Sample records for time dependent behavior

  1. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    NASA Astrophysics Data System (ADS)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  2. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors.

    PubMed

    Forrest, Lauren N; Smith, April R; Fussner, Lauren M; Dodd, Dorian R; Clerkin, Elise M

    2016-01-01

    "Fast" (i.e., implicit) processing is relatively automatic; "slow" (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence.

  3. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors

    PubMed Central

    Forrest, Lauren N.; Smith, April R.; Fussner, Lauren M.; Dodd, Dorian R.; Clerkin, Elise M.

    2015-01-01

    Objectives ”Fast” (i.e., implicit) processing is relatively automatic; “slow” (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. Design We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Method Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Results Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Conclusion Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence. PMID:26195916

  4. Self-determined to exercise? Leisure-time exercise behavior, exercise motivation, and exercise dependence in youth.

    PubMed

    Symons Downs, Danielle; Savage, Jennifer S; DiNallo, Jennifer M

    2013-02-01

    Scant research has examined the determinants of primary exercise dependence symptoms in youth. Study purposes were to examine sex differences across leisure-time exercise behavior, motivation, and primary exercise dependence symptoms in youth and the extent to which exercise behavior and motivation predicted exercise dependence within the Self-Determination Theory framework. Adolescents (N = 805; mean age = 15 years; 46% girls) completed measures of exercise behavior, motivation, and exercise dependence in health/PE classes. One-way ANOVA revealed boys scored higher than girls on leisure-time exercise behavior, exercise dependence symptoms, and most of the exercise motivation subscales. Hierarchical regression analyses indicated a) sex, exercise behavior, motivation, and their interaction terms explained 39% of the variance in primary exercise dependence; b) Integrated Regulation and Introjected Regulation were important determinants of exercise dependence; and c) sex moderated the contributions of External Regulation for predicting exercise dependence such that boys in the high and low external regulation groups had higher symptoms than girls in the high and low external regulation groups. These preliminary findings support the controlled dimensions of Integrated Regulation (boys, girls), Introjected Regulation (boys, girls), and External Regulation (boys only) are important determinants of primary exercise dependence symptoms.

  5. A quasi-hyperbolic discounting approach to smoking behavior

    PubMed Central

    2014-01-01

    Addiction has attracted considerable attention in health and behavioral economics, and economists have attempted to understand addiction from the viewpoint of decision making over time. This paper investigates whether two time preference parameters can successfully predict smoking status, including cigarette dependence. Both the present bias and the constant time preference parameters account for smoking behavior status and cigarette dependence. PMID:25006542

  6. Reversible and Irreversible Time-Dependent Behavior of GRCop-84

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.; Ellis, David L.

    2017-01-01

    A series of mechanical tests were conducted on a high-conductivity copper alloy, GRCop-84, in order to understand the time dependent response of this material. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures, strain rates, and stress levels to excite various amounts of time-dependent behavior. At low applied stresses the deformation behavior was found to be fully reversible. Above a certain stress, termed the viscoelastic threshold, irreversible deformation was observed. At these higher stresses the deformation was observed to be viscoplastic. Both reversible and irreversible regions contained time dependent deformation. These experimental data are documented to enable characterization of constitutive models to aid in design of high temperature components.

  7. Creep and shrinkage effects on integral abutment bridges

    NASA Astrophysics Data System (ADS)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the published laboratory experimental and field data. The behavior of the laterally loaded piles supporting the integral abutments is evaluated and presented in terms of the lateral deflection, bending moment, shear force and stress along the pile depth.

  8. The Polar Ionosphere and Interplanetary Field.

    DTIC Science & Technology

    1987-08-01

    model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field

  9. Constitutive Theory Developed for Monolithic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1998-01-01

    With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  10. Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Roy, Shawoon Kumar

    2011-12-01

    Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.

  11. Viscoplastic Characterization of Ti-6-4: Experiments

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.

    2016-01-01

    As part of a continued effort to improve the understanding of material time-dependent response, a series of mechanical tests have been conducted on the titanium alloy, Ti-6Al-4V. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures and strain rates to engage various amounts of time-dependent behavior. Additional tests were conducted that involved loading steps, overloads, dwell periods, and block loading segments to characterize the interaction between plasticity and time-dependent behavior. These data will be used to characterize a recently developed, viscoelastoplastic constitutive model with a goal toward better estimates of aerospace component behavior, resulting in improved safety.

  12. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set ofmore » unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours to weeks. The unusual shape of the slurry flow curves was not an artifact of the rheometric measurement. Adjusting the user-specified parameters in the rheometer measurement jobs can alter the shape of the flow curve of these time dependent samples, but this was not causing the unusual behavior. Variations in the measurement parameters caused the time dependence of a given slurry to manifest at different rates. The premise of the controlled shear rate flow curve measurement is that the dynamic response of the sample to a change in shear rate is nearly instantaneous. When this is the case, the data can be fitted to a time independent rheological equation, such as the Bingham plastic model. In those cases where this does not happen, interpretation of the data is difficult. Fitting time dependent data to time independent rheological equations, such as the Bingham plastic model, is also not appropriate.« less

  13. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    NASA Astrophysics Data System (ADS)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  14. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera).

    PubMed

    Maze, Ian S; Wright, Geraldine A; Mustard, Julie A

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses led to hemolymph ethanol levels of approximately 40-100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 h post-ingestion for low doses and at 24-48 h for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior.

  15. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.

    PubMed

    Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L

    2017-12-01

    Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  16. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    NASA Astrophysics Data System (ADS)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.

    2017-05-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.

  17. A Viscoplastic Constitutive Theory for Monolithic Ceramic Materials. Series 1

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.; Duffy, Stephen F.

    1997-01-01

    With increasing use of ceramic materials in high temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior. This paper, which is the first of two in a series, will focus on inelastic deformation behavior associated with these service conditions by providing an overview of a viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (e.g., creep, stress relaxation, etc.) in monolithic structural ceramics. Early work in the field of metal plasticity indicated that inelastic deformations are essentially unaffected by hydrostatic stress. This is not the case, however, for ceramic-based material systems, unless the ceramic is fully dense. The theory presented here allows for fully dense material behavior as a limiting case. In addition, ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperature. When subjected to elevated service temperatures, ceramic materials exhibit complex thermomechanical behavior that is inherently time-dependent, and hereditary in the sense that current behavior depends not only on current conditions, but also on thermo-mechanical history. The objective of this work is to present the formulation of a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the overview contained in this paper focuses on the multiaxial derivation of the constitutive model, and examines the scalar threshold function and its attending geometrical implications.

  18. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins

    NASA Astrophysics Data System (ADS)

    Dahlke, K.; Sing, C. E.

    2018-02-01

    Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.

  19. Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.; Hasan, Muhammad H.; Pal, Joydeep; Chatterjee, Sudin

    2012-02-01

    The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity-factor ( K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1/3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor ( K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 °C to 800 °C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time-dependent FCP rates of INCONEL 617 and HAYNES 230.

  20. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.

    PubMed

    Wu, J Z; Herzog, W

    2000-03-01

    Experimental evidence suggests that cells are extremely sensitive to their mechanical environment and react directly to mechanical stimuli. At present, it is technically difficult to measure fluid pressure, stress, and strain in cells, and to determine the time-dependent deformation of chondrocytes. For this reason, there are no data in the published literature that show the dynamic behavior of chondrocytes in articular cartilage. Similarly, the dynamic chondrocyte mechanics have not been calculated using theoretical models that account for the influence of cell volumetric fraction on cartilage mechanical properties. In the present investigation, the location- and time-dependent stress-strain state and fluid pressure distribution in chondrocytes in unconfined compression tests were simulated numerically using a finite element method. The technique involved two basic steps: first, cartilage was approximated as a macroscopically homogenized material and the mechanical behavior of cartilage was obtained using the homogenized model; second, the solution of the time-dependent displacements and fluid pressure fields of the homogenized model was used as the time-dependent boundary conditions for a microscopic submodel to obtain average location- and time-dependent mechanical behavior of cells. Cells and extracellular matrix were assumed to be biphasic materials composed of a fluid phase and a hyperelastic solid phase. The hydraulic permeability was assumed to be deformation dependent and the analysis was performed using a finite deformation approach. Numerical tests were made using configurations similar to those of experiments described in the literature. Our simulations show that the mechanical response of chondrocytes to cartilage loading depends on time, fluid boundary conditions, and the locations of the cells within the specimen. The present results are the first to suggest that chondrocyte deformation in a stress-relaxation type test may exceed the imposed system deformation by a factor of 3-4, that chondrocyte deformations are highly dynamic and do not reach a steady state within about 20 min of steady compression (in an unconfined test), and that cell deformations are very much location dependent.

  1. Effect of load ratio on fatigue crack propagation behavior of solid-solution-strengthened Ni-based superalloys at elevated temperature

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.

    2013-04-01

    The fatigue crack propagation (FCP) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 and HAYNES 230, were studied simultaneously in laboratory air using a constant stress intensity factor (K)-controlled mode with different load ratios (R-ratio) at 700 °C. The FCP tests were performed in both cycle and time-dependent FCP domains to examine the effect of R-ratio on the FCP rate, da/dn. For cycle-dependent FCP test, a 1-s sinusoidal fatigue was applied for a compact tension (CT) specimen of INCONEL 617 and HAYNES 230 to measure their FCP rates. For time-dependent FCP test, a 3-s sinusoidal fatigue with a hold time of 300 s at maximum load was applied. Both cycle/time-dependent FCP behaviors were characterized and analyzed. The results showed that increasing R-ratio would introduce the fatigue incubation and decrease the FCP rates at cycle-dependent FCP tests. On the contrary, fatigue incubation was not observed at time-dependent FCP tests for both INCONEL 617 and HAYNES 230 at each tested R-ratio, suggesting that association of maximum load (Kmax) with crack tip open displacement (CTOD) and environmental factor governed the FCP process. Also, for time-dependent FCP, HAYNES 230 showed lower FCP rates than INCONEL 617 regardless of R-ratio. However, for cycle-dependent FCP, HAYNES 230 showed the lower FCP rates only at high R-ratios. Fracture surface of specimens were examined using SEM to investigate the cracking mechanism under cycle/time-dependent FCP condition with various R-ratios.

  2. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  3. Tour time in a two-route traffic system controlled by signals

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Naito, Yuichi

    2011-11-01

    We study the dynamic behavior of vehicular traffic in a two-route system with a series of signals (traffic lights) at low density where the number of signals on route A is different from that on route B. We investigate the dependence of the tour time on the route for some strategies of signal control. The nonlinear dynamic model of a two-route traffic system controlled by signals is presented by nonlinear maps. The vehicular traffic exhibits a very complex behavior, depending on the cycle time, the phase difference, and the irregularity. The dependence of the tour time on the route choice is clarified for the signal strategies.

  4. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera)

    PubMed Central

    Maze, Ian S.; Wright, Geraldine A.; Mustard, Julie A.

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses lead to hemolymph ethanol levels of approximately 40 to 100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 hr post-ingestion for low doses and at 24 to 48 hours for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior. PMID:17070538

  5. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition

    DOE PAGES

    Tao, Weiwei; Cao, Penghui; Park, Harold S.

    2018-04-30

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less

  6. Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.

    PubMed

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-05-22

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.

  7. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Weiwei; Cao, Penghui; Park, Harold S.

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less

  8. Mechanical and time-dependent behavior of wood-plastic composites subjected to tension and compression

    Treesearch

    Scott E. Hamel; John C. Hermanson; Steven M. Cramer

    2012-01-01

    The thermoplastics within wood—plastic composites (WPCs) are known to experience significant time-dependent deformation or creep. In some formulations, creep deformation can be twice as much as the initial quasi-static strain in as little as 4 days. While extensive work has been done on the creep behavior of pure polymers, little information is available on the...

  9. Time- & Load-Dependence of Triboelectric Effect.

    PubMed

    Pan, Shuaihang; Yin, Nian; Zhang, Zhinan

    2018-02-06

    Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.

  10. Traffic dispersion through a series of signals with irregular split

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2016-01-01

    We study the traffic behavior of a group of vehicles moving through a sequence of signals with irregular splits on a roadway. We present the stochastic model of vehicular traffic controlled by signals. The dynamic behavior of vehicular traffic is clarified by analyzing traffic pattern and travel time numerically. The group of vehicles breaks up more and more by the irregularity of signal's split. The traffic dispersion is induced by the irregular split. We show that the traffic dispersion depends highly on the cycle time and the strength of split's irregularity. Also, we study the traffic behavior through the series of signals at the green-wave strategy. The dependence of the travel time on offset time is derived for various values of cycle time. The region map of the traffic dispersion is shown in (cycle time, offset time)-space.

  11. Correlated Time-Variation of Asphalt Rheology and Bulk Microstructure

    NASA Astrophysics Data System (ADS)

    Ramm, Adam; Nazmus, Sakib; Bhasin, Amit; Downer, Michael

    We use noncontact optical microscopy and optical scattering in the visible and near-infrared spectrum on Performance Grade (PG) asphalt binder to confirm the existence of microstructures in the bulk. The number of visible microstructures increases linearly as penetration depth of the incident radiation increases, which verifies a uniform volume distribution of microstructures. We use dark field optical scatter in the near-infrared to measure the temperature dependent behavior of the bulk microstructures and compare this behavior with Dynamic Shear Rheometer (DSR) measurements of the bulk complex shear modulus | G* (T) | . The main findings are: (1) After reaching thermal equilibrium, both temperature dependent optical scatter intensity (I (T)) and bulk shear modulus (| G* (T) |) continue to change appreciably for times much greater than thermal equilibration times. (2) The hysteresis behavior during a complete temperature cycle seen in previous work derives from a larger time dependence in the cooling step compared with the heating step. (3) Different binder aging conditions show different thermal time-variations for both I (T) and | G* (T) | .

  12. Out-of-equilibrium dynamics driven by localized time-dependent perturbations at quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore

    2018-03-01

    We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.

  13. Metastable Distributions of Markov Chains with Rare Transitions

    NASA Astrophysics Data System (ADS)

    Freidlin, M.; Koralov, L.

    2017-06-01

    In this paper we consider Markov chains X^\\varepsilon _t with transition rates that depend on a small parameter \\varepsilon . We are interested in the long time behavior of X^\\varepsilon _t at various \\varepsilon -dependent time scales t = t(\\varepsilon ). The asymptotic behavior depends on how the point (1/\\varepsilon , t(\\varepsilon )) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale t(\\varepsilon ). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.

  14. Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers.

    PubMed

    Loprinzi, Paul D; Walker, Jerome F

    2015-03-01

    Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = -9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = -0.14, P = 0.003) than their less nicotine dependent counterparts. Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts.

  15. Multiscale statistics of trajectories with applications to fluid particles in turbulence and football players

    NASA Astrophysics Data System (ADS)

    Schneider, Kai; Kadoch, Benjamin; Bos, Wouter

    2017-11-01

    The angle between two subsequent particle displacement increments is evaluated as a function of the time lag. The directional change of particles can thus be quantified at different scales and multiscale statistics can be performed. Flow dependent and geometry dependent features can be distinguished. The mean angle satisfies scaling behaviors for short time lags based on the smoothness of the trajectories. For intermediate time lags a power law behavior can be observed for some turbulent flows, which can be related to Kolmogorov scaling. The long time behavior depends on the confinement geometry of the flow. We show that the shape of the probability distribution function of the directional change can be well described by a Fischer distribution. Results for two-dimensional (direct and inverse cascade) and three-dimensional turbulence with and without confinement, illustrate the properties of the proposed multiscale statistics. The presented Monte-Carlo simulations allow disentangling geometry dependent and flow independent features. Finally, we also analyze trajectories of football players, which are, in general, not randomly spaced on a field.

  16. Mapping temporal dynamics in social interactions with unified structural equation modeling: A description and demonstration revealing time-dependent sex differences in play behavior

    PubMed Central

    Beltz, Adriene M.; Beekman, Charles; Molenaar, Peter C. M.; Buss, Kristin A.

    2013-01-01

    Developmental science is rich with observations of social interactions, but few available methodological and statistical approaches take full advantage of the information provided by these data. The authors propose implementation of the unified structural equation model (uSEM), a network analysis technique, for observational data coded repeatedly across time; uSEM captures the temporal dynamics underlying changes in behavior at the individual level by revealing the ways in which a single person influences – concurrently and in the future – other people. To demonstrate the utility of uSEM, the authors applied it to ratings of positive affect and vigor of activity during children’s unstructured laboratory play with unfamiliar, same-sex peers. Results revealed the time-dependent nature of sex differences in play behavior. For girls more than boys, positive affect was dependent upon peers’ prior positive affect. For boys more than girls, vigor of activity was dependent upon peers’ current vigor of activity. PMID:24039386

  17. A Study of Time-dependent and Anisotropic Effects on the Deformation Response of Two Flywheel Designs

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Arnold, Steven M.; Al-Zoubi, Nasser R.

    2003-01-01

    The influence of material time dependency and anisotropy in the context of two specific flywheel designs-preload and multi-directional composite (MDC)--is investigated. In particular, we focus on the following aspects: 1) geometric constraints, 2) material constraints, 3) loading type, and 4) the fundamental character of the time-dependent response, i.e., reversible or irreversible. The bulk of the results presented were obtained using a composite (PMC IM7/8552 at 135 C) material system. The material was characterized using a general multimechanism hereditary (viscoelastoplastic) model. As a general conclusion, the results have clearly shown that both the preload and the MDC rotor designs are significantly affected by time-dependent material behavior, which may impact the state of rotor balance and potentially reduce its operating life. In view of the results of the parametric studies and predictions made in the present study, the need for actual experimentation focusing on the time-dependent behavior of full-scale flywheel rotors is self-evident.

  18. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  19. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  20. A method for diagnosing time dependent faults using model-based reasoning systems

    NASA Technical Reports Server (NTRS)

    Goodrich, Charles H.

    1995-01-01

    This paper explores techniques to apply model-based reasoning to equipment and systems which exhibit dynamic behavior (that which changes as a function of time). The model-based system of interest is KATE-C (Knowledge based Autonomous Test Engineer) which is a C++ based system designed to perform monitoring and diagnosis of Space Shuttle electro-mechanical systems. Methods of model-based monitoring and diagnosis are well known and have been thoroughly explored by others. A short example is given which illustrates the principle of model-based reasoning and reveals some limitations of static, non-time-dependent simulation. This example is then extended to demonstrate representation of time-dependent behavior and testing of fault hypotheses in that environment.

  1. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework

    NASA Astrophysics Data System (ADS)

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  2. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework.

    PubMed

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  3. Time Dependent Fluids

    ERIC Educational Resources Information Center

    Collyer, A. A.

    1974-01-01

    Discusses the flow characteristics of thixotropic and negative thixotropic fluids; various theories underlying the thixotropic behavior; and thixotropic phenomena exhibited in drilling muds, commercial paints, pastes, and greases. Inconsistencies in the terminology used to label time dependent effects are revealed. (CC)

  4. Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers

    PubMed Central

    Loprinzi, Paul D.; Walker, Jerome F.

    2015-01-01

    Background: Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. Aim: This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Materials and Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. Results: After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = −9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = −0.14, P = 0.003) than their less nicotine dependent counterparts. Conclusion: Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts. PMID:25839000

  5. Experimental Identification and Simulation of Time and/or Rate Dependent Reversible and Irreversible Deformation Regions for both a Titanium and Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Lerch, Bradley A.; Sellers, Cory

    2013-01-01

    In this paper time and/or rate dependent deformation regions are experimentally mapped out as a function of temperature. It is clearly demonstrated that the concept of a threshold stress (a stress that delineate reversible and irreversible behavior) is valid and necessary at elevated temperatures and corresponds to the classical yield stress at lower temperatures. Also the infinitely slow modulus, (Es) i.e. the elastic modulus of the material if it was loaded at an infinitely slow strain rate, and the "dynamic modulus", modulus, Ed, which represents the modulus of the material if it is loaded at an infinitely fast rate are used to delineate rate dependent from rate independent regions. As demonstrated at elevated temperatures there is a significant difference between the two modulus values, thus indicating both significant time-dependence and rate dependence. In the case of the nickel-based super alloy, ME3, this behavior is also shown to be grain size specific. Consequently, at higher temperatures viscoelastic behavior exist below k (i.e., the threshold stress) and at stresses above k the behavior is viscoplastic. Finally a multi-mechanism, stress partitioned viscoelastic model, capable of being consistently coupled to a viscoplastic model is characterized over the full temperature range investigated for Ti-6-4 and ME3.

  6. Fuzzy Cognitive and Social Negotiation Agent Strategy for Computational Collective Intelligence

    NASA Astrophysics Data System (ADS)

    Chohra, Amine; Madani, Kurosh; Kanzari, Dalel

    Finding the adequate (win-win solutions for both parties) negotiation strategy with incomplete information for autonomous agents, even in one-to-one negotiation, is a complex problem. Elsewhere, negotiation behaviors, in which the characters such as conciliatory or aggressive define a 'psychological' aspect of the negotiator personality, play an important role. The aim of this paper is to develop a fuzzy cognitive and social negotiation strategy for autonomous agents with incomplete information, where the characters conciliatory, neutral, or aggressive, are suggested to be integrated in negotiation behaviors (inspired from research works aiming to analyze human behavior and those on social negotiation psychology). For this purpose, first, one-to-one bargaining process, in which a buyer agent and a seller agent negotiate over single issue (price), is developed for a time-dependent strategy (based on time-dependent behaviors of Faratin et al.) and for a fuzzy cognitive and social strategy. Second, experimental environments and measures, allowing a set of experiments, carried out for different negotiation deadlines of buyer and seller agents, are detailed. Third, experimental results for both time-dependent and fuzzy cognitive and social strategies are presented, analyzed, and compared for different deadlines of agents. The suggested fuzzy cognitive and social strategy allows agents to improve the negotiation process, with regard to the time-dependent one, in terms of agent utilities, round number to reach an agreement, and percentage of agreements.

  7. Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite

    PubMed Central

    Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao

    2015-01-01

    The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 108 Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 108 Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913

  8. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan; Leheny, Robert L.

    2006-06-01

    Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.

  9. Childhood and Adolescent Predictors of Alcohol Abuse and Dependence in Young Adulthood*

    PubMed Central

    Guo, Jie; Hawkins, J. David; Hill, Karl G.; Abbott, Robert D

    2007-01-01

    Objective To provide a comprehensive examination of childhood and adolescent predictors of alcohol abuse and dependence at age 21, theoretically guided by the social development model. Method Data were taken from an ethnically diverse urban sample of 808 students [51% male), surveyed at age 10 and followed prospectively to age 21 in 1996. Potential predictors of alcohol abuse and dependence at age 21 were measured at ages 10, 14 and 16. Relationships between these predictors and alcohol abuse and dependence were examined at each age, to assess changes in their patterns of prediction over time. Results Strong bonding to school, close parental monitoring of children and clearly defined family rules for behavior, appropriate parental rewards for good behaviors, high level of refusal skills and strong belief in the moral order predicted a lower risk for alcohol abuse and dependence at age 21. Of these, strong bonding to school consistently predicted lower alcohol abuse and dependence from all three ages (10, 14 and 16). By contrast, youths who had a higher risk of alcohol abuse and dependence at age 21 engaged in more problem behaviors, had more opportunities to be involved with antisocial individuals and spent more time with and were more bonded to those individuals, viewed fewer negative consequences from antisocial behaviors and held more favorable views on alcohol use. Of these, prior problem behaviors and antisocial opportunities and involvements at ages 10, 14 and 16 consistently predicted alcohol abuse and dependence at age 21. Conclusions These important malleable predictors, identifiable as early as age 10, provide potential intervention targets for the prevention of alcohol abuse and dependence in early adulthood. PMID:11838912

  10. Anomalous Growth of Aging Populations

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2016-04-01

    We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.

  11. Experimental and Analytical Studies for a Computational Materials Program

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1999-01-01

    The studies supported by Grant NAG1-1780 were directed at providing physical data on polymer behavior that would form the basis for computationally modeling these types of materials. Because of ongoing work in polymer characterization this grant supported part of a larger picture in this regard. Efforts went into two combined areas of their time dependent mechanical response characteristics: Creep properties on the one hand, subject to different volumetric changes (nonlinearly viscoelastic behavior) and time or frequency dependence of dilatational material behavior. The details of these endeavors are outlined sufficiently in the two appended publications, so that no further description of the effort is necessary.

  12. The influence of student characteristics on the dependability of behavioral observation data.

    PubMed

    Briesch, Amy M; Volpe, Robert J; Ferguson, Tyler David

    2014-06-01

    Although generalizability theory has been used increasingly in recent years to investigate the dependability of behavioral estimates, many of these studies have relied on use of general education populations as opposed to those students who are most likely to be referred for assessment due to problematic classroom behavior (e.g., inattention, disruption). The current study investigated the degree to which differences exist in terms of the magnitude of both variance component estimates and dependability coefficients between students nominated by their teachers for Tier 2 interventions due to classroom behavior problems and a general classroom sample (i.e., including both nominated and non-nominated students). The academic engagement levels of 16 (8 nominated, 8 non-nominated) middle school students were measured by 4 trained observers using momentary time-sampling procedures. A series of G and D studies were then conducted to determine whether the 2 groups were similar in terms of the (a) distribution of rating variance and (b) number of observations needed to achieve an adequate level of dependability. Results suggested that the behavior of students in the teacher-nominated group fluctuated more across time and that roughly twice as many observations would therefore be required to yield similar levels of dependability compared with the combined group. These findings highlight the importance of constructing samples of students that are comparable to those students with whom the measurement method is likely to be applied when conducting psychometric investigations of behavioral assessment tools. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Origin of the spike-timing-dependent plasticity rule

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won; Choi, M. Y.

    2016-08-01

    A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.

  14. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  15. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  16. Characteristic interpersonal behavior in dependent and avoidant personality disorder can be observed within very short interaction sequences.

    PubMed

    Leising, Daniel; Sporberg, Doreen; Rehbein, Diana

    2006-08-01

    We present a behavior observation study of interpersonal behavior in 96 female subjects, who had been screened for the presence of dependent, avoidant, narcissistic and histrionic personality disorder features. Each subject took part in three short role-plays, taken from assertiveness training. Afterwards, both the subject and her role-play partner judged, how assertive the subject had been. Although observation time was very short, dependent and avoidant subjects could be easily identified from their overly submissive behavior in the role-plays. Histrionic and narcissistic subjects did not show distinctive interpersonal behavior. Contrary to a common belief, higher scores on some personality disorder (PD) scales were positively related to cross-situational variability of behavior. Results are discussed with regard to their implications for clinical diagnostics, therapy and the methodology of personality disorder research in general.

  17. A constitutive material model for nonlinear finite element structural analysis using an iterative matrix approach

    NASA Technical Reports Server (NTRS)

    Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard

    1988-01-01

    A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.

  18. Dynamics of a Hogg-Huberman Model with Time Dependent Reevaluation Rates

    NASA Astrophysics Data System (ADS)

    Tanaka, Toshijiro; Kurihara, Tetsuya; Inoue, Masayoshi

    2006-05-01

    The dynamical behavior of the Hogg-Huberman model with time-dependent reevaluation rates is studied. The time dependence of the reevaluation rate that agents using one of resources decide to consider their resource choice is obtained in terms of states of the system. It is seen that the change of fraction of agents using one resource is suppressed to be smaller than that in the case of a fixed reevaluation rate and the chaos control in the system associated with time-dependent reevaluation rates can be performed by the system itself.

