Hybrid Spanish Programs: A Challenging and Successful Endeavor
ERIC Educational Resources Information Center
Hermosilla, Luis
2014-01-01
Several types of hybrid Spanish programs have been developed in US colleges and universities for more than ten years, but the most common structure consists of a course in which the instruction combines face-to-face time with an instructor and the use of an online platform. Studies have demonstrated that a well-developed hybrid Spanish program can…
Real-time simulation of an automotive gas turbine using the hybrid computer
NASA Technical Reports Server (NTRS)
Costakis, W.; Merrill, W. C.
1984-01-01
A hybrid computer simulation of an Advanced Automotive Gas Turbine Powertrain System is reported. The system consists of a gas turbine engine, an automotive drivetrain with four speed automatic transmission, and a control system. Generally, dynamic performance is simulated on the analog portion of the hybrid computer while most of the steady state performance characteristics are calculated to run faster than real time and makes this simulation a useful tool for a variety of analytical studies.
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyung-Jin; Choi, Seong-Gon; Hong, Jong-Phil
2017-08-31
We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel. Subsequently, through local operations (using a multi-photon gate via XKNLs) and classical communications, it is possible to generate a four-qubit hybrid entangled state (polarization and time-bin). Finally, we discuss how the multi-photon gate using XKNLs, qubus beams, and PNR measurement can be reliably performed under the decoherence effect.
NASA Technical Reports Server (NTRS)
Bifano, W. J.
1972-01-01
Test results are presented for a nine couple (3 x 3 array) thermoelectric panel of hybrid thermocouples. In the hybrid couple, a hollow cylinder of p-type Si-Ge is used to encapsulate a segmented PbTe/Si-Ge n-leg. The hybrid couple is predicted to offer a 10- to 15-percent improvement in performance relative to all Si-Ge couples. The efficiency, output power, and internal resistance of the panel as well as the resistances of the individual hybrid couples are presented as a function of test time covering a period of more than 2600 hours. Initial test results indicated hybrid couple performance consistent with design predictions. Extraneous resistance ranged from 20 to 25% of the hybrid couple thermoelectric resistance.
Baack, Eric J.; Whitney, Kenneth D.; Rieseberg, Loren H.
2008-01-01
Summary Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious. PMID:15998412
Hybrid modeling in biochemical systems theory by means of functional petri nets.
Wu, Jialiang; Voit, Eberhard
2009-02-01
Many biological systems are genuinely hybrids consisting of interacting discrete and continuous components and processes that often operate at different time scales. It is therefore desirable to create modeling frameworks capable of combining differently structured processes and permitting their analysis over multiple time horizons. During the past 40 years, Biochemical Systems Theory (BST) has been a very successful approach to elucidating metabolic, gene regulatory, and signaling systems. However, its foundation in ordinary differential equations has precluded BST from directly addressing problems containing switches, delays, and stochastic effects. In this study, we extend BST to hybrid modeling within the framework of Hybrid Functional Petri Nets (HFPN). First, we show how the canonical GMA and S-system models in BST can be directly implemented in a standard Petri Net framework. In a second step we demonstrate how to account for different types of time delays as well as for discrete, stochastic, and switching effects. Using representative test cases, we validate the hybrid modeling approach through comparative analyses and simulations with other approaches and highlight the feasibility, quality, and efficiency of the hybrid method.
Study on perception and control layer of mine CPS with mixed logic dynamic approach
NASA Astrophysics Data System (ADS)
Li, Jingzhao; Ren, Ping; Yang, Dayu
2017-01-01
Mine inclined roadway transportation system of mine cyber physical system is a hybrid system consisting of a continuous-time system and a discrete-time system, which can be divided into inclined roadway signal subsystem, error-proofing channel subsystems, anti-car subsystems, and frequency control subsystems. First, to ensure stable operation, improve efficiency and production safety, this hybrid system model with n inputs and m outputs is constructed and analyzed in detail, then its steady schedule state to be solved. Second, on the basis of the formal modeling for real-time systems, we use hybrid toolbox for system security verification. Third, the practical application of mine cyber physical system shows that the method for real-time simulation of mine cyber physical system is effective.
Liu, Shuiping; Gu, Tianxun; Fu, Jiajia; Li, Xiaoqiang; Chronakis, Ioannis S; Ge, Mingqiao
2014-12-01
In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ~127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Hybrid model for simulation of plasma jet injection in tokamak
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Bogatu, I. N.
2016-10-01
Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.
A Hybrid Approach to Inferring a Consistent Temporal Relation Set in Natural Language Text
ERIC Educational Resources Information Center
Lee, Chong Min
2013-01-01
This dissertation investigates the temporal relation identification task. The goal is to construct consistent temporal relations between temporal entities (e.g., events and time expressions) in a narrative. Constructing consistent temporal relations is challenging due to the exponential increase in the number of candidates for temporal relations…
Water absorption behaviour of hybrid interwoven cellulosic fibre composites
NASA Astrophysics Data System (ADS)
Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.
2017-10-01
The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.
Analysis of high velocity impact on hybrid composite fan blades
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1979-01-01
Recent developments in the analysis of high velocity impact of composite blades are described, using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an interply hybrid composite aircraft engine fan blade is described in detail. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.
NASA Astrophysics Data System (ADS)
Sarkar, Sanjit; Basak, Durga
2013-03-01
We have synthesized for the first time ZnO/rGO hybrids from metal zinc and GO using hydrothermal technique without adding further reducing agent. The photocatalytic property of ZnO-rGO reveals that the hybrid for 50 mg of GO has the highest activity, causing a 94% degradation of methyl orange compared to 70% by only ZnO. The consistent quenching and a gradual decrease in the decay life time of the emission at ˜500 nm as the rGO content increases indicates the interfacial charge transfer process between ZnO and rGO by the defect states responsible for green emission.
Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Rabiti, Cristian
Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements minus seasonal trends).more » The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system con guration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. As a result, requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated.« less
Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems
Chen, Jun; Rabiti, Cristian
2016-11-25
Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements minus seasonal trends).more » The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system con guration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. As a result, requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated.« less
HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Brownston, Lee
2012-01-01
Hybrid Diagnosis Engine (HyDE) is a general framework for stochastic and hybrid model-based diagnosis that offers flexibility to the diagnosis application designer. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. Several alternative algorithms are available for the various steps in diagnostic reasoning. This approach is extensible, with support for the addition of new modeling paradigms as well as diagnostic reasoning algorithms for existing or new modeling paradigms. HyDE is a general framework for stochastic hybrid model-based diagnosis of discrete faults; that is, spontaneous changes in operating modes of components. HyDE combines ideas from consistency-based and stochastic approaches to model- based diagnosis using discrete and continuous models to create a flexible and extensible architecture for stochastic and hybrid diagnosis. HyDE supports the use of multiple paradigms and is extensible to support new paradigms. HyDE generates candidate diagnoses and checks them for consistency with the observations. It uses hybrid models built by the users and sensor data from the system to deduce the state of the system over time, including changes in state indicative of faults. At each time step when observations are available, HyDE checks each existing candidate for continued consistency with the new observations. If the candidate is consistent, it continues to remain in the candidate set. If it is not consistent, then the information about the inconsistency is used to generate successor candidates while discarding the candidate that was inconsistent. The models used by HyDE are similar to simulation models. They describe the expected behavior of the system under nominal and fault conditions. The model can be constructed in modular and hierarchical fashion by building component/subsystem models (which may themselves contain component/ subsystem models) and linking them through shared variables/parameters. The component model is expressed as operating modes of the component and conditions for transitions between these various modes. Faults are modeled as transitions whose conditions for transitions are unknown (and have to be inferred through the reasoning process). Finally, the behavior of the components is expressed as a set of variables/ parameters and relations governing the interaction between the variables. The hybrid nature of the systems being modeled is captured by a combination of the above transitional model and behavioral model. Stochasticity is captured as probabilities associated with transitions (indicating the likelihood of that transition being taken), as well as noise on the sensed variables.
Batch Scheduling for Hybrid Assembly Differentiation Flow Shop to Minimize Total Actual Flow Time
NASA Astrophysics Data System (ADS)
Maulidya, R.; Suprayogi; Wangsaputra, R.; Halim, A. H.
2018-03-01
A hybrid assembly differentiation flow shop is a three-stage flow shop consisting of Machining, Assembly and Differentiation Stages and producing different types of products. In the machining stage, parts are processed in batches on different (unrelated) machines. In the assembly stage, each part of the different parts is assembled into an assembly product. Finally, the assembled products will further be processed into different types of final products in the differentiation stage. In this paper, we develop a batch scheduling model for a hybrid assembly differentiation flow shop to minimize the total actual flow time defined as the total times part spent in the shop floor from the arrival times until its due date. We also proposed a heuristic algorithm for solving the problems. The proposed algorithm is tested using a set of hypothetic data. The solution shows that the algorithm can solve the problems effectively.
Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System
NASA Astrophysics Data System (ADS)
Doelle, K.; Bajrami, B.
2018-01-01
This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
40 CFR 86.1725-99 - Maintenance.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and... the first time the minimum performance level is observed for all battery system components. Possible... system consisting of a light that shall illuminate the first time the battery system is unable to achieve...
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
Contrast-enhancement in organic light-emitting diodes.
Wu, Zhaoxin; Wang, Liduo; Qiu, Yong
2005-03-07
A high-contrast organic light-emitting diode (OLED) structure is presented. Because of poor contrast of conventional OLED resulting from high reflective metal cathode, the hybrid cathode structure was developed for low reflectivity. It consists the semitransparent cathode layers, passivation layers and a thick light-absorbing film. By optical reflectivity measurement and OLED electrical characterization tests for both OLED with the hybrid cathode and conventional OLED, it was found that the spectrum reflectance of OLED with hybrid cathode is among 8%-12%, about eight times lower than the conventional one when the two types of devices have similar turn-on voltages and current-voltage characteristics. The hybrid cathode for the high-contrast OLED is easily fabricated and its optical reflectance is slightly dependent on wavelength.
Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery.
Singh, Amanpreet; Singla, Ekta; Soni, Sanjeev; Singla, Ashish
2018-01-01
The prime objective of this work is to deal with the kinematics of spatial hybrid manipulators. In this direction, in 1955, Denavit and Hartenberg proposed a consistent and concise method, known as D-H parameters method, to deal with kinematics of open serial chains. From literature review, it is found that D-H parameter method is widely used to model manipulators consisting of lower pairs. However, the method leads to ambiguities when applied to closed-loop, tree-like and hybrid manipulators. Furthermore, in the dearth of any direct method to model closed-loop, tree-like and hybrid manipulators, revisions of this method have been proposed from time-to-time by different researchers. One such kind of revision using the concept of dummy frames has successfully been proposed and implemented by the authors on spatial hybrid manipulators. In that work, authors have addressed the orientational inconsistency of the D-H parameter method, restricted to body-attached frames only. In the current work, the condition of body-attached frames is relaxed and spatial frame attachment is considered to derive the kinematic model of a 7-degree of freedom spatial hybrid robotic arm, along with the development of closed-loop constraints. The validation of the new kinematic model has been performed with the help of a prototype of this 7-degree of freedom arm, which is being developed at Council of Scientific & Industrial Research-Central Scientific Instruments Organisation Chandigarh to aid the surgeon during a medical surgical task. Furthermore, the developed kinematic model is used to develop the first column of the Jacobian matrix, which helps in providing the estimate of the tip velocity of the 7-degree of freedom manipulator when the first joint velocity is known.
Global hybrid simulation of the solar wind interaction with the dayside of Venus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K.R.; Thomas, V.A.; McComas, D.J.
1991-05-01
The authors present a 3-dimensional global hybrid simulation of the interaction of the solar wind with the entire dayside of Venus. The model obstacle is half the size of Venus, and planetary ion mass loading is included self-consistently. Results are compared to observations as well as to results from gasdynamic convected field modeling. Magnetic field magnitudes and bulk flow speeds along the planet-Sun line are comparable in both models, but only the hybrid model reproduces the experimentally observed magnetic barrier proton density depletions. The finite gyroradius of the planetary pickup ions causes a number density asymmetry in the direction ofmore » the convective ({minus}V {times} B) electric field, as predicted and observed. Mass addition consistent with photoionization of the planetary neutral hot oxygen corona has little effect on the geometry of the shock, including the subsolar and terminator shock altitudes. Mass addition rates well in excess of likely values are required to significantly affect the model shock geometry. The hybrid model results imply that oxygen ions originating deep within the dayside Venus magnetic barrier are nearly fluidlike while oxygen ions produced higher on the dayside, at much lower densities, behave more as test particles. Gasdynamic modeling incorporating both fluid and test particle mass addition reproduces the O{sup +} terminator escape flux (a few times 10{sup 24} s{sup {minus}1}) found in the hybrid model and inferred from observations, but underestimates the escape region spatial extent. The hybrid model predictions include a shock asymmetry dependent on the upstream IMF orientation, asymmetries in the magnetic barrier position and field magnitude, an asymmetry in pickup ion speed altitude profiles, and a finite gyroradius effect asymmetry in pickup ion number density caused by field draping.« less
An Extension of the Time-Spectral Method to Overset Solvers
NASA Technical Reports Server (NTRS)
Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas
2013-01-01
Relative motion in the Cartesian or overset framework causes certain spatial nodes to move in and out of the physical domain as they are dynamically blanked by moving solid bodies. This poses a problem for the conventional Time-Spectral approach, which expands the solution at every spatial node into a Fourier series spanning the period of motion. The proposed extension to the Time-Spectral method treats unblanked nodes in the conventional manner but expands the solution at dynamically blanked nodes in a basis of barycentric rational polynomials spanning partitions of contiguously defined temporal intervals. Rational polynomials avoid Runge's phenomenon on the equidistant time samples of these sub-periodic intervals. Fourier- and rational polynomial-based differentiation operators are used in tandem to provide a consistent hybrid Time-Spectral overset scheme capable of handling relative motion. The hybrid scheme is tested with a linear model problem and implemented within NASA's OVERFLOW Reynolds-averaged Navier- Stokes (RANS) solver. The hybrid Time-Spectral solver is then applied to inviscid and turbulent RANS cases of plunging and pitching airfoils and compared to time-accurate and experimental data. A limiter was applied in the turbulent case to avoid undershoots in the undamped turbulent eddy viscosity while maintaining accuracy. The hybrid scheme matches the performance of the conventional Time-Spectral method and converges to the time-accurate results with increased temporal resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, H; Cebe, M; Mabhouti, H
Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less
Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI
NASA Astrophysics Data System (ADS)
Gupta, Anjali; Pahuja, Gunjan
2017-08-01
The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).
Greenberg, Jay R.; Perry, Robert P.
1971-01-01
The relationship of the DNA sequences from which polyribosomal messenger RNA (mRNA) and heterogeneous nuclear RNA (NRNA) of mouse L cells are transcribed was investigated by means of hybridization kinetics and thermal denaturation of the hybrids. Hybridization was performed in formamide solutions at DNA excess. Under these conditions most of the hybridizing mRNA and NRNA react at values of Dot (DNA concentration multiplied by time) expected for RNA transcribed from the nonrepeated or rarely repeated fraction of the genome. However, a fraction of both mRNA and NRNA hybridize at values of Dot about 10,000 times lower, and therefore must be transcribed from highly redundant DNA sequences. The fraction of NRNA hybridizing to highly repeated sequences is about 1.7 times greater than the corresponding fraction of mRNA. The hybrids formed by the rapidly reacting fractions of both NRNA and mRNA melt over a narrow temperature range with a midpoint about 11°C below that of native L cell DNA. This indicates that these hybrids consist of partially complementary sequences with approximately 11% mismatching of bases. Hybrids formed by the slowly reacting fraction of NRNA melt within 4°–6°C of native DNA, indicating very little, if any, mismatching of bases. Hybrids of the slowly reacting components of mRNA, formed under conditions of sufficiently low RNA input, have a high thermal stability, similar to that observed for hybrids of the slowly reacting NRNA component. However, when higher inputs of mRNA are used, hybrids are formed which have a strikingly lower thermal stability. This observation can be explained by assuming that there is sufficient similarity among the relatively rare DNA sequences coding for mRNA so that under hybridization conditions, in which these DNA sequences are not truly in excess, reversible hybrids exhibiting a considerable amount of mispairing are formed. The fact that a comparable phenomenon has not been observed for NRNA may mean that there is less similarity among the relatively rare DNA sequences coding for NRNA than there is among the rare sequences coding for mRNA. PMID:4999767
Hybrid composite rebars for smart concrete structures
NASA Astrophysics Data System (ADS)
Krishnamoorthy, R. K.; Belarbi, Abdeldjelil; Chandrashekhara, K.; Watkins, Steve E.
1997-05-01
In reinforced concrete structures, steel reinforcing bars (rebars) corrode with time and thus reduce their life span. Composite rebars can be used in lieu of steel rebars to overcome this problem. The conventional composite rebars designed to take tensile force are composed of unidirectional fibers in a resin matrix, and are linearly elastic till failure; thus providing a brittle behavior. The problems of corrosion and brittle behavior can be solved by using a composite rebar which fails gradually under tension. The rebar consists of a hybrid composite system in conjunction with helical fibers. The hybrid system gives the rebar its initial stiffness and enables pseudo-yielding at lower strains. As the strain increase, the load is gradually transferred from the hybrid core to the helical fibers, which enables the rebar to undergo large elongations before failure. Embedded fiber optic sensors in the rebar can be used for health monitoring over a long period of time. The proof of concept and preliminary test results are described in the paper.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
DNA hybridization detection on electrical microarrays using coulostatic pulse technique.
Dharuman, V; Nebling, E; Grunwald, T; Albers, J; Blohm, L; Elsholz, B; Wörl, R; Hintsche, R
2006-12-15
We demonstrated a novel application of transient coulostatic pulse technique for the detection of label free DNA hybridization on nm-sized gold interdigitated ultramicroelectrode arrays (Au-IDA) made in silicon technology. The array consists of eight different positions with an Au-IDA pair at each position arranged on the Si-based Biochip. Immobilization of capture probes onto the Au-IDA was accomplished by self-assembling of thiol-modified oligonucleotides. Target hybridization was indicated by a change in the magnitude of the time dependant potential relaxation curve in presence of electroactive Fe(CN)(6)(3-) in the phosphate buffer solution. While complementary DNA hybridization showed 50% increase in the relaxation potential, the non-complementary DNA showed a negligible change. A constant behaviour was noted for all positions. The dsDNA specific intercalating molecule, methylene blue, was found to be enhancing the discrimination effect. The changes in the relaxation potential curves were further corroborated following the ELISA like experiments using ExtraAvidine alkaline phosphatase labelling and redox recycling of para-aminophenol phosphate at IDAs. The coulostatic pulse technique was shown to be useful for identifying DNA sequences from brain tumour gene CK20, human herpes simplex virus, cytomegalovirus, Epstein-Barr virus and M13 phage. Compared to the hybridization of short chain ONTs (27 mers), the hybridization of long chain M13 phage DNA showed three times higher increase in the relaxation curves. The method is fast enough to monitor hybridization interactions in milli or microsecond time scales and is well suitable for miniaturization and integration compared to the common impedance techniques for developing capacitative DNA sensors.
Araújo, Ricardo de A
2010-12-01
This paper presents a hybrid intelligent methodology to design increasing translation invariant morphological operators applied to Brazilian stock market prediction (overcoming the random walk dilemma). The proposed Translation Invariant Morphological Robust Automatic phase-Adjustment (TIMRAA) method consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) with a Quantum-Inspired Evolutionary Algorithm (QIEA), which searches for the best time lags to reconstruct the phase space of the time series generator phenomenon and determines the initial (sub-optimal) parameters of the MMNN. Each individual of the QIEA population is further trained by the Back Propagation (BP) algorithm to improve the MMNN parameters supplied by the QIEA. Also, for each prediction model generated, it uses a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in stock market time series. Furthermore, an experimental analysis is conducted with the proposed method through four Brazilian stock market time series, and the achieved results are discussed and compared to results found with random walk models and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) and Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting (MRLTAEF) methods. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal
2009-07-24
Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain.
Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal
2009-01-01
Background Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. Results At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. Conclusion While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain. PMID:19630983
Heuristic for Critical Machine Based a Lot Streaming for Two-Stage Hybrid Production Environment
NASA Astrophysics Data System (ADS)
Vivek, P.; Saravanan, R.; Chandrasekaran, M.; Pugazhenthi, R.
2017-03-01
Lot streaming in Hybrid flowshop [HFS] is encountered in many real world problems. This paper deals with a heuristic approach for Lot streaming based on critical machine consideration for a two stage Hybrid Flowshop. The first stage has two identical parallel machines and the second stage has only one machine. In the second stage machine is considered as a critical by valid reasons these kind of problems is known as NP hard. A mathematical model developed for the selected problem. The simulation modelling and analysis were carried out in Extend V6 software. The heuristic developed for obtaining optimal lot streaming schedule. The eleven cases of lot streaming were considered. The proposed heuristic was verified and validated by real time simulation experiments. All possible lot streaming strategies and possible sequence under each lot streaming strategy were simulated and examined. The heuristic consistently yielded optimal schedule consistently in all eleven cases. The identification procedure for select best lot streaming strategy was suggested.
Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers
NASA Astrophysics Data System (ADS)
Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi
2017-10-01
Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.
Grinblat, Gustavo; Rahmani, Mohsen; Cortés, Emiliano; Caldarola, Martín; Comedi, David; Maier, Stefan A; Bragas, Andrea V
2014-11-12
We introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot. Placing high nonlinear susceptibility materials precisely in plasmonic confined-field regions to enhance SH generation opens new perspectives for highly efficient light frequency up-conversion on the nanoscale.
Path integrals and large deviations in stochastic hybrid systems.
Bressloff, Paul C; Newby, Jay M
2014-04-01
We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.
Hybrid Modified K-Means with C4.5 for Intrusion Detection Systems in Multiagent Systems
Laftah Al-Yaseen, Wathiq; Ali Othman, Zulaiha; Ahmad Nazri, Mohd Zakree
2015-01-01
Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy. PMID:26161437
Hybrid Modified K-Means with C4.5 for Intrusion Detection Systems in Multiagent Systems.
Laftah Al-Yaseen, Wathiq; Ali Othman, Zulaiha; Ahmad Nazri, Mohd Zakree
2015-01-01
Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy.
Plasma diffusion at the magnetopause? The case of lower hybrid drift waves
NASA Technical Reports Server (NTRS)
Treumann, R. A.; Labelle, J.; Pottelette, R.; Gary, S. P.
1990-01-01
The diffusion expected from the quasilinear theory of the lower hybrid drift instability at the Earth's magnetopause is recalculated. The resulting diffusion coefficient is in principle just marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various low processes. However, some recent data and simulations seems to indicate that the magnetopause is not consistent with such a soft diffusive equilibrium model. Furthermore, investigation of the nonlinear equations for the lower hybrid waves for magnetopause parameters indicates that the quasilinear state may never arise because coalescence to large wavelengths, followed by collapse once a critical wavelengths is reached, occur on a time scale faster than the quasilinear diffusion. In this case, an inhomogeneous boundary layer is to be expected. More simulations are required over longer time periods to explore whether this nonlinear evolution really takes place at the magnetopause.
A novel survivable architecture for hybrid WDM/TDM passive optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Chan, Chun-Kit
2014-02-01
A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.
Lee, Jun-Hak; Lim, Jeong-Hwan; Hwang, Han-Jeong; Im, Chang-Hwan
2013-01-01
The main goal of this study was to develop a hybrid mental spelling system combining a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) technology and a webcam-based eye-tracker, which utilizes information from the brain electrical activity and eye gaze direction at the same time. In the hybrid mental spelling system, a character decoded using SSVEP was not typed if the position of the selected character was not matched with the eye direction information ('left' or 'right') obtained from the eye-tracker. Thus, the users did not need to correct a misspelled character using a 'BACKSPACE' key. To verify the feasibility of the developed hybrid mental spelling system, we conducted online experiments with ten healthy participants. Each participant was asked to type 15 English words consisting of 68 characters. As a result, 16.6 typing errors could be prevented on average, demonstrating that the implemented hybrid mental spelling system could enhance the practicality of our mental spelling system.
A gold hybrid structure as optical coupler for quantum well infrared photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Jiayi; Li, Qian; Jing, Youliang
2014-08-28
A hybrid structure consisting of a square lattice of gold disk arrays and an overlaying gold film is proposed as an optical coupler for a backside-illuminated quantum well infrared photodetector (QWIP). Finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the hybrid structure combined with the QWIP device. The results show that the electric field component perpendicular to the quantum well is strongly enhanced when the plasmonic resonant wavelength of the hybrid structure coincides with the response one of the quantum well infrared photodetector regardless of the polarization of the incident light.more » The effect of the diameter and thickness of an individual gold disk on the resonant wavelength is also investigated, which indicates that the localized surface plasmon also plays a role in the light coupling with the hybrid structure. The coupling efficiency can exceed 50 if the structural parameters of the gold disk arrays are well optimized.« less
Harmonic generation and parametric decay in the ion cyclotron frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiff, F.N.; Wong, K.L.; Ono, M.
1984-06-01
Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.
Mixed H∞ and passive control for linear switched systems via hybrid control approach
NASA Astrophysics Data System (ADS)
Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin
2018-03-01
This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.
AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics
NASA Astrophysics Data System (ADS)
Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.
2017-05-01
We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.
NASA Astrophysics Data System (ADS)
Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath
2015-07-01
The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.
Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xingsheng, E-mail: xsxu@semi.ac.cn
For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less
Matveeva, Natalia M; Fishman, Veniamin S; Zakharova, Irina S; Shevchenko, Alexander I; Pristyazhnyuk, Inna E; Menzorov, Aleksei G; Serov, Oleg L
2017-12-22
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano
2017-11-01
In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.
Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers
2018-03-01
Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design Optimization of Hybrid FRP/RC Bridge
NASA Astrophysics Data System (ADS)
Papapetrou, Vasileios S.; Tamijani, Ali Y.; Brown, Jeff; Kim, Daewon
2018-04-01
The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.
Zullo, Letizia; Chiappalone, Michela; Martinoia, Sergio; Benfenati, Fabio
2012-01-01
Developed biological systems are endowed with the ability of interacting with the environment; they sense the external state and react to it by changing their own internal state. Many attempts have been made to build ‘hybrids’ with the ability of perceiving, modifying and reacting to external modifications. Investigation of the rules that govern network changes in a hybrid system may lead to finding effective methods for ‘programming’ the neural tissue toward a desired task. Here we show a new perspective in the use of cortical neuronal cultures from embryonic mouse as a working platform to study targeted synaptic modifications. Differently from the common timing-based methods applied in bio-hybrids robotics, here we evaluated the importance of endogenous spike timing in the information processing. We characterized the influence of a spike-patterned stimulus in determining changes in neuronal synchronization (connectivity strength and precision) of the evoked spiking and bursting activity in the network. We show that tailoring the stimulation pattern upon a neuronal spike timing induces the network to respond stronger and more precisely to the stimulation. Interestingly, the induced modifications are conveyed more consistently in the burst timing. This increase in strength and precision may be a key in the interaction of the network with the external world and may be used to induce directional changes in bio-hybrid systems. PMID:23145147
Pedestrian and motorists' actions at pedestrian hybrid beacon sites: findings from a pilot study.
Pulugurtha, Srinivas S; Self, Debbie R
2015-01-01
This paper focuses on an analysis of pedestrian and motorists' actions at sites with pedestrian hybrid beacons and assesses their effectiveness in improving the safety of pedestrians. Descriptive and statistical analyses (one-tail two-sample T-test and two-proportion Z-test) were conducted using field data collected during morning and evening peak hours at three study sites in the city of Charlotte, NC, before and after the installation of pedestrian hybrid beacons. Further, an analysis was conducted to assess the change in pedestrian and motorists' actions over time (before the installation; 1 month, 3 months, 6 months, and 12 months after the installation). Results showed an increase in average traffic speed at one of the pedestrian hybrid beacon sites while no specific trends were observed at the other two pedestrian hybrid beacon sites. A decrease in the number of motorists not yielding to pedestrians, pedestrians trapped in the middle of the street, and pedestrian-vehicle conflicts were observed at all the three pedestrian hybrid beacon sites. The installation of pedestrian hybrid beacons did not have a negative effect on pedestrian actions at two out of the three sites. Improvements seem to be relatively more consistent 3 months after the installation of the pedestrian hybrid beacon.
Adee, Eric; Roozeboom, Kraig; Balboa, Guillermo R.; Schlegel, Alan; Ciampitti, Ignacio A.
2016-01-01
The potential benefit of drought-tolerant (DT) corn (Zea mays L.) hybrids may depend on drought intensity, duration, crop growth stage (timing), and the array of drought tolerance mechanisms present in selected hybrids. We hypothesized that corn hybrids containing DT traits would produce more consistent yields compared to non-DT hybrids in the presence of drought stress. The objective of this study was to define types of production environments where DT hybrids have a yield advantage compared to non-DT hybrids. Drought tolerant and non-DT hybrid pairs of similar maturity were planted in six site-years with different soil types, seasonal evapotranspiration (ET), and vapor pressure deficit (VPD), representing a range of macro-environments. Irrigation regimes and seeding rates were used to create several micro-environments within each macro-environment. Hybrid response to the range of macro and micro-environmental stresses were characterized in terms of water use efficiency, grain yield, and environmental index. Yield advantage of DT hybrids was positively correlated with environment ET and VPD. Drought tolerant hybrids yielded 5 to 7% more than non-DT hybrids in high and medium ET environments (>430 mm ET), corresponding to seasonal VPD greater than 1200 Pa. Environmental index analysis confirmed that DT hybrids were superior in stressful environments. Yield advantage for DT hybrids appeared as yield dropped below 10.8 Mg ha-1 and averaged as much as 0.6–1 Mg ha-1 at the low yield range. Hybrids with DT technology can offer a degree of buffering against drought stress by minimizing yield reduction, but also maintaining a comparable yield potential in high yielding environments. Further studies should focus on the physiological mechanisms presented in the commercially available corn drought tolerant hybrids. PMID:27790237
Zhang, Yi; Cheng, Yan; Yang, Chunping; Luo, Wei; Zeng, Guangming; Lu, Li
2015-10-01
In order to improve nitrogen removal for rural wastewater, a novel two-stage hybrid system, consisting of a vertical flow trickling filter (VFTF) and a horizontal flow multi-soil-layering (HFMSL) bioreactor was developed. The performance of the apparatus was observed under various carbon-nitrogen ratios and water spraying frequencies separately. The maximum removal efficiency of total nitrogen (TN) for the hybrid system was 92.8% while the removal rates of CODCr, ammonium (NH4(+)-N), and total phosphorus (TP) were 94.1%, 96.1%, 92.0% respectively, and the corresponding effluent concentrations were 3.61, 21.20, 1.91, and 0.33 mg L(-1). The horizontal flow mode for MSL led the system to denitrifying satisfactorily as it ensured relatively long hydraulic retention time (HRT), ideal anoxic condition and adequate organic substrates supply. Also, higher water spraying frequency benefited intermittent feeding system for pollutants removal. Shock loading test indicated that the hybrid system could operate well even at hydraulic shock loadings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît
2016-01-01
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826
Montelongo, Tinguaro; Gómez-Zurita, Jesús
2015-01-01
Many unisexual animal lineages supposedly arose from hybridization. However, support for their putative hybrid origins mostly comes from indirect methodologies, which are rarely confirmatory. Here we provide compelling data indicating that tetraploid unisexual Calligrapha are true genetic mosaics obtained via analysis of mitochondrial DNA (mtDNA) and allelic variation and coalescence times for three single-copy nuclear genes (CPS, HARS, and Wg) in five of six unisexual Calligrapha and a representative sample of bisexual species. Nuclear allelic diversity in unisexuals consistently segregates in the gene pools of at least two but up to three divergent bisexual species, interpreted as putative parentals of interspecific hybridization crosses. Interestingly, their mtDNA diversity derives from an additional yet undiscovered older evolutionary lineage that is possibly the same for all independently originated unisexual species. One possibly extinct species transferred its mtDNA to several evolutionary lineages in a wave of hybridization events during the Pliocene, whereby descendant species retained a polymorphic mtDNA constitution. Recent hybridizations, in the Pleistocene and always involving females with the old introgressed mtDNA, seemingly occurred in the lineages leading to unisexual species, decoupling mtDNA introgression (and inferences derived from these data, such as timing and parentage) from subsequent acquisition of the new reproductive mode. These results illuminate an unexpected complexity in possible routes to animal unisexuality, with implications for the interpretation of ancient unisexuality. If the origin of unisexuality requires a mechanism where (1) hybridization is a necessary but insufficient condition and (2) multiple bouts of hybridization involving more than two divergent lineages are required, then the origins of several classical unisexual systems may have to be reassessed.
NASA Astrophysics Data System (ADS)
Ratza, Viktor; Ball, Markus; Liebtrau, M.; Ketzer, Bernhard
2018-02-01
In the context of the upgrade of the LHC during the second long shutdown the interaction rate of the ALICE experiment will be increased up to 50 kHz for Pb-Pb collisions. As a consequence, a continuous read-out of the Time Projection Chamber (TPC) will be required. To keep the space-charge distortions at a manageable size, the ion backflow of the charge amplification system has to be significantly reduced. At the same time an excellent detector performance and stability of the system has to be maintained. A solution with four Gaseous Electron Multipliers (GEMs) has been adopted as baseline solution for the upgraded chambers. As an alternative approach a hybrid GEM-Micromegas detector consisting of one Micromegas (MM) and two GEMs has been investigated. The recent results of the study of the hybrid GEM-Micromegas detector will be presented and compared to measurements with four GEM foils.
Phillips, Jordan J; Peralta, Juan E
2012-09-11
Semilocal functionals generally yield poor magnetic exchange couplings for transition-metal complexes, typically overpredicting in magnitude the experimental values. Here we show that semilocal functionals evaluated nonself-consistently on densities from hybrid functionals can yield magnetic exchange couplings that are greatly improved with respect to their self-consistent semilocal values. Furthermore, when semilocal functionals are evaluated nonself-consistently on densities from a "half-and-half" hybrid, their errors with respect to experimental values can actually be lower than those from self-consistent calculations with standard hybrid functionals such as PBEh or TPSSh. This illustrates that despite their notoriously poor performance for exchange couplings, for many systems semilocal functionals are capable of delivering accurate relative energies for magnetic states provided that their electron delocalization error is corrected. However, while self-consistent calculations with hybrids uniformly improve results for all complexes, evaluating nonself-consistently with semilocal functionals does not give a balanced improvement for both ferro- and antiferromagnetically coupled complexes, indicating that there is more at play with the overestimation problem than simply the delocalization error. Additionally, we show that for some systems the conventional wisdom of choice of exchange functional mattering more than correlation does not hold. This combined with results from the nonself-consistent calculations provide insight on clarifying the relative roles of exchange, correlation, and delocalization in calculating magnetic exchange coupling parameters in Kohn-Sham Density Functional Theory.
Digital Plasma Control System for Alcator C-Mod
NASA Astrophysics Data System (ADS)
Ferrara, M.; Wolfe, S.; Stillerman, J.; Fredian, T.; Hutchinson, I.
2004-11-01
A digital plasma control system (DPCS) has been designed to replace the present C-Mod system, which is based on hybrid analog-digital computer. The initial implementation of DPCS comprises two 64 channel, 16 bit, low-latency cPCI digitizers, each with 16 analog outputs, controlled by a rack-mounted single-processor Linux server, which also serves as the compute engine. A prototype system employing three older 32 channel digitizers was tested during the 2003-04 campaign. The hybrid's linear PID feedback system was emulated by IDL code executing a synchronous loop, using the same target waveforms and control parameters. Reliable real-time operation was accomplished under a standard Linux OS (RH9) by locking memory and disabling interrupts during the plasma pulse. The DPCS-computed outputs agreed to within a few percent with those produced by the hybrid system, except for discrepancies due to offsets and non-ideal behavior of the hybrid circuitry. The system operated reliably, with no sample loss, at more than twice the 10kHz design specification, providing extra time for implementing more advanced control algorithms. The code is fault-tolerant and produces consistent output waveforms even with 10% sample loss.
Ultra-Small Dualband Dualmode Microstrip Antenna Based on Novel Hybrid Resonator
NASA Astrophysics Data System (ADS)
Zhu, Ji-Xu; Bai, Peng; Zheng, Hao-Zhong
2016-11-01
A novel hybrid resonator consists of right handed patch+composite right and left handed transmission line (RH+CRLH) is proposed for the first time aiming at both compactness and frequency manipulation. A demonstration with theoretical dispersion relations and EM simulation is provided for the correctness and efficiency. According to the new method, an ultra-small and dualband antenna operating around 2.4 GHz (n=0, Bluetooth band) and 3.5 GHz (n=+1, Wimax band) is designed, fabricated and measured, whose occupied area is only of 0.158 λ_0. Numerical and experimental results indicate that the antenna exhibits a good impendence match, low cross-polarization and comparable radiation gains in both bands. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.
Formation, spin-up, and stability of field-reversed configurations
Omelchenko, Yuri A.
2015-08-24
Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.
Thermally induced evolution of hydrogenated amorphous carbon
NASA Astrophysics Data System (ADS)
Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.
2013-10-01
The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.
NASA Astrophysics Data System (ADS)
Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.
2008-06-01
We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelow, Christian; Weising, Simon; Bonatz, Dennis
2014-09-01
We report on the realization of hybrid systems composed of passive optical microdisk resonators prepared from epitaxial layer systems and nanocrystal quantum emitters synthesized by colloidal chemistry. The AlInP disk material allows for the operation in the visible range, as probed by CdSe-based nanocrystals. Photoluminescence spectra at room temperature reveal sets of whispering-gallery modes consistent with finite-difference time-domain simulations. In the experiments, a special sample geometry renders it possible to detect resonant optical modes perpendicular to the disk plane.
