for human tracheo-bronchial trees are derived from CT scans, and are used to generate three- dimensional CFD meshes for the first several generations of branching. One-dimensional meshes for the remaining generations down to the respiratory units are generated using branching algorithms based on those that have been proposed in the literature, and a zero-dimensional respiratory unit (pulmonary acinus) model is attached at the end of each terminal bronchiole. The process is automated to facilitate rapid model generation. The model is exercised through multiple breathing cycles to compute the spatial and temporal variations in flow, gas exchange, and particle/aerosol deposition. The depth of the 3D/1D transition (at branching generation n) is a key parameter, and can be varied. High-fidelity models (large n) are run on massively parallel distributed-memory clusters, and are used to generate physical insight and to calibrate/validate the 1D and 0D models. Suitably validated lower-order models (small n) can be run on single-processor PC’s with run times that allow model-based clinical intervention for individual patients.
Uncluttered Single-Image Visualization of Vascular Structures using GPU and Integer Programming
Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett; Yoon, Sungroh; Rubin, Geoffrey D.; Napel, Sandy
2013-01-01
Direct projection of three-dimensional branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single two-dimensional stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm. PMID:22291148
Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel
2017-08-01
Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Liao, Hui; Toya, Keiko; Lepak, David P; Hong, Ying
2009-03-01
Extant research on high-performance work systems (HPWSs) has primarily examined the effects of HPWSs on establishment or firm-level performance from a management perspective in manufacturing settings. The current study extends this literature by differentiating management and employee perspectives of HPWSs and examining how the two perspectives relate to employee individual performance in the service context. Data collected in three phases from multiple sources involving 292 managers, 830 employees, and 1,772 customers of 91 bank branches revealed significant differences between management and employee perspectives of HPWSs. There were also significant differences in employee perspectives of HPWSs among employees of different employment statuses and among employees of the same status. Further, employee perspective of HPWSs was positively related to individual general service performance through the mediation of employee human capital and perceived organizational support and was positively related to individual knowledge-intensive service performance through the mediation of employee human capital and psychological empowerment. At the same time, management perspective of HPWSs was related to employee human capital and both types of service performance. Finally, a branch's overall knowledge-intensive service performance was positively associated with customer overall satisfaction with the branch's service. (c) 2009 APA, all rights reserved.
Strain hardening in startup shear of long-chain branched polymer solutions.
Liu, Gengxin; Cheng, Shiwang; Lee, Hyojoon; Ma, Hongwei; Xu, Hongde; Chang, Taihyun; Quirk, Roderic P; Wang, Shi-Qing
2013-08-09
We show for the first time that entangled polymeric liquids containing long-chain branching can exhibit strain hardening upon startup shear. As the significant long-chain branching impedes chain disentanglement, Gaussian coils between entanglements can deform to reach the finite extensibility limit where the intrachain retraction force exceeds the value expected from the usual conformational entropy loss evaluated based on Gaussian chain statistics. The phenomenon is expected to lead to further theoretical understanding.
Structural development of redwood branches and its effects on wood growth.
Kramer, Russell D; Sillett, Stephen C; Carroll, Allyson L
2014-03-01
Redwood branches provide all the carbohydrates for the most carbon-heavy forests on Earth, and recent whole-tree measurements have quantified trunk growth rates associated with complete branch inventories. Providing all of a tree's photosynthetic capacity, branches represent an increasing proportion of total aboveground wood production as trees enlarge. To examine branch development and its effects on wood volume growth, we dissected 31 branches from eight Sequoia sempervirens (D. Don) Endl. and seven Sequoiadendron giganteum Lindl. trees. The cambium-area-to-leaf-area ratio was maintained with size and age but increased with light availability, whereas the heartwood-deposition-area-to-leaf-area ratio increased with size and age but was insensitive to light availability. The proportion of foliage mass arrayed in <1-cm-diameter epicormic shoots increased with decreasing light and was higher in Sequoia (20-60%) than in Sequoiadendron (3-16%). Well-illuminated branches concentrated leaves higher and distally, while shaded branches distributed leaves lower and proximally. In similar light environments, older branches distributed leaves lower and more proximally than younger branches. Branch size, light, species, heartwood area, a heartwood-area-species interaction, and ovulate cone mass predicted 87.5% of the variability in wood volume growth of branches. After accounting for the positive effects of size and light, wood volume growth declined with heartwood area and age. The effect of age was trivial compared to the effect of heartwood area, suggesting that heartwood expansion caused the age-related decline in wood volume growth. Additionally, Sequoiadendron branches of similar size and light environment with more ovulate cones produced less wood, even though these cones were long-lived and photosynthetic, reflecting the energetic cost of seed production. These results contributed to a conceptual model of branch development in which light availability, injury, heartwood content, gravity, and time interact to produce the high degree of branch structural variation evident within redwood crowns.
Water-Based Coating Simplifies Circuit Board Manufacturing
NASA Technical Reports Server (NTRS)
2008-01-01
The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.
Implementation of context independent code on a new array processor: The Super-65
NASA Technical Reports Server (NTRS)
Colbert, R. O.; Bowhill, S. A.
1981-01-01
The feasibility of rewriting standard uniprocessor programs into code which contains no context-dependent branches is explored. Context independent code (CIC) would contain no branches that might require different processing elements to branch different ways. In order to investigate the possibilities and restrictions of CIC, several programs were recoded into CIC and a four-element array processor was built. This processor (the Super-65) consisted of three 6502 microprocessors and the Apple II microcomputer. The results obtained were somewhat dependent upon the specific architecture of the Super-65 but within bounds, the throughput of the array processor was found to increase linearly with the number of processing elements (PEs). The slope of throughput versus PEs is highly dependent on the program and varied from 0.33 to 1.00 for the sample programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E.
The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of surveys conducted July 14-18, 1992, at the Deep Creek and the Brandy Branch crossings of a pipeline installed during May 1991 in Nassau County, Florida. Both floodplains supported bottomland hardwood forests. The pipeline at the Deep Creek crossing was installed by means ofmore » horizontal directional drilling after the ROW had been clear-cut, while the pipeline at the Brandy Branch crossing was installed by means of conventional open trenching. Neither site was seeded or fertilized. At the time of sampling, a dense vegetative community, made up primarily of native perennial herbaceous species, occupied the ROW within the Deep Creek floodplain. The Brandy Branch ROW was vegetated by a less dense stand of primarily native perennial herbaceous plants. Plant diversity was also lower at the Brandy Branch crossing than at the Deep Creek crossing. The results suggest that some of the differences in plant communities are related to the more hydric conditions at the Brandy Branch floodplain.« less
Holthoff, Knut; Zecevic, Dejan; Konnerth, Arthur
2010-04-01
Axonally initiated action potentials back-propagate into spiny dendrites of central mammalian neurons and thereby regulate plasticity at excitatory synapses on individual spines as well as linear and supralinear integration of synaptic inputs along dendritic branches. Thus, the electrical behaviour of individual dendritic spines and terminal dendritic branches is critical for the integrative function of nerve cells. The actual dynamics of action potentials in spines and terminal branches, however, are not entirely clear, mostly because electrode recording from such small structures is not feasible. Additionally, the available membrane potential imaging techniques are limited in their sensitivity and require substantial signal averaging for the detection of electrical events at the spatial scale of individual spines. We made a critical improvement in the voltage-sensitive dye imaging technique to achieve multisite recordings of backpropagating action potentials from individual dendritic spines at a high frame rate. With this approach, we obtained direct evidence that in layer 5 pyramidal neurons from the visual cortex of juvenile mice, the rapid time course of somatic action potentials is preserved throughout all cellular compartments, including dendritic spines and terminal branches of basal and apical dendrites. The rapid time course of the action potential in spines may be a critical determinant for the precise regulation of spike timing-dependent synaptic plasticity within a narrow time window.
Coherent perfect absorption in a homogeneously broadened two-level medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano
2011-05-15
In recent works, it has been shown, rather generally, that the time-reversed process of lasing at threshold realizes a coherent perfect absorber (CPA). In a CPA, a lossy medium in an optical cavity with a specific degree of dissipation, equal in modulus to the gain of the lasing medium, can perfectly absorb coherent optical waves that are the time-reversed counterpart of the lasing field. Here, the time-reversed process of lasing is considered in detail for a homogeneously broadened two-level medium in an optical cavity and the conditions for CPA are derived. It is shown that, owing to the dispersive propertiesmore » of the two-level medium, exact time-reversal symmetry is broken and the frequency of the field at which CPA occurs is generally different than the one of the lasing mode. Moreover, at a large cooperation parameter, the observation of CPA in the presence of bistability requires one to operate in the upper branch of the hysteresis cycle.« less
Task analysis of autonomous on-road driving
NASA Astrophysics Data System (ADS)
Barbera, Anthony J.; Horst, John A.; Schlenoff, Craig I.; Aha, David W.
2004-12-01
The Real-time Control System (RCS) Methodology has evolved over a number of years as a technique to capture task knowledge and organize it into a framework conducive to implementation in computer control systems. The fundamental premise of this methodology is that the present state of the task activities sets the context that identifies the requirements for all of the support processing. In particular, the task context at any time determines what is to be sensed in the world, what world model states are to be evaluated, which situations are to be analyzed, what plans should be invoked, and which behavior generation knowledge is to be accessed. This methodology concentrates on the task behaviors explored through scenario examples to define a task decomposition tree that clearly represents the branching of tasks into layers of simpler and simpler subtask activities. There is a named branching condition/situation identified for every fork of this task tree. These become the input conditions of the if-then rules of the knowledge set that define how the task is to respond to input state changes. Detailed analysis of each branching condition/situation is used to identify antecedent world states and these, in turn, are further analyzed to identify all of the entities, objects, and attributes that have to be sensed to determine if any of these world states exist. This paper explores the use of this 4D/RCS methodology in some detail for the particular task of autonomous on-road driving, which work was funded under the Defense Advanced Research Project Agency (DARPA) Mobile Autonomous Robot Software (MARS) effort (Doug Gage, Program Manager).
Multidisciplinary Optimization Branch Experience Using iSIGHT Software
NASA Technical Reports Server (NTRS)
Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.
1999-01-01
The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. An optimization framework call improve the design process while reducing time and costs. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. Since the release of version 4.0, the MDO Branch has gained experience with the iSIGHT framework developed by Engineous Software, Inc. This paper describes experiences with four aerospace applications: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. All applications have been successfully tested using the iSIGHT framework, except for the aerospike nozzle problem, which is in progress. Brief overviews of each problem are provided. The problem descriptions include the number and type of disciplinary codes, as well as all estimate of the multidisciplinary analysis execution time. In addition, the optimization methods, objective functions, design variables, and design constraints are described for each problem. Discussions on the experience gained and lessons learned are provided for each problem. These discussions include the advantages and disadvantages of using the iSIGHT framework for each case as well as the ease of use of various advanced features. Potential areas of improvement are identified.
Microtubule nucleation and organization in dendrites
Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.
2016-01-01
ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122
Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.
Jaskoll, T; Luo, W; Snead, M L
1998-01-01
It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.
Miyazaki, Taisuke; Yamasaki, Miwako; Hashimoto, Kouichi; Kohda, Kazuhisa; Yuzaki, Michisuke; Shimamoto, Keiko; Tanaka, Kohichi; Kano, Masanobu; Watanabe, Masahiko
2017-01-01
Astrocytes regulate synaptic transmission through controlling neurotransmitter concentrations around synapses. Little is known, however, about their roles in neural circuit development. Here we report that Bergmann glia (BG), specialized cerebellar astrocytes that thoroughly enwrap Purkinje cells (PCs), are essential for synaptic organization in PCs through the action of the l-glutamate/l-aspartate transporter (GLAST). In GLAST-knockout mice, dendritic innervation by the main ascending climbing fiber (CF) branch was significantly weakened, whereas the transverse branch, which is thin and nonsynaptogenic in control mice, was transformed into thick and synaptogenic branches. Both types of CF branches frequently produced aberrant wiring to proximal and distal dendrites, causing multiple CF–PC innervation. Our electrophysiological analysis revealed that slow and small CF-evoked excitatory postsynaptic currents (EPSCs) were recorded from almost all PCs in GLAST-knockout mice. These atypical CF-EPSCs were far more numerous and had significantly faster 10–90% rise time than those elicited by glutamate spillover under pharmacological blockade of glial glutamate transporters. Innervation by parallel fibers (PFs) was also affected. PF synapses were robustly increased in the entire dendritic trees, leading to impaired segregation of CF and PF territories. Furthermore, lamellate BG processes were retracted from PC dendrites and synapses, leading to the exposure of these neuronal elements to the extracellular milieus. These synaptic and glial phenotypes were reproduced in wild-type mice after functional blockade of glial glutamate transporters. These findings highlight that glutamate transporter function by GLAST on BG plays important roles in development and maintenance of proper synaptic wiring and wrapping in PCs. PMID:28655840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Bai, J. Z.; Cai, X.