  19. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats

    PubMed Central

    Molenda-Figueira, Heather A.; Williams, Casey A.; Griffin, Andreana L.; Rutledge, Eric M.; Blaustein, Jeffrey D.; Tetel, Marc J.

    2008-01-01

    The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions. PMID:16769066

  20. Time-dependent behavior of rough discontinuities under shearing conditions

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao

    2018-02-01

    The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.

  1. Development of a unified constitutive model for an isotropic nickel base superalloy Rene 80

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V. G.; Vanstone, R. H.; Laflen, J. H.; Stouffer, D. C.

    1988-01-01

    Accurate analysis of stress-strain behavior is of critical importance in the evaluation of life capabilities of hot section turbine engine components such as turbine blades and vanes. The constitutive equations used in the finite element analysis of such components must be capable of modeling a variety of complex behavior exhibited at high temperatures by cast superalloys. The classical separation of plasticity and creep employed in most of the finite element codes in use today is known to be deficient in modeling elevated temperature time dependent phenomena. Rate dependent, unified constitutive theories can overcome many of these difficulties. A new unified constitutive theory was developed to model the high temperature, time dependent behavior of Rene' 80 which is a cast turbine blade and vane nickel base superalloy. Considerations in model development included the cyclic softening behavior of Rene' 80, rate independence at lower temperatures and the development of a new model for static recovery.

  2. Nonautonomous dark soliton solutions in two-component Bose—Einstein condensates with a linear time-dependent potential

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Yan; Wang, Shuang-Jin; Li, Zai-Dong

    2014-06-01

    We report the analytical nonautonomous soliton solutions (NSSs) for two-component Bose—Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can affect the velocity of NSS. The velocity shows the characteristic of both increasing and oscillation with time. A detailed analysis for the asymptotic behavior of NSSs demonstrates that the collision of two NSSs of each component is elastic.

  3. Time-Dependent Migratory Behaviors in the Long-Term Studies of Fibroblast Durotaxis on a Hydrogel Substrate Fabricated with a Soft Band

    PubMed Central

    2015-01-01

    Durotaxis, biased cell movement up a stiffness gradient on culture substrates, is one of the useful taxis behaviors for manipulating cell migration on engineered biomaterial surfaces. In this study, long-term durotaxis was investigated on gelatinous substrates containing a soft band of 20, 50, and 150 μm in width fabricated using photolithographic elasticity patterning; sharp elasticity boundaries with a gradient strength of 300 kPa/50 μm were achieved. Time-dependent migratory behaviors of 3T3 fibroblast cells were observed during a time period of 3 days. During the first day, most of the cells were strongly repelled by the soft band independent of bandwidth, exhibiting the typical durotaxis behavior. However, the repellency by the soft band diminished, and more cells crossed the soft band or exhibited other mixed migratory behaviors during the course of the observation. It was found that durotaxis strength is weakened on the substrate with the narrowest soft band and that adherent affinity-induced entrapment becomes apparent on the widest soft band with time. Factors, such as changes in surface topography, elasticity, and/or chemistry, likely contributing to the apparent diminishing durotaxis during the extended culture were examined. Immunofluorescence analysis indicated preferential collagen deposition onto the soft band, which is derived from secretion by fibroblast cells, resulting in the increasing contribution of haptotaxis toward the soft band over time. The deposited collagen did not affect surface topography or surface elasticity but did change surface chemistry, especially on the soft band. The observed time-dependent durotaxis behaviors are the result of the mixed mechanical and chemical cues. In the studies and applications of cell migratory behavior under a controlled stimulus, it is important to thoroughly examine other (hidden) compounding stimuli in order to be able to accurately interpret data and to design suitable biomaterials to manipulate cell migration. PMID:24851722

  4. Sedentary Behaviors and Adiposity in Young People: Causality and Conceptual Model.

    PubMed

    Biddle, Stuart J H; Pearson, Natalie; Salmon, Jo

    2018-01-01

    Research on sedentary behavior and adiposity in youth dates back to the 1980s. Sedentary behaviors, usually screen time, can be associated with adiposity. Although the association usually is small but significant, the field is complex, and results are dependent on what sedentary behaviors are assessed and may be mediated and moderated by other behaviors.

  5. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Jonathan A.; Nguyen, Thao D.; Xiao, Rui

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate themore » effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.« less

  6. Influences of Mating Group Composition on the Behavioral Time-Budget of Male and Female Alpine Ibex (Capra ibex) during the Rut

    PubMed Central

    Tettamanti, Federico; Viblanc, Vincent A.

    2014-01-01

    During the rut, polygynous ungulates gather in mixed groups of individuals of different sex and age. Group social composition, which may vary on a daily basis, is likely to have strong influences on individual’s time-budget, with emerging properties at the group-level. To date, few studies have considered the influence of group composition on male and female behavioral time budget in mating groups. Focusing on a wild population of Alpine ibex, we investigated the influence of group composition (adult sex ratio, the proportion of dominant to subordinate males, and group size) on three behavioral axes obtained by Principal Components Analysis, describing male and female group time-budget. For both sexes, the first behavioral axis discerned a trade-off between grazing and standing/vigilance behavior. In females, group vigilance behavior increased with increasingly male-biased sex ratio, whereas in males, the effect of adult sex ratio on standing/vigilance behavior depended on the relative proportion of dominant males in the mating group. The second axis characterized courtship and male-male agonistic behavior in males, and moving and male-directed agonistic behavior in females. Mating group composition did not substantially influence this axis in males. However, moving and male-directed agonistic behavior increased at highly biased sex ratios (quadratic effect) in females. Finally, the third axis highlighted a trade-off between moving and lying behavior in males, and distinguished moving and female-female agonistic behavior from lying behavior in females. For males, those behaviors were influenced by a complex interaction between group size and adult sex ratio, whereas in females, moving and female-female agonistic behaviors increased in a quadratic fashion at highly biased sex ratios, and also increased with increasing group size. Our results reveal complex behavioral trade-offs depending on group composition in the Alpine ibex, and emphasize the importance of social factors in influencing behavioral time-budgets of wild ungulates during the rut. PMID:24416453

  7. Memory behaviors of entropy production rates in heat conduction

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2018-02-01

    Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.

  8. Arab Americans' acculturation and tobacco smoking.

    PubMed

    Al-Omari, Hasan; Scheibmeir, Monica

    2009-04-01

    Limited information is available about Arab Americans' smoking behaviors. The aim of this study was to describe Arab Americans' smoking behaviors and any relationship between tobacco dependence and acculturation. This was a cross-sectional study. Arab American smokers and ex-smokers (N = 96) participated in the study. Nicotine dependence, acculturation, and tobacco use questionnaires were used to measure the major variables. Analyses revealed a significant positive correlation between acculturation and tobacco dependence and between tobacco exposure and tobacco dependence. Arab Americans who behaved most like their ethnic peers and spent more time with Arab Americans were more dependent on nicotine.

  9. Role of Proteome Physical Chemistry in Cell Behavior.

    PubMed

    Ghosh, Kingshuk; de Graff, Adam M R; Sawle, Lucas; Dill, Ken A

    2016-09-15

    We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells.

  10. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study.

    PubMed

    Lissak, Gadi

    2018-07-01

    A growing body of literature is associating excessive and addictive use of digital media with physical, psychological, social and neurological adverse consequences. Research is focusing more on mobile devices use, and studies suggest that duration, content, after-dark-use, media type and the number of devices are key components determining screen time effects. Physical health effects: excessive screen time is associated with poor sleep and risk factors for cardiovascular diseases such as high blood pressure, obesity, low HDL cholesterol, poor stress regulation (high sympathetic arousal and cortisol dysregulation), and Insulin Resistance. Other physical health consequences include impaired vision and reduced bone density. Psychological effects: internalizing and externalizing behavior is related to poor sleep. Depressive symptoms and suicidal are associated to screen time induced poor sleep, digital device night use, and mobile phone dependency. ADHD-related behavior was linked to sleep problems, overall screen time, and violent and fast-paced content which activates dopamine and the reward pathways. Early and prolonged exposure to violent content is also linked to risk for antisocial behavior and decreased prosocial behavior. Psychoneurological effects: addictive screen time use decreases social coping and involves craving behavior which resembles substance dependence behavior. Brain structural changes related to cognitive control and emotional regulation are associated with digital media addictive behavior. A case study of a treatment of an ADHD diagnosed 9-year-old boy suggests screen time induced ADHD-related behavior could be inaccurately diagnosed as ADHD. Screen time reduction is effective in decreasing ADHD-related behavior. Components crucial for psychophysiological resilience are none-wandering mind (typical of ADHD-related behavior), good social coping and attachment, and good physical health. Excessive digital media use by children and adolescents appears as a major factor which may hamper the formation of sound psychophysiological resilience. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells.

    PubMed

    Florea, Cristina; Tanska, Petri; Mononen, Mika E; Qu, Chengjuan; Lammi, Mikko J; Laasanen, Mikko S; Korhonen, Rami K

    2017-02-01

    Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms. However, the particular mechanism that controls the local time-dependent behavior of cells is unknown. Here, a combined approach of experimental AFM nanoindentation with computational modeling is proposed, taking into account complex material behavior. Three constitutive models (porohyperelastic, viscohyperelastic, poroviscohyperelastic) in tandem with optimization algorithms were employed to capture the experimental stress relaxation data of chondrocytes at 5 % strain. The poroviscohyperelastic models with and without fluid flow allowed through the cell membrane provided excellent description of the experimental time-dependent cell responses (normalized mean squared error (NMSE) of 0.003 between the model and experiments). The viscohyperelastic model without fluid could not follow the entire experimental data that well (NMSE = 0.005), while the porohyperelastic model could not capture it at all (NMSE = 0.383). We also show by parametric analysis that the fluid flow has a small, but essential effect on the loading phase and short-term cell relaxation response, while the solid viscoelasticity controls the longer-term responses. We suggest that the local time-dependent cell mechanical response is determined by the combined effects of intrinsic viscoelasticity of the cytoskeleton and fluid flow redistribution in the cells, although the contribution of fluid flow is smaller when using a nanosized probe and moderate indentation rate. The present approach provides new insights into viscoelastic responses of chondrocytes, important for further understanding cell mechanobiological mechanisms in health and disease.

  12. Spike-timing dependent plasticity in primate corticospinal connections induced during free behavior

    PubMed Central

    Nishimura, Yukio; Perlmutter, Steve I.; Eaton, Ryan W.; Fetz, Eberhard E.

    2014-01-01

    Motor learning and functional recovery from brain damage involve changes in the strength of synaptic connections between neurons. Relevant in vivo evidence on the underlying cellular mechanisms remains limited and indirect. We found that the strength of neural connections between motor cortex and spinal cord in monkeys can be modified with an autonomous recurrent neural interface that delivers electrical stimuli in the spinal cord triggered by action potentials of corticospinal cells during free behavior. The activity-dependent stimulation modified the strength of the terminal connections of single corticomotoneuronal cells, consistent with a bidirectional spike-timing dependent plasticity rule previously derived from in vitro experiments. For some cells the changes lasted for days after the end of conditioning, but most effects eventually reverted to preconditioning levels. These results provide the first direct evidence of corticospinal synaptic plasticity in vivo at the level of single neurons induced by normal firing patterns during free behavior. PMID:24210907

  13. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  14. Thermo-elastoviscoplastic snapthrough behavior of cylindrical panels

    NASA Technical Reports Server (NTRS)

    Song, Y.; Simitses, G. J.

    1992-01-01

    The thermo-elastoviscoplastic snapthrough behavior of simply supported cylindrical panels is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations which include both Bodner-Partom's and Walker's material models. A finite element approach is employed to predict the inelastic buckling behavior. Numerical examples are given to demonstrate the effects of several parameters which include the temperature, thickness and flatness of the panel. Comparisons of buckling responses between Bodner-Partom's model and Walker's model are given. The creep buckling behavior, as an example of time-dependent inelastic deformation, is also presented.

  15. Motherhood and drug-dependency: the attributes of full-time versus part-time responsibility for child care.

    PubMed

    Jackson, M R; Berry, G L

    1994-10-01

    This study examined differences between the maternal characteristics of African-American drug-dependent mothers who have full-time responsibility for child care and those having part-time responsibility. The study revealed that full-time mothers have significantly higher levels of maternal adaptation than part-time mothers. For part-time mothers, the level of maternal adaptation or self-esteem did not fluctuate, regardless of whether she saw the child 4 days a week or once a month. The article identifies variables that may facilitate better maternal behaviors among drug-dependent mothers.

  16. Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan

    1995-01-01

    Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.

  17. Observations of Time-Dependent Behavior in the Two-Layer Rayleigh-Benard System

    NASA Technical Reports Server (NTRS)

    Andereck, C. David; Colovas, Peter W.; Degen, Michael M.

    1996-01-01

    In this paper we present results from experiments with a system consisting of two immiscible fluid layers in rectangular and annular geometries, driven by a vertical temperature gradient. Time-dependent variations in the type of coupling observed between the two layers are described and characterized.

  18. Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, Jose A.; Perciante, Cesar D

    2008-07-10

    The behavior of photochromic glasses during activation and bleaching is investigated. A two-state phenomenological model describing light-induced activation (darkening) and thermal bleaching is presented. The proposed model is based on first-order kinetics. We demonstrate that the time behavior in the activation process (acting simultaneously with the thermal fading) can be characterized by two relaxation times that depend on the intensity of the activating light. These characteristic times are lower than the decay times of the pure thermal bleaching process. We study the temporal evolution of the glass optical density and its dependence on the activating intensity. We also present amore » series of activation and bleaching experiments that validate the proposed model. Our approach may be used to gain more insight into the transmittance behavior of photosensitive glasses, which could be potentially relevant in a broad range of applications, e.g., real-time holography and reconfigurable optical memories.« less

  19. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  20. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  1. Transportation forecasting : analysis and quantitative methods

    DOT National Transportation Integrated Search

    1983-01-01

    This Record contains the following papers: Development of Survey Instruments Suitable for Determining Non-Home Activity Patterns; Sequential, History-Dependent Approach to Trip-Chaining Behavior; Identifying Time and History Dependencies of Activity ...

  2. Temperature-dependent time-resolved photoluminescence measurements of (1-101)-oriented semi-polar AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, Bernard; Monavarian, Morteza; Zhang, Fan; Okur, Serdal; Izyumskaya, Natalia; Avrutin, Vitaliy; Özgür, Ümit; Morkoç, Hadis

    2015-03-01

    We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.

  3. The Epidemics of Donations: Logistic Growth and Power-Laws

    PubMed Central

    Schweitzer, Frank; Mach, Robert

    2008-01-01

    This paper demonstrates that collective social dynamics resulting from individual donations can be well described by an epidemic model. It captures the herding behavior in donations as a non-local interaction between individual via a time-dependent mean field representing the mass media. Our study is based on the statistical analysis of a unique dataset obtained before and after the tsunami disaster of 2004. We find a power-law behavior for the distributions of donations with similar exponents for different countries. Even more remarkably, we show that these exponents are the same before and after the tsunami, which accounts for some kind of universal behavior in donations independent of the actual event. We further show that the time-dependent change of both the number and the total amount of donations after the tsunami follows a logistic growth equation. As a new element, a time-dependent scaling factor appears in this equation which accounts for the growing lack of public interest after the disaster. The results of the model are underpinned by the data analysis and thus also allow for a quantification of the media influence. PMID:18213367

  4. Tobacco-Smoking, Alcohol-Drinking, and Betel-Quid-Chewing Behaviors: Development and Use of a Web-Based Survey System.

    PubMed

    Hsu, Kuo-Yao; Tsai, Yun-Fang; Huang, Chu-Ching; Yeh, Wen-Ling; Chang, Kai-Ping; Lin, Chen-Chun; Chen, Ching-Yen; Lee, Hsiu-Lan

    2018-06-11

    Smoking tobacco, drinking alcohol, and chewing betel quid are health-risk behaviors for several diseases, such as cancer, cardiovascular disease, and diabetes, with severe impacts on health. However, health care providers often have limited time to assess clients' behaviors regarding smoking tobacco, drinking alcohol, and chewing betel quid and intervene, if needed. The objective of this study was to develop a Web-based survey system; determine the rates of tobacco-smoking, alcohol-drinking, and betel-quid-chewing behaviors; and estimate the efficiency of the system (time to complete the survey). Patients and their family members or friends were recruited from gastrointestinal medical-surgical, otolaryngology, orthopedics, and rehabilitation clinics or wards at a medical center in northern Taiwan. Data for this descriptive, cross-sectional study were extracted from a large series of research studies. A Web-based survey system was developed using a Linux, Apache, MySQL, PHP stack solution. The Web survey was set up to include four questionnaires: the Chinese-version Fagerstrom Tolerance Questionnaire, the Chinese-version Alcohol Use Disorders Identification Test, the Betel Nut Dependency Scale, and a sociodemographic form with several chronic diseases. After the participants completed the survey, the system automatically calculated their score, categorized their risk level for each behavior, and immediately presented and explained their results. The system also recorded the time each participant took to complete the survey. Of 782 patient participants, 29.6% were addicted to nicotine, 13.3% were hazardous, harmful, or dependent alcohol drinkers, and 1.5% were dependent on chewing betel quid. Of 425 family or friend participants, 19.8% were addicted to nicotine, 5.6% were hazardous, harmful, or dependent alcohol drinkers, and 0.9% were dependent on chewing betel quid. Regarding the mean time to complete the survey, patients took 7.9 minutes (SD 3.0; range 3-20) and family members or friends took 7.7 minutes (SD 2.8; range 3-18). Most of the participants completed the survey within 5-10 minutes. The Web-based survey was easy to self-administer. Health care providers can use this Web-based survey system to save time in assessing these risk behaviors in clinical settings. All smokers had mild-to-severe nicotine addiction, and 5.6%-12.3% of patients and their family members or friends were at risk of alcohol dependence. Considering that these three behaviors, particularly in combination, dramatically increase the risk of esophageal cancer, appropriate and convenient interventions are necessary for preserving public health in Taiwan. ©Kuo-Yao Hsu, Yun-Fang Tsai, Chu-Ching Huang, Wen-Ling Yeh, Kai-Ping Chang, Chen-Chun Lin, Ching-Yen Chen, Hsiu-Lan Lee. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 11.06.2018.

  5. An energy-balance model with multiply-periodic and quasi-chaotic free oscillations. [for climate forecasting

    NASA Technical Reports Server (NTRS)

    Bhattacharya, K.; Ghil, M.

    1979-01-01

    A slightly modified version of the one-dimensional time-dependent energy-balance climate model of Ghil and Bhattacharya (1978) is presented. The albedo-temperature parameterization has been reformulated and the smoothing of the temperature distribution in the tropics has been eliminated. The model albedo depends on time-lagged temperature in order to account for finite growth and decay time of continental ice sheets. Two distinct regimes of oscillatory behavior which depend on the value of the albedo-temperature time lag are considered.

  6. Role of Proteome Physical Chemistry in Cell Behavior

    PubMed Central

    2016-01-01

    We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell’s proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell’s proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2–3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells. PMID:27513457

  7. The time-domain behavior of power-law noises. [of many geophysical phenomena

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan C.

    1992-01-01

    The power spectra of many geophysical phenomena are well approximated by a power-law dependence on frequency or wavenumber. A simple expression for the root-mean-square variability of a process with such a spectrum over an interval of time or space is derived. The resulting expression yields the powerlaw time dependence characteristic of fractal processes, but can be generalized to give the temporal variability for more general spectral behaviors. The method is applied to spectra of crustal strain (to show what size of strain events can be detected over periods of months to seconds) and of sea level (to show the difficulty of extracting long-term rates from short records).

  8. Aging scaled Brownian motion

    NASA Astrophysics Data System (ADS)

    Safdari, Hadiseh; Chechkin, Aleksei V.; Jafari, Gholamreza R.; Metzler, Ralf

    2015-04-01

    Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.

  9. Aging scaled Brownian motion.

    PubMed

    Safdari, Hadiseh; Chechkin, Aleksei V; Jafari, Gholamreza R; Metzler, Ralf

    2015-04-01

    Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.

  10. Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice.

    PubMed

    Kotagale, Nandkishor R; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2015-05-05

    Smoking cessation exhibits an aversive withdrawal syndrome characterized by both increases in somatic signs and affective behaviors including anxiety and depression. In present study, abrupt withdrawal of daily nicotine injections (2mg/kg, s.c., four times daily, for 10 days) significantly increased somatic signs viz. rearing, grooming, jumping, genital licking, leg licking, head shakes with associated depression (increased immobility in forced swim test) as well as anxiety (decreased the number of entries and time spent in open arm in elevated plus maze) in nicotine dependent animals. The peak effect was observed at 24h time point of nicotine withdrawal. Repeated administration of agmatine (40-80µg/mouse, i.c.v.) before the first daily dose of nicotine from day 5 to 10 attenuated the elevated scores of somatic signs and abolished the depression and anxiety like behavior induced by nicotine withdrawal in dependent animals. However, in separate groups, its acute administration 30min before behavior analysis of nicotine withdrawal was ineffective. This result clearly shows the role of agmatine in development of nicotine dependence and its withdrawal. In extension to behavioral experiments, brain agmatine analyses, carried out at 24h time point of nicotine withdrawal demonstrated marked decrease in basal brain agmatine concentration as compared to control animals. Taken together, these data support the role of agmatine as common biological substrate for somatic signs and affective symptoms of nicotine withdrawal. This data may project therapies based on agmatine in anxiety, depression and mood changes associated with tobacco withdrawal. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Interactions Between Teacher and Students in a Physical Education Setting Observation of Students' Behaviors.

    ERIC Educational Resources Information Center

    Pieron, Maurice; Haan, Jean-Marie

    An investigation was made into the dependency of student behaviors on teacher behaviors in a physical education setting. It was assumed that the interaction between students and teachers as well as the time spent in skill-practice play a prominent role in learning. An effort was made to determine if students' behavior profiles differ in male,…

  12. Time discounting and smoking behavior: evidence from a panel survey(*).

    PubMed

    Kang, Myong-Il; Ikeda, Shinsuke

    2014-12-01

    By using a panel survey of Japanese adults, we show that smoking behavior is associated with personal time discounting and its biases, such as hyperbolic discounting and the sign effect, in the way that theory predicts: smoking depends positively on the discount rate and the degree of hyperbolic discounting and negatively on the presence of the sign effect. Positive effects of hyperbolic discounting on smoking are salient for naïve people, who are not aware of their self-control problem. By estimating smoking participation and smokers' cigarette consumption in Cragg's two-part model, we find that the two smoking decisions depend on different sets of time-discounting variables. Particularly, smoking participation is affected by being a naïve hyperbolic discounter, whereas the discount rate, the presence of the sign effect, and a hyperbolic discounting proxy constructed from procrastination behavior vis-à-vis doing homework assignments affect both types of decision making. The panel data enable us to analyze the over-time instability of elicited discount rates. The instability is shown to come from measurement errors, rather than preference shocks on time preference. Several evidences indicate that the detected associations between time preferences and smoking behavior are interpersonal one, rather than within-personal one. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1995-01-01

    An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.

  14. Time-dependent behavior of passive skeletal muscle

    NASA Astrophysics Data System (ADS)

    Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.

    2016-03-01

    An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.

  15. Behavioral Responses to Epidemics in an Online Experiment: Using Virtual Diseases to Study Human Behavior

    PubMed Central

    Chen, Frederick; Griffith, Amanda; Cottrell, Allin; Wong, Yue-Ling

    2013-01-01

    We report the results of a study we conducted using a simple multiplayer online game that simulates the spread of an infectious disease through a population composed of the players. We use our virtual epidemics game to examine how people respond to epidemics. The analysis shows that people's behavior is responsive to the cost of self-protection, the reported prevalence of disease, and their experiences earlier in the epidemic. Specifically, decreasing the cost of self-protection increases the rate of safe behavior. Higher reported prevalence also raises the likelihood that individuals would engage in self-protection, where the magnitude of this effect depends on how much time has elapsed in the epidemic. Individuals' experiences in terms of how often an infection was acquired when they did not engage in self-protection are another factor that determines whether they will invest in preventive measures later on. All else being equal, individuals who were infected at a higher rate are more likely to engage in self-protective behavior compared to those with a lower rate of infection. Lastly, fixing everything else, people's willingness to engage in safe behavior waxes or wanes over time, depending on the severity of an epidemic: when prevalence is high, people are more likely to adopt self-protective measures as time goes by; when prevalence is low, a ‘self-protection fatigue’ effect sets in whereby individuals are less willing to engage in safe behavior over time. PMID:23326360

  16. Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Song, Ki-Won

    2015-11-01

    The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.

  17. Effects of Aging-Time Reference on the Long Term Behavior of the IM7/K3B Composite

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Gates, Thomas S.

    1998-01-01

    An analytical study was undertaken to investigate the effects of the time-based shift reference on the long term behavior of the graphite reinforced thermoplastic polyimide composite IM7/K3B at elevated temperature. Creep compliance and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(sub g). Two matrix dominated loading modes, shear and transverse, were investigated in tension and compression. The momentary sequenced creep/aging curves were collapsed through a horizontal (time) shift using the shortest, middle and longest aging time curve as the reference curve. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. The use of effective time expressions in a laminated plate model allowed for the prediction of long term creep compliance. The effect of using different reference curves with time/aging-time superposition was most sensitive to the physical aging shift rate at lower test temperatures. Depending on the loading mode, the reference curve used can result in a more accurate long term prediction, especially at lower test temperatures.

  18. Late time behaviors of an inhomogeneous rolling tachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, O-Kab; Lee, Chong Oh; Basic Science Research Institute, Chonbuk National University, Chonju 561-756

    2006-06-15

    We study an inhomogeneous decay of an unstable D-brane in the context of Dirac-Born-Infeld (DBI)-type effective action. We consider tachyon and electromagnetic fields with dependence of time and one spatial coordinate, and an exact solution is found under an exponentially decreasing tachyon potential, e{sup -|T|/{radical}}{sup (2)}, which is valid for the description of the late time behavior of an unstable D-brane. Though the obtained solution contains both time and spatial dependence, the corresponding momentum density vanishes over the entire spacetime region. The solution is governed by two parameters. One adjusts the distribution of energy density in the inhomogeneous direction, andmore » the other interpolates between the homogeneous rolling tachyon and static configuration. As time evolves, the energy of the unstable D-brane is converted into the electric flux and tachyon matter.« less

  19. Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading

    PubMed Central

    Berardi, Valentino Paolo; Mancusi, Geminiano

    2012-01-01

    Polymer concretes (PCs) represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section). The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.

  20. Effect of Time-Dependent Sorption on the Dissipation of Water-Extractable Pesticides in Soils.

    PubMed

    Motoki, Yutaka; Iwafune, Takashi; Seike, Nobuyasu; Inao, Keiya; Otani, Takashi

    2016-06-08

    The dissipation behavior of water-extractable pesticides in soils is important when assessing the phytoavailability of pesticides in soils. This process is less understood than pesticide extraction with organic solvents. To elucidate the dissipation behavior of water-extractable pesticides in soils, we conducted an incubation study using 27 pesticides and five Japanese soils. The rate of decrease of the level of pesticides in water extracts was faster in soils than that of total extracts (water extracts and acetone extracts). This suggests that time-dependent sorption contributed to the difference in the dissipation between the pesticides in water and total extracts from soils. Increased apparent sorption coefficients (Kd,app) with time were positively and significantly correlated with Kd,app values of a 0 day incubation [Kd,app(t0)]. This empirical relationship suggests that Kd,app(t0) values can predict the time-dependent increase in Kd,app and the dissipation of water-extractable pesticides in soils.