Hovick, Stephen M; Whitney, Kenneth D
2014-01-01
The hypothesis that interspecific hybridisation promotes invasiveness has received much recent attention, but tests of the hypothesis can suffer from important limitations. Here, we provide the first systematic review of studies experimentally testing the hybridisation-invasion (H-I) hypothesis in plants, animals and fungi. We identified 72 hybrid systems for which hybridisation has been putatively associated with invasiveness, weediness or range expansion. Within this group, 15 systems (comprising 34 studies) experimentally tested performance of hybrids vs. their parental species and met our other criteria. Both phylogenetic and non-phylogenetic meta-analyses demonstrated that wild hybrids were significantly more fecund and larger than their parental taxa, but did not differ in survival. Resynthesised hybrids (which typically represent earlier generations than do wild hybrids) did not consistently differ from parental species in fecundity, survival or size. Using meta-regression, we found that fecundity increased (but survival decreased) with generation in resynthesised hybrids, suggesting that natural selection can play an important role in shaping hybrid performance – and thus invasiveness – over time. We conclude that the available evidence supports the H-I hypothesis, with the caveat that our results are clearly driven by tests in plants, which are more numerous than tests in animals and fungi. PMID:25234578
Oshima, Keisuke; Sadakata, Shifumi; Shiraishi, Yukihide; Toshima, Naoki
2017-01-01
Three-component organic/inorganic hybrid films were fabricated by drop-casting the mixed dispersion of nanodispersed-poly(nickel 1,1,2,2-ethenetetrathiolate) (nano-PETT), polyimide (PI) and super growth carbon nanotubes (SG-CNTs) in N-methylpyrrolidone (NMP) at the designed ratio on a substrate. The dried nano-PETT/PI/SG-CNT hybrid films were prepared by the stepwise cleaning of NMP and methanol, and were dried once more. The thermoelectric properties of Seebeck coefficient S and electrical conductivity σ were measured by a thin-film thermoelectric measurement system ADVANCE RIKO ZEM-3M8 at 330–380 K. The electrical conductivity of nano-PETT/PI/SG-CNT hybrid films increased by 1.9 times for solvent treatment by clearing insulated of polymer. In addition, the density of nano-PETT/PI/SG-CNT hybrid films decreased 1.31 to 0.85 g·cm−3 with a decrease in thermal conductivity from 0.18 to 0.12 W·m−1·K−1. To evaluate the thermostability of nano-PETT/PI/SG-CNT hybrid films, the samples were kept at high temperature and the temporal change of thermoelectric properties was measured. The nano-PETT/PI/SG-CNT hybrid films were rather stable at 353 K and kept their power factor even after 4 weeks. PMID:28773182
Genomic and environmental selection patterns in two distinct lettuce crop–wild hybrid crosses
Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H
2013-01-01
Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop–wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop–wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar–wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability. PMID:23789025
Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses.
Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H
2013-06-01
Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop-wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar-wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability.
Groszmann, Michael; Gonzalez-Bayon, Rebeca; Greaves, Ian K; Wang, Li; Huen, Amanda K; Peacock, W James; Dennis, Elizabeth S
2014-09-01
Heterosis is important for agriculture; however, little is known about the mechanisms driving hybrid vigor. Ultimately, heterosis depends on the interactions of specific alleles and epialleles provided by the parents, which is why hybrids can exhibit different levels of heterosis, even within the same species. We characterize the development of several intraspecific Arabidopsis (Arabidopsis thaliana) F1 hybrids that show different levels of heterosis at maturity. We identify several phases of heterosis beginning during embryogenesis and culminating in a final phase of vegetative maturity and seed production. During each phase, the hybrids show different levels and patterns of growth, despite the close relatedness of the parents. For instance, during the vegetative phases, the hybrids develop larger leaves than the parents to varied extents, and they do so by exploiting increases in cell size and cell numbers in different ratios. Consistent with this finding, we observed changes in the expression of genes known to regulate leaf size in developing rosettes of the hybrids, with the patterns of altered expression differing between combinations. The data show that heterosis is dependent on changes in development throughout the growth cycle of the hybrid, with the traits of mature vegetative biomass and reproductive yield as cumulative outcomes of heterosis at different levels, tissues, and times of development. © 2014 American Society of Plant Biologists. All Rights Reserved.
Novel hybrid materials for preparation of bone tissue engineering scaffolds.
Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Łatkiewicz, Anna; Nowakowska, Maria
2015-09-01
The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.
Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Xu, Yan; Tomsovic, Kevin
In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less
Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
Liu, Guodong; Xu, Yan; Tomsovic, Kevin
2016-01-01
In this paper, we propose an optimal bidding strategy in the day-ahead market of a microgrid consisting of intermittent distributed generation (DG), storage, dispatchable DG and price responsive loads. The microgrid coordinates the energy consumption or production of its components and trades electricity in both the day-ahead and real-time markets to minimize its operating cost as a single entity. The bidding problem is challenging due to a variety of uncertainties, including power output of intermittent DG, load variation, day-ahead and real-time market prices. A hybrid stochastic/robust optimization model is proposed to minimize the expected net cost, i.e., expected total costmore » of operation minus total benefit of demand. This formulation can be solved by mixed integer linear programming. The uncertain output of intermittent DG and day-ahead market price are modeled via scenarios based on forecast results, while a robust optimization is proposed to limit the unbalanced power in real-time market taking account of the uncertainty of real-time market price. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator, a battery and a responsive load show the advantage of stochastic optimization in addition to robust optimization.« less
Ng, C M
2013-10-01
The development of a population PK/PD model, an essential component for model-based drug development, is both time- and labor-intensive. A graphical-processing unit (GPU) computing technology has been proposed and used to accelerate many scientific computations. The objective of this study was to develop a hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization (MCPEM) estimation algorithm for population PK data analysis. A hybrid GPU-CPU implementation of the MCPEM algorithm (MCPEMGPU) and identical algorithm that is designed for the single CPU (MCPEMCPU) were developed using MATLAB in a single computer equipped with dual Xeon 6-Core E5690 CPU and a NVIDIA Tesla C2070 GPU parallel computing card that contained 448 stream processors. Two different PK models with rich/sparse sampling design schemes were used to simulate population data in assessing the performance of MCPEMCPU and MCPEMGPU. Results were analyzed by comparing the parameter estimation and model computation times. Speedup factor was used to assess the relative benefit of parallelized MCPEMGPU over MCPEMCPU in shortening model computation time. The MCPEMGPU consistently achieved shorter computation time than the MCPEMCPU and can offer more than 48-fold speedup using a single GPU card. The novel hybrid GPU-CPU implementation of parallelized MCPEM algorithm developed in this study holds a great promise in serving as the core for the next-generation of modeling software for population PK/PD analysis.
Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model
NASA Astrophysics Data System (ADS)
Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku
2017-08-01
In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.
Feng, Fan; Li, Yajun; Qin, Xiaoliang; Liao, Yuncheng; Siddique, Kadambot H M
2017-01-01
China is the first country to use heterosis successfully for commercial rice production. This study compared the main quality characteristics (head rice rate, chalky rice rate, chalkiness degree, gel consistency, amylose content, and length-to-width ratio) of 635 rice varieties (not including upland and glutinous rice) released from 2000 to 2014 to establish the quality status and offer suggestions for future rice breeding for grain quality in China. In the past 15 years, grain quality in japonica rice and indica hybrid rice has improved. In japonica rice, inbred varieties have increased head rice rates and decreased chalkiness degree over time, while hybrid rice varieties have decreased chalky rice rates and chalkiness degree. In indica hybrid rice, the chalkiness degree and amylose contents have decreased and gel consistency has increased. Improvements in grain quality in indica inbred rice have been limited, with some increases in head rice rate and decreases in chalky rice rate and amylose content. From 2010 to 2014, the percentage of indica varieties meeting the Grade III national standard of rice quality for different quality traits was low, especially for chalky rice rate and chalkiness degree. Japonica varieties have more superior grain quality than indica rice in terms of higher head rice rates and gel consistency, lower chalky rice rates and chalkiness degree, and lower amylose contents, which may explain why the Chinese prefer japonica rice. The japonica rice varieties, both hybrid and inbred, had similar grain qualities, but this varied in indica rice with the hybrid varieties having higher grain quality than inbred varieties due to significantly better head rice rates and lower chalkiness degree. For better quality rice in future, the chalky rice rate and chalkiness degree should be improved in japonica rice along with most of the quality traits in indica rice.
Boava, Leonardo Pires; Sagawa, Cíntia Helena Duarte; Cristofani-Yaly, Mariângela; Machado, Marcos Antonio
2015-04-01
Huanglongbing (HLB), caused by the bacterium 'Candidatus Liberibacter' spp., is currently one of the most serious diseases of citrus plants and has caused substantial economic losses. Thus far, there is no source of genetic resistance to HLB in the genus Citrus or its relatives. However, several studies have reported Poncirus trifoliata and some of its hybrids to be more tolerant to the disease. The main objective of this study was to report differences in the incidence of 'Ca. L. asiaticus' infection in citrandarin plants, hybrids from Sunki mandarin (Citrus sunki (Hayata) hort. ex Tanaka), and trifoliate orange Rubidoux (P. trifoliata (L.) Raf.)), after conducting an extensive survey under field conditions. These hybrid plants were established for approximately 7 years in an area with a high incidence of 'Ca. L. asiaticus'-infected plants. We selected two experimental areas (area A and area B), located approximately 10 m apart. Area A consists of Pera sweet orange (C. sinensis (L.) Osb.) grafted onto 56 different citrandarin rootstocks. Area B consists of citrandarin scions grafted onto Rangpur lime (C. limonia Osb.) rootstock. Bacteria in the leaves and roots were detected using real-time quantitative polymerase chain reaction. The incidence of 'Ca. L. asiaticus'-infected plants was 92% in area A and 14% in area B. Because infected plants occurred in both areas, we examined whether the P. trifoliata hybrid rootstock influenced HLB development and also determined the distribution of 'Ca. L. asiaticus' in Citrus tree tissues. Although this survey does not present evidence regarding the resistance of P. trifoliata and its hybrids in relation to bacteria or psyllids, future investigation, mainly using the most promising hybrids for response to 'Ca. L. asiaticus', will help us to understand the probable mechanism of defense or identifying compounds in P. trifoliata and its hybrids that are very important as strategy to combat HLB. Details of these results are presented and discussed in this article.
Graphical analysis of power systems for mobile robotics
NASA Astrophysics Data System (ADS)
Raade, Justin William
The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with lithium polymer batteries. In summary, this dissertation describes the development and application of two graphical analysis tools for the intuitive design of mobile robotic power systems. Several design examples are discussed involving human exoskeleton power systems.
The exposure of the hybrid detector of the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration
2011-01-01
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.
Berry phase and Hannay's angle in a quantum-classical hybrid system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. D.; Wu, S. L.; Yi, X. X.
2011-06-15
The Berry phase, which was discovered more than two decades ago, provides very deep insight into the geometric structure of quantum mechanics. Its classical counterpart, Hannay's angle, is defined if closed curves of action variables return to the same curves in phase space after a time evolution. In this paper we study the Berry phase and Hannay's angle in a quantum-classical hybrid system under the Born-Oppenheimer approximation. By the term quantum-classical hybrid system, we mean a composite system consists of a quantum subsystem and a classical subsystem. The effects of subsystem-subsystem couplings on the Berry phase and Hannay's angle aremore » explored. The results show that the Berry phase has been changed sharply by the couplings, whereas the couplings have a small effect on the Hannay's angle.« less
The exposure of the hybrid detector of the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-06-01
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The 'hybrid' detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure.more » We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.« less
The TAIGA timing array HiSCORE - first results
NASA Astrophysics Data System (ADS)
Tluczykont, M.; Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Boreyko, V.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Epimakhov, S.; Fedorov, O.; Gafarov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Horns, D.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Konstantinov, A.; Korosteleva, E.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Kuzmichev, L.; Lemeshev, Yu.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Osipova, E.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Pushnin, A.; Samoliga, V.; Satunin, P.; Semeney, Yu.; Silaev, A.; Silaev, A.; Skurikhin, A.; Slunecka, M.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tkachev, L.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Zhurov, D.; Yashin, I.
2017-03-01
Observations of gamma rays up to several 100 TeV are particularly important to spectrally resolve the cutoff regime of the long-sought Pevatrons, the cosmic-ray PeV accelerators. One component of the TAIGA hybrid detector is the TAIGA-HiSCORE timing array, which currently consists of 28 wide angle (0.6 sr) air Cherenkov timing stations distributed on an area of 0.25 km2. The HiSCORE concept is based on (non-imaging) air shower front sampling with Cherenkov light. First results are presented.
Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei
2016-09-28
Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.
Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M
2012-08-01
For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADISmore » also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.« less
Rapid evolution of reproductive isolation between incipient outcrossing and selfing Clarkia species.
Briscoe Runquist, Ryan D; Chu, Eric; Iverson, Justin L; Kopp, Jason C; Moeller, David A
2014-10-01
A major goal of speciation research is to understand the processes involved in the earliest stages of the evolution of reproductive isolation (RI). One important challenge has been to identify systems where lineages have very recently diverged and opportunities for hybridization are present. We conducted a comprehensive examination of the components of RI across the life cycle of two subspecies of Clarkia xantiana, which diverged recently (ca. 65,000 bp). One subspecies is primarily outcrossing, but self-compatible, whereas the other is primarily selfing. The subspecies co-occur in a zone of sympatry but hybrids are rarely observed. Premating barriers resulted in nearly complete isolation in both subspecies with flowering time and pollinator preference (for the outcrosser over the selfer) as the strongest barriers. We found that the outcrosser had consistently more competitive pollen, facilitating hybridization in one direction, but no evidence for pollen-pistil interactions as an isolating barrier. Surprisingly, postzygotic isolation was detected at the stage of hybrid seed development, but in no subsequent life stages. This crossing barrier was asymmetric with crosses from the selfer to outcrosser most frequently failing. Collectively, the results provide evidence for rapid evolution of multiple premating and postzygotic barriers despite a very recent divergence time. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking
NASA Astrophysics Data System (ADS)
Raihan A. V, Dilshad; Chakravorty, Suman
2018-03-01
Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.
Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques
NASA Astrophysics Data System (ADS)
Fouad, Moharram; Bhargava, Renu
2018-05-01
A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.
Lisovski, Simeon; Fröhlich, Anne; von Tersch, Matthew; Klaassen, Marcel; Peter, Hans-Ulrich; Ritz, Markus S
2016-04-01
In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.
NASA Astrophysics Data System (ADS)
Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu
2017-02-01
The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.
40 CFR 1037.525 - Special procedures for testing hybrid vehicles with power take-off.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of this section to allow testing hybrid vehicles other than electric-battery hybrids, consistent with... model, use good engineering judgment to select the vehicle type with the maximum number of PTO circuits... as needed to stabilize the battery at a full state of charge. For electric hybrid vehicles, we...
Hybrid Computation at Louisiana State University.
ERIC Educational Resources Information Center
Corripio, Armando B.
Hybrid computation facilities have been in operation at Louisiana State University since the spring of 1969. In part, they consist of an Electronics Associates, Inc. (EAI) Model 680 analog computer, an EAI Model 693 interface, and a Xerox Data Systems (XDS) Sigma 5 digital computer. The hybrid laboratory is used in a course on hybrid computation…
Bowers, Erin; Hellmich, Richard; Munkvold, Gary
2014-07-09
Field trials were conducted from 2007 to 2010 to compare grain fumonisin levels among non-Bt maize hybrids and Bt hybrids with transgenic protection against manual infestations of European corn borer (ECB) and Western bean cutworm (WBC). HPLC and ELISA were used to measure fumonisin levels. Results of the methods were highly correlated, but ELISA estimates were higher. Bt hybrids experienced less insect injury, Fusarium ear rot, and fumonisin contamination compared to non-Bt hybrids. WBC infestation increased fumonisin content compared to natural infestation in non-Bt and hybrids expressing Cry1Ab protein in five of eight possible comparisons; in Cry1F hybrids, WBC did not impact fumonisins. These results indicate that WBC is capable of increasing fumonisin levels in maize. Under WBC infestation, Cry1F mitigated this risk more consistently than Cry1Ab or non-Bt hybrids. Transgenically expressed Bt proteins active against multiple lepidopteran pests can provide broad, consistent reductions in the risk of fumonisin contamination.
Hybrid photonic-plasmonic crystal nanocavity sensors
NASA Astrophysics Data System (ADS)
Cheng, Pi-Ju; Chiang, Chih-Kai; Chou, Bo-Tsun; Huang, Zhen-Ting; Ku, Yun-Cheng; Kuo, Mao-Kuen; Hsu, Jin-Chen; Lin, Tzy-Rong
2018-02-01
We have investigated a hybrid photonic-plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10- 3 ( λ/ n eff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/ V m is significantly enhanced by about 15 times. The designed hybrid photonic-plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light-matter interaction, such as biosensors and nanolasers.
Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses.
Moyle, Leonie C; Nakazato, Takuya
2008-07-01
The genetic basis of hybrid sterility can provide insight into the genetic and evolutionary origins of species barriers. We examine the genetics of hybrid incompatibility between two diploid plant species in the plant clade Solanum sect. Lycopersicon. Using a set of near-isogenic lines (NILs) representing the wild species Solanum pennellii (formerly Lycopersicon pennellii) in the genetic background of the cultivated tomato S. lycopersicum (formerly L. esculentum), we found that hybrid pollen and seed infertility are each based on a modest number of loci, male (pollen) and other (seed) incompatibility factors are roughly comparable in number, and seed-infertility QTL act additively or recessively. These findings are remarkably consistent with our previous analysis in a different species pair, S. lycopersicum x S. habrochaites. Data from both studies contrast strongly with data from Drosophila. Finally, QTL for pollen and seed sterility from the two Solanum studies were chromosomally colocalized, indicating a shared evolutionary history for these QTL, a nonrandom genomic distribution of loci causing sterility, and/or a proclivity of certain genes to be involved in hybrid sterility. We show that comparative mapping data can delimit the probable timing of evolution of detected QTL and discern which sterility loci likely evolved earliest among species.
Self-consistent hybrid functionals for solids: a fully-automated implementation
NASA Astrophysics Data System (ADS)
Erba, A.
2017-08-01
A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.
NASA Astrophysics Data System (ADS)
Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto
2017-10-01
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
NASA Astrophysics Data System (ADS)
He, Jiangang; Franchini, Cesare
2017-11-01
In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization method and making use of the relation \
Post-silking Factor Consequences for N Efficiency Changes Over 38 Years of Commercial Maize Hybrids.
Chen, Keru; Vyn, Tony J
2017-01-01
Hybrid selection in maize ( Zea mays L.) over the decades has increased post-silking dry matter (PostDM) and nitrogen (PostN) accumulation, often with an accompanying increase in one or more N use efficiency (NUE) metrics such as partial factor productivity (PFP), N conversion efficiency (NCE), and N internal efficiency (NIE). More certainty on the underlying mechanisms of how PostDM and PostN changes over time have contributed to NUE gains or losses in modern-era hybrids can only be realized by directly comparing hybrids of different eras in the context of production-system-relevant management systems. A two-year and two-location field study was conducted in Indiana with two N rates (55 and 220 kg N ha -1 ), three plant densities (54,000, 79,000, and 104,000 plants ha -1 ) and eight commercial hybrids that were released by a single seed company from 1967 to 2005. The main treatment effects of N rate, density, and hybrid dominated the PostDM and PostN responses, and there were no significant two-way or three-way interactions. Total dry matter at maturity gains averaged 80 kg ha -1 year -1 of hybrid release when averaged over locations, plant densities and N rates. Total N contents at maturity increased 0.68 kg ha -1 year -1 , primarily due to annual increases in grain N content (0.8 kg ha -1 year -1 ). Post-silking N uptake rate increased 0.44 kg ha -1 year -1 for these era hybrids in more favorable production site-years. Slopes of grain N concentration increases per unit PostN gain were similar for all hybrids. Gains in average PFP over time were considerably higher at the low N rate (0.9 kg ha -1 year -1 ) than at the high N rate (0.3 kg kg -1 year -1 ). Hybrid gains in NIE were evident from 1967 to 1994, but not thereafter. The low N rate and higher plant densities also increased relative NIE and NCE values, but without hybrid interactions. There was no consistent trend of NIE or NCE gains in these hybrids primarily because grain and whole-plant N concentrations didn't decline over the decades at either N rate, and because NIE and NCE were often plant-density dependent.
A hybrid power system for unmanned aerial vehicle electromagnetic launcher
NASA Astrophysics Data System (ADS)
Wang, Zhiren; Wu, Jun; Huang, Shengjun
2018-06-01
According to the UAV electromagnetic catapult with fixed timing, a hybrid energy storage system consist with battery and super capacitor is designed, in order to reduce the volume and weight of the energy storage system. The battery is regarded as the energy storage device and the super capacitor as power release device. Firstly, the battery charges the super capacitor, and then the super capacitor supplies power to electromagnetic catapult separately. The strategy is using the Buck circuit to charge the super capacitor with constant current and using the Boost circuit to make super capacitor provide a stable voltage circuit for electromagnetic catapult. The Simulink simulation results show that the designed hybrid energy storage system can meet the requirements of electromagnetic catapult. Compared with the system powered by the battery alone, the proposed scheme can reduce the number of batteries, and greatly reduce the volume and weight of the energy storage system.
Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2016-01-01
Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087
NASA Astrophysics Data System (ADS)
Chang, Chun-Chao; Wang, Chiung-Chi; Wu, Chia-Wei; Liu, Shou-Ching; Mai, Fu-Der
2008-12-01
Increasing environmental concern has led to the restrictive use of chromate conversion coatings to protect Al-alloys from corrosion. Our research is under way to find environmentally compliant substitute coating such as Si/Zr/Ce hybrid coating. The corrosion protection effect of green pretreatment reagent consisted of Si-containing base solution, Ce- and Zr-containing sealing solutions on the corrosion protection of Al-alloys was studied with a 3.5% NaCl aqueous testing solution. The correlation between the corrosion resistance measured by electrochemical impedance spectroscopy (EIS) and surface chemical composition of the hybrid coating measured by time-of-flight secondary ion mass spectroscopy (ToF-SIMS) was studied. The proposed green pretreatment reagent was found improve the corrosion protection of Al-alloys, presumably due to the formation of protective oxide film acting as an oxygen barrier.
Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System
NASA Technical Reports Server (NTRS)
Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)
2000-01-01
Satellite Supervisory Control and Data Acquisition (SCADA) of a Photovoltaic (PV)/diesel hybrid system was tested using NASA's Advanced Communication Technology Satellite (ACTS) and Ultra Small Aperture Terminal (USAT) ground stations. The setup consisted of a custom-designed PV/diesel hybrid system, located at the Florida Solar Energy Center (FSEC), which was controlled and monitored at a "remote" hub via Ka-band satellite link connecting two 1/4 Watt USATs in a SCADA arrangement. The robustness of the communications link was tested for remote monitoring of the health and performance of a PV/diesel hybrid system, and for investigating load control and battery charging strategies to maximize battery capacity and lifetime, and minimize loss of critical load probability. Baseline hardware performance test results demonstrated that continuous two-second data transfers can be accomplished under clear sky conditions with an error rate of less than 1%. The delay introduced by the satellite (1/4 sec) was transparent to synchronization of satellite modem as well as to the PV/diesel-hybrid computer. End-to-end communications link recovery times were less than 36 seconds for loss of power and less than one second for loss of link. The system recovered by resuming operation without any manual intervention, which is important since the 4 dB margin is not sufficient to prevent loss of the satellite link during moderate to heavy rain. Hybrid operations during loss of communications link continued seamlessly but real-time monitoring was interrupted. For this sub-tropical region, the estimated amount of time that the signal fade will exceed the 4 dB margin is about 10%. These results suggest that data rates of 4800 bps and a link margin of 4 dB with a 1/4 Watt transmitter are sufficient for end-to-end operation in this SCADA application.
NASA Astrophysics Data System (ADS)
Kim, Chan Moon; Parnichkun, Manukid
2017-11-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
Carruthers, Jonathan M; Cook, Samantha M; Wright, Geraldine A; Osborne, Juliet L; Clark, Suzanne J; Swain, Jennifer L; Haughton, Alison J
2017-08-01
Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield-enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse-grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24-h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open-pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse-grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.
Flores-Rentería, Lluvia; Rymer, Paul D; Riegler, Markus
2017-03-01
Reticulate evolution by hybridization is considered a common process shaping the evolution of many plant species, however, reticulation could also be due to incomplete lineage sorting in biodiverse systems. For our study we selected a group of closely related plant taxa with contrasting yet partially overlapping geographic distributions and different population sizes, to distinguish between reticulated patterns due to hybridization and incomplete lineage sorting. We predicted that sympatric or proximal populations of different species are more likely to have gene flow than geographically distant populations of the same widespread species. Furthermore, for species with restricted distributions, and therefore, small effective population sizes, we predicted complete lineage sorting. Eastern grey box eucalypt species (Eucalyptus supraspecies Moluccanae) provide an ideal system to explore patterns of reticulate evolution. They form a diverse, recently evolved and phylogenetically undefined group within Eucalyptus, with overlapping morphological features and hybridization in nature. We used a multi-faceted approach, combining analyses of chloroplast and nuclear DNA, as well as seedling morphology, flowering time and ecological spatial differentiation in order to test for species delimitation and reticulate evolution in this group. The multiple layers of results were consistent and suggested a lack of monophyly at different hierarchical levels due to multidirectional gene flow among several species, challenging species delimitation. Chloroplast and nuclear haplotypes were shared among different species in geographic proximity, consistent with hybridization zones. Furthermore, species with restricted distributions appeared better resolved due to lineage sorting in the absence of hybridization. We conclude that a combination of molecular, morphological and ecological approaches is required to disentangle patterns of reticulate evolution in the box eucalypts. Published by Elsevier Inc.
Correlation effects in superconducting quantum dot systems
NASA Astrophysics Data System (ADS)
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model
NASA Astrophysics Data System (ADS)
Kallio, E.; Janhunen, P.
2003-11-01
Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.
NASA Astrophysics Data System (ADS)
Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe
This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.
Phospholipid—polymer amphiphile hybrid assemblies and their interaction with macrophages
Panneerselvam, Karthiga; Lynge, Martin E.; Riber, Camilla Frich; Mena-Hernando, Sofia; Smith, Anton A. A.; Goldie, Kenneth N.; Zelikin, Alexander N.; Städler, Brigitte
2015-01-01
Recently, the combination of lipids and block copolymers has become an alternative to liposomes and polymersomes as nano-sized drug carriers. We synthesize novel block copolymers consisting of poly(cholesteryl acrylate) as the hydrophobic core and poly(N-isopropylacrylamide) (PNIPAAm) as the hydrophilic extensions. Their successful phospholipid-assisted assembly into vesicles is demonstrated using the evaporation-hydration method. The preserved thermo-responsive property of the lipid-polymer hybrids is shown by a temperature dependent adsorption behaviour of the vesicles to poly(l lysine) coated surfaces. As expected, the vesicle adsorption is found to be higher at elevated temperatures. The cellular uptake efficiency of hybrids is assessed using macrophages with applied shear stress. The amount of adhering macrophages is affected by the time and level of applied shear stress. Further, it is found that shorter PNIPAAm extensions lead to higher uptake of the assemblies by the macrophages with applied shear stress. No inherent cytotoxicity is observed at the tested conditions. Taken together, this first example of responsive lipid-polymer hybrids, and their positive biological evaluation makes them promising nano-sized drug carrier candidates. PMID:26339330
Prediction of the elastic modulus of wood flour/kenaf fibre/polypropylene hybrid composites
Jamal Mirbagheri; Mehdi Tajvidi; Ismaeil Ghasemi; John C. Hermanson
2007-01-01
The prediction of the elastic modulus of short natural fibre hybrid composites has been investigated by using the properties of the pure composites through the rule of hybrid mixtures (RoHM) equation. In this equation, a hybrid natural fibre composite assumed as a system consisting of two separate single systems, namely particle/polymer and short-fibre/polymer systems...
NASA Astrophysics Data System (ADS)
Sevkat, Ercan
The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The experimentally obtained force-time histories, strain-time histories and damage patterns of impacted composites are compared with Finite element results. The results indicate that LS-DYNA could simulate the impact responses with sufficient accuracy once proper material models and boundary conditions are defined.
49 CFR 572.31 - General description.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., titled “Sign Convention for Vehicle Crash Testing”, dated 1994-12. (6) Exterior dimensions of the Hybrid... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Hybrid III Test Dummy § 572.31 General description. (a) The Hybrid III 50th percentile size dummy consists of components and...
Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil; ...
2017-01-24
Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil
Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less
Nonlinear lower hybrid structures in auroral plasmas: comparison of theory with observations
NASA Astrophysics Data System (ADS)
Robinson, P. A.
1999-01-01
Intense, localized lower hybrid wave structures are widely observed in auroral plasmas, often associated with density depletions. Commonly it is concluded without further analysis that these structures are solitons, collapsing wave packets, or other nonlinear entities. Such conclusions are often not justified on theoretical grounds. This review outlines theoretical constraints on field intensity, wave-packet scale length, timescales, and levels of density perturbations that must be met before nonlinear phenomena such as wave collapse and strong turbulence can occur. These criteria are determined within the framework of the modern nucleation scenario for the maintenance of strong turbulence, which involves collapse and dissipation (burnout) of each wave packet, followed by relaxation of its associated density perturbation, then renucleation of further energy into fields trapped in this relaxing perturbation, often leading to further collapse. The criteria are illustrated by applying them to a range of in situ auroral data that have been commonly interpreted in terms of lower hybrid solitons. It will be shown that the data are consistent with some of these criteria, but violate others if packets are all assumed to be observed in the collapse phase. However, theory and observations are consistent within the full nucleation scenario in which packets spend most of their time in the relaxation and renucleation phases, rather than undergoing collapse or burnout.
New evidence for hybrid zones of forest and savanna elephants in Central and West Africa.
Mondol, Samrat; Moltke, Ida; Hart, John; Keigwin, Michael; Brown, Lisa; Stephens, Matthew; Wasser, Samuel K
2015-12-01
The African elephant consists of forest and savanna subspecies. Both subspecies are highly endangered due to severe poaching and habitat loss, and knowledge of their population structure is vital to their conservation. Previous studies have demonstrated marked genetic and morphological differences between forest and savanna elephants, and despite extensive sampling, genetic evidence of hybridization between them has been restricted largely to a few hybrids in the Garamba region of northeastern Democratic Republic of Congo (DRC). Here, we present new genetic data on hybridization from previously unsampled areas of Africa. Novel statistical methods applied to these data identify 46 hybrid samples--many more than have been previously identified--only two of which are from the Garamba region. The remaining 44 are from three other geographically distinct locations: a major hybrid zone along the border of the DRC and Uganda, a second potential hybrid zone in Central African Republic and a smaller fraction of hybrids in the Pendjari-Arli complex of West Africa. Most of the hybrids show evidence of interbreeding over more than one generation, demonstrating that hybrids are fertile. Mitochondrial and Y chromosome data demonstrate that the hybridization is bidirectional, involving males and females from both subspecies. We hypothesize that the hybrid zones may have been facilitated by poaching and habitat modification. The localized geography and rarity of hybrid zones, their possible facilitation from human pressures, and the high divergence and genetic distinctness of forest and savanna elephants throughout their ranges, are consistent with calls for separate species classification. © 2015 John Wiley & Sons Ltd.
Development of a hybrid mode linear transformer driver stage
NASA Astrophysics Data System (ADS)
Zhang, Le; Wang, Meng; Zhou, Liangji; Tian, Qing; Guo, Fan; Wang, Lingyun; Qing, Yanling; Zhao, Yue; Dai, Yingmin; Han, Wenhui; Chen, Lin; Xie, Weiping
2018-02-01
At present, the mainstream technologies of primary power sources of large pulse power devices adopt Marx or linear transformer driver (LTD) designs. Based on the analysis of the characteristics of these two types of circuit topologies, the concept of a hybrid mode LTD stage based on Marx branches is proposed. The analysis shows that the hybrid mode LTD stage can realize the following goals: (a) to reduce the energy and power handled by the basic components (switch and capacitor) to lengthen their lifetime; (b) to reduce the requirements of the multipath synchronous trigger system; and (c) to improve the maintainability of the LTD stage by using independent Marx generators instead of "traditional LTD bricks." To verify the technique, a hybrid mode LTD stage consisting of 50 branches (four-stage compact Marx generators) was designed, manufactured and tested. The stage has a radius of about 3.3 m and a height of 0.6 m. The single Marx circuit's load current is about 21 kA, with a rise time of ˜90 ns (10%-90%), under the conditions of capacitors charged to ±40 kV and a 6.9 Ω matched load. The whole stage's load current is ˜1 MA , with a rise time of ˜112 ns (10%-90%), when the capacitors are charged to ±45 kV and the matched load is 0.14 Ω .
Gao, Qiang; Dou, Lixiang; Belkacem, Abdelkader Nasreddine; Chen, Chao
2017-01-01
A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, "teeth clenching" state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of "teeth clenching" condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word "HI" which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control.
Gao, Qiang
2017-01-01
A novel hybrid brain-computer interface (BCI) based on the electroencephalogram (EEG) signal which consists of a motor imagery- (MI-) based online interactive brain-controlled switch, “teeth clenching” state detector, and a steady-state visual evoked potential- (SSVEP-) based BCI was proposed to provide multidimensional BCI control. MI-based BCI was used as single-pole double throw brain switch (SPDTBS). By combining the SPDTBS with 4-class SSEVP-based BCI, movement of robotic arm was controlled in three-dimensional (3D) space. In addition, muscle artifact (EMG) of “teeth clenching” condition recorded from EEG signal was detected and employed as interrupter, which can initialize the statement of SPDTBS. Real-time writing task was implemented to verify the reliability of the proposed noninvasive hybrid EEG-EMG-BCI. Eight subjects participated in this study and succeeded to manipulate a robotic arm in 3D space to write some English letters. The mean decoding accuracy of writing task was 0.93 ± 0.03. Four subjects achieved the optimal criteria of writing the word “HI” which is the minimum movement of robotic arm directions (15 steps). Other subjects had needed to take from 2 to 4 additional steps to finish the whole process. These results suggested that our proposed hybrid noninvasive EEG-EMG-BCI was robust and efficient for real-time multidimensional robotic arm control. PMID:28660211
Faculty Experiences in Higher Education Institutions Teaching Hybrid Courses
ERIC Educational Resources Information Center
Calderon, Blanca I. Rodriguez
2013-01-01
This qualitative phenomenological study investigated how professors perceive the effectiveness of hybrid courses at the university level. The study gathered data related to professor's experiences that could give insight about the factors encouraging the development of hybrid instruction in higher education. The targeted population consisted of…
First Results From the Alcator C-Mod Lower Hybrid Experiment
NASA Astrophysics Data System (ADS)
Parker, Ronald; Bernabei, Stefano; Grimes, Montgomery; Hosea, Joel; Johnson, David; Wilson, Randy
2005-10-01
A lower hybrid system operating at 4.6 GHz and capable of 3 MW source power has been installed on Alcator C-Mod. The grill facing the plasma consists of 4 rows of 24 waveguides. Electronic control of the amplitude and phase of the 12 klystrons supplying the RF power enables the launcher's n|| spectrum to be dynamically controlled over a wide range with a time response of 1 ms. Since the deposition of current depends on n|| as well as the temperature profile, the spatial distribution of the driven current can be varied with the same time response. Detection of fast electron Bremsstrahlung is the primary means of monitoring the driven current profile. Initial measurements at the 100 kW power level show that reflection coefficients as low as 7% are obtained at optimal phasing and density at the grill mouth. Comparison of these results with modeling predictions will be presented in a companion paper.
Hybrid stochastic and deterministic simulations of calcium blips.
Rüdiger, S; Shuai, J W; Huisinga, W; Nagaiah, C; Warnecke, G; Parker, I; Falcke, M
2007-09-15
Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.
Proliferation of Observables and Measurement in Quantum-Classical Hybrids
NASA Astrophysics Data System (ADS)
Elze, Hans-Thomas
2012-01-01
Following a review of quantum-classical hybrid dynamics, we discuss the ensuing proliferation of observables and relate it to measurements of (would-be) quantum mechanical degrees of freedom performed by (would-be) classical ones (if they were separable). Hybrids consist in coupled classical (CL) and quantum mechanical (QM) objects. Numerous consistency requirements for their description have been discussed and are fulfilled here. We summarize a representation of quantum mechanics in terms of classical analytical mechanics which is naturally extended to QM-CL hybrids. This framework allows for superposition, separable, and entangled states originating in the QM sector, admits experimenter's "Free Will", and is local and nonsignaling. Presently, we study the set of hybrid observables, which is larger than the Cartesian product of QM and CL observables of its components; yet it is smaller than a corresponding product of all-classical observables. Thus, quantumness and classicality infect each other.
Hybrid Texts: Fifth Graders, Rap Music, and Writing
ERIC Educational Resources Information Center
Christianakis, Mary
2011-01-01
Consistent with a sociocritical frame and the analytic tools of hybridity theory, this article explicates how urban fifth-grade children made language hybrids using rap and poetry to participate in classroom literacy. Ethnographic data from a yearlong study illustrate two key findings. First, standards-based and canon-driven writing models…
Nitrous Oxide/Paraffin Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Snyder, Gary
2010-01-01
Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.
Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa
2018-04-01
A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Commercial viability of hybrid vehicles : best household use and cross national considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, D. J.; Vyas, A. D.
1999-07-16
Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number ofmore » possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.« less
Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.
Çakir, Yüksel
2016-01-01
Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.
Sun, Yang; Park, Jesung; Stephens, Douglas N; Jo, Javier A; Sun, Lei; Cannata, Jonathan M; Saroufeem, Ramez M G; Shung, K Kirk; Marcu, Laura
2009-06-01
We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 microm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.
Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura
2009-01-01
We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque. PMID:19566223
NASA Astrophysics Data System (ADS)
Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura
2009-06-01
We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.
Graphene-Plasmonic Hybrid Platform for Label-Free SERS Biomedical Detection
NASA Astrophysics Data System (ADS)
Wang, Pu
Surface Enhanced Raman Scattering (SERS) has attracted explosive interest for the wealth of vibrational information it provides with minimal invasive effects to target analyte. Nanotechnology, especially in the form of noble metal nanoparticles exhibit unique electromagnetic and chemical characteristics that are explored to realize ultra-sensitive SERS detection in chemical and biological analysis. Graphene, atom-thick carbon monolayer, exhibits superior chemical stability and bio-compatibility. A combination of SERS-active metal nanostructures and graphene will create various synergies in SERS. The main objective of this research was to exploit the applications of the graphene-Au tip hybrid platform in SERS. The hybrid platform consists of a periodic Au nano-pyramid substrate to provide reproducible plasmonic enhancement, and the superimposed monolayer graphene sheet, serving as "built-in" Raman marker. Extensive theoretical and experimental studies were conducted to determine the potentials of the hybrid platform as SERS substrate. Results from both Finite-Domain Time-Domain (FDTD) numerical simulation and Raman scattering of graphene suggested that the hybrid platform boosted a high density of hotspots yielding 1000 times SERS enhancement of graphene bands. Ultra-high sensitivity of the hybrid platform was demonstrated by bio-molecules including dye, protein and neurotransmitters. Dopamine and serotonin can be detected and distinguished at 10-9 M concentration in the presence of human body fluid. Single molecule detection was obtained using a bi-analyte technique. Graphene supported a vibration mode dependent SERS chemical enhancement of ˜10 to the analyte. Quantitative evaluation of hotspots was presented using spatially resolved Raman mapping of graphene SERS enhancement. Graphene plays a crucial role in quantifying SERS hotspots and paves the path for defining SERS EF that could be universally applied to various SERS systems. A reproducible and statistically reliable SERS quantification approach using the hybrid platform was proposed. The SERS mapping based approach not only leverages the ultra-sensitivity but also minimizes the spot-to-spot variations. Feasibility of biomedical diagnosis with the hybrid platform was exploited by colon cancer cell sensing and time-dependent SERS of amyloid beta protein monomer. The capabilities of the platform are demonstrated by colon cancer cell detection in simulated body fluid background with cell concentration down to 50 cells /mL. Sensitivity of 95% was evidenced by Principle Components Analysis (PCA). Besides, a noticeable evolution profile of the Abeta SERS peaks was observed and attributed to the Abeta configurational change. Taken together, the results suggested the graphene-plasmonic hybrid platform can potentially deliver a biomedical detection and diagnostic imaging platform with superior sensitivity and resolution.
Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots
2012-01-01
Poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)]/ZnO nanorod hybrid solar cells consisting of PbS quantum dots [QDs] prepared by a chemical bath deposition method were fabricated. An optimum coating of the QDs on the ZnO nanorods could strongly improve the performance of the solar cells. A maximum power conversion efficiency of 0.42% was achieved for the PbS QDs' sensitive solar cell coated by 4 cycles, which was increased almost five times compared with the solar cell without using PbS QDs. The improved efficiency is attributed to the cascade structure formed by the PbS QD coating, which results in enhanced open-circuit voltage and exciton dissociation efficiency. PMID:22313746
An optical/digital processor - Hardware and applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Sterling, W. M.
1975-01-01
A real-time two-dimensional hybrid processor consisting of a coherent optical system, an optical/digital interface, and a PDP-11/15 control minicomputer is described. The input electrical-to-optical transducer is an electron-beam addressed potassium dideuterium phosphate (KD2PO4) light valve. The requirements and hardware for the output optical-to-digital interface, which is constructed from modular computer building blocks, are presented. Initial experimental results demonstrating the operation of this hybrid processor in phased-array radar data processing, synthetic-aperture image correlation, and text correlation are included. The applications chosen emphasize the role of the interface in the analysis of data from an optical processor and possible extensions to the digital feedback control of an optical processor.
NASA Astrophysics Data System (ADS)
Ames, W.; Alpas, A. T.
1995-01-01
The wear behavior of A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg) matrix composites reinforced with 20 vol Pct SiC particles and 3 or 10 vol Pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X-ray diffractometry (XRD). The wear resistance of 3 Pct graphite-20 Pct SiC-A356 hybrid composite was comparable to 20 Pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 Pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 Pct graphite 20 Pct SiC-A356 was 1 to 2 times higher than 10 Pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 Pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 Pct and 10 Pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites. Tribolayers, mainly consisting of a compacted mixture of graphite, iron oxides, and aluminum, were generated on the surfaces of the hybrid composites. In the hybrid composites, the elimination of the severe wear (and hence the improvement in seizure resistance) was attributed to the reduction in friction-induced surface heating due to the presence of graphite- and iron-oxide-containing tribolayers.
ERIC Educational Resources Information Center
Nakayama, Minoru; Yamamoto, Hiroh; Santiago, Rowena
2007-01-01
To improve the management of hybrid courses, the relationship between learner characteristics and learning performance was analyzed in two regular university courses. Undergraduate and graduate students participated in two 15-week hybrid courses which consisted of face-to-face lectures (Information Industrial issues), and the corresponding modules…
Evaluating the Pedagogical Potential of Hybrid Models
ERIC Educational Resources Information Center
Levin, Tzur; Levin, Ilya
2013-01-01
The paper examines how the use of hybrid models--that consist of the interacting continuous and discrete processes--may assist in teaching system thinking. We report an experiment in which undergraduate students were asked to choose between a hybrid and a continuous solution for a number of control problems. A correlation has been found between…
QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing
NASA Astrophysics Data System (ADS)
Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.
2018-02-01
We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).
Technow, Frank; Schrag, Tobias A.; Schipprack, Wolfgang; Bauer, Eva; Simianer, Henner; Melchinger, Albrecht E.
2014-01-01
Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses. PMID:24850820
Source parameter inversion of compound earthquakes on GPU/CPU hybrid platform
NASA Astrophysics Data System (ADS)
Wang, Y.; Ni, S.; Chen, W.
2012-12-01
Source parameter of earthquakes is essential problem in seismology. Accurate and timely determination of the earthquake parameters (such as moment, depth, strike, dip and rake of fault planes) is significant for both the rupture dynamics and ground motion prediction or simulation. And the rupture process study, especially for the moderate and large earthquakes, is essential as the more detailed kinematic study has became the routine work of seismologists. However, among these events, some events behave very specially and intrigue seismologists. These earthquakes usually consist of two similar size sub-events which occurred with very little time interval, such as mb4.5 Dec.9, 2003 in Virginia. The studying of these special events including the source parameter determination of each sub-events will be helpful to the understanding of earthquake dynamics. However, seismic signals of two distinctive sources are mixed up bringing in the difficulty of inversion. As to common events, the method(Cut and Paste) has been proven effective for resolving source parameters, which jointly use body wave and surface wave with independent time shift and weights. CAP could resolve fault orientation and focal depth using a grid search algorithm. Based on this method, we developed an algorithm(MUL_CAP) to simultaneously acquire parameters of two distinctive events. However, the simultaneous inversion of both sub-events make the computation very time consuming, so we develop a hybrid GPU and CPU version of CAP(HYBRID_CAP) to improve the computation efficiency. Thanks to advantages on multiple dimension storage and processing in GPU, we obtain excellent performance of the revised code on GPU-CPU combined architecture and the speedup factors can be as high as 40x-90x compared to classical cap on traditional CPU architecture.As the benchmark, we take the synthetics as observation and inverse the source parameters of two given sub-events and the inversion results are very consistent with the true parameters. For the events in Virginia, USA on 9 Dec, 2003, we re-invert source parameters and detailed analysis of regional waveform indicates that Virginia earthquake included two sub-events which are Mw4.05 and Mw4.25 at the same depth of 10km with focal mechanism of strike65/dip32/rake135, which are consistent with previous study. Moreover, compared to traditional two-source model method, MUL_CAP is more automatic with no need for human intervention.
Schneider, Kevin; Koblmüller, Stephan; Sefc, Kristina M
2015-11-11
The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis .With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu
In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less
An advanced environment for hybrid modeling of biological systems based on modelica.
Pross, Sabrina; Bachmann, Bernhard
2011-01-20
Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process. The Modelica-models can be connected to Simulink-models for parameter optimization, sensitivity analysis and stochastic simulation in Matlab. The present paper illustrates the implementation of the Petri Net component models, their usage within the modeling process and the coupling between the Modelica-tool Dymola and Matlab/Simulink. The application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.
Autonomous Guidance of Agile Small-scale Rotorcraft
NASA Technical Reports Server (NTRS)
Mettler, Bernard; Feron, Eric
2004-01-01
This report describes a guidance system for agile vehicles based on a hybrid closed-loop model of the vehicle dynamics. The hybrid model represents the vehicle dynamics through a combination of linear-time-invariant control modes and pre-programmed, finite-duration maneuvers. This particular hybrid structure can be realized through a control system that combines trim controllers and a maneuvering control logic. The former enable precise trajectory tracking, and the latter enables trajectories at the edge of the vehicle capabilities. The closed-loop model is much simpler than the full vehicle equations of motion, yet it can capture a broad range of dynamic behaviors. It also supports a consistent link between the physical layer and the decision-making layer. The trajectory generation was formulated as an optimization problem using mixed-integer-linear-programming. The optimization is solved in a receding horizon fashion. Several techniques to improve the computational tractability were investigate. Simulation experiments using NASA Ames 'R-50 model show that this approach fully exploits the vehicle's agility.
Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation
NASA Astrophysics Data System (ADS)
Shao, Xia; Lu, Wencong; Zhang, Rui; Pan, Feng
2013-10-01
Carbon-based TiO2 composites have many advantages as photocatalysts. However, they suffer from low light efficiency due to the low contrast of TiO2 with carbon. We synthesized a novel type of anatase-type TiO2-C hybrid aerogel by a one-pot sol-gel method, which shows a photocatalytic activity for methylene degradation up to 4.23 times that of P25, a commercial photocatalyst from Degussa Inc. The hybrid aerogels are prepared from TiCl4 and resorcinol-furfural, and have a tunable macropore size from 167 to 996 nm. They are formed of submicrometer particles that consist of interwoven anatase and carbon nanoparticles. The anatase nanoparticles have a size of 8-9 nm and a tunable oxygen vacancy from 7.2 to 18.0%. The extremely high activity is ascribed to the large light absorption caused by macropore scattering and oxygen vacancies in the anatase. These findings may open up a new avenue and stimulate further research to improve photocatalytic performance.
Probing hybrid modified gravity by stellar motion around Galactic Center
NASA Astrophysics Data System (ADS)
Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.
2016-06-01
We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.
Bundus, Joanna D; Wang, Donglin; Cutter, Asher D
2018-04-07
Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.
Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines.
Bellon, Jennifer R; Eglinton, Jeffery M; Siebert, Tracey E; Pollnitz, Alan P; Rose, Louisa; de Barros Lopes, Miguel; Chambers, Paul J
2011-08-01
Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.
NASA Astrophysics Data System (ADS)
Santos, Joao M. M.; Jones, Brynmor E.; Schlosser, Peter J.; Watson, Scott; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J. D.; De Jesus, Joel; Garcia, Thor A.; Tamargo, Maria C.; Kelly, Anthony E.; Hastie, Jennifer E.; Laurand, Nicolas; Dawson, Martin D.
2015-03-01
The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the -3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns.
NASA Astrophysics Data System (ADS)
Li, Jiao; Hu, Guijun; Gong, Caili; Li, Li
2018-02-01
In this paper, we propose a hybrid time-frequency domain sign-sign joint decision multimodulus algorithm (Hybrid-SJDMMA) for mode-demultiplexing in a 6 × 6 mode division multiplexing (MDM) system with high-order QAM modulation. The equalization performance of Hybrid-SJDMMA was evaluated and compared with the frequency domain multimodulus algorithm (FD-MMA) and the hybrid time-frequency domain sign-sign multimodulus algorithm (Hybrid-SMMA). Simulation results revealed that Hybrid-SJDMMA exhibits a significantly lower computational complexity than FD-MMA, and its convergence speed is similar to that of FD-MMA. Additionally, the bit-error-rate performance of Hybrid-SJDMMA was obviously better than FD-MMA and Hybrid-SMMA for 16 QAM and 64 QAM.
Numerical analysis of the forced convective heat transfer on Al2O3-Cu/water hybrid nanofluid
NASA Astrophysics Data System (ADS)
Rahman, Mohd Rosdzimin Abdul; Leong, Kin Yuen; Idris, Azam Che; Saad, Mohd Rashdan; Anwar, Mahmood
2017-05-01
A numerical investigation to elucidate thermal behavior of hybrid nanofluids consisting of Al2O3 and Cu nanoparticles at ratio of 90:10 was conducted. Numerical domain of a two-dimensional axisymmetric copper tube with a length of 1000 and 10 mm in diameter is used. A uniform axial velocity is assigned at the velocity inlet based on the Reynolds number. The outer wall of the tube consists of non-slip wall condition with a constant heat flux. The assumptions of this numerical analysis are; (1) there is a steady state analysis, (2) effective thermo-physical properties of the nanofluid are depend on the volume concentration, and (3) fluid is continuum. It is found that the dominant nanoparticle in the hybrid nanofluids strongly influences the thermal behavior of the hybrid nanofluids. It was also found that the heat transfer coefficient increases as the volume concentration of the hybrid nanoparticle increases in base fluids and the Reynolds number.
Project LOCOST: Laser or Chemical Hybrid Orbital Space Transport
NASA Technical Reports Server (NTRS)
Dixon, Alan; Kost, Alicia; Lampshire, Gregory; Larsen, Rob; Monahan, Bob; Wright, Geoff
1990-01-01
A potential mission in the late 1990s is the servicing of spacecraft assets located in GEO. The Geosynchronous Operations Support Center (GeoShack) will be supported by a space transfer vehicle based at the Space Station (SS). The vehicle will transport cargo between the SS and the GeoShack. A proposed unmanned, laser or chemical hybrid orbital space transfer vehicle (LOCOST) can be used to efficiently transfer cargo between the two orbits. A preliminary design shows that an unmanned, laser/chemical hybrid vehicle results in the fuel savings needed while still providing fast trip times. The LOCOST vehicle receives a 12 MW laser beam from one Earth orbiting, solar pumped, iodide Laser Power Station (LPS). Two Energy Relay Units (ERU) provide laser beam support during periods of line-of-sight blockage by the Earth. The baseline mission specifies a 13 day round trip transfer time. The ship's configuration consist of an optical train, one hydrogen laser engine, two chemical engines, a 18 m by 29 m box truss, a mission-flexible payload module, and propellant tanks. Overall vehicle dry mass is 8,000 kg. Outbound cargo mass is 20,000 kg, and inbound cargo mass is 6,000 kg. The baseline mission needs 93,000 kg of propellants to complete the scenario. Fully fueled, outbound mission mass is 121,000 kg. A regeneratively cooled, single plasma, laser engine design producing a maximum of 768 N of thrust is utilized along with two traditional chemical engines. The payload module is designed to hold 40,000 kg of cargo, though the baseline mission specifies less. A proposed design of a laser/chemical hybrid vehicle provides a trip time and propellant efficient means to transport cargo from the SS to a GeoShack. Its unique, hybrid propulsion system provides safety through redundancy, allows baseline missions to be efficiently executed, while still allowing for the possibility of larger cargo transfers.
Viewing hybrid systems as products of control systems and automata
NASA Technical Reports Server (NTRS)
Grossman, R. L.; Larson, R. G.
1992-01-01
The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.
Technow, Frank; Schrag, Tobias A; Schipprack, Wolfgang; Bauer, Eva; Simianer, Henner; Melchinger, Albrecht E
2014-08-01
Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill-Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker-QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in test crosses. Copyright © 2014 by the Genetics Society of America.
Scribner, Kim T.; Avise, John C.
1994-01-01
The dynamics of mitochondrial and multilocus nuclear genotypic frequencies were monitored for 2 yr in experimental populations established with equal numbers of two poeciliid fishes (Gambusia affinis and Gambusia holbrooki) that hybridize naturally in the southeastern United States. In replicated "small-pool" populations (experiment I), 1018 sampled individuals at six time periods revealed an initial flush of hybridization, followed by a rapid decline in frequencies of G. affinis nuclear and mitochondrial alleles over 64 wk. Decay of gametic and cytonuclear disequilibria differed from expectations under random mating as well as under a model of assortative mating involving empirically estimated mating propensities. In two replicate "large-pond" populations (experiment II), 841 sampled individuals across four reproductive cohorts revealed lower initial frequencies of F1 hybrids than in experiment I, but again G. holbrooki alleles achieved high frequencies over four generations (72 wk). Thus, evolution within experimental Gambusia hybrid populations can be extremely rapid, resulting in consistent loss of G. affinis nuclear and cytoplasmic alleles. Concordance in results between experiments and across genetic markers suggests strong directional selection favoring G. holbrooki genotypes. Results are interpreted in light of previous reports of genotype-specific differences in life-history traits, reproductive ecology, patterns of recruitment, and size-specific mortality, and in the context of patterns of introgression previously studied indirectly from spatial observations on cytonuclear genotypes in natural Gambusia populations.
Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach
NASA Technical Reports Server (NTRS)
Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil
2016-01-01
Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.
Transgressive Hybrids as Hopeful Monsters.
Dittrich-Reed, Dylan R; Fitzpatrick, Benjamin M
2013-06-01
The origin of novelty is a critical subject for evolutionary biologists. Early geneticists speculated about the sudden appearance of new species via special macromutations, epitomized by Goldschmidt's infamous "hopeful monster". Although these ideas were easily dismissed by the insights of the Modern Synthesis, a lingering fascination with the possibility of sudden, dramatic change has persisted. Recent work on hybridization and gene exchange suggests an underappreciated mechanism for the sudden appearance of evolutionary novelty that is entirely consistent with the principles of modern population genetics. Genetic recombination in hybrids can produce transgressive phenotypes, "monstrous" phenotypes beyond the range of parental populations. Transgressive phenotypes can be products of epistatic interactions or additive effects of multiple recombined loci. We compare several epistatic and additive models of transgressive segregation in hybrids and find that they are special cases of a general, classic quantitative genetic model. The Dobzhansky-Muller model predicts "hopeless" monsters, sterile and inviable transgressive phenotypes. The Bateson model predicts "hopeful" monsters with fitness greater than either parental population. The complementation model predicts both. Transgressive segregation after hybridization can rapidly produce novel phenotypes by recombining multiple loci simultaneously. Admixed populations will also produce many similar recombinant phenotypes at the same time, increasing the probability that recombinant "hopeful monsters" will establish true-breeding evolutionary lineages. Recombination is not the only (or even most common) process generating evolutionary novelty, but might be the most credible mechanism for sudden appearance of new forms.
NASA Astrophysics Data System (ADS)
Zhai, Chuanying; Zou, Zhuo; Zhou, Qin; Mao, Jia; Chen, Qiang; Tenhunen, Hannu; Zheng, Lirong; Xu, Lida
2017-07-01
This paper presents a 2.4-GHz radio frequency (RF) and ultra-wide bandwidth (UWB) hybrid real-time locating system (RTLS) for industrial enterprise Internet of Things (IoT). It employs asymmetric wireless link, that is, UWB radio is utilised for accurate positioning up to 10 cm in critical sites, whereas 2.4-GHz RF is used for tag control and coarse positioning in non-critical sites. The specified communication protocol and the adaptive tag synchronisation rate ensure reliable and deterministic access with a scalable system capacity and avoid unpredictable latency and additional energy consumption of retransmissions due to collisions. The tag, consisting of a commercial 2.4-GHz transceiver and a customised application-specific integrated circuit (ASIC) UWB transmitter (Tx), is able to achieve up to 3 years' battery life at 1600 tags per position update second with 1000 mAh battery in one cluster. The time difference of arrival (TDoA)-based positioning experiment at UWB radio is performed on the designed software-defined radio (SDR) platform.
Experimental and modeling uncertainties in the validation of lower hybrid current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, F. M.; Bonoli, P. T.; Chilenski, M.
Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, whichmore » is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.« less
A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering.
Hernandez, Ivan; Kumar, Alok; Joddar, Binata
2017-09-01
In this study, a hybrid system consisting of 3D printed polycaprolactone (PCL) filled with hydrogel was developed as an application for reconstruction of long bone defects, which are innately difficult to repair due to large missing segments of bone. A 3D printed gyroid scaffold of PCL allowed a larger amount of hydrogel to be loaded within the scaffolds as compared to 3D printed mesh and honeycomb scaffolds of similar volumes and strut thicknesses. The hydrogel was a mixture of alginate, gelatin, and nano-hydroxyapatite, infiltrated with human mesenchymal stem cells (hMSC) to enhance the osteoconductivity and biocompatibility of the system. Adhesion and viability of hMSC in the PCL/hydrogel system confirmed its cytocompatibility. Biomineralization tests in simulated body fluid (SBF) showed the nucleation and growth of apatite crystals, which confirmed the bioactivity of the PCL/hydrogel system. Moreover, dissolution studies, in SBF revealed a sustained dissolution of the hydrogel with time. Overall, the present study provides a new approach in bone tissue engineering to repair bone defects with a bioactive hybrid system consisting of a polymeric scaffold, hydrogel, and hMSC.
Experimental and modeling uncertainties in the validation of lower hybrid current drive
Poli, F. M.; Bonoli, P. T.; Chilenski, M.; ...
2016-07-28
Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, whichmore » is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.« less
McDaniel, Stuart F; Willis, John H; Shaw, A Jonathan
2008-07-01
Divergent populations are intrinsically reproductively isolated when hybrids between them either fail to develop properly or do not produce viable offspring. Intrinsic isolation may result from Dobzhansky-Muller (DM) incompatibilities, in which deleterious interactions among genes or gene products lead to developmental problems or underdominant chromosome structure differences between the parents. These mechanisms can be tested by studying marker segregation patterns in a hybrid mapping population. Here we examine the genetic basis of abnormal development in hybrids between two geographically distant populations of the moss Ceratodon purpureus. Approximately half of the hybrid progeny exhibited a severely reduced growth rate in early gametophyte development. We identified four unlinked quantitative trait loci (QTL) that interacted asymmetrically to cause the abnormal development phenotype. This pattern is consistent with DM interactions. We also found an excess of recombination between three marker pairs in the abnormally developing progeny, relative to that estimated in the normal progeny. This suggests that structural differences in these regions contribute to hybrid breakdown. Two QTL coincided with inferred structural differences, consistent with recent theory suggesting that rearrangements may harbor population divergence alleles. These observations suggest that multiple complex genetic factors contribute to divergence among populations of C. purpureus.
Prete, Giulia; Laeng, Bruno; Fabri, Mara; Foschi, Nicoletta; Tommasi, Luca
2015-02-01
The valence hypothesis and the right hemisphere hypothesis in emotion processing have been alternatively supported. To better disentangle the two accounts, we carried out two studies, presenting healthy participants and an anterior callosotomized patient with 'hybrid faces', stimuli created by superimposing the low spatial frequencies of an emotional face to the high spatial frequencies of the same face in a neutral expression. In both studies we asked participants to judge the friendliness level of stimuli, which is an indirect measure of the processing of emotional information, despite this remaining "invisible". In Experiment 1 we presented hybrid faces in a divided visual field paradigm using different tachistoscopic presentation times; in Experiment 2 we presented hybrid chimeric faces in canonical view and upside-down. In Experiments 3 and 4 we tested a callosotomized patient, with spared splenium, in similar paradigms as those used in Experiments 1 and 2. Results from Experiments 1 and 3 were consistent with the valence hypothesis, whereas results of Experiments 2 and 4 were consistent with the right hemisphere hypothesis. This study confirms that the low spatial frequencies of emotional faces influence the social judgments of observers, even when seen for 28 ms (Experiment 1), possibly by means of configural analysis (Experiment 2). The possible roles of the cortical and subcortical emotional routes in these tasks are discussed in the light of the results obtained in the callosotomized patient. We propose that the right hemisphere and the valence accounts are not mutually exclusive, at least in the case of subliminal emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Distributed reservation control protocols for random access broadcasting channels
NASA Technical Reports Server (NTRS)
Greene, E. P.; Ephremides, A.
1981-01-01
Attention is given to a communication network consisting of an arbitrary number of nodes which can communicate with each other via a time-division multiple access (TDMA) broadcast channel. The reported investigation is concerned with the development of efficient distributed multiple access protocols for traffic consisting primarily of single packet messages in a datagram mode of operation. The motivation for the design of the protocols came from the consideration of efficient multiple access utilization of moderate to high bandwidth (4-40 Mbit/s capacity) communication satellite channels used for the transmission of short (1000-10,000 bits) fixed length packets. Under these circumstances, the ratio of roundtrip propagation time to packet transmission time is between 100 to 10,000. It is shown how a TDMA channel can be adaptively shared by datagram traffic and constant bandwidth users such as in digital voice applications. The distributed reservation control protocols described are a hybrid between contention and reservation protocols.
Further analytical study of hybrid rocket combustion
NASA Technical Reports Server (NTRS)
Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.
1972-01-01
Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.
Angular distribution of hybridization in sputtered carbon thin film
NASA Astrophysics Data System (ADS)
Liu, Y.; Wang, H.; Wei, Z. C.
2017-08-01
The sp3/sp2 ratio of sputtered carbon thin film depends on the ion bombardment process and tailors the physical properties of carbon thin film. In present work, we report the angular distribution of hybridization in magnetron sputtered carbon thin film for the first time. By x-ray photoelectron spectra analyses, it is found that the sp3/sp2 ratio increases linearly with increasing the deposition angle from 0 to 90 degree, which could be attributed to the enhancement of direct knocking-out of near-surface target atoms. In addition, we also derive the sp3/sp2 ratio by simulation on complex permittivity in terahertz frequency using a modified percolation approximation tunneling model. Those derived data consist with the results from x-ray photoelectron spectroscopy.
Wang, Lin-Jiao; Sheng, Mao-Yin
2013-01-01
104 samples from 27 accessions belonging to 12 species of genus Epimedium were studied on the basis of cytology observation, POD (i.e., peroxide) isozyme, high performance liquid chromatography (i.e., HPLC) fingerprint, and interspecific hybridization. The cytology observation showed karyotypes of twelve species studied; all are 2A symmetry type of Stebbins standard and similar to each other, and except for karyotype of E. leptorrhizum which is 2n = 2x = 8m (2SAT) + 4sm, the rest are 2n = 2x = 6m (2SAT) + 6sm. Chromosomes C-banding of barrenwort species varies, with 15 to 22 bands, consisting of centromeric bands, intercalary bands, terminal bands, and middle satellite bands. Results of POD isozyme showed that the zymographs vary greatly and sixteen bands were detected in the eleven species, and each species has its own characteristic bands different from the others. Studies on the HPLC fingerprint showed that the HPLC fingerprint of different species has characteristic peaks, divided into two regions (retention time < 10 min and retention time > 10 min). Results of interspecific hybridization showed that crosses of any combination among seven species studied are successful and the rates of grain set vary greatly. Based on these results, the system and phylogeny of this genus were inferred.
Wang, Lin-Jiao; Sheng, Mao-Yin
2013-01-01
104 samples from 27 accessions belonging to 12 species of genus Epimedium were studied on the basis of cytology observation, POD (i.e., peroxide) isozyme, high performance liquid chromatography (i.e., HPLC) fingerprint, and interspecific hybridization. The cytology observation showed karyotypes of twelve species studied; all are 2A symmetry type of Stebbins standard and similar to each other, and except for karyotype of E. leptorrhizum which is 2n = 2x = 8m (2SAT) + 4sm, the rest are 2n = 2x = 6m (2SAT) + 6sm. Chromosomes C-banding of barrenwort species varies, with 15 to 22 bands, consisting of centromeric bands, intercalary bands, terminal bands, and middle satellite bands. Results of POD isozyme showed that the zymographs vary greatly and sixteen bands were detected in the eleven species, and each species has its own characteristic bands different from the others. Studies on the HPLC fingerprint showed that the HPLC fingerprint of different species has characteristic peaks, divided into two regions (retention time < 10 min and retention time > 10 min). Results of interspecific hybridization showed that crosses of any combination among seven species studied are successful and the rates of grain set vary greatly. Based on these results, the system and phylogeny of this genus were inferred. PMID:24349794
Hybrid wireless sensor network for rescue site monitoring after earthquake
NASA Astrophysics Data System (ADS)
Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei
2016-07-01
This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.
NASA Astrophysics Data System (ADS)
Hurtado Parra, Sebastian; Straus, Daniel; Iotov, Natasha; Fichera, Bryan; Gebhardt, Julian; Rappe, Andrew; Subotnik, Joseph; Kikkawa, James; Kagan, Cherie
Quantum and dielectric confinement effects in Ruddlesden-Popper 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling (EPC) in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures <75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly spaced resonances every 40-46 meV, consistent with EPC to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character. These assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond time scale competitive with that for PL. At temperatures >75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous at temperatures <75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences Grant DE-SC0002158 and the National Science Foundation Graduate Research Fellowship Grant DGE-1321851.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2015-07-01
A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which alsomore » implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.« less
NASA Astrophysics Data System (ADS)
Kit Luk, Chuen; Chesi, Graziano
2015-11-01
This paper addresses the estimation of the domain of attraction for discrete-time nonlinear systems where the vector field is subject to changes. First, the paper considers the case of switched systems, where the vector field is allowed to arbitrarily switch among the elements of a finite family. Second, the paper considers the case of hybrid systems, where the state space is partitioned into several regions described by polynomial inequalities, and the vector field is defined on each region independently from the other ones. In both cases, the problem consists of computing the largest sublevel set of a Lyapunov function included in the domain of attraction. An approach is proposed for solving this problem based on convex programming, which provides a guaranteed inner estimate of the sought sublevel set. The conservatism of the provided estimate can be decreased by increasing the size of the optimisation problem. Some numerical examples illustrate the proposed approach.
Pressure calculation in hybrid particle-field simulations
NASA Astrophysics Data System (ADS)
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-01
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
Lavretsky, Philip; Peters, Jeffrey L; Winker, Kevin; Bahn, Volker; Kulikova, Irina; Zhuravlev, Yuri N; Wilson, Robert E; Barger, Chris; Gurney, Kirsty; McCracken, Kevin G
2016-02-01
Estimating the frequency of hybridization is important to understand its evolutionary consequences and its effects on conservation efforts. In this study, we examined the extent of hybridization in two sister species of ducks that hybridize. We used mitochondrial control region sequences and 3589 double-digest restriction-associated DNA sequences (ddRADseq) to identify admixture between wild lesser scaup (Aythya affinis) and greater scaup (A. marila). Among 111 individuals, we found one introgressed mitochondrial DNA haplotype in lesser scaup and four in greater scaup. Likewise, based on the site-frequency spectrum from autosomal DNA, gene flow was asymmetrical, with higher rates from lesser into greater scaup. However, using ddRADseq nuclear DNA, all individuals were assigned to their respective species with >0.95 posterior assignment probability. To examine the power for detecting admixture, we simulated a breeding experiment in which empirical data were used to create F1 hybrids and nine generations (F2-F10) of backcrossing. F1 hybrids and F2, F3 and most F4 backcrosses were clearly distinguishable from pure individuals, but evidence of admixed histories was effectively lost after the fourth generation. Thus, we conclude that low interspecific assignment probabilities (0.011-0.043) for two lesser and nineteen greater scaup were consistent with admixed histories beyond the F3 generation. These results indicate that the propensity of these species to hybridize in the wild is low and largely asymmetric. When applied to species-specific cases, our approach offers powerful utility for examining concerns of hybridization in conservation efforts, especially for determining the generational time until admixed histories are effectively lost through backcrossing. © 2015 John Wiley & Sons Ltd.
Did backcrossing contribute to the origin of hybrid edible bananas?
De Langhe, Edmond; Hřibová, Eva; Carpentier, Sebastien; Doležel, Jaroslav; Swennen, Rony
2010-01-01
Background Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae. Scope On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies. PMID:20858591
Christe, Camille; Stölting, Kai N; Bresadola, Luisa; Fussi, Barbara; Heinze, Berthold; Wegmann, Daniel; Lexer, Christian
2016-06-01
Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown. © 2016 John Wiley & Sons Ltd.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Demonstration of Heavy Diesel Hybrid Fleet Vehicles
2016-03-29
Refuse 54 Hybrid Launch Assist Truck, Dump 921 Truck, Refrigerator 147 Truck, High Reach, Various 327 Crane, Wheeled, Truck Mounted 250 Truck...Types Medium Tactical Vehicle Rep. (MTVR) 9,069 Line Haul Tractor 5,013 In-Progress; Hybrid Electric System Dump Truck 776 Naval Construction...data. Card readers capture this data at the point of fueling using a specified card reader. Information improved data consistency as compared with
NASA Astrophysics Data System (ADS)
Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin
2018-06-01
This paper studies the finite-time hybrid projective synchronization of the drive-response complex networks. In the model, general transmission delays and distributed delays are also considered. By designing the adaptive intermittent controllers, the response network can achieve hybrid projective synchronization with the drive system in finite time. Based on finite-time stability theory and several differential inequalities, some simple finite-time hybrid projective synchronization criteria are derived. Two numerical examples are given to illustrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Wang, Yuanbing; Min, Jinzhong; Chen, Yaodeng; Huang, Xiang-Yu; Zeng, Mingjian; Li, Xin
2017-01-01
This study evaluates the performance of three-dimensional variational (3DVar) and a hybrid data assimilation system using time-lagged ensembles in a heavy rainfall event. The time-lagged ensembles are constructed by sampling from a moving time window of 3 h along a model trajectory, which is economical and easy to implement. The proposed hybrid data assimilation system introduces flow-dependent error covariance derived from time-lagged ensemble into variational cost function without significantly increasing computational cost. Single observation tests are performed to document characteristic of the hybrid system. The sensitivity of precipitation forecasts to ensemble covariance weight and localization scale is investigated. Additionally, the TLEn-Var is evaluated and compared to the ETKF(ensemble transformed Kalman filter)-based hybrid assimilation within a continuously cycling framework, through which new hybrid analyses are produced every 3 h over 10 days. The 24 h accumulated precipitation, moisture, wind are analyzed between 3DVar and the hybrid assimilation using time-lagged ensembles. Results show that model states and precipitation forecast skill are improved by the hybrid assimilation using time-lagged ensembles compared with 3DVar. Simulation of the precipitable water and structure of the wind are also improved. Cyclonic wind increments are generated near the rainfall center, leading to an improved precipitation forecast. This study indicates that the hybrid data assimilation using time-lagged ensembles seems like a viable alternative or supplement in the complex models for some weather service agencies that have limited computing resources to conduct large size of ensembles.
A hybrid incremental projection method for thermal-hydraulics applications
NASA Astrophysics Data System (ADS)
Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong
2016-07-01
A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.
A hybrid incremental projection method for thermal-hydraulics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.
In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less
A hybrid incremental projection method for thermal-hydraulics applications
Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; ...
2016-07-01
In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less
A formally verified algorithm for interactive consistency under a hybrid fault model
NASA Technical Reports Server (NTRS)
Lincoln, Patrick; Rushby, John
1993-01-01
Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.
Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, T.J.; Norelli, J.L.; Katz, B.H.
1990-06-01
Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two {sup 32}P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizationsmore » were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 10{sup 6} CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains.« less
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Costen, Nick; Allen, Christine
2007-01-01
This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.
Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator
NASA Astrophysics Data System (ADS)
Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan
2018-05-01
This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.
Alwee, Razana; Hj Shamsuddin, Siti Mariyam; Sallehuddin, Roselina
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models. PMID:23766729
A new class of homogeneous nucleic acid probes based on specific displacement hybridization
Li, Qingge; Luan, Guoyan; Guo, Qiuping; Liang, Jixuan
2002-01-01
We have developed a new class of probes for homogeneous nucleic acid detection based on the proposed displacement hybridization. Our probes consist of two complementary oligodeoxyribonucleotides of different length labeled with a fluorophore and a quencher in close proximity in the duplex. The probes on their own are quenched, but they become fluorescent upon displacement hybridization with the target. These probes display complete discrimination between a perfectly matched target and single nucleotide mismatch targets. A comparison of double-stranded probes with corresponding linear probes confirms that the presence of the complementary strand significantly enhances their specificity. Using four such probes labeled with different color fluorophores, each designed to recognize a different target, we have demonstrated that multiple targets can be distinguished in the same solution, even if they differ from one another by as little as a single nucleotide. Double-stranded probes were used in real-time nucleic acid amplifications as either probes or as primers. In addition to its extreme specificity and flexibility, the new class of probes is simple to design and synthesize, has low cost and high sensitivity and is accessible to a wide range of labels. This class of probes should find applications in a variety of areas wherever high specificity of nucleic acid hybridization is relevant. PMID:11788731
NASA Astrophysics Data System (ADS)
Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle
2017-10-01
Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.
Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.
Jin, Long; Chen, Jun; Zhang, Binbin; Deng, Weili; Zhang, Lei; Zhang, Haitao; Huang, Xi; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin
2016-08-23
The rapid development of Internet of Things and the related sensor technology requires sustainable power sources for their continuous operation. Scavenging and utilizing the ambient environmental energy could be a superior solution. Here, we report a self-powered helmet for emergency, which was powered by the energy converted from ambient mechanical vibration via a hybridized nanogenerator that consists of a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). Integrating with transformers and rectifiers, the hybridized nanogenerator can deliver a power density up to 167.22 W/m(3), which was demonstrated to light up 1000 commercial light-emitting diodes (LEDs) instantaneously. By wearing the developed safety helmet, equipped with rationally designed hybridized nanogenerator, the harvested vibration energy from natural human motion is also capable of powering a wireless pedometer for real-time transmitting data reporting to a personal cell phone. Without adding much extra weight to a commercial one, the developed wearing helmet can be a superior sustainable power source for explorers, engineers, mine-workers under well, as well as and disaster-relief workers, especially in remote areas. This work not only presents a significant step toward energy harvesting from human biomechanical movement, but also greatly expands the applicability of TENGs as power sources for self-sustained electronics.
Hara, Takato; Kojima, Takayuki; Matsuzaki, Hiroka; Nakamura, Takehiro; Yoshida, Eiko; Fujiwara, Yasuyuki; Yamamoto, Chika; Saito, Shinichi; Kaji, Toshiyuki
2017-02-08
Organic-inorganic hybrid molecules constitute analytical tools used in biological systems. Vascular endothelial cells synthesize and secrete proteoglycans, which are macromolecules consisting of a core protein and glycosaminoglycan side chains. Although the expression of endothelial proteoglycans is regulated by several cytokines/growth factors, there may be alternative pathways for proteoglycan synthesis aside from downstream pathways activated by these cytokines/growth factors. Here, we investigated organic-inorganic hybrid molecules to determine a variant capable of analyzing the expression of syndecan-4, a transmembrane heparan-sulfate proteoglycan, and identified 1,10-phenanthroline ( o -Phen) with or without zinc (Zn-Phen) or rhodium (Rh-Phen). Bovine aortic endothelial cells in culture were treated with these compounds, and the expression of syndecan-4 mRNA and core proteins was determined by real-time reverse transcription polymerase chain reaction and Western blot analysis, respectively. Our findings indicated that o -Phen and Zn-Phen specifically and strongly induced syndecan-4 expression in cultured vascular endothelial cells through activation of the hypoxia-inducible factor-1α/β pathway via inhibition of prolyl hydroxylase-domain-containing protein 2. These results demonstrated an alternative pathway involved in mediating induction of endothelial syndecan-4 expression and revealed organic-inorganic hybrid molecules as effective tools for analyzing biological systems.
Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi
Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.
Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.
Hwang, Wonjun; Wang, Haitao; Kim, Hyunwoo; Kee, Seok-Cheol; Kim, Junmo
2011-04-01
The authors present a robust face recognition system for large-scale data sets taken under uncontrolled illumination variations. The proposed face recognition system consists of a novel illumination-insensitive preprocessing method, a hybrid Fourier-based facial feature extraction, and a score fusion scheme. First, in the preprocessing stage, a face image is transformed into an illumination-insensitive image, called an "integral normalized gradient image," by normalizing and integrating the smoothed gradients of a facial image. Then, for feature extraction of complementary classifiers, multiple face models based upon hybrid Fourier features are applied. The hybrid Fourier features are extracted from different Fourier domains in different frequency bandwidths, and then each feature is individually classified by linear discriminant analysis. In addition, multiple face models are generated by plural normalized face images that have different eye distances. Finally, to combine scores from multiple complementary classifiers, a log likelihood ratio-based score fusion scheme is applied. The proposed system using the face recognition grand challenge (FRGC) experimental protocols is evaluated; FRGC is a large available data set. Experimental results on the FRGC version 2.0 data sets have shown that the proposed method shows an average of 81.49% verification rate on 2-D face images under various environmental variations such as illumination changes, expression changes, and time elapses.