2007-11-01
Using 58x10{sup 6} J/{psi} and 14x10{sup 6} {psi}(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/{psi} and {psi}(2S){yields}{lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta} are measured. For the isospin violating decays, the upper limits are determined to be B(J/{psi}{yields}{lambda}{lambda}{pi}{sup 0})<6.4x10{sup -5} and B[{psi}(2S){yields}{lambda}{lambda}{pi}{sup 0}]<4.9x10{sup -5} at the 90% confidence level. The isospin conserving process J/{psi}{yields}{lambda}{lambda}{eta} is observed for the first time, and its branching fraction is measured to be B(J/{psi}{yields}{lambda}{lambda}{eta})=(2.62{+-}0.60{+-}0.44)x10{sup -4}, where the first error is statistical and the second one is systematic. No {lambda}{lambda}{eta} signal is observed in {psi}(2S) decays, and B[{psi}(2S){yields}{lambda}{lambda}{eta}]<1.2x10{supmore » -4} is set at the 90% confidence level. Branching fractions of J/{psi} decays into {sigma}{sup +}{pi}{sup -}{lambda} and {sigma}{sup -}{pi}{sup +}{lambda} are also reported, and the sum of these branching fractions is determined to be B(J/{psi}{yields}{sigma}{sup +}{pi}{sup -}{lambda}+c.c.)=(1.52{+-}0.08{+-}0.16)x10{sup -3}.« less
Observation of the helicity-selection-rule suppressed decay of the χ c 2 charmonium state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
Tmore » he decays of χ c 2 → K +K -π 0, K SK ±π ∓, and π +π -π 0 are studied with the ψ ( 3686 ) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χ c 2 → K*$$\\bar{K}$$ , χ c 2 → $$a_2^±$$(1320)π ∓/$$a_2^0$$(1320)π 0, and χ c 2 → ρ( 770 ) ±π ∓ are measured. Here, K*$$\\bar{K}$$ denotes both K* ±K ∓ and its isospin-conjugated process K* 0$$\\bar{K}$$ 0+c.c., and K* denotes the resonances K*(892), $$K_2^*$$(1430), and $$K_3^*$$(1780). he observations indicate a strong violation of the helicity selection rule in χ c 2 decays into vector and pseudoscalar meson pairs. he measured branching fractions of χ c 2 → K*(892)$$\\bar{K}$$ are more than ten times larger than the upper limit of χ c 2 → ρ ( 770 ) ±π ∓, which is so far the first direct observation of a significant U -spin symmetry breaking effect in charmonium decays.« less
Observation of the helicity-selection-rule suppressed decay of the χ c 2 charmonium state
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2017-12-01
Tmore » he decays of χ c 2 → K +K -π 0, K SK ±π ∓, and π +π -π 0 are studied with the ψ ( 3686 ) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χ c 2 → K*$$\\bar{K}$$ , χ c 2 → $$a_2^±$$(1320)π ∓/$$a_2^0$$(1320)π 0, and χ c 2 → ρ( 770 ) ±π ∓ are measured. Here, K*$$\\bar{K}$$ denotes both K* ±K ∓ and its isospin-conjugated process K* 0$$\\bar{K}$$ 0+c.c., and K* denotes the resonances K*(892), $$K_2^*$$(1430), and $$K_3^*$$(1780). he observations indicate a strong violation of the helicity selection rule in χ c 2 decays into vector and pseudoscalar meson pairs. he measured branching fractions of χ c 2 → K*(892)$$\\bar{K}$$ are more than ten times larger than the upper limit of χ c 2 → ρ ( 770 ) ±π ∓, which is so far the first direct observation of a significant U -spin symmetry breaking effect in charmonium decays.« less
Prosodic domain-initial effects on the acoustic structure of vowels
NASA Astrophysics Data System (ADS)
Fox, Robert Allen; Jacewicz, Ewa; Salmons, Joseph
2003-10-01
In the process of language change, vowels tend to shift in ``chains,'' leading to reorganizations of entire vowel systems over time. A long research tradition has described such patterns, but little is understood about what factors motivate such shifts. Drawing data from changes in progress in American English dialects, the broad hypothesis is tested that changes in vowel systems are related to prosodic organization and stress patterns. Changes in vowels under greater prosodic prominence correlate directly with, and likely underlie, historical patterns of shift. This study examines acoustic characteristics of vowels at initial edges of prosodic domains [Fougeron and Keating, J. Acoust. Soc. Am. 101, 3728-3740 (1997)]. The investigation is restricted to three distinct prosodic levels: utterance (sentence-initial), phonological phrase (strong branch of a foot), and syllable (weak branch of a foot). The predicted changes in vowels /e/ and /ɛ/ in two American English dialects (from Ohio and Wisconsin) are examined along a set of acoustic parameters: duration, formant frequencies (including dynamic changes over time), and fundamental frequency (F0). In addition to traditional methodology which elicits list-like intonation, a design is adapted to examine prosodic patterns in more typical sentence intonations. [Work partially supported by NIDCD R03 DC005560-01.
ERIC Educational Resources Information Center
Farrugia, Christine A.; Lane, Jason E.
2013-01-01
When colleges and universities set up outposts such as international branch campuses (IBCs) in foreign countries, the literature suggests that the success of that outpost can be tied to its ability to build its own legitimacy. This article investigates the process of legitimacy building by IBCs through identifying who IBCs view as their salient…
ERIC Educational Resources Information Center
Albayrak, Ahmet Yilmaz; Bayrakdaroglu, Yesim
2018-01-01
The purpose of this research is to assess the sports and socialization of the students studying in different sports branches in Gumushane University. "Socialization-Sports and Socialization Scale" developed by Sahan was used in this research. A total of 742 students composed of 316 females and 426 males studying in Gumushane University…
Iwanaga, Joe; Fisahn, Christian; Alonso, Fernando; DiLorenzo, Daniel; Grunert, Peter; Kline, Matthew T; Watanabe, Koichi; Oskouian, Rod J; Spinner, Robert J; Tubbs, R Shane
2017-04-01
Distal branches of the C1 nerve that travel with the hypoglossal nerve have been well investigated but relationships of C1 and the hypoglossal nerve near the skull base have not been described in detail. Therefore, the aim of this study was to investigate these small branches of the hypoglossal and first cervical nerves by anatomic dissection. Twelve sides from 6 cadaveric specimens were used in this study. To elucidate the relationship among the hypoglossal, vagus, and first and cervical nerve, the mandible was removed and these nerves were dissected under the surgical microscope. A small branch was found to always arise from the dorsal aspect of the hypoglossal nerve at the level of the transverse process of the atlas and joined small branches from the first and second cervical nerves. The hypoglossal and C1 nerves formed a nerve plexus, which gave rise to branches to the rectus capitis anterior and rectus capitis lateralis muscles and the atlanto-occipital joint. Improved knowledge of such articular branches might aid in the diagnosis and treatment of patients with pain derived from the atlanto-occipital joint. We believe this to be the first description of a branch of the hypoglossal nerve being involved in the innervation of this joint. Copyright © 2017 Elsevier Inc. All rights reserved.
Ecological effects of contaminants in McCoy Branch, 1991--1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryon, M.G.
1996-09-01
The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Following guidelines under RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation (RI) was required of the Y-12 Plant for their filled coal ash pond (FCAP) and associated areas on McCoy Branch. The RI process was initiated and assessments were presented. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps weremore » implemented between 1986 and 1994 for McCoy Branch to address disposal problems. The required ecological risk assessments of McCoy Branch watershed included provisions for biological monitoring of the watershed. The objectives of the biological monitoring were to (1) document changes in biological quality of McCoy Branch after completion of a pipeline bypassing upper McCoy Branch and further, after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program may also determine whether the goals of protection of human health and the environment of McCoy Branch are being accomplished.« less
Pagès, Loïc
2014-01-01
Background and Aims Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. Methods Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. Results The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. Conclusions A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions. PMID:25062886
Cosmology of a holographic induced gravity model with curvature effects
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufiq
2011-10-01
We present a holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalizes the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and a holographic dark energy with the Hubble scale as the infrared cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard four-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.
Goudie, Eric; Khereba, Mohamed; Tahiri, Mehdi; Hegde, Pravachan; Thiffault, Vicky; Hadjeres, Rachid; Berdugo, Jérémie; Ferraro, Pasquale; Liberman, Moishe
2016-10-01
Pulmonary artery (PA) sealing in video-assisted thoracoscopic surgery (VATS) lobectomy is typically accomplished using vascular endostaplers. Endostaplers may be associated with iatrogenic PA branch injury, especially in short, small PA branches. We evaluated PA branch sealing with the HARMONIC ACE +7 (ACE) shears (Ethicon, Cincinnati, OH) in VATS lobectomy in a canine survival model. Ten adult dogs underwent VATS lobectomy. Standard VATS lobectomy operative technique was used for the entire operation, except for PA branch sealing. The ACE was used for all PA branch sealing. Dogs were kept alive for 30 days. The 10 dogs underwent VATS right upper (n = 5) and right lower (n = 5) lobectomy. The ACE was used to seal 21 PA branches. No PA branch was divided with an endostapler. There were no intraoperative complications or conversions to thoracotomy. Mean in vivo PA diameter was 5.6 mm (range, 2 to 12 mm). One 10-mm PA branch had a partial seal failure immediately at the time of sealing. The device was reapplied on the stump, and the PA branch was successfully sealed. All dogs survived 30 days without hemothorax. Necropsy at 30 days did not reveal any signs of postoperative bleeding. Pathology of the sealed PA branches at 30 days revealed fibrosis, giant cell reaction, neovascularization, and thermal changes of the vessel wall. The use of the ACE for PA branch sealing in VATS lobectomy is safe and effective in an animal survival model. Human studies are needed to determine the clinical safety of ultrasonic PA branch sealing before widespread clinical use. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing
2015-12-04
Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Tianli; Ruan, Xiulin
2018-01-01
We have developed a formalism of the exact solution to linearized phonon Boltzmann transport equation (BTE) for thermal conductivity calculation including three- and four-phonon scattering. We find strikingly high four-phonon scattering rates in single-layer graphene (SLG) based on the optimized Tersoff potential. The reflection symmetry in graphene, which forbids the three-ZA (out-of-plane acoustic) scattering, allows the four-ZA processes ZA +ZA ⇌ZA +ZA and ZA ⇌ZA +ZA + ZA. As a result, the large phonon population of the low-energy ZA branch originated from the quadratic phonon dispersion leads to high four-phonon scattering rates, even much higher than the three-phonon scattering rates at room temperature. These four-phonon processes are dominated by the normal processes, which lead to a failure of the single mode relaxation time approximation. Therefore, we have solved the exact phonon BTE using an iterative scheme and then calculated the length- and temperature-dependent thermal conductivities. We find that the predicted thermal conductivity of SLG is lower than the previously predicted value from the three-phonon scattering only. The relative contribution of the ZA branch is reduced from 70% to 30% when four-phonon scattering is included. Furthermore, we have demonstrated that the four-phonon scattering in multilayer graphene and graphite is not strong due to the ZA splitting by interlayer van der Waals interaction. We also demonstrate that the five-phonon process in SLG is not strong due to the restriction of reflection symmetry.
Mayoral, Alvaro; Magen, Cesar; Jose-Yacaman, Miguel
2011-01-01
Long multi-branched gold nanoparticles have been synthesized in a very high yield through a facile synthesis combining two different capping agents. The stability of these materials with the time has been tested and their characterization have been performed by diverse advanced electron microscopy techniques, paying special attention to aberration corrected transmission electron microscopy in order to unambiguously analyze the surface structure of the branches and provide insights for the formation of stellated gold nanoparticles. PMID:22125420
Branching Patterns and Stepped Leaders in an Electric-Circuit Model for Creeping Discharge
NASA Astrophysics Data System (ADS)
Hidetsugu Sakaguchi,; Sahim M. Kourkouss,
2010-06-01
We construct a two-dimensional electric circuit model for creeping discharge. Two types of discharge, surface corona and surface leader, are modeled by a two-step function of conductance. Branched patterns of surface leaders surrounded by the surface corona appear in numerical simulation. The fractal dimension of branched discharge patterns is calculated by changing voltage and capacitance. We find that surface leaders often grow stepwise in time, as is observed in lightning leaders of thunder.
Spontaneous Age-Related Neurite Branching in C. elegans
Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia
2011-01-01
The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377
Murk, Kai; Blanco Suarez, Elena M; Cockbill, Louisa M R; Banks, Paul; Hanley, Jonathan G
2013-09-01
Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.
Geist, Eric L.
2014-01-01
Temporal clustering of tsunami sources is examined in terms of a branching process model. It previously was observed that there are more short interevent times between consecutive tsunami sources than expected from a stationary Poisson process. The epidemic‐type aftershock sequence (ETAS) branching process model is fitted to tsunami catalog events, using the earthquake magnitude of the causative event from the Centennial and Global Centroid Moment Tensor (CMT) catalogs and tsunami sizes above a completeness level as a mark to indicate that a tsunami was generated. The ETAS parameters are estimated using the maximum‐likelihood method. The interevent distribution associated with the ETAS model provides a better fit to the data than the Poisson model or other temporal clustering models. When tsunamigenic conditions (magnitude threshold, submarine location, dip‐slip mechanism) are applied to the Global CMT catalog, ETAS parameters are obtained that are consistent with those estimated from the tsunami catalog. In particular, the dip‐slip condition appears to result in a near zero magnitude effect for triggered tsunami sources. The overall consistency between results from the tsunami catalog and that from the earthquake catalog under tsunamigenic conditions indicates that ETAS models based on seismicity can provide the structure for understanding patterns of tsunami source occurrence. The fractional rate of triggered tsunami sources on a global basis is approximately 14%.