  1. Mechanism by which BMI influences leisure-time physical activity behavior.

    PubMed

    Godin, Gaston; Bélanger-Gravel, Ariane; Nolin, Bertrand

    2008-06-01

    The objective of this prospective study was to clarify the mechanism by which BMI influences leisure-time physical activity. This was achieved in accordance with the assumptions underlying the Theory of Planned Behavior (TPB), considered as one of the most useful theories to predict behavior adoption. At baseline, a sample of 1,530 respondents completed a short questionnaire to measure intention and perceived behavioral control (PBC), the two proximal determinants of behavior of TPB. Past behavior, sociodemographic variables, and weight and height were also assessed. The dependent variable, leisure-time physical activity was assessed 3 months later. Hierarchical multiple regression analyses revealed that BMI is a direct predictor of future leisure-time physical activity, not mediated by the variables of TPB. Additional hierarchical analyses indicated that BMI was not a moderator of the intention-behavior and PBC-behavior relationships. The results of this study suggest that high BMI is a significant negative determinant of leisure-time physical activity. This observation reinforces the importance of preventing weight gain as a health promotion strategy for avoiding a sedentary lifestyle.

  2. The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com

    2015-08-15

    We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less

  3. Dynamic Dependence Analysis : Modeling and Inference of Changing Dependence Among Multiple Time-Series

    DTIC Science & Technology

    2009-06-01

    isolation. In addition to being inherently multi-modal, human perception takes advantages of multiple sources of information within a single modality...restric- tion was reasonable for the applications we looked at. However, consider using a TIM to model a teacher student relationship among moving objects...That is, imagine one teacher object demonstrating a behavior for a student object. The student can observe the teacher and then recreate the behavior

  4. Nonlinear time dependence of dark current in charge-coupled devices

    NASA Astrophysics Data System (ADS)

    Dunlap, Justin C.; Bodegom, Erik; Widenhorn, Ralf

    2011-03-01

    It is generally assumed that charge-coupled device (CCD) imagers produce a linear response of dark current versus exposure time except near saturation. We found a large number of pixels with nonlinear dark current response to exposure time to be present in two scientific CCD imagers. These pixels are found to exhibit distinguishable behavior with other analogous pixels and therefore can be characterized in groupings. Data from two Kodak CCD sensors are presented for exposure times from a few seconds up to two hours. Linear behavior is traditionally taken for granted when carrying out dark current correction and as a result, pixels with nonlinear behavior will be corrected inaccurately.

  5. Differences in time-dependent mechanical properties between extruded and molded hydrogels

    PubMed Central

    Ersumo, N; Witherel, CE; Spiller, KL

    2016-01-01

    The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945

  6. Time-Dependent Behavior of a Graphite/Thermoplastic Composite and the Effects of Stress and Physical Aging

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1995-01-01

    Experimental studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. Isothermal tensile creep/aging test techniques developed for polymers were adapted for testing of the composite material. Time dependent transverse and shear compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(8) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress.

  7. Software for rapid time dependent ChIP-sequencing analysis (TDCA).

    PubMed

    Myschyshyn, Mike; Farren-Dai, Marco; Chuang, Tien-Jui; Vocadlo, David

    2017-11-25

    Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and associated methods are widely used to define the genome wide distribution of chromatin associated proteins, post-translational epigenetic marks, and modifications found on DNA bases. An area of emerging interest is to study time dependent changes in the distribution of such proteins and marks by using serial ChIP-seq experiments performed in a time resolved manner. Despite such time resolved studies becoming increasingly common, software to facilitate analysis of such data in a robust automated manner is limited. We have designed software called Time-Dependent ChIP-Sequencing Analyser (TDCA), which is the first program to automate analysis of time-dependent ChIP-seq data by fitting to sigmoidal curves. We provide users with guidance for experimental design of TDCA for modeling of time course (TC) ChIP-seq data using two simulated data sets. Furthermore, we demonstrate that this fitting strategy is widely applicable by showing that automated analysis of three previously published TC data sets accurately recapitulates key findings reported in these studies. Using each of these data sets, we highlight how biologically relevant findings can be readily obtained by exploiting TDCA to yield intuitive parameters that describe behavior at either a single locus or sets of loci. TDCA enables customizable analysis of user input aligned DNA sequencing data, coupled with graphical outputs in the form of publication-ready figures that describe behavior at either individual loci or sets of loci sharing common traits defined by the user. TDCA accepts sequencing data as standard binary alignment map (BAM) files and loci of interest in browser extensible data (BED) file format. TDCA accurately models the number of sequencing reads, or coverage, at loci from TC ChIP-seq studies or conceptually related TC sequencing experiments. TC experiments are reduced to intuitive parametric values that facilitate biologically relevant data analysis, and the uncovering of variations in the time-dependent behavior of chromatin. TDCA automates the analysis of TC ChIP-seq experiments, permitting researchers to easily obtain raw and modeled data for specific loci or groups of loci with similar behavior while also enhancing consistency of data analysis of TC data within the genomics field.

  8. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  9. Time-dependent limited penetrable visibility graph analysis of nonstationary time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong

    2017-06-01

    Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas-liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas-liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas-liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.

  10. Modeling the glass transition of amorphous networks for shape-memory behavior

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Choi, Jinwoo; Lakhera, Nishant; Yakacki, Christopher M.; Frick, Carl P.; Nguyen, Thao D.

    2013-07-01

    In this paper, a thermomechanical constitutive model was developed for the time-dependent behaviors of the glass transition of amorphous networks. The model used multiple discrete relaxation processes to describe the distribution of relaxation times for stress relaxation, structural relaxation, and stress-activated viscous flow. A non-equilibrium thermodynamic framework based on the fictive temperature was introduced to demonstrate the thermodynamic consistency of the constitutive theory. Experimental and theoretical methods were developed to determine the parameters describing the distribution of stress and structural relaxation times and the dependence of the relaxation times on temperature, structure, and driving stress. The model was applied to study the effects of deformation temperatures and physical aging on the shape-memory behavior of amorphous networks. The model was able to reproduce important features of the partially constrained recovery response observed in experiments. Specifically, the model demonstrated a strain-recovery overshoot for cases programmed below Tg and subjected to a constant mechanical load. This phenomenon was not observed for materials programmed above Tg. Physical aging, in which the material was annealed for an extended period of time below Tg, shifted the activation of strain recovery to higher temperatures and increased significantly the initial recovery rate. For fixed-strain recovery, the model showed a larger overshoot in the stress response for cases programmed below Tg, which was consistent with previous experimental observations. Altogether, this work demonstrates how an understanding of the time-dependent behaviors of the glass transition can be used to tailor the temperature and deformation history of the shape-memory programming process to achieve more complex shape recovery pathways, faster recovery responses, and larger activation stresses.

  11. Time dispersion of energetic solar particles, unexpected velocity and species dependence

    NASA Technical Reports Server (NTRS)

    Gallagher, J. J.; Hovestadt, D.; Klecker, B.; Gloeckler, G.; Fan, C. Y.

    1976-01-01

    The intensity-time behavior for protons and helium, as well as for carbon, oxygen and iron ions was measured following the 1974 September 19 solar flare for energies between 0.5 and approximately 5 MeV per nucleon. The profiles displayed a time dispersion which is inversely proportional to velocity for each individual species. In addition, at a given velocity the time dispersion also depended on the charge to mass ratio of the ion. Based on this latter dependence, it was concluded that while carbon and oxygen are essentially fully stripped, iron nuclei are not, having an effective charge Q = 10 + or - 5. The observed dispersion cannot be explained by purely rigidity dependent diffusive propagation.

  12. Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior

    DOE PAGES

    Argibay, N.; Furnish, T. A.; Boyce, B. L.; ...

    2016-06-07

    The friction behavior of ultra-nanocrystalline Ni-W coatings was investigated. A critical stress threshold was identified below which friction remained low, and above which a time-dependent evolution toward higher friction behavior occurred. Founded on established plasticity models we propose a correlation between surface grain size and applied stress that can be used to predict the critical stress separating the two friction regimes. Lastly, this interpretation of plasticity models suggests that macro-scale low and high friction regimes are respectively associated with the nano-scale mechanisms of grain boundary and dislocation-mediated plasticity.

  13. LONG-TERM BEHAVIORAL AND NEUROCHEMICAL EFFECTS OF INTRADENTATE ADMINISTRATION OF COLCHICINE IN RATS

    EPA Science Inventory

    Previous work has shown that the intradentate administration of colchicine produces time-dependent behavioral and neurochemical changes. eficits in learning and memory and alterations In the signal transduction process for the cholinergic muscarinic receptor have been observed up...

  14. Brownian motion in time-dependent logarithmic potential: Exact results for dynamics and first-passage properties.

    PubMed

    Ryabov, Artem; Berestneva, Ekaterina; Holubec, Viktor

    2015-09-21

    The paper addresses Brownian motion in the logarithmic potential with time-dependent strength, U(x, t) = g(t)log(x), subject to the absorbing boundary at the origin of coordinates. Such model can represent kinetics of diffusion-controlled reactions of charged molecules or escape of Brownian particles over a time-dependent entropic barrier at the end of a biological pore. We present a simple asymptotic theory which yields the long-time behavior of both the survival probability (first-passage properties) and the moments of the particle position (dynamics). The asymptotic survival probability, i.e., the probability that the particle will not hit the origin before a given time, is a functional of the potential strength. As such, it exhibits a rather varied behavior for different functions g(t). The latter can be grouped into three classes according to the regime of the asymptotic decay of the survival probability. We distinguish 1. the regular (power-law decay), 2. the marginal (power law times a slow function of time), and 3. the regime of enhanced absorption (decay faster than the power law, e.g., exponential). Results of the asymptotic theory show good agreement with numerical simulations.

  15. Tobacco use and smoking behaviors of individuals with a serious mental illness.

    PubMed

    Pettey, Donna; Aubry, Tim

    2018-05-21

    The purpose of this study was to determine the prevalence of tobacco use and overall smoking behaviors within a sample of individuals with a serious mental illness who were homeless or vulnerably housed and receiving community mental health services. In 2010, individuals (N = 639) were interviewed, and identified smokers completed the Fagerström Test for Nicotine Dependence (FTND) and additional questions related to their smoking behaviors. Tobacco use prevalence was 72%, and 62% of smokers had high or very high levels of nicotine dependence. Smoking behaviors included smoking contraband cigarettes (47%) and smoking cigarettes remade from discarded cigarette butts (25%). Smokers were found to be over 9 times as likely to have a co-occurring substance use disorder. Significant tobacco prevalence and dependency in this population highlights the need to provide integrated treatment opportunities. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. High frequency measures of OHC nonlinear capacitance (NLC) and their significance: Why measures stray away from predictions

    NASA Astrophysics Data System (ADS)

    Santos-Sacchi, Joseph

    2018-05-01

    Measures of membrane capacitance (Cm) can be used to assess important characteristics of voltage-dependent membrane proteins (e.g., channels and transporters). In particular, a protein's time-dependent voltage-sensor charge movement is equivalently represented as a frequency-dependent component of Cm, telling much about the kinetics of the protein's conformational behavior. Recently, we have explored the frequency dependence of OHC voltage-dependent capacitance (aka nonlinear capacitance, NLC) to query rates of conformational switching within prestin (SLC26a5), the cell's lateral membrane molecular motor 1. Following removal of confounding stray capacitance effects, high frequency Cm measures using wide-band stimuli accurately reveal unexpected low pass behavior in prestin's molecular motions.

  17. Reliability, resilience and vulnerability criteria for the evaluation of time-dependent health risks: A hypothetical case study of wellhead protection

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; Silliman, S. E.; Bolster, D.

    2012-12-01

    A hypothetical case study of groundwater contaminant protection was carried out using time-dependent health risk calculations. The case study focuses on a hypothetical zoning project for parcels of land around a well field in northern Indiana, where the control of cancer risk relative to a mandated cancer risk threshold is of concern in the management strategy. Within our analysis, we include both uncertainty in the subsurface transport and variability in population behavior in the calculation of time-dependent health risks. From these results we introduce risk maps, a visual representation of the probability of an unacceptable health risk as a function of population behavior and the time at which exposure to the contaminant begins. We also evaluate the time-dependent risks with three criteria from water resource literature: reliability, resilience, and vulnerability (RRV). With respect to health risk from a groundwater well, the three criteria determine: the probability that a well produces safe water (reliability), the probability that a contaminated well returns to an uncontaminated state within a specified time interval (resilience), and the overall severity in terms of health impact of the contamination at a well head (vulnerability). The results demonstrate that the distributions of RRV values for each parcel of land are linked to the time-dependent concentration profile of the contaminant at the well, and the toxicological characteristics of the contaminant. The proposed time-dependent risk calculation expands on current techniques to include a continuous exposure start time, capable of reproducing the maximum risk while providing information on the severity and duration of health risks. Overall this study suggests that, especially in light of the inherent complexity of health-groundwater systems, RRV are viable criteria for relatively simple and effective evaluation of time-dependent health risk. It is argued that the RRV approach, as applied to consideration of potential health impact, allows for more informed, health-based decisions regarding zoning for wellhead protection.

  18. Time dependent behavior of a graphite/thermoplastic composite and the effects of stress and physical aging

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1993-01-01

    Two complimentary studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. The first of these studies, experimental in nature, used isothermal tensile creep/aging test techniques developed for polymers and adapted them for testing of the composite material. From these tests, the time dependent transverse (S22) and shear (S66) compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(sub g) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress. The second part of the study relied upon isothermal uniaxial tension tests of IM7/8320 to determine the effects of physical aging on the nonlinear material behavior at elevated temperature. An elastic/viscoplastic constitutive model was used to quantify the effects of aging on the rate-independent plastic and rate-dependent viscoplastic response. Sensitivity of the material constants required by the model to aging time were determined for aging times up to 65 hours. Verification of the analytical model indicated that the effects of prior aging on the nonlinear stress/strain/time data of matrix dominated laminates can be predicted.

  19. Revealing Behavioral Learning Deficit Phenotypes Subsequent to In Utero Exposure to Benzo(a)pyrene

    PubMed Central

    McCallister, Monique M.; Li, Zhu; Zhang, Tongwen; Ramesh, Aramandla; Clark, Ryan S.; Maguire, Mark; Hutsell, Blake; Newland, M. Christopher; Hood, Darryl B.

    2016-01-01

    To characterize behavioral deficits in pre-adolescent offspring exposed in utero to Benzo(a)pyrene [B(a)P], timed-pregnant Long Evans Hooded rats were treated with B(a)P (150, 300, 600, and 1200 µg/kg BW) or peanut oil (vehicle) on E14, 15, 16, and 17. Following birth, during the pre-weaning period, B(a)P metabolites were examined in plasma and whole brain or cerebral cortex from exposed and control offspring. Tissue concentrations of B(a)P metabolites were (1) dose-dependent and (2) followed a time-dependence for elimination with ∼60% reduction by PND5 in the 1200 µg/kg BW experimental group. Spatial discrimination-reversal learning was utilized to evaluate potential behavioral neurotoxicity in P40–P60 offspring. Late-adolescent offspring exposed in utero to 600 and 1200 µg/kg BW were indistinguishable from their control counterparts for ability to acquire an original discrimination (OD) and reach criterion. However, a dose-dependent effect of in utero B(a)P-exposure was evident upon a discrimination reversal as exposed offspring perseverated on the previously correct response. This newly characterized behavioral deficit phenotype for the first reversal was not apparent in either the (1) OD or (2) subsequent reversal sessions relative to the respective control offspring. Furthermore, the expression of activity related-cytoskeletal-associated protein (Arc), an experience-dependent cortical protein marker known to be up-regulated in response to acquisition of a novel behavior, was greater in B(a)P-exposed offspring included in the spatial discrimination cohort versus home cage controls. Collectively, these findings support the hypothesis that in utero exposure to B(a)P during critical windows of development representing peak periods of neurogenesis results in behavioral deficits in later life. PMID:26420751

  20. Fractal analysis on human dynamics of library loans

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Guo, Jin-Li; Zha, Yi-Long

    2012-12-01

    In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.

  1. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats

    PubMed Central

    Evans, Andrew K.; Strassmann, Patrick S.; Lee, I-Ping; Sapolsky, Robert M.

    2014-01-01

    Toxoplasma gondii (T. gondii) is one of the world’s most successful brain parasites. T. gondii engages in parasite manipulation of host behavior and infection has been epidemiologically linked to numerous psychiatric disorders. Mechanisms by which T. gondii alters host behavior are not well understood, but neuroanatomical cyst presence and the localized host immune response to cysts are potential candidates. The aim of these studies was to test the hypothesis that T. gondii manipulation of specific host behaviors is dependent on neuroanatomical location of cysts in a time-dependent function post-infection. We examined neuroanatomical cyst distribution (53 forebrain regions) in infected rats after predator odor aversion behavior and anxiety-related behavior in the elevated plus maze and open field arena, across a 6-week time course. In addition, we examined evidence for microglial response to the parasite across the time course. Our findings demonstrate that while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization, beginning 3 weeks post-infection, can explain individual variation in the effects of T. gondii on behavior. Additionally, not all infected rats develop cysts in the forebrain, and attenuation of predator odor aversion and changes in anxiety-related behavior are linked with cyst presence in specific forebrain areas. Finally, the immune response to cysts is striking. These data provide the foundation for testing hypotheses about proximate mechanisms by which T. gondii alters behavior in specific brain regions, including consequences of establishment of a homeostasis between T. gondii and the host immune response. PMID:24269877

  2. Age and sex influence marmot antipredator behavior during periods of heightened risk.

    PubMed

    Lea, Amanda J; Blumstein, Daniel T

    2011-08-01

    Animals adjust their antipredator behavior according to environmental variation in risk, and to account for their ability to respond to threats. Intrinsic factors that influence an animal's ability to respond to predators (e.g., age, body condition) should explain variation in antipredator behavior. For example, a juvenile might allocate more time to vigilance than an adult because mortality as a result of predation is often high for this age class; however, the relationship between age/vulnerability and antipredator behavior is not always clear or as predicted. We explored the influence of intrinsic factors on yellow-bellied marmot (Marmota flaviventris) antipredator behavior using data pooled from 4 years of experiments. We hypothesized that inherently vulnerable animals (e.g., young, males, and individuals in poor condition) would exhibit more antipredator behavior prior to and immediately following conspecific alarm calls. As expected, males and yearlings suppressed foraging more than females and adults following alarm call playbacks. In contrast to predictions, animals in better condition respond more than animals in below average condition. Interestingly, these intrinsic properties did not influence baseline time budgets; animals of all ages, sexes, and condition levels devoted comparable amounts of time to foraging prior to alarm calls. Our results support the hypothesis that inherent differences in vulnerability influence antipredator behavior; furthermore, it appears that a crucial, but poorly acknowledged, interaction exists between risk and state-dependence. Elevated risk may be required to reveal the workings of state-dependent behavior, and studies of antipredator behavior in a single context may draw incomplete conclusions about age- or sex-specific strategies.

  3. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.

    PubMed

    Kanou, Masamichi; Matsuyama, Akane; Takuwa, Hiroyuki

    2014-09-01

    We investigated the effects of visual information on wind-evoked escape behavior in the cricket, Gryllus bimaculatus. Most agitated crickets were found to retreat into a shelter made of cardboard installed in the test arena within a short time. As this behavior was thought to be a type of escape, we confirmed how a visual image of a shelter affected wind-evoked escape behavior. Irrespective of the brightness of the visual background (black or white) or the absence or presence of a shelter, escape jumps were oriented almost 180° opposite to the source of the air puff stimulus. Therefore, the direction of wind-evoked escape depends solely depended on the direction of the stimulus air puff. In contrast, the turning direction of the crickets during the escape was affected by the position of the visual image of the shelter. During the wind-evoked escape jump, most crickets turned in the direction in which a shelter was presented. This behavioral nature is presumably necessary for crickets to retreat into a shelter within a short time after their escape jump.

  4. cAMP signaling mediates behavioral flexibility and consolidation of social status in Drosophila aggression.

    PubMed

    Chouhan, Nitin Singh; Mohan, Krithika; Ghose, Aurnab

    2017-12-01

    Social rituals, such as male-male aggression in Drosophila , are often stereotyped and the component behavioral patterns modular. The likelihood of transition from one behavioral pattern to another is malleable by experience and confers flexibility to the behavioral repertoire. Experience-dependent modification of innate aggressive behavior in flies alters fighting strategies during fights and establishes dominant-subordinate relationships. Dominance hierarchies resulting from agonistic encounters are consolidated to longer-lasting, social-status-dependent behavioral modifications, resulting in a robust loser effect. We showed that cAMP dynamics regulated by the calcium-calmodulin-dependent adenylyl cyclase, Rut, and the cAMP phosphodiesterase, Dnc, but not the Amn gene product, in specific neuronal groups of the mushroom body and central complex, mediate behavioral plasticity necessary to establish dominant-subordinate relationships. rut and dnc mutant flies were unable to alter fighting strategies and establish dominance relationships during agonistic interactions. This real-time flexibility during a fight was independent of changes in aggression levels. Longer-term consolidation of social status in the form of a loser effect, however, required additional Amn -dependent inputs to cAMP signaling and involved a circuit-level association between the α/β and γ neurons of the mushroom body. Our findings implicate cAMP signaling in mediating the plasticity of behavioral patterns in aggressive behavior and in the generation of a temporally stable memory trace that manifests as a loser effect. © 2017. Published by The Company of Biologists Ltd.

  5. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  6. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sachin; Rajaram, Harihar

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  7. Hippocampal mechanisms for the context-dependent retrieval of episodes

    PubMed Central

    Hasselmo, Michael E.; Eichenbaum, Howard B.

    2008-01-01

    Behaviors ranging from delivering newspapers to waiting tables depend on remembering previous episodes to avoid incorrect repetition. Physiologically, this requires mechanisms for long-term storage and selective retrieval of episodes based on time of occurrence, despite variable intervals and similarity of events in a familiar environment. Here, this process has been modeled based on physiological properties of the hippocampal formation, including mechanisms for sustained activity in entorhinal cortex and theta rhythm oscillations in hippocampal subregions. The model simulates the context-sensitive firing properties of hippocampal neurons including trial specific firing during spatial alternation and trial by trial changes in theta phase precession on a linear track. This activity is used to guide behavior, and lesions of the hippocampal network impair memory-guided behavior. The model links data at the cellular level to behavior at the systems level, describing a physiologically plausible mechanism for the brain to recall a given episode which occurred at a specific place and time. PMID:16263240

  8. Employee performance in the knowledge economy: Capturing the keys to success

    PubMed Central

    Fauth, Rebecca; Bevan, Stephen; Mills, Peter

    2009-01-01

    The present study examines the key determinants of employee performance in a knowledge-intensive service firm located in the UK. Using data from a pilot study, we mapped eight performance-related behaviors to two measures of global performance to isolate the strongest predictors of the latter. We also examined the degree to which these associations varied depending on whether employees or their managers reported on performance as well as according to the degree of complexity (eg, ongoing learning, multitasking, problem solving, etc.) present in workers’ jobs. Findings revealed that more traditional employee performance-related behaviors (eg, dependability) as well as behaviors that have likely increased in importance in the knowledge economy (eg, sharing ideas and information) accounted for the most variance in reported global performance. Sharing ideas and information was a particularly important predictor for workers in complex jobs. When the performance-related behaviors were regressed on the organization’s annual employee appraisal ratings, only dependability and time management behaviors were significantly associated with the outcome. As organizational success increasingly is dependent on intangible inputs stemming from the ideas, innovations and creativity of its workforce, organizations need to ensure that they are capturing the full range of behaviors that help to define their success. Further research with a diverse range of organizations will help define this further. PMID:22110316

  9. Deciphering hierarchical features in the energy landscape of adenylate kinase folding/unfolding

    NASA Astrophysics Data System (ADS)

    Taylor, J. Nicholas; Pirchi, Menahem; Haran, Gilad; Komatsuzaki, Tamiki

    2018-03-01

    Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.

  10. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding tomore » neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.« less

  11. Behavioral Timing without Clockwork: Photoperiod-Dependent Trade-Off between Predation Hazard and Energy Balance in an Arctic Ungulate.

    PubMed

    Tyler, Nicholas J C; Gregorini, Pablo; Forchhammer, Mads C; Stokkan, Karl-Arne; van Oort, Bob E H; Hazlerigg, David G

    2016-10-01

    Occurrence of 24-h rhythms in species apparently lacking functional molecular clockwork indicates that strong circadian mechanisms are not essential prerequisites of robust timing, and that rhythmical patterns may arise instead as passive responses to periodically changing environmental stimuli. Thus, in a new synthesis of grazing in a ruminant (MINDY), crepuscular peaks of activity emerge from interactions between internal and external stimuli that influence motivation to feed, and the influence of the light/dark cycle is mediated through the effect of low nocturnal levels of food intake on gastric function. Drawing on risk allocation theory, we hypothesized that the timing of behavior in ruminants is influenced by the independent effects of light on motivation to feed and perceived risk of predation. We predicted that the antithetical relationship between these 2 drivers would vary with photoperiod, resulting in a systematic shift in the phase of activity relative to the solar cycle across the year. This prediction was formalized in a model in which phase of activity emerges from a photoperiod-dependent trade-off between food and safety. We tested this model using data on the temporal pattern of activity in reindeer/caribou Rangifer tarandus free-living at natural mountain pasture in sub-Arctic Norway. The resulting nonlinear relationship between the phasing of crepuscular activity and photoperiod, consistent with the model, suggests a mechanism for behavioral timing that is independent of the core circadian system. We anticipate that such timing depends on integration of metabolic feedback from the digestive system and the activity of the glucocorticoid axis which modulates the behavioral responses of the animal to environmental hazard. The hypothalamus is the obvious neural substrate to achieve this integration. © 2016 The Author(s).

  12. Linear analysis of time dependent properties of Child-Langmuir flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, A.

    We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of themore » voltage change.« less

  13. Linear analysis of time dependent properties of Child-Langmuir flow

    NASA Astrophysics Data System (ADS)

    Rokhlenko, A.

    2013-01-01

    We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of the voltage change.

  14. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time

    DOE PAGES

    Hu, Xiaohu; Hong, Liang; Smith, Micholas Dean; ...

    2015-11-23

    Here, internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behavior with effective relaxation times existing over many decades in time, from ps up to ~10 2s (refs 1-4). Here, using molecular dynamics simulations, we show that, on timescales from 10 –12 to 10 –5s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of themore » energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behavior persists up to timescales approaching the in vivo lifespan of individual protein molecules.« less

  15. Quantum theory of the far-off-resonance continuous-wave Raman laser: Heisenberg-Langevin approach

    NASA Astrophysics Data System (ADS)

    Roos, P. A.; Murphy, S. K.; Meng, L. S.; Carlsten, J. L.; Ralph, T. C.; White, A. G.; Brasseur, J. K.

    2003-07-01

    We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump ↔ pump, Stokes ↔ signal, and Raman coherence ↔ idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

  16. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium.

    PubMed

    Zakhari, Monica E A; Anderson, Patrick D; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012)1359-664010.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1%. The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  17. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    NASA Astrophysics Data System (ADS)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  18. Oscillon in Einstein-scalar system with double well potential and its properties.