Comparing Dislodgeable 2,4-D Residues across Athletic Field Turfgrass Species and Time
Brosnan, James T.; Breeden, Gregory K.
2016-01-01
2,4-dimethylamine salt (2,4-D) is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis) and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L.), which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time) and PM (14:00) sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied) compared to dormant hybrid bermudagrass (2.3 to 2.9%), as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%). Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure. PMID:27936174
Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun
2015-09-01
A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Li, Dongdong; Ye, Chao; Chen, Xinzhi; Wang, Suqing; Wang, Haihui
2018-04-01
The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg-1 and a power density of 9 kW kg-1 can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.
Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation
Shao, Xia; Lu, Wencong; Zhang, Rui; Pan, Feng
2013-01-01
Carbon-based TiO2 composites have many advantages as photocatalysts. However, they suffer from low light efficiency due to the low contrast of TiO2 with carbon. We synthesized a novel type of anatase-type TiO2-C hybrid aerogel by a one-pot sol-gel method, which shows a photocatalytic activity for methylene degradation up to 4.23 times that of P25, a commercial photocatalyst from Degussa Inc. The hybrid aerogels are prepared from TiCl4 and resorcinol–furfural, and have a tunable macropore size from 167 to 996 nm. They are formed of submicrometer particles that consist of interwoven anatase and carbon nanoparticles. The anatase nanoparticles have a size of 8–9 nm and a tunable oxygen vacancy from 7.2 to 18.0%. The extremely high activity is ascribed to the large light absorption caused by macropore scattering and oxygen vacancies in the anatase. These findings may open up a new avenue and stimulate further research to improve photocatalytic performance. PMID:24145581
Straus, Daniel B; Hurtado Parra, Sebastian; Iotov, Natasha; Gebhardt, Julian; Rappe, Andrew M; Subotnik, Joseph E; Kikkawa, James M; Kagan, Cherie R
2016-10-05
Quantum and dielectric confinement effects in 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures below 75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly-spaced resonances every 40-46 meV, consistent with electron-phonon coupling to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character, and these assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond timescale competitive with that for PL. At temperatures above 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous below 75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton.
Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials
Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu; ...
2017-12-01
In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa, E-mail: thg@berkeley.edu
2015-11-07
We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the coursemore » of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.« less
Spatial sorting promotes the spread of maladaptive hybridization
Lowe, Winsor H.; Muhlfeld, Clint C.; Allendorf, Fred W.
2015-01-01
Invasive hybridization is causing loss of biodiversity worldwide. The spread of such introgression can occur even when hybrids have reduced Darwinian fitness, which decreases the frequency of hybrids due to low survival or reproduction through time. This paradox can be partially explained by spatial sorting, where genotypes associated with dispersal increase in frequency at the edge of expansion, fueling further expansion and allowing invasive hybrids to increase in frequency through space rather than time. Furthermore, because all progeny of a hybrid will be hybrids (i.e., will possess genes from both parental taxa), nonnative admixture in invaded populations can increase even when most hybrid progeny do not survive. Broader understanding of spatial sorting is needed to protect native biodiversity.
2017-07-01
Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 AFRL /RVBYE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2017-0152 12. DISTRIBUTION...Belvoir, VA 22060-6218 AFRL /RVIL Kirtland AFB, NM 87117-5776 Official Record Copy AFRL /RVBYE/Dr. Raymond Bemish 1 cy Approved for public release... AFRL -RV-PS- TR-2017-0152 AFRL -RV-PS- TR-2017-0152 CONSISTENT CONTINUUM-PARTICLE MODELING OF HYPERSONIC FLOWS AND DEVELOPMENT OF HYBRID
Jin, Huaiping; Chen, Xiangguang; Yang, Jianwen; Wu, Lei; Wang, Li
2014-11-01
The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation
Bao, Yidong; Wu, Dongmei; Yan, Zhiyuan; Du, Zhijiang
2013-01-01
This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy. PMID:24339837
NASA Astrophysics Data System (ADS)
Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu
2017-10-01
A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.
Weed Control for Establishing Intensively Cultured Hybrid Poplar Plantations
Edward Hansen; Daniel Netzer; W.J. Rietveld
1984-01-01
Compares effeects of various wee-control methods, including hericides, cultivation, and legume cover crop, on tree survival and height growth of 2-year-old hybrid poplars. Cultivation and herbicides singly or in combination gave consistently better results than the other treatment tested.
NASA Astrophysics Data System (ADS)
Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin
2018-06-01
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.
Durham, Julia N; King, John W; Robinson, Quinton C; Trojan, Terry M
2017-03-01
To evaluate and compare the long-term skeletodental stability of mandibular symphyseal distraction osteogenesis (MSDO) achieved with the use of tooth-borne vs. hybrid distraction appliances. Posttreatment and follow-up orthodontic records were collected for 33 patients. The 14 patients who underwent distraction with a tooth-borne appliance had a mean follow-up of 5.08 years. The 19 patients who underwent distraction with a hybrid appliance had a mean follow-up of 6.07 years. Records included intraoral photographs, study models, postero-anterior cephalometric radiographs, and lateral cephalometric radiographs. Total changes of 16 measurements were analyzed to compare patients who underwent the tooth-borne vs. the hybrid distraction. Both groups shared several similar and significant (P < .05) changes from posttreatment to follow-up records. Cast analysis showed a decrease in intercanine width and arch length and an increase in irregularity index. The postero-anterior cephalometric radiograph showed an increase in the width of the interincisal apices. The lateral cephalometric radiograph showed a decrease in the MP-L1 angle. The only statistically significant difference between the two appliances was the intercentral incisor contact point. Changes found are consistent with those found in untreated and orthodontically treated individuals over time. The long-term changes in the current patient sample can be determined to be expected and acceptable. MSDO is a viable treatment option with the use of either a hybrid or tooth-borne appliance.
NASA Technical Reports Server (NTRS)
Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.
2018-01-01
Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid contradictions such as having to choose one sub-component to generate performance diagnostics to another, possibly not fully consistent, component.
Isolation of the human chromosomal band Xq28 within somatic cell hybrids by fragile X site breakage.
Warren, S T; Knight, S J; Peters, J F; Stayton, C L; Consalez, G G; Zhang, F P
1990-01-01
The chromosomal fragile-site mapping to Xq27.3 is associated with a frequent form of mental retardation and is prone to breakage after induced deoxyribonucleotide pool perturbation. The human hypoxanthine phosphoribosyltransferase (HPRT) and glucose-6-phosphate dehydrogenase (G6PD) genes flank the fragile X chromosome site and can be used to monitor integrity of the site in human-hamster somatic cell hybrids deficient in the rodent forms of these activities. After induction of the fragile X site, negative selection for HPRT and positive enrichment for G6PD resulted in 31 independent colonies of HPRT-,G6PD+ phenotype. Southern blot analysis demonstrated the loss of all tested markers proximal to the fragile X site with retention of all tested human Xq28 loci in a majority of the hybrids. In situ hybridization with a human-specific probe demonstrated the translocation of a small amount of human DNA to rodent chromosomes in these hybrids, suggesting chromosome breakage at the fragile X site and the subsequent translocation of Xq28. Southern blot hybridization of hybrid-cell DNA, resolved by pulsed-field gel electrophoresis, for human-specific repetitive sequences revealed abundant CpG-islands within Xq28, consistent with its known gene density. The electrophoretic banding patterns of human DNA among the hybrids were remarkably consistent, suggesting that fragile X site breakage is limited to a relatively small region in Xq27-28. These somatic cell hybrids, containing Xq27.3-qter as the sole human DNA, will aid the search for DNA associated with the fragile X site and will augment the high resolution genomic analysis of Xq28, including the identification of candidate genes for genetic-disease loci mapping to this region. Images PMID:2339126
Hardigan, Patrick C; Popovici, Ioana; Carvajal, Manuel J
2016-01-01
There is a gap between increasing demands from pharmacy journals, publishers, and reviewers for high survey response rates and the actual responses often obtained in the field by survey researchers. Presumably demands have been set high because response rates, times, and costs affect the validity and reliability of survey results. Explore the extent to which survey response rates, average response times, and economic costs are affected by conditions under which pharmacist workforce surveys are administered. A random sample of 7200 U.S. practicing pharmacists was selected. The sample was stratified by delivery method, questionnaire length, item placement, and gender of respondent for a total of 300 observations within each subgroup. A job satisfaction survey was administered during March-April 2012. Delivery method was the only classification showing significant differences in response rates and average response times. The postal mail procedure accounted for the highest response rates of completed surveys, but the email method exhibited the quickest turnaround. A hybrid approach, consisting of a combination of postal and electronic means, showed the least favorable results. Postal mail was 2.9 times more cost effective than the email approach and 4.6 times more cost effective than the hybrid approach. Researchers seeking to increase practicing pharmacists' survey participation and reduce response time and related costs can benefit from the analytical procedures tested here. Copyright © 2016 Elsevier Inc. All rights reserved.
Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Bruton, W. M.
1974-01-01
A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation.
Mobile hybrid LiDAR & infrared sensing for natural gas pipeline monitoring compendium.
DOT National Transportation Integrated Search
2016-01-01
This item consists of several documents that were created throughout the Mobile Hybrid LiDAR & Infrared Sensing for Natural Gas Pipeline Monitoring project, No. RITARS-14-H-RUT, which was conducted from January 15, 2014 to June 30, 2016. Documents in...
Hybridization of biomedical circuitry
NASA Technical Reports Server (NTRS)
Rinard, G. A.
1978-01-01
The design and fabrication of low power hybrid circuits to perform vital signs monitoring are reported. The circuits consist of: (1) clock; (2) ECG amplifier and cardiotachometer signal conditioner; (3) impedance pneumobraph and respiration rate processor; (4) hear/breath rate processor; (5) temperature monitor; and (6) LCD display.
A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks
NASA Astrophysics Data System (ADS)
Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G.; Famulok, Michael
2018-06-01
Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.
A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks.
Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G; Famulok, Michael
2018-06-01
Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.
Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy
NASA Astrophysics Data System (ADS)
Zhan, Xiaohong; Li, Yubo; Ou, Wenmin; Yu, Fengyi; Chen, Jie; Wei, Yanhong
2016-11-01
The invar36 alloy is suitable to produce mold of composite materials structure because it has similar thermal expansion coefficient with composite materials. In the present paper, the MIG welding and laser-MIG hybrid welding methods are compared to get the more appropriate method to overcome the poor weldability of invar36 alloy. According to the analysis of the experimental and simulated results, it has been proved that the Gauss and cone combined heat source model can characterize the laser-MIG hybrid welding heat source well. The total welding time of MIG welding is 8 times that of hybrid laser-MIG welding. The welding material consumption of MIG welding is about 4 times that of hybrid laser-MIG welding. The stress and deformation simulation indicate that the peak value of deformation during MIG welding is 3 times larger than that of hybrid laser-MIG welding.
Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance
NASA Astrophysics Data System (ADS)
Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.
2016-06-01
The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.
Hybrid-integrated coherent receiver using silica-based planar lightwave circuit technology
NASA Astrophysics Data System (ADS)
Kim, Jong-Hoi; Choe, Joong-Seon; Choi, Kwang-Seong; Youn, Chun-Ju; Kim, Duk-Jun; Jang, Sun-Hyok; Kwon, Yong-Hwan; Nam, Eun-Soo
2011-12-01
A hybrid-integrated coherent receiver module has been achieved using flip-chip bonding technology, consisting of a silica-based 90°-hybrid planar lightwave circuit (PLC) platform, a spot-size converter integrated waveguide photodiode (SSC-WG-PD), and a dual-channel transimpedance amplifier (TIA). The receiver module shows error-free operation up to 40Gb/s and OSNR sensitivity of 11.5 dB for BER = 10-3 at 25 Gb/s.
Matsumura, Shunichi; Kajiyama, Satoshi; Nishimura, Tatsuya; Kato, Takashi
2015-10-01
Biomineral-inspired hybrids forming helically ordered structures are developed by T. Kato and co-workers on page 5127. These helical hybrids consist of liquid-crystalline chitin and CaCO3 . They resemble the structures of crustacean cuticles such as the exoskeleton of a lobster or crayfish. These hybrids are formed through CaCO3 crystallization on the liquidcrystalline chitin templates. Polymer-stabilized amorphous CaCO3 is incorporated into the liquid-crystalline chitin templates. This approach is useful for the development of new hierarchical hybrid materials from abundant natural resources. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
do Nascimento, Cássio; Muller, Katia; Sato, Sandra; Albuquerque Junior, Rubens Ferreira
2012-04-01
Long-term sample storage can affect the intensity of the hybridization signals provided by molecular diagnostic methods that use chemiluminescent detection. The aim of this study was to evaluate the effect of different storage times on the hybridization signals of 13 bacterial species detected by the Checkerboard DNA-DNA hybridization method using whole-genomic DNA probes. Ninety-six subgingival biofilm samples were collected from 36 healthy subjects, and the intensity of hybridization signals was evaluated at 4 different time periods: (1) immediately after collecting (n = 24) and (2) after storage at -20 °C for 6 months (n = 24), (3) for 12 months (n = 24), and (4) for 24 months (n = 24). The intensity of hybridization signals obtained from groups 1 and 2 were significantly higher than in the other groups (p < 0.001). No differences were found between groups 1 and 2 (p > 0.05). The Checkerboard DNA-DNA hybridization method was suitable to detect hybridization signals from all groups evaluated, and the intensity of signals decreased significantly after long periods of sample storage.
Koevoets, T; Niehuis, O; van de Zande, L; Beukeboom, L W
2012-03-01
The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F(1) hybrid females suffer less from hybridization than haploid F(2) hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F(2) male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition.
NASA Astrophysics Data System (ADS)
Bierwage, A.; Todo, Y.
2017-11-01
The transport of fast ions in a beam-driven JT-60U tokamak plasma subject to resonant magnetohydrodynamic (MHD) mode activity is simulated using the so-called multi-phase method, where 4 ms intervals of classical Monte-Carlo simulations (without MHD) are interlaced with 1 ms intervals of hybrid simulations (with MHD). The multi-phase simulation results are compared to results obtained with continuous hybrid simulations, which were recently validated against experimental data (Bierwage et al., 2017). It is shown that the multi-phase method, in spite of causing significant overshoots in the MHD fluctuation amplitudes, accurately reproduces the frequencies and positions of the dominant resonant modes, as well as the spatial profile and velocity distribution of the fast ions, while consuming only a fraction of the computation time required by the continuous hybrid simulation. The present paper is limited to low-amplitude fluctuations consisting of a few long-wavelength modes that interact only weakly with each other. The success of this benchmark study paves the way for applying the multi-phase method to the simulation of Abrupt Large-amplitude Events (ALE), which were seen in the same JT-60U experiments but at larger time intervals. Possible implications for the construction of reduced models for fast ion transport are discussed.
Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L
2009-03-15
Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.
Pienaar, Ronel; Potgieter, Fred T; Latif, Abdalla A; Thekisoe, Oriel M M; Mans, Ben J
2011-12-01
Corridor disease is an acute, fatal disease of cattle caused by buffalo-adapted Theileria parva. This is a nationally controlled disease in South Africa and strict control measures apply for the movement of buffalo, which includes mandatory testing for the presence of T. parva and other controlled diseases. Accurate diagnosis of the T. parva carrier state in buffalo using the official real-time hybridization PCR assay (Sibeko et al. 2008), has been shown to be affected by concurrent infection with T. sp. (buffalo)-like parasites. We describe the Hybrid II assay, a real-time hybridization PCR method, which compares well with the official hybridization assay in terms of specificity and sensitivity. It is, however, not influenced by mixed infections of T. sp. (buffalo)-like parasites and is as such a significant improvement on the current hybridization assay.
Nguyen, Tuan-Anh; Nakib, Amir; Nguyen, Huy-Nam
2016-06-01
The Non-local means denoising filter has been established as gold standard for image denoising problem in general and particularly in medical imaging due to its efficiency. However, its computation time limited its applications in real world application, especially in medical imaging. In this paper, a distributed version on parallel hybrid architecture is proposed to solve the computation time problem and a new method to compute the filters' coefficients is also proposed, where we focused on the implementation and the enhancement of filters' parameters via taking the neighborhood of the current voxel more accurately into account. In terms of implementation, our key contribution consists in reducing the number of shared memory accesses. The different tests of the proposed method were performed on the brain-web database for different levels of noise. Performances and the sensitivity were quantified in terms of speedup, peak signal to noise ratio, execution time, the number of floating point operations. The obtained results demonstrate the efficiency of the proposed method. Moreover, the implementation is compared to that of other techniques, recently published in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rapid movement and instability of an invasive hybrid swarm
Glotzbecker, Gregory J.; Walters, David; Blum, Michael J.
2016-01-01
Unstable hybrid swarms that arise following the introduction of non-native species can overwhelm native congeners, yet the stability of invasive hybrid swarms has not been well documented over time. Here we examine genetic variation and clinal stability across a recently formed hybrid swarm involving native blacktail shiner (Cyprinella venusta) and non-native red shiner (C. lutrensis) in the Upper Coosa River basin, which is widely considered to be a global hotspot of aquatic biodiversity. Examination of phenotypic, multilocus genotypic, and mitochondrial haplotype variability between 2005 and 2011 revealed that the proportion of hybrids has increased over time, with more than a third of all sampled individuals exhibiting admixture in the final year of sampling. Comparisons of clines over time indicated that the hybrid swarm has been rapidly progressing upstream, but at a declining and slower pace than rates estimated from historical collection records. Clinal comparisons also showed that the hybrid swarm has been expanding and contracting over time. Additionally, we documented the presence of red shiner and hybrids farther downstream than prior studies have detected, which suggests that congeners in the Coosa River basin, including all remaining populations of the threatened blue shiner (Cyprinella caerulea), are at greater risk than previously thought.
Whiley, David M; Jacob, Kevin; Nakos, Jennifer; Bletchly, Cheryl; Nimmo, Graeme R; Nissen, Michael D; Sloots, Theo P
2012-06-01
Numerous real-time PCR assays have been described for detection of the influenza A H275Y alteration. However, the performance of these methods can be undermined by sequence variation in the regions flanking the codon of interest. This is a problem encountered more broadly in microbial diagnostics. In this study, we developed a modification of hybridization probe-based melting curve analysis, whereby primers are used to mask proximal mutations in the sequence targets of hybridization probes, so as to limit the potential for sequence variation to interfere with typing. The approach was applied to the H275Y alteration of the influenza A (H1N1) 2009 strain, as well as a Neisseria gonorrhoeae mutation associated with antimicrobial resistance. Assay performances were assessed using influenza A and N. gonorrhoeae strains characterized by DNA sequencing. The modified hybridization probe-based approach proved successful in limiting the effects of proximal mutations, with the results of melting curve analyses being 100% consistent with the results of DNA sequencing for all influenza A and N. gonorrhoeae strains tested. Notably, these included influenza A and N. gonorrhoeae strains exhibiting additional mutations in hybridization probe targets. Of particular interest was that the H275Y assay correctly typed influenza A strains harbouring a T822C nucleotide substitution, previously shown to interfere with H275Y typing methods. Overall our modified hybridization probe-based approach provides a simple means of circumventing problems caused by sequence variation, and offers improved detection of the influenza A H275Y alteration and potentially other resistance mechanisms.
2004-12-01
Jones interaction potential is included45 better results are obtained but this method at times overestimates cross-sections in the intermediate 1500 to...utilized to generate sodiated [(PMA)Cp7T8]xNa+ ions, and their collision cross-sections were measured in helium using ion mobility based methods...were measured in helium using ion mobility based methods. Results for x = 1, 2, and 3 were consistent with only one conformer occurring for the Na+1
Fault-tolerant clock synchronization in distributed systems
NASA Technical Reports Server (NTRS)
Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.
1990-01-01
Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.
Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter
2017-12-06
Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.
A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories.
Ramaswami, Anu; Hillman, Tim; Janson, Bruce; Reiner, Mark; Thomas, Gregg
2008-09-01
Greenhouse gas (GHG) accounting for individual cities is confounded by spatial scale and boundary effects that impact the allocation of regional material and energy flows. This paper develops a demand-centered, hybrid life-cycle-based methodology for conducting city-scale GHG inventories that incorporates (1) spatial allocation of surface and airline travel across colocated cities in larger metropolitan regions, and, (2) life-cycle assessment (LCA) to quantify the embodied energy of key urban materials--food, water, fuel, and concrete. The hybrid methodology enables cities to separately report the GHG impact associated with direct end-use of energy by cities (consistent with EPA and IPCC methods), as well as the impact of extra-boundary activities such as air travel and production of key urban materials (consistent with Scope 3 protocols recommended by the World Resources Institute). Application of this hybrid methodology to Denver, Colorado, yielded a more holistic GHG inventory that approaches a GHG footprint computation, with consistency of inclusions across spatial scale as well as convergence of city-scale per capita GHG emissions (approximately 25 mt CO2e/person/year) with state and national data. The method is shown to have significant policy impacts, and also demonstrates the utility of benchmarks in understanding energy use in various city sectors.
Methodological comparison on hybrid nano organic solar cell fabrication
NASA Astrophysics Data System (ADS)
Vairavan, Rajendaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad
2018-02-01
The development of low cost solar cells has been the main focus in recent years. This has lead to the generation of photovoltaic cells based on hybrid of nanoparticle-organic polymer materials. This type of hybrid photovoltaic cells can overcome the problem of polymeric devices having low optical absorption and carrier mobilities. The hybrid cell has the potential of bridging the efficiency gap, which in present in organic and inorganic semiconductor materials. This project focuses on obtaining an hybrid active layer consisting of nanoparticles and organic polymer, to understand the parameter involved in obtaining this active layer and finally to investigate if the addition of nano particles in to the active layer could enhance the output of the hybrid solar cell. The hybrid active layer have will be deposited using the spin coating technique by using CdTe, CdS nano particles mixed with poly (2-methoxy,5-(2-ethyl-hexyloxy)-p-phenylvinylene)MEH-PPV.
Local adaptation within a hybrid species
Eroukhmanoff, F; Hermansen, J S; Bailey, R I; Sæther, S A; Sætre, G-P
2013-01-01
Ecological divergence among populations may be strongly influenced by their genetic background. For instance, genetic admixture through introgressive hybridization or hybrid speciation is likely to affect the genetic variation and evolvability of phenotypic traits. We studied geographic variation in two beak dimensions and three other phenotypic traits of the Italian sparrow (Passer italiae), a young hybrid species formed through interbreeding between house sparrows (P. domesticus) and Spanish sparrows (P. hispaniolensis). We found that beak morphology was strongly influenced by precipitation regimes and that it appeared to be the target of divergent selection within Italian sparrows. Interestingly, however, the degree of parental genetic contribution in the hybrid species had no effect on phenotypic beak variation. Moreover, beak height divergence may mediate genetic differentiation between populations, consistent with isolation-by-adaptation within this hybrid species. The study illustrates how hybrid species may be relatively unconstrained by their admixed genetic background, allowing them to adapt rapidly to environmental variation. PMID:23695379
Preliminary investigation of crack arrest in composite laminates containing buffer strips
NASA Technical Reports Server (NTRS)
Goree, J. G.
1978-01-01
The mechanical properties of some hybrid buffer strip laminates and the crack arrest potential of laminates containing buffer strips were determined. The hybrid laminates consisted of graphite with either S-glass, E-glass, or Kevlar. Unnotched tensile coupons and center-cracked fracture coupons were tested. Elastic properties, complete stress/strain curves, and critical stress intensity values are given. The measured elastic properties compare well with those calculated by classical lamination theory for laminates with linear stress/strain behavior. The glass hybrids had more delamination and higher fracture toughness than the all-graphite or the Kevlar hybrid.
Damping of lower hybrid waves by low-frequency drift waves
NASA Astrophysics Data System (ADS)
Krall, Nicholas A.
1989-11-01
The conditions under which a spectrum of lower hybrid drift waves will decay into low-frequency drift waves (LFD) are calculated. The purpose is to help understand why lower hybrid drift waves are not seen in all field-reversed configuration (FRC) experiments in which they are predicted. It is concluded that if there is in the plasma a LFD wave amplitude above a critical level, lower hybrid waves will decay into low-frequency drift waves. The critical level required to stabilize TRX-2 [Phys. Fluids 30, 1497 (1987)] is calculated and found to be reasonably consistent with theoretical estimates.
Late-stage divergent synthesis and antifouling activity of geraniol-butenolide hybrid molecules.
Takamura, Hiroyoshi; Ohashi, Takumi; Kikuchi, Takahiro; Endo, Noriyuki; Fukuda, Yuji; Kadota, Isao
2017-07-05
Hybrid molecules consisting of geraniol and butenolide were designed and synthesized by the late-stage divergent strategy. In the synthetic route, ring-closing metathesis was utilized for the construction of a butenolide moiety. A biological evaluation of the eight synthetic hybrid compounds revealed that these molecules exhibit antifouling activity against the cypris larvae of the barnacle Balanus (Amphibalanus) amphitrite with EC 50 values of 0.30-1.31 μg mL -1 . These results show that hybridization of the geraniol and butenolide structural motifs resulted in the enhancement of the antifouling activity.
NASA Astrophysics Data System (ADS)
Rozyanty, A. R.; Mohammed, M. M.; Musa, L.; Shahnaz, S. B. S.; Zuliahani, A.
2017-04-01
Kenaf and glass fiber hybrid composite was prepared by using hand lay-up process. The effect of weather on mechanical properties of kenaf/glass fiber hybrid composites was studied. The hybrid composite samples were exposed to natural weather. Tensile test was performed for samples at different weathering exposure time. Tensile strength of kenaf/glass fiber hybrid composite was 70.9 MPa and tensile modulus was at 30 GPa before expose to environment weather. Unfortunately, mechanical properties of hybrid composite decreased as exposure time increase due to the moisture absorption which further promotes weakness in interfacial bonding.
Booth, Richard G; Scerbo, Christina Ko; Sinclair, Barbara; Hancock, Michele; Reid, David; Denomy, Eileen
2017-04-01
Little research has been completed exploring knowledge development and transfer from and between simulated and clinical practice settings in nurse education. This study sought to explore the content learned, and the knowledge transferred, in a hybrid mental health clinical course consisting of simulated and clinical setting experiences. A qualitative, interpretive descriptive study design. Clinical practice consisted of six 10-hour shifts in a clinical setting combined with six two-hour simulations. 12 baccalaureate nursing students enrolled in a compressed time frame program at a large, urban, Canadian university participated. Document analysis and a focus group were used to draw thematic representations of content and knowledge transfer between clinical environments (i.e., simulated and clinical settings) using the constant comparative data analysis technique. Four major themes arose: (a) professional nursing behaviors; (b) understanding of the mental health nursing role; (c) confidence gained in interview skills; and, (d) unexpected learning. Nurse educators should further explore the intermingling of simulation and clinical practice in terms of knowledge development and transfer with the goal of preparing students to function within the mental health nursing specialty. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spawning and fertility of F1 hybrids of the coral genus Acropora in the Indo-Pacific
NASA Astrophysics Data System (ADS)
Isomura, Naoko; Iwao, Kenji; Morita, Masaya; Fukami, Hironobu
2016-09-01
The role of hybridization through multi-specific synchronous spawning in the evolution of reef-building corals has been discussed since the 1990s, particularly for the genus Acropora. However, F1 hybrids have been reported as common in only one case in the Caribbean, with no evidence of mechanisms that would allow continuous reproduction of the hybrids. In this study, we report for the first time the fecundity of two F1 hybrid colonies produced experimentally from two Indo-Pacific species, A. intermedia and A. florida. These F1 hybrids spawned at the same time as the parental corals. Backcrossing and F1 hybrid crossing were successful in both directions. Furthermore, more than 90% self-fertilization was achieved in an F1 hybrid, although it was negligible in the parental corals. While it is possible that the F1 hybrid was a chimera, these results suggest that some products of interspecific hybridization may persist as the offspring of self-fertilizing F1 hybrids.
McBride, Carolyn S.; Singer, Michael C.
2010-01-01
Gene flow between populations that are adapting to distinct environments may be restricted if hybrids inherit maladaptive, intermediate phenotypes. This phenomenon, called extrinsic postzygotic isolation (EPI), is thought to play a critical role in the early stages of speciation. However, despite its intuitive appeal, we know surprisingly little about the strength and prevalence of EPI in nature, and even less about the specific phenotypes that tend to cause problems for hybrids. In this study, we searched for EPI among allopatric populations of the butterfly Euphydryas editha that have specialized on alternative host plants. These populations recall a situation thought typical of the very early stages of speciation. They lack consistent host-associated genetic differentiation at random nuclear loci and show no signs of reproductive incompatibility in the laboratory. However, they do differ consistently in diverse host-related traits. For each of these traits, we first asked whether hybrids between populations that use different hosts (different-host hybrids) were intermediate to parental populations and to hybrids between populations that use the same host (same-host hybrids). We then conducted field experiments to estimate the effects of intermediacy on fitness in nature. Our results revealed strong EPI under field conditions. Different-host hybrids exhibited an array of intermediate traits that were significantly maladaptive, including four behaviors. Intermediate foraging height slowed the growth of larvae, while intermediate oviposition preference, oviposition site height, and clutch size severely reduced the growth and survival of the offspring of adult females. We used our empirical data to construct a fitness surface on which different-host hybrids can be seen to fall in an adaptive valley between two peaks occupied by same-host hybrids. These findings demonstrate how ecological selection against hybrids can create a strong barrier to gene flow at the early stages of adaptive divergence. PMID:21048982
3D track reconstruction capability of a silicon hybrid active pixel detector
NASA Astrophysics Data System (ADS)
Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan
2017-06-01
Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.
Beresford, Nicholas A.; Crout, Neil M. J.; Lovatt, J. Alan; Thomson, Russell; Broadley, Martin R.
2017-01-01
Substitution of a species or cultivar with higher uptake of an element by one with lower uptake has been proposed as a remediation strategy following accidental releases of radioactivity. However, despite the importance of pasture systems for radiological dose, species/cultivar substitution has not been thoroughly investigated for forage grasses. 397 cultivars from four forage grass species; hybrid ryegrass (Lolium perenne L. x Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), Italian ryegrass (Lolium multiflorum Lam.) and tall fescue (Festuca arundinacea Shreb.); were sampled from 19 field-based breeding experiments in Aberystwyth and Edinburgh (UK) in spring 2013 and analysed for caesium (Cs) and strontium (Sr) concentrations. In order to calculate concentration ratios (CRs; the concentration of an element in a plant in relation to the concentration in the soil), soils from the experiments were also analysed to calculate extractable concentrations of Cs and Sr. To test if cultivars have consistently low Cs and Sr concentration ratios, 17 hybrid ryegrass cultivars were sampled from both sites again in summer 2013 and spring and summer 2014. Tall fescue cultivars had lower Cs and Sr CRs than the other species. Three of the selected 17 hybrid ryegrass cultivars had consistently low Cs CRs, two had consistently low Sr CRs and one had consistently low Cs and Sr CRs. Cultivar substitution could reduce Cs CRs by up to 14-fold and Sr CRs by 4-fold in hybrid ryegrass. The identification of species and cultivars with consistently low CRs suggests that species or cultivar substitution could be an effective remediation strategy for contaminated areas. PMID:28459808
Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya
2018-02-07
Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.
The genomic mosaicism of hybrid speciation
Elgvin, Tore O.; Trier, Cassandra N.; Tørresen, Ole K.; Hagen, Ingerid J.; Lien, Sigbjørn; Nederbragt, Alexander J.; Ravinet, Mark; Jensen, Henrik; Sætre, Glenn-Peter
2017-01-01
Hybridization is widespread in nature and, in some instances, can result in the formation of a new hybrid species. We investigate the genetic foundation of this poorly understood process through whole-genome analysis of the hybrid Italian sparrow and its progenitors. We find overall balanced yet heterogeneous levels of contribution from each parent species throughout the hybrid genome and identify areas of novel divergence in the hybrid species exhibiting signals consistent with balancing selection. High-divergence areas are disproportionately located on the Z chromosome and overrepresented in gene networks relating to key traits separating the focal species, which are likely involved in reproductive barriers and/or species-specific adaptations. Of special interest are genes and functional groups known to affect body patterning, beak morphology, and the immune system, which are important features of diversification and fitness. We show that a combination of mosaic parental inheritance and novel divergence within the hybrid lineage has facilitated the origin and maintenance of an avian hybrid species. PMID:28630911
What controls the hybridization thermodynamics of spherical nucleic acids?
Randeria, Pratik S; Jones, Matthew R; Kohlstedt, Kevin L; Banga, Resham J; Olvera de la Cruz, Monica; Schatz, George C; Mirkin, Chad A
2015-03-18
The hybridization of free oligonucleotides to densely packed, oriented arrays of DNA modifying the surfaces of spherical nucleic acid (SNA)-gold nanoparticle conjugates occurs with negative cooperativity; i.e., each binding event destabilizes subsequent binding events. DNA hybridization is thus an ever-changing function of the number of strands already hybridized to the particle. Thermodynamic quantification of this behavior reveals a 3 orders of magnitude decrease in the binding constant for the capture of a free oligonucleotide by an SNA conjugate as the fraction of pre-hybridized strands increases from 0 to ∼30%. Increasing the number of pre-hybridized strands imparts an increasing enthalpic penalty to hybridization that makes binding more difficult, while simultaneously decreasing the entropic penalty to hybridization, which makes binding more favorable. Hybridization of free DNA to an SNA is thus governed by both an electrostatic barrier as the SNA accumulates charge with additional binding events and an effect consistent with allostery, where hybridization at certain sites on an SNA modify the binding affinity at a distal site through conformational changes to the remaining single strands. Leveraging these insights allows for the design of conjugates that hybridize free strands with significantly higher efficiencies, some of which approach 100%.
Sales, C; Cervera, M I; Gil, R; Portolés, T; Pitarch, E; Beltran, J
2017-02-01
The novel atmospheric pressure chemical ionization (APCI) source has been used in combination with gas chromatography (GC) coupled to hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) for determination of volatile components of olive oil, enhancing its potential for classification of olive oil samples according to their quality using a metabolomics-based approach. The full-spectrum acquisition has allowed the detection of volatile organic compounds (VOCs) in olive oil samples, including Extra Virgin, Virgin and Lampante qualities. A dynamic headspace extraction with cartridge solvent elution was applied. The metabolomics strategy consisted of three different steps: a full mass spectral alignment of GC-MS data using MzMine 2.0, a multivariate analysis using Ez-Info and the creation of the statistical model with combinations of responses for molecular fragments. The model was finally validated using blind samples, obtaining an accuracy in oil classification of 70%, taking the official established method, "PANEL TEST", as reference. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Novel Framework for Medical Web Information Foraging Using Hybrid ACO and Tabu Search.
Drias, Yassine; Kechid, Samir; Pasi, Gabriella
2016-01-01
We present in this paper a novel approach based on multi-agent technology for Web information foraging. We proposed for this purpose an architecture in which we distinguish two important phases. The first one is a learning process for localizing the most relevant pages that might interest the user. This is performed on a fixed instance of the Web. The second takes into account the openness and dynamicity of the Web. It consists on an incremental learning starting from the result of the first phase and reshaping the outcomes taking into account the changes that undergoes the Web. The system was implemented using a colony of artificial ants hybridized with tabu search in order to achieve more effectiveness and efficiency. To validate our proposal, experiments were conducted on MedlinePlus, a real website dedicated for research in the domain of Health in contrast to other previous works where experiments were performed on web logs datasets. The main results are promising either for those related to strong Web regularities and for the response time, which is very short and hence complies the real time constraint.
An evaluation of the hybrid car technology for the Mexico Mega City
NASA Astrophysics Data System (ADS)
Jazcilevich, Aron D.; Reynoso, Agustin Garcia; Grutter, Michel; Delgado, Javier; Ayala, Ulises Diego; Lastra, Manuel Suarez; Zuk, Miriam; Oropeza, Rogelio Gonzalez; Lents, Jim; Davis, Nicole
The introduction of hybrid electric vehicle (HEV) technology in the private car fleet of Mexico City is evaluated in terms of private costs, energy, public health and CO 2 emission benefits. In addition to constructing plausible scenarios for urban expansion, emission, car fleet, and fuel consumption for year 2026 and comparing them with a 2004 base case, a time series is built to obtain accumulated economic benefits. Experimental techniques were used to build a vehicle library for a car simulator that included a Prius 2002, chosen as the HEV technology representative for this work. The simulator is used to estimate the emissions and fuel consumption of the car fleet scenarios. In the context of an urban scenario for year 2026, a complex air quality model obtains the concentrations of criterion pollutants corresponding to these scenarios. Using a technology penetration model, the hybridized fleet starts unfolding in year 2009 reaching to 20% in 2026. In this year, the hybridized fleet resulted in reductions of about 10% of CO 2 emissions, and yielded reductions in daytime mean concentrations of up to 7% in ozone and 3.4% in PM 2.5 compared to the 2004 base case. These reductions are concentrated in the densely populated areas of Mexico City. By building a time series of costs and benefits it is shown that, depending on fuel prices and using a 5% return rate, positive accumulated benefits (CO 2 benefits + energy benefits + public health benefits - private costs) will start generating in year 2015 reaching between 2.8 and 4.5 billion US Dlls in 2026. Another modernized private fleet consisting exclusively of Tier I and II cars did not yield appreciable results, signaling that a change in private car technology towards HEV's is needed to obtain significant accumulated benefits.
Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites
Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas
2010-01-01
In recent years, a new type of nanocomposite â cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...
USDA-ARS?s Scientific Manuscript database
Plant breeding consists of creating phenotypic and genetic diversity by hybridizing diverse parents and selecting progeny which have new combinations of targeted traits. Soybean [Glycine max (L.) Merr.] genetic diversity is limited because domesticated soybean has undergone multiple genetic bottlene...
Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources
USDA-ARS?s Scientific Manuscript database
Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...
DOT National Transportation Integrated Search
2017-10-01
The hybrid composite beam (HCB) technology has been presented as a system for short and medium span beam bridges as an alternative to traditional materials such as concrete and steel. An HCB consists of a concrete tied arch encased in a fiber reinfor...