Exact coherent structures in an asymptotically reduced description of parallel shear flows
NASA Astrophysics Data System (ADS)
Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith
2015-02-01
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
Unsteady growth of ammonium chloride dendrites
NASA Astrophysics Data System (ADS)
Martyushev, L. M.; Terentiev, P. S.; Soboleva, A. S.
2016-02-01
Growth of ammonium chloride dendrites from aqueous solution is experimentally investigated. The growth rate υ and the radius ρ of curvature of branches are measured as a function of the relative supersaturation Δ for steady and unsteady growth conditions. It is shown that the experimental results are quantitatively described by the dependences ρ=a/Δ+b, υ=сΔ2, where the factors for primary branches are a=(1.3±0.2)·10-7 m, b=(2.5±0.4)·10-7 m, and c=(2.2±0.3)·10-4 m/s. The factor c is found to be approximately 7 times smaller for the side branches than that for the primary branches.
SPL13 regulates shoot branching and flowering time in Medicago sativa.
Gao, Ruimin; Gruber, Margaret Y; Amyot, Lisa; Hannoufa, Abdelali
2018-01-01
Our results show SPL13 plays a crucial role in regulating vegetative and reproductive development in Medicago sativa L. (alfalfa), and that MYB112 is targeted and downregulated by SPL13 in alfalfa. We previously showed that transgenic Medicago sativa (alfalfa) plants overexpressing microRNA156 (miR156) show a bushy phenotype, reduced internodal length, delayed flowering time, and enhanced biomass yield. In alfalfa, transcripts of seven SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, including SPL13, are targeted for cleavage by miR156. Thus, association of each target SPL gene to a trait or set of traits is essential for developing molecular markers for alfalfa breeding. In this study, we investigated SPL13 function using SPL13 overexpression and silenced alfalfa plants. Severe growth retardation, distorted branches and up-curled leaves were observed in miR156-impervious 35S::SPL13m over-expression plants. In contrast, more lateral branches and delayed flowering time were observed in SPL13 silenced plants. SPL13 transcripts were predominantly present in the plant meristems, indicating that SPL13 is involved in regulating shoot branch development. Accordingly, the shoot branching-related CAROTENOID CLEAVAGE DIOXYGENASE 8 gene was found to be significantly downregulated in SPL13 RNAi silencing plants. A R2R3-MYB gene MYB112 was also identified as being directly silenced by SPL13 based on Next Generation Sequencing-mediated transcriptome analysis and chromatin immunoprecipitation assays, suggesting that MYB112 may be involved in regulating alfalfa vegetative growth.
77 FR 12318 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... Research in Integrative Cancer Biology and the Tumor Microenvironment. Date: March 20, 2012. Time: 8 a.m... Review Officer, Special Review & Logistics Branch, Division of Extramural Activities, National Cancer...: Ilda M McKenna, Ph.D., Scientific Review Officer, Research Training Review Branch, Division of...
A lognormal distribution of the lengths of terminal twigs on self-similar branches of elm trees.
Koyama, Kohei; Yamamoto, Ken; Ushio, Masayuki
2017-01-11
Lognormal distributions and self-similarity are characteristics associated with a wide range of biological systems. The sequential breakage model has established a link between lognormal distributions and self-similarity and has been used to explain species abundance distributions. To date, however, there has been no similar evidence in studies of multicellular organismal forms. We tested the hypotheses that the distribution of the lengths of terminal stems of Japanese elm trees (Ulmus davidiana), the end products of a self-similar branching process, approaches a lognormal distribution. We measured the length of the stem segments of three elm branches and obtained the following results: (i) each occurrence of branching caused variations or errors in the lengths of the child stems relative to their parent stems; (ii) the branches showed statistical self-similarity; the observed error distributions were similar at all scales within each branch and (iii) the multiplicative effect of these errors generated variations of the lengths of terminal twigs that were well approximated by a lognormal distribution, although some statistically significant deviations from strict lognormality were observed for one branch. Our results provide the first empirical evidence that statistical self-similarity of an organismal form generates a lognormal distribution of organ sizes. © 2017 The Author(s).
Paskevich, Valerie F.
1992-01-01
The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.
The dynamic relationship between plant architecture and competition
Ford, E. David
2014-01-01
In this review, structural and functional changes are described in single-species, even-aged, stands undergoing competition for light. Theories of the competition process as interactions between whole plants have been advanced but have not been successful in explaining these changes and how they vary between species or growing conditions. This task now falls to researchers in plant architecture. Research in plant architecture has defined three important functions of individual plants that determine the process of canopy development and competition: (i) resource acquisition plasticity; (ii) morphogenetic plasticity; (iii) architectural variation in efficiency of interception and utilization of light. In this review, this research is synthesized into a theory for competition based on five groups of postulates about the functioning of plants in stands. Group 1: competition for light takes place at the level of component foliage and branches. Group 2: the outcome of competition is determined by the dynamic interaction between processes that exert dominance and processes that react to suppression. Group 3: species differences may affect both exertion of dominance and reaction to suppression. Group 4: individual plants may simultaneously exhibit, in different component parts, resource acquisition and morphogenetic plasticity. Group 5: mortality is a time-delayed response to suppression. Development of architectural models when combined with field investigations is identifying research needed to develop a theory of architectural influences on the competition process. These include analyses of the integration of foliage and branch components into whole-plant growth and precise definitions of environmental control of morphogenetic plasticity and its interaction with acquisition of carbon for plant growth. PMID:24987396
The dynamic relationship between plant architecture and competition.
Ford, E David
2014-01-01
In this review, structural and functional changes are described in single-species, even-aged, stands undergoing competition for light. Theories of the competition process as interactions between whole plants have been advanced but have not been successful in explaining these changes and how they vary between species or growing conditions. This task now falls to researchers in plant architecture. Research in plant architecture has defined three important functions of individual plants that determine the process of canopy development and competition: (i) resource acquisition plasticity; (ii) morphogenetic plasticity; (iii) architectural variation in efficiency of interception and utilization of light. In this review, this research is synthesized into a theory for competition based on five groups of postulates about the functioning of plants in stands. Group 1: competition for light takes place at the level of component foliage and branches. Group 2: the outcome of competition is determined by the dynamic interaction between processes that exert dominance and processes that react to suppression. Group 3: species differences may affect both exertion of dominance and reaction to suppression. Group 4: individual plants may simultaneously exhibit, in different component parts, resource acquisition and morphogenetic plasticity. Group 5: mortality is a time-delayed response to suppression. Development of architectural models when combined with field investigations is identifying research needed to develop a theory of architectural influences on the competition process. These include analyses of the integration of foliage and branch components into whole-plant growth and precise definitions of environmental control of morphogenetic plasticity and its interaction with acquisition of carbon for plant growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Congdi; Long, Ben; Hu, Yarong
Alzheimer's disease is a representative age-related neurodegenerative disease that could result in loss of memory and cognitive deficiency. However, the precise onset time of Alzheimer's disease affecting neuronal circuits and the mechanisms underlying the changes are not clearly known. To address the neuroanatomical changes during the early pathologic developing process, we acquired the neuronal morphological characterization of AD in APP/PS1 double-transgenic mice using the Micro-Optical Sectioning Tomography system. We reconstructed the neurons in 3D datasets with a resolution of 0.32 × 0.32 × 1 μm and used the Sholl method to analyze the anatomical characterization of the dendritic branches. The results showed that, similar tomore » the progressive change in amyloid plaques, the number of dendritic branches were significantly decreased in 9-month-old mice. In addition, a distinct reduction of dendritic complexity occurred in third and fourth-order dendritic branches of 9-month-old mice, while no significant changes were identified in these parameters in 6-month-old mice. At the branch-level, the density distribution of dendritic arbors in the radial direction decreased in the range of 40–90 μm from the neuron soma in 6-month-old mice. These changes in the dendritic complexity suggest that these reductions contribute to the progressive cognitive impairment seen in APP/PS1 mice. This work may yield insights into the early changes in dendritic abnormality and its relevance to dysfunctional mechanisms of learning, memory and emotion in Alzheimer's disease. - Highlights: • Neuron-level, reduction of dendritic complexity in BLA of 9-month-old AD mice. • Specific range of branch decrease in density of 6-month-old AD mice. • 3D imaging with high resolution will provide insights into brain aging.« less
Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas
2017-11-01
The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Juárez-Herrera, Ursulo; Jerjes Sánchez, Carlos; González-Pacheco, Héctor; Martínez-Sánchez, Carlos
2010-01-01
Compare in-hospital outcome in patients with ST-elevation myocardial infarction with right versus left bundle branch block. RENASICA II, a national Mexican registry enrolled 8098 patients with final diagnosis of acute coronary syndrome secondary to ischemic heart disease. In 4555 STEMI patients, 545 had bundle branch block, 318 (58.3%) with right and 225 patients with left (41.6%). Both groups were compared in terms of in-hospital outcome through major cardiovascular adverse events; (cardiovascular death, recurrent ischemia and reinfarction). Multivariable analysis was performed to identify in-hospital mortality risk among right and left bundle branch block patients. There were not statistical differences in both groups regarding baseline characteristics, time of ischemia, myocardial infarction location, ventricular dysfunction and reperfusion strategies. In-hospital outcome in bundle branch block group was characterized by a high incidence of major cardiovascular adverse events with a trend to higher mortality in patients with right bundle branch block (OR 1.70, CI 1.19 - 2.42, p < 0.003), compared to left bundle branch block patients. In this sub-study right bundle branch block accompanying ST-elevation myocardial infarction of any location at emergency room presentation was an independent predictor of high in-hospital mortality.
Ahmadi, Mostafa; Pioge, Sandie; Fustin, Charles-Andre; Gohy, Jean-Francois; van Ruymbeke, Evelyne
2017-02-07
Synthesis of combs with well-entangled backbones and long branches with high densities has always been a challenge. Steric hindrance frequently leads to coupling of chains and structural imperfections that cannot be easily distinguished by traditional characterization methods. Research studies have therefore tried to use a combination of different methods to obtain more information on the actual microstructures. In this work, a grafting-from approach is used to synthesize poly(n-butyl acrylate) combs using atom transfer radical polymerization (ATRP) in three steps including the synthesis of a backbone, cleavage of protecting groups and growth of side branches. We have compared the linear viscoelastic properties theoretically predicted by a time marching algorithm (TMA) tube based model with the measured rheological behaviour to provide a better insight into the actual microstructure formed during synthesis. For combs with branches smaller than an entanglement, no discernible hierarchical relaxation can be distinguished, while for those with longer branches, a high frequency plateau made by entangled branches can be separated from backbone's relaxation. Dilution of the backbone, after relaxation of side branches, may accelerate the final relaxation, while extra friction can delay it especially for longer branches. Such a comparison provides a better assessment of the microstructure formed in combs.
The Quantification of Consistent Subjective Logic Tree Branch Weights for PSHA
NASA Astrophysics Data System (ADS)
Runge, A. K.; Scherbaum, F.
2012-04-01
The development of quantitative models for the rate of exceedance of seismically generated ground motion parameters is the target of probabilistic seismic hazard analysis (PSHA). In regions of low to moderate seismicity, the selection and evaluation of source- and/or ground-motion models is often a major challenge to hazard analysts and affected by large epistemic uncertainties. In PSHA this type of uncertainties is commonly treated within a logic tree framework in which the branch weights express the degree-of-belief values of an expert in the corresponding set of models. For the calculation of the distribution of hazard curves, these branch weights are subsequently used as subjective probabilities. However the quality of the results depends strongly on the "quality" of the expert knowledge. A major challenge for experts in this context is to provide weight estimates which are logically consistent (in the sense of Kolmogorov's axioms) and to be aware of and to deal with the multitude of heuristics and biases which affect human judgment under uncertainty. For example, people tend to give smaller weights to each branch of a logic tree the more branches it has, starting with equal weights for all branches and then adjusting this uniform distribution based on his/her beliefs about how the branches differ. This effect is known as pruning bias.¹ A similar unwanted effect, which may even wrongly suggest robustness of the corresponding hazard estimates, will appear in cases where all models are first judged according to some numerical quality measure approach and the resulting weights are subsequently normalized to sum up to one.2 To address these problems, we have developed interactive graphical tools for the determination of logic tree branch weights in form of logically consistent subjective probabilities, based on the concepts suggested in Curtis and Wood (2004).3 Instead of determining the set of weights for all the models in a single step, the computer driven elicitation process is performed as a sequence of evaluations of relative weights for small subsets of models which are presented to the analyst. From these, the distribution of logic tree weights for the whole model set is determined as solution of an optimization problem. The model subset presented to the analyst in each step is designed to maximize the expected information. The result of this process is a set of logically consistent weights together with a measure of confidence determined from the amount of conflicting information which is provided by the expert during the relative weighting process.
Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.
2015-01-01
Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of extirpation for a local population may rapidly increase with only minimal increases in wind mortality. Conservation biologists and wildlife managers may need to consider this mortality pattern when issuing take permits and developing monitoring protocols for wind facilities. We also describe how our branching process models may be generalized across a wider range of species for a larger assessment project and then describe how our methods may be applied to other stressors in addition to wind.
Cravity modulation of the moss Tortula modica branching
NASA Astrophysics Data System (ADS)
Khorkavtsiv, Yaroslava; Kit, Nadja
Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle 45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.
Maximum Likelihood Analysis in the PEN Experiment
NASA Astrophysics Data System (ADS)
Lehman, Martin
2013-10-01
The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.