    NASA Astrophysics Data System (ADS)

    Ikeda, Taishi; Yoo, Chul-Moon; Cardoso, Vitor

    2018-01-01

    The dynamical evolution of self-interacting scalar field has many nontrivial behaviors, which tell us many lessons in a nonlinear dynamics. On Minkowski spacetime, the scalar field with double well potential has localized, non-singular, time-dependent, long-lived solutions, which are called oscillons. The lifetime of the oscillon depends on the initial conditions. Furthermore, when the initial parameter is fine-tuned, oscillons can be infinitely, and type I critical behavior is observed. Here, we investigate the Einstein-scalar system with double well potential. We show that oscillons exist in this system, and discuss the behavior when the initial parameter is fine-tuned. Our results suggests that a new type of critical behavior appears in this theory.

  19. STEROID RECEPTOR COACTIVATOR 2 (SRC-2) MODULATES STEROID-DEPENDENT MALE SEXUAL BEHAVIOR AND NEUROPLASTICITY IN JAPANESE QUAIL (COTURNIX JAPONICA)

    PubMed Central

    Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.

    2011-01-01

    Steroid receptor coactivators are necessary for efficient transcriptional regulation by ligand-bound nuclear receptors, including estrogen and androgen receptors. SRC-2 modulates estrogen- and progesterone-dependent sexual behavior in female rats but its implication in the control of male sexual behavior has not been studied to our knowledge. We cloned and sequenced the complete quail SRC-2 transcript and showed by semi-quantitative PCR that SRC-2 expression is nearly ubiquitous, with high levels of expression in the kidney, cerebellum and diencephalon. Real time quantitative PCR did not reveal any differences between intact males and females the medial preoptic nucleus (POM), optic lobes and cerebellum. We next investigated the physiological and behavioral role of this coactivator using in vivo antisense oligonucleotide (AS) techniques. Daily injections in the third ventricle at the level of the POM of locked nucleic acid antisense targeting SRC-2 significantly reduced the expression of testosterone-dependent male-typical copulatory behavior but no inhibition of one aspect of the appetitive sexual behavior was observed. The volume of POM, defined by aromatase-immunoreactive cells, was markedly decreased in animals treated with AS as compared to controls. These results demonstrate that SRC-2 plays a prominent role in the control of steroid-dependent male sexual behavior and its associated neuroplasticity in Japanese quail. PMID:21854393

  20. Dose-dependent fluoxetine effects on boldness in male Siamese fighting fish.

    PubMed

    Dzieweczynski, Teresa L; Campbell, Brennah A; Kane, Jessica L

    2016-03-01

    As the use of pharmaceuticals and personal care products (PPCPs) continues to rise, these compounds enter the environment in increasing frequency. One such PPCP, fluoxetine, has been found in detectable amounts in aquatic ecosystems worldwide, where it may interfere with the behavior of exposed organisms. Fluoxetine exposure has been found to influence boldness and exploration in a range of fish species; however, how it might alter behavior in multiple contexts or over time is rarely examined. To this end, the effects of fluoxetine on boldness over time were studied in male Siamese fighting fish. Three different groups of males (0, 0.5 and 5 µg l(-1) fluoxetine) were tested in multiple boldness assays (empty tank, novel environment and shoal) once a week for 3 weeks to collect baseline measures and then at three different time points post-exposure. The effects of these varying exposure amounts on behavior were then examined for overall response, consistency and across-context correlations. Unexposed males were bolder in all contexts, were more consistent within a context, and had stronger between-context correlations than exposed males. Fluoxetine had dose-dependent effects on behavior, as males that received the higher dose exhibited greater behavioral effects. This study stresses the potential fitness consequences of fluoxetine exposure and suggests that examining behavioral effects of PPCPs under different dosing regimens and in multiple contexts is important to gain an increased understanding of how exposure affects behavior. © 2016. Published by The Company of Biologists Ltd.

  1. Discrete time modelization of human pilot behavior

    NASA Technical Reports Server (NTRS)

    Cavalli, D.; Soulatges, D.

    1975-01-01

    This modelization starts from the following hypotheses: pilot's behavior is a time discrete process, he can perform only one task at a time and his operating mode depends on the considered flight subphase. Pilot's behavior was observed using an electro oculometer and a simulator cockpit. A FORTRAN program has been elaborated using two strategies. The first one is a Markovian process in which the successive instrument readings are governed by a matrix of conditional probabilities. In the second one, strategy is an heuristic process and the concepts of mental load and performance are described. The results of the two aspects have been compared with simulation data.

  2. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.

    PubMed

    Huang, Huixiang; Tang, Wencheng; Tan, Qiyan; Yan, Bin

    2017-04-01

    The present study developed and implemented a new visco-hyperelastic model that is capable of predicting the time-dependent biomechanical behavior of the periodontal ligament. The constitutive model has been implemented into the finite element package ABAQUS by means of a user-defined material subroutine (UMAT). The stress response is decomposed into two constitutive parts in parallel which are a hyperelastic and a time-dependent viscoelastic stress response. In order to identify the model parameters, the indentation equation based on V-W hyperelastic model and the indentation creep model are developed. Then the parameters are determined by fitting them to the corresponding nanoindentation experimental data of the PDL. The nanoindentation experiment was simulated by finite element analysis to validate the visco-hyperelastic model. The simulated results are in good agreement with the experimental data, which demonstrates that the visco-hyperelastic model developed is able to accurately predict the time-dependent mechanical behavior of the PDL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive

    DTIC Science & Technology

    2009-06-01

    time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast

  4. Absence of verbal recall or memory for symptom acquisition in fear and trauma exposure: a conceptual case for fear conditioning and learned nonuse in assessment and treatment.

    PubMed

    Seifert, A Ronald

    2012-01-01

    Absence of memory or verbal recall for symptom acquisition in fear and trauma exposure, as well as absence of successful coping behavior for life events, is associated with a number of diagnoses, including traumatic brain injury, posttraumatic stress disorder, pain, and anxiety. The difficulty with diagnosis and treatment planning based on the absence of recall, memory, and successful coping behavior is threefold: (1) these assessments do not distinguish between disruption of behavior and lack of capacity, (2) the absence of verbal recall and memory complicates cognitive-based treatment, and (3) a confounding issue is the same absent behavior can be observed at different times and contexts. While memory of the specific details of the initial traumatic event(s) may not be available to verbal report, the existence of time- and context-dependent relationships for the initial as well as subsequent experiences is arguable. The absence of memory or lack of verbal recall does not rule out measurable physiological bodily responses for the initial trauma(s), nor does it help to establish the effects of subsequent experiences for symptom expression. Also, the absence of memory must include the prospect of fear-based learning that does not require or involve the cortex. It is posited that the literatures of fear conditioning and learned nonuse provide complementary illustrations of how the time and context of the initial trauma(s) and subsequent experiences affect behavior, which is not dependent on the effected individual being able to provide a memory-based verbal report. The replicated clinical application demonstrates that, without scientific demonstration, neither neuroanatomy nor verbal report can be assumed sufficient to predict overt behavior or physiologic responses. For example, while commonly assumed to be predictively so, autonomic nervous system innervation is insufficient to define the unique stimulus- and context-dependent physiological responses of an individual. By recording simultaneous physiological responses to the controlled presentation of a context-dependent stimulus, the unique relationships of physiology and overt behaviors for the individual can be demonstrated. Using this process also allows more complex virtual reality or other in vivo stimulus assessments to be incorporated for the development of individually tailored assessments and therapeutic plans. Thus, with or without memory or verbal recall, the use of multiple time- and context-specific simultaneous physiological measures and overt behavior can guide clinical effort as well as serve to objectively assess the ongoing treatment and its outcome.

  5. Effect of pressure on decoupling of ionic conductivity from structural relaxation in hydrated protic ionic liquid, lidocaine HCl.

    PubMed

    Swiety-Pospiech, A; Wojnarowska, Z; Hensel-Bielowka, S; Pionteck, J; Paluch, M

    2013-05-28

    Broadband dielectric spectroscopy and pressure-temperature-volume methods are employed to investigate the effect of hydrostatic pressure on the conductivity relaxation time (τσ), both in the supercooled and glassy states of protic ionic liquid lidocaine hydrochloride monohydrate. Due to the decoupling between the ion conductivity and structural dynamics, the characteristic change in behavior of τσ(T) dependence, i.e., from Vogel-Fulcher-Tammann-like to Arrhenius-like behavior, is observed. This crossover is a manifestation of the liquid-glass transition of lidocaine HCl. The similar pattern of behavior was also found for pressure dependent isothermal measurements. However, in this case the transition from one simple volume activated law to another was noticed. Additionally, by analyzing the changes of conductivity relaxation times during isothermal densification of the sample, it was found that compression enhances the decoupling of electrical conductivity from the structural relaxation. Herein, we propose a new parameter, dlogRτ∕dP, to quantify the pressure sensitivity of the decoupling phenomenon. Finally, the temperature and volume dependence of τσ is discussed in terms of thermodynamic scaling concept.

  6. The Mechanical Properties and Modeling of Creep Behavior of UHMWPE/Nano-HA Composites

    NASA Astrophysics Data System (ADS)

    Li, Fan; Gao, Lilan; Gao, Hong; Cui, Yun

    2017-09-01

    Composites with different levels of hydroxyapatite (HA) content and ultra-high molecular weight polyethylene (UHMWPE) were prepared in this work. Mechanical properties of the composites were examined here, and to evaluate the effect of HA particles on the time-dependent behavior of the pure matrix, the creep and recovery performance of composites at various stress levels were also researched. As expected, the addition of HA influenced the time-dependent response of the UHMWPE and the effect had a strong dependence on the HA content. The creep and recovery strain of the composites significantly decreased with increasing HA content, and tensile properties were also impaired, which was due to the concentration of HA fillers. The mechanism and effect of HA dispersed into the UHMWPE matrix were examined by scanning electron microscopy. Additionally, since variations in the adjusted parameters revealed the impact of HA on the creep behavior of the UHMWPE matrix, Findley's model was employed. The results indicated that the analytical model was accurate for the prediction of creep of the pure matrix and its composites.

  7. Propensity for Violence among Homeless and Runaway Adolescents: An Event History Analysis*

    PubMed Central

    Crawford, Devan M.; Whitbeck, Les B.; Hoyt, Dan R.

    2012-01-01

    Little is known about the prevalence of violent behaviors among homeless and runaway adolescents or the specific behavioral factors that influence violent behaviors across time. In this longitudinal study of 300 homeless and runaway adolescents aged 16–19 years at baseline, we use event history analysis to assess the factors associated with acts of violence over three years, controlling for individual propensities and time-varying behaviors. The results indicate that females, non-minorities, and non-heterosexuals were less likely to engage in violence across time. Those who met criteria for substance abuse disorders (i.e. alcohol abuse, alcohol dependence, drug abuse) were more likely to engage in violence. A history of caretaker abuse was associated with violent behaviors, as were street survival strategies such as selling drugs, participating in gang activity, and associating with deviant peers. Simply having spent time directly on the streets at any specific time point also increased the likelihood for violence. PMID:22865932

  8. Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.

    2014-01-01

    High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.

  9. Hunger-dependent and Sex-specific Antipredator Behaviour of Larvae of a Size-dimorphic Mosquito

    PubMed Central

    Wormington, Jillian; Juliano, Steven

    2014-01-01

    1. Modification of behaviors in the presence of predators or predation cues is widespread among animals. Costs of a behavioral change in the presence of predators or predation cues depend on fitness effects of lost feeding opportunities and, especially when organisms are sexually dimorphic in size or timing of maturation, these costs are expected to differ between the sexes. 2. Larval Aedes triseriatus (Say) (Diptera: Culicidae) were used to test the hypothesis that behavioral responses of the sexes to predation cues have been selected differently due to different energy demands. 3. Even in the absence of water-borne predation cues, hungry females (the larger sex) spent more time browsing than did males, indicating a difference in energy needs. 4. In the presence of predation cues, well-fed larvae of both sexes reduced their activity more than did hungry larvae, and males shifted away from high-risk behaviors to a greater degree than did females, providing the first evidence of sex-specific antipredator behavior in foraging mosquito larvae. 5. Because sexual size dimorphism is common across taxa, and energetic demands are likely correlated with size dimorphism, this research demonstrates the importance of investigating sex specific behavior and behavioral responses to enemies and cautions against generalizing results between sexes. PMID:25309025

  10. Dynamical behavior of surface tension on rotating fluids in low and microgravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.

  11. [Treatment of substance dependence by a bio-cognitive model based on behavioral pharmacology].

    PubMed

    Hori, Toru; Komiyama, Tokutaro; Harada, Seiichi; Matsumoto, Takenori

    2005-01-01

    We have introduced cognitive behavior therapy (CBT) into the treatment of substance dependence patients, which involves disease education and focused group therapy to obtain insight into the taking behavior and to establish concrete countermeasures to prevent relapse. We have created a bio-cognitive model based on biological aspects to explain the pathology of substance dependence. 'Dependence' is a term in behavioral pharmacology defined as reinforced drug seeking and taking behavior. Changes in taking behavior are thought to occur due to the repetition of the reinforcement action of psychoactive substances in the reward system of the brain. Therefore, when intake desire is strong, it is hard for patients to control themselves, and there is a feature of difficulties considering the process of thinking in CBT. In other words, when craving becomes strong, a chain of behavior happens spontaneously, without schema, involving automatic thoughts. We think that the improvement of protracted withdrawal syndrome (PWS) and entire frontal lobe function are important in learning to discern distortion of cognition. When PWS is improved, a conflict is easy to bring about in the process of drug seeking and taking behavior. And, it is easy to execute avoidance plans (coping skills) which are established to cope with craving in advance. We think that a goal for treatment is to discern drug seeking and taking behavior with natural emotion. The recovery of PWS and frontal lobe dysfunction takes a long time with a serious dependence, so we must perform repetition of CBT. As the treatment introduction of involuntary admission cases is adequate or cases of 1 to 3 months of admission treatment based on voluntary admission are hard to treat, treatment to obtain insights into patients while carrying out repeated CBT using a bio-cognitive model and to improve PWS could be a possibility as one treatment for the pathology of diversified substance dependence.

  12. Indoor Tanning Dependence in Young Adult Women.

    PubMed

    Mays, Darren; Atkins, Michael B; Ahn, Jaeil; Tercyak, Kenneth P

    2017-11-01

    Background: There is mounting evidence that young people can develop a dependence on indoor tanning, but research on factors associated with indoor tanning dependence remains limited. Methods: This cross-sectional study investigated factors associated with indoor tanning dependence in a community sample of 389 non-Hispanic white young adult women ages 18 to 30 who had indoor tanned ≥1 time in the past year. Participants completed measures of indoor tanning dependence, including the modified CAGE and modified Diagnostic and Statistical Manual for Mental Disorders-IV psychiatric screening assessments, indoor tanning behavior and beliefs, and behavioral and psychiatric comorbidity. Results: Overall, 22.6% of the sample screened positive for indoor tanning dependence. In multivariable analyses, indoor tanning dependence was associated with younger age of indoor tanning initiation [adjusted odds ratio (aOR) = 0.79; P = 0.017], indoor tanning ≥20 times in the past year (aOR = 3.03; P = 0.015), stronger beliefs about the benefits of tanning (aOR = 2.15; P = 0.004), greater perceived susceptibility to indoor tanning risks (aOR = 2.72; P < 0.001), stronger beliefs about physical appearance (aOR = 1.73; P = 0.037), and depressive symptoms (aOR = 3.79; P < 0.001). Conclusions: Indoor tanning dependence among young, non-Hispanic white women is associated with behaviors that increase the risk of skin cancer, beliefs favoring the perceived benefits of tanning, and comorbid risks such as stronger beliefs about physical appearance and depressed mood. Impact: Comprehensive skin cancer prevention efforts should address indoor tanning dependence among young women and its leading risk factors. Cancer Epidemiol Biomarkers Prev; 26(11); 1636-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Constitutive Models Based on Compressible Plastic Flows

    NASA Technical Reports Server (NTRS)

    Rajendran, A. M.

    1983-01-01

    The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.

  14. Thermoelectric properties of 80 a/o Si-20 a/o Ge alloy

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1974-01-01

    This paper discusses the time and temperature dependence of the thermoelectric properties of n- and p-type 80 at. % Si-20 at. % Ge alloy. It is shown that the time-temperature behavior of the properties of both polarity types of this alloy can be described by means of a diffusion-limited dopant precipitation model due to Lifshitz and Slyozov (1961). An experimental program for the determination of the long-term behavior of the properties of the alloy is described in terms of the Lifshitz-Slyozov model, and the thermoelectric properties of the alloy are given for temperatures in the range from room temperature to 1000 C as a function of time up to and including twelve years. The data given for the p-type alloy represent the first time-dependent thermoelectric property data ever published for the p-type silicon-germanium alloys.

  15. Value of travel-time reliability : commuters' route-choice behavior in the Twin Cities.

    DOT National Transportation Integrated Search

    2011-10-01

    Travel-time variability is a noteworthy factor in network performance. It measures the temporal uncertainty experienced by users in their : movement between any two nodes in a network. The importance of the time variance depends on the penalties incu...

  16. Behavioral responses of wolves to roads: scale-dependent ambivalence

    PubMed Central

    Nelson, Lindsey; Wabakken, Petter; Sand, Håkan; Liberg, Olof

    2014-01-01

    Throughout their recent recovery in several industrialized countries, large carnivores have had to cope with a changed landscape dominated by human infrastructure. Population growth depends on the ability of individuals to adapt to these changes by making use of new habitat features and at the same time to avoid increased risks of mortality associated with human infrastructure. We analyzed the summer movements of 19 GPS-collared resident wolves (Canis lupus L.) from 14 territories in Scandinavia in relation to roads. We used resource and step selection functions, including >12000 field-checked GPS-positions and 315 kill sites. Wolves displayed ambivalent responses to roads depending on the spatial scale, road type, time of day, behavioral state, and reproductive status. At the site scale (approximately 0.1 km2), they selected for roads when traveling, nearly doubling their travel speed. Breeding wolves moved the fastest. At the patch scale (10 km2), house density rather than road density was a significant negative predictor of wolf patch selection. At the home range scale (approximately 1000 km2), breeding wolves increased gravel road use with increasing road availability, although at a lower rate than expected. Wolves have adapted to use roads for ease of travel, but at the same time developed a cryptic behavior to avoid human encounters. This behavioral plasticity may have been important in allowing the successful recovery of wolf populations in industrialized countries. However, we emphasize the role of roads as a potential cause of increased human-caused mortality. PMID:25419085

  17. Behavioral responses of wolves to roads: scale-dependent ambivalence.

    PubMed

    Zimmermann, Barbara; Nelson, Lindsey; Wabakken, Petter; Sand, Håkan; Liberg, Olof

    2014-11-01

    Throughout their recent recovery in several industrialized countries, large carnivores have had to cope with a changed landscape dominated by human infrastructure. Population growth depends on the ability of individuals to adapt to these changes by making use of new habitat features and at the same time to avoid increased risks of mortality associated with human infrastructure. We analyzed the summer movements of 19 GPS-collared resident wolves ( Canis lupus L.) from 14 territories in Scandinavia in relation to roads. We used resource and step selection functions, including >12000 field-checked GPS-positions and 315 kill sites. Wolves displayed ambivalent responses to roads depending on the spatial scale, road type, time of day, behavioral state, and reproductive status. At the site scale (approximately 0.1 km 2 ), they selected for roads when traveling, nearly doubling their travel speed. Breeding wolves moved the fastest. At the patch scale (10 km 2 ), house density rather than road density was a significant negative predictor of wolf patch selection. At the home range scale (approximately 1000 km 2 ), breeding wolves increased gravel road use with increasing road availability, although at a lower rate than expected. Wolves have adapted to use roads for ease of travel, but at the same time developed a cryptic behavior to avoid human encounters. This behavioral plasticity may have been important in allowing the successful recovery of wolf populations in industrialized countries. However, we emphasize the role of roads as a potential cause of increased human-caused mortality.

  18. Changes in Nutrition-Related Behaviors in Alcohol-Dependent Patients After Outpatient Detoxification: The Role of Chocolate.

    PubMed

    Stickel, Anna; Rohdemann, Maren; Landes, Tom; Engel, Katharina; Banas, Roman; Heinz, Andreas; Müller, Christian A

    2016-01-01

    Previous studies have reported changes in nutrition-related behaviors in alcohol-dependent patients after alcohol detoxification, but prospective studies assessing the effects of these changes on maintaining abstinence are lacking. To assess changes in craving and consumption of chocolate and other sweets over time up to six months after outpatient alcohol detoxification treatment and to detect differences in abstinent versus nonabstinent patients. One hundred and fifty alcohol-dependent patients were included in this prospective observational study. Participants completed self-report questionnaires on nutrition-related behaviors and craving before detoxification treatment (baseline, t1), one week (t2), one month (t3), and six months later (t4). Significant changes in craving for and consumption of chocolate as well as in craving for other sweets were observed over time. Increases were most prominent within the first month. Patients who remained abstinent until t3 consumed three times more chocolate than nonabstainers. One quarter of the patients switched from being rare (t1) to frequent (t3) chocolate eaters, and 84% of these remained abstinent until t3. No significant correlations were found between craving for alcohol and craving for or consumption of chocolate or other sweets. In the first month after outpatient alcohol detoxification treatment, significant changes in nutrition-related behaviors were observed. These changes were not associated with alcohol craving. For a subgroup, increasing the frequency of chocolate consumption might be a temporary protective factor with respect to alcohol relapse.

  19. Strychnine and taurine modulation of amygdala-associated anxiety-like behavior is 'state' dependent.

    PubMed

    McCool, Brian A; Chappell, Ann

    2007-03-12

    Strychnine-sensitive glycine receptors are expressed in many adult forebrain regions, yet the biological function of these receptors outside the spinal cord/brainstem is poorly understood. We have recently shown that rat lateral/basolateral amygdala neurons express strychnine-sensitive glycine-gated currents whose pharmacological and molecular characteristics are consistent with those established for classic ligand-gated chloride channels. The current studies were undertaken to establish the behavioral role, if any, of these strychnine-sensitive glycine receptors. Adult Long-Evans male rats were implanted with guide cannulae targeted at the lateral amygdala and were microinjected with standard artificial cerebrospinal fluid with or without various doses of strychnine or taurine. Anxiety-like behaviors were assessed with the elevated plus maze or the light/dark box. In the elevated plus maze, strychnine decreased closed-arm time and increased open-arm time, suggestive of an anxiolytic effect. Similarly, strychnine produced a modest anxiolytic effect in the light/dark box. Post hoc analysis of 'open-arm' time and 'light-side' time indicated that aCSF-treated animals were distributed into two apparent groups that displayed either high or low amounts of anxiety-like behavior in a given apparatus. Surprisingly, the pharmacological effects of both strychnine and taurine in these assays were dependent upon a given animal's behavioral phenotype. Together, these findings are significant because they suggest that the basal 'emotional state' of the animal could influence the behavioral outcome associated with drug application directly into the lateral/basolateral amygdala. Furthermore, our findings also suggest that compounds acting at amygdala strychnine-sensitive glycine receptors may actively modulate this basal anxiety-like state.

  20. Collective signaling behavior in a networked-oscillator model

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Hui, P. M.

    2007-09-01

    We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.

  1. Parsing anomalous versus normal diffusive behavior of bedload sediment particles

    USGS Publications Warehouse

    Fathel, Siobhan; Furbish, David; Schmeeckle, Mark

    2016-01-01

    Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.

  2. Consumption and foraging behaviors for common stimulants (nicotine, caffeine).

    PubMed

    Phillips, James G; Currie, Jonathan; Ogeil, Rowan P

    2016-01-01

    Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.

  3. Effects of voluntary exercise on anxiety-like behavior and voluntary morphine consumption in rat pups borne from morphine-dependent mothers during pregnancy.

    PubMed

    Haydari, Sakineh; Miladi-Gorji, Hossein; Mokhtari, Amin; Safari, Manouchehr

    2014-08-22

    Exposure to morphine during pregnancy produced long-term effects in offspring behaviors. Recent studies have shown that voluntary exercise decreases the severity of anxiety behaviors in both morphine-dependent and withdrawn rats. Thus, the aims of the present study were to examine whether maternal exercise decreases prenatal dependence-induced anxiety and also, voluntary consumption of morphine in animal models of craving in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with access to a running wheel that lasted at least 21 days. Then, anxiety-like behaviors using the elevated plus-maze (EPM) and voluntary consumption of morphine using a two-bottle choice paradigm (TBC) were tested in male rat pups. The results showed that the rat pups borne from exercising morphine-dependent mothers exhibited an increase in EPM open arm time (P<0.0001) and entries (P<0.05) as compared with the sedentary groups. In animal models of craving showed that voluntary consumption of morphine in the rat pups borne from exercising morphine-dependent mothers was less in the second (P<0.032) and third (P<0.014) periods of intake as compared with the sedentary group. This study showed that maternal exercise decreases the severity of the anxiogenic-like behaviors and voluntary consumption of morphine in rat pups. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Psychometric Testing of the Chinese-Version Glover-Nilsson Smoking Behavioral Questionnaire (GN-SBQ-C) for the Identification of Nicotine Dependence in Adult Smokers in Taiwan.

    PubMed

    Chen, Shu-Ching; Chen, Hsiu-Fang; Peng, Hsi-Ling; Lee, Li-Yun; Chiang, Ting-Yu; Chiu, Hui-Chuan

    2017-04-01

    The purposes of this study were to evaluate the psychometric properties, reliability, and validity of the Chinese-version Glover-Nilsson Smoking Behavioral Questionnaire (GN-SBQ-C) and assess the behavioral nicotine dependence among community-dwelling adult smokers in Taiwan. The methods used were survey design, administration, and validation. A total of 202 adult smokers completed a survey to assess behavioral dependence, nicotine dependence, depression, social support, and demographic and smoking characteristics. Data analysis included descriptive statistics, internal consistency reliability, t test, exploratory factor analysis, independent t test, and Pearson product moment correlation. The results showed that (1) the GN-SBQ-C has good internal consistency reliability and stability (2-week test-retest reliability); (2) the extracted one factor explained 41.80 % of the variance, indicating construct validity; (3) the scale has acceptable concurrent validity, with significant positive correlation between the GN-SBQ-C and nicotine dependence, depression, and time smoking and negative correlation between the GN-SBQ-C and age and exercise habit; and (4) the instrument has discriminant validity, supported by significant differences between those with high and low-to-moderate nicotine dependence, smokers greater than 43 years old and those 43 years old and younger, and those who smoked 10 years or less and those smoking more than 10 years. The 11-item GN-SBQ-C has satisfactory psychometric properties when applied in a sample of Taiwanese adult smokers. The scale is feasible and valid to use to assess smoking behavioral dependence.

  5. Equilibria of an epidemic game with piecewise linear social distancing cost.

    PubMed

    Reluga, Timothy C

    2013-10-01

    Around the world, infectious disease epidemics continue to threaten people's health. When epidemics strike, we often respond by changing our behaviors to reduce our risk of infection. This response is sometimes called "social distancing." Since behavior changes can be costly, we would like to know the optimal social distancing behavior. But the benefits of changes in behavior depend on the course of the epidemic, which itself depends on our behaviors. Differential population game theory provides a method for resolving this circular dependence. Here, I present the analysis of a special case of the differential SIR epidemic population game with social distancing when the relative infection rate is linear, but bounded below by zero. Equilibrium solutions are constructed in closed-form for an open-ended epidemic. Constructions are also provided for epidemics that are stopped by the deployment of a vaccination that becomes available a fixed-time after the start of the epidemic. This can be used to anticipate a window of opportunity during which mass vaccination can significantly reduce the cost of an epidemic.