Creating Hybrid Border Spaces in the Classroom through Video Production
ERIC Educational Resources Information Center
Cronje, Franci
2010-01-01
This article explores emerging patterns of communication within a multicultural school environment. South Africa consists various and different identities all sharing overlapping living spaces. Diverse cultural identities exist in public spaces, and family units are in many cases so hybrid that very few adolescents can define themselves as…
Multistage Security Mechanism For Hybrid, Large-Scale Wireless Sensor Networks
2007-06-01
sensor network . Building on research in the areas of the wireless sensor networks (WSN) and the mobile ad hoc networks (MANET), this thesis proposes an...A wide area network consisting of ballistic missile defense satellites and terrestrial nodes can be viewed as a hybrid, large-scale mobile wireless
A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities
Liu, Fei; Li, Fang; Nordin, Anis Nurashikin; Voiculescu, Ioana
2013-01-01
A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35∼45 minutes for 1.5 × 104 cells/cm2 BAECs; 60 minutes for 2.0 × 104 cells/cm2 BAECs; 70 minutes for 3.0 × 104 cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection. PMID:23459387
Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.
Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L
2016-03-15
Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes.
Patterns of Reproductive Isolation in Eucalyptus-A Phylogenetic Perspective.
Larcombe, Matthew J; Holland, Barbara; Steane, Dorothy A; Jones, Rebecca C; Nicolle, Dean; Vaillancourt, René E; Potts, Brad M
2015-07-01
We assess phylogenetic patterns of hybridization in the speciose, ecologically and economically important genus Eucalyptus, in order to better understand the evolution of reproductive isolation. Eucalyptus globulus pollen was applied to 99 eucalypt species, mainly from the large commercially important subgenus, Symphyomyrtus. In the 64 species that produce seeds, hybrid compatibility was assessed at two stages, hybrid-production (at approximately 1 month) and hybrid-survival (at 9 months), and compared with phylogenies based on 8,350 genome-wide DArT (diversity arrays technology) markers. Model fitting was used to assess the relationship between compatibility and genetic distance, and whether or not the strength of incompatibility "snowballs" with divergence. There was a decline in compatibility with increasing genetic distance between species. Hybridization was common within two closely related clades (one including E. globulus), but rare between E. globulus and species in two phylogenetically distant clades. Of three alternative models tested (linear, slowdown, and snowball), we found consistent support for a snowball model, indicating that the strength of incompatibility accelerates relative to genetic distance. Although we can only speculate about the genetic basis of this pattern, it is consistent with a Dobzhansky-Muller-model prediction that incompatibilities should snowball with divergence due to negative epistasis. Different rates of compatibility decline in the hybrid-production and hybrid-survival measures suggest that early-acting postmating barriers developed first and are stronger than later-acting barriers. We estimated that complete reproductive isolation can take up to 21-31 My in Eucalyptus. Practical implications for hybrid eucalypt breeding and genetic risk assessment in Australia are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Jentink, Thomas Neil; Usab, William J., Jr.
1990-01-01
An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.
Hybrid sp2+sp3 carbon phases created from carbon nanotubes
NASA Astrophysics Data System (ADS)
Tingaev, M. I.; Belenkov, E. A.
2017-11-01
Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.
NASA Astrophysics Data System (ADS)
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-01
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
The ePLAS code for Ignition Studies
NASA Astrophysics Data System (ADS)
Faehl, R. J.; Mason, R. J.; Kirkpatrick, R. C.
2012-10-01
The ePLAS code is a multi-fluid/PIC hybrid developing self-consistent E & B-fields by the Implicit Moment Method for stable calculations of high density plasma problems with voids on the electron Courant time scale. See: http://www.researchapplicationscorp.com. Here, we outline typical applications to: 1) short pulse driven electron transport along void (or high Z) insulated wires, and 2) the 2D development of shock ignition pressure peaks with B-fields. We outline the code's recent inclusion of SESAME EOS data, a DT/DD burn capability, a new option for K-alpha imaging of modeling output, and demonstrate a foil expansion tracked with either fluid or particle ions. Also, we describe a new super-hybrid extension of our implicit solver that permits full target dynamics studies on the ion Courant scale. Finally, we will touch on the very recent application of ePLAS to possible non-local/kinetic hydro effects NIF capsules.
Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2014-01-01
A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-27
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
NASA Astrophysics Data System (ADS)
Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian
2017-10-01
Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.
Time-implicit fluid/particle hybrid simulations of the anode plasma dynamics in ion diodes
NASA Astrophysics Data System (ADS)
Pointon, T. D.; Boine-Frankenheim, O.; Mehlhorn, T. A.
1997-04-01
Applied-B ion diode experiments with Li+1 ion sources on the PBFA II and SABRE ion accelerators show that early in the pulse the beam is essentially pure Li+1, but is rapidly overwhelmed by impurity ions, called the `parasitic load'. Furthermore, the increasing parasitic current rapidly drops the diode voltage, limiting the accelerator power that can be coupled into the beam. This `impedance collapse' is believed to arise from the desorption of impurity neutrals from the anode surface. These neutrals charge-exchange with the ions, rapidly expanding into the anode-cathode gap where they are ionized by beam ions or secondary electrons. In order to model these processes we are developing a 1 1/2 D electrostatic multifluid/PIC (hybrid) code, designed to self-consistently simulate collisional plasma/neutral systems with an arbitrary number of interacting species, over greatly varying density regimes and together with applied electric and magnetic fields.
The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model
NASA Astrophysics Data System (ADS)
Wu, Jinshui; Wang, Zhenguo; Bai, Xuesong; Sun, Mingbo; Wang, Hongbo
2016-10-01
In order to describe partially premixed supersonic combustion numerically, G/Z flamelet model is developed and compared with finite rate model in hybrid RANS/LES simulation to study the strut-injection supersonic combustion flow field designed by the German Aerospace Center. A new temperature calculation method based on time-splitting method of total energy is introduced in G/Z flamelet model. Simulation results show that temperature predictions in partially premixed zone by G/Z flamelet model are more consistent with experiment than finite rate model. It is worth mentioning that low temperature reaction zone behind the strut is well reproduced. Other quantities such as average velocity and average velocity fluctuation obtained by developed G/Z flamelet model are also in good agreement with experiment. Besides, simulation results by G/Z flamelet also reveal the mechanism of partially premixed supersonic combustion by the analyses of the interaction between turbulent burning velocity and flow field.
Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots
Park, Hun; Hyun Noh, Sung; Hye Lee, Ji; Jun Lee, Won; Yun Jaung, Jae; Geol Lee, Seung; Hee Han, Tae
2015-01-01
Graphene oxide (GO), which is an oxidized form of graphene, has a mixed structure consisting of graphitic crystallites of sp2 hybridized carbon and amorphous regions. In this work, we present a straightforward route for preparing graphene-based quantum dots (GQDs) by extraction of the crystallites from the amorphous matrix of the GO sheets. GQDs with controlled functionality are readily prepared by varying the reaction temperature, which results in precise tunability of their optical properties. Here, it was concluded that the tunable optical properties of GQDs are a result of the different fraction of chemical functionalities present. The synthesis approach presented in this paper provides an efficient strategy for achieving large-scale production and long-time optical stability of the GQDs, and the hybrid assembly of GQD and polymer has potential applications as photoluminescent fibers or films. PMID:26383257
NASA Technical Reports Server (NTRS)
Goldberg, Ben E.; Wiley, Dan R.
1991-01-01
An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.
Probabilistic inference using linear Gaussian importance sampling for hybrid Bayesian networks
NASA Astrophysics Data System (ADS)
Sun, Wei; Chang, K. C.
2005-05-01
Probabilistic inference for Bayesian networks is in general NP-hard using either exact algorithms or approximate methods. However, for very complex networks, only the approximate methods such as stochastic sampling could be used to provide a solution given any time constraint. There are several simulation methods currently available. They include logic sampling (the first proposed stochastic method for Bayesian networks, the likelihood weighting algorithm) the most commonly used simulation method because of its simplicity and efficiency, the Markov blanket scoring method, and the importance sampling algorithm. In this paper, we first briefly review and compare these available simulation methods, then we propose an improved importance sampling algorithm called linear Gaussian importance sampling algorithm for general hybrid model (LGIS). LGIS is aimed for hybrid Bayesian networks consisting of both discrete and continuous random variables with arbitrary distributions. It uses linear function and Gaussian additive noise to approximate the true conditional probability distribution for continuous variable given both its parents and evidence in a Bayesian network. One of the most important features of the newly developed method is that it can adaptively learn the optimal important function from the previous samples. We test the inference performance of LGIS using a 16-node linear Gaussian model and a 6-node general hybrid model. The performance comparison with other well-known methods such as Junction tree (JT) and likelihood weighting (LW) shows that LGIS-GHM is very promising.
García-González, Iván; Mata, Lara; Corzana, Francisco; Jiménez-Osés, Gonzalo; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M
2015-01-12
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α-amino acid attached to a quaternary glyco-β-amino acid. In particular, we combined a S-glycosylated β(2,2)-amino acid and two different types of α-amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β-dipeptides. The key step in the synthesis involved the ring-opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur-containing nucleophile by using 1-thio-β-D-glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time-averaged restraints (MD-tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β-amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α-amino acids due to the presence of CH-π interactions between the phenyl or indole ring and the methyl groups of the β-amino acid unit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybridization regulated metal penetration at transition metal-organic semiconductor contacts
NASA Astrophysics Data System (ADS)
Chuang, Tzu-Hung; Lu, Kun-Ta; Lu, Chun-I.; Hsu, Yao-Jane; Wei, Der-Hsin
2018-02-01
Metal-organic contacts are keys to define the functionalities of hybrid structures, but orbital hybridization at interfaces has made rationalizing their behavior a challenging task. Here, we examined Fe/C60 and Ni/C60 bilayers with X-ray absorption spectra to study the nature of orbital hybridization and the possible correlation with metal penetration. Depositing Fe or Ni on C60 films of sub-nanometer thickness to emulate interfaces, we found that both bilayers show evidence of not only d-π hybridization and metal penetration but also a deeper Ni penetration. The carbon K-edge spectra recorded from C60 films indicate that the deeper Ni penetration is accompanied by a larger donation of electrons from Ni to C60. This finding of hybridization-modulated metal penetration is somewhat counterintuitive but is consistent with a scenario of metal-C60 hybridization competing with metal-metal aggregation. A stronger Ni-C60 hybridization could result in smaller Ni clusters and a greater probability of penetration through the interstitial space between C60 molecules. We conclude that metal penetration can be regulated with orbital hybridization between metal and C60.
NASA Astrophysics Data System (ADS)
Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken
2018-04-01
In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.
Muhlfeld, C.C.; McMahon, T.E.; Belcer, D.; Kershner, J.L.
2009-01-01
We used radiotelemetry to assess spatial and temporal spawning distributions of native westslope cutthroat trout (Oncorhynchus clarkii lewisi; WCT), introduced rainbow trout (Oncorhynchus mykiss; RBT), and their hybrids in the upper Flathead River system, Montana (USA) and British Columbia (Canada), from 2000 to 2007. Radio-tagged trout (N = 125) moved upriver towards spawning sites as flows increased during spring runoff and spawned in 29 tributaries. WCT migrated greater distances and spawned in headwater streams during peak flows and as flows declined, whereas RBT and RBT hybrids (backcrosses to RBT) spawned earlier during increasing flows and lower in the system. WCT hybrids (backcrosses to WCT) spawned intermediately in time and space to WCT and RBT and RBT hybrids. Both hybrid groups and RBT, however, spawned over time periods that produced temporal overlap with spawning WCT in most years. Our data indicate that hybridization is spreading via long-distance movements of individuals with high amounts of RBT admixture into WCT streams and stepping-stone invasion at small scales by later generation backcrosses. This study provides evidence that hybridization increases the likelihood of reproductive overlap in time and space, promoting extinction by introgression, and that the spread of hybridization is likely to continue if hybrid source populations are not reduced or eliminated.
Shi, Wanju; Li, Xiang; Schmidt, Ralf C; Struik, Paul C; Yin, Xinyou; Jagadish, S V Krishna
2018-01-15
High-temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day-time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high-night-time-temperature treatments. The day-time temperature played a dominant role in determining spikelet fertility compared with the night-time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high-yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high-temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early-morning flowering as a promising trait for mitigating HDT stress impact at flowering. © 2018 John Wiley & Sons Ltd.
Koevoets, T; Niehuis, O; van de Zande, L; Beukeboom, L W
2012-01-01
The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F1 hybrid females suffer less from hybridization than haploid F2 hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F2 male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition. PMID:21878985
Hybrid incompatibilities are affected by dominance and dosage in the haplodiploid wasp Nasonia
Beukeboom, Leo W.; Koevoets, Tosca; Morales, Hernán E.; Ferber, Steven; van de Zande, Louis
2015-01-01
Study of genome incompatibilities in species hybrids is important for understanding the genetic basis of reproductive isolation and speciation. According to Haldane's rule hybridization affects the heterogametic sex more than the homogametic sex. Several theories have been proposed that attribute asymmetry in hybridization effects to either phenotype (sex) or genotype (heterogamety). Here we investigate the genetic basis of hybrid genome incompatibility in the haplodiploid wasp Nasonia using the powerful features of haploid males and sex reversal. We separately investigate the effects of heterozygosity (ploidy level) and sex by generating sex reversed diploid hybrid males and comparing them to genotypically similar haploid hybrid males and diploid hybrid females. Hybrid effects of sterility were more pronounced than of inviability, and were particularly strong in haploid males, but weak to absent in diploid males and females, indicating a strong ploidy level but no sex specific effect. Molecular markers identified a number of genomic regions associated with hybrid inviability in haploid males that disappeared under diploidy in both hybrid males and females. Hybrid inviability was rescued by dominance effects at some genomic regions, but aggravated or alleviated by dosage effects at other regions, consistent with cytonuclear incompatibilities. Dosage effects underlying Bateson–Dobzhansky–Muller (BDM) incompatibilities need more consideration in explaining Haldane's rule in diploid systems. PMID:25926847
Arntzen, Jan W; Jehle, Robert; Bardakci, Fevzi; Burke, Terry; Wallis, Graham P
2009-05-01
Hybridization between divergent lineages often results in reduced hybrid viability. Here we report findings from a series of independent molecular analyses over several seasons on four life stages of F1 hybrids between the newts Triturus cristatus and T. marmoratus. These two species form a bimodal hybrid zone of broad overlap in France, with F1 hybrids making up about 4% of the adult population. We demonstrate strong asymmetry in the direction of the cross, with one class (cristatus-mothered) making up about 90% of F1 hybrids. By analyzing embryos and hatchlings, we show that this asymmetry is not due to prezygotic effects, as both classes of hybrid embryos are present at similar frequencies, implicating differential selection on the two hybrid classes after hatching. Adult F1 hybrids show a weak Haldane effect overall, with a 72% excess of females. The rarer marmoratus-mothered class, however, consists entirely of males. The absence of females from this class of adult F1 hybrids is best explained by an incompatibility between the cristatus X chromosome and marmoratus cytoplasm. It is thus important to distinguish the two classes of reciprocal-cross hybrids before making general statements about whether Haldane's rule is observed.
Hybrid foraging search: Searching for multiple instances of multiple types of target.
Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S
2016-02-01
This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Libin; Tao, Zetian; Hong, Tao
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less
Hybrid foraging search: Searching for multiple instances of multiple types of target
Wolfe, Jeremy M.; Aizenman, Avigael M.; Boettcher, Sage E.P.; Cain, Matthew S.
2016-01-01
This paper introduces the “hybrid foraging” paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8–64 targets objects in memory. They viewed displays of 60–105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25–33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. PMID:26731644
NASA Astrophysics Data System (ADS)
Petty, C. C.; Nazikian, R.; Park, J. M.; Turco, F.; Chen, Xi; Cui, L.; Evans, T. E.; Ferraro, N. M.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Holcomb, C. T.; Hyatt, A. W.; Kolemen, E.; La Haye, R. J.; Lasnier, C.; Logan, N.; Luce, T. C.; McKee, G. R.; Orlov, D.; Osborne, T. H.; Pace, D. C.; Paz-Soldan, C.; Petrie, T. W.; Snyder, P. B.; Solomon, W. M.; Taylor, N. Z.; Thome, K. E.; Van Zeeland, M. A.; Zhu, Y.
2017-11-01
The hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n = 3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (≤ft< β \\right> ⩽ 2.8%) and high confinement (H98y2 ⩽ 1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n = 3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybrid plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q fus = 5 ITER steady-state mission.
Lei, Libin; Tao, Zetian; Hong, Tao; ...
2018-04-06
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less
Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns
NASA Astrophysics Data System (ADS)
Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto
2017-09-01
Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.
Wang, Xin; Wen, Zhen; Guo, Hengyu; Wu, Changsheng; He, Xu; Lin, Long; Cao, Xia; Wang, Zhong Lin
2016-12-27
Ocean energy, in theory, is an enormous clean and renewable energy resource that can generate electric power much more than that required to power the entire globe without adding any pollution to the atmosphere. However, owing to a lack of effective technology, such blue energy is almost unexplored to meet the energy requirement of human society. In this work, a fully packaged hybrid nanogenerator consisting of a rolling triboelectric nanogenerator (R-TENG) and an electromagnetic generator (EMG) is developed to harvest water motion energy. The outstanding output performance of the R-TENG (45 cm 3 in volume and 28.3 g in weight) in the low-frequency range (<1.8 Hz) complements the ineffective output of EMG (337 cm 3 in volume and 311.8 g in weight) in the same range and thus enables the hybrid nanogenerator to deliver valuable outputs in a broad range of operation frequencies. Therefore, the hybrid nanogenerator can maximize the energy conversion efficiency and broaden the operating frequency simultaneously. In terms of charging capacitors, this hybrid nanogenerator provides not only high voltage and consistent charging from the TENG component but also fast charging speed from the EMG component. The practical application of the hybrid nanogenerator is also demonstrated to power light-emitting diodes by harvesting energy from stimulated tidal flow. The high robustness of the R-TENG is also validated based on the stable electrical output after continuous rolling motion. Therefore, the hybrid R-TENG and EMG device renders an effective and sustainable approach toward large-scale blue energy harvesting in a broad frequency range.
NASA Astrophysics Data System (ADS)
Ozbulut, Osman E.; Hurlebaus, Stefan
2011-11-01
This paper proposes a re-centering variable friction device (RVFD) for control of civil structures subjected to near-field earthquakes. The proposed hybrid device has two sub-components. The first sub-component of this hybrid device consists of shape memory alloy (SMA) wires that exhibit a unique hysteretic behavior and full recovery following post-transformation deformations. The second sub-component of the hybrid device consists of variable friction damper (VFD) that can be intelligently controlled for adaptive semi-active behavior via modulation of its voltage level. In general, installed SMA devices have the ability to re-center structures at the end of the motion and VFDs can increase the energy dissipation capacity of structures. The full realization of these devices into a singular, hybrid form which complements the performance of each device is investigated in this study. A neuro-fuzzy model is used to capture rate- and temperature-dependent nonlinear behavior of the SMA components of the hybrid device. An optimal fuzzy logic controller (FLC) is developed to modulate voltage level of VFDs for favorable performance in a RVFD hybrid application. To obtain optimal controllers for concurrent mitigation of displacement and acceleration responses, tuning of governing fuzzy rules is conducted by a multi-objective heuristic optimization. Then, numerical simulation of a multi-story building is conducted to evaluate the performance of the hybrid device. Results show that a re-centering variable friction device modulated with a fuzzy logic control strategy can effectively reduce structural deformations without increasing acceleration response during near-field earthquakes.
Step-by-step growth of complex oxide microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Step-by-step growth of complex oxide microstructures
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
2015-06-10
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors
NASA Astrophysics Data System (ADS)
Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav
2017-11-01
So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,
Chemical sensors are hybrid-input memristors
NASA Astrophysics Data System (ADS)
Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.
2018-04-01
Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.
NASA Astrophysics Data System (ADS)
Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.
2016-07-01
Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.
Multiple imputation of rainfall missing data in the Iberian Mediterranean context
NASA Astrophysics Data System (ADS)
Miró, Juan Javier; Caselles, Vicente; Estrela, María José
2017-11-01
Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.
Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris
2013-12-15
The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix. © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Homicz, G. F.; Moselle, J. R.
1985-01-01
A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.
Reaching Agreement in Quantum Hybrid Networks.
Shi, Guodong; Li, Bo; Miao, Zibo; Dower, Peter M; James, Matthew R
2017-07-20
We consider a basic quantum hybrid network model consisting of a number of nodes each holding a qubit, for which the aim is to drive the network to a consensus in the sense that all qubits reach a common state. Projective measurements are applied serving as control means, and the measurement results are exchanged among the nodes via classical communication channels. In this way the quantum-opeartion/classical-communication nature of hybrid quantum networks is captured, although coherent states and joint operations are not taken into consideration in order to facilitate a clear and explicit analysis. We show how to carry out centralized optimal path planning for this network with all-to-all classical communications, in which case the problem becomes a stochastic optimal control problem with a continuous action space. To overcome the computation and communication obstacles facing the centralized solutions, we also develop a distributed Pairwise Qubit Projection (PQP) algorithm, where pairs of nodes meet at a given time and respectively perform measurements at their geometric average. We show that the qubit states are driven to a consensus almost surely along the proposed PQP algorithm, and that the expected qubit density operators converge to the average of the network's initial values.
Oily wastewater treatment using a novel hybrid PBR-UASB system.
Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet
2007-04-01
In this study, anaerobic treatability of oily wastewater was investigated in a hybrid reactor system consisting of a packed bed reactor (PBR) followed by an upflow anaerobic sludge blanket (UASB) reactor at 35 degrees C. The system was operated using real pet food wastewater at different hydraulic retention times and loading rates for 165 d. The PBR was packed with sol-gel/alginate beads containing immobilized enzyme which hydrolyzed the oil and grease (O&G) into free long chain fatty acids, that were biodegraded by the UASB. The hybrid system was operated up to an oil loading rate of 4.9 kg O&Gm(-3)d(-1) (to the PBR) without any operational problems for a period of 100 d, with COD and O&G removal efficiencies above 90% and no sludge flotation was observed in the UASB. Beads supplement to the PBR was less than 2 g d(-1) and the relative activity was about 70%. Further increment in O&G loading to 18.7 kg O&Gm(-3)d(-1) caused destabilization of the system with 0.35% (v float/v feed) sludge float removed from the UASB.
Hybrid Power Management for Office Equipment
NASA Astrophysics Data System (ADS)
Gingade, Ganesh P.
Office machines (such as printers, scanners, fax, and copiers) can consume significant amounts of power. Few studies have been devoted to power management of office equipment. Most office machines have sleep modes to save power. Power management of these machines are usually timeout-based: a machine sleeps after being idle long enough. Setting the timeout duration can be difficult: if it is too long, the machine wastes power during idleness. If it is too short, the machine sleeps too soon and too often--the wakeup delay can significantly degrade productivity. Thus, power management is a tradeoff between saving energy and keeping short response time. Many power management policies have been published and one policy may outperform another in some scenarios. There is no definite conclusion which policy is always better. This thesis describes two methods for office equipment power management. The first method adaptively reduces power based on a constraint of the wakeup delay. The second method is a hybrid with multiple candidate policies and it selects the most appropriate power management policy. Using six months of request traces from 18 different offices, we demonstrate that the hybrid policy outperforms individual policies. We also discover that power management based on business hours does not produce consistent energy savings.
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.
2015-01-01
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442
Design of Hybrid Solid Polymer Electrolytes: Structure and Properties
NASA Technical Reports Server (NTRS)
Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.
2003-01-01
This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.
ERIC Educational Resources Information Center
Spiegel, Cheri Lemieux
2012-01-01
This article describes how the author applied principles of universal design to hybrid course materials to increase student understanding and, ultimately, success. Pulling the three principles of universal design--consistency, color, and icon representation--into the author's Blackboard course allowed her to change the types of reading skills…
Variation in floret size explains differences in wild bee visitation to cultivated sunflowers
USDA-ARS?s Scientific Manuscript database
Wild and managed bees are needed to move sunflower (Helianthus annuus L.) pollen, both to create hybrid seed and to encourage high, consistent yields when those hybrids are subsequently grown. Among floral traits that influence bee preference, floret size may be critical, as the depth of the corolla...
Comparative cost analysis of hybrid striped bass fingerling production in ponds and tanks
USDA-ARS?s Scientific Manuscript database
Year-round production of hybrid striped bass (female white bass Morone chrysops×male striped bass M. saxatilis) fingerlings would allow food fish growers to sell their product throughout the year, which would improve the consistency of market supply and cash flow for the farm. However, pond producti...
DOT National Transportation Integrated Search
2015-04-30
The hybrid composite beam (HCB) technology has been presented as a system for short and medium span beam bridges as an alternative to traditional materials such as concrete and steel. A HCB consists of a concrete tied arch encased in a fiber-reinforc...
Saturation of the lower-hybrid-drift instability by mode coupling
NASA Technical Reports Server (NTRS)
Drake, J. F.; Guzdar, P. N.; Huba, J. D.
1983-01-01
A nonlinear mode-coupling theory of the lower-hybrid-drift instability is presented. It is found that the instability saturates by transferring energy from the growing, long wavelength modes to the damped, short wavelength modes. The saturation energy, mean square of the potential fluctuations, and diffusion coefficient are calculated self-consistently.
Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Merrill, Raymond G.; Qu, Min
2015-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.
Hybrid propulsion technology program
NASA Technical Reports Server (NTRS)
1990-01-01
Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.
Park, Nokyoung; Chae, Seung Chul; Kim, Il Tae; Hur, Jaehyun
2016-02-01
We present a new class of electrically conductive, mechanically moldable, and thermally self-healable hybrid hydrogels. The hybrid gels consist of polypyrrole and agarose as the conductive component and self-healable matrix, respectively. By using the appropriate oxidizing agent under conditions of mild temperature, the polymerization of pyrrole occurred along the three-dimensional network of the agarose hydrogel matrix. In contrast to most commercially available hydrogels, the physical crosslinking of agarose gel allows for reversible gelation in the case of our hybrid gel, which could be manipulated by temperature variation, which controls the electrical on/off behavior of the hybrid gel electrode. Exploiting this property, we fabricated a hybrid conductive hydrogel electrode which also self-heals thermally. The novel composite material we report here will be useful for many technological and biological applications, especially in reactive biomimetic functions and devices, artificial muscles, smart membranes, smart full organic batteries, and artificial chemical synapses.
Jun, Shin-Hee; Lee, Eun-Jung; Yook, Se-Won; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag
2010-01-01
A bioactive coating consisting of a silica xerogel/chitosan hybrid was applied to Ti at room temperature as a novel surface treatment for metallic implants. A crack-free thin layer (<2 microm) was coated on Ti with a chitosan content of >30 vol.% through a sol-gel process. The coating layer became more hydrophilic with increasing silica xerogel content, as assessed by contact angle measurement. The hybrid coatings afforded excellent bone bioactivity by inducing the rapid precipitation of apatite on their surface when immersed in a simulated body fluid (SBF). Osteoblastic cells cultured on the hybrid coatings were more viable than those on a pure chitosan coating. Furthermore, the alkaline phosphate activity of the cells was significantly higher on the hybrid coatings than on a pure chitosan coating, with the highest level being achieved on the hybrid coating containing 30% chitosan. These results indicate that silica xerogel/chitosan hybrids are potentially useful as room temperature bioactive coating materials on titanium-based medical implants.
Spatio-temporal changes in the structure of an Australian frog hybrid zone: a 40-year perspective.
Smith, Katie L; Hale, Joshua M; Gay, Laurène; Kearney, Michael; Austin, Jeremy J; Parris, Kirsten M; Melville, Jane
2013-12-01
Spatio-temporal studies of hybrid zones provide an opportunity to test evolutionary hypotheses of hybrid zone maintenance and movement. We conducted a landscape genetics study on a classic hybrid zone of the south-eastern Australian frogs, Litoria ewingii and Litoria paraewingi. This hybrid zone has been comprehensively studied since the 1960s, providing the unique opportunity to directly assess changes in hybrid zone structure across time. We compared both mtDNA and male advertisement call data from two time periods (present and 1960s). Clinal analysis of the coincidence (same center) and concordance (same width) of these traits indicated that the center of the hybrid zone has shifted 1 km south over the last 40 years, although the width of the zone and the rate of introgression remained unchanged. The low frequency of hybrids, the strong concordance of clines within a time period, and the small but significant movement across the study period despite significant anthropogenic changes through the region, suggest the hybrid zone is a tension zone located within a low-density trough. Hybrid zone movement has not been considered common in the past but our findings highlight that it should be considered a crucial component to our understanding of evolution. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Luo, Yang; Huang, Yongqing; Ren, Xiaomin; Duan, Xiaofeng; Wang, Qi
2014-01-01
In order to integrate photonic devices with electronic devices to realize the low-loss hybrid integrated devices. A wide spectral hybrid integrated optoelectronic receiver was fabricated by using quasi-monolithic integration technology (QMIT) in this paper. It consisted of a 8.5 GHz InGaAs photodetector and a 1.25 Gbps mature transimpedance pre-amplifier (TIA) complementrary metal oxide semiconductor (CMOS) chip. The Au layer was deposited on a designed Si platform to form planar waveguide electrode which replaced a part of bonding wire, so it reduced the parasitic parameters of the optoelectronic receiver, and then enhanced high-speed response characteristics and the stability of the hybrid integrated receiver. Finally, a 3 Gbps clear open eye diagram of the hybrid integrated optoelectronic receiver was obtained.
Studies of the structure of massive hybrid stars within a modified NJL model
NASA Astrophysics Data System (ADS)
Li, Cheng-Ming; Zhang, Jin-Li; Yan, Yan; Huang, Yong-Feng; Zong, Hong-Shi
2018-05-01
In this paper, we use the equation of state based on a modification of the 2 +1 flavors Nambu-Jona-Lasinio (NJL) model to study the quark matter of hybrid stars. For comparison, we utilize five EOSs of the relativistic mean-field (RMF) model to describe the hadronic phase. With the three-window crossover interpolation approach, we try to construct relatively soft hybrid EOSs but find the maximum masses of hybrid stars do not differ much. The results are quite close to the 2 solar mass, which is consistent with the mass constraint of PSR J 0348 +0432 . Furthermore, it is noteworthy that the heaviest stable stars have central densities higher than that of the deconfinement transition, suggesting a pure quark core in the hybrid star.
Extent of Fock-exchange mixing for a hybrid van der Waals density functional?
NASA Astrophysics Data System (ADS)
Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per
2018-05-01
The vdW-DF-cx0 exchange-correlation hybrid design [K. Berland et al., J. Chem. Phys. 146, 234106 (2017)] has a truly nonlocal correlation component and aims to facilitate concurrent descriptions of both covalent and non-covalent molecular interactions. The vdW-DF-cx0 design mixes a fixed ratio, a, of the Fock exchange into the consistent-exchange van der Waals density functional, vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)]. The mixing value a is sometimes taken as a semi-empirical parameter in hybrid formulations. Here, instead, we assert a plausible optimum average a value for the vdW-DF-cx0 design from a formal analysis; A new, independent determination of the mixing a is necessary since the Becke fit [A. D. Becke, J. Chem. Phys. 98, 5648 (1993)], yielding a' = 0.2, is restricted to semilocal correlation and does not reflect non-covalent interactions. To proceed, we adapt the so-called two-legged hybrid construction [K. Burke et al., Chem. Phys. Lett. 265, 115 (1997)] to a starting point in the vdW-DF-cx functional. For our approach, termed vdW-DF-tlh, we estimate the properties of the adiabatic-connection specification of the exact exchange-correlation functional, by combining calculations of the Fock exchange and of the coupling-constant variation in vdW-DF-cx. We find that such vdW-DF-tlh hybrid constructions yield accurate characterizations of molecular interactions (even if they lack self-consistency). The accuracy motivates trust in the vdW-DF-tlh determination of system-specific values of the Fock-exchange mixing. We find that an average value a' = 0.2 best characterizes the vdW-DF-tlh description of covalent and non-covalent interactions, although there exists some scatter. This finding suggests that the original Becke value, a' = 0.2, also represents an optimal average Fock-exchange mixing for the new, truly nonlocal-correlation hybrids. To enable self-consistent calculations, we furthermore define and test a zero-parameter hybrid functional vdW-DF-cx0p (having fixed mixing a' = 0.2) and document that this truly nonlocal correlation hybrid works for general molecular interactions (at reference and at relaxed geometries). It is encouraging that the vdW-DF-cx0p functional remains useful also for descriptions of some extended systems.
Computer considerations for real time simulation of a generalized rotor model
NASA Technical Reports Server (NTRS)
Howe, R. M.; Fogarty, L. E.
1977-01-01
Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.
Ephemeral association between gene CG5762 and hybrid male sterility in Drosophila sibling species.
Ma, Daina; Michalak, Pawel
2011-10-01
Interspecies divergence in regulatory pathways may result in hybrid male sterility (HMS) when dominance and epistatic interactions between alleles that are functional within one genome are disrupted in hybrid genomes. The identification of genes contributing to HMS and other hybrid dysfunctions is essential for understanding the origin of new species (speciation). Previously, we identified a panel of male-specific loci misexpressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to parental species. In the current work, we attempt to dissect the genetic associations between HMS and one of the genes, CG5762, a Drosophila-unique locus characterized by rapid sequence divergence within the genus, presumably driven by positive natural selection. CG5762 is underexpressed in sterile backcross males compared with their fertile brothers. In CG5762 heterozygotes, the D. mauritiana allele is consistently overexpressed on both the D. simulans and D. mauritiana backcross genomic background, suggesting a cis-acting regulation factor. There is a significant association between heterozygosity and HMS in hybrid males from early but not later backcross generations. Microsatellite markers spanning CG5762 fail to associate with HMS. These observations lead to a conclusion that CG5762 is not a causative factor of HMS. Although genetic linkage between CG5762 and a neighboring causative introgression cannot be ruled out, it seems that the pattern is most consistent with CG5762 participating in epistatic interactions that are disrupted in flies with HMS.
Self-regulated Learning in a Hybrid Science Course at a Community College
NASA Astrophysics Data System (ADS)
Manuelito, Shannon Joy
Community college students are attracted to courses with alternative delivery formats such as hybrid courses because the more flexible delivery associated with such courses provides convenience for busy students. In a hybrid course, face-to-face, structured seat time is exchanged for online components. In such courses, students take more responsibility for their learning because they assume additional responsibility for learning more of the course material on their own. Thus, self-regulated learning (SRL) behaviors have the potential to be useful for students to successfully navigate hybrid courses because the online components require exercise of more personal control over the autonomous learning situations inherent in hybrid courses. Self-regulated learning theory includes three components: metacognition, motivation, and behavioral actions. In the current study, this theoretical framework is used to examine how inducing self-regulated learning activities among students taking a hybrid course influence performance in a community college science course. The intervention for this action research study consisted of a suite of activities that engage students in self-regulated learning behaviors to foster student performance. The specific SRL activities included predicting grades, reflections on coursework and study efforts in course preparation logs, explanation of SRL procedures in response to a vignette, photo ethnography work on their personal use of SRL approaches, and a personalized study plan. A mixed method approach was employed to gather evidence for the study. Results indicate that community college students use a variety of self-regulated learning strategies to support their learning of course material. Further, engaging community college students in learning reflection activities appears to afford some students with opportunities to refine their SRL skills and influence their learning. The discussion focuses on integrating the quantitative and qualitative data and explanation of the findings using the SRL framework. Additionally, lessons learned, limitations, and implications for practice and research are discussed. Specifically, it is suggested that instructors can foster student learning in hybrid courses by teaching students to engage in SRL processes and behaviors rather than merely focusing on delivery of course content. Such SRL behaviors allow students to exercise greater control over the autonomous learning situations inherent in hybrid courses.
NASA Astrophysics Data System (ADS)
Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi
2011-02-01
We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.
Bingham, Edwin; Armour, David; Irwin, John
2013-01-01
Medicago sativa, alfalfa or lucerne, and M. arborea were considered reproductively isolated until recently. Then, in 2003, an alfalfa genotype was identified that produced a few seeds and progeny with hybrid traits after a large number of pollinations by M. arborea. A derivative of this alfalfa genotype also produced a low frequency of progeny with hybrid traits. Thus, the hybridization barrier was weakened by selection of seed parents. Hybrids from both events expressed traits from M. arborea and M. arborea-specific DNA bands, although more of the M. sativa genome was retained, based on the DNA results. Thus, there was chromatin elimination during embryogenesis, resulting in partial hybrids (hereafter hybrids). However, more than 30 hybrids with an array of M. arborea traits have been obtained thus far, and research continues on the nature of the hybrids. Traits have been genetically transmitted in crosses, and selected traits are in use for alfalfa breeding. This paper reviews the first hybrids and then focuses on further weakening of the hybridization barrier with the discovery of a more efficient hybridizer derived from crossing Medicago sativa subspecies, sativa, coerulea and falcata. This genotype was found to have reproductive abnormalities associated with its complex subspecies origin that are best described as hybrid breakdown. In effect, this subspecies derivative is a bridge-cross parent that consistently produces hybrids. Reproductive abnormalities in the bridge-cross parent are reported and discussed. PMID:27137379
Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2
Flatten, Lucas C.; Coles, David M.; He, Zhengyu; Lidzey, David G.; Taylor, Robert A.; Warner, Jamie H.; Smith, Jason M.
2017-01-01
Exciton-polaritons are quasiparticles consisting of a linear superposition of photonic and excitonic states, offering potential for nonlinear optical devices. The excitonic component of the polariton provides a finite Coulomb scattering cross section, such that the different types of exciton found in organic materials (Frenkel) and inorganic materials (Wannier-Mott) produce polaritons with different interparticle interaction strength. A hybrid polariton state with distinct excitons provides a potential technological route towards in situ control of nonlinear behaviour. Here we demonstrate a device in which hybrid polaritons are displayed at ambient temperatures, the excitonic component of which is part Frenkel and part Wannier-Mott, and in which the dominant exciton type can be switched with an applied voltage. The device consists of an open microcavity containing both organic dye and a monolayer of the transition metal dichalcogenide WS2. Our findings offer a perspective for electrically controlled nonlinear polariton devices at room temperature. PMID:28094281
NASA Astrophysics Data System (ADS)
Franchini, C.; Sanna, A.; Marsman, M.; Kresse, G.
2010-02-01
BaBiO3 is characterized by a charge disproportionation with half of the Bi atoms possessing a valence 3+ and half a valence 5+ . Because of self-interaction errors, local- and semilocal-density functionals fail to describe the charge disproportionation quantitatively, yielding a too small structural distortion and no band gap. Using hybrid functionals, we obtain a satisfactory description of the structural, electronic, optical, and vibrational properties of BaBiO3 . The results obtained using GW (Green’s function G and screened Coulomb potential W) based schemes on top of hybrid functionals, including fully self-consistent GW calculations with vertex corrections in the dielectric screening, qualitatively confirm the Heyd-Scuseria-Ernzerhof picture but a systematic overestimation of the band gap by about 0.4 eV is observed.
Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing
2018-05-09
Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.