NASA Astrophysics Data System (ADS)
Kosma, Kyriaki; Trushin, Sergei A.; Schmid, Wolfram E.; Fuß, Werner
2015-12-01
The main primary photoproducts of cycloocta-1,3,5-triene (COT) are a strained mono-E isomer, Z,Z-octatetraene (OT, from electrocyclic ring opening) and benzene + ethylene. We investigated the excited-state dynamics of COT by time-resolved mass spectroscopy, probing by near-IR photoionization. Unexpectedly, we found only one reaction channel. We assign it to the pericyclic reactions. Evidence for an early branching between this and the Z-E channel is taken from previous resonance Raman data. This channel confirms previously formulated rules on the excited states involved, the reaction path and driving forces and contributes to their rationalization. Bicyclo[4.2.0]octa-2,4-diene undergoes only two pericyclic reactions: ring opening to OT and cleavage to benzene + ethylene. We investigated it briefly in its equilibrium mixture with COT. The data are consistent with a common path on the excited surfaces. Suggestions are made for structures of conical intersections, and driving forces are considered. All processes were found to be barrierless.
USDA-ARS?s Scientific Manuscript database
A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...
Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio
2016-01-01
Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
78 FR 50065 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... Methodological Research for Cancer Epidemiology Cohorts. Date: October 25, 2013. Time: 10:30 a.m. to 2:30 p.m... Lopaczynski, MD, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of Extramural.... Contact Person: Shakeel Ahmad, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division...
75 FR 39546 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
...; Integrative Cancer Biology in the Tumor Microenvironment (U01). Date: July 22, 2010. Time: 8 a.m. to 5 p.m..., Special Review and Logistics Branch, Division of Extramural Activities, National Cancer Institute, 6116... Review and Logistic Branch, Division of Extramural Activities, NCI, National Institutes of Health, 6116...
78 FR 8155 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
...; NCI Omnibus Cancer Biology 1. Date: March 11-12, 2013. Time: 8:00 a.m. to 5:00 p.m. Agenda: To review..., Special Review and Logistics Branch, Division of Extramural Activities, National Cancer Institute, NIH..., MD, Scientific Review Officer, Research Programs Review Branch, Division of Extramural Activities...
75 FR 21640 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
..., Resources and Training Review Branch, Division of Extramural Activities, National Cancer Institute, 6116....D., PhD, Scientific Review Officer, Research Programs Review Branch, Division of Extramural... & Tissue Biology P01. Date: May 26-28, 2010. Time: 5 p.m. to 5 p.m. Agenda: To review and evaluate grant...
76 FR 14675 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... Biology. Date: May 16-18, 2011. Time: 4 p.m. to 5 p.m. Agenda: To review and evaluate grant applications... Branch, Division of Extramural Activities, National Cancer Institute, NIH, 6116 Executive Boulevard, Room.... Wirth, PhD, Scientific Review Officer, Research Programs Review Branch, Division of Extramural...
Fu, Ji-Ya; Xu, Xiao-Ying; Li, Yan-Chun; Huang, Qing-Chun; Wang, Li-Xin
2010-10-21
A highly efficient enantioselective α-amination of branched aldehydes with azadicarboxylates promoted by chiral proline-derived amide thiourea bifunctional catalysts was developed for the first time, affording the adducts bearing quaternary stereogenic centers with excellent yields (up to 99%) and enantioselectivities (up to 97% ee).
78 FR 26379 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... Methodological Research for Cancer Epidemiology Cohorts. Date: June 25, 2013. Time: 11:00 a.m. to 4:00 p.m... Officer, Research Programs Review Branch, Division of Extramural Activities, National Cancer Institute... Person: David G. Ransom, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of...
Dual-step synthesis of 3-dimensional niobium oxide - Zinc oxide
NASA Astrophysics Data System (ADS)
Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Rusop, M.
2018-05-01
A facile fabrication process for constructing 3-dimensional (3D) structure of Niobium oxide - Zinc oxide (Nb2O5-ZnO) consisting of branched ZnO microrods on top of nanoporous Nb2O5 films was developed based on dual-step synthesis approach. The preliminary procedure was anodization of sputtered niobium metal on Fluorine doped Tin Oxide (FTO) to produce nanoporous Nb2O5, and continued with the growth of branched microrods of ZnO by hydrothermal process. This approach offers insight knowledge on the development of novel 3D metal oxide films via dual-step synthesis process, which might potentially use for multi-functional applications ranging from sensing to photoconversion.
The MATCHIT Automaton: Exploiting Compartmentalization for the Synthesis of Branched Polymers
Weyland, Mathias S.; Fellermann, Harold; Hadorn, Maik; Sorek, Daniel; Lancet, Doron; Rasmussen, Steen; Füchslin, Rudolf M.
2013-01-01
We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield. PMID:24489601
Below- and above-ground controls on tree water use in lowland tropical forests
NASA Astrophysics Data System (ADS)
Meinzer, F. C.; Woodruff, D.; McCulloh, K.; Domec, J.
2012-12-01
Even in moist tropical forests, fluctuations in soil water availability and atmospheric evaporative demand can constrain tree water use. Our research in three lowland tropical forest sites in Panama over the past two decades has identified a series of tree biophysical and functional traits related to daily and seasonal patterns of uptake, transport and loss of water. Studies combining measurements of sap flow and natural abundance of hydrogen isotopes in soil and xylem water during the dry season show considerable variation in depth of soil water uptake among co-occurring species. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem water hydrogen isotope ratios, were also able to maintain constant or even increased rates of water use. Injections of a stable isotope tracer (deuterated water) into tree trunks revealed a considerable range of water transit and residence times among co-occurring, similarly-sized trees. Components of tree hydraulic architecture were also strong determinants of patterns of water use. Sapwood hydraulic capacitance, the amount of water released per unit change in tissue water potential, was a strong predictor of several tree water use and water relations traits, including sap velocity, water residence time, daily maximum branch xylem tension, and the time of day at which stomata began to increasingly restrict transpiration. Among early and late successional species, hydraulic traits such as trunk-to-branch tapering of xylem vessels, branch sap flux, branch sapwood specific conductivity and whole-tree leaf area-specific hydraulic conductance scaled uniformly with branch wood density. Consistent with differences in trunk-to-branch tapering of vessels between early and late successional species, the ratio of branch to trunk sap flux was substantially greater in early successional species. Among species, stomatal conductance and transpiration per unit leaf area scaled uniformly with branch leaf-specific conductivity and with the branch leaf area to sapwood area ratio; a tree architecture-based proxy for leaf-specific conductivity. At the canopy-atmosphere interface, a combination of high stomatal conductance and relatively large leaf size enhanced the role of the boundary layer over stomata in controlling transpiration (increased decoupling coefficient; omega). Uniform scaling of tree water use characteristics with simple biophysical, hydraulic and architectural traits across species may facilitate predictions of changes in tropical forest water use with shifts in species composition associated with climate change and changing land-use.
Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A
2015-01-01
The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (foreground) cheers over the successful liftoff of Space Shuttle Discovery, watching it rocket through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. At far left is Stephanie Stilson, NASA flow director in the Process Integration Branch of the Shuttle Processing Directorate, who began conducting Discovery's processing operations in December 2000. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
The Study on the Optimization of Container Multimodal Transport Business Process in Shandong
NASA Astrophysics Data System (ADS)
Wang, Fengmei; Gong, Xiaoyi; Ni, Yingying; Zhan, Jun; Che, Huiping
2018-06-01
Shandong is a coastal city with good location advantages. As a hub port for international trade goods and a port of transhipment, shandong's demand for multimodal transport is more urgent. By selecting the suitable non-water port and the multimodal transport carrier to improve the efficiency of multimodal transport, the purpose of saving the time of logistics is achieved, thus reducing the logistics cost.It branch out through Shandongt, and it can reach the central region of China, can reach the Western remote area ,too. This paper puts forward the optimization scheme of the business process of container multimodal transport. The optimization of freight forwarding business process is analyzed. The multimodal transport model in Shandong was designed. Finally, the optimal approach of multimodal transport in Shandong is put forward.
Sonoanatomy of sensory branches of the ulnar nerve below the elbow in healthy subjects.
Kim, Ki Hoon; Lee, Seok Jun; Park, Byung Kyu; Kim, Dong Hwee
2018-04-01
We identify sensory branches of the ulnar nerve-palmar ulnar cutaneous nerve (PUCN), dorsal ulnar cutaneous nerve (DUCN), and superficial sensory branch-using ultrasonography. In 60 forearms of 30 healthy adult volunteers, the origin and size of the PUCN, DUCN, and superficial sensory branch were measured by ultrasonography. The relative pathway of the DUCN to the ulnar styloid process was also investigated. The PUCN was observed in 47 forearms (78%), and the DUCN was observed in all forearms. Average distances from the pisiform to the origin of the PUCN and DUCN were 11.9 ± 1.4 and 7.0 ± 1.0 cm, respectively. Superficial and deep divisions split 0.9 ± 0.3 cm distal to the pisiform. Cross-sectional areas of the PUCN, DUCN, and superficial sensory branch were 0.3 ± 0.1, 1.5 ± 0.5, and 3.9 ± 1.0 mm 2 , respectively. Sensory branches of the ulnar nerve can be visualized by ultrasonography, helping to differentiate ulnar nerve injury originating at either wrist or elbow. Muscle Nerve 57: 569-573, 2018. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, Adriana L.; Varga, Tamas
Branching structures such as lungs, blood vessels and plant roots play a critical role in life. Growth, structure, and function of these branching structures have an immense effect on our lives. Therefore, quantitative size information on such structures in their native environment is invaluable for studying their growth and the effect of the environment on them. X-ray computed tomography (XCT) has been an effective tool for in situ imaging and analysis of branching structures. We developed a costless tool that approximates the surface and volume of branching structures. Our methodology of noninvasive imaging, segmentation and extraction of quantitative information ismore » demonstrated through the analysis of a plant root in its soil medium from 3D tomography data. XCT data collected on a grass specimen was used to visualize its root structure. A suite of open-source software was employed to segment the root from the soil and determine its isosurface, which was used to calculate its volume and surface. This methodology of processing 3D data is applicable to other branching structures even when the structure of interest is of similar x-ray attenuation to its environment and difficulties arise with sample segmentation.« less
Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin
2016-07-05
The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.
2010-04-01
NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS). APS was developed for processing...have not previously developed automated processing for 73 hyperspectral ocean color data. The hyperspectral processing branch includes several
Abstract of talk for Silicon Valley Linux Users Group
NASA Technical Reports Server (NTRS)
Clanton, Sam
2003-01-01
The use of Linux for research at NASA Ames is discussed.Topics include:work with the Atmospheric Physics branch on software for a spectrometer to be used in the CRYSTAL-FACE mission this summer; work on in the Neuroengineering Lab with code IC including an introduction to the extension of the human senses project,advantages with using linux for real-time biological data processing,algorithms utilized on a linux system, goals of the project,slides of people with Neuroscan caps on, and progress that has been made and how linux has helped.
2011-06-01
branch. In Semitic life, such that led by the Hebrews in ancient times, the woman was considered ritually impure because of her menstruation (Maccoby... Bible left on the beach. He once had a number of Muslim friends, but they‘ve all moved out of California now. My mother was raised Catholic, so she...was, at the very most, the Son of God (since that is what the Bible mistranslates ―Servant of Awareness of difference from other Americans
Resident Information Management System of Shibuya
NASA Astrophysics Data System (ADS)
Kokubo, Shoji
Inhabitant record image processing system using optical disks and LAN was introduced and has been at fully operational stage since March, 1985 at Shibuya Ward Office. Inhabitant forms which have been filled in by handwriting are recorded on the optical disks and retrieved when necessary so that inhabitant's moving-in and out business can be handled at any branch office, and waiting time for issuance of the inhabitant form is markedly reduced. The optical file system is outlined first, then the system outline at the Ward Office and its operation are described.
Goto, Masami; Kunimatsu, Akira; Shojima, Masaaki; Abe, Osamu; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Ino, Kenji; Yano, Keiichi; Saito, Nobuhito; Ohtomo, Kuni
2013-03-25
We present a case in which the origin of the branching vessel at the aneurysm neck was observed at the wrong place on the volume rendering method (VR) with 3D time-of-flight MRA (3D-TOF-MRA) with 3-Tesla MR system. In 3D-TOF-MRA, it is often difficult to observe the origin of the branching vessel, but it is unusual for it to be observed in the wrong place. In the planning of interventional treatment and surgical procedures, false recognition, as in the unique case in the present report, is a serious problem. Decisions based only on VR with 3D-TOF-MRA can be a cause of suboptimal selection in clinical treatment.
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
Study of the branching ratio of {psi}(3770){yields}DD in e{sup +}e{sup -{yields}}DD scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Haibo; Qin Xiaoshuai; Yang Maozhi
2010-01-01
Based on the data of BES and Belle, the production of DD in the e{sup +}e{sup -{yields}}DD scattering process is studied in this paper. We analyze the continuum and resonant contributions in the energy region from 3.7 to 4.4 GeV. In the {chi}{sup 2} fit to data, we obtain the resonance parameters of {psi}(3770), the branching ratio of {psi}(3770){yields}DD decay by confronting the data to the theoretical formula where both the contributions of the resonances, continuum and interference effects are included. We obtain the branching ratio of {psi}(3770){yields}DD decay is 97.2%{+-}8.9%, as well as the branching ratio of {psi}(4040), {psi}(4160){yields}DDmore » decays.« less
Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2016-08-22
Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Expression and Functional Role of Sprouty-2 in Breast Morphogenesis
Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M.; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K.; Gudjonsson, Thorarinn
2013-01-01
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland. PMID:23573284
Expression and functional role of sprouty-2 in breast morphogenesis.