  6. Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-04-01

    Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.

  7. Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-06-01

    Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.

  8. The time dependent magnetization of fine-grained iron in lunar breccias

    NASA Technical Reports Server (NTRS)

    Gose, W. A.; Carnes, J. G.

    1973-01-01

    Lunar breccias of low metamorphic grade offer a unique opportunity to investigate the magnetic properties of dispersed fine-grained iron. These rocks exhibit a pronounced time-dependent magnetization whose acquisition and decay are well explained by Neel's single-domain theory. The effect is due to iron grains in the range from 120 to 150 A in diameter, which covers the transition from superparamagnetic to stable single-domain behavior.

  9. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  10. Do Smokers Know What We're Talking about? The Construct Validity of Nicotine Dependence Questionnaire Measures

    ERIC Educational Resources Information Center

    Japuntich, Sandra J.; Piper, Megan E.; Schlam, Tanya R.; Bolt, Daniel M.; Baker, Timothy B.

    2009-01-01

    Few studies have examined whether nicotine dependence self-report questionnaires can predict specific behaviors and symptoms at specific points in time. The present study used data from a randomized clinical trial (N = 608; M. E. Piper et al., 2007) to assess the construct validity of scales and items from 3 nicotine dependence measures: the…

  11. The magnetosphere as system

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.

    2012-12-01

    What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.

  12. Psychosocial correlates, outcome, and stability of abnormal adolescent eating behavior in community samples of young people.

    PubMed

    Steinhausen, Hans-Christoph; Gavez, Silvia; Winkler Metzke, Christa

    2005-03-01

    The current study investigated psychosocial correlates of abnormal adolescent eating behavior at three times during adolescence and young adulthood and its association with psychiatric diagnosis in young adulthood in a community sample. Sixty-four (10.5%) high-risk subjects (mean age 15 years) with abnormal eating behavior were identified at Time 1, another 252 (16.9%) were identified at Time 2 (mean age 16.2 years), and 164 (16.9%) were identified at Time 3 (mean age 19.7 years) and compared with three control groups matched for age and gender. Dependent measures included emotional and behavioral problems, life events, coping capacities, self-related cognition, social network, and family functions. Outcome was measured additionally by structured psychiatric interviews, and stability of abnormal eating behavior was studied in a longitudinal sample of 330 subjects. Few subjects showed more than one of five criteria of abnormal eating behavior. High-risk subjects shared a very similar pattern at all three times. They were characterized by higher scores for emotional and behavioral problems, more life events including more negative impact, less active coping, lower self-esteem, and less family cohesion. Among 10 major psychiatric disorders, only clinical eating disorders at Time 3 shared a significant association with abnormal eating disorder at the same time whereas high-risk status at Times 1 and 2 did not predict any psychiatric disorder at Time 3. Stability of abnormal eating behavior across time was very low. Stability of abnormal eating behavior across time was very low. Abnormal eating behavior in adolescence and young adulthood is clearly associated with various indicators of psychosocial maladaption. In adolescence, it does not significantly predict any psychiatric disorder including eating disorder in young adulthood and it is predominantly a transient feature. (c) 2005 by Wiley Periodicals, Inc.

  13. Value of travel-time reliability : commuters' route-choice behavior in the Twin Cities, phase 2.

    DOT National Transportation Integrated Search

    2012-04-01

    Travel-time variability is a noteworthy factor in network performance. It measures the temporal uncertainty : experienced by users in their movement between any two nodes in a network. The importance : of the time variance depends on the penalties in...

  14. Evaluation of family intervention through unobtrusive audio recordings: experiences in "bugging" children.

    PubMed

    Johnson, S M; Christensen, A; Bellamy, G T

    1976-01-01

    Five children referred to a child-family intervention program wore a radio transmitter in the home during pre-intervention and termination assessments. The transmitter broadcast to a receiver-recording apparatus in the home (either activated by an interval timer at predetermined "random" times or by parents at predetermined "picked" times). "Picked" times were parent-selected situations during which problems typically occurred (e.g., bedtime). Parents activated the recorder regularly whether or not problems occurred. Child-deviant, parent-negative, and parent-commanding behaviors were significantly higher at the picked times during pretest than at random times. At posttest, behaviors in all three classes were substantially reduced at picked times, but not at random times. For individual subject data, reductions occurred in at least two of the three dependent variables for three of the five cases during random time assessments. In general, the behavioral outcome data corresponded to parent-attitude reports and parent-collected observation data.

  15. Neurocognitive and psychiatric dimensions of hot, but not cool, impulsivity predict HIV sexual risk behaviors among drug users in protracted abstinence.

    PubMed

    Wilson, Michael J; Vassileva, Jasmin

    2016-03-01

    Impulsivity is an important risk factor for HIV risky drug and sexual behaviors. Research identifies hot (i.e. affectively-mediated, reward-based) and cool (motoric, attentional, independent of context) neurocognitive and psychiatric dimensions of impulsivity, though the impact of specific drugs of abuse on these varieties of impulsivity remains an open question. The present study examined the associations of neurocognitive and psychiatric varieties of hot and cool impulsivity with measures of lifetime and recent sexual risk behaviors among users of different classes of drugs. The study sample was comprised of drug users in protracted (> 1 year) abstinence: heroin mono-dependent (n = 61), amphetamine mono-dependent (n = 44), and polysubstance dependent (n = 73). Hot impulsivity was operationalized via neurocognitive tasks of reward-based decision-making and symptoms of psychopathy. Cool impulsivity was operationalized via neurocognitive tasks of response inhibition and symptoms of attention deficit/hyperactivity disorder (ADHD). Hot impulsivity was associated with sexual risk behaviors among heroin and amphetamine users in protracted abstinence, whereas cool impulsivity was not associated with sexual risk behaviors among any drug-using group. Neurocognitive hot impulsivity was associated with recent (past 30-day) sexual risk behaviors, whereas psychopathy was associated with sexual risk behaviors during more remote time-periods (past 6 month and lifetime) and mediated the association between heroin dependence and past 6-month sexual risk behaviors. Assessments and interventions aimed at reducing sexual risk behaviors among drug users should focus on hot neurocognitive and psychiatric dimensions of impulsivity, such as decision-making and psychopathy. Cool dimensions of impulsivity such as response inhibition and ADHD were not related to sexual risk behaviors among drug users in protracted abstinence.

  16. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    PubMed

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  17. Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network

    PubMed Central

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior. PMID:22438838

  18. Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario

    2015-12-01

    A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.

  19. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae).

    PubMed

    Zhou, Jincheng; Meng, Ling; Li, Baoping

    2017-01-01

    This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis . Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis . Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis . Handling time decreased with host size for M. pulchricornis but not for M. mediator . The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis , while this was true only for large hosts for M. mediator . Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors.

  20. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae)

    PubMed Central

    Zhou, Jincheng; Meng, Ling

    2017-01-01

    This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis. Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis. Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis. Handling time decreased with host size for M. pulchricornis but not for M. mediator. The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis, while this was true only for large hosts for M. mediator. Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors. PMID:28852593

  1. Impact of aggregation on scaling behavior of Internet backbone traffic

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Li; Ribeiro, Vinay J.; Moon, Sue B.; Diot, Christophe

    2002-07-01

    We study the impact of aggregation on the scaling behavior of Internet backbone tra ffic, based on traces collected from OC3 and OC12 links in a tier-1 ISP. We make two striking observations regarding the sub-second small time scaling behaviors of Internet backbone traffic: 1) for a majority of these traces, the Hurst parameters at small time scales (1ms - 100ms) are fairly close to 0.5. Hence the traffic at these time scales are nearly uncorrelated; 2) the scaling behaviors at small time scales are link-dependent, and stay fairly invariant over changing utilization and time. To understand the scaling behavior of network traffic, we develop analytical models and employ them to demonstrate how traffic composition -- aggregation of traffic with different characteristics -- affects the small-time scalings of network traffic. The degree of aggregation and burst correlation structure are two major factors in traffic composition. Our trace-based data analysis confirms this. Furthermore, we discover that traffic composition on a backbone link stays fairly consistent over time and changing utilization, which we believe is the cause for the invariant small-time scalings we observe in the traces.

  2. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  3. Pediatric emotional dysregulation and behavioral disruptiveness treated with hypnosis: a time-series design.

    PubMed

    Iglesias, Alex; Iglesias, Adam

    2014-01-01

    A case of pediatric oppositional defiant disorder (ODD) with concomitant emotional dysregulation and secondary behavioral disruptiveness was treated with hypnosis by means of the hypnotic hold, a method adapted by the authors. An A-B-A-B time-series design with multiple replications was employed to measure the relationship of the hypnotic treatment to the dependent measure: episodes of emotional dysregulation with accompanying behavioral disruptiveness. The findings indicated a statistically significant relationship between the degree of change from phase to phase and the treatment. Follow-up at 6 months indicated a significant reduction of the frequency of targeted episodes of emotional dysregulation and behavioral disruptiveness at home.

  4. A Method for Comparing Multivariate Time Series with Different Dimensions

    PubMed Central

    Tapinos, Avraam; Mendes, Pedro

    2013-01-01

    In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an example of a case where the dependencies between system variables are known, while in the latter the system is treated (and behaves) as a black box. PMID:23393554

  5. Perceived Fit with an Academic Environment: Attitudinal and Behavioral Outcomes

    ERIC Educational Resources Information Center

    Schmitt, Neal; Oswald, Frederick L.; Friede, Alyssa; Imus, Anna; Merritt, Stephanie

    2008-01-01

    Because person-organization fit relates to important outcomes, and because fit is a time-dependent process, there exists a need to model longitudinal data related to fit. In a multi-university sample (N=1174), we tested hypotheses concerning person-organization fit and various behavioral and attitudinal outcomes; correlations between changes in…

  6. Development of a time-dependent hurricane evacuation model for the New Orleans area.

    DOT National Transportation Integrated Search

    2013-01-01

    Revealed preference is the traditional method to collect hurricane evacuation behavior data. However, revealed preference surveys, as they are currently administered, have the disadvantage that they are unable to collect time-sensitive and policy-sen...

  7. Distributional behavior of diffusion coefficients obtained by single trajectories in annealed transit time model

    NASA Astrophysics Data System (ADS)

    Akimoto, Takuma; Yamamoto, Eiji

    2016-12-01

    Local diffusion coefficients in disordered systems such as spin glass systems and living cells are highly heterogeneous and may change over time. Such a time-dependent and spatially heterogeneous environment results in irreproducibility of single-particle-tracking measurements. Irreproducibility of time-averaged observables has been theoretically studied in the context of weak ergodicity breaking in stochastic processes. Here, we provide rigorous descriptions of equilibrium and non-equilibrium diffusion processes for the annealed transit time model, which is a heterogeneous diffusion model in living cells. We give analytical solutions for the mean square displacement (MSD) and the relative standard deviation of the time-averaged MSD for equilibrium and non-equilibrium situations. We find that the time-averaged MSD grows linearly with time and that the time-averaged diffusion coefficients are intrinsically random (irreproducible) even in the long-time measurements in non-equilibrium situations. Furthermore, the distribution of the time-averaged diffusion coefficients converges to a universal distribution in the sense that it does not depend on initial conditions. Our findings pave the way for a theoretical understanding of distributional behavior of the time-averaged diffusion coefficients in disordered systems.

  8. Static and sliding contact of rough surfaces: Effect of asperity-scale properties and long-range elastic interactions

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik

    2018-07-01

    Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.

  9. Moving beyond the trait conceptualization of self-esteem: the prospective effect of impulsiveness, coping, and risky behavior engagement.

    PubMed

    Auerbach, Randy P; Gardiner, Casey K

    2012-10-01

    Past research has largely focused on examining self-esteem as an independent as opposed to a dependent variable. At the same time, research suggests that during adolescence, self-esteem is subject to yearly, monthly, as well as daily change, and consequently, it is important to identify underlying vulnerability factors and behaviors, which shape self-esteem lability. In the current multi-wave, longitudinal study, 142 adolescents between the ages of 12-18 completed monthly assessments across 4 months. At the initial assessment, adolescents provided self-report data pertaining to impulsiveness, maladaptive coping, risky behavior engagement, and self-esteem. At each of the follow-up assessments, adolescents provided information about risky behavior engagement and self-esteem. Results of time-lagged, idiographic multilevel mediation analyzes indicated that risky behavior engagement mediated the relationship between impulsiveness/maladaptive coping and subsequent low self-esteem. Critically, when included in the same model, impulsiveness was significant above and beyond maladaptive coping. Additionally, the reverse model with self-esteem as the predictor and risky behavior included as the dependent variable was not significant suggesting that our effect was unidirectional. As a whole, these findings suggest that impulsive youth may engage in behaviors, which ultimately precipitate negative self-evaluations and transient declines in self-esteem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Logarithmic contact time dependence of adhesion force and its dominant role among the effects of AFM experimental parameters under low humidity

    NASA Astrophysics Data System (ADS)

    Lai, Tianmao; Meng, Yonggang

    2017-10-01

    The influences of contact time, normal load, piezo velocity, and measurement number of times on the adhesion force between two silicon surfaces were studied with an atomic force microscope (AFM) at low humidity (17-15%). Results show that the adhesion force is time-dependent and increases logarithmically with contact time until saturation is reached, which is related with the growing size of a water bridge between them. The contact time plays a dominant role among these parameters. The adhesion forces with different normal loads and piezo velocities can be quantitatively obtained just by figuring out the length of contact time, provided that the contact time dependence is known. The time-dependent adhesion force with repeated contacts at one location usually increases first sharply and then slowly with measurement number of times until saturation is reached, which is in accordance with the contact time dependence. The behavior of the adhesion force with repeated contacts can be adjusted by the lengths of contact time and non-contact time. These results may help facilitate the anti-adhesion design of silicon-based microscale systems working under low humidity.

  11. Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites

    NASA Astrophysics Data System (ADS)

    Sahu, Truptimayee; Behera, Banarji

    2018-02-01

    In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.

  12. Moving target, distributed, real-time simulation using Ada

    NASA Technical Reports Server (NTRS)

    Collins, W. R.; Feyock, S.; King, L. A.; Morell, L. J.

    1985-01-01

    Research on a precompiler solution is described for the moving target compiler problem encountered when trying to run parallel simulation algorithms on several microcomputers. The precompiler is under development at NASA-Lewis for simulating jet engines. Since the behavior of any component of a jet engine, e.g., the fan inlet, rear duct, forward sensor, etc., depends on the previous behaviors and not the current behaviors of other components, the behaviors can be modeled on different processors provided the outputs of the processors reach other processors in appropriate time intervals. The simulator works in compute and transfer modes. The Ada procedure sets for the behaviors of different components are divided up and routed by the precompiler, which essentially receives a multitasking program. The subroutines are synchronized after each computation cycle.

  13. Strychnine and Taurine Modulation of Amygdala-associated Anxiety-like Behavior is ‘State’ Dependent

    PubMed Central

    McCool, Brian A.; Chappell, Ann

    2007-01-01

    Strychnine-sensitive glycine receptors are expressed in many adult forebrain regions, yet the biological function of these receptors outside the spinal cord/brainstem is poorly understood. We have recently shown that rat lateral/basolateral amygdala neurons express strychnine-sensitive glycine-gated currents whose pharmacological and molecular characteristics are consistent with those established for classic ligand-gated chloride channels. The current studies were undertaken to establish the behavioral role, if any, of these strychnine-sensitive glycine receptors. Adult Long-Evans male rats were implanted with guide cannulae targeted at the lateral amygdala and were micro-injected with standard artificial cerebrospinal fluid with or without various doses of strychnine or taurine. Anxiety-like behaviors were assessed with the elevated plus-maze or the light/dark box. In the elevated plus maze, strychnine decreased closed-arm time and increased open-arm time, suggestive of an anxiolytic effect. Similarly, strychnine produced a modest anxiolytic effect in the light/dark box. Post-hoc analysis of ‘open-arm’ time and ‘light-side’ time indicated that aCSF-treated animals were distributed into two apparent groups that displayed either high or low amounts of anxiety-like behavior in a given apparatus. Surprisingly, the pharmacological effects of both strychnine and taurine in these assays were dependent upon a given animal’s behavioral phenotype. Together, these findings are significant because they suggest that the basal ‘emotional state’ of the animal could influence the behavioral outcome associated with drug application directly into the lateral/basolateral amygdala. Furthermore, our findings also suggest that compounds acting at amygdala strychnine-sensitive glycine receptors may actively modulate this basal anxiety-like state. PMID:17207866

  14. Learning enhances intrinsic excitability in a subset of lateral amygdala neurons

    PubMed Central

    Sehgal, Megha; Ehlers, Vanessa L.; Moyer, James R.

    2014-01-01

    Learning-induced modulation of neuronal intrinsic excitability is a metaplasticity mechanism that can impact the acquisition of new memories. Although the amygdala is important for emotional learning and other behaviors, including fear and anxiety, whether learning alters intrinsic excitability within the amygdala has received very little attention. Fear conditioning was combined with intracellular recordings to investigate the effects of learning on the intrinsic excitability of lateral amygdala (LA) neurons. To assess time-dependent changes, brain slices were prepared either immediately or 24-h post-conditioning. Fear conditioning significantly enhanced excitability of LA neurons, as evidenced by both decreased afterhyperpolarization (AHP) and increased neuronal firing. These changes were time-dependent such that reduced AHPs were evident at both time points whereas increased neuronal firing was only observed at the later (24-h) time point. Moreover, these changes occurred within a subset (32%) of LA neurons. Previous work also demonstrated that learning-related changes in synaptic plasticity are also evident in less than one-third of amygdala neurons, suggesting that the neurons undergoing intrinsic plasticity may be critical for fear memory. These data may be clinically relevant as enhanced LA excitability following fear learning could influence future amygdala-dependent behaviors. PMID:24554670

  15. Fractal scaling analysis of groundwater dynamics in confined aquifers

    NASA Astrophysics Data System (ADS)

    Tu, Tongbi; Ercan, Ali; Kavvas, M. Levent

    2017-10-01

    Groundwater closely interacts with surface water and even climate systems in most hydroclimatic settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was utilized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be partially due to a broad probability density distribution with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing equations of groundwater flow processes that can model both the long-memory behavior and the Brownian finite-memory behavior.

  16. Fractional time-dependent apparent viscosity model for semisolid foodstuffs

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Chen, Wen; Sun, HongGuang

    2017-10-01

    The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.

  17. Parental alcohol dependence and the transmission of adolescent behavioral disinhibition: a study of adoptive and non-adoptive families.

    PubMed

    King, Serena M; Keyes, Margaret; Malone, Stephen M; Elkins, Irene; Legrand, Lisa N; Iacono, William G; McGue, Matt

    2009-04-01

    To examine the genetic and environmental influences of parental alcoholism on offspring disinhibited behavior. We compared the effect of parental alcoholism history on offspring in adoptive and non-adoptive families. In families with a history of parental alcohol dependence, we examined the effect of exposure to parental alcoholism symptoms during the life-time of the adolescent. Setting Assessments occurred at the University of Minnesota from 1998 to 2004. Adolescents adopted in infancy were ascertained systematically from records of three private Minnesota adoption agencies; non-adopted adolescents were ascertained from Minnesota birth records. Adolescents and their rearing parents participated in in-person assessments. For adolescents, measures included self- reports of delinquency, deviant peers, substance use, antisocial attitudes and personality. For parents, we conducted DSM-IV clinical assessments of alcohol abuse and dependence. A history of parental alcohol dependence was associated with higher levels of disinhibition only when adolescents were related biologically to their rearing parents. Within families with a history of parental alcoholism, exposure to parental alcohol misuse during the life-time of the adolescent was associated with increased odds of using alcohol in adopted adolescents only. These findings suggest that the association between a history of parental alcohol dependence and adolescent offspring behavioral disinhibition is attributable largely to genetic rather than environmental transmission. We also obtained some evidence for parental alcohol misuse as a shared environmental risk factor in adoptive families.

  18. Effects of environmental enrichment during abstinence in morphine dependent parents on anxiety, depressive-like behaviors and voluntary morphine consumption in rat offspring.

    PubMed

    Pooriamehr, Alireza; Sabahi, Parviz; Miladi-Gorji, Hossein

    2017-08-24

    Chronic morphine exposure during puberty increased morphine-induced rewarding effects and sensitization in the next generation. Given the well-known beneficial effects of environmental enrichment on the severity of physical and psychological dependence on morphine, we examined effects of enriched environment during morphine abstinence in morphine dependent parental rats before mating on the anxiety and depressive-like behaviors, and voluntary morphine consumption in their offspring. Paternal and/or maternal rats were injected with bi-daily doses (10mg/kg, 12h intervals) of morphine for 14days followed by rearing in a standard environment (SE) or enriched environment (EE) during 30days of morphine abstinence before mating. The pubertal male and female rat offspring were tested for anxiety (the elevated plus maze- EPM) and depression (sucrose preference test-SPT), and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that EE experience in morphine-dependent both parents result in an increase in the percentage of time spent into open arms/time spent on both arms using EPM in male offspring, higher levels of sucrose preference in female offspring and lower levels of voluntary morphine consumption in male and female offspring. Thus, EE experience in morphine-dependent both parents reduced anxiety, depressive-like behavior and also the voluntary morphine consumption in their offspring during puberty which may prevent the vulnerability of the next generation to drug abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Disruptive effects of prefeeding and haloperidol administration on multiple measures of food-maintained behavior in rats

    PubMed Central

    Hayashi, Yusuke; Wirth, Oliver

    2015-01-01

    Four rats responded under a choice reaction-time procedure. At the beginning of each trial, the rats were required to hold down a center lever for a variable duration, release it following a high- or low-pitched tone, and press either a left or right lever, conditionally on the tone. Correct choices were reinforced with a probability of .95 or .05 under blinking or static houselights, respectively. After performance stabilized, disruptive effects of free access to food pellets prior to sessions (prefeeding) and intraperitoneal injection of haloperidol were examined on multiple behavioral measures (i.e., the number of trials completed, percent of correct responses, and reaction time). Resistance to prefeeding depended on the probability of food delivery for the number of trials completed and reaction time. Resistance to haloperidol, on the other hand, was not systematically affected by the probability of food delivery for all dependent measures. PMID:22209910

  20. The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Mazija, Lorena; Wüst, Alexander; Thum, Andreas S.

    2014-01-01

    The sensation of bitter substances can alert an animal that a specific type of food is harmful and should not be consumed. However, not all bitter compounds are equally toxic and some may even be beneficial in certain contexts. Thus, taste systems in general may have a broader range of functions than just in alerting the animal. In this study we investigate bitter sensing and processing in Drosophila larvae using quinine, a substance perceived by humans as bitter. We show that behavioral choice, feeding, survival, and associative olfactory learning are all directly affected by quinine. On the cellular level, we show that 12 gustatory sensory receptor neurons that express both GR66a and GR33a are required for quinine-dependent choice and feeding behavior. Interestingly, these neurons are not necessary for quinine-dependent survival or associative learning. On the molecular receptor gene level, the GR33a receptor, but not GR66a, is required for quinine-dependent choice behavior. A screen for gustatory sensory receptor neurons that trigger quinine-dependent choice behavior revealed that a single GR97a receptor gene expressing neuron located in the peripheral terminal sense organ is partially necessary and sufficient. For the first time, we show that the elementary chemosensory system of the Drosophila larva can serve as a simple model to understand the neuronal basis of taste information processing on the single cell level with respect to different behavioral outputs. PMID:24478653

  1. Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi

    2008-05-01

    We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.

  2. Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions

    PubMed Central

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette

    2014-01-01

    To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362

  3. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury

    PubMed Central

    McPherson, Jacob G.; Miller, Robert R.; Perlmutter, Steve I.

    2015-01-01

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural–computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  4. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexey B.; Antman, Stuart S.

    2017-12-01

    This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

  5. Fractional Brownian motion time-changed by gamma and inverse gamma process

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Wyłomańska, A.; Połoczański, R.; Sundar, S.

    2017-02-01

    Many real time-series exhibit behavior adequate to long range dependent data. Additionally very often these time-series have constant time periods and also have characteristics similar to Gaussian processes although they are not Gaussian. Therefore there is need to consider new classes of systems to model these kinds of empirical behavior. Motivated by this fact in this paper we analyze two processes which exhibit long range dependence property and have additional interesting characteristics which may be observed in real phenomena. Both of them are constructed as the superposition of fractional Brownian motion (FBM) and other process. In the first case the internal process, which plays role of the time, is the gamma process while in the second case the internal process is its inverse. We present in detail their main properties paying main attention to the long range dependence property. Moreover, we show how to simulate these processes and estimate their parameters. We propose to use a novel method based on rescaled modified cumulative distribution function for estimation of parameters of the second considered process. This method is very useful in description of rounded data, like waiting times of subordinated processes delayed by inverse subordinators. By using the Monte Carlo method we show the effectiveness of proposed estimation procedures. Finally, we present the applications of proposed models to real time series.

  6. Designing for time-dependent material response in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.

    1992-01-01

    To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.

  7. A composite likelihood approach for spatially correlated survival data

    PubMed Central

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  8. A composite likelihood approach for spatially correlated survival data.

    PubMed

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  9. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera).

    PubMed

    Fussnecker, Brendon L; Smith, Brian H; Mustard, Julie A

    2006-10-01

    The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially affected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception.

  10. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera)

    PubMed Central

    Fussnecker, Brendon L.; Smith, Brian H.; Mustard, Julie A.

    2006-01-01

    The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially effected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception. PMID:17028016

  11. Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures

    NASA Astrophysics Data System (ADS)

    Leichsenring, Peter; Wallmersperger, Thomas

    2018-03-01

    Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.

  12. A Comprehensive Analysis of Multiscale Field-Aligned Currents: Characteristics, Controlling Parameters, and Relationships

    NASA Astrophysics Data System (ADS)

    McGranaghan, Ryan M.; Mannucci, Anthony J.; Forsyth, Colin

    2017-12-01

    We explore the characteristics, controlling parameters, and relationships of multiscale field-aligned currents (FACs) using a rigorous, comprehensive, and cross-platform analysis. Our unique approach combines FAC data from the Swarm satellites and the Advanced Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to create a database of small-scale (˜10-150 km, <1° latitudinal width), mesoscale (˜150-250 km, 1-2° latitudinal width), and large-scale (>250 km) FACs. We examine these data for the repeatable behavior of FACs across scales (i.e., the characteristics), the dependence on the interplanetary magnetic field orientation, and the degree to which each scale "departs" from nominal large-scale specification. We retrieve new information by utilizing magnetic latitude and local time dependence, correlation analyses, and quantification of the departure of smaller from larger scales. We find that (1) FACs characteristics and dependence on controlling parameters do not map between scales in a straight forward manner, (2) relationships between FAC scales exhibit local time dependence, and (3) the dayside high-latitude region is characterized by remarkably distinct FAC behavior when analyzed at different scales, and the locations of distinction correspond to "anomalous" ionosphere-thermosphere behavior. Comparing with nominal large-scale FACs, we find that differences are characterized by a horseshoe shape, maximizing across dayside local times, and that difference magnitudes increase when smaller-scale observed FACs are considered. We suggest that both new physics and increased resolution of models are required to address the multiscale complexities. We include a summary table of our findings to provide a quick reference for differences between multiscale FACs.

  13. Specifying the behavior of concurrent systems

    NASA Technical Reports Server (NTRS)

    Furtek, F. C.