Power supply system for the superconducting outsert of the CHMFL hybrid magnet
NASA Astrophysics Data System (ADS)
Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.
2017-12-01
The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.
Characterization of a rotary hybrid multimodal energy harvester
NASA Astrophysics Data System (ADS)
Larkin, Miles R.; Tadesse, Yonas
2014-04-01
In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina
2017-11-21
In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.
Speciation and reduced hybrid female fertility in house mice.
Suzuki, Taichi A; Nachman, Michael W
2015-09-01
In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent-of-origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent-of-origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto-nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
NASA Technical Reports Server (NTRS)
Reed, Kenneth W.
1992-01-01
A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.
2017-08-21
panels only produce power when the sun is out, turbines only produce power when there xiii is wind , etc. For these sources to be fully utilized...hybrid energy system mounted on a towable trailer consisting of an onboard diesel generator, solar panels, wind turbines , and an energy storage...limited to certain times of day—solar panels only produce power when the sun is out, turbines only produce power when there is wind , etc. For these
TEAMBLOCKS: HYBRID ABSTRACTIONS FOR PROVABLE MULTI-AGENT AUTONOMY
2017-07-28
Raspberry Pi 23 can easily satisfy control loop periods on the order of 10−3s. Thus, we assume that the time to execute a piece of control code, ∆t...Release; Distribution Unlimited. 23 State Space The state space of the aircraft is X = R3 × SO(3) × R3 × R3; states consist of • pI ∈ R3, the...the tbdemo_ghaexecution script uses this operation to make feedback system out of the product of the linear system and PI controller. tbread
Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W
2016-11-14
Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.
Stetter, Markus G; Zeitler, Leo; Steinhaus, Adrian; Kroener, Karoline; Biljecki, Michelle; Schmid, Karl J
2016-01-01
Grain amaranths (Amaranthus spp.) have been cultivated for thousands of years in Central and South America. Their grains are of high nutritional value, but the low yield needs to be increased by selection of superior genotypes from genetically diverse breeding populations. Amaranths are adapted to harsh conditions and can be cultivated on marginal lands although little is known about their physiology. The development of controlled growing conditions and efficient crossing methods is important for research on and improvement of this ancient crop. Grain amaranth was domesticated in the Americas and is highly self-fertilizing with a large inflorescence consisting of thousands of very small flowers. We evaluated three different crossing methods (open pollination, hot water emasculation and hand emasculation) for their efficiency in amaranth and validated them with genetic markers. We identified cultivation conditions that allow an easy control of flowering time by day length manipulation and achieved flowering times of 4 weeks and generation times of 2 months. All three different crossing methods successfully produced hybrid F1 offspring, but with different success rates. Open pollination had the lowest (10%) and hand emasculation the highest success rate (74%). Hot water emasculation showed an intermediate success rate (26%) with a maximum of 94% success. It is simple to perform and suitable for a more large-scale production of hybrids. We further evaluated 11 single nucleotide polymorphism (SNP) markers and found that they were sufficient to validate all crosses of the genotypes used in this study for intra- and interspecific hybridizations. Despite its very small flowers, crosses in amaranth can be carried out efficiently and evaluated with inexpensive SNP markers. Suitable growth conditions strongly reduce the generation time and allow the control of plant height, flowering time, and seed production. In combination, this enables the rapid production of segregating populations which makes amaranth an attractive model for basic plant research but also facilitates further the improvement of this ancient crop by plant breeding.
Martínez-Ibarra, J A; Nogueda-Torres, B; Salazar-Schettino, P M; Cabrera-Bravo, M; Vences-Blanco, M O; Rocha-Chávez, G
2016-07-01
Three behaviors of epidemiological importance: the time lapse for the onset of feeding, actual feeding, and defecation time for Meccus phyllosomus pallidipennis (Stål), Meccus phyllosomus longipennis (Usinger), Meccus phyllosomus picturatus (Usinger), and their laboratory hybrids were evaluated in this study. The mean time lapse for the beginning of feeding was between 0.5 and 8.3 min considering all instars in each cohort, with highly significant differences only among fifth-instar nymphs, females, and males of M. p. pallidipennis and M. p. longipennis relative to the hybrid cohorts. Four hybrid (LoPa [M. p. longipennis and M. p. pallidipennis] and LoPi [M. p. longipennis and M. p. picturatus] and their reciprocal experimental crosses) cohorts had similar mean feeding times to one of the parental subspecies, but longer than the other one. The remaining hybrid cohort (PaPi [M. p. pallidipennis and M. p. picturatus]) had longer feeding times than both of its parental subspecies. The specimens of the LoPa and LoPi hybrid cohorts defecated faster than the respective instars of the three parental cohorts. With exception of first- and fifth-instar nymphs, PaPi cohorts defecated faster than the remaining seven cohorts. More than 60% of defecation events occurred during feeding in the six hybrid cohorts. Our results indicate that hybrid cohorts have more potential to acquire infection and transmit Trypanosoma cruzi Chagas than their parental cohorts. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Continuous analog of multiplicative algebraic reconstruction technique for computed tomography
NASA Astrophysics Data System (ADS)
Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya
2016-03-01
We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.
Teh, L-K; Lee, T-Y; Tan, J A M A; Lai, M-I; George, E
2015-02-01
In Malaysia, β-thalassaemia is a common inherited blood disorder in haemoglobin synthesis with a carrier rate of 4.5%. Currently, PCR-incorporating techniques such as amplification refractory mutation system (ARMS) or reverse dot blot hybridization (RDBH) are used in β-thalassaemia mutation detection. ARMS allows single-mutation identification using two reactions, one for wild type and another for mutant alleles. RDBH requires probe immobilization and optimization of hybridization and washing temperatures which is time consuming. The aim of our study was to investigate whether β-thalassaemia mutations can be identified in samples with low DNA concentrations. Genotype identification of common β-thalassaemia mutations in Malays was carried out using Taqman genotyping assays. Results show that the Taqman assays allow mutation detection with DNA template concentrations as low as 2-100 ng. In addition, consistent reproducibility was observed in the Taqman assays when repeated eight times and at different time intervals. The developed sensitive Taqman assays allow molecular characterization of β-thalassaemia mutations in samples with low DNA concentrations. The Taqman genotyping assays have potential as a diagnostic tool for foetal blood, chorionic villi or pre-implantation genetic diagnosis where DNA is limited and precious. © 2014 John Wiley & Sons Ltd.
Mashayekhi, S; Razzaghi, M; Tripak, O
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Lyng, Heidi; Lando, Malin; Brøvig, Runar S; Svendsrud, Debbie H; Johansen, Morten; Galteland, Eivind; Brustugun, Odd T; Meza-Zepeda, Leonardo A; Myklebost, Ola; Kristensen, Gunnar B; Hovig, Eivind; Stokke, Trond
2008-01-01
Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers. PMID:18500990
Mashayekhi, S.; Razzaghi, M.; Tripak, O.
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638
NASA Astrophysics Data System (ADS)
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Blanchet, Elise M.; Millo, Corina; Martucci, Victoria; Maass-Moreno, Roberto; Bluemke, David A.; Pacak, Karel
2017-01-01
Purpose Paragangliomas (PGLs) are tumors that can metastasize and recur; therefore, lifelong imaging follow-up is required. Hybrid positron emission tomography (PET)/computed tomography (/CT) is an essential tool to image PGLs. Novel hybrid PET/magnetic resonance (/MR) scanners are currently being studied in clinical oncology. We studied the feasibility of simultaneous whole-body PET/MR imaging to evaluate patients with PGLs. Methods Fifty-three PGLs or PGL-related lesions from eight patients were evaluated. All patients underwent a single-injection, dual-modality imaging protocol consisting of a PET/CT and subsequent PET/MR scan. Four patients were evaluated with 18F-fluorodeoxyglucose (18F-FDG), two with 18F-fluorodihydroxyphenylalanine (18F-FDOPA), and two with 18F-fluorodopamine (18F-FDA). PET/MR data were acquired using a hybrid whole-body 3-Tesla integrated PET/MR scanner. PET and MR data (DIXON images for attenuation correction and T2-weighted sequences for anatomic allocation) were acquired simultaneously. Imaging workflow and imaging times were documented. PET/MR and PET/CT data were visually assessed (blindly) in regards to image quality, lesion detection, and anatomic allocation and delineation of the PET findings. Results With hybrid PET/MR, we obtained high quality images in an acceptable acquisition time (median: 31 min, range: 25–40 min) with good patient compliance. A total of 53 lesions, located in the head-and-neck area (6), mediastinum (2), abdomen and pelvis (13), lungs (2), liver (4), and bone (26) were evaluated. 51 lesions were detected with PET/MR and confirmed by PET/CT. Two bone lesions (L4 body (8 mm) and sacrum (6 mm)) were not detectable on an 18F-FDA scan PET/MR, likely due to washout of the 18F-FDA. Co-registered MR tended to be superior to co-registered CT for head-and-neck, abdomen, pelvis, and liver lesions for anatomic allocation and delineation. Conclusions Clinical PGL evaluation with hybrid PET/MR is feasible with high image-quality and can be obtained in a reasonable time. It could be particularly beneficial for the pediatric population and for precise lesion definition in the head-and-neck, abdomen, pelvis, and liver. PMID:24152658
Young, W.P.; Ostberg, C.O.; Keim, P.; Thorgaard, G.H.
2001-01-01
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.
Generation of plasmas in supercritical xenon inside microcapillaries for synthesis of diamondoid
NASA Astrophysics Data System (ADS)
Oshima, Fumito; Ishii, Chikako; Stauss, Sven; Terashima, Kazuo
2012-10-01
Diamondoids are series of sp^3 hybridized carbon nanomaterials that could be applied in various fields such as pharmacy and optoelectronics. In our previous studies, higher order diamondoids were synthesized in supercritical fluid (SCF) plasmas in a batch-type reactor using adamantane (C10H16), the smallest diamondoid, as a precursor and seed. However the yield was low and the selectivity was difficult to control. We have developed a continuous flow SCF microplasma reactor that allows discharge volume and residence time to be adjusted. The electrodes consist of a tungsten wire inserted into a fused silica capillary and a sputtered silver outside of the capillary. We dissolved adamantane in supercritical xenon near critical point, and then generated DBDs inside the capillary using a nominal constant xenon flow rate of 0˜2.3 mL min-1. Micro-Raman spectra of the synthesized products show peaks that are characteristic of hydrocarbons possessing sp^3 hybridized bonds while gas-chromatography/mass spectrometry spectra indicate the synthesis of diamantane (C14H20) and possibly isomers of diamondoids consisting of up to nine cages, nonamantane. It is suggested that this type of SCF microplasma reactor might be effective not only for synthesis of diamondoids, but also other nanomaterials.
Development, Integration and Testing of Automated Triggering Circuit for Hybrid DC Circuit Breaker
NASA Astrophysics Data System (ADS)
Kanabar, Deven; Roy, Swati; Dodiya, Chiragkumar; Pradhan, Subrata
2017-04-01
A novel concept of Hybrid DC circuit breaker having combination of mechanical switch and static switch provides arc-less current commutation into the dump resistor during quench in superconducting magnet operation. The triggering of mechanical and static switches in Hybrid DC breaker can be automatized which can effectively reduce the overall current commutation time of hybrid DC circuit breaker and make the operation independent of opening time of mechanical switch. With this view, a dedicated control circuit (auto-triggering circuit) has been developed which can decide the timing and pulse duration for mechanical switch as well as static switch from the operating parameters. This circuit has been tested with dummy parameters and thereafter integrated with the actual test set up of hybrid DC circuit breaker. This paper deals with the conceptual design of the auto-triggering circuit, its control logic and operation. The test results of Hybrid DC circuit breaker using this circuit have also been discussed.
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan
2014-01-01
Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.
NASA Astrophysics Data System (ADS)
Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur
2017-11-01
Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and anisotropic fractured media which illustrate the benefits of the respective methods.
Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes.
Marras, Salvatore A E
2006-01-01
With the introduction of simple and relatively inexpensive methods for labeling nucleic acids with nonradioactive labels, doors have been opened that enable nucleic acid hybridization probes to be used for research and development, as well as for clinical diagnostic applications. The use of fluorescent hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. The use of hybridization probes that bind to the amplification products in real-time markedly improves the ability to obtain quantitative results. Furthermore, real-time nucleic acid amplification assays can be carried out in sealed tubes, eliminating carryover contamination. Because fluorescent hybridization probes are available in a wide range of colors, multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. It is therefore important to carefully select the labels of hybridization probes, based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This chapter outlines different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers.
Najafi, Farid; Nalini, Mahdi
2015-01-01
The efficacy of alternative delivery models for a cardiac rehabilitation program (CRP) in low- and middle-income countries is not well documented. This study compared the traditional hospital-based CRP with a hybrid CRP in western Iran. This observational study was conducted with postcoronary surgery patients in Imam-Ali Hospital in Kermanshah, Iran. Both program models included 2 phases: (1) a common preliminary phase (2-4 weeks) involving exercise training and a plan to control cardiac risk factors; and (2) a complementary phase (8 weeks) consisting of group educational classes and exercise training conducted 3 times a week in the hospital or once a week accompanied by phone calls in the hybrid program. Changes in exercise capacity, blood pressure, lipids, resting heart rate, body mass index, waist circumference, smoking, depression, anxiety, and quality of life as well as differences in attendance at hospital sessions were investigated. From a total of 887 patients, 780 (87.9%) completed the programs. There was no association between course completion and type of CRP. Mean age of patients completing the programs was 55.6 ± 8.7 years and 23.8% were female. The hospital-based (n = 585) and hybrid (n = 195) programs resulted in a significant increase in exercise capacity (P < .001 for both). Additional improvements in other outcomes were noted and attendance rates were similar in both CRPs. A well-designed hybrid CRP can be a viable alternative for hospital-based CRP in low- and middle-income countries where there are no appropriate health facilities in remote areas.
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2017-10-01
Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.
Seasonal drought predictability in Portugal using statistical-dynamical techniques
NASA Astrophysics Data System (ADS)
Ribeiro, A. F. S.; Pires, C. A. L.
2016-08-01
Atmospheric forecasting and predictability are important to promote adaption and mitigation measures in order to minimize drought impacts. This study estimates hybrid (statistical-dynamical) long-range forecasts of the regional drought index SPI (3-months) over homogeneous regions from mainland Portugal, based on forecasts from the UKMO operational forecasting system, with lead-times up to 6 months. ERA-Interim reanalysis data is used for the purpose of building a set of SPI predictors integrating recent past information prior to the forecast launching. Then, the advantage of combining predictors with both dynamical and statistical background in the prediction of drought conditions at different lags is evaluated. A two-step hybridization procedure is performed, in which both forecasted and observed 500 hPa geopotential height fields are subjected to a PCA in order to use forecasted PCs and persistent PCs as predictors. A second hybridization step consists on a statistical/hybrid downscaling to the regional SPI, based on regression techniques, after the pre-selection of the statistically significant predictors. The SPI forecasts and the added value of combining dynamical and statistical methods are evaluated in cross-validation mode, using the R2 and binary event scores. Results are obtained for the four seasons and it was found that winter is the most predictable season, and that most of the predictive power is on the large-scale fields from past observations. The hybridization improves the downscaling based on the forecasted PCs, since they provide complementary information (though modest) beyond that of persistent PCs. These findings provide clues about the predictability of the SPI, particularly in Portugal, and may contribute to the predictability of crops yields and to some guidance on users (such as farmers) decision making process.
Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S
2001-01-01
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432
Petty, Craig C.; Nazikian, Raffi; Park, Jin Myung; ...
2017-07-19
Here, the hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n=3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (β ≤ 2.8%) and high confinement (98y2 ≤ 1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n=3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybridmore » plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q = 5 ITER steady-state mission.« less
Goh, Yang Miang; Askar Ali, Mohamed Jawad
2016-08-01
One of the key challenges in improving construction safety and health is the management of safety behavior. From a system point of view, workers work unsafely due to system level issues such as poor safety culture, excessive production pressure, inadequate allocation of resources and time and lack of training. These systemic issues should be eradicated or minimized during planning. However, there is a lack of detailed planning tools to help managers assess the impact of their upstream decisions on worker safety behavior. Even though simulation had been used in construction planning, the review conducted in this study showed that construction safety management research had not been exploiting the potential of simulation techniques. Thus, a hybrid simulation framework is proposed to facilitate integration of safety management considerations into construction activity simulation. The hybrid framework consists of discrete event simulation (DES) as the core, but heterogeneous, interactive and intelligent (able to make decisions) agents replace traditional entities and resources. In addition, some of the cognitive processes and physiological aspects of agents are captured using system dynamics (SD) approach. The combination of DES, agent-based simulation (ABS) and SD allows a more "natural" representation of the complex dynamics in construction activities. The proposed hybrid framework was demonstrated using a hypothetical case study. In addition, due to the lack of application of factorial experiment approach in safety management simulation, the case study demonstrated sensitivity analysis and factorial experiment to guide future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tong, Yuan; He, Man; Zhou, Yuming; Zhong, Xi; Fan, Lidan; Huang, Tingyuan; Liao, Qiang; Wang, Yongjuan
2018-03-01
In this study, multilayer sandwich heterostructural Ti3C2Tx MXenes decorated with polypyrrole chains have been synthesized successfully via HF etching treatment and in-situ chemical oxidative polymerization approach. The hybrids were investigated as EM wave absorbers for the first time. It is found that the composites consisting of 25 wt% Ti3C2Tx/PPy hybrids in a paraffin matrix exhibit a minimum reflection loss of -49.2 dB (∼99.99% absorption) at the thickness of 3.2 mm and a maximum effective absorption bandwidth of 4.9 GHz (12.4-17.3 GHz) corresponding to an absorber thickness of 2.0 mm. Additionally, a broad effective absorption bandwidth of 13.7 GHz (4.3-18.0 GHz) can be reached up by adjusting the thickness from 1.5 to 5.0 mm. Furthermore, the highest effective absorption bandwidth of 5.7 GHz can be reached when the mass fraction is 15 wt%. The enhanced comprehensive electromagnetic wave absorption has close correlation with the well-designed heterogeneous multilayered microstructure, generated heterogeneous interfaces, conductive paths, surface functional groups, localized defects and synergistic effect between laminated Ti3C2Tx and conductive polypyrrole network, which significantly improve impedance matching and attenuation abilities. The superior absorbing performance together with strong absorption and broad bandwidth endows the Ti3C2Tx/PPy hybrids with the potential prospect to be advanced EM wave absorbers.
Liu, Shaorong; Elkin, Christopher; Kapur, Hitesh
2003-11-01
We describe a microfabricated hybrid device that consists of a microfabricated chip containing multiple twin-T injectors attached to an array of capillaries that serve as the separation channels. A new fabrication process was employed to create two differently sized round channels in a chip. Twin-T injectors were formed by the smaller round channels that match the bore of the separation capillaries and separation capillaries were incorporated to the injectors through the larger round channels that match the outer diameter of the capillaries. This allows for a minimum dead volume and provides a robust chip/capillary interface. This hybrid design takes full advantage, such as sample stacking and purification and uniform signal intensity profile, of the unique chip injection scheme for DNA sequencing while employing long straight capillaries for the separations. In essence, the separation channel length is optimized for both speed and resolution since it is unconstrained by chip size. To demonstrate the reliability and practicality of this hybrid device, we sequenced over 1000 real-world samples from Human Chromosome 5 and Ciona intestinalis, prepared at Joint Genome Institute. We achieved average Phred20 read of 675 bases in about 70 min with a success rate of 91%. For the similar type of samples on MegaBACE 1000, the average Phred20 read is about 550-600 bases in 120 min separation time with a success rate of about 80-90%.
Influence of electrical and hybrid heating on bread quality during baking.
Chhanwal, N; Ezhilarasi, P N; Indrani, D; Anandharamakrishnan, C
2015-07-01
Energy efficiency and product quality are the key factors for any food processing industry. The aim of the study was to develop energy and time efficient baking process. The hybrid heating (Infrared + Electrical) oven was designed and fabricated using two infrared lamps and electric heating coils. The developed oven can be operated in serial or combined heating modes. The standardized baking conditions were 18 min at 220°C to produce the bread from hybrid heating oven. Effect of baking with hybrid heating mode (H-1 and H-2, hybrid oven) on the quality characteristics of bread as against conventional heating mode (C-1, pilot scale oven; C-2, hybrid oven) was studied. The results showed that breads baked in hybrid heating mode (H-2) had higher moisture content (28.87%), higher volume (670 cm(3)), lower crumb firmness value (374.6 g), and overall quality score (67.0) comparable to conventional baking process (68.5). Moreover, bread baked in hybrid heating mode showed 28% reduction in baking time.
Zhu, Sha; Degnan, James H; Goldstien, Sharyn J; Eldon, Bjarki
2015-09-15
There has been increasing interest in coalescent models which admit multiple mergers of ancestral lineages; and to model hybridization and coalescence simultaneously. Hybrid-Lambda is a software package that simulates gene genealogies under multiple merger and Kingman's coalescent processes within species networks or species trees. Hybrid-Lambda allows different coalescent processes to be specified for different populations, and allows for time to be converted between generations and coalescent units, by specifying a population size for each population. In addition, Hybrid-Lambda can generate simulated datasets, assuming the infinitely many sites mutation model, and compute the F ST statistic. As an illustration, we apply Hybrid-Lambda to infer the time of subdivision of certain marine invertebrates under different coalescent processes. Hybrid-Lambda makes it possible to investigate biogeographic concordance among high fecundity species exhibiting skewed offspring distribution.
Nagashima, Shiori; Yoshida, Akihiro; Suzuki, Nao; Ansai, Toshihiro; Takehara, Tadamichi
2005-01-01
Genomic subtractive hybridization was used to design Prevotella nigrescens-specific primers and TaqMan probes. Based on this technique, a TaqMan real-time PCR assay was developed for quantifying four oral black-pigmented Prevotella species. The combination of real-time PCR and genomic subtractive hybridization is useful for preparing species-specific primer-probe sets for closely related species. PMID:15956428
High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films
NASA Astrophysics Data System (ADS)
Kim, Sang Woo; Yoon, Chong S.
2007-09-01
Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.
Global Particle-in-Cell Simulations of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.
2017-12-01
Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.
Primary gamma ray selection in a hybrid timing/imaging Cherenkov array
NASA Astrophysics Data System (ADS)
Postnikov, E. B.; Grinyuk, A. A.; Kuzmichev, L. A.; Sveshnikova, L. G.
2017-06-01
This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV). It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.
Performance of hybrid system for fluorescence and micro-computed tomography in synchronous mode
NASA Astrophysics Data System (ADS)
Liu, Xin; Zhang, Yi; Liu, Fei; Guo, Xiaolian; Wang, Xin; Bai, Jing
2010-11-01
Fluorescence diffuse optical tomography (FDOT) plays an important role in studying physiological and pathological processes of small animals in vivo. The low spatial resolution, however, limits the ability of FDOT in resolving the biodistributions of fluorescent markers. The anatomical information provided by X-ray computed tomography (CT) can be used to improve the image quality of FDOT. However, in most hybrid FDOT/CT systems, the projection data sets of optics and X-ray are acquired sequentially, which increases the acquisition time and bring in the unwanted soft tissue displacement. In this paper, we evaluate the performance of a synchronous FDOT/CT system, which allows for faster and concurrent imaging. Compared with previous FDOT/CT systems, the two subsystems (FDOT and CT) acquire projection images in synchronous mode, so the body position can keep consistent in the same projection data acquired by both subsystems. The experimental results of phantom and in vivo experiments suggest that the reconstruction quality of FDOT can be significantly improved when structural a priori information is utilized to constrain the reconstruction process. On the other hand, the synchronous FDOT/CT system decreases the imaging time.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres
2007-10-01
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.
Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction
NASA Astrophysics Data System (ADS)
Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro
Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.
CAVE2: a hybrid reality environment for immersive simulation and information analysis
NASA Astrophysics Data System (ADS)
Febretti, Alessandro; Nishimoto, Arthur; Thigpen, Terrance; Talandis, Jonas; Long, Lance; Pirtle, J. D.; Peterka, Tom; Verlo, Alan; Brown, Maxine; Plepys, Dana; Sandin, Dan; Renambot, Luc; Johnson, Andrew; Leigh, Jason
2013-03-01
Hybrid Reality Environments represent a new kind of visualization spaces that blur the line between virtual environments and high resolution tiled display walls. This paper outlines the design and implementation of the CAVE2TM Hybrid Reality Environment. CAVE2 is the world's first near-seamless flat-panel-based, surround-screen immersive system. Unique to CAVE2 is that it will enable users to simultaneously view both 2D and 3D information, providing more flexibility for mixed media applications. CAVE2 is a cylindrical system of 24 feet in diameter and 8 feet tall, and consists of 72 near-seamless, off-axisoptimized passive stereo LCD panels, creating an approximately 320 degree panoramic environment for displaying information at 37 Megapixels (in stereoscopic 3D) or 74 Megapixels in 2D and at a horizontal visual acuity of 20/20. Custom LCD panels with shifted polarizers were built so the images in the top and bottom rows of LCDs are optimized for vertical off-center viewing- allowing viewers to come closer to the displays while minimizing ghosting. CAVE2 is designed to support multiple operating modes. In the Fully Immersive mode, the entire room can be dedicated to one virtual simulation. In 2D model, the room can operate like a traditional tiled display wall enabling users to work with large numbers of documents at the same time. In the Hybrid mode, a mixture of both 2D and 3D applications can be simultaneously supported. The ability to treat immersive work spaces in this Hybrid way has never been achieved before, and leverages the special abilities of CAVE2 to enable researchers to seamlessly interact with large collections of 2D and 3D data. To realize this hybrid ability, we merged the Scalable Adaptive Graphics Environment (SAGE) - a system for supporting 2D tiled displays, with Omegalib - a virtual reality middleware supporting OpenGL, OpenSceneGraph and Vtk applications.
Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.
Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Adamo, Carlo
2009-09-08
Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.
Performance characteristic of hybrid cooling system based on cooling pad and evaporator
NASA Astrophysics Data System (ADS)
Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.
2018-01-01
In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1% of minor difference at the same comparison condition.
Nanomechanical properties of hybrid coatings for bone tissue engineering.
Skarmoutsou, Amalia; Lolas, Georgios; Charitidis, Costas A; Chatzinikolaidou, Maria; Vamvakaki, Maria; Farsari, Maria
2013-09-01
Bone tissue engineering has emerged as a promising alternative approach in the treatment of bone injuries and defects arising from malformation, osteoporosis, and tumours. In this approach, a temporary scaffold possessing mechanical properties resembling those of natural bone is needed to serve as a substrate enhancing cell adhesion and growth, and a physical support to guide the formation of the new bone. In this regard, the scaffold should be biocompatible, biodegradable, malleable and mechanically strong. Herein, we investigate the mechanical properties of three coatings of different chemical compositions onto silanized glass substrates; a hybrid material consisting of methacryloxypropyl trimethoxysilane and zirconium propoxide, a type of a hybrid organic-inorganic material of the above containing also 50 mol% 2-(dimethylamino)ethyl methacrylate (DMAEMA) moieties and a pure organic material, based on PDMAEMA. This study investigates the variations in the measured hardness and reduced modulus values, wear resistance and plastic behaviour before and after samples' submersion in cell culture medium. Through this analysis we aim to explain how hybrid materials behave under applied stresses (pile-up formations), how water uptake changes this behaviour, and estimate how these materials will react while interaction with cells in tissue engineering applications. Finally, we report on the pre-osteoblastic cell adhesion and proliferation on three-dimensional structures of the hybrid materials within the first hour and up to 7 days in culture. It was evident that hybrid structure, consisting of 50 mol% organic-inorganic material, reveals good mechanical behaviour, wear resistance and cell adhesion and proliferation, suggesting a possible candidate in bone tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.
Coherent energy scale revealed by ultrafast dynamics of UX3 (X = Al, Sn, Ga) single crystals
NASA Astrophysics Data System (ADS)
Nair, Saritha K.; Zhu, J.-X.; Sarrao, J. L.; Taylor, A. J.; Chia, Elbert E. M.
2012-09-01
The temperature dependence of relaxation dynamics of UX3 (X = Al, Ga, Sn) compounds is studied using the time-resolved pump-probe technique in reflectance geometry. For UGa3, our data are consistent with the formation of a spin density wave gap as evidenced from the quasidivergence of the relaxation time τ near the Néel temperature TN. For UAl3 and USn3, the relaxation dynamics shows a change from single-exponential to two-exponential behavior below a particular temperature, suggestive of coherence formation of the 5f electrons with the conduction band electrons. This particular temperature can be attributed to the spin fluctuation temperature Tsf, a measure of the strength of Kondo coherence. Our Tsf is consistent with other data such as resistivity and susceptibility measurements. The temperature dependence of the relaxation amplitude and time of UAl3 and USn3 were also fitted by the Rothwarf-Taylor model. Our results show that ultrafast optical spectroscopy is sensitive to c-f Kondo hybridization in the f-electron systems.
Micro arc oxidized HAp-TiO 2 nanostructured hybrid layers-part I: Effect of voltage and growth time
NASA Astrophysics Data System (ADS)
Abbasi, S.; Bayati, M. R.; Golestani-Fard, F.; Rezaei, H. R.; Zargar, H. R.; Samanipour, F.; Shoaei-Rad, V.
2011-05-01
Micro arc oxidation was employed to grow hydroxyapatite-TiO 2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ˜42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (˜1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.
Tafe, Laura J; Allen, Samantha F; Steinmetz, Heather B; Dokus, Betty A; Cook, Leanne J; Marotti, Jonathan D; Tsongalis, Gregory J
2014-08-01
HER2 fluorescence in-situ hybridization (FISH) is used in breast and gastro-esophageal carcinoma for determining HER2 gene amplification and patients' eligibility for HER2 targeted therapeutics. Traditional manual processing of the FISH slides is labor intensive because of multiple steps that require hands on manipulation of the slides and specifically timed intervals between steps. This highly manual processing also introduces inter-run and inter-operator variability that may affect the quality of the FISH result. Therefore, we sought to incorporate an automated processing instrument into our FISH workflow. Twenty-six cases including breast (20) and gastro-esophageal (6) cancer comprising 23 biopsies and three excision specimens were tested for HER2 FISH (Pathvysion, Abbott) using the Thermobrite Elite (TBE) system (Leica). Up to 12 slides can be run simultaneously. All cases were previously tested by the Pathvysion HER2 FISH assay with manual preparation. Twenty cells were counted by two observers for each case; five cases were tested on three separate runs by different operators to evaluate the precision and inter-operator variability. There was 100% concordance in the scoring between the manual and TBE methods as well as among the five cases that were tested on three runs. Only one case failed due to poor probe hybridization. In total, seven cases were positive for HER2 amplification (HER2:CEP17 ratio >2.2) and the remaining 19 were negative (HER2:CEP17 ratio <1.8) utilizing the 2007 ASCO/CAP scoring criteria. Due to the automated denaturation and hybridization, for each run, there was a reduction in labor of 3.5h which could then be dedicated to other lab functions. The TBE is a walk away pre- and post-hybridization system that automates FISH slide processing, improves work flow and consistency and saves approximately 3.5h of technologist time. The instrument has a small footprint thus occupying minimal counter space. TBE processed slides performed exceptionally well in comparison to the manual technique with no disagreement in HER2 amplification status. Copyright © 2014 Elsevier Inc. All rights reserved.
Early Stages in Building Hybrid Activity between School and Work: The Case of PénArt
ERIC Educational Resources Information Center
Barma, Sylvie; Laferrière, Thérèse; Lemieux, Bruno; Massé-Morneau, Julie; Vincent, Marie-Caroline
2017-01-01
This formative intervention documents the emergence of a hybrid activity aiming at student engagement and academic achievement. In this context-bound study, early stages of this activity consisted in establishing PénArt meant to enable high school students with difficulties to start up their own business at school. It involved reaching agreements…
A hybrid group method of data handling with discrete wavelet transform for GDP forecasting
NASA Astrophysics Data System (ADS)
Isa, Nadira Mohamed; Shabri, Ani
2013-09-01
This study is proposed the application of hybridization model using Group Method of Data Handling (GMDH) and Discrete Wavelet Transform (DWT) in time series forecasting. The objective of this paper is to examine the flexibility of the hybridization GMDH in time series forecasting by using Gross Domestic Product (GDP). A time series data set is used in this study to demonstrate the effectiveness of the forecasting model. This data are utilized to forecast through an application aimed to handle real life time series. This experiment compares the performances of a hybrid model and a single model of Wavelet-Linear Regression (WR), Artificial Neural Network (ANN), and conventional GMDH. It is shown that the proposed model can provide a promising alternative technique in GDP forecasting.
Face recognition: database acquisition, hybrid algorithms, and human studies
NASA Astrophysics Data System (ADS)
Gutta, Srinivas; Huang, Jeffrey R.; Singh, Dig; Wechsler, Harry
1997-02-01
One of the most important technologies absent in traditional and emerging frontiers of computing is the management of visual information. Faces are accessible `windows' into the mechanisms that govern our emotional and social lives. The corresponding face recognition tasks considered herein include: (1) Surveillance, (2) CBIR, and (3) CBIR subject to correct ID (`match') displaying specific facial landmarks such as wearing glasses. We developed robust matching (`classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET database. The hybrid classifier architecture consist of an ensemble of connectionist networks--radial basis functions-- and decision trees. The specific characteristics of our hybrid architecture include (a) query by consensus as provided by ensembles of networks for coping with the inherent variability of the image formation and data acquisition process, and (b) flexible and adaptive thresholds as opposed to ad hoc and hard thresholds. Experimental results, proving the feasibility of our approach, yield (i) 96% accuracy, using cross validation (CV), for surveillance on a data base consisting of 904 images (ii) 97% accuracy for CBIR tasks, on a database of 1084 images, and (iii) 93% accuracy, using CV, for CBIR subject to correct ID match tasks on a data base of 200 images.
Fessehaie, Anania; De Boer, Solke H; Lévesque, C André
2003-03-01
ABSTRACT Oligonucleotides, 16 to 24 bases long, were selected from the 3' end of the 16S gene and the 16S-23S intergenic spacer regions of bacteria pathogenic on potato, including Clavibacter michiganensis subsp. sepedonicus, Ralstonia solanacearum, and the pectolytic erwinias, including Erwinia carotovora subsp. atroseptica and carotovora and E. chrysanthemi. Oligonucleotides were designed and formatted into an array by pin spotting on nylon membranes. Genomic DNA from bacterial cultures was amplified by polymerase chain reaction using conserved ribosomal primers and labeled simultaneously with digoxigenin-dUTP. Hybridization of amplicons to the array and subsequent serological detection of digoxigenin label revealed different hybridization patterns that were distinct for each species and subspecies tested. Hybridization of amplicons generally was restricted to appropriate homologous oligonucleotides and cross-hybridization with heterologous oligonucleotides was rare. Hybridization patterns were recorded as separate gray values for each hybridized spot and revealed a consistent pattern for multiple strains of each species or subspecies isolated from diverse geographical regions. In preliminary tests, bacteria could be correctly identified and detected by hybridizing to the array amplicons from mixed cultures and inoculated potato tissue.
Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong
2012-01-01
In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584
Molecular beacon modified sensor chips for oligonucleotide detection with optical readout.
Su, Qiang; Wesner, Daniel; Schönherr, Holger; Nöll, Gilbert
2014-12-02
Three different surface bound molecular beacons (MBs) were investigated using surface plasmon fluorescence spectroscopy (SPFS) as an optical readout technique. While MB1 and MB2, both consisting of 36 bases, differed only in the length of the linker for surface attachment, the significantly longer MB3, consisting of 56 bases, comprised an entirely different sequence. For sensor chip preparation, the MBs were chemisorbed on gold via thiol anchors together with different thiol spacers. The influence of important parameters, such as the length of the MBs, the length of the linker between the MBs and the gold surface, the length and nature of the thiol spacers, and the ratio between the MBs and the thiol spacers was studied. After hybridization with the target, the fluorophore of the longer MB3 was oriented close to the surface, and the shorter MBs were standing more or less upright, leading to a larger increase in fluorescence intensity. Fluorescence microscopy revealed a homogeneous distribution of the MBs on the surface. The sensor chips could be used for simple and fast detection of target molecules with a limit of detection in the larger picomolar range. The response time was between 5 and 20 min. Furthermore, it was possible to distinguish between fully complementary and singly mismatched targets. While rinsing with buffer solution after hybridization with target did not result in any signal decrease, complete dehybridization could be carried out by intense rinsing with pure water. The MB modified sensor chips could be prepared in a repeatable manner and reused many times without significant decrease in performance.
Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D
2012-09-01
Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.
Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin
2008-11-04
We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.
Analysis of a solar PV/battery/DG set-based hybrid system for a typical telecom load: a case study
NASA Astrophysics Data System (ADS)
Iqbal, A.; Arif, M. Saad Bin; Ayob, Shahrin Md; Siddiqui, Khursheed
2017-03-01
This paper analyses the technical and economic feasibility of using a hybrid renewable energy source for a typical telecom load in the state of Qatar. The hybrid system considered in this work consists of a solar photovoltaic with storage battery and diesel generator set. For this particular hybrid system, the meteorological data of solar irradiance in Doha city (latitude 25.15 ° North and longitude 51.33 ° East) are taken from NASA surface meteorology and solar energy websites. The solar irradiance in Doha is 5.33 kWh/m2/day on an annual average scale. The data are also taken through the study of load consumption of Qatar telecommunication hybrid power system. The system is designed and its techno-economic analysis is carried out using the Hybrid Optimization Model for Electrical Renewable software. The results show both technical and economic viability of replacing the conventional DG sets with the proposed renewable energy source.
Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.
Mishra, Paras Kumar; Singh, Bashisth Narayan
2006-06-01
Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.
Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration
NASA Technical Reports Server (NTRS)
Bradley, Marty K.; Droney, Christopher K.
2015-01-01
This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals
Species collapse via hybridization in Darwin's tree finches.