Sigurdsson, Valgardur; Ingthorsson, Saevar; Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K; Gudjonsson, Thorarinn
2013-01-01
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.
LAD Prize Talk: Lab Astro and the Origins of the Chemical Elements
NASA Astrophysics Data System (ADS)
Lawler, James E.
2017-06-01
Only a few of the lightest or primordial nuclei were made just after the Big Bang. Other light nuclei up to the Fe-group are made by fusion in stars. Heavier nuclei are made primarily via r(apid)-process and s(low)-process n(eutron)-capture events. Although the s-process n-capture is fairly well understood, the r-process n-capture events remain poorly understood. The relative role of Core Collapse SNe and n-star mergers will likely be understood in the next few decades. I will discuss recent studies of old Metal-Poor stars that are revealing some new details of nucleosynthesis. This progress is due to the availability of high resolution spectra from large ground based telescopes, access to the UV via HST, and better laboratory data. Our laboratory astrophysics program has focused primarily on the measurement of transition probabilities by combining radiative lifetimes with emission branching fractions. The use of Time Resolved Laser Induced Fluorescence (TRLIF) to measure radiative lifetimes in metallic atoms and ions provides an absolute scale for transition probabilities accurate to a few percent [e.g. 1]. The development and application of TRLIF to neutral and ionized atoms of nearly all elements is due to a simple, versatile, and reliable atom/ion beam source based on a hollow cathode discharge [2, 3]. Fourier transform spectrometers (FTSs) are essential in the measurement of emission branching fractions for atoms and ions with dense spectra such as the rare earths [e.g. 4, 5]. A 3 m focal length echelle spectrometer is important to the measurement of weak branches which might otherwise be obscured by multiplex noise in FTS data [6, 7]. References: [1] E. A. Den Hartog et al., ApJS 194: 35 (2011). [2] D. W. Duquette et al., Phys. Rev. A24, 2847 (1981). [3] S. Salih & J. E. Lawler, Phys. Rev. A29, 3753, (1983). [4] J. W. Brault, J. Opt. Soc. Am. 66, 1081 (1976). [5] J. E. Lawler et al., ApJS 182, 51 (2009). [6] M. P. Wood & J. E. Lawler, Appl. Opt. 51, 8407 (2012). [7] C. Sneden et al., ApJ 817:53 (2016).
Nosov, Nikita Yu; Krasnov, Yaroslav M.; Oglodin, Yevgeny G.; Kukleva, Lyubov M.; Guseva, Natalia P.; Kuznetsov, Alexander A.; Abdikarimov, Sabyrzhan T.; Dzhaparova, Aigul K.; Kutyrev, Vladimir V.
2017-01-01
Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains. PMID:29073248
Eroshenko, Galina A; Nosov, Nikita Yu; Krasnov, Yaroslav M; Oglodin, Yevgeny G; Kukleva, Lyubov M; Guseva, Natalia P; Kuznetsov, Alexander A; Abdikarimov, Sabyrzhan T; Dzhaparova, Aigul K; Kutyrev, Vladimir V
2017-01-01
Fifty six Yersinia pestis strains, isolated over the period of more than 50 years in three high-mountain foci of Kyrgyzstan (Tien Shan, Alai, and Talas), have been characterized by means of PCR and single nucleotide polymorphism (SNP) typing methods. Seven of these strains were also characterized by means of whole genome sequencing and genome-wide SNP phylogenetic analysis. It was found that forty two strains belong to 0.ANT2, 0.ANT3 and 0.ANT5 phylogenetic branches. From these, strains of 0.ANT2 and 0.ANT3 branches were earlier detected in China only, whereas 0.ANT5 phylogenetic branch was identified for Y. pestis phylogeny for the first time. According to the results of genome-wide SNP analysis, 0.ANT5 strains are ones of the most closely related to Y. pestis strain responsible for the Justinianic Plague. We have also found out that four of the studied strains belong to the phylogenetic branch 2.MED1, and ten strains from Talas high-mountain focus belong to the phylogenetic branch 0.PE4 (sub-branch 0.PE4t). Established diversity of Y. pestis strains and extensive dissemination of the strains pertaining to the 0.ANT branch confirm the antiquity of the mentioned above plague foci and suggest that strains of the 0.ANT branch, which serve as precursors for all highly virulent Y. pestis strains, had their origin in the Tien Shan mountains.
Straight and branched-chain fatty acids in preorbital glands of sika deer, Cervus nippon.
Wood, William F
2004-02-01
Using GC-MS analysis, 11 major volatile compounds were found in the preorbital gland secretion from a female sika deer, Cervus nippon. These compounds are the C14 through C18 straight-chain fatty acids, (ZZ)-9,12-octadecadienoic acid, 12-methyltridecanoic acid, 13-methyltetradecanoic acid, 14-methylpentadecanoic acid, 14-methylhexadecanoic acid, and 15-methylhexadecanoic acid. The five branched-chain acids make up over 29% of the volatiles in the gland. This is the first time branched-chain carboxylic acids have been reported from ungulate preorbital glands.
A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance.
Cline, Morris G; Oh, Choonseok
2006-10-01
Evidence from pea rms1, Arabidopsis max4 and petunia dad1 mutant studies suggest an unidentified carotenoid-derived/plastid-produced branching inhibitor which moves acropetally from the roots to the shoots and interacts with auxin in the control of apical dominance. Since the plant hormone, abscisic acid (ABA), known to inhibit some growth processes, is also carotenoid derived/plastid produced, and because there has been indirect evidence for its involvement with branching, a re-examination of the role of ABA in apical dominance is timely. Even though it has been determined that ABA probably is not the second messenger for auxin in apical dominance and is not the above-mentioned unidentified branching inhibitor, the similarity of their derivation suggests possible relationships and/or interactions. The classic Thimann-Skoog auxin replacement test for apical dominance with auxin [0.5 % naphthalene acetic acid (NAA)] applied both apically and basally was combined in similar treatments with 1 % ABA in Ipomoea nil (Japanese Morning Glory), Solanum lycopersicum (Better Boy tomato) and Helianthus annuus (Mammoth Grey-striped Sunflower). Auxin, apically applied to the cut stem surface of decapitated shoots, strongly restored apical dominance in all three species, whereas the similar treatment with ABA did not. However, when ABA was applied basally, i.e. below the lateral bud of interest, there was a significant moderate repression of its outgrowth in Ipomoea and Solanum. There was also some additive repression when apical auxin and basal ABA treatments were combined in Ipomoea. The finding that basally applied ABA is able partially to restore apical dominance via acropetal transport up the shoot suggests possible interactions between ABA, auxin and the unidentified carotenoid-derived branching inhibitor that justify further investigation.
Technological parameters of welding of branch saddles to polyethylene pipes at low temperatures
NASA Astrophysics Data System (ADS)
Starostin, N. P.; Vasilieva, M. A.
2017-12-01
The present paper outlines a procedure for determination of dynamics of the temperature field during the welding of the branch saddle to the polyethylene gas pipeline at ambient temperatures below the normative. The analysis is accomplished by the finite element method with the heat of the phase transition taken into account. Methods of the visualization of data sets reveal the possibility of controlling the thermal process by preheating and thermal insulation during welding of the branch saddle to the pipe at low temperatures and the possibility of obtaining the dynamics of the temperature field at which a high-quality welded joint is formed.
Li, Yingchun; Jia, Shuai; Du, Shuanli; Wang, Yafei; Lv, Lida; Zhang, Jianbin
2018-06-01
An approach originated from preparing long chain branched polypropylene (PP) was applied to modify the properties of recycled PP that involved reactive extrusion to introduce a branched chain structure onto recycled PP under the assistance of chemical reaction between maleic anhydride (MAH) monomer and glycidyl methacrylate (GMA) grafts. The results from Fourier transformed infrared spectroscopy (FTIR) indicated the reaction took place during melt mixing, and the intensity of ester increased with increasing amount of MAH. Several rheological plots including complex viscosity, storage modulus, loss modulus, loss tangent and Cole-Cole plot were used to investigate the rheological properties of recycled PP and modified PP with MAH, which indicated an additional longer relaxation time that was not shown in recycled PP. The effects of branched structure on melting and crystallization behaviors were also investigated, demonstrating the branched chains acted as nucleating agent. Moreover, the branched structure of modified samples gave rise to enhance mechanical properties, especially, the higher impact strength compared with recycled PP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Solubilization of cyclohexane in aqueous solutions of sodium. cap alpha. -alkyl alkanoates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagitani, H.; Suzuki, T.; Nagai, M.
1982-01-01
The effect of branched alkyl chain length and the position of the COONa group on the solubilizing power of n-alkane sodium carboxylates was studied. The lipophilic property and the amount of solubilized cyclohexane increased with the branched chain length of branched soaps, and with the change of the position of the -COONa group from 3 to 7 in the alkyl chain of pentadecane -3, -5, and -7 sodium carboxylates. Alpha-branched soaps having proper branched alkyl chains were better solubilizers for cyclohexane than straight chain compounds. The amount of cyclohexane solublized by C/sub 10/ H/sub 21/ CH(C/sub 6/H/sub 13/) COONa wasmore » about three times greater than the amount solubilized by C/sub 17/ H/sub 35/ COONa. There was a marked increase in the solubilization of cyclohexane replacing ..cap alpha..-branched fatty acid soaps with optimum amount of cosurfactants such as C/sub 8/H/sub 17/ (OCH/sub 2/CH/sub 2/)/sub 2/OH. Namely, solubilization increased markedly at the optimum hydrophile-lipophile balance of mixed surfactant. 21 references.« less
Structural analysis of the role of TPX2 in branching microtubule nucleation
Thawani, Akanksha
2017-01-01
The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation. PMID:28264915
Lewkowicz, David J
2011-01-01
Since the time of the Greeks, philosophers and scientists have wondered about the origins of structure and function. Plato proposed that the origins of structure and function lie in the organism's nature whereas Aristotle proposed that they lie in its nurture. This nature/nurture dichotomy and the emphasis on the origins question has had a powerful effect on our thinking about development right into modern times. Despite this, empirical findings from various branches of developmental science have made a compelling case that the nature/nurture dichotomy is biologically implausible and, thus, that a search for developmental origins must be replaced by research into developmental processes. This change in focus recognizes that development is an immensely complex, dynamic, embedded, interdependent, and probabilistic process and, therefore, renders simplistic questions such as whether a particular behavioral capacity is innate or acquired scientifically uninteresting.
Lewkowicz, David J.
2011-01-01
Since the time of the Greeks, philosophers and scientists have wondered about the origins of structure and function. Plato proposed that the origins of structure and function lie in the organism's nature whereas Aristotle proposed that they lie in its nurture. This nature/nurture dichotomy and the emphasis on the origins question has had a powerful effect on our thinking about development right into modern times. Despite this, empirical findings from various branches of developmental science have made a compelling case that the nature/nurture dichotomy is biologically implausible and, thus, that a search for developmental origins must be replaced by research into developmental processes. This change in focus recognizes that development is an immensely complex, dynamic, embedded, interdependent, and probabilistic process and, therefore, renders simplistic questions such as whether a particular behavioral capacity is innate or acquired scientifically uninteresting. PMID:21709807
DANCE : Device for Measurement of (n.g.) Reactions on radioactive Species /
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamberlin, E. P.; Dragowsky, M.; Fowler, Malcolm M.
2001-01-01
DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV onmore » rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.« less
2008 Post-Election Voting Survey of Overseas Citizens: Statistical Methodology Report
2009-08-01
Gorsak. Westat performed data collection and editing. DMDC’s Survey Technology Branch, under the guidance of Frederick Licari, Branch Chief, is...POST-ELECTION VOTING SURVEY OF OVERSEAS CITIZENS: STATISTICAL METHODOLOGY REPORT Executive Summary The Uniformed and Overseas Citizens Absentee ...ease the process of voting absentee , (3) to evaluate other progress made to facilitate voting participation, and (4) to identify any remaining
Food Design Thinking: A Branch of Design Thinking Specific to Food Design
ERIC Educational Resources Information Center
Zampollo, Francesca; Peacock, Matthew
2016-01-01
Is there a need for a set of methods within Design Thinking tailored specifically for the Food Design process? Is there a need for a branch of Design Thinking dedicated to Food Design alone? Chefs are not generally trained in Design or Design Thinking, and we are only just beginning to understand how they ideate and what recourses are available to…
EVOLUTION OF THE CROSS-CORRELATION AND TIME LAG OF 4U 1735-44 ALONG THE BRANCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei Yajuan; Zhang Haotong; Zhang Chengmin
We analyze the cross-correlation function between the soft and hard X-rays of atoll source 4U 1735-44 with RXTE data, and find anti-correlated soft and hard time lags of about a hecto-second. In the island state, the observations do not show any obvious correlations, and most observations of the banana branch show a positive correlation. However, anti-correlations are detected in the upper banana branch. These results are different from those of Z-sources (Cyg X-2, GX 5-1), where anti-correlations are detected in the horizontal branch and upper normal branch. In this case, the lag timescales of both this atoll and Z-sources aremore » found to be similar, at a magnitude of several tens to hundreds of seconds. As a comparison, it is noted that anti-correlated lags lasting thousands of seconds have been reported from several black hole candidates in their intermediate states. In addition, for an observation containing four segments that show positive or anti-correlation, we analyze the spectral evolution with the hybrid model. In the observation, the anti-correlation is detected at the highest flux. The fitting results show that the Comptonized component is not the lowest at the highest flux, which suggests that the anti-correlation corresponds to the transition between the soft and hard states. Finally, we compare the corresponding results of atoll source 4U 1735-44 with those observed in Z-sources and black hole candidates, and the possible origins of the anti-correlated time lags are discussed.« less
77 FR 2737 - National Institute on Aging; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... for Developing Areas of Investigation in the Basic Biology of Aging. Date: February 9, 2012. Time: 8...., Scientific Review Officer, Scientific Review Branch, National Institute on Aging, Gateway Bldg., 2C212, 7201... Officer, Scientific Review Branch, National Institute on Aging, Gateway Building, Suite 2C212, MSC-9205...