    1984-01-01

    A framework for rigorously specifying the behavior of concurrent systems is proposed. It is based on the view of a concurrent system as a collection of interacting processes but no assumptions are made about the mechanisms for process synchronization and communication. A formal language is described that permits the expression of a broad range of logical and timing dependencies.

  14. Analysis of temporal decay of diffuse broadband sound fields in enclosures by decomposition in powers of an absorption parameter

    NASA Astrophysics Data System (ADS)

    Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben

    2005-09-01

    An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.

  15. Central Adiposity is Negatively Associated with Hippocampal-Dependent Relational Memory among Overweight and Obese Children

    PubMed Central

    Khan, Naiman A.; Baym, Carol L.; Monti, Jim M.; Raine, Lauren B.; Drollette, Eric S.; Scudder, Mark R.; Moore, R. Davis; Kramer, Arthur F.; Hillman, Charles H.; Cohen, Neal J.

    2014-01-01

    Objective To assess associations between adiposity and hippocampal-dependent and hippocampal-independent memory forms among prepubertal children. Study design Prepubertal children (7–9-year-olds, n = 126), classified as non-overweight (<85th %tile BMI-for-age [n = 73]) or overweight/obese (≥85th %tile BMI-for-age [n = 53]), completed relational (hippocampal-dependent) and item (hippocampal-independent) memory tasks, and performance was assessed with both direct (behavioral accuracy) and indirect (preferential disproportionate viewing [PDV]) measures. Adiposity (%whole body fat mass, subcutaneous abdominal adipose tissue, visceral adipose tissue, and total abdominal adipose tissue) was assessed using DXA. Backward regressions identified significant (P <0.05) predictive models of memory performance. Covariates included age, sex, pubertal timing, socioeconomic status, IQ, oxygen consumption (VO2max), and body mass index (BMI) z-score. Results Among overweight/obese children, total abdominal adipose tissue was a significant negative predictor of relational memory behavioral accuracy, and pubertal timing together with socioeconomic status jointly predicted the PDV measure of relational memory. In contrast, among non-overweight children, male sex predicted item memory behavioral accuracy, and a model consisting of socioeconomic status and BMI z-score jointly predicted the PDV measure of relational memory. Conclusions Regional, and not whole body, fat deposition was selectively and negatively associated with hippocampal-dependent relational memory among overweight/obese prepubertal children. PMID:25454939

  16. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children.

    PubMed

    Khan, Naiman A; Baym, Carol L; Monti, Jim M; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Moore, R Davis; Kramer, Arthur F; Hillman, Charles H; Cohen, Neal J

    2015-02-01

    To assess associations between adiposity and hippocampal-dependent and hippocampal-independent memory forms among prepubertal children. Prepubertal children (age 7-9 years; n = 126), classified as non-overweight (<85th percentile body mass index [BMI]-for-age [n = 73]) or overweight/obese (≥85th percentile BMI-for-age [n = 53]), completed relational (hippocampal-dependent) and item (hippocampal-independent) memory tasks. Performance was assessed with both direct (behavioral accuracy) and indirect (preferential disproportionate viewing [PDV]) measures. Adiposity (ie, percent whole-body fat mass, subcutaneous abdominal adipose tissue, visceral adipose tissue, and total abdominal adipose tissue) was assessed by dual-energy X-ray absorptiometry. Backward regression identified significant (P < .05) predictive models of memory performance. Covariates included age, sex, pubertal timing, socioeconomic status (SES), IQ, oxygen consumption, and BMI z-score. Among overweight/obese children, total abdominal adipose tissue was a significant negative predictor of relational memory behavioral accuracy, and pubertal timing together with SES jointly predicted the PDV measure of relational memory. In contrast, among non-overweight children, male sex predicted item memory behavioral accuracy, and a model consisting of SES and BMI z-score jointly predicted the PDV measure of relational memory. Regional, but not whole-body, fat deposition was selectively and negatively associated with hippocampal-dependent relational memory among overweight/obese prepubertal children. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The nature and use of prediction skills in a biological computer simulation

    NASA Astrophysics Data System (ADS)

    Lavoie, Derrick R.; Good, Ron

    The primary goal of this study was to examine the science process skill of prediction using qualitative research methodology. The think-aloud interview, modeled after Ericsson and Simon (1984), let to the identification of 63 program exploration and prediction behaviors.The performance of seven formal and seven concrete operational high-school biology students were videotaped during a three-phase learning sequence on water pollution. Subjects explored the effects of five independent variables on two dependent variables over time using a computer-simulation program. Predictions were made concerning the effect of the independent variables upon dependent variables through time. Subjects were identified according to initial knowledge of the subject matter and success at solving three selected prediction problems.Successful predictors generally had high initial knowledge of the subject matter and were formal operational. Unsuccessful predictors generally had low initial knowledge and were concrete operational. High initial knowledge seemed to be more important to predictive success than stage of Piagetian cognitive development.Successful prediction behaviors involved systematic manipulation of the independent variables, note taking, identification and use of appropriate independent-dependent variable relationships, high interest and motivation, and in general, higher-level thinking skills. Behaviors characteristic of unsuccessful predictors were nonsystematic manipulation of independent variables, lack of motivation and persistence, misconceptions, and the identification and use of inappropriate independent-dependent variable relationships.

  18. Matrix dominated stress/strain behavior in polymeric composites: Effects of hold time, nonlinearity and rate dependency

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.

  19. Temporal scaling of the growth dependent optical properties of microalgae

    NASA Astrophysics Data System (ADS)

    Zhao, J. M.; Ma, C. Y.; Liu, L. H.

    2018-07-01

    The optical properties of microalgae are basic parameters for analyzing light field distribution in photobioreactors (PBRs). With the growth of microalgae cell, their optical properties will vary with growth time due to accumulation of pigment and lipid, cell division and metabolism. In this work, we report a temporal scaling behavior of the growth dependent optical properties of microalgae cell suspensions with both experimental and theoretical evidence presented. A new concept, the temporal scaling function (TSF), defined as the ratio of absorption or scattering cross-sections at growth phase to that at stationary phase, is introduced to characterize the temporal scaling behavior. The temporal evolution and temporal scaling characteristics of the absorption and scattering cross-sections of three example microalgae species, Chlorella vulgaris, Chlorella pyrenoidosa, and Chlorella protothecoides, were experimentally studied at spectral range 380-850 nm. It is shown that the TSFs of the absorption and scattering cross-sections for different microalgae species are approximately constant at different wavelength, which confirms theoretical predictions very well. With the aid of the temporal scaling relation, the optical properties at any growth time can be calculated based on those measured at stationary phase, hence opens a new way to determine the time-dependent optical properties of microalgae. The findings of this work will help the understanding of time dependent optical properties of microalgae and facilitate their applications in light field analysis in PBRs design.

  20. The macrocyclic peptide natural product CJ-15,208 is orally active and prevents reinstatement of extinguished cocaine-seeking behavior.

    PubMed

    Aldrich, Jane V; Senadheera, Sanjeewa N; Ross, Nicolette C; Ganno, Michelle L; Eans, Shainnel O; McLaughlin, Jay P

    2013-03-22

    The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine-seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug-seeking behavior in abstinent subjects.

  1. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes

    NASA Astrophysics Data System (ADS)

    Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing

    2018-04-01

    Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.

  2. Mathematical characterization of mechanical behavior of porous frictional granular media

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Lee, J. K.

    1972-01-01

    A new definition of loading and unloading along the yield surface of Roscoe and Burland is introduced. This is achieved by noting that the strain-hardening parameter in the plastic potential function is deduced from the yield locus equation of Roscoe and Burland. The analytical results are compared with the experimental results for plate-bearing and cone-penetrometer problems and close agreements are demonstrated. The wheel-soil interaction is studied under dynamic loading. The rate-dependent plasticity or viscoelastoplastic behavior is considered. This is accomplished by the internal (hidden) variables associated with time-dependent viscous properties directly superimposed with inelastic behavior governed by the yield criteria of Roscoe and Burland. Effects of inertia and energy dissipation are properly accounted for. Example problems are presented.

  3. Nonlinear effects in time-dependent transonic flows: An analysis of analog black hole stability

    NASA Astrophysics Data System (ADS)

    Michel, Florent; Parentani, Renaud

    2015-05-01

    We study solutions of the one-dimensional Gross-Pitaevskii equation to better understand dynamical instabilities occurring in flowing atomic condensates. Whereas transonic stationary flows can be fully described in simple terms, time-dependent flows exhibit a wide variety of behaviors. When the sound speed is crossed once, we observe that flows analogous to black holes obey something similar to the so-called no hair theorem since their late time profile is stationary and uniquely fixed by parameters entering the Hamiltonian and conserved quantities. For flows analogous to white holes, at late time one finds a macroscopic undulation in the supersonic side which has either a fixed amplitude or a widely varying one, signaling a quasiperiodic emission of solitons on the subsonic side. When considering flows which cross the sound speed twice, we observe various scenarios which can be understood from the above behaviors and from the hierarchy of the growth rates of the dynamical instabilities characterizing such flows.

  4. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  5. Low dimensional temporal organization of spontaneous eye blinks in adults with developmental disabilities and stereotyped movement disorder.

    PubMed

    Lee, Mei-Hua; Bodfish, James W; Lewis, Mark H; Newell, Karl M

    2010-01-01

    This study investigated the mean rate and time-dependent sequential organization of spontaneous eye blinks in adults with intellectual and developmental disability (IDD) and individuals from this group who were additionally categorized with stereotypic movement disorder (IDD+SMD). The mean blink rate was lower in the IDD+SMD group than the IDD group and both of these groups had a lower blink rate than a contrast group of healthy adults. In the IDD group the n to n+1 sequential organization over time of the eye-blink durations showed a stronger compensatory organization than the contrast group suggesting decreased complexity/dimensionality of eye-blink behavior. Very low blink rate (and thus insufficient time series data) precluded analysis of time-dependent sequential properties in the IDD+SMD group. These findings support the hypothesis that both IDD and SMD are associated with a reduction in the dimension and adaptability of movement behavior and that this may serve as a risk factor for the expression of abnormal movements.

  6. Two-dimensional electronic spectroscopy signatures of the glass transition

    DOE PAGES

    Lewis, K. L. .. M.; Myers, J. A.; Fuller, F.; ...

    2010-01-01

    Two-dimensional electronic spectroscopy is a sensitive probe of solvation dynamics. Using a pump–probe geometry with a pulse shaper [ Optics Express 15 (2007), 16681-16689; Optics Express 16 (2008), 17420-17428], we present temperature dependent 2D spectra of laser dyes dissolved in glass-forming solvents. At low waiting times, the system has not yet relaxed, resulting in a spectrum that is elongated along the diagonal. At longer times, the system loses its memory of the initial excitation frequency, and the 2D spectrum rounds out. As the temperature is lowered, the time scale of this relaxation grows, and the elongation persists for longer waitingmore » times. This can be measured in the ratio of the diagonal width to the anti-diagonal width; the behavior of this ratio is representative of the frequency–frequency correlation function [ Optics Letters 31 (2006), 3354–3356]. Near the glass transition temperature, the relaxation behavior changes. Understanding this change is important for interpreting temperature-dependent dynamics of biological systems.« less

  7. Following Human Footsteps: Proposal of a Decision Theory Based on Human Behavior

    NASA Technical Reports Server (NTRS)

    Mahmud, Faisal

    2011-01-01

    Human behavior is a complex nature which depends on circumstances and decisions varying from time to time as well as place to place. The way a decision is made either directly or indirectly related to the availability of the options. These options though appear at random nature, have a solid directional way for decision making. In this paper, a decision theory is proposed which is based on human behavior. The theory is structured with model sets that will show the all possible combinations for making a decision, A virtual and simulated environment is considered to show the results of the proposed decision theory

  8. Effects of the beta-adrenergic blockers propranolol and acebutolol on stress-induced learned helplessness behavior of rats.

    PubMed

    Danchev, N; Staneva-Stoytcheva, D

    1995-09-01

    The latency time and escape ability of rats with learned helplessness behavior were studied after 1, 6 and 14 days of oral treatment with beta-adrenergic blockers propranolol (1 and 3 mg/kg) and acebutolol (10 and 30 mg/kg). A dose-dependent significant decrease in latency time and increase in number of avoidances was established after single, 6 and 14 days propranolol treatment. The selective beta 1-blocker acebutolol did not change the escape characteristics. These results suggest a greater impact of beta 1- than beta 2-adrenergic receptors for escape performance after unescapable foot shock, i.e., learned helplessness behavior.

  9. Brownian motion of electrons in time-dependent magnetic fields.

    NASA Technical Reports Server (NTRS)

    Iverson, G. J.; Williams, R. M.

    1973-01-01

    The behavior of a weakly ionized plasma in slowly varying time-dependent magnetic fields is studied through an extension of Williamson's stochastic theory. In particular, attention is focused on the properties of electron diffusion in the plane perpendicular to the direction of the magnetic field, when the field strength is large. It is shown that, in the strong field limit, the classical 1/B-squared dependence of the perpendicular diffusion coefficient is obtained for two models in which the field B(t) is monotonic in t and for two models in which B(t) possesses at least one turning point.

  10. Skyrmions Driven by Intrinsic Magnons

    NASA Astrophysics Data System (ADS)

    Psaroudaki, Christina; Loss, Daniel

    2018-06-01

    We study the dynamics of a Skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the Skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach, we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the Skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the Skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the Skyrmion in addition to the otherwise periodic bounded motion.

  11. On numerical integration and computer implementation of viscoplastic models

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Chang, J. P.; Thompson, R. L.

    1985-01-01

    Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method.

  12. Planning horizon affects prophylactic decision-making and epidemic dynamics

    DOE PAGES

    Nardin, Luis G.; Miller, Craig R.; Ridenhour, Benjamin J.; ...

    2016-11-08

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon?the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals? payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adoptmore » prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. Lastly, these effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.« less

  13. Planning horizon affects prophylactic decision-making and epidemic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nardin, Luis G.; Miller, Craig R.; Ridenhour, Benjamin J.

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon?the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals? payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adoptmore » prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. Lastly, these effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.« less

  14. Planning horizon affects prophylactic decision-making and epidemic dynamics.

    PubMed

    Nardin, Luis G; Miller, Craig R; Ridenhour, Benjamin J; Krone, Stephen M; Joyce, Paul; Baumgaertner, Bert O

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon-the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals' payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.

  15. Planning horizon affects prophylactic decision-making and epidemic dynamics

    PubMed Central

    Ridenhour, Benjamin J.; Krone, Stephen M.

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon—the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals’ payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual’s perceived risk of infection. PMID:27843714

  16. Classification of Animal Movement Behavior through Residence in Space and Time.

    PubMed

    Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R

    2017-01-01

    Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology.

  17. Time dependent turbulence modeling and analytical theories of turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.

    1993-01-01

    By simplifying the direct interaction approximation (DIA) for turbulent shear flow, time dependent formulas are derived for the Reynolds stresses which can be included in two equation models. The Green's function is treated phenomenologically, however, following Smith and Yakhot, we insist on the short and long time limits required by DIA. For small strain rates, perturbative evaluation of the correlation function yields a time dependent theory which includes normal stress effects in simple shear flows. From this standpoint, the phenomenological Launder-Reece-Rodi model is obtained by replacing the Green's function by its long time limit. Eddy damping corrections to short time behavior initiate too quickly in this model; in contrast, the present theory exhibits strong suppression of eddy damping at short times. A time dependent theory for large strain rates is proposed in which large scales are governed by rapid distortion theory while small scales are governed by Kolmogorov inertial range dynamics. At short times and large strain rates, the theory closely matches rapid distortion theory, but at long times it relaxes to an eddy damping model.

  18. Temporal dependence of transient dark counts in an avalanche photodiode: A solution for power-law behavior of afterpulsing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiba, M., E-mail: akiba@nict.go.jp; Tsujino, K.

    This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and itsmore » temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p–n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.« less

  19. Effect of environmental enrichment on physical and psychological dependence signs and voluntary morphine consumption in morphine-dependent and morphine-withdrawn rats.

    PubMed

    Hammami-Abrand Abadi, Arezoo; Miladi-Gorji, Hossein; Bigdeli, Imanollah

    2016-04-01

    This study was designed to examine the effect of environmental enrichment during morphine dependency and withdrawal on the severity of naloxone-precipitated withdrawal signs, anxiety, and depressive-like behaviors and voluntary morphine consumption in morphine-dependent rats. The rats were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days following rearing in a standard environment (SE) or enriched environment (EE) during the development of morphine dependence and withdrawal. Then, rats were tested for withdrawal signs after naloxone injection, anxiety (the elevated plus maze) and depression-related behavior (sucrose preference test), and voluntary consumption of morphine using a two-bottle choice paradigm, in morphine-dependent and morphine-withdrawn rats. The results showed that EE decreased naloxone-precipitated withdrawal signs, but not anxiety or sucrose preference during dependence on morphine. The EE-withdrawn rats showed an increase in the elevated plus maze open arm time and entries and higher levels of sucrose preference than SE rats. Voluntary consumption of morphine was lower in the EE-withdrawn rats than in the SE groups in the second period of drug intake. Thus, exposure to EE reduced the severity of morphine dependence and voluntary consumption of morphine, alongside reductions in anxiety and depression-related behavior in morphine-withdrawn rats.

  20. Negative mood and sexual behavior among non-monogamous men who have sex with men in the context of methamphetamine and HIV.

    PubMed

    Bousman, C A; Cherner, M; Ake, C; Letendre, S; Atkinson, J H; Patterson, T L; Grant, I; Everall, I P

    2009-12-01

    Research comparing the independent and combined contextual effects of methamphetamine dependence (METH) and HIV-infection (HIV) on mood and sexual behavior among men who have sex with men (MSM) has been sparse and inconsistent. This study examined the contextual influence of METH, HIV-infection and their combination on mood states and sexual behavior. 175 non-monogamous MSM concordant or discordant for METH and HIV were included. Multivariate analysis was conducted to examine mood and sexual behavior differences between groups, as well as to elucidate the relationship between mood and sexual risk behavior and explore the potential moderator (i.e. contextual) effects of METH and/or HIV on this relationship. METH+/HIV+ participants reported condom use less than 25% of the time whereas METH-/HIV+ participants reported condom use 51-75% of the time. METH+ and HIV+ status were associated with higher depression and confusion scores. Univariate regressions revealed negative relationships between mood states (depression, tension, anger, fatigue and confusion) and condom use. Neither METH nor HIV status moderated the relationships between negative mood and condom use. Results are derived from cross-sectional data, sample sizes for each of the four groups were relatively small, and condom use could not be linked to specific sexual practices and/or partner types. METH dependence, HIV seropositivity, and negative moods are associated with reduced condom use among non-monogamous MSM. Independent effects of METH dependence and negative mood on condom use suggest that sexual risk reduction interventions for MSM should incorporate multi-faceted approaches, including substance abuse and mental health treatment.

  1. Online Activity Levels Are Related to Caffeine Dependency.

    PubMed

    Phillips, James G; Landhuis, C Erik; Shepherd, Daniel; Ogeil, Rowan P

    2016-05-01

    Online activity could serve in the future as behavioral markers of emotional states for computer systems (i.e., affective computing). Hence, this study considered relationships between self-reported stimulant use and online study patterns. Sixty-two undergraduate psychology students estimated their daily caffeine use, and this was related to study patterns as tracked by their use of a Learning Management System (Blackboard). Caffeine dependency was associated with less time spent online, lower rates of file access, and fewer online activities completed. Reduced breadth or depth of processing during work/study could be used as a behavioral marker of stimulant use.

  2. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    PubMed

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  3. Aging of Johari-Goldstein Relaxation in Structural Glasses

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan; Leheny, Robert L.

    2006-03-01

    Using frequency-dependent dielectric susceptibility measurements we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures, Tg. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibilities of both liquids possess a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench below Tg, the susceptibility slowly approaches equilibrium behavior. For both liquids, features of the Johari-Goldstein relaxation display a dependence on the time since the quench, or aging time, that is very similar to the age dependence of the alpha peak. However, one can not assign a single fictive temperature to both the alpha and Johari-Goldstein relaxations. For example, the peak frequency of the Johari-Goldstein relaxation remains constant during aging for sorbitol while it increases with age for xylitol, inconsistent with a decreasing fictive temperature. This behavior contrasts with that of the high frequency tail of the alpha peak whose shape and position track the aging of the main part of the peak.

  4. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete

    PubMed Central

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-01

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948

  5. Effects of anisotropy and irradiation on the deformation behavior of Zircaloy 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloux, R.M.; Ballinger, R.; Lucas, G.

    1979-01-01

    An experimental program investigated the effects of texture anisotropy and irradiation on the mechanical behavior of Zircaloy-2. Short time and time dependent mechanical behavior were considered. Irradiation effects were simulated through the use of 4.75 MeV protons. The temperature ranges investigated were 298/sup 0/K and 573 to 673/sup 0/K. Both cold worked-stress relieved and annealed material were used in this experimental program. Short time yield behavior of different crystallographic textures was determined by uniaxial and plane strain tests in the temperature range 298/sup 0/K and 573 to 673/sup 0/K. Monotonic flow loci were constructed for each texture. Yield behavior ismore » a strong function of the crystallographic texture number f at all temperatures investigated. The rotation of texture with increasing plastic strain was investigated as a function of initial texture at 298/sup 0/K and 623/sup 0/K. The rate of texture rotation df/epsilon/sub p/ was found to be a unique function of the initial texture for plastic strains less than 0.08. Time dependent mechanical behavior was investigated in the range 573 to 673/sup 0/K using constant load creep and stress relaxation tests. The tensile creep strength is proportional to the resolved fraction of basal poles in the test direction. In variable stress and temperature tests, the time-hardening rule was found to be inapplicable. The strain-hardening rule was applied with success to data obtained at temperatures less than or equal to 648/sup 0/K. Irradiation creep tests were conducted in vacuum at 598/sup 0/K and 102 to 241 MPa on 80..mu..m thick Zircaloy-2 foil specimens in both the recrystallized and cold worked-stress relieved condition. In the irradiation creep tests irradiation hardening and enhanced irradiation creep were observed. Radiation hardening effects were significant in annealed material but were attenuated in cold worked-stress relieved material.« less

  6. Variation in foraging behavior and body mass in broods of Emperor Geese (Chen canagica): Evidence for interspecific density dependence

    USGS Publications Warehouse

    Schmutz, J.A.; Laing, K.K.

    2002-01-01

    Broods of geese spend time feeding according to availability and quality of food plants, subject to inherent foraging and digestive constraints. We studied behavioral patterns of broods of Emperor Geese (Chen canagica) on the Yukon–Kuskokwim Delta, Alaska, and examined how feeding and alert behavior varied in relation to habitat and goose density. During 1994–1996, time spent feeding by Emperor Goose goslings and adult females was positively related to multispecies goose densities near observation blinds, and not to just Emperor Goose density. Similarly, body mass of Emperor Goose goslings was more strongly related (negatively) to multispecies goose densities than intraspecific densities. A grazing experiment in 1995 indicated that most above ground primary production by Carex subspathacea, a preferred food plant, was consumed by grazing geese. Those results demonstrate that interspecific competition for food occurred, with greatest support for goslings whose behavioral repertoire is limited primarily to feeding, digesting, and resting. Although the more abundant Cackling Canada Geese (Branta canadensis minima) differed from Emperor Geese in their preferred use of habitats during brooding rearing (Schmutz 2001), the two species occurred in equal abundance in habitats preferred by Emperor Goose broods. Thus, Cackling Canada Geese were a numerically significant competitor with Emperor Geese. Comparing these results to an earlier study, time spent feeding by goslings, adult females, and adult males were greater during 1993–1996 than during 1985–1986. During the interval between those studies, densities of Cackling Canada Geese increased two to three times whereas Emperor Goose numbers remained approximately stable, which implies that interspecific competition affected foraging behavior over a long time period. These density-dependent changes in foraging behavior and body mass indicate that interspecific competition affects nutrient acquisition and gosling growth, which has a demonstrated effect (Schmutz 1993) on juvenile survival of Emperor Geese. Management of Emperor Geese should consider interspecific relations and densities of all goose species occurring on the Yukon–Kuskokwim Delta, Alaska.

  7. Activity budgets and the relationship between feeding and stereotypic behaviors in Asian elephants (Elephas maximus) in a Zoo.

    PubMed

    Rees, Paul A

    2009-03-01

    Activity budgets were studied in eight Asian elephants (Elephas maximus) at Chester Zoo (UK) for 35 days, between January and November 1999. Recordings were made between 10:00 and 16:00 hr (with most behavior frequencies calculated between 10:00 and 14:00 hr). The elephants exhibited variation in activity depending on their age, sex, the time of day and the time of year. Only the five adult cows exhibited stereotypic behavior, with frequencies ranging from 3.9 to 29.4% of all observations. These elephants exhibited individual, diurnal and seasonal variation in stereotypic behavior. This has implications for studies that use short sampling periods and may make comparisons of data collected at different times of the day or year invalid. The six adult elephants spent 27.4-41.4% of the time feeding (between 10:00 and 14:00 hr), 22.9-42.0% standing still, 6.1-19.2% walking and 3.9-9.6% dusting. The hypothesis that the frequency of stereotypic behavior in adult cow elephants was negatively correlated with the frequency of feeding behavior was tested and was found to be true. Stereotypic behavior increased in frequency toward the end of the day-while waiting to return to the elephant house for food--and elephants spent more time stereotyping during the winter months than during the summer months. Elephants were inactive (i.e. exhibited behaviors other than locomotion) for between 70.1 and 93.9% of the time. Creating more opportunities for elephants to exhibit foraging behavior and the introduction of greater unpredictability into management regimes, especially feeding times, may reduce the frequency of stereotypic behavior and increase general activity levels.

  8. Dynamic Quantum Allocation and Swap-Time Variability in Time-Sharing Operating Systems.

    ERIC Educational Resources Information Center

    Bhat, U. Narayan; Nance, Richard E.

    The effects of dynamic quantum allocation and swap-time variability on central processing unit (CPU) behavior are investigated using a model that allows both quantum length and swap-time to be state-dependent random variables. Effective CPU utilization is defined to be the proportion of a CPU busy period that is devoted to program processing, i.e.…

  9. The Association of Administrative Segregation Placement and Other Risk Factors with the Self-Injury-Free Time of Male Prisoners

    ERIC Educational Resources Information Center

    Lanes, Eric

    2009-01-01

    The current study examined the relationship between risk factors for prisoner self-injurious behavior (SIB) and the amount of time male prisoners function without engaging in SIB (SIB-free time), and obtained estimates of SIB-free time for selected SIB prisoner subgroups dependent on their housing status. Conditional Cox regression analysis…

  10. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  11. An Authorization Logic with Explicit Time

    DTIC Science & Technology

    2008-02-02

    that η-logic can be used in specifying the behavior of systems with time-dependent authorization policies. In such cases, the logic can be used to...10(4):265– 310, November 1992. [26] Christopher Lesniewski-Laas, Bryan Ford, Jacob Strauss, M. Frans Kaashoek, and Robert Morris. Alpaca : extensible

  12. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  13. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence.

    PubMed

    Garbusow, Maria; Schad, Daniel J; Sebold, Miriam; Friedel, Eva; Bernhardt, Nadine; Koch, Stefan P; Steinacher, Bruno; Kathmann, Norbert; Geurts, Dirk E M; Sommer, Christian; Müller, Dirk K; Nebe, Stephan; Paul, Sören; Wittchen, Hans-Ulrich; Zimmermann, Ulrich S; Walter, Henrik; Smolka, Michael N; Sterzer, Philipp; Rapp, Michael A; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas

    2016-05-01

    In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. © 2015 Society for the Study of Addiction.