Kleindorfer, Sonia; O'Connor, Jody A; Dudaniec, Rachael Y; Myers, Steven A; Robertson, Jeremy; Sulloway, Frank J
2014-03-01
Species hybridization can lead to fitness costs, species collapse, and novel evolutionary trajectories in changing environments. Hybridization is predicted to be more common when environmental conditions change rapidly. Here, we test patterns of hybridization in three sympatric tree finch species (small tree finch Camarhynchus parvulus, medium tree finch Camarhynchus pauper, and large tree finch: Camarhynchus psittacula) that are currently recognized on Floreana Island, Galápagos Archipelago. Genetic analysis of microsatellite data from contemporary samples showed two genetic populations and one hybrid cluster in both 2005 and 2010; hybrid individuals were derived from genetic population 1 (small morph) and genetic population 2 (large morph). Females of the large and rare species were more likely to pair with males of the small common species. Finch populations differed in morphology in 1852-1906 compared with 2005/2010. An unsupervised clustering method showed (a) support for three morphological clusters in the historical tree finch sample (1852-1906), which is consistent with current species recognition; (b) support for two or three morphological clusters in 2005 with some (19%) hybridization; and (c) support for just two morphological clusters in 2010 with frequent (41%) hybridization. We discuss these findings in relation to species demarcations of Camarhynchus tree finches on Floreana Island.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
The GMAO Hybrid Ensemble-Variational Atmospheric Data Assimilation System: Version 2.0
NASA Technical Reports Server (NTRS)
Todling, Ricardo; El Akkraoui, Amal
2018-01-01
This document describes the implementation and usage of the Goddard Earth Observing System (GEOS) Hybrid Ensemble-Variational Atmospheric Data Assimilation System (Hybrid EVADAS). Its aim is to provide comprehensive guidance to users of GEOS ADAS interested in experimenting with its hybrid functionalities. The document is also aimed at providing a short summary of the state-of-science in this release of the hybrid system. As explained here, the ensemble data assimilation system (EnADAS) mechanism added to GEOS ADAS to enable hybrid data assimilation applications has been introduced to the pre-existing machinery of GEOS in the most non-intrusive possible way. Only very minor changes have been made to the original scripts controlling GEOS ADAS with the objective of facilitating its usage by both researchers and the GMAO's near-real-time Forward Processing applications. In a hybrid scenario two data assimilation systems run concurrently in a two-way feedback mode such that: the ensemble provides background ensemble perturbations required by the ADAS deterministic (typically high resolution) hybrid analysis; and the deterministic ADAS provides analysis information for recentering of the EnADAS analyses and information necessary to ensure that observation bias correction procedures are consistent between both the deterministic ADAS and the EnADAS. The nonintrusive approach to introducing hybrid capability to GEOS ADAS means, in particular, that previously existing features continue to be available. Thus, not only is this upgraded version of GEOS ADAS capable of supporting new applications such as Hybrid 3D-Var, 3D-EnVar, 4D-EnVar and Hybrid 4D-EnVar, it remains possible to use GEOS ADAS in its traditional 3D-Var mode which has been used in both MERRA and MERRA-2. Furthermore, as described in this document, GEOS ADAS also supports a configuration for exercising a purely ensemble-based assimilation strategy which can be fully decoupled from its variational component. We should point out that Release 1.0 of this document was made available to GMAO in mid-2013, when we introduced Hybrid 3D-Var capability to GEOS ADAS. This initial version of the documentation included a considerably different state-of-science introductory section but many of the same detailed description of the mechanisms of GEOS EnADAS. We are glad to report that a few of the desirable Future Works listed in Release 1.0 have now been added to the present version of GEOS EnADAS. These include the ability to exercise an Ensemble Prediction System that uses the ensemble analyses of GEOS EnADAS and (a very early, but functional version of) a tool to support Ensemble Forecast Sensitivity and Observation Impact applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au
2014-12-29
We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way formore » realizing functional nanostructures.« less
Transparent and robust siloxane-based hybrid lamella film as a water vapor barrier coating.
Tokudome, Yasuaki; Hara, Takaaki; Abe, Risa; Takahashi, Masahide
2014-11-12
Water vapor barriers are important in various application fields, such as food packaging and sealants in electronic devices. Polymer/clay composites are well-studied water vapor barrier materials, but their transparency and mechanical strength degrade with increasing clay loading. Herein, we demonstrate films with good water vapor barrier properties, high transparency, and mechanical/thermal stability. Water vapor barrier films were prepared by the solution crystallization of siloxane hybrid lamellae. The films consist of highly crystallized organic/inorganic hybrid lamellae, which provide high transparency, hardness, and thermal stability and inhibit the permeation of water vapor. The water permeability of a 6 μm thick hybrid film is comparable to that of a 200 μm thick silicon rubber film.
Loveridge, Melanie J; Lain, Michael J; Huang, Qianye; Wan, Chaoying; Roberts, Alexander J; Pappas, George S; Bhagat, Rohit
2016-11-09
Hybrid anode materials consisting of micro-sized silicon (Si) particles interconnected with few-layer graphene (FLG) nanoplatelets and sodium-neutralized poly(acrylic acid) as a binder were evaluated for Li-ion batteries. The hybrid film has demonstrated a reversible discharge capacity of ∼1800 mA h g -1 with a capacity retention of 97% after 200 cycles. The superior electrochemical properties of the hybrid anodes are attributed to a durable, hierarchical conductive network formed between Si particles and the multi-scale carbon additives, with enhanced cohesion by the functional polymer binder. Furthermore, improved solid electrolyte interphase (SEI) stability is achieved from the electrolyte additives, due to the formation of a kinetically stable film on the surface of the Si.
Huang, Hao; Zhang, Guifu; Zhao, Kun; ...
2016-10-20
A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (K DP) and to improve rain estimation. Moreover, the hybrid K DP estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phase (δ hv) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and K DP-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid K DP estimatormore » over existing methods.« less
NASA Astrophysics Data System (ADS)
Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an
2016-03-01
Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.
Magnetic Reconnections in Mast
NASA Astrophysics Data System (ADS)
Turri, G.; Buttery, R. J.; Hastie, R. J.; Gimblett, C. G.; Cowley, S. C.; Lehane, I.
2004-11-01
In MAST the appearance of a spontaneous snake in the plasma core has many of the properties of a full reconnection. Analysis of SXR and TS data indicates a strongly radiating core with high impurity levels forming before the onset of the snake. Following the appearance of an x-point (island on the q=1 surface) the former core is hypothesised to move off axis and shrink, appearing as a radiative region with flux-tube-like rotating helical structure (the snake). A code has been developed to compare this with a slow full Kadomtsev type reconnection process including effects of impurities, density and temperature perturbations, current profile evolution and transport. The code reproduces many of the trends and effects seen in the data, confirming the event as consistent with full reconnection. The time-scale of the event is also consistent with estimates of hybrid growth times for such a reconnection process. Further analysis will be presented exploring the physics of this process in more detail.
NASA Astrophysics Data System (ADS)
McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.
2006-02-01
We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.
Genetic identity of Thamnophis sp. using microsatellite genetic markers
Sloss, Brian L.
2011-01-01
Butler’s gartersnake (Thamnophis butleri) was previously listed by the Wisconsin Department of Natural Resources as a state threatened species. Several key questions associated with species identity, integrity, and hybridization with other gartersnake species needed to be addressed to further refi ne the management plan for this species. The objectives of this research were: 1) to determine if genetic markers developed in the initial phase of research could identify discrete genetic groups of Wisconsin gartersnakes, 2) to determine if any or all genetic groups delineated in objective one were consistent with Butler’s gartersnake, plains gartersnake (T. radix), and/or common gartersnake (T. sirtalis), and 3) to determine if any of the genetic data were consistent with hybridization occurring between gartersnakes in Wisconsin. Snakes were sampled from various Midwestern locations with a focus on sites in Wisconsin. All snakes were photo-vouchered, morphological landmarks were taken, and a tail snip was collected for genetic analysis. Genetic data from previously developed microsatellite markers discriminated three genetic groups from a composite 13-locus dataset (N=815) using the Bayesian admixture analysis in STRUCTURE v2.3.3. These units were highly consistent with species-groups based on the membership of a small number of known snakes from areas where the species are not thought to co-occur. Using a threshold q-value (proportional genotype) of ≥80%, 498 Butler’s gartersnakes, 93 plains gartersnakes, and 107 common gartersnakes were identifi ed in Wisconsin samples; putative hybrid snakes of Butler’s gartersnake x plain gartersnake (34), Butler’s gartersnake x common gartersnake (8), and a single ambiguous snake were also identifi ed in Wisconsin samples. Levels of divergence among the species groups from Wisconsin were lower than between species groups from other states consistent with either larger than expected Wisconsin population sizes or signifi cant gene fl ow (introgressive hybridization) having occurred among species. Regardless, levels of divergence and overall integrity of the three groups were such that the presence of three species of gartersnakes in Wisconsin was supported and hybridization, at a minimum between Butler’s gartersnakes and the two other species, was shown to occur.
Augmented Quantum Yield of a 2D Monolayer Photodetector by Surface Plasmon Coupling.
Bang, Seungho; Duong, Ngoc Thanh; Lee, Jubok; Cho, Yoo Hyun; Oh, Hye Min; Kim, Hyun; Yun, Seok Joon; Park, Chulho; Kwon, Min-Ki; Kim, Ja-Yeon; Kim, Jeongyong; Jeong, Mun Seok
2018-04-11
Monolayer (1L) transition metal dichalcogenides (TMDCs) are promising materials for nanoscale optoelectronic devices because of their direct band gap and wide absorption range (ultraviolet to infrared). However, 1L-TMDCs cannot be easily utilized for practical optoelectronic device applications (e.g., photodetectors, solar cells, and light-emitting diodes) because of their extremely low optical quantum yields (QYs). In this investigation, a high-gain 1L-MoS 2 photodetector was successfully realized, based on the surface plasmon (SP) of the Ag nanowire (NW) network. Through systematic optical characterization of the hybrid structure consisting of a 1L-MoS 2 and the Ag NW network, it was determined that a strong SP and strain relaxation effect influenced a greatly enhanced optical QY. The photoluminescence (PL) emission was drastically increased by a factor of 560, and the main peak was shifted to the neutral exciton of 1L-MoS 2 . Consequently, the overall photocurrent of the hybrid 1L-MoS 2 photodetector was observed to be 250 times better than that of the pristine 1L-MoS 2 photodetector. In addition, the photoresponsivity and photodetectivity of the hybrid photodetector were effectively improved by a factor of ∼1000. This study provides a new approach for realizing highly efficient optoelectronic devices based on TMDCs.
Lupan, Oleg; Schütt, Fabian; Postica, Vasile; Smazna, Daria; Mishra, Yogendra Kumar; Adelung, Rainer
2017-11-07
In this work, the influence of carbon nanotube (CNT) hybridization on ultraviolet (UV) and gas sensing properties of individual and networked ZnO nanowires (NWs) is investigated in detail. The CNT concentration was varied to achieve optimal conditions for the hybrid with improved sensing properties. In case of CNT decorated ZnO nanonetworks, the influence of relative humidity (RH) and applied bias voltage on the UV sensing properties was thoroughly studied. By rising the CNT content to about 2.0 wt% (with respect to the entire ZnO network) the UV sensing response is considerably increased from 150 to 7300 (about 50 times). With respect to gas sensing, the ZnO-CNT networks demonstrate an excellent selectivity as well as a high gas response to NH 3 vapor. A response of 430 to 50 ppm at room temperature was obtained, with an estimated detection limit of about 0.4 ppm. Based on those results, several devices consisting of individual ZnO NWs covered with CNTs were fabricated using a FIB/SEM system. The highest sensing performance was obtained for the finest NW with diameter (D) of 100 nm, with a response of about 4 to 10 ppm NH 3 vapor at room temperature.
NASA Astrophysics Data System (ADS)
Luo, Yugong; Chen, Tao; Li, Keqiang
2015-12-01
The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.
Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.
von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui
2016-05-01
Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.
Hybrid structure of white layer in high carbon steel - Formation mechanism and its properties.
Hossain, Rumana; Pahlevani, Farshid; Witteveen, Evelien; Banerjee, Amborish; Joe, Bill; Prusty, B Gangadhara; Dippenaar, Rian; Sahajwalla, Veena
2017-10-16
This study identifies for the first time, the hybrid structure of the white layer in high carbon steel and describes its formation mechanism and properties. The so-called 'white layer' in steel forms during high strain rate deformation and appears featureless under optical microscopy. While many researchers have investigated the formation of the white layer, there has been no definitive study, nor is there sufficient evidence to fully explain the formation, structure and properties of the layer. In this study, the formation, morphology and mechanical properties of the white layer was determined following impact testing, using a combination of optical and SE- microscopy, HR-EBSD, TKD and TEM as well as nano-indentation hardness measurements and FE modelling. The phase transformation and recrystallization within and near the white layer was also investigated. The microstructure of the steel in the white layer consisted of nano-sized grains of martensite. A very thin layer of austenite with nano sized grains was identified within the white layer by HR-EBSD techniques, the presence of which is attributed to a thermally-induced reverse phase transformation. Overall, the combination of phase transformations, strain hardening and grain refinement led to a hybrid structure and an increase in hardness of the white layer.
Lindtke, Dorothea; Gompert, Zachariah; Lexer, Christian; Buerkle, C Alex
2014-09-01
In the context of potential interspecific gene flow, the integrity of species will be maintained by reproductive barriers that reduce genetic exchange, including traits associated with prezygotic isolation or poor performance of hybrids. Hybrid zones can be used to study the importance of different reproductive barriers, particularly when both parental species and hybrids occur in close spatial proximity. We investigated the importance of barriers to gene flow that act early vs. late in the life cycle of European Populus by quantifying the prevalence of homospecific and hybrid matings within a mosaic hybrid zone. We obtained genotypic data for 11 976 loci from progeny and their maternal parents and constructed a Bayesian model to estimate individual admixture proportions and hybrid classes for sampled trees and for the unsampled pollen parent. Matings that included one or two hybrid parents were common, resulting in admixture proportions of progeny that spanned the whole range of potential ancestries between the two parental species. This result contrasts strongly with the distribution of admixture proportions in adult trees, where intermediate hybrids and each of the parental species are separated into three discrete ancestry clusters. The existence of the full range of hybrids in seedlings is consistent with weak reproductive isolation early in the life cycle of Populus. Instead, a considerable amount of selection must take place between the seedling stage and maturity to remove many hybrid seedlings. Our results highlight that high hybridization rates and appreciable hybrid fitness do not necessarily conflict with the maintenance of species integrity. © 2014 John Wiley & Sons Ltd.
The acylphosphatase (Acyp) alleles associate with male hybrid sterility in Drosophila.
Michalak, Pawel; Ma, Daina
2008-06-15
Hybrid defects are believed to result from genetic incompatibilities between genes that have evolved in separate parental lineages. These genetic dysfunctions on the hybrid genomic background, also known as Dobzhansky-Muller incompatibilities, can be an incipient signature of speciation, and as such - a subject of active research. Here we present evidence that Acyp locus (CG16870) that encodes acylphosphatase, a small enzyme that catalyzes the hydrolysis of acylphosphates and participates in ion transport across biological membranes, is involved in genetic incompatibilities leading to male sterility in hybrids between Drosophila simulans and D. mauritiana. There is a strong association between Acyp alleles (genotype) and the sterility/fertility pattern (phenotype), as well as between the phenotype, the genotype and its transcriptional activity. Allele-specific expression in hybrids heterozygous for Acyp suggests a cis-type regulation of this gene, where an allele from one of the parental species (D. simulans) is consistently overexpressed.
Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars
NASA Astrophysics Data System (ADS)
Paschalidis, Vasileios; Yagi, Kent; Alvarez-Castillo, David; Blaschke, David B.; Sedrakian, Armen
2018-04-01
Gravitational wave observations of GW170817 placed bounds on the tidal deformabilities of compact stars, allowing one to probe equations of state for matter at supranuclear densities. Here we design new parametrizations for hybrid hadron-quark equations of state, which give rise to low-mass twin stars, and test them against GW170817. We find that GW170817 is consistent with the coalescence of a binary hybrid star-neutron star. We also test and find that the I-Love-Q relations for hybrid stars in the third family agree with those for purely hadronic and quark stars within ˜3 % for both slowly and rapidly rotating configurations, implying that these relations can be used to perform equation-of-state independent tests of general relativity and to break degeneracies in gravitational waveforms for hybrid stars in the third family as well.
A hybridized formulation for the weak Galerkin mixed finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
A hybridized formulation for the weak Galerkin mixed finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-01-14
This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less
Quantum-dot-based quantitative identification of pathogens in complex mixture
NASA Astrophysics Data System (ADS)
Lim, Sun Hee; Bestwater, Felix; Buchy, Philippe; Mardy, Sek; Yu, Alexey Dan Chin
2010-02-01
In the present study we describe sandwich design hybridization probes consisting of magnetic particles (MP) and quantum dots (QD) with target DNA, and their application in the detection of avian influenza virus (H5N1) sequences. Hybridization of 25-, 40-, and 100-mer target DNA with both probes was analyzed and quantified by flow cytometry and fluorescence microscopy on the scale of single particles. The following steps were used in the assay: (i) target selection by MP probes and (ii) target detection by QD probes. Hybridization efficiency between MP conjugated probes and target DNA hybrids was controlled by a fluorescent dye specific for nucleic acids. Fluorescence was detected by flow cytometry to distinguish differences in oligo sequences as short as 25-mer capturing in target DNA and by gel-electrophoresis in the case of QD probes. This report shows that effective manipulation and control of micro- and nanoparticles in hybridization assays is possible.
Guo, Lei; Yan, Bing; Liu, Jin-Liang
2011-05-14
New kinds of organic-inorganic hybrid materials consisting of rare earth (Eu(3+), Tb(3+)) complexes covalently bonded to a silica-based network have been obtained by a sol-gel approach. Three novel versatile molecular building blocks containing sulfoxide organic units have been synthesized by methylene modification reaction, which are used as the ligands of rare earth ions and also as siloxane network precursors. The obtained hybrids are characterized by chemical analysis and spectroscopic methods such as FTIR and UV; XRD and SEM. Photoluminescence measurements on the prepared hybrids were performed showing the intra-4f(n) emission in the visible (Eu(3+), Tb(3+)) region and in all the cases being sensitized by the sulfoxide ligands. The emission quantum efficiency and the Judd-Ofelt intensity parameters of Eu(3+) hybrid materials were also investigated in detail.
Efficient hybrid evolutionary algorithm for optimization of a strip coiling process
NASA Astrophysics Data System (ADS)
Pholdee, Nantiwat; Park, Won-Woong; Kim, Dong-Kyu; Im, Yong-Taek; Bureerat, Sujin; Kwon, Hyuck-Cheol; Chun, Myung-Sik
2015-04-01
This article proposes an efficient metaheuristic based on hybridization of teaching-learning-based optimization and differential evolution for optimization to improve the flatness of a strip during a strip coiling process. Differential evolution operators were integrated into the teaching-learning-based optimization with a Latin hypercube sampling technique for generation of an initial population. The objective function was introduced to reduce axial inhomogeneity of the stress distribution and the maximum compressive stress calculated by Love's elastic solution within the thin strip, which may cause an irregular surface profile of the strip during the strip coiling process. The hybrid optimizer and several well-established evolutionary algorithms (EAs) were used to solve the optimization problem. The comparative studies show that the proposed hybrid algorithm outperformed other EAs in terms of convergence rate and consistency. It was found that the proposed hybrid approach was powerful for process optimization, especially with a large-scale design problem.
Gonzales, Patrick R; Mikhail, Fady M
2017-12-01
Acute myeloid leukemia (AML) is a hematologic neoplasia consisting of incompletely differentiated hematopoietic cells of the myeloid lineage that proliferate in the bone marrow, blood, and/or other tissues. Clinical implementation of fluorescence in situ hybridization (FISH) in cytogenetic laboratories allows for high-resolution analysis of recurrent structural chromosomal rearrangements specific to AML, especially in AML with normal karyotypes, which comprises approximately 33-50% of AML-positive specimens. Here, we review the use of several FISH probe strategies in the diagnosis of AML. We also review the standards and guidelines currently in place for use by clinical cytogenetic laboratories in the evaluation of AML. Updated standards and guidelines from the WHO, ACMG, and NCCN have further defined clinically significant, recurring cytogenetic anomalies in AML that are detectable by FISH. FISH continues to be a powerful technique in the diagnosis of AML, with higher resolution than conventional cytogenetic analysis, rapid turnaround time, and a considerable diagnostic and prognostic utility.
Development of multi-frequency ESR system for high-pressure measurements up to 2.5 GPa
NASA Astrophysics Data System (ADS)
Sakurai, T.; Fujimoto, K.; Matsui, R.; Kawasaki, K.; Okubo, S.; Ohta, H.; Matsubayashi, K.; Uwatoko, Y.; Tanaka, H.
2015-10-01
A new piston-cylinder pressure cell for electron spin resonance (ESR) has been developed. The pressure cell consists of a double-layer hybrid-type cylinder with internal components made of the ZrO2-based ceramics. It can generate a pressure of 2 GPa repeatedly and reaches a maximum pressure of around 2.5 GPa. A high-pressure ESR system using a cryogen-free superconducting magnet up 10 T has also been developed for this hybrid-type pressure cell. The frequency region is from 50 GHz to 400 GHz. This is the first time a pressure above 2 GPa has been achieved in multi-frequency ESR system using a piston-cylinder pressure cell. We demonstrate its potential by showing the results of the high-pressure ESR of the S = 1 system with the single ion anisotropy NiSnCl6 · 6H2O and the S = 1 / 2 quantum spin system CsCuCl3. We performed ESR measurements of these systems above 2 GPa successfully.
A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage
Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín
2017-01-01
The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102
A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.
Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel
2017-08-11
The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.
Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories
NASA Astrophysics Data System (ADS)
Möller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl
2003-12-01
We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at ˜2 μs, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.
NASA Astrophysics Data System (ADS)
Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming
2015-12-01
Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ~87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases.
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Karam, Tony; Rosu, Cornelia; Li, Xin; Do, Changwoo; Youm, Sang Gil; Haber, Louis; Russo, Paul; Nesterov, Evgueni
Controlled Kumada catalyst-transfer polymerization occurring by chain-growth mechanism was developed for the synthesis of conjugated polymers and block copolymers from the surface of inorganic substrates such as silica nanoparticles. Although synthesis of conjugated polymers via Kumada polymerization became an established method for solution polymerization, carrying out the same reaction in heterogeneous conditions to form monodisperse polymer chains still remains a challenge. We developed and described a simple and efficient approach to the preparation of surface-immobilized layer of catalytic Ni(II) initiator, and demonstrated using it to prepare polymers and block copolymers on silica nanoparticle. The structure of the resulting hybrid nanostructures was thoroughly studied using small-angle neutron and X-ray scattering, thermal analysis, and optical spectroscopy. The photoexcitation energy transfer processes in the conjugated polymer shell were studied via steady-state and time resolved transient absorption spectroscopy. This study uncovered important details of the energy transfer, which will be discussed in this presentation.
Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cwirzen, A.; Penttala, V.; Vornanen, C.
2008-10-15
The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durabilitymore » of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete.« less
Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania
2015-01-01
This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.
Saylor, Rachel A.; Reid, Erin A.; Lunte, Susan M.
2016-01-01
A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor L-DOPA metabolism in a rat brain slice. PMID:25958983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D
2015-12-31
Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on themore » type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)« less
NASA Astrophysics Data System (ADS)
Dalafi, A.; Naderi, M. H.; Motazedifard, Ali
2018-04-01
We investigate theoretically a hybrid system consisting of a Bose-Einstein condensate (BEC) trapped inside a laser-driven membrane-in-the-middle optomechanical cavity assisted with squeezed vacuum injection whose moving membrane interacts both linearly and quadratically with the radiation pressure of the cavity. It is shown that such a hybrid system is very suitable for generating strong quadrature squeezing in the mechanical mode of the membrane and the Bogoliubov mode of the BEC in the unresolved sideband regime. More interestingly, by choosing a suitable sign for the quadratic optomechanical coupling (QOC), one can achieve a very high degree of squeezing in the mechanical mode and a strong entanglement between the mechanical and atomic modes without the necessity of using squeezed light injection. Furthermore, the QOC changes the effective oscillation frequencies of both the mechanical and the atomic modes and affects their relaxation times. It can also make the system switch from optical bistability to tristability.
Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes.
Marras, Salvatore A E; Tyagi, Sanjay; Kramer, Fred Russell
2006-01-01
A number of formats for nucleic acid hybridization have been developed to identify DNA and RNA sequences that are involved in cellular processes and that aid in the diagnosis of genetic and infectious diseases. The introduction of hybridization probes with interactive fluorophore pairs has enabled the development of homogeneous hybridization assays for the direct identification of nucleic acids. A change in the fluorescence of these probes indicates the presence of a target nucleic acid, and there is no need to separate unbound probes from hybridized probes. The advantages of homogeneous hybridization assays are their speed and simplicity. In addition, homogeneous assays can be combined with nucleic acid amplification, enabling the detection of rare target nucleic acids. These assays can be followed in real time, providing quantitative determination of target nucleic acids over a broad range of concentrations.
Daucourt, Mia C; Schatschneider, Christopher; Connor, Carol M; Al Otaiba, Stephanie; Hart, Sara A
2018-01-01
Recent achievement research suggests that executive function (EF), a set of regulatory processes that control both thought and action necessary for goal-directed behavior, is related to typical and atypical reading performance. This project examines the relation of EF, as measured by its components, Inhibition, Updating Working Memory, and Shifting, with a hybrid model of reading disability (RD). Our sample included 420 children who participated in a broader intervention project when they were in KG-third grade (age M = 6.63 years, SD = 1.04 years, range = 4.79-10.40 years). At the time their EF was assessed, using a parent-report Behavior Rating Inventory of Executive Function (BRIEF), they had a mean age of 13.21 years ( SD = 1.54 years; range = 10.47-16.63 years). The hybrid model of RD was operationalized as a composite consisting of four symptoms, and set so that any child could have any one, any two, any three, any four, or none of the symptoms included in the hybrid model. The four symptoms include low word reading achievement, unexpected low word reading achievement, poorer reading comprehension compared to listening comprehension, and dual-discrepancy response-to-intervention, requiring both low achievement and low growth in word reading. The results of our multilevel ordinal logistic regression analyses showed a significant relation between all three components of EF (Inhibition, Updating Working Memory, and Shifting) and the hybrid model of RD, and that the strength of EF's predictive power for RD classification was the highest when RD was modeled as having at least one or more symptoms. Importantly, the chances of being classified as having RD increased as EF performance worsened and decreased as EF performance improved. The question of whether any one EF component would emerge as a superior predictor was also examined and results showed that Inhibition, Updating Working Memory, and Shifting were equally valuable as predictors of the hybrid model of RD. In total, all EF components were significant and equally effective predictors of RD when RD was operationalized using the hybrid model.
Daucourt, Mia C.; Schatschneider, Christopher; Connor, Carol M.; Al Otaiba, Stephanie; Hart, Sara A.
2018-01-01
Recent achievement research suggests that executive function (EF), a set of regulatory processes that control both thought and action necessary for goal-directed behavior, is related to typical and atypical reading performance. This project examines the relation of EF, as measured by its components, Inhibition, Updating Working Memory, and Shifting, with a hybrid model of reading disability (RD). Our sample included 420 children who participated in a broader intervention project when they were in KG-third grade (age M = 6.63 years, SD = 1.04 years, range = 4.79–10.40 years). At the time their EF was assessed, using a parent-report Behavior Rating Inventory of Executive Function (BRIEF), they had a mean age of 13.21 years (SD = 1.54 years; range = 10.47–16.63 years). The hybrid model of RD was operationalized as a composite consisting of four symptoms, and set so that any child could have any one, any two, any three, any four, or none of the symptoms included in the hybrid model. The four symptoms include low word reading achievement, unexpected low word reading achievement, poorer reading comprehension compared to listening comprehension, and dual-discrepancy response-to-intervention, requiring both low achievement and low growth in word reading. The results of our multilevel ordinal logistic regression analyses showed a significant relation between all three components of EF (Inhibition, Updating Working Memory, and Shifting) and the hybrid model of RD, and that the strength of EF’s predictive power for RD classification was the highest when RD was modeled as having at least one or more symptoms. Importantly, the chances of being classified as having RD increased as EF performance worsened and decreased as EF performance improved. The question of whether any one EF component would emerge as a superior predictor was also examined and results showed that Inhibition, Updating Working Memory, and Shifting were equally valuable as predictors of the hybrid model of RD. In total, all EF components were significant and equally effective predictors of RD when RD was operationalized using the hybrid model. PMID:29662458
Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning
2016-01-01
The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies.
Wu, Haibin; He, Xiaoli; Gong, Hao; Luo, Shaobo; Li, Mingzhu; Chen, Junqiu; Zhang, Changyuan; Yu, Ting; Huang, Wangping; Luo, Jianning
2016-01-01
The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies. PMID:27458467
Takashima, Masako; Sriswasdi, Sira; Manabe, Ri-Ichiroh; Ohkuma, Moriya; Sugita, Takashi; Iwasaki, Wataru
2018-01-01
To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam
2011-02-01
This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.
A Hybrid Method of Moment Equations and Rate Equations to Modeling Gas-Grain Chemistry
NASA Astrophysics Data System (ADS)
Pei, Y.; Herbst, E.
2011-05-01
Grain surfaces play a crucial role in catalyzing many important chemical reactions in the interstellar medium (ISM). The deterministic rate equation (RE) method has often been used to simulate the surface chemistry. But this method becomes inaccurate when the number of reacting particles per grain is typically less than one, which can occur in the ISM. In this condition, stochastic approaches such as the master equations are adopted. However, these methods have mostly been constrained to small chemical networks due to the large amounts of processor time and computer power required. In this study, we present a hybrid method consisting of the moment equation approximation to the stochastic master equation approach and deterministic rate equations to treat a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In this model, we use the standard OSU gas phase network (version OSU2006V3) which involves 458 gas phase species and more than 4000 reactions, and treat it by deterministic rate equations. A medium-sized surface reaction network which consists of 21 species and 19 reactions accounts for the productions of stable molecules such as H_2O, CO, CO_2, H_2CO, CH_3OH, NH_3 and CH_4. These surface reactions are treated by a hybrid method of moment equations (Barzel & Biham 2007) and rate equations: when the abundance of a surface species is lower than a specific threshold, say one per grain, we use the ``stochastic" moment equations to simulate the evolution; when its abundance goes above this threshold, we use the rate equations. A continuity technique is utilized to secure a smooth transition between these two methods. We have run chemical simulations for a time up to 10^8 yr at three temperatures: 10 K, 15 K, and 20 K. The results will be compared with those generated from (1) a completely deterministic model that uses rate equations for both gas phase and grain surface chemistry, (2) the method of modified rate equations (Garrod 2008), which partially takes into account the stochastic effect for surface reactions, and (3) the master equation approach solved using a Monte Carlo technique. At 10 K and standard grain sizes, our model results agree well with the above three methods, while discrepancies appear at higher temperatures and smaller grain sizes.
Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions
NASA Technical Reports Server (NTRS)
Balmes, Etienne
1993-01-01
An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... enough dual fuel vehicles (except plug-in hybrid electric vehicles) to improve the calculated fuel... vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations Relating... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel...
Code of Federal Regulations, 2013 CFR
2013-10-01
... enough dual fuel vehicles (except plug-in hybrid electric vehicles) to improve the calculated fuel... vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations Relating... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel...
Kalbe, Martin; Eizaguirre, Christophe; Scharsack, Jörn P; Jakobsen, Per J
2016-03-08
In host-parasite evolutionary arms races, parasites are generally expected to adapt more rapidly, due to their large population sizes and short generation times. There exist systems, though, where parasites cannot outpace their hosts because of similar generation times in both antagonists. In those cases concomitant adaptation is expected. We tested this hypothesis in the three-spined stickleback-Schistocephalus solidus tapeworm system, where generation times are comparable in both organisms. We chose two populations of sticklebacks which differ prominently in the prevalence of S. solidus and consequently in its level of selective pressure. We performed a full factorial common garden experiment. Particularly, Norwegian (NO) and German (DE) sticklebacks, as well as hybrids between both stickleback populations and in both parental combinations, were exposed each to a single S. solidus originating from the same two host populations. We found the infection phenotype to depend on the host population, the parasite population, but not their interaction. NO-parasites showed higher infectivity than DE-parasites, with NO-sticklebacks also being more resistant to DE-parasites than to the sympatric NO-parasite. Reciprocally, DE-hosts were more susceptible to the allopatric NO-parasite while DE-parasites grew less than NO-parasites in all stickleback groups. Despite this asymmetry, the ratio of worm to host weight, an indicator of parasite virulence, was identical in both sympatric combinations, suggesting an optimal virulence as a common outcome of parallel coevolved systems. In hybrid sticklebacks, intermediate infection rates and growth of S. solidus from either origin suggests a simple genetic basis of resistance. However, comparison of infection phenotypes in NO-maternal and DE-maternal hybrid sticklebacks indicates local adaptation to the sympatric counterpart in both the host and the parasite. Host-parasite systems with similar generation time show evidence for concomitant reciprocal adaptation resulting in parasite optimal virulence and host parasite specific resistance.
Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex
Gray, Robert D.; Trent, John O.; Chaires, Jonathan B.
2014-01-01
Sequence analogues of human telomeric DNA such as d[AGGG(TTAGGG)3] (Tel22) fold into monomeric quadruplex structures in the presence of a suitable cation. To investigate the pathway for unimolecular quadruplex formation, we monitored the kinetics of K+-induced folding of Tel22 by circular dichroism (CD), intrinsic 2-aminopurine fluorescence, and fluorescence resonance energy transfer (FRET). The results are consistent with a four-step pathway U ↔ I1 ↔ I2 ↔ I3 ↔ F where U and F represent unfolded and folded conformational ensembles, and I1, I2, and I3 are intermediates. Previous kinetic studies have shown that I1 is formed in a rapid pre-equilibrium and may consist of an ensemble of “prefolded” hairpin structures brought about by cation-induced electrostatic collapse of the DNA. The current study shows that I1 converts to I2 with a relaxation time τ1 = 0.1 s at 25 °C in 25 mM KCl. The CD spectrum of I2 is characteristic of an antiparallel quadruplex that could form as a result of intra-molecular fold-over of the I1 hairpins. I3 is relatively slowly formed (τ2 ≈ 3700 s) and has CD and FRET properties consistent with those expected of a triplex structure as previously observed in equilibrium melting studies. I3 converts to F with τ3 ≈ 750 s. Identical pathways with different kinetic constants involving a rapidly formed antiparallel intermediate were observed with oligonucleotides forming mixed parallel/antiparallel hybrid-1 and hybrid-2 topologies (e.g. d[TTGGG(TTAGGG)3A and d[TAGGG(TTAGGG)3TT]). Aspects of the kinetics of unfolding were also monitored by the spectroscopic methods listed above and by time-resolved fluorescence lifetime measurements using a complementary strand trap assay. These experiments reveal a slow, rate-limiting step along the unfolding pathway. PMID:24487181
NASA Astrophysics Data System (ADS)
Guarnaccia, Claudio; Quartieri, Joseph; Tepedino, Carmine
2017-06-01
The dangerous effect of noise on human health is well known. Both the auditory and non-auditory effects are largely documented in literature, and represent an important hazard in human activities. Particular care is devoted to road traffic noise, since it is growing according to the growth of residential, industrial and commercial areas. For these reasons, it is important to develop effective models able to predict the noise in a certain area. In this paper, a hybrid predictive model is presented. The model is based on the mixing of two different approach: the Time Series Analysis (TSA) and the Artificial Neural Network (ANN). The TSA model is based on the evaluation of trend and seasonality in the data, while the ANN model is based on the capacity of the network to "learn" the behavior of the data. The mixed approach will consist in the evaluation of noise levels by means of TSA and, once the differences (residuals) between TSA estimations and observed data have been calculated, in the training of a ANN on the residuals. This hybrid model will exploit interesting features and results, with a significant variation related to the number of steps forward in the prediction. It will be shown that the best results, in terms of prediction, are achieved predicting one step ahead in the future. Anyway, a 7 days prediction can be performed, with a slightly greater error, but offering a larger range of prediction, with respect to the single day ahead predictive model.
Debus, Eike S; Kölbel, Tilo; Duprée, Anna; Daum, Günter; Sandhu, Harleen K; Manzoni, Daniel; Wipper, Sabine H
2018-02-01
The hybrid SPIDER-graft consists of a proximal descending aortic stent graft and a conventional six branched Dacron graft for open abdominal aortic repair. Technical feasibility with regard to avoiding thoracotomy and extracorporeal circulation (ECC) during thoraco-abdominal aortic hybrid repair and peri-procedural safety of this novel device are unknown. This was a feasibility and safety study in domestic pigs (75-85 kg). The abdominal aorta including iliac bifurcation, left renal artery, and visceral arteries were exposed via retroperitoneal access. The right iliac branch was first temporarily anastomosed end to side to the distal aorta via partial clamping. During inflow reduction and infra-coeliac cross-clamping, the coeliac trunk (CT) was divided and the proximal stent graft portion of the SPIDER-graft was deployed into the descending aorta via the CT ostium. Retrograde visceral and antegrade aorto-iliac blood flow was maintained via the iliac side branch. The visceral, renal, and iliac arteries were sequentially anastomosed, finally replacing the first iliac end to side anastomosis. Technical success, blood flow, periods of ischaemia, and peri-procedural complications were evaluated after intra-operative completion angiography and post-operative computed tomography angiography. Six animals underwent successful thoracic stent graft deployment and distal open reconstruction without peri-operative death. The median thoracic graft implantation time was 4.5 min, and the median ischaemia times before reperfusion were 10 min for the CT, 8 min for the superior mesenteric artery, 13 min for the right renal artery, and 22 min for the left renal artery. Angiography demonstrated appropriate graft implantation and blood flow measurements confirmed sufficient blood flow through all side branches. In this translational pig model, thoraco-abdominal hybrid repair using the novel SPIDER-graft was successful in avoiding thoracotomy and ECC. Technical feasibility and safety appear promising, but need to be reassessed in humans. Copyright © 2017. Published by Elsevier Ltd.
Undergraduate Social Work Students: Learning Interviewing Skills in a Hybrid Practice Class
ERIC Educational Resources Information Center
Barclay, Barbara
2012-01-01
This action research case study explored undergraduate social work students' perceived learning of interviewing skills in a hybrid environment course delivery. The single case study consisted of 19 students enrolled in a practice course blending web-based and face-to-face (f2f) meetings (4 of 15 f2f) within a large urban college. As part of…
Shirata, Mika; Araye, Quenta; Maehara, Kazunori; Enya, Sora; Takano-Shimizu, Toshiyuki; Sawamura, Kyoichi
2014-02-01
In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.
Fast and Non-Toxic In Situ Hybridization without Blocking of Repetitive Sequences
Matthiesen, Steen H.; Hansen, Charles M.
2012-01-01
Formamide is the preferred solvent to lower the melting point and annealing temperature of nucleic acid strands in in situ hybridization (ISH). A key benefit of formamide is better preservation of morphology due to a lower incubation temperature. However, in fluorescence in situ hybridization (FISH), against unique DNA targets in tissue sections, an overnight hybridization is required to obtain sufficient signal intensity. Here, we identified alternative solvents and developed a new hybridization buffer that reduces the required hybridization time to one hour (IQFISH method). Remarkably, denaturation and blocking against repetitive DNA sequences to prevent non-specific binding is not required. Furthermore, the new hybridization buffer is less hazardous than formamide containing buffers. The results demonstrate a significant increased hybridization rate at a lowered denaturation and hybridization temperature for both DNA and PNA (peptide nucleic acid) probes. We anticipate that these formamide substituting solvents will become the foundation for changes in the understanding and performance of denaturation and hybridization of nucleic acids. For example, the process time for tissue-based ISH for gene aberration tests in cancer diagnostics can be reduced from days to a few hours. Furthermore, the understanding of the interactions and duplex formation of nucleic acid strands may benefit from the properties of these solvents. PMID:22911704
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.