Future Contingents, Freedom, and Foreknowledge
ERIC Educational Resources Information Center
Abouzahr, Mohammed S.
2013-01-01
This essay is a contribution to the new trend and old tradition of analyzing theological fatalism in light of its relationship to logical fatalism. All results pertain to branching temporal systems that use the A-theory and assume presentism. The project focuses on two kinds of views about branching time. One position is true futurism, which…
Aaltonen, Timo Antero
2016-03-01
Here, we describe a measurement of the ratio of the cross sections times branching fractions of the B c + meson in the decay mode B c + → J/ψμ +ν to the B + meson in the decay mode B + → J/ψK + in proton-antiproton collisions at center-of-mass energy √s = 1.96 TeV. The measurement is based on the complete CDF Run II data set, which comes from an integrated luminosity of 8.7 fb -1. The ratio of the production cross sections times branching fractions for B c + and B + mesons with momentum transverse to themore » beam greater than 6 GeV/c and rapidity magnitude smaller than 0.6 is 0.211 ± 0.012(stat) -0.020 +0.021(syst). Using the known B + → J/ψK + branching fraction, the known B + production cross section, and a selection of the predicted B c + → J/ψμ +ν branching fractions, the range for the total B c + production cross section is estimated.« less
NASA Astrophysics Data System (ADS)
Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.
2017-10-01
Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.
Measurement of the Bc± production cross section in p p ¯ collisions at √{s }=1.96 TeV
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration
2016-03-01
We describe a measurement of the ratio of the cross sections times branching fractions of the Bc+ meson in the decay mode Bc+→J /ψ μ+ν to the B+ meson in the decay mode B+→J /ψ K+ in proton-antiproton collisions at center-of-mass energy √{s }=1.96 TeV . The measurement is based on the complete CDF Run II data set, which comes from an integrated luminosity of 8.7 fb-1. The ratio of the production cross sections times branching fractions for Bc+ and B+ mesons with momentum transverse to the beam greater than 6 GeV /c and rapidity magnitude smaller than 0.6 is 0.211 ±0.012 (stat)-0.020 +0.021(syst ) . Using the known B+→J /ψ K+ branching fraction, the known B+ production cross section, and a selection of the predicted Bc+→J /ψ μ+ν branching fractions, the range for the total Bc+ production cross section is estimated.
Yang, Zhilai; Chen, Na; Ge, Rongjing; Qian, Hao; Wang, Jin-Hui
2017-09-22
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.
Qian, Hao; Wang, Jin-Hui
2017-01-01
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits. PMID:29069799
Weighted Distances in Scale-Free Configuration Models
NASA Astrophysics Data System (ADS)
Adriaans, Erwin; Komjáthy, Júlia
2018-01-01
In this paper we study first-passage percolation in the configuration model with empirical degree distribution that follows a power-law with exponent τ \\in (2,3) . We assign independent and identically distributed (i.i.d.) weights to the edges of the graph. We investigate the weighted distance (the length of the shortest weighted path) between two uniformly chosen vertices, called typical distances. When the underlying age-dependent branching process approximating the local neighborhoods of vertices is found to produce infinitely many individuals in finite time—called explosive branching process—Baroni, Hofstad and the second author showed in Baroni et al. (J Appl Probab 54(1):146-164, 2017) that typical distances converge in distribution to a bounded random variable. The order of magnitude of typical distances remained open for the τ \\in (2,3) case when the underlying branching process is not explosive. We close this gap by determining the first order of magnitude of typical distances in this regime for arbitrary, not necessary continuous edge-weight distributions that produce a non-explosive age-dependent branching process with infinite mean power-law offspring distributions. This sequence tends to infinity with the amount of vertices, and, by choosing an appropriate weight distribution, can be tuned to be any growing function that is O(log log n) , where n is the number of vertices in the graph. We show that the result remains valid for the the erased configuration model as well, where we delete loops and any second and further edges between two vertices.
Do Vascular Networks Branch Optimally or Randomly across Spatial Scales?
Newberry, Mitchell G.; Savage, Van M.
2016-01-01
Modern models that derive allometric relationships between metabolic rate and body mass are based on the architectural design of the cardiovascular system and presume sibling vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the cardiovascular structure of the human head and torso and of a mouse lung based on three-dimensional images processed via our software Angicart. In contrast to modern allometric theories, we find systematic patterns of asymmetry in vascular branching, potentially explaining previously documented mismatches between predictions (power-law or concave curvature) and observed empirical data (convex curvature) for the allometric scaling of metabolic rate. To examine why these systematic asymmetries in vascular branching might arise, we construct a mathematical framework to derive predictions based on local, junction-level optimality principles that have been proposed to be favored in the course of natural selection and development. The two most commonly used principles are material-cost optimizations (construction materials or blood volume) and optimization of efficient flow via minimization of power loss. We show that material-cost optimization solutions match with distributions for asymmetric branching across the whole network but do not match well for individual junctions. Consequently, we also explore random branching that is constrained at scales that range from local (junction-level) to global (whole network). We find that material-cost optimizations are the strongest predictor of vascular branching in the human head and torso, whereas locally or intermediately constrained random branching is comparable to material-cost optimizations for the mouse lung. These differences could be attributable to developmentally-programmed local branching for larger vessels and constrained random branching for smaller vessels. PMID:27902691
Predicting nuclear gene coalescence from mitochondrial data: the three-times rule.
Palumbi, S R; Cipriano, F; Hare, M P
2001-05-01
Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three-times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three-times rule predicts nuclear gene patterns that can help detect the action of selection. The three-times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.
NASA Astrophysics Data System (ADS)
Sechin, A.; Kyrmakova, O.; Osipenko, S.
2016-01-01
In this article the research directed on development of a technique of definition of time of induction of the self-ignition of substances and materials which is an indicator of the beginning of development of an emergency is conducted. The experiment consisting in supervision over process of self-ignition of coal and oil deposits was the basis for research. On the basis of experimental data the curve expressing analytic - expected dependence of size of temperature of ignition on induction time was constructed. Proceeding from graphical representation of process, functional dependence of time of induction on a temperature indicator was received: y = 16920 • x0 537. By means of known indicators of such substances as bitumen oil oxidized (the combustible solid substance received by oxidation of residual product of oil refining) and tar oil (the combustible solid substance which is residual product of oil refining) and the received algorithm, verification of reliability of the received dependence and a technique of definition of time of induction of spontaneous ignition of deposits of oil in general was carried out. The practical importance of the conducted research is that having data on time of induction of process of self-ignition, by means of preventive measures becomes possible to avoid and prevent accidents in oil and oil processing branches, at the same time loss of property and loss of human life.
C-fuzzy variable-branch decision tree with storage and classification error rate constraints
NASA Astrophysics Data System (ADS)
Yang, Shiueng-Bien
2009-10-01
The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.
Zubarew, Tamara; Correa, Loreto; Bedregal, Paula; Besoain, Carolina; Reinoso, Alejandro; Velarde, Macarena; Valenzuela, María Teresa; Inostroza, Carolina
2017-01-01
The Adolescent Branch from Sociedad Chilena de Pediatría supports the implementation of planned programs for transition from child to adult health centers, oriented to adolescents with chronic diseases, in order to ensure an appropriate follow-up and a high-quality health care. Recommendations for care are set out in the FONIS and VRI PUC project carried out by the Division of Pediatrics of the Universidad Católica de Chile: Transition process from pediatric to adult services: perspectives of adolescents with chronic diseases, caregivers and health professionals, whose goal was to describe the experience, barriers, critical points, and facilitators in the transition process. Critical points detected in this study were: existence of a strong bond between adolescents, caregivers and the pediatric team, resistance to transition, difficulty developing autonomy and self-management among adolescents; invisibility of the process of adolescence; and lack of communication between pediatric and adult team during the transfer. According to these needs, barriers and critical points, and based on published international experiences, recommendations are made for implementation of gradual and planned transition processes, with emphasis on the design and implementation of transition policies, establishment of multidisciplinary teams and transition planning. We discuss aspects related to coordination of teams, transfer timing, self-care and autonomy, transition records, adolescent and family participation, need for emotional support, ethical aspects involved, importance of confidentiality, need for professional training, and the need for evaluation and further research on the subject.
Jia, Tongying; Yuan, Huiyun
2017-04-12
Many large-scaled public hospitals have established branched hospitals in China. This study is to provide evidence for strategy making on the management and development of multi-branched hospitals by evaluating and comparing the operational efficiencies of different hospitals before and after their establishment of branched hospitals. DEA (Data Envelopment Analysis) window analysis was performed on a 7-year data pool from five public hospitals provided by health authorities and institutional surveys. The operational efficiencies of sample hospitals measured in this study (including technical efficiency, pure technical efficiency and scale efficiency) had overall trends towards increase during this 7-year period of time, however, a temporary downturn occurred shortly after the establishment of branched hospitals; pure technical efficiency contributed more to the improvement of technical efficiency compared to scale efficiency. The establishment of branched-hospitals did not lead to a long-term negative effect on hospital operational efficiencies. Our data indicated the importance of improving scale efficiency via the optimization of organizational management, as well as the advantage of a different form of branch-establishment, merging and reorganization. This study brought an insight into the practical application of DEA window analysis on the assessment of hospital operational efficiencies.
Nature of alpha and beta particles in glycogen using molecular size distributions.
Sullivan, Mitchell A; Vilaplana, Francisco; Cave, Richard A; Stapleton, David; Gray-Weale, Angus A; Gilbert, Robert G
2010-04-12
Glycogen is a randomly hyperbranched glucose polymer. Complex branched polymers have two structural levels: individual branches and the way these branches are linked. Liver glycogen has a third level: supramolecular clusters of beta particles which form larger clusters of alpha particles. Size distributions of native glycogen were characterized using size exclusion chromatography (SEC) to find the number and weight distributions and the size dependences of the number- and weight-average masses. These were fitted to two distinct randomly joined reference structures, constructed by random attachment of individual branches and as random aggregates of beta particles. The z-average size of the alpha particles in dimethylsulfoxide does not change significantly with high concentrations of LiBr, a solvent system that would disrupt hydrogen bonding. These data reveal that the beta particles are covalently bonded to form alpha particles through a hitherto unsuspected enzyme process, operative in the liver on particles above a certain size range.
NASA Technical Reports Server (NTRS)
Eltahir, Elfatih A. B.; Bras, Rafael L.
1996-01-01
The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?
NASA Astrophysics Data System (ADS)
Brandão, J.; Mello, A.; Garcia, F.; Sampaio, L. C.
2017-03-01
The motion and trajectory of vortex domain walls (VDWs) driven by magnetic field were investigated in Fe80Ni20 nanowires with an asymmetric Y-shape branch. By using the focused magneto-optical Kerr effect, we have probed the injection, pinning, and propagation of VDWs in the branch and in the wire beyond the branch entrance. Hysteresis cycles measured at these points show 3 and 4 jumps in the magnetization reversal, respectively. Micromagnetic simulations were carried out to obtain the number of jumps in the hysteresis cycles, and the magnetization process involved in each jump. Based on simulations and from the size of the jumps in the measured hysteresis cycles, one obtains the histogram of the domain wall type probability. While in the branch domain walls of different types are equiprobable, in the nanowire vortex domain walls with counter clockwise and clockwise chiralities and transverse-down domain walls are measured with probabilities of 65%, 25%, and 10%, respectively. These results provide an additional route to select the trajectory and chirality of VDWs in magnetic nanostructures.
Releasing the brakes while hanging on: Cortactin effects on actin-driven motility.
Gov, Nir S; Bernheim-Groswasser, Anne
2012-01-01
Actin polymerization plays a major role in many cellular processes, including cell motility, vesicle trafficking, and pathogen propulsion. The transformation of the (protrusive) polymerization forces into directed motion requires that the growing filaments are positioned next to the surface. This is achieved by localization of surface actin nucleators (WASP), which then activate Arp2/3 complex to form new actin branches. Yet, the same surface-bound WASP molecule which initiates the nucleation of new actin branches, also inherently prevents the translation of the polymerization forces into motion, essentially because the WASP molecule has to be in contact with the network during the formation of the new branch. In our recent paper we show that cortactin relaxes this internal inhibition by enhancing the release of WASP-VCA molecule from the new branching site after nucleation is initiated. We show that this enhanced release has two major effects; it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.
NASA Astrophysics Data System (ADS)
Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin
2014-08-01
The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.