  14. [Three-dimensional stress analysis of periodontal ligament of mandible incisors fixed bridge abutments under dynamic loads by finite element method].

    PubMed

    Ma, Da; Tang, Liang; Pan, Yan-Huan

    2007-12-01

    Three-dimensional finite method was used to analyze stress and strain distributions of periodontal ligament of abutments under dynamic loads. Finite element analysis was performed on the model under dynamic loads with vertical and oblique directions. The stress and strain distributions and stress-time curves were analyzed to study the biomechanical behavior of periodontal ligament of abutments. The stress and strain distributions of periodontal ligament under dynamic load were same with the static load. But the maximum stress and strain decreased apparently. The rate of change was between 60%-75%. The periodontal ligament had time-dependent mechanical behaviors. Some level of residual stress in periodontal ligament was left after one mastication period. The stress-free time under oblique load was shorter than that of vertical load. The maximum stress and strain decrease apparently under dynamic loads. The periodontal ligament has time-dependent mechanical behaviors during one mastication. There is some level of residual stress left after one mastication period. The level of residual stress is related to the magnitude and the direction of loads. The direction of applied loads is one important factor that affected the stress distribution and accumulation and release of abutment periodontal ligament.

  15. Telecommunications Network Measurements of Online Gambling Behavior in Switzerland: A Feasibility Study.

    PubMed

    Bitar, Raoul; Nordt, Carlos; Grosshans, Martin; Herdener, Marcus; Seifritz, Erich; Mutschler, Jochen

    2017-01-01

    Methodological shortcomings of gambling studies relying on self-report or on data sets derived from gambling operators tend to result in biased conclusions. The aim of this study was to analyze online gambling behavior using a novel network database approach. From October 13 to October 26, 2014, telecommunications network data from a major telecommunications provider in Switzerland were analyzed. Netflows between mobile devices and a poker operator were quantified to measure the gambling duration and session number. Time spent gambling during night and working hours was compared between devices with longest (red group), intermediate (orange group), and shortest gambling time (green group). Online gambling behavior differed depending on overall gambling time, F (2, 3,143). Night and working hours gambling was the highest in the red group (53%), compared to the orange (50.1%) and the green groups (41.5%). Post hoc analyses indicated significant differences between the orange and green groups (p < 0.05). No differences were observed between the red and orange groups (p = 0.850), and the red and green groups (p = 0.053). On mobile devices, distinct gambling patterns were observed depending on the overall gambling time. This methodology could also be used to investigate online gaming, social media use, and online pornography. © 2017 S. Karger AG, Basel.

  16. On convergence of solutions to variational-hemivariational inequalities

    NASA Astrophysics Data System (ADS)

    Zeng, Biao; Liu, Zhenhai; Migórski, Stanisław

    2018-06-01

    In this paper we investigate the convergence behavior of the solutions to the time-dependent variational-hemivariational inequalities with respect to the data. First, we give an existence and uniqueness result for the problem, and then, deliver a continuous dependence result when all the data are subjected to perturbations. A semipermeability problem is given to illustrate our main results.

  17. Experimental evaluation criteria for constitutive models of time dependent cyclic plasticity

    NASA Technical Reports Server (NTRS)

    Martin, J. F.

    1986-01-01

    Notched members were tested at temperatures far above those recorded till now. Simulation of the notch root stress response was accomplished to establish notch stress-strain behavior. Cyclic stress-strain profiles across the net-section were recorded and on-line direct notch strain control was accomplished. Data are compared to three analysis techniques with good results. The objective of the study is to generate experimental data that can be used to evaluate the accuracy of constitutive models of time dependent cyclic plasticity.

  18. Deformation characteristics and time-dependent notch sensitivity of Udimet 700 at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1974-01-01

    Time dependent notch sensitivity was observed in Udimet 700 sheet, bar, and investment castings between 1000 and 1400 F (538 -760 C), but not at 1600 F (871 C). As was the case for modified Waspaloy, Waspaloy and Inconel 718, it occurred in notched specimens loaded below the yield strength when the creep deformation was localized. For each alloy and notched specimen geometry, a stress-average particle size zone can be defined that characterizes the notch sensitive behavior.

  19. Exact time-dependent solutions for a self-regulating gene.

    PubMed

    Ramos, A F; Innocentini, G C P; Hornos, J E M

    2011-06-01

    The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.

  20. [Abuse, dependence and intoxication of substances].

    PubMed

    Wada, Kiyoshi

    2015-09-01

    As for substance-related disorders, there were several differences between ICD-10 and DSM-IV, however, the concept of "dependence" had been essential for both criteria. DSM-5 published in 2013 had erased dependence. This confuses us. It is important to recognize dependence again. "Abuse" is the self-intake behavior of drug against the social norms. Repeated abuse results in dependence. Dependence is a state of loss of control against drug use due to craving. Abuse can produce "acute intoxication", and repeated abuse under dependence can produce "chronic intoxication". It is important to understand abuse, dependence and "intoxication" based on their relationship from the point of time course.

  1. Subordinated continuous-time AR processes and their application to modeling behavior of mechanical system

    NASA Astrophysics Data System (ADS)

    Gajda, Janusz; Wyłomańska, Agnieszka; Zimroz, Radosław

    2016-12-01

    Many real data exhibit behavior adequate to subdiffusion processes. Very often it is manifested by so-called ;trapping events;. The visible evidence of subdiffusion we observe not only in financial time series but also in technical data. In this paper we propose a model which can be used for description of such kind of data. The model is based on the continuous time autoregressive time series with stable noise delayed by the infinitely divisible inverse subordinator. The proposed system can be applied to real datasets with short-time dependence, visible jumps and mentioned periods of stagnation. In this paper we extend the theoretical considerations in analysis of subordinated processes and propose a new model that exhibits mentioned properties. We concentrate on the main characteristics of the examined subordinated process expressed mainly in the language of the measures of dependence which are main tools used in statistical investigation of real data. We present also the simulation procedure of the considered system and indicate how to estimate its parameters. The theoretical results we illustrate by the analysis of real technical data.

  2. Design of high temperature ceramic components against fast fracture and time-dependent failure using cares/life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, O.M.; Powers, L.M.; Nemeth, N.N.

    1995-08-01

    A probabilistic design methodology which predicts the fast fracture and time-dependent failure behavior of thermomechanically loaded ceramic components is discussed using the CARES/LIFE integrated design computer program. Slow crack growth (SCG) is assumed to be the mechanism responsible for delayed failure behavior. Inert strength and dynamic fatigue data obtained from testing coupon specimens (O-ring and C-ring specimens) are initially used to calculate the fast fracture and SCG material parameters as a function of temperature using the parameter estimation techniques available with the CARES/LIFE code. Finite element analysis (FEA) is used to compute the stress distributions for the tube as amore » function of applied pressure. Knowing the stress and temperature distributions and the fast fracture and SCG material parameters, the life time for a given tube can be computed. A stress-failure probability-time to failure (SPT) diagram is subsequently constructed for these tubes. Such a diagram can be used by design engineers to estimate the time to failure at a given failure probability level for a component subjected to a given thermomechanical load.« less

  3. Multispecies reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Fatollahi, A. H.; Khorrami, M.; Shariati, A.

    2000-10-01

    Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large-time behavior of the average densities has also been obtained.

  4. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  5. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    PubMed

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  6. [Discipline styles and co-morbid disorders of adolescents with attention deficit hyperactivity disorder: a longitudinal study].

    PubMed

    Colomer-Diago, Carla; Berenguer-Forner, Carmen; Tárraga-Mínguez, Raúl; Miranda-Casas, Ana

    2014-02-24

    Problems in cognitive functioning, social and educational development of children with attention deficit hyperactivity disorder (ADHD) continue to be present in adolescence and adulthood. Although the literature shows a significant relationship between the use of dysfunctional discipline methods and severity in the course of ADHD, follow-up studies have been rare. To analyze parenting style and ADHD symptomatology assessed in childhood (time 1) to predict the oppositional behavior and cognitive problems in early adolescence (time 2), and to study, depending on the use of dysfunctional parenting style, the course of oppositional behavior and cognitive problems. Forty-five children with ADHD-combined presentation were assessed in two different moments: time 1 (ages: 6-13) and time 2 (ages: 8-16). Oppositionism and cognitive problems in the follow-up were predicted by dysfunctional discipline styles and ADHD severity (assessed in time 1). Oppositional behavior increased between time 1 and time 2 in children with a dysfunctional parenting, whereas a decrease on oppositional symptoms was observed in the functional parenting group (time x discipline interaction effect). Dysfunctional parenting practices in childhood predicted cognitive and behavioral problems associated in adolescence. The findings have implications for the planning of interventions.

  7. Estimation of Drug Effectiveness by Modeling Three Time-dependent Covariates: An Application to Data on Cardioprotective Medications in the Chronic Dialysis Population

    PubMed Central

    Phadnis, Milind A.; Shireman, Theresa I.; Wetmore, James B.; Rigler, Sally K.; Zhou, Xinhua; Spertus, John A.; Ellerbeck, Edward F.; Mahnken, Jonathan D.

    2014-01-01

    In a population of chronic dialysis patients with an extensive burden of cardiovascular disease, estimation of the effectiveness of cardioprotective medication in literature is based on calculation of a hazard ratio comparing hazard of mortality for two groups (with or without drug exposure) measured at a single point in time or through the cumulative metric of proportion of days covered (PDC) on medication. Though both approaches can be modeled in a time-dependent manner using a Cox regression model, we propose a more complete time-dependent metric for evaluating cardioprotective medication efficacy. We consider that drug effectiveness is potentially the result of interactions between three time-dependent covariate measures, current drug usage status (ON versus OFF), proportion of cumulative exposure to drug at a given point in time, and the patient’s switching behavior between taking and not taking the medication. We show that modeling of all three of these time-dependent measures illustrates more clearly how varying patterns of drug exposure affect drug effectiveness, which could remain obscured when modeled by the more standard single time-dependent covariate approaches. We propose that understanding the nature and directionality of these interactions will help the biopharmaceutical industry in better estimating drug efficacy. PMID:25343005

  8. Estimation of Drug Effectiveness by Modeling Three Time-dependent Covariates: An Application to Data on Cardioprotective Medications in the Chronic Dialysis Population.

    PubMed

    Phadnis, Milind A; Shireman, Theresa I; Wetmore, James B; Rigler, Sally K; Zhou, Xinhua; Spertus, John A; Ellerbeck, Edward F; Mahnken, Jonathan D

    2014-01-01

    In a population of chronic dialysis patients with an extensive burden of cardiovascular disease, estimation of the effectiveness of cardioprotective medication in literature is based on calculation of a hazard ratio comparing hazard of mortality for two groups (with or without drug exposure) measured at a single point in time or through the cumulative metric of proportion of days covered (PDC) on medication. Though both approaches can be modeled in a time-dependent manner using a Cox regression model, we propose a more complete time-dependent metric for evaluating cardioprotective medication efficacy. We consider that drug effectiveness is potentially the result of interactions between three time-dependent covariate measures, current drug usage status (ON versus OFF), proportion of cumulative exposure to drug at a given point in time, and the patient's switching behavior between taking and not taking the medication. We show that modeling of all three of these time-dependent measures illustrates more clearly how varying patterns of drug exposure affect drug effectiveness, which could remain obscured when modeled by the more standard single time-dependent covariate approaches. We propose that understanding the nature and directionality of these interactions will help the biopharmaceutical industry in better estimating drug efficacy.

  9. Dose-response relationships between exercise intensity, cravings, and inhibitory control in methamphetamine dependence: An ERPs study.

    PubMed

    Wang, Dongshi; Zhou, Chenglin; Zhao, Min; Wu, Xueping; Chang, Yu-Kai

    2016-04-01

    The present study integrated behavioral and neuroelectric approaches for determining the dose-response relationships between exercise intensity and methamphetamine (MA) craving and between exercise intensity and inhibitory control in individuals with MA dependence. Ninety-two individuals with MA dependence were randomly assigned to an exercise group (light, moderate, or vigorous intensity) or to a reading control group. The participants then completed a craving self-report at four time points: before exercise, during exercise, immediately after exercise, and 50 min after exercise. Event-related potentials were also recorded while the participants completed a standard Go/NoGo task and an MA-related Go/NoGo task approximately 20 min after exercise cessation. The reduction in self-reported MA craving scores of the moderate and vigorous intensity groups was greater than that of the light intensity and control groups during acute exercise as well as immediately and 50 min following exercise termination. Additionally, an inverted-U-shaped relationship between exercise intensity and inhibitory control was generally observed for the behavioral and neuroelectric indices, with the moderate intensity group exhibiting shorter Go reaction times, increased NoGo accuracy, and larger NoGo-N2 amplitudes. Acute exercise may provide benefits for MA-associated craving and inhibitory control in MA-dependent individuals, as revealed by behavioral and neuroelectric measures. Moderate-intensity exercise may be associated with more positive effects, providing preliminary evidence for the establishment of an exercise prescription regarding intensity for MA dependence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The behavior and social communication of honey bees (Apis mellifera carnica Poll.) under the influence of alcohol.

    PubMed

    Mixson, T Andrew; Abramson, Charles I; Bozic, Janko

    2010-06-01

    In this study, the effects of ethanol on honey bee social communication and behavior within the hive were studied to further investigate the usefulness of honey bees as an ethanol-abuse model. Control (1.5 M sucrose) and experimental (1.5 M sucrose, 2.5% w/v ethanol) solutions were directly administered to individual forager bees via proboscis contact with glass capillary tubes. The duration, frequency, and proportion of time spent performing social and nonsocial behaviors were the dependent variables of interest. No differences in the relative frequency or proportion of time spent performing the target behaviors were observed. However, ethanol consumption significantly decreased bouts of walking, resting, and the duration of trophallactic (i.e., food-exchange) encounters. The results of this study suggest that a low dose of ethanol is sufficient to disrupt both social and nonsocial behaviors in honey bees. In view of these results, future behavioral-genetic investigations of honey bee social behavior are encouraged.

  11. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee

    PubMed Central

    Mustard, Julie A.; Pham, Priscilla M.; Smith, Brian H.

    2009-01-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. PMID:19945462

  12. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee.

    PubMed

    Mustard, Julie A; Pham, Priscilla M; Smith, Brian H

    2010-04-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Determinants of Lifestyle Behavior in Iranian Adults with Prediabetes: Applying the Theory of Planned Behavior.

    PubMed

    Rahmati-Najarkolaei, Fatemeh; Pakpour, Amir H; Saffari, Mohsen; Hosseini, Mahboobeh Sadat; Hajizadeh, Fereshteh; Chen, Hui; Yekaninejad, Mir Saeed

    2017-04-01

    Prediabetic condition can lead to development of type 2 diabetes, especially in individuals who do not adhere to a healthy lifestyle. The aim of the present study was to investigate the socio-cognitive factors using the Theory of Planned Behavior (TPB) that may be associated with the choice of lifestyle in prediabetic patients. A prospective study with one-month follow up was designed to collect data from 350 individuals with prediabetic conditions. A questionnaire was used to collect the information, including demographic variables, exercise behavior, food consumption, as well as the constructs of the TPB (attitude, subjective norms, perceived behavioral control, and behavioral intention) regarding physical activity and dietary choice. The correlations between TPB variables and the dependent variables (dietary choice, physical activity) were assessed using Spearman correlation and multiple regression models. In total, 303 people participated. The mean age of the participants was 53.0 (SD 11.5) years and 42% were males. Significant correlations were found between all TPB constructs and both dependent variables (healthy eating and exercise behaviors) both at baseline and after one month (P < 0.01). The predictive validity of the TPB over time was proved for both dependent variables where past and future behaviors were significantly correlated with the constructs. Nearly 87% of the variance in exercise behavior and 72% of the variance in healthy eating behavior were explainable by TPB constructs. The TPB may be a useful model to predict behaviors of physical activity and dietary choice among prediabetic people. Therefore, it may be used to monitor lifestyle modification to prevent development of diabetes among people with prediabetic conditions.

  14. The length and time scales of water's glass transitions

    NASA Astrophysics Data System (ADS)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  15. The length and time scales of water's glass transitions.

    PubMed

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  16. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: effect of silane coupling agent.

    PubMed

    Miyata, N; Matsuura, W; Kokubo, T; Nakamura, T

    2004-09-01

    Time-dependent strength behavior was investigated for bisphenol-a-glycidyl methacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) resin cements combined with glass-ceramic A-W filler treated with various kinds of silane coupling agents. The fracture strength of the composite resin cements was measured by three-point bending as a function of stressing rate in a simulated body fluid (SBF), and thereby the stress-corrosion susceptibility constant was evaluated. The fracture strength was found to depend on the kind of coupling agent used. For the present Bis-GMA/TEGDMA resin, the silane coupling agents without hydrophilic amine groups can be used to obtain good adhesion between resin and A-W filler owing to their nature of co-polymerizing with the resin. On the other hand, all the composite resin cements showed nearly the same degree of stress-corrosion susceptibility whether the A-W fillers were treated or untreated with silane coupling agents. This means that the stress-corrosion susceptibility of the present composite cements is predominantly affected by that of the matrix resin. Thus, the microcrack formation and growth at the resin matrix near particle - resin interface were thought to determine overall time-dependent strength behavior of the composite cements.

  17. The Macrocyclic Peptide Natural Product CJ-15,208 is Orally Active and Prevents Reinstatement of Extinguished Cocaine Seeking Behavior1

    PubMed Central

    Aldrich, Jane V.; Senadheera, Sanjeewa N.; Ross, Nicolette C.; Ganno, Michelle L.; Eans, Shainnel O.; McLaughlin, Jay P.

    2013-01-01

    The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug seeking behavior in abstinent subjects. PMID:23327691

  18. Scattering of lattice solitons and decay of heat-current correlation in the Fermi-Pasta-Ulam-α -β model

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Yu, Jian; Zhang, Nan; Zhao, Hong

    2017-08-01

    As is well known, solitons can be excited in nonlinear lattice systems; however, whether, and if so, how, this kind of nonlinear excitation can affect the energy transport behavior is not yet fully understood. Here we study both the scattering dynamics of solitons and heat transport properties in the Fermi-Pasta-Ulam-α -β model with an asymmetric interparticle interaction. By varying the asymmetry degree of the interaction (characterized by α ), we find that (i) for each α there exists a momentum threshold for exciting solitons from which one may infer an α -dependent feature of probability of presentation of solitons at a finite-temperature equilibrium state and (ii) the scattering rate of solitons is sensitively dependent on α . Based on these findings, we conjecture that the scattering between solitons will cause the nonmonotonic α -dependent feature of heat conduction. Fortunately, such a conjecture is indeed verified by our detailed examination of the time decay behavior of the heat current correlation function, but it is only valid for an early time stage. Thus, this result may suggest that solitons can have only a relatively short survival time when exposed in a thermal environment, eventually affecting the heat transport in a short time.

  19. Behavioral effects of hindbrain vasotocin in goldfish are seasonally variable but not sexually dimorphic

    PubMed Central

    Walton, James C.; Waxman, Brandon; Hoffbuhr, Kristen; Kennedy, Meaghan; Beth, Ellen; Scangos, Jennifer; Thompson, Richmond R.

    2013-01-01

    We have previously demonstrated that centrally administered vasotocin (VT) inhibits social approach toward same-sex conspecifics in male and female goldfish, and that this behavioral effect is dependent upon VT projections to the hindbrain. We now show that there are no sex differences in sensitivity to the behavioral effects of VT, though differences do exist in responsiveness across seasons in both sexes. A central dose of 1 µg, but not 200 ng, inhibited social approach in goldfish in non-reproductive condition, whereas a dose as low as 40 ng inhibited social approach in fish in full reproductive condition. In males and females in full reproductive condition, social approach behavior was facilitated by central administration of 500 ng of a V1A specific antagonist. In addition, the behavioral effects of exogenously administered central VT were blocked by central administration of 1 µg of a V1A antagonist. These results demonstrate that the propensity to approach a conspecific, a simple behavior underlying many social interactions, is controlled by a V1A-like receptor, and that VT’s behavioral effects depend on reproductive context. Quantitative real-time PCR showed that the seasonal changes in behavioral responsiveness to VT are associated with changes in the expression of a V1A-like receptor in the hindbrain, but not the mid- or forebrain, indicating that the seasonal regulation of social approach behavior likely depends on the local modulation of the expression of this receptor within a primitive peptide circuit in this species. PMID:19616564

  20. Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach.

    PubMed

    Leonel, Edson D; Galia, Marcus Vinícius Camillo; Barreiro, Luiz Antonio; Oliveira, Diego F M

    2016-12-01

    We study some statistical properties for the behavior of the average squared velocity-hence the temperature-for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles with the boundary of the billiard are inelastic, leading the average squared velocity to reach a steady-state dynamics for large enough time. The description of the stationary state is made by using two different approaches: (i) heat transfer motivated by the Fourier law and (ii) billiard dynamics using either numerical simulations and theoretical description.

  1. Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells.

    PubMed

    Yu, Hongchi; Gao, Min; Ma, Yunlong; Wang, Lijuan; Shen, Yang; Liu, Xiaoheng

    2018-05-01

    angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in connection with cell adhesion and migration events leading to tumor angiogenesis, metastasis and invasion. Therefore, the inhibition of FAK in endothelial and/or cancer cells is a potential target for anti‑angiogenic therapy. In the present study, a small‑molecule FAK inhibitor, 1,2,4,5-benzenetetramine tetrahydrochloride (Y15), was used to study the effects of FAK inhibition on the adhesion and migration behaviors of vascular endothelial cells (VECs) and human hepatoblastoma cells. Furthermore, the time-dependent differences in proteins associated with the integrin-mediated FAK/Rho GTPases signaling pathway within 2 h were examined. The results indicated that the inhibition of FAK significantly decreased the migration ability of VECs and human hepatoblastoma cells in a dose-dependent manner. Inhibition of FAK promoted cell detachment by decreasing the expression of focal adhesion components, and blocked cell motility by reducing the level of Rho GTPases. However, the expression of crucial proteins involved in integrin-induced signaling in two cell lines exhibited a time-dependent difference with increased duration of FAK inhibitor treatment, suggesting different mechanisms of FAK-mediated cell migration behavior. These results suggest that the mechanism underlying FAK-mediated adhesion and migration behavior differs among various cells, which is expected to provide evidence for future FAK therapy targeted against tumor angiogenesis.

  2. Mice plan decision strategies based on previously learned time intervals, locations, and probabilities

    PubMed Central

    Tosun, Tuğçe; Gür, Ezgi; Balcı, Fuat

    2016-01-01

    Animals can shape their timed behaviors based on experienced probabilistic relations in a nearly optimal fashion. On the other hand, it is not clear if they adopt these timed decisions by making computations based on previously learnt task parameters (time intervals, locations, and probabilities) or if they gradually develop their decisions based on trial and error. To address this question, we tested mice in the timed-switching task, which required them to anticipate when (after a short or long delay) and at which of the two delay locations a reward would be presented. The probability of short trials differed between test groups in two experiments. Critically, we first trained mice on relevant task parameters by signaling the active trial with a discriminative stimulus and delivered the corresponding reward after the associated delay without any response requirement (without inducing switching behavior). During the test phase, both options were presented simultaneously to characterize the emergence and temporal characteristics of the switching behavior. Mice exhibited timed-switching behavior starting from the first few test trials, and their performance remained stable throughout testing in the majority of the conditions. Furthermore, as the probability of the short trial increased, mice waited longer before switching from the short to long location (experiment 1). These behavioral adjustments were in directions predicted by reward maximization. These results suggest that rather than gradually adjusting their time-dependent choice behavior, mice abruptly adopted temporal decision strategies by directly integrating their previous knowledge of task parameters into their timed behavior, supporting the model-based representational account of temporal risk assessment. PMID:26733674

  3. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  4. LOCAL MAGNETIC BEHAVIOR OF 54Fe in EuFe2As2 AND Eu0.5K0.5Fe2As2: MICROSCOPIC STUDY USING TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION (TDPAD) SPECTROSCOPY

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Layek, S.; Hossain, Z.

    2013-12-01

    In this paper, we report the time differential perturbed angular distribution measurements of 54Fe on a polycrystalline EuFe2As2 and Eu0.5K0.5Fe2As2. The hyperfine field and nuclear spin-relaxation rate are strongly temperature dependent in the paramagnetic state suggesting strong spin fluctuation in the parent compound. The local susceptibility show Curie-Weiss-like temperature dependence and Korringa-like relaxation in the tetragonal phase indicating the presence of local moment. In the orthorhombic phase, the hyperfine field behavior suggesting quasi two-dimensional magnetic ordering. The experimental results are in a good agreement with first-principle calculations based on density functional theory.

  5. Behavioral Responses of Concholepas concholepas (Bruguière, 1789) Larvae to Natural and Artificial Settlement Cues and Microbial Films.

    PubMed

    Rodriguez, S R; Riquelme, C; Campos, E O; Chavez, P; Brandan, E; Inestrosa, N C

    1995-12-01

    The behavioral responses of veliger larvae of the gastropod Concholepas concholepas were studied in the presence of different natural and artificial settlement cues and microbial films. Early pre-competent larvae stopped swimming, sank (due to ciliary arrests, retraction of the velum into the shell, or both), and remained inactive on the substratum when exposed to conspecific mucus and hemolymph. In both cases the effect was time-dependent and the number of larvae showing these behaviors decreased over time. Larvae exposed to NH4Cl (ammonium ion) showed a similar time- and dose-dependent response. A positive and time-dependent response was also observed when larvae were exposed to different extracellular matrix (ECM) components (i.e., collagen, gelatin, and fibronectin) and sulfated polysaccharides (i.e., carrageenan, heparin, and chondroitin sulfate). In this case the larvae remained attached to the substratum. However, the effect of sulfated polysaccharides on C. concholepas larval behavior was faster than that observed with other ECM molecules. We also studied the responses of premetamorphic C. concholepas larvae exposed to different microbial films. In chemotaxis experiments with different films, with glass as the substratum, larvae showed a significant preference for multispecific and diatoms films. When shells of C. concholepas were used as the substratum, the preference for multispecific films was clear and significant. Likewise, larvae showed velar contractions in the presence of all the films tested. Larvae exposed to multispecific films and to the microalga Prasinocladus marinus showed an increased ciliar movement. The finding that mucus and hemolymph of conspecific adults and ECM molecules (mainly sulfated polysaccharides) induce the cessation of swimming of C. concholepas larvae suggests a possible role for cell-surface receptors in mediating the larval response of marine organisms. Likewise, the positive chemotaxis responses of C. concholepas larvae to different microbial films suggest that microorganisms may have a role in bringing larvae close to settlement inducers on the marine benthos.

  6. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points

    PubMed Central

    Wartman, Brianne C.; Holahan, Matthew R.