2010-05-01
In the paper we show that the biologically motivated conception of time-pulse encoding usage gives a set of advantages (single methodological basis, universality, tuning simplicity, learning and programming et al) at creation and design of sensor systems with parallel input-output and processing for 2D structures hybrid and next generations neuro-fuzzy neurocomputers. We show design principles of programmable relational optoelectronic time-pulse encoded processors on the base of continuous logic, order logic and temporal waves processes. We consider a structure that execute analog signal extraction, analog and time-pulse coded variables sorting. We offer optoelectronic realization of such base relational order logic element, that consists of time-pulse coded photoconverters (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutation blocks. We make technical parameters estimations of devices and processors on such base elements by simulation and experimental research: optical input signals power 0.2 - 20 uW, processing time 1 - 10 us, supply voltage 1 - 3 V, consumption power 10 - 100 uW, extended functional possibilities, learning possibilities. We discuss some aspects of possible rules and principles of learning and programmable tuning on required function, relational operation and realization of hardware blocks for modifications of such processors. We show that it is possible to create sorting machines, neural networks and hybrid data-processing systems with untraditional numerical systems and pictures operands on the basis of such quasiuniversal hardware simple blocks with flexible programmable tuning.
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel
2004-01-01
Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.
High-rate nano-crystalline Li 4Ti 5O 12 attached on carbon nano-fibers for hybrid supercapacitors
NASA Astrophysics Data System (ADS)
Naoi, Katsuhiko; Ishimoto, Shuichi; Isobe, Yusaku; Aoyagi, Shintaro
A lithium titanate (Li 4Ti 5O 12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li 4Ti 5O 12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li 4Ti 5O 12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li 4Ti 5O 12/CNF). This nano-structured nc-Li 4Ti 5O 12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li 4Ti 5O 12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L -1 and high power density of 7.5 kW L -1 comparable to conventional EDLCs.
Fitak, Robert R; Rinkevich, Sarah E; Culver, Melanie
2018-05-11
The Mexican gray wolf (Canis lupus baileyi) was historically distributed throughout the southwestern United States and northern Mexico. Extensive predator removal campaigns during the early 20th century, however, resulted in its eventual extirpation by the mid 1980s. At this time, the Mexican wolf existed only in 3 separate captive lineages (McBride, Ghost Ranch, and Aragón) descended from 3, 2, and 2 founders, respectively. These lineages were merged in 1995 to increase the available genetic variation, and Mexican wolves were reintroduced into Arizona and New Mexico in 1998. Despite the ongoing management of the Mexican wolf population, it has been suggested that a proportion of the Mexican wolf ancestry may be recently derived from hybridization with domestic dogs. In this study, we genotyped 87 Mexican wolves, including individuals from all 3 captive lineages and cross-lineage wolves, for more than 172000 single nucleotide polymorphisms. We identified levels of genetic variation consistent with the pedigree record and effects of genetic rescue. To identify the potential to detect hybridization with domestic dogs, we compared our Mexican wolf genotypes with those from studies of domestic dogs and other gray wolves. The proportion of Mexican wolf ancestry assigned to domestic dogs was only between 0.06% (SD 0.23%) and 7.8% (SD 1.0%) for global and local ancestry estimates, respectively; and was consistent with simulated levels of incomplete lineage sorting. Overall, our results suggested that Mexican wolves lack biologically significant ancestry with dogs and have useful implications for the conservation and management of this endangered wolf subspecies.
Fitak, Robert R.; Rinkevich, Sarah E.; Culver, Melanie
2018-01-01
The Mexican gray wolf (Canis lupus baileyi) was historically distributed throughout the southwestern United States and northern Mexico. Extensive predator removal campaigns during the early 20th century, however, resulted in its eventual extirpation by the mid 1980s. At this time, the Mexican wolf existed only in 3 separate captive lineages (McBride, Ghost Ranch, and Aragón) descended from 3, 2, and 2 founders, respectively. These lineages were merged in 1995 to increase the available genetic variation, and Mexican wolves were reintroduced into Arizona and New Mexico in 1998. Despite the ongoing management of the Mexican wolf population, it has been suggested that a proportion of the Mexican wolf ancestry may be recently derived from hybridization with domestic dogs. In this study, we genotyped 87 Mexican wolves, including individuals from all 3 captive lineages and cross-lineage wolves, for more than 172000 single nucleotide polymorphisms. We identified levels of genetic variation consistent with the pedigree record and effects of genetic rescue. To identify the potential to detect hybridization with domestic dogs, we compared our Mexican wolf genotypes with those from studies of domestic dogs and other gray wolves. The proportion of Mexican wolf ancestry assigned to domestic dogs was only between 0.06% (SD 0.23%) and 7.8% (SD 1.0%) for global and local ancestry estimates, respectively; and was consistent with simulated levels of incomplete lineage sorting. Overall, our results suggested that Mexican wolves lack biologically significant ancestry with dogs and have useful implications for the conservation and management of this endangered wolf subspecies.
Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, David H; Dubois, Andrew J; Boorman, Thomas M
2009-01-01
This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.
Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, David H; Dubois, Andrew J; Boorman, Thomas M
2009-03-10
This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.
Holographic Quark Matter and Neutron Stars.
Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi
2016-07-15
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.
Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton
Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less
Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional
Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton; ...
2017-05-24
Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyildiz, Halil I.; Jur, Jesse S., E-mail: jsjur@ncsu.edu
2015-03-15
The effect of exposure conditions and surface area on hybrid material formation during sequential vapor infiltrations of trimethylaluminum (TMA) into polyamide 6 (PA6) and polyethylene terephthalate (PET) fibers is investigated. Mass gain of the fabric samples after infiltration was examined to elucidate the reaction extent with increasing number of sequential TMA single exposures, defined as the times for a TMA dose and a hold period. An interdependent relationship between dosing time and holding time on the hybrid material formation is observed for TMA exposure PET, exhibited as a linear trend between the mass gain and total exposure (dose time ×more » hold time × number of sequential exposures). Deviation from this linear relationship is only observed under very long dose or hold times. In comparison, amount of hybrid material formed during sequential exposures to PA6 fibers is found to be highly dependent on amount of TMA dosed. Increasing the surface area of the fiber by altering its cross-sectional dimension is shown to have little on the reaction behavior but does allow for improved diffusion of the TMA into the fiber. This work allows for the projection of exposure parameters necessary for future high-throughput hybrid modifications to polymer materials.« less
One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures
NASA Astrophysics Data System (ADS)
Jelínek, P.; Hrach, R.
2007-04-01
One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.
Szczupak, Alon; Aizik, Dror; Moraïs, Sarah; Vazana, Yael; Barak, Yoav; Bayer, Edward A.; Alfonta, Lital
2017-01-01
The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin. Each of the two compartments was designed, displayed, and tested separately. The new hybrid cell compartments displayed enhanced performance over traditional biofuel cells; in the anode, the cascade of ethanol oxidation demonstrated higher performance than a cell with just a single enzyme. In the cathode, a higher copy number per yeast cell of the oxygen-reducing enzyme copper oxidase has reduced the effect of competitive inhibition resulting from yeast oxygen consumption. This work paves the way for the assembly of more complex cascades using different enzymes and larger scaffoldins to further improve the performance of hybrid cells. PMID:28644390
Marras, Salvatore A E
2008-03-01
The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.
Bonnafous, Fanny; Fievet, Ghislain; Blanchet, Nicolas; Boniface, Marie-Claude; Carrère, Sébastien; Gouzy, Jérôme; Legrand, Ludovic; Marage, Gwenola; Bret-Mestries, Emmanuelle; Munos, Stéphane; Pouilly, Nicolas; Vincourt, Patrick; Langlade, Nicolas; Mangin, Brigitte
2018-02-01
This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals. Here, we compared two additive and three non-additive association models for their ability to identify genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids, corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models to detect genomic regions associated with flowering time using the different models. Thirteen quantitative trait loci were identified in total, two with both model categories and one with only non-additive models. A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling of allelic effects for identifying genomic regions that control traits of interest and that could participate in the heterosis observed in hybrids.
Characterization of Hybrid Toluate and Benzoate Dioxygenases
Ge, Yong; Eltis, Lindsay D.
2003-01-01
Toluate dioxygenase of Pseudomonas putida mt-2 (TADOmt2) and benzoate dioxygenase of Acinetobacter calcoaceticus ADP1 (BADOADP1) catalyze the 1,2-dihydroxylation of different ranges of benzoates. The catalytic component of these enzymes is an oxygenase consisting of two subunits. To investigate the structural determinants of substrate specificity in these ring-hydroxylating dioxygenases, hybrid oxygenases consisting of the α subunit of one enzyme and the β subunit of the other were prepared, and their respective specificities were compared to those of the parent enzymes. Reconstituted BADOADP1 utilized four of the seven tested benzoates in the following order of apparent specificity: benzoate > 3-methylbenzoate > 3-chlorobenzoate > 2-methylbenzoate. This is a significantly narrower apparent specificity than for TADOmt2 (3-methylbenzoate > benzoate ∼ 3-chlorobenzoate > 4-methylbenzoate ∼ 4-chlorobenzoate ≫ 2-methylbenzoate ∼ 2-chlorobenzoate [Y. Ge, F. H. Vaillancourt, N. Y. Agar, and L. D. Eltis, J. Bacteriol. 184:4096-4103, 2002]). The apparent substrate specificity of the αBβT hybrid oxygenase for these benzoates corresponded to that of BADOADP1, the parent from which the α subunit originated. In contrast, the apparent substrate specificity of the αTβB hybrid oxygenase differed slightly from that of TADOmt2 (3-chlorobenzoate > 3-methylbenzoate > benzoate ∼ 4-methylbenzoate > 4-chlorobenzoate > 2-methylbenzoate > 2-chlorobenzoate). Moreover, the αTβB hybrid catalyzed the 1,6-dihydroxylation of 2-methylbenzoate, not the 1,2-dihydroxylation catalyzed by the TADOmt2 parent. Finally, the turnover of this ortho-substituted benzoate was much better coupled to O2 utilization in the hybrid than in the parent. Overall, these results support the notion that the α subunit harbors the principal determinants of specificity in ring-hydroxylating dioxygenases. However, they also demonstrate that the β subunit contributes significantly to the enzyme's function. PMID:12949084
Stacy, E A; Johansen, J B; Sakishima, T; Price, D K
2016-09-01
Intraspecific hybrid zones involving long-lived woody species are rare and can provide insights into the genetic basis of early-diverging traits in speciation. Within the landscape-dominant Hawaiian tree, Metrosideros polymorpha, are morphologically distinct successional varieties, incana and glaberrima, that dominate new and old lava flows, respectively, below 1200 me on volcanically active Hawai'i Island, with var. glaberrima also extending to higher elevations and bogs. Here, we use morphological measurements on 86 adult trees to document the presence of an incana-glaberrima hybrid zone on the 1855 Mauna Loa lava flow on east Hawai'i Island and parent-offspring analysis of 1311 greenhouse seedlings from 71 crosses involving 72 adults to estimate heritabilities and genetic correlations among vegetative traits. Both the variation in adult leaf pubescence at the site and the consistency between adult and offspring phenotypes suggest the presence of two hybrid classes, F1s and var. incana backcrosses, as would be expected on a relatively young lava flow. Nine nuclear microsatellite loci failed to distinguish parental and hybrid genotypes. All four leaf traits examined showed an additive genetic basis with moderate to strong heritabilities, and genetic correlations were stronger for the more range-restricted var. incana. The differences between varieties in trait values, heritabilities and genetic correlations, coupled with high genetic variation within but low genetic variation between varieties, are consistent with a multi-million-year history of alternating periods of disruptive selection in contrasting environments and admixture in ephemeral hybrid zones. Finally, the contrasting genetic architectures suggest different evolutionary trajectories of leaf traits in these forms.
Stacy, E A; Johansen, J B; Sakishima, T; Price, D K
2016-01-01
Intraspecific hybrid zones involving long-lived woody species are rare and can provide insights into the genetic basis of early-diverging traits in speciation. Within the landscape-dominant Hawaiian tree, Metrosideros polymorpha, are morphologically distinct successional varieties, incana and glaberrima, that dominate new and old lava flows, respectively, below 1200 me on volcanically active Hawai‘i Island, with var. glaberrima also extending to higher elevations and bogs. Here, we use morphological measurements on 86 adult trees to document the presence of an incana–glaberrima hybrid zone on the 1855 Mauna Loa lava flow on east Hawai‘i Island and parent–offspring analysis of 1311 greenhouse seedlings from 71 crosses involving 72 adults to estimate heritabilities and genetic correlations among vegetative traits. Both the variation in adult leaf pubescence at the site and the consistency between adult and offspring phenotypes suggest the presence of two hybrid classes, F1s and var. incana backcrosses, as would be expected on a relatively young lava flow. Nine nuclear microsatellite loci failed to distinguish parental and hybrid genotypes. All four leaf traits examined showed an additive genetic basis with moderate to strong heritabilities, and genetic correlations were stronger for the more range-restricted var. incana. The differences between varieties in trait values, heritabilities and genetic correlations, coupled with high genetic variation within but low genetic variation between varieties, are consistent with a multi-million-year history of alternating periods of disruptive selection in contrasting environments and admixture in ephemeral hybrid zones. Finally, the contrasting genetic architectures suggest different evolutionary trajectories of leaf traits in these forms. PMID:27301333
Fresiello, Libera; Khir, Ashraf William; Di Molfetta, Arianna; Kozarski, Maciej; Ferrari, Gianfranco
2013-03-01
Despite 50 years of research to assess the intra-aortic balloon pump (IABP) effects on patients' hemodynamics, some issues related to the effects of this therapy are still not fully understood. One of these issues is the effect of IABP, its inflation timing and duration on peripheral circulation autonomic controls. This work provides a systematic analysis of IABP effects on baroreflex using a cardiovascular hybrid model, which consists of computational and hydraulic submodels. The work also included a baroreflex computational model that was connected to a hydraulic model with a 40-cm(3) balloon. The IABP was operated at different inflation trigger timings (-0.14 to 0.31 s) and inflation durations (0.05-0.45 s), with time of the dicrotic notch being taken as t = 0. Baroreflex-dependent parameters-afferent and efferent pathway activity, heart rate, peripheral resistance, and venous tone-were evaluated at each of the inflation trigger times and durations considered. Balloon early inflation (0.09 s before the dicrotic notch) with inflation duration of 0.25 s generated a maximum net increment of afferent pathway activity of 10%, thus leading to a decrement of efferent sympathetic activity by 15.3% compared with baseline values. These times also resulted in a reduction in peripheral resistance and heart rate by 4 and 4.3% compared with baseline value. We conclude that optimum IABP triggering time results in positive effects on peripheral circulation autonomic controls. Conversely, if the balloon is not properly timed, peripheral resistance and heart rate may even increase, which could lead to detrimental outcomes. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Govindarajulu, Rajanikanth; Hughes, Colin E; Bailey, C Donovan
2011-12-01
Leucaena comprises 17 diploid species, five tetraploid species, and a complex series of hybrids whose evolutionary histories have been influenced by human seed translocation, cultivation, and subsequent spontaneous hybridization. Here we investigated patterns of evolutionary divergence among diploid Leucaena through comprehensively sampled multilocus phylogenetic and population genetic approaches to address species delimitation, interspecific relationships, hybridization, and the predominant mode of speciation among diploids. Parsimony- and maximum-likelihood-based phylogenetic approaches were applied to 59 accessions sequenced for six SCAR-based nuclear loci, nrDNA ITS, and four cpDNA regions. Population genetic comparisons included 1215 AFLP loci representing 42 populations and 424 individuals. Phylogenetic results provided a well-resolved hypothesis of divergent species relationships, recovering previously recognized clades of diploids as well as newly resolved relationships. Phylogenetic and population genetic assessments identified two cryptic species that are consistent with geography and morphology. Findings from this study highlight the importance and utility of multilocus data in the recovery of complex evolutionary histories. The results are consistent with allopatric divergence representing the predominant mode of speciation among diploid Leucaena. These findings contrast with the potential hybrid origin of several tetraploid species and highlight the importance of human translocation of seed to the origin of these tetraploids. The recognition of one previously unrecognized species (L. cruziana) and the elevation of another taxon (L. collinsii subsp. zacapana) to specific status (L. zacapana) is consistent with a growing number of newly diagnosed species from neotropical seasonally dry forests, suggesting these communities harbor greater species diversity than previously recognized.
Skorodumova, L O; Babalyan, K A; Sultanov, R; Vasiliev, A O; Govorov, A V; Pushkar, D Y; Prilepskaya, E A; Danilenko, S A; Generozov, E V; Larin, A K; Kostryukova, E S; Sharova, E I
2016-11-01
There is a clear need in molecular markers for prostate cancer (PC) risk stratification. Alteration of DNA methylation is one of processes that occur during ÐÑ progression. Methylation-sensitive PCR with high resolution melting curve analysis (MS-HRM) can be used for gene methylation analysis in routine laboratory practice. This method requires very small amounts of DNA for analysis. Numerous results have been accumulated on DNA methylation in PC samples analyzed by the Infinium HumanMethylation450 BeadChip (HM450). However, the consistency of MS-HRM results with chip hybridization results has not been examined yet. The aim of this study was to assess the consistency of results of GSTP1, APC and RASSF1 gene methylation analysis in ÐÑ biopsy samples obtained by MS-HRM and chip hybridization. The methylation levels of each gene determined by MS-HRM were statistically different in the group of PC tissue samples and the samples without signs of tumor growth. Chip hybridization data analysis confirmed the results obtained with the MS-HRM. Differences in methylation levels between tumor tissue and histologically intact tissue of each sample determined by MS-HRM and chip hybridization, were consistent with each other. Thus, we showed that the assessment of GSTP1, APC and RASSF1 gene methylation analysis using MS-HRM is suitable for the design of laboratory assays that will differentiate the PC tissue from the tissue without signs of tumor growth.
NASA Astrophysics Data System (ADS)
Pal, Sarika; Verma, Alka; Raikwar, S.; Prajapati, Y. K.; Saini, J. P.
2018-05-01
In this paper, graphene-coated black phosphorus at the metal surface for the detection of DNA hybridization event is numerically demonstrated. The strategy consists of placing the sensing medium on top of black phosphorus-graphene-coated SPR which interfaces with phosphate-buffered saline solution carrying single-stranded DNA. Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The proposed sensor exhibits a sensitivity (125 ο/RIU), detection accuracy (0.95) and quality factor (13.62 RIU-1) for complementary DNA. In comparison with other reported papers, our suggested sensor provides much better performance. Thus, this label-free DNA detection platform should spur off new interest towards the use of black phosphorus-graphene-coated SPR interfaces.
Ion-neutral-atom sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap
NASA Astrophysics Data System (ADS)
Goodman, D. S.; Sivarajah, I.; Wells, J. E.; Narducci, F. A.; Smith, W. W.
2012-09-01
Long-range polarization forces between ions and neutral atoms result in large elastic scattering cross sections (e.g., ˜106a.u. for Na-Na+ or Na-Ca+ at cold and ultracold temperatures). This suggests that a hybrid ion-neutral trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present simion 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid trap apparatus consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT, Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling.
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
Hansen, Benjamin J; Liu, Ying; Yang, Rusen; Wang, Zhong Lin
2010-07-27
Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor.
Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species.
de Barros Lopes, Miguel; Bellon, Jennifer R; Shirley, Neil J; Ganter, Philip F
2002-01-01
Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastorianus. The genome structure of CBS 380(T), the type strain of Saccharomyces bayanus, is also consistent with S. pastorianus gene transfer. The results indicate that the cider yeast, CID1, possesses nuclear DNA from three separate species. Mating experiments show that there are no barriers to interspecific conjugation of haploid cells. Furthermore, the allopolyploid strains were able to undergo further hybridizations with other Saccharomyces sensu stricto yeasts. These results demonstrate that introgression between the Saccharomyces sensu stricto species is likely.
Kim, Jeong Won; Jeon, Hwan-Jin; Lee, Chang-Lyoul; Ahn, Chi Won
2017-03-02
Well-aligned, high-resolution (10 nm), three-dimensional (3D) hybrid nanostructures consisting of patterned cylinders and Au islands were fabricated on ITO substrates using an ion bombardment process and a tilted deposition process. The fabricated 3D hybrid nanostructure-embedded ITO maintained its excellent electrical and optical properties after applying a surface-structuring process. The solution processable organic photovoltaic device (SP-OPV) employing a 3D hybrid nanostructure-embedded ITO as the anode displayed a 10% enhancement in the photovoltaic performance compared to the photovoltaic device prepared using a flat ITO electrode, due to the improved charge collection (extraction and transport) efficiency as well as light absorbance by the photo-active layer.
Fault Tolerant Real-Time Networks
2007-05-30
Alberto Sangiovanni-Vincentelli, editors Hybrid Systems: Computation and Control. Fourth International Workshop (HSCC, Rome, Italy, March 2001...average dwell time by solving optimization problems. In Ashish Tiwari and Joao P. Hespanha, editors, Hybrid Systems: Computation and Control (HSCC 06
Comparative studies of C3 and C4 Atriplex hybrids in the genomics era: physiological assessments
Oakley, Jason C.; Sultmanis, Stefanie; Stinson, Corey R.; Sage, Tammy L.; Sage, Rowan F.
2014-01-01
We crossed the C3 species Atriplex prostrata with the C4 species Atriplex rosea to produce F1 and F2 hybrids. All hybrids exhibited C3-like δ13C values, and had reduced rates of net CO2 assimilation compared with A. prostrata. The activities of the major C4 cycle enzymes PEP carboxylase, NAD-malic enzyme, and pyruvate-Pi dikinase in the hybrids were at most 36% of the C4 values. These results demonstrate the C4 metabolic cycle was disrupted in the hybrids. Photosynthetic CO2 compensation points (Г) of the hybrids were generally midway between the C3 and C4 values, and in most hybrids were accompanied by low, C3-like activities in one or more of the major C4 cycle enzymes. This supports the possibility that most hybrids use a photorespiratory glycine shuttle to concentrate CO2 into the bundle sheath cells. One hybrid exhibited a C4-like Г of 4 µmol mol–1, indicating engagement of a C4 metabolic cycle. Consistently, this hybrid had elevated activities of all measured C4 cycle enzymes relative to the C3 parent; however, C3-like carbon isotope ratios indicate the low Г is mainly due to a photorespiratory glycine shuttle. The anatomy of the hybrids resembled that of C3-C4 intermediate species using a glycine shuttle to concentrate CO2 in the bundle sheath, and is further evidence that this physiology is the predominant, default condition of the F2 hybrids. Progeny of these hybrids should further segregate C3 and C4 traits and in doing so assist in the discovery of C4 genes using high-throughput methods of the genomics era. PMID:24675672
Zhang, Wei-Zhuo; Xiong, Xue-Mei; Zhang, Xiu-Jie; Wan, Shi-Ming; Guan, Ning-Nan; Nie, Chun-Hong; Zhao, Bo-Wen; Hsiao, Chung-Der; Wang, Wei-Min; Gao, Ze-Xia
2016-01-01
Hybridization plays an important role in fish breeding. Bream fishes contribute a lot to aquaculture in China due to their economically valuable characteristics and the present study included five bream species, Megalobrama amblycephala, Megalobrama skolkovii, Megalobrama pellegrini, Megalobrama terminalis and Parabramis pekinensis. As maternal inheritance of mitochondrial genome (mitogenome) involves species specific regulation, we aimed to investigate in which way the inheritance of mitogenome is affected by hybridization in these fish species. With complete mitogenomes of 7 hybrid groups of bream species being firstly reported in the present study, a comparative analysis of 17 mitogenomes was conducted, including representatives of these 5 bream species, 6 first generation hybrids and 6 second generation hybrids. The results showed that these 17 mitogenomes shared the same gene arrangement, and had similar gene size and base composition. According to the phylogenetic analyses, all mitogenomes of the hybrids were consistent with a maternal inheritance. However, a certain number of variable sites were detected in all F1 hybrid groups compared to their female parents, especially in the group of M. terminalis (♀) × M. amblycephala (♂) (MT×MA), with a total of 86 variable sites between MT×MA and its female parent. Among the mitogenomes genes, the protein-coding gene nd5 displayed the highest variability. The number of variation sites was found to be related to phylogenetic relationship of the parents: the closer they are, the lower amount of variation sites their hybrids have. The second generation hybrids showed less mitogenome variation than that of first generation hybrids. The non-synonymous and synonymous substitution rates (dN/dS) were calculated between all the hybrids with their own female parents and the results indicated that most PCGs were under negative selection. PMID:27391325
NASA Astrophysics Data System (ADS)
Mucha, Waldemar; Kuś, Wacław
2018-01-01
The paper presents a practical implementation of hybrid simulation using Real Time Finite Element Method (RTFEM). Hybrid simulation is a technique for investigating dynamic material and structural properties of mechanical systems by performing numerical analysis and experiment at the same time. It applies to mechanical systems with elements too difficult or impossible to model numerically. These elements are tested experimentally, while the rest of the system is simulated numerically. Data between the experiment and numerical simulation are exchanged in real time. Authors use Finite Element Method to perform the numerical simulation. The following paper presents the general algorithm for hybrid simulation using RTFEM and possible improvements of the algorithm for computation time reduction developed by the authors. The paper focuses on practical implementation of presented methods, which involves testing of a mountain bicycle frame, where the shock absorber is tested experimentally while the rest of the frame is simulated numerically.
NASA Astrophysics Data System (ADS)
Du, Kongchang; Zhao, Ying; Lei, Jiaqiang
2017-09-01
In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.
Experimental Study of Hybrid Fractures and the Transition From Joints to Faults
NASA Astrophysics Data System (ADS)
Ramsey, J. M.; Chester, F. M.
2003-12-01
Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.
Genetics of Hybrid Incompatibility Between Lycopersicon esculentum and L. hirsutum
Moyle, Leonie C.; Graham, Elaine B.
2005-01-01
We examined the genetics of hybrid incompatibility between two closely related diploid hermaphroditic plant species. Using a set of near-isogenic lines (NILs) representing 85% of the genome of the wild species Lycopersicon hirsutum (Solanum habrochaites) in the genetic background of the cultivated tomato L. esculentum (S. lycopersicum), we found that hybrid pollen and seed infertility are each based on 5–11 QTL that individually reduce hybrid fitness by 36–90%. Seed infertility QTL act additively or recessively, consistent with findings in other systems where incompatibility loci have largely been recessive. Genetic lengths of introgressed chromosomal segments explain little of the variation for hybrid incompatibility among NILs, arguing against an infinitesimal model of hybrid incompatibility and reinforcing our inference of a limited number of discrete incompatibility factors between these species. In addition, male (pollen) and other (seed) incompatibility factors are roughly comparable in number. The latter two findings contrast strongly with data from Drosophila where hybrid incompatibility can be highly polygenic and complex, and male sterility evolves substantially faster than female sterility or hybrid inviability. The observed differences between Lycopersicon and Drosophila might be due to differences in sex determination system, reproductive and mating biology, and/or the prevalence of sexual interactions such as sexual selection. PMID:15466436
BioCARS: a synchrotron resource for time-resolved X-ray science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, T.; Anderson, S.; Brewer, H.
2011-08-16
BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beammore » to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.« less
BioCARS: a synchrotron resource for time-resolved X-ray science
Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.
2011-01-01
BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684
Augustyn, Jacek
2013-12-13
This article presents a new methodology for designing a hybrid control and acquisition system consisting of a 32-bit SoC microsystem connected via a direct Universal Serial Bus (USB) with a standard commercial off-the-shelf (COTS) component running the Android operating system. It is proposed to utilize it avoiding the use of an additional converter. An Android-based component was chosen to explore the potential for a mobile, compact and energy efficient solution with easy to build user interfaces and easy wireless integration with other computer systems. This paper presents results of practical implementation and analysis of experimental real-time performance. It covers closed control loop time between the sensor/actuator module and the Android operating system as well as the real-time sensor data stream within such a system. Some optimisations are proposed and their influence on real-time performance was investigated. The proposed methodology is intended for acquisition and control of mechatronic systems, especially mobile robots. It can be used in a wide range of control applications as well as embedded acquisition-recording devices, including energy quality measurements, smart-grids and medicine. It is demonstrated that the proposed methodology can be employed without developing specific device drivers. The latency achieved was less than 0.5 ms and the sensor data stream throughput was on the order of 750 KB/s (compared to 3 ms latency and 300 KB/s in traditional solutions).
Augustyn, Jacek
2013-01-01
This article presents a new methodology for designing a hybrid control and acquisition system consisting of a 32-bit SoC microsystem connected via a direct Universal Serial Bus (USB) with a standard commercial off-the-shelf (COTS) component running the Android operating system. It is proposed to utilize it avoiding the use of an additional converter. An Android-based component was chosen to explore the potential for a mobile, compact and energy efficient solution with easy to build user interfaces and easy wireless integration with other computer systems. This paper presents results of practical implementation and analysis of experimental real-time performance. It covers closed control loop time between the sensor/actuator module and the Android operating system as well as the real-time sensor data stream within such a system. Some optimisations are proposed and their influence on real-time performance was investigated. The proposed methodology is intended for acquisition and control of mechatronic systems, especially mobile robots. It can be used in a wide range of control applications as well as embedded acquisition-recording devices, including energy quality measurements, smart-grids and medicine. It is demonstrated that the proposed methodology can be employed without developing specific device drivers. The latency achieved was less than 0.5 ms and the sensor data stream throughput was on the order of 750 KB/s (compared to 3 ms latency and 300 KB/s in traditional solutions). PMID:24351633
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-23
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell's equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
NASA Astrophysics Data System (ADS)
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-01
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
Chang, Audrey S.; Noor, Mohamed A. F.
2007-01-01
F1 hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F1 hybrid sterility. PMID:17277364
Chang, Audrey S; Noor, Mohamed A F
2007-05-01
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.
Ohno, Kohji; Akashi, Tatsuki; Tsujii, Yoshinobu; Yamamoto, Masaya; Tabata, Yasuhiko
2012-03-12
The physiological properties of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization were investigated in terms of the circulation lifetime in the blood and distribution in tissues. Hydrophilic polymers consisting mainly of poly(poly(ethylene glycol) methyl ether methacrylate) were grafted onto silica particles by surface-initiated atom transfer radical polymerization that was mediated by a copper complex to produce hairy hybrid particles. A series of hybrid particles was synthesized by varying the diameter of the silica core and the chain length of the polymer brush to examine the relationship between their physicochemical and physiological properties. The hybrid particles were injected intravenously into mice to investigate systematically their blood clearance and body distribution. It was revealed that the structural features of the hybrid particles significantly affected their in vivo pharmacokinetics. Some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half life of ∼20 h. When such hybrid particles were injected intravenously into a tumor-bearing mouse, they preferentially accumulated in tumor tissue. The tumor-targeted delivery was optically visualized using hybrid particles grafted with fluorescence-labeled polymer brushes.
Kim, Kyoung-Ran; Hwang, Dohyeon; Kim, Juhyeon; Lee, Chang-Yong; Lee, Wonseok; Yoon, Dae Sung; Shin, Dongyun; Min, Sun-Joon; Kwon, Ick Chan; Chung, Hak Suk; Ahn, Dae-Ro
2018-06-28
Despite the extremely high substrate specificity and catalytically amplified activity of enzymes, the lack of efficient cellular internalization limits their application as therapeutics. To overcome this limitation and to harness enzymes as practical biologics for targeting intracellular functions, we developed the streptavidin-mirror DNA tetrahedron hybrid as a platform for intracellular delivery of various enzymes. The hybrid consists of streptavidin, which provides a stoichiometrically controlled loading site for the enzyme cargo and an L-DNA (mirror DNA) tetrahedron, which provides the intracellular delivery potential. Due to the cell-penetrating ability of the mirror DNA tetrahedron of this hybrid, enzymes loaded on streptavidin can be efficiently delivered into the cells, intracellularly expressing their activity. In addition, we demonstrate tumor delivery of enzymes in an animal model by utilizing the potential of the hybrid to accumulate in tumors. Strikingly, the hybrid is able to transfer the apoptotic enzyme specifically into tumor cells, leading to strong suppression of tumor growth without causing significant damage to other tissues. These results suggest that the hybrid may allow anti-proliferative enzymes and proteins to be utilized as anticancer drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Locating arbitrarily time-dependent sound sources in three dimensional space in real time.
Wu, Sean F; Zhu, Na
2010-08-01
This paper presents a method for locating arbitrarily time-dependent acoustic sources in a free field in real time by using only four microphones. This method is capable of handling a wide variety of acoustic signals, including broadband, narrowband, impulsive, and continuous sound over the entire audible frequency range, produced by multiple sources in three dimensional (3D) space. Locations of acoustic sources are indicated by the Cartesian coordinates. The underlying principle of this method is a hybrid approach that consists of modeling of acoustic radiation from a point source in a free field, triangulation, and de-noising to enhance the signal to noise ratio (SNR). Numerical simulations are conducted to study the impacts of SNR, microphone spacing, source distance and frequency on spatial resolution and accuracy of source localizations. Based on these results, a simple device that consists of four microphones mounted on three mutually orthogonal axes at an optimal distance, a four-channel signal conditioner, and a camera is fabricated. Experiments are conducted in different environments to assess its effectiveness in locating sources that produce arbitrarily time-dependent acoustic signals, regardless whether a sound source is stationary or moves in space, even toward behind measurement microphones. Practical limitations on this method are discussed.
Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing
2013-04-01
Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.
USDA-ARS?s Scientific Manuscript database
The genome of the cattle tick R. microplus, an ectoparasite with global distribution, is estimated to be 7.1 Gbp and consists of ~70% repetitive DNA. We report the first assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genom...
1967-03-01
nitrogen tetroxide (N„0 ) and polybutadyne-aluminum (PBAN), and chlorine trifluoride (CTF) and PBAN. This program consisted of a series of eight...explosive potential of two hybrid propellant combinations; nitrogen tetroxide QLOL) and polybutadyne - aluminum (PBAN) and chlorine triflouride (CTF...or positive-phase impulse yield. FREE AIR OVERPRESSURE: (OR FREE FIELD OVERPRESSURE): The unreflected pressure, in excess of the ambient atmospheric
2001-08-08
entropy inequality with independent variables consistent with several natural systems and apply the resulting constitutive theory near equi- librium...1973. [3] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - I: Balance laws. International Journal of...Engineering Science, 34(2):125–145, 1996. [4] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - II: Constitutive
NASA Technical Reports Server (NTRS)
Miller, W. N.; Gray, O. E.
1982-01-01
Hybrid switch allows high-power direct current to be turned on and off without arcing or erosion. Switch consists of bank of transistors in parallel with mechanical contacts. Transistor bank makes and breaks switched circuit; contacts carry current only during steady-state "on" condition. Designed for Space Shuttle orbiter, hybrid switch can be used also in high-power control circuits in aircraft, electric autos, industrial furnaces, and solar-cell arrays.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896
NASA Astrophysics Data System (ADS)
Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini
2017-05-01
The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.
Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A
2017-08-01
Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A hybrid model of cell cycle in mammals.
Behaegel, Jonathan; Comet, Jean-Paul; Bernot, Gilles; Cornillon, Emilien; Delaunay, Franck
2016-02-01
Time plays an essential role in many biological systems, especially in cell cycle. Many models of biological systems rely on differential equations, but parameter identification is an obstacle to use differential frameworks. In this paper, we present a new hybrid modeling framework that extends René Thomas' discrete modeling. The core idea is to associate with each qualitative state "celerities" allowing us to compute the time spent in each state. This hybrid framework is illustrated by building a 5-variable model of the mammalian cell cycle. Its parameters are determined by applying formal methods on the underlying discrete model and by constraining parameters using timing observations on the cell cycle. This first hybrid model presents the most important known behaviors of the cell cycle, including quiescent phase and endoreplication.
Superconductor-superconductor bilayers for enhancing single-photon detection
NASA Astrophysics Data System (ADS)
Ivry, Yachin; Surick, Jonathan J.; Barzilay, Maya; Kim, Chung-Soo; Najafi, Faraz; Kalfon-Cohen, Estelle; Dane, Andrew D.; Berggren, Karl K.
2017-10-01
Here, we optimized ultrathin films of granular NbN on SiO2 and of amorphous αW5Si3. We showed that hybrid superconducting nanowire single-photon detectors (SNSPDs) made of 2 nm thick αW5Si3 films over 2 nm thick NbN films exhibit advantageous coexistence of timing (<5 ns reset time and 52 ps timing jitter) and efficiency (>96% quantum efficiency) performance. We discuss the governing mechanism of this hybridization via the proximity effect. Our results demonstrate saturated SNSPDs performance at 1550 nm optical wavelength and suggest that such hybridization can significantly expand the range of available superconducting properties, impacting other nano-superconducting technologies. Lastly, this hybridization may be used to tune properties, such as the amorphous character of superconducting films.
Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès
2016-01-01
Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies. PMID:27406785
Managing hybrid marketing systems.
Moriarty, R T; Moran, U
1990-01-01
As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.
Dai, Yi; Duan, Yamei; Chi, Dawn; Liu, Huiping; Huang, Shuai; Cao, Wenguang; Gao, Yong; Fedak, George; Chen, Jianmin
2017-08-01
It is very important to use chromosome-specific markers for identifying alien chromosomes in advanced generations of distant hybridization. The chromosome-specific markers of rye and Thinopyrum elongatum, as well as genomic in situ hybridization, were used to identify the alien chromosomes in eight lines that were derived from the crossing between Triticum trititrigia (AABBEE) and triticale (AABBRR). The results showed that four lines contained all rye chromosomes but no Th. elongatum chromosomes. The line RE36-1 contained all of the rye chromosomes except for chromosome 2R. The lines RE33-2 and RE62-1 contained all rye chromosomes and 1E and 5E translocated chromosome, respectively. The line RE24-4 contained 12 rye chromosomes plus a 7E chromosome or 12 rye chromosomes plus one R-E translocated chromosome. Chromosome identification in the above lines was consistent using chromosome-specific markers and genomic in situ hybridization. These chromosome-specific markers provide useful tools for detecting alien chromosomes in trigeneric hybrids, and these lines could be utilized as valuable germplasm in wheat improvement.
Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.
Leung, Denis H Y; Wang, You-Gan; Zhu, Min
2009-07-01
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.