Newton, Leslie; Frampton, John; Monahan, John; Goldfarb, Barry; Hain, Fred
2011-01-01
Since its introduction into the Southern Appalachians in the 1950s, the balsam woolly adelgid, Adelges piceae Ratzeburg (Hemiptera: Adelgidae), has devastated native populations of Fraser fir, Abies fraseri (Pursh) Poir. (Pinales: Pinaceae), and has become a major pest in Christmas tree plantations requiring expensive chemical treatments. Adelges piceae—resistant Fraser fir trees would lessen costs for the Christmas tree industry and assist in the restoration of native stands. Resistance screening is an important step in this process. Here, four studies directed toward the development of time— and cost—efficient techniques for screening are reported. In the first study, three methods to artificially infest seedlings of different ages were evaluated in a shade—covered greenhouse. Two—year—old seedlings had much lower infestation levels than 7 year—old seedlings. Placing infested bark at the base of the seedling was less effective than tying infested bark to the seedling or suspending infested bolts above the seedling. Although the two latter techniques resulted in similar densities on the seedlings, they each have positive and negative considerations. Attaching bark to uninfested trees is effective, but very time consuming. The suspended bolt method mimics natural infestation and is more economical than attaching bark, but care must be taken to ensure an even distribution of crawlers falling onto the seedlings. The second study focused on the density and distribution of crawlers falling from suspended bolts onto paper gridded into 7.6 × 7.6 cm cells. Crawler density in a 30 cm band under and to each side of the suspended bolt ranged from 400 to over 3000 crawlers per cell (1 to 55 crawlers per cm2). In the third study, excised branches from 4 year—old A. fraseri and A. vetchii seedlings were artificially infested with A. piceae to determine whether this technique may be useful for early resistance screening. The excised A. fraseri branches supported complete adelgid development (crawler to egg—laying adult), and very little adelgid development occurred on A. vetchii branches. The fourth study compared infestation levels and gouting response on excised versus intact branches of 4 year—old A. fraseri seedlings from three different seed sources, and excised branches from 4 year—old and 25 year—old trees. There were no differences in infestation levels between excised versus intact branches nor in very young versus mature trees; gouting response was observed only on intact branches. PMID:22239164
Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne
2011-01-01
Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873
Morphological evidence for local microcircuits in rat vestibular maculae
NASA Technical Reports Server (NTRS)
Ross, M. D.
1997-01-01
Previous studies suggested that intramacular, unmyelinated segments of vestibular afferent nerve fibers and their large afferent endings (calyces) on type I hair cells branch. Many of the branches (processes) contain vesicles and are presynaptic to type II hair cells, other processes, intramacular nerve fibers, and calyces. This study used serial section transmission electron microscopy and three-dimensional reconstruction methods to document the origins and distributions of presynaptic processes of afferents in the medial part of the adult rat utricular macula. The ultrastructural research focused on presynaptic processes whose origin and termination could be observed in a single micrograph. Results showed that calyces had 1) vesiculated, spine-like processes that invaginated type I cells and 2) other, elongate processes that ended on type II cells pre- as well as postsynaptically. Intramacular, unmyelinated segments of afferent nerve fibers gave origin to branches that were presynaptic to type II cells, calyces, calyceal processes, and other nerve fibers in the macula. Synapses with type II cells occurred opposite subsynaptic cisternae (C synapses); all other synapses were asymmetric. Vesicles were pleomorphic but were differentially distributed according to process origin. Small, clear-centered vesicles, approximately 40-60 nm in diameter, predominated in processes originating from afferent nerve fibers and basal parts of calyces. Larger vesicles approximately 70-120 nm in diameter having approximately 40-80 nm electron-opaque cores were dominant in processes originating from the necks of calyces. Results are interpreted to indicate the existence of a complex system of intrinsic feedforward (postsynaptic)-feedback (presynaptic) connections in a network of direct and local microcircuits. The morphological findings support the concept that maculae dynamically preprocess linear acceleratory information before its transmission to the central nervous system.
Crawford, Charles G.; Wangsness, David J.
1987-01-01
A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by differences in the chemical-mass discharges at three sites. Elevated suspended solids, biochemical-oxygen demand, and ammonia chemical-mass discharges at Columbia Avenue indicated the presence of a source of what may have been untreated sewage to the West Branch during the survey. (Author 's abstract)
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
Grushka, Jeremy R; Al-Abbad, Saleh; Baird, Robert; Puligandla, Pramod; Kaplan, Feige; Laberge, Jean-Martin
2010-05-01
Fetal tracheal occlusion (TO) has been investigated as a treatment option for lung hypoplasia secondary to congenital diaphragmatic hernia. Tracheal occlusion has been shown to accelerate lung growth, but its effect on bronchial branching is unknown. In this study, we characterize the effects of in vitro TO on bronchial branch development in fetal lung explants derived from the nitrofen rat model of congenital diaphragmatic hernia. Rat dams were gavaged nitrofen on gestational day 9.5, and fetal lungs were harvested for explant culture on gestational day 14 (term, 22 days). Four experimental groups were investigated, with TO performed ex vivo using cautery: control, control + TO, nitrofen, and nitrofen + TO. Explants were incubated for 72 hours. Representative photographs were taken at 0, 24, 48, and 72 hours from the time of culture, and the number of distal branches was counted for each explant. The Student t test was used to compare distal branch measurements. A minimum of 12 fetal lung explants were cultured for each group. By 24 hours, all explants undergoing TO had more branch iterations than explants that did not. Moreover, TO in nitrofen-exposed explants increased bronchial branching to control levels by 24 hours in culture. Our results suggest that TO at day 14 increases branching in normal and nitrofen-exposed lung explants. In addition, TO increases airway branching in nitrofen-exposed explants to control levels suggesting that early TO reverses the lung hypoplasia seen in this model. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning
2009-11-01
The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.
The Army Priority List of At-Risk Species: 2009-2010 Status Update
2010-09-01
moved three species closer to formal TES status. Results of this work should help target proactive actions, such as participation in conservation ... Conservation Branch, Installation Services, OACSIM. The work was completed by the Ecological Process Branch (CN-N) of the Installations Division (CN...for the conservation of threatened and endangered plants and animals and the habitats in which they are found (USEPA 2009). The ESA regulates Feder
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
A model-independent search for the production of heavy resonances decaying into top-antitop quark pairs is presented. The search is based on events containing one lepton (muon or electron) and at least two jets selected from data samples corresponding to an integrated luminosity of 4.4-5.0 inverse femtobarns collected in pp collisions at sqrt(s) = 7 TeV. Results are presented from the combination of two dedicated searches optimized for boosted production and production at threshold. No excess of events is observed over the expected yield from the standard model processes. Topcolor Z' bosons with narrow (wide) width are excluded at 95% confidencemore » level for masses below 1.49 (2.04) TeV and an upper limit of 0.3 (1.3) pb or lower is set on the production cross section times branching fraction for resonance masses above 1 TeV. Kaluza-Klein excitations of a gluon with masses below 1.82 TeV (at 95% confidence level) in the Randall-Sundrum model are also excluded, and an upper limit of 0.7 pb or lower is set on the production cross section times branching fraction for resonance masses above 1 TeV.« less
In Situ Quantification of Experimental Ice Accretion on Tree Crowns Using Terrestrial Laser Scanning
Nock, Charles A.; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian
2013-01-01
In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... should be directed to: Office of the Chief Financial Officer/OAA/Records Branch, U.S. Immigration and... the estimated public burden and associated response time should be directed to the Office of the Chief Financial Officer/OAA/Records Branch, U.S. Immigration and Customs Enforcement, 500 12th Street, SW., STOP...
DeSantis, Christopher J; Skrabalak, Sara E
2014-05-25
Au/Pd octopods with hollow, cubic interiors and Oh symmetry were synthesized for the first time by etching core@shell Pd@Au/Pd octopods to selectively remove their Pd interiors. Integration of multiple architectural features - in this case branching symmetry, composition, and interior design - into one nanostructure provides design strategies to new plasmonic colloids.
Visual but not trigeminal mediation of magnetic compass information in a migratory bird.
Zapka, Manuela; Heyers, Dominik; Hein, Christine M; Engels, Svenja; Schneider, Nils-Lasse; Hans, Jörg; Weiler, Simon; Dreyer, David; Kishkinev, Dmitry; Wild, J Martin; Mouritsen, Henrik
2009-10-29
Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain. The light-dependent hypothesis suggests that magnetic field direction is sensed by radical pair-forming photopigments in the eyes and that this visual signal is processed in cluster N, a specialized, night-time active, light-processing forebrain region. Here we report that European robins with bilateral lesions of cluster N are unable to show oriented magnetic-compass-guided behaviour but are able to perform sun compass and star compass orientation behaviour. In contrast, bilateral section of the ophthalmic branch of the trigeminal nerve in European robins did not influence the birds' ability to use their magnetic compass for orientation. These data show that cluster N is required for magnetic compass orientation in this species and indicate that it may be specifically involved in processing of magnetic compass information. Furthermore, the data strongly suggest that a vision-mediated mechanism underlies the magnetic compass in this migratory songbird, and that the putative iron-mineral-based receptors in the upper beak connected to the brain by the trigeminal nerve are neither necessary nor sufficient for magnetic compass orientation in European robins.
Branching pattern in natural drainage network
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Singh, A.; Wang, D.
2017-12-01
The formation and growth of river channels and their network evolution are governed by the erosional and depositional processes operating on the landscape due to movement of water. The branching structure of drainage network is an important feature related to the network topology and contain valuable information about the forming mechanisms of the landscape. We studied the branching patterns in natural drainage networks, extracted from 1 m Digital Elevation Models (DEMs) of 120 catchments with minimal human impacts across the United States. We showed that the junction angles have two distinct modes an the observed modes are physically explained as the optimal angles that result in minimum energy dissipation and are linked to the exponent characterizing slope-area curve. Our findings suggest that the flow regimes, debris-flow dominated or fluvial, have distinct characteristic angles which are functions of the scaling exponent of the slope-area curve. These findings enable us to understand the geomorphological signature of hydrological processes on drainage networks and develop more refined landscape evolution models.
Branching dynamics of viral information spreading.
Iribarren, José Luis; Moro, Esteban
2011-10-01
Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants' decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31,000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the "tipping point" and can be used for prediction and management of viral information spreading processes.
Branching dynamics of viral information spreading
NASA Astrophysics Data System (ADS)
Iribarren, José Luis; Moro, Esteban
2011-10-01
Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants’ decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31 000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the “tipping point” and can be used for prediction and management of viral information spreading processes.
Two new tardigrade species from Sicily.
Pilato, Giovanni; Sabella, Giorgio; Lisi, Oscar
2014-01-14
Two new species of tardigrades are described from Sicilian moss samples: Macrobiotus insuetus sp. nov. and Diphascon (Diphascon) procerum sp. nov. Macrobiotus insuetus sp. nov. is a species of the harmsworthi-group characterized by both posterior and anterior claws of the hind legs, which are different in shape from those of the first three leg pairs. The IV claws have extended basal tract where the branches are joined and the secondary branch breaks at near right angle to the primary branch and is clearly shorter than the main branch and the secondary branch of claws I-III. The eggs are not areolated and have conical processes with a reticular ornamentation. Diphascon (D.) procerum sp. nov. has a delicate cuticular ornamentation of very small tubercles, almost dots; two macroplacoids and septulum are present; thin accessory points are present on the main branches of the slender claws; lunules are absent but the base of the external claws of the hind legs are enlarged and slightly indented; a cuticular bar is present near the internal claw of the first three leg pairs and two cuticular bars are present on the hind legs between the base of the claws and near the base of the anterior claw.
NASA Technical Reports Server (NTRS)
Telesman, Jack; Kantzos, Peter
1988-01-01
An in situ fatigue loading stage inside a scanning electron microscope (SEM) was used to determine the fatigue crack growth behavior of a PWA 1480 single-crystal nickel-based superalloy. The loading stage permits real-time viewing of the fatigue damage processes at high magnification. The PWA 1480 single-crystal, single-edge notch specimens were tested with the load axis parallel to the (100) orientation. Two distinct fatigue failure mechanisms were identified. The crack growth rate differed substantially when the failure occurred on a single slip system in comparison to multislip system failure. Two processes by which crack branching is produced were identified and are discussed. Also discussed are the observed crack closure mechanisms.
NASA Astrophysics Data System (ADS)
Ding, Yanli; Yang, Tonghui; Yin, Naiqiang; Shu, Fangjie; Zhao, Ying; Zhang, Xiaodan
2018-05-01
Branched β-NaLuF4: Yb/Er was synthesized using a simple hydrothermal method by controlling the NaF/Ln molar ratio. In contrast to the β-NaYF4: Yb/Er hexagonal disks, the branched β-NaLuF4: Yb/Er has stronger emission intensity. The integrated intensities of green and red emission bands were as 6.2 and 3.3 times as that of NaYF4, respectively. The branched β-NaLuF4: Yb/Er has the smaller unit cell volume, the higher absorption intensity around 980 nm and the lower crystal field symmetry than NaYF4, which made a significant contribution to the stronger upconversion (UC) fluorescence emissions. The results indicate that the branched β-NaLuF4: Yb/Er is an excellent UC luminescence material. The current research has a great potential in improving near-infrared conversion efficiency of solar cells.