    2014-01-01

    Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC) may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioral procedures. Rats were trained on one hippocampal-dependent task only (a water maze task), two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task), or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task). Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA). Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioral group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories. PMID:24795581

  7. Competing neurobehavioral decision systems theory of cocaine addiction: From mechanisms to therapeutic opportunities.

    PubMed

    Bickel, Warren K; Snider, Sarah E; Quisenberry, Amanda J; Stein, Jeffrey S; Hanlon, Colleen A

    2016-01-01

    Cocaine dependence is a difficult-to-treat, chronically relapsing disorder. Multiple scientific disciplines provide distinct perspectives on this disorder; however, connections between disciplines are rare. The competing neurobehavioral decision systems (CNDS) theory posits that choice results from the interaction between two decision systems (impulsive and executive) and that regulatory imbalance between systems can induce pathology, including addiction. Using this view, we integrate a diverse set of observations on cocaine dependence, including bias for immediacy, neural activity and structure, developmental time course, behavioral comorbidities, and the relationship between cocaine dependence and socioeconomic status. From the CNDS perspective, we discuss established and emerging behavioral, pharmacological, and neurological treatments and identify possible targets for future treatments. The ability of the CNDS theory to integrate diverse findings highlights its utility for understanding cocaine dependence and supports that dysregulation between the decision systems contributes to addiction. © 2016 Elsevier B.V. All rights reserved.

  8. Competing neurobehavioral decision systems theory of cocaine addiction: From mechanisms to therapeutic opportunities

    PubMed Central

    Bickel, Warren K.; Snider, Sarah E.; Quisenberry, Amanda J.; Stein, Jeffrey S.; Hanlon, Colleen A.

    2017-01-01

    Cocaine dependence is a difficult-to-treat, chronically relapsing disorder. Multiple scientific disciplines provide distinct perspectives on this disorder; however, connections between disciplines are rare. The competing neurobehavioral decision systems (CNDS) theory posits that choice results from the interaction between two decision systems (impulsive and executive) and that regulatory imbalance between systems can induce pathology, including addiction. Using this view, we integrate a diverse set of observations on cocaine dependence, including bias for immediacy, neural activity and structure, developmental time course, behavioral comorbidities, and the relationship between cocaine dependence and socioeconomic status. From the CNDS perspective, we discuss established and emerging behavioral, pharmacological, and neurological treatments and identify possible targets for future treatments. The ability of the CNDS theory to integrate diverse findings highlights its utility for understanding cocaine dependence and supports that dysregulation between the decision systems contributes to addiction. PMID:26806781

  9. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    PubMed

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Directional change of fluid particles in two-dimensional turbulence and of football players

    NASA Astrophysics Data System (ADS)

    Kadoch, Benjamin; Bos, Wouter J. T.; Schneider, Kai

    2017-06-01

    Multiscale directional statistics are investigated in two-dimensional incompressible turbulence. It is shown that the short-time behavior of the mean angle of directional change of fluid particles is linearly dependent on the time lag and that no inertial range behavior is observed in the directional change associated with the enstrophy-cascade range. In simulations of the inverse-cascade range, the directional change shows a power law behavior at inertial range time scales. By comparing the directional change in space-periodic and wall-bounded flow, it is shown that the probability density function of the directional change at long times carries the signature of the confinement. The geometrical origin of this effect is validated by Monte Carlo simulations. The same effect is also observed in the directional statistics computed from the trajectories of football players (soccer players in American English).

  11. Compounding approach for univariate time series with nonstationary variances

    NASA Astrophysics Data System (ADS)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  12. Compounding approach for univariate time series with nonstationary variances.

    PubMed

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  13. Stability and Change of Outsider Behavior in School Bullying: The Role of Shame and Guilt in a Longitudinal Perspective

    ERIC Educational Resources Information Center

    Mazzone, Angela; Camodeca, Marina; Salmivalli, Christina

    2018-01-01

    We analyzed developmental changes in outsider behavior, testing whether the likelihood that it turns into bullying or defending over time depends on the individual proneness to feel shame or guilt. Participants were 155 preadolescents (72 boys and 83 girls; [X-bar][subscript age] at T1 = 10.74 years). Bullying, defending, and outsider behaviors…

  14. Rheological behavior of FM-9 solutions and correlation with flammability test results and interpretations. [fuel thickening additive

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1983-01-01

    The rheological behavior of progressively shear thickening FM-9 solutions, a time-dependent shear thickening material with characteristics of threshold behavior, is investigated as part of a study of the rheological properties of antimisting jet fuel. Flammability test results and test configurations from various sources are evaluated. A correlation is obtained between the rheological behavior and the flammability tests such that, for a given system, such as a fixed solvent system and the FM-9 polymer system, the flammability criterion can be applied to a wide range of concentrations and temperatures.

  15. The Role of Physiological Arousal in Time Perception: Psychophysiological Evidence from an Emotion Regulation Paradigm

    ERIC Educational Resources Information Center

    Mella, N.; Conty, L.; Pouthas, V.

    2011-01-01

    Time perception, crucial for adaptive behavior, has been shown to be altered by emotion. An arousal-dependent mechanism is proposed to account for such an effect. Yet, physiological measure of arousal related with emotional timing is still lacking. We addressed this question using skin conductance response (SCR) in an emotion regulation paradigm.…

  16. Bistability in Josephson Junction array resonator

    NASA Astrophysics Data System (ADS)

    Muppalla, Phani Raja; Alexandre Blais Collaboration; Christian Kraglund Andersen Collaboration; Ioan Pop, Lukas Gruenhaupt Collaboration; Michel Devoret Collaboration; Oscar Garguilo, Gerhard Kirchmair Team

    ``We present an experimental analysis of the Kerr effect of extended plasma resonances in a 1000 Josephson junction (JJ) chain resonator inside a rectangular waveguide. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. We study the bistable behavior, using a pump probe scheme on two modes of the JJ array, exploiting the Cross-Kerr effect in our system. In order to understand the behavior of the bi-stability we perform continuous time measurements to observe the switching between the two metastable states. We observe a strong dependence of the switching rates on the photon number and the drive frequency.''

  17. Behavioral and neurochemical consequences of multiple MDMA administrations in the rat: role of individual differences in anxiety-related behavior.

    PubMed

    Ludwig, V; Mihov, Y; Schwarting, R K W

    2008-05-16

    Using the elevated plus-maze (EPM), Wistar rats can be distinguished into high (HA) or low anxiety (LA) subjects. These differences seem to reflect traits, since HA and LA rats vary also in other anxiety-dependent tasks, neurochemical mechanisms, and psychopharmacological reactivity, including lasting consequences after single treatment with 3,4-methylenedioxymethamphetamine (MDMA). Here, we tested whether multiple MDMA treatments also have subject-dependent effects. Based on routine EPM screening, male Wistar rats were divided into HA and LA sub-groups, which received five (i.e. multiple) daily injections of MDMA (5 mg/kg) or saline, followed by a test battery, including a challenge test with MDMA, a retest in the EPM, a novel-object test, and a final neurochemical analysis. Acutely, MDMA led to comparable hyperactivity in HA and LA rats. After multiple MDMA, behavioral sensitization was observed, especially in LA rats. Open arm time during the EPM retest (min 0-5) correlated with that of the initial one only in those rats, which had received a single injection of MDMA. Rats with multiple MDMA, especially LA-rats, showed more open-arm time and locomotion during the subsequent 5-10 min of the retest. In a novel-object test, rats with multiple MDMA, again especially LA subjects, showed more exploratory bouts towards the novel object. Neurochemically, multiple MDMA led to moderately lower serotonin in the ventral striatum, and higher dopamine levels in the frontal cortex as compared to single MDMA; these effects were also moderated by subject-dependent factors. Our data show that low-dosed multiple MDMA can lead to behavioral sensitization and outlasting consequences, which affect behavior in the EPM and a novel object task. Detecting such sequels partly requires consideration of individual differences.

  18. Analysis of the tensile stress-strain behavior of elastomers at constant strain rates. I - Criteria for separability of the time and strain effects

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Fedors, R. F.; Schwarzl, F.; Moacanin, J.; Landel, R. F.

    1981-01-01

    A theoretical analysis of the tensile stress-strain relation of elastomers at constant strain rate is presented which shows that the time and the stress effect are separable if the experimental time scale coincides with a segment of the relaxation modulus that can be described by a single power law. It is also shown that time-strain separability is valid if the strain function is linearly proportional to the Cauchy strain, and that when time-strain separability holds, two strain-dependent quantities can be obtained experimentally. In the case where time and strain effect are not separable, superposition can be achieved only by using temperature and strain-dependent shift factors.

  19. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  20. Experimental identification and mathematical modeling of viscoplastic material behavior

    NASA Astrophysics Data System (ADS)

    Haupt, P.; Lion, A.

    1995-03-01

    Uniaxial torsion and biaxial torsion-tension experiments on thin-walled tubes were carried out to investigate the viscoplastic behavior of stainless steel XCrNi18.9. A series of monotonic tests under strain and stress control shows nonlinear rate dependence and suggests the existence of equilibrium states, which are asymptotically approached during relaxation and creep processes. Strain controlled cyclic experiments display various hardening and softening phenomena that depend on strain amplitude and mean strain. All experiments indicate that the equilibrium states within the material depend on the history of the input process, whereas the history-dependence of the relaxation and creep behavior appears less significant. From the experiments the design of a constitutive model of viscoplasticity is motivated: The basic assumption is a decomposition of the total stress into an equilibrium stress and a non-equilibrium overstress: At constant strain, the overstress relaxes to zero, where the relaxation time depends on the overstress in order to account for the nonlinear rate-dependence. The equilibrium stress is assumed to be a rate independent functional of the total strain history. Classical plasticity is utilized with a kinematic hardening rule of the Armstrong-Frederick type. In order to incorporate the amplitude-dependent hardening and softening behavior, a generalized arc length representation is applied [14]. The introduction of an additional kinematic hardening variable facilitates consideration of additional hardening effects resulting from the non-radiality of the input process. Apart from the common yield and loading criterion of classical plasticity, the proposed constitutive model does not contain any further distinction of different cases. The experimental data are sufficient to identify the material parameters of the constitutive model. The results of the identification procedure demonstrate the ability of the model to represent the observed phenomena with satisfactory approximation.

  1. Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner.

    PubMed

    Golcu, Doruk; Gebre, Rahiwa Z; Sapolsky, Robert M

    2014-08-01

    The protozoan Toxoplasma gondii (T. gondii) manipulates the behavior of its rodent intermediate host to facilitate its passage to its feline definitive host. This is accomplished by a reduction of the aversive response that rodents show towards cat odors, which likely increases the predation risk. Females on average show similar changes as males. However, behaviors that relate to aversion and attraction are usually strongly influenced by the estrus cycle. In this study, we replicated behavioral effects of T. gondii in female rats, as well as expanded it to two novel behavioral paradigms. We also characterized the role of the estrus cycle in the behavioral effects of T. gondii on female rats. Uninfected females preferred to spend more time in proximity to rabbit rather than bobcat urine, and in a dark chamber rather than a lit chamber. Infected females lost both of these preferences, and also spent more time investigating social novelty (foreign bedding in their environment). Taken together, these data suggest that infection makes females less risk averse and more exploratory. Furthermore, this effect was influenced by the estrus cycle. Uninfected rats preferred rabbit urine to bobcat urine throughout the cycle except at estrus and metestrus. In contrast, infected rats lost this preference at every stage of the cycle except estrus. Commensurate with the possibility that this was a hormone-dependent effect, infected rats had elevated levels of circulating progesterone, a known anxiolytic. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Toxoplasma gondii influences aversive behaviors of female rats in an estrus cycle dependent manner

    PubMed Central

    Golcu, Doruk; Gebre, Rahiwa Z.; Sapolsky, Robert M.

    2016-01-01

    The protozoan Toxoplasma gondii (T. gondii) manipulates the behavior of its rodent intermediate host to facilitate its passage to its feline definitive host. This is accomplished by a reduction of the aversive response that rodents show towards cat odors, which likely increases the predation risk. Females on average show similar changes as males. However, behaviors that relate to aversion and attraction are usually strongly influenced by the estrus cycle. In this study, we replicated behavioral effects of T. gondii in female rats, as well as expanded it to two novel behavioral paradigms. We also characterized the role of the estrus cycle in the behavioral effects of T. gondii on female rats. Uninfected females preferred to spend more time in proximity to rabbit rather than bobcat urine, and in a dark chamber rather than a lit chamber. Infected females lost both of these preferences, and also spent more time investigating social novelty (foreign bedding in their environment). Taken together, these data suggest that infection makes females less risk averse and more exploratory. Furthermore, this effect was influenced by the estrus cycle. Uninfected rats preferred rabbit urine to bobcat urine throughout the cycle except at estrus and metestrus. In contrast, infected rats lost this preference at every stage of the cycle except estrus. Commensurate with the possibility that this was a hormone-dependent effect, infected rats had elevated levels of circulating progesterone, a known anxiolytic. PMID:24907696

  3. Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices

    PubMed Central

    Zarudnyi, Konstantin; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Hudziak, Stephen; Kenyon, Anthony J.

    2018-01-01

    Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiOx) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks. PMID:29472837

  4. Transformation of Context-dependent Sensory Dynamics into Motor Behavior

    PubMed Central

    Latorre, Roberto; Levi, Rafael; Varona, Pablo

    2013-01-01

    The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. PMID:23459114

  5. Lubricant Rheology in Concentrated Contacts

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.

    1984-01-01

    Lubricant behavior in highly stressed situtations shows that a Newtonian model for lubricant rheology is insufficient for explanation of traction behavior. The oil film build up is predicted by using a Newtonian lubricant model except at high slide to roll ratios and at very high loads, where the nonNewtonian behavior starts to be important already outside the Hertzian contact area. Static and dynamic experiments are reported. In static experiments the pressure is applied to the lubricant more than a million times longer than in an EHD contact. Depending on the pressure-temperature history of the experiment the lubricant will become a crystallized or amorphous solid at high pressures. In dynamic experiments, the oil is in an amorphous solid state. Depending on the viscosity, time scale, elasticity of the oil and the bearing surfaces, the oil film pressure, shear strain rate and the type of lubricant, different properties of the oil are important for prediction of shear stresses in the oil. The different proposed models for the lubricant, which describe it to a Newtonian liquid, an elastic liquid, a plastic liquid and an elastic-plastic solid.

  6. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    PubMed

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Relationship of corporal punishment and antisocial behavior by neighborhood.

    PubMed

    Grogan-Kaylor, Andrew

    2005-10-01

    To examine the relationship of corporal punishment with children's behavior problems while accounting for neighborhood context and while using stronger statistical methods than previous literature in this area, and to examine whether different levels of corporal punishment have different effects in different neighborhood contexts. Longitudinal cohort study. General community. 1943 mother-child pairs from the National Longitudinal Survey of Youth. Internalizing and externalizing behavior problem scales of the Behavior Problems Index. Parental use of corporal punishment was associated with a 0.71 increase (P<.05) in children's externalizing behavior problems even when several parenting behaviors, neighborhood quality, and all time-invariant variables were accounted for. The association of corporal punishment and children's externalizing behavior problems was not dependent on neighborhood context. The research found no discernible relationship between corporal punishment and internalizing behavior problems.

  8. The role of time and risk preferences in adherence to physician advice on health behavior change.

    PubMed

    van der Pol, Marjon; Hennessy, Deirdre; Manns, Braden

    2017-04-01

    Changing physical activity and dietary behavior in chronic disease patients is associated with significant health benefits but is difficult to achieve. An often-used strategy is for the physician or other health professional to encourage behavior changes by providing advice on the health consequences of such behaviors. However, adherence to advice on health behavior change varies across individuals. This paper uses data from a population-based cross-sectional survey of 1849 individuals with chronic disease to explore whether differences in individuals' time and risk preferences can help explain differences in adherence. Health behaviors are viewed as investments in health capital within the Grossman model. Physician advice plays a role in the model in that it improves the understanding of the future health consequences of investments. It can be hypothesized that the effect of advice on health behavior will depend on an individuals' time and risk preference. Within the survey, which measured a variety of health-related behaviors and outcomes, including receipt and compliance with advice on dietary and physical activity changes, time preferences were measured using financial planning horizon, and risk preferences were measured through a commonly used question which asked respondents to indicate their willingness to take risks on a ten-point scale. Results suggest that time preferences play a role in adherence to physical activity advice. While time preferences also play a role in adherence to dietary advice, this effect is only apparent for males. Risk preferences do not seem to be associated with adherence. The results suggest that increasing the salience of more immediate benefits of health behavior change may improve adherence.

  9. Low Dimensional Temporal Organization of Spontaneous Eye Blinks in Adults with Developmental Disabilities and Stereotyped Movement Disorder

    PubMed Central

    Lee, Mei-Hua; Bodfish, James W.; Lewis, Mark H.; Newell, Karl M.

    2009-01-01

    This study investigated the mean rate and time-dependent sequential organization of spontaneous eye blinks in adults with intellectual and developmental disability (IDD) and individuals from this group that were additionally categorized with stereotypic movement disorder (IDD+SMD). The mean blink rate was lower in the IDD+SMD group than the IDD group and both of these groups had a lower blink rate than a contrast group of healthy adults. In the IDD group the n to n+1 sequential organization over time of the eye blink durations showed a stronger compensatory organization than the contrast group suggesting decreased complexity/dimensionality of eye-blink behavior. Very low blink rate (and thus insufficient time series data) precluded analysis of time-dependent sequential properties in the IDD+SMD group. These findings support the hypothesis that both IDD and SMD are associated with a reduction in the dimension and adaptability of movement behavior and that this may serve as a risk factor for the expression of abnormal movements. PMID:19819672

  10. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  11. Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior.

    PubMed

    Cornil, C A; Dalla, C; Papadopoulou-Daifoti, Z; Baillien, M; Dejace, C; Ball, G F; Balthazart, J

    2005-09-01

    In Japanese quail, as in rats, the expression of male sexual behavior over relatively long time periods (days to weeks) is dependent on the local production of estradiol in the preoptic area via the aromatization of testosterone. On a short-term basis (minutes to hours), central actions of dopamine as well as locally produced estrogens modulate behavioral expression. In rats, a view of and sexual interaction with a female increase dopamine release in the preoptic area. In quail, in vitro brain aromatase activity (AA) is rapidly modulated by calcium-dependent phosphorylations that are likely to occur in vivo as a result of changes in neurotransmitter activity. Furthermore, an acute estradiol injection rapidly stimulates copulation in quail, whereas a single injection of the aromatase inhibitor vorozole rapidly inhibits this behavior. We hypothesized that brain aromatase and dopaminergic activities are regulated in quail in association with the expression of male sexual behavior. Visual access as well as sexual interactions with a female produced a significant decrease in brain AA, which was maximal after 5 min. This expression of sexual behavior also resulted in a significant decrease in dopaminergic as well as serotonergic activity after 1 min, which returned to basal levels after 5 min. These results demonstrate for the first time that AA is rapidly modulated in vivo in parallel with changes in dopamine activity. Sexual interactions with the female decreased aromatase and dopamine activities. These data challenge established views about the causal relationships among dopamine, estrogen action, and male sexual behavior.

  12. Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior

    PubMed Central

    Cornil, C. A.; Dalla, C.; Papadopoulou-Daifoti, Z.; Baillien, M.; Dejace, C.; Ball, G.F.; Balthazart, J.

    2014-01-01

    In Japanese quail as in rats, the expression of male sexual behavior over relatively long time periods (days to weeks) is dependent on the local production of estradiol in the preoptic area via the aromatization of testosterone. On a short-term basis (minutes to hours), central actions of dopamine as well as locally produced estrogens modulate behavioral expression. In rats, a view of and sexual interaction with a female increases dopamine release in the preoptic area. In quail, in vitro brain aromatase activity is rapidly modulated by calcium-dependent phosphorylations that are likely to occur in vivo as a result of changes in neurotransmitter activity. Furthermore, an acute estradiol injection rapidly stimulates copulation in quail, while a single injection of the aromatase inhibitor Vorozole™ rapidly inhibits this behavior. We hypothesized that brain aromatase and dopaminergic activities are regulated in quail in association with the expression of male sexual behavior. Visual access as well as sexual interactions with a female produced a significant decrease in brain aromatase activity that was maximal after 5 min. This expression of sexual behavior also resulted in a significant decrease in dopaminergic as well as serotonergic activity after 1 min, which returned to basal levels after 5 min. These results demonstrate for the first time that aromatase activity is rapidly modulated in vivo in parallel with changes in dopamine activity. Sexual interactions with the female decreased aromatase and dopamine activity. These data challenges established views about the causal relationships among dopamine, estrogen action and male sexual behavior. PMID:15932925

  13. Ontogeny of cocaine-induced behaviors and cocaine pharmacokinetics in male and female neonatal, preweanling, and adult rats.

    PubMed

    McDougall, Sanders A; Apodaca, Matthew G; Mohd-Yusof, Alena; Mendez, Adrian D; Katz, Caitlin G; Teran, Angie; Garcia-Carachure, Israel; Quiroz, Anthony T; Crawford, Cynthia A

    2018-04-18

    Ontogenetic differences in the behavioral responsiveness to cocaine have often been attributed to the maturation of dopaminergic elements (e.g., dopamine transporters, D2 High receptors, receptor coupling, etc.). The purpose of this study was to determine whether ontogenetic changes in cocaine pharmacokinetics might contribute to age-dependent differences in behavioral responsiveness. Male and female neonatal (PD 5), preweanling (PD 10 and PD 20), and adult (PD 70) rats were injected (IP) with cocaine or saline and various behaviors (e.g., locomotor activity, forelimb paddle, vertical activity, head-down sniffing, etc.) were measured for 90 min. In a separate experiment, the dorsal striata of young and adult rats were removed at 10 time points (0-210 min) after IP cocaine administration. Peak cocaine values, cocaine half-life, and dopamine levels were determined using HPLC. When converted to percent of saline controls, PD 5 and PD 10 rats were generally more sensitive to cocaine than older rats, but this effect varied according to the behavior being assessed. Peak cocaine values did not differ according to age or sex, but cocaine half-life in brain was approximately 2 times longer in PD 5 and PD 10 rats than adults. Cocaine pharmacokinetics did not differ between PD 20 and PD 70 rats. Differences in the cocaine-induced behavioral responsiveness of very young rats (PD 5 and PD 10) and adults may be attributable, at least in part, to pharmacokinetic factors; whereas, age-dependent behavioral differences between the late preweanling period and adulthood cannot readily be ascribed to cocaine pharmacokinetics.

  14. Interactions of raptors and Lesser Prairie-Chickens at leks in the Texas Southern High Plains

    USGS Publications Warehouse

    Behney, Adam C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, Duane R.

    2011-01-01

    We examined behavioral interactions of raptors, Chihuahuan Ravens (Corvus cryptoleucus), and Lesser Prairie-Chickens (Tympanuchus pallidicinctus) at leks in the Texas Southern High Plains. Northern Harriers (Circus cyaneus) and Swainson's Hawks (Buteo swainsoni) were the most common raptors observed at leks. Only 15 of 61 (25%) raptor encounters at leks (0.09/hr) resulted in a capture attempt (0.02/hr). Mean (± SD) time for Lesser Prairie-Chickens to return to lekking behavior following a raptor encounter was 4.2 ± 5.5 min suggesting the disturbance had little influence on lekking behaviors. Lesser Prairie-Chickens engaged in different escape behaviors depending on raptor species and, generally, did not respond to ravens suggesting they are able to assess different predation risks. The raptors in our study area posed little predation risk to lekking prairie-chickens. Behavioral disturbance at leks appears minimal due to the lack of successful predation events, low raptor encounter rates, and short time to return to lekking behavior.

  15. A Temperature-Dependent Battery Model for Wireless Sensor Networks.

    PubMed

    Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-02-22

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.

  16. A Temperature-Dependent Battery Model for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444

  17. Modeling Interdependent and Periodic Real-World Action Sequences

    PubMed Central

    Kurashima, Takeshi; Althoff, Tim; Leskovec, Jure

    2018-01-01

    Mobile health applications, including those that track activities such as exercise, sleep, and diet, are becoming widely used. Accurately predicting human actions in the real world is essential for targeted recommendations that could improve our health and for personalization of these applications. However, making such predictions is extremely difficult due to the complexities of human behavior, which consists of a large number of potential actions that vary over time, depend on each other, and are periodic. Previous work has not jointly modeled these dynamics and has largely focused on item consumption patterns instead of broader types of behaviors such as eating, commuting or exercising. In this work, we develop a novel statistical model, called TIPAS, for Time-varying, Interdependent, and Periodic Action Sequences. Our approach is based on personalized, multivariate temporal point processes that model time-varying action propensities through a mixture of Gaussian intensities. Our model captures short-term and long-term periodic interdependencies between actions through Hawkes process-based self-excitations. We evaluate our approach on two activity logging datasets comprising 12 million real-world actions (e.g., eating, sleep, and exercise) taken by 20 thousand users over 17 months. We demonstrate that our approach allows us to make successful predictions of future user actions and their timing. Specifically, TIPAS improves predictions of actions, and their timing, over existing methods across multiple datasets by up to 156%, and up to 37%, respectively. Performance improvements are particularly large for relatively rare and periodic actions such as walking and biking, improving over baselines by up to 256%. This demonstrates that explicit modeling of dependencies and periodicities in real-world behavior enables successful predictions of future actions, with implications for modeling human behavior, app personalization, and targeting of health interventions. PMID:29780977

  18. Decision making in noisy bistable systems with time-dependent asymmetry

    NASA Astrophysics Data System (ADS)

    Nené, Nuno R.; Zaikin, Alexey

    2013-01-01

    Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.

  19. Time-dependent buoyant puff model for explosive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kansa, E.J.

    1997-01-01

    Several models exist to predict the time dependent behavior of bouyant puffs that result from explosions. This paper presents a new model that is derived from the strong conservative form of the conservation partial differential equations that are integrated over space to yield a coupled system of time dependent nonlinear ordinary differential equations. This model permits the cloud to evolve from an intial spherical shape not an ellipsoidal shape. It ignores the Boussinesq approximation, and treats the turbulence that is generated by the puff itself and the ambient atmospheric tubulence as separate mechanisms in determining the puff history. The puffmore » cloud rise history was found to depend no only on the mass and initial temperature of the explosion, but also upon the stability conditions of the ambient atmosphere. This model was calibrated by comparison with the Roller Coaster experiments.« less

  20. A new finite element formulation for computational fluid dynamics. IX - Fourier analysis of space-time Galerkin/least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Shakib, Farzin; Hughes, Thomas J. R.

    1991-01-01

    A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.

  1. Modeling spiking behavior of neurons with time-dependent Poisson processes.

    PubMed

    Shinomoto, S; Tsubo, Y

    2001-10-01

    Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly compared with the mean interval between spikes, are found to be consistent with the three statistical coefficients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.

  2. Deformation characteristics and time-dependent notch sensitivity of Udimet 700 at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1975-01-01

    Time-dependent notch sensitivity of Udimet 700 sheet, bar, and investment castings was observed between 1000 and 1400 F (538-760 C) but not at 1600 F (871 C). As was the case for Modified Waspaloy, Waspaloy, Rene 41, Inconel 718, and TD-NiCr, it occurred when notched specimens were loaded below the yield strength and when creep deformation was localized. For each gamma-prime strengthened alloy and notched specimen geometry, a stress-average particle size zone can be defined to characterize the notch-sensitive behavior.

  3. A Pulsed Sphere Tutorial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, Dermott E.

    2017-01-30

    Here I attempt to explain what physically happens when we pulse an object with neutrons, specifically what we expect the time dependent behavior of the neutron population to look like. Emphasis is on the time dependent emission of both prompt and delayed neutrons. I also describe how the TART Monte Carlo transport code models this situation; see the appendix for a complete description of the model used by TART. I will also show that, as we expect, MCNP and MERCURY, produce similar results using the same delayed neutron model (again, see the appendix).

  4. Effects of task and age on the magnitude and structure of force fluctuations: insights into underlying neuro-behavioral processes.

    PubMed