Ferreira, Marcelo; Ferreira, Diego; Cunha, Rodrigo; Bicalho, Guilherme; Rodrigues, Eduardo
2018-06-01
To demonstrate different techniques and device modifications that can expand the anatomic suitability of the off-the-shelf multibranched t-Branch for treatment of thoracoabdominal aortic aneurysm. The t-Branch device is not customized for specific patient anatomy, and the most frequent limitations to its use are an inadequate sealing zone and renal artery anatomy. Experience with this device has prompted the development of several techniques that can be employed to maximize the suitability of this stent-graft. Advice is offered on modification of the device to minimize the risk of paraplegia or better match patient anatomy. Maneuvers are explained to ease delivery through tortuous anatomy or existing stent-grafts, catheterize visceral target vessels, select a bridging stent, reduce ischemia time in the limbs, and alter the configuration of the branches. Employing adjunctive maneuvers can increase the anatomic suitability of the t-Branch; in our experience, these techniques have increased the applicability to more than 80% of all elective and urgent thoracoabdominal aortic aneurysm cases.
Resonant energy transfer and trace-level sensing using branched Ag-rod-supported carbon dots
NASA Astrophysics Data System (ADS)
Nair, Radhika V.; Arya, M.; Vijayan, C.
2018-05-01
We report on the resonant energy transfer in branched Ag rod-supported carbon dots (C-dots) and its applications for the trace-level sensing of highly reactive oxygen species and organic pollutants based on surface plasmon enhanced energy transfer (SPEET) and surface enhanced Raman spectroscopy (SERS). The branched morphology of Ag is found to significantly enhance visible light absorption and thus increases the spectral overlap with C-dot emission. In addition, branched morphology results in the formation of a large number of plasmonic hotspots and efficient propagation of plasmons through the interconnections, as also supported by finite-difference time-domain simulations. Branched Ag-rod—C-dot composite is found to be able to detect 0.02 µM of hydrogen peroxide based on SPEET. The efficient transfer of electrons from C-dots to the Ag rod enhances the SERS efficiency of Ag resulting in an enhancement factor of the order of 108 and enables the composite to detect 10‑10 M of the organic pollutant Rhodamine 6G.
Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.
2016-11-27
Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.
Genealogical Properties of Subsamples in Highly Fecund Populations
NASA Astrophysics Data System (ADS)
Eldon, Bjarki; Freund, Fabian
2018-03-01
We consider some genealogical properties of nested samples. The complete sample is assumed to have been drawn from a natural population characterised by high fecundity and sweepstakes reproduction (abbreviated HFSR). The random gene genealogies of the samples are—due to our assumption of HFSR—modelled by coalescent processes which admit multiple mergers of ancestral lineages looking back in time. Among the genealogical properties we consider are the probability that the most recent common ancestor is shared between the complete sample and the subsample nested within the complete sample; we also compare the lengths of `internal' branches of nested genealogies between different coalescent processes. The results indicate how `informative' a subsample is about the properties of the larger complete sample, how much information is gained by increasing the sample size, and how the `informativeness' of the subsample varies between different coalescent processes.
Permutation flow-shop scheduling problem to optimize a quadratic objective function
NASA Astrophysics Data System (ADS)
Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu
2017-09-01
A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.
Government 101: how an idea becomes law.
Griffith, James T
2006-01-01
The passing of a law is frequently accompanied by media attention and citizen apathy. In today's healthcare delivery situation, we should understand how a bill becomes law and what happens to the idea that engenders that process. Laws arise from the recommendations of ordinary citizens, but the recommendations follow a complicated process developed by the writers of our constitution to prevent abuses. Laws begin as ideas, they become bills considered by the legislature, they are expanded and enforced by the executive branch, and they are further interpreted by the judiciary branch. The laws governing healthcare issues are particularly complex, as most arise from the state legislatures.
Fluid mechanics aspects of magnetic drug targeting.
Odenbach, Stefan
2015-10-01
Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.
Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.
2012-01-01
The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.
Murk, Kai; Blanco Suarez, Elena M.; Cockbill, Louisa M. R.; Banks, Paul; Hanley, Jonathan G.
2013-01-01
Summary Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult. PMID:23843614
NASA Astrophysics Data System (ADS)
Perkins, H.; Teague, W. J.; Chang, K.-I.; Suk, M.-S.; Lee, J.-C.; Book, J. W.; Jacobs, G. A.
A ten-month long time series of current measurements has been made on two sections across Korea/Tsushima Strait, thus revealing most of an annual cycle of the Tsushima Current that flows into the Japan/East Sea. One section is southwest, the other north- east, of Tsushima Island, giving respectively conditions upstream and downstream of the Island. Along the bathymetric slope upstream of the Island, the current consists of a single, broad stream concentrated in mid-channel. Downstream, this single core is found to have separated into two branches, one on each of the Strait. Between these two near-coastal streams, in the apparent wake of the Island, currents are variable and lack a well-defined mean. This separation persisted during all seasons despite vari- ation in total transport by a factor of two, from 3.5 Sv in October 1999 to 1.7 Sv in January 2000, and despite changes from maximum to minimum stratification. Both branches of the divided current were stronger during high transport and weaker during low transport, but since each branch was measured by only one or two moorings, trans- port estimates for the separate branches are not available. Strongest currents occurred at the surface close to the Korean coast near Ulsan in early fall with low-pass surface currents reaching 90 cm/s during October and November. Farther downstream, outside the measurement area, the two branches define the inflow to the Japan/East Sea. The branch along the Japanese coast remains close to the coast. It undergoes strong annual variability but is steady on shorter time scales. The Korean branch of the current also undergoes strong annual changes but experiences very strong variability, especially in winter. This branch is thought to switch between two paths. The first parallels the Ko- rean coast; the second follows bathymetric contours that lead it back to the Japanese coast. A mechanism for switching between these paths is provided by vorticity asso- ciated with bottom intrusions of cold water in the area. Seasonal variations of flow into the Japan Sea thus depend on the interplay between seasonal variations around Tsushima Island and intrusions of cold bottom water.
NASA Astrophysics Data System (ADS)
Wang, Qingfeng; Jin, Huijun; Zhang, Tingjun; Cao, Bin; Peng, Xiaoqing; Wang, Kang; Xiao, Xiongxin; Guo, Hong; Mu, Cuicui; Li, Lili
2017-09-01
Observation data of the hydrothermal processes in the active layer are vital for the verification of permafrost formation and evolution, eco-hydrology, ground-atmosphere interactions, and climate models at various time and spatial scales. Based on measurements of ground temperatures in boreholes, of temperatures and moisture contents of soils in the active layer, and of the mean annual air temperatures at the Qilian, Yeniugou and Tuole meteorological stations in the upper Heihe River Basin (UHRB) and the adjacent areas, a series of observations were made concerning changes in the lower limit of permafrost (LLP) and the related hydrothermal dynamics of soils in the active layer. Because of the thermal diode effect of peat soils, the LLP (at 3600 m) was lower on the northern slope of the Eboling Mountains at the eastern branch of the UHRB than that (at 3650-3700 m) on the alluvial plain at the western branch of the UHRB. The mean temperature of soils at depths of 5 to 77 cm in the active layer on peatlands was higher during periods with subzero temperatures and lower during periods with above-zero temperatures in the vicinity of the LLP on the northern slope of the Eboling Mountains than those at the LLP at the western branch of the UHRB. The thawing and downward freezing rates of soils in the active layer near the LLP on the northern slope of the Eboling Mountains were 0.2 and 1.6 times those found at the LLP at the western branch of the UHRB. From early May to late August, the soil water contents at the depths of 20 to 60 cm in the active layer near the LLP on the northern slope of the Eboling Mountains were significantly lower than those found at the LLP at the western branch of the UHRB. The annual ranges of soil temperatures (ARSTs), mean annual soil temperatures (MASTs) in the active layer on peatlands, and the mean annual ground temperature (MAGT) at a depth of 14 m of the underlying permafrost were all significantly lower near the LLP on the northern slope of the Eboling Mountains. Moreover, the thermophysical properties of peat soils and high moisture contents in the active layer on peatlands resulted in the lower soil temperatures in the active layer close to the LLP on the northern slope of the Eboling Mountains than those found at the LLP at the western branch of the UHRB in the warm season, especially at the deeper depths (20-77 cm). They also resulted in the smaller freezing index (FI) and thawing index (TI) and larger FI/TI ratios of soils at the depths of 5 to 77 cm in the active layer near the LLP on the northern slope of the Eboling Mountains. In short, peatlands have unique thermophysical properties for reducing heat absorption in the warm season and for limiting heat release in the cold season as well. However, the permafrost zone has shrunk by 10-20 km along the major highways at the western branch of the UHRB since 1985, and a medium-scale retrogressive slump has occurred on the peatlands on the northern slope of the Eboling Mountains in recent decades. The results can provide basic data for further studies of the hydrological functions of different landscapes in alpine permafrost regions. Such studies can also enable evaluations and forecasts the hydrological impacts of changing frozen ground in the UHRB and of other alpine mountain regions in West China.
NASA Astrophysics Data System (ADS)
Hu, Meishao; Ni, Jiangpeng; Zhang, Boping; Neelakandan, Sivasubramaniyan; Wang, Lei
2018-06-01
Crosslinking is an effective method to improve the properties of high temperature proton exchange membranes based on polybenzimidazole. However, the compact structure of crosslinked polybenzimidazole hinders the phosphoric acid absorption of the membranes, resulting in a relatively poor fuel cell performance. Recently, we find that branched polymers can absorb more phosphoric acid with a larger free volume, but suffer from deteriorated mechanical strength. In this work, a new method is proposed to obtain excellent over-all properties of high temperature proton exchange membranes. A series of crosslinked polybenzimidazoles containing branching structure as membrane materials are successfully prepared for the first time. Compared with conventional crosslinked membranes, these crosslinked polybenzimidazole membranes containing branching structure exhibit a higher phosphoric acid doping level and proton conductivity, improved durability, lower swelling rate and comparable mechanical strength. In particular, the fuel cell base on the crosslinked and branched membrane with a 10% ratio of crosslinker in non-humidified hydrogen/air at 160 °C achieves a power density of 404 mW cm-2. The results indicate that the combination of crosslinking and branching is an effective approach to improve the properties of polybenzimidazole membrane materials.
Chen, Yen-Lin; Chao, Ting-Ting; Wu, Yi-No; Chen, Meng-Chuan; Lin, Ying-Hung; Liao, Chun-Hou; Wu, Chien-Chih; Chen, Kuo-Chiang; Chou, Shang-Shing P; Chiang, Han-Sun
2018-01-17
The changes in neuronal nitric oxide synthases (nNOS) in the dorsal penile nerves (DPNs) are consistent with cavernous nerve (CN) injury in rat models. However, the anatomical relationship and morphological changes between the minor branches of the DPNs and the CNs after injury have never been clearly explored. There were forty 12 week old male Sprague-Dawley rats receiving bilateral cavernous nerve injury (BCNI). Erectile function of intracavernous pressure and mean arterial pressure were measured. The histology and ultrastructure with H&E stain, Masson's trichrome stain and immunohistochemical stains were applied on the examination of CNs and DPNs. We demonstrated communicating nerve branches between the DPNs and the CNs in rats. The greatest damage and lowest erectile function were seen in the 14 th day and partially recovered in the 28 th day after BCNI. The nNOS positive DPN minor branches' number was significantly correlated with erectile function. The sub-analysis of the number of nNOS positive DPN minor branches also matched with the time course of the erectile function after BCNI. We suggest the regeneration of the DPNs minor branches would ameliorate the erectile function in BCNI rats.
Lambert, Laurie J; Brown, Kevin A; Boothroyd, Lucy J; Segal, Eli; Maire, Sébastien; Kouz, Simon; Ross, Dave; Harvey, Richard; Rinfret, Stéphane; Xiao, Yongling; Nasmith, James; Bogaty, Peter
2014-06-24
Interhospital transfer of patients with ST-elevation myocardial infarction (STEMI) for primary percutaneous coronary intervention (PPCI) is associated with longer delays to reperfusion, related in part to turnaround ("door in" to "door out," or DIDO) time at the initial hospital. As part of a systematic, province-wide evaluation of STEMI care, we examined DIDO times and associations with patient, hospital, and process-of-care factors. We performed medical chart review for STEMI patients transferred for PPCI during a 6-month period (October 1, 2008, through March 31, 2009) and linked these data to ambulance service databases. Two core laboratory cardiologists reviewed presenting ECGs to identify left bundle-branch block and, in the absence of left bundle-branch block, definite STEMI (according to both cardiologists) or an ambiguous reading. Median DIDO time was 51 minutes (25th to 75th percentile: 35-82 minutes); 14.1% of the 988 patients had a timely DIDO interval (≤30 minutes as recommended by guidelines). The data-to-decision delay was the major contributor to DIDO time. Female sex, more comorbidities, longer symptom duration, arrival by means other than ambulance, arrival at a hospital not exclusively transferring for PPCI, arrival at a center with a low STEMI volume, and an ambiguous ECG were independently associated with longer DIDO time. When turnaround was timely, 70% of patients received timely PPCI (door-to-device time ≤90 minutes) versus 14% if turnaround was not timely (P<0.0001). Benchmark DIDO times for STEMI patients transferred for PPCI were rarely achieved. Interventions aimed at facilitating the transfer decision, particularly in cases of ECGs that are difficult to interpret, are likely to have the best impact on reducing delay to reperfusion. © 2014 American Heart Association, Inc.
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-01-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
Universal scaling in the branching of the tree of life.
Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M
2008-07-23
Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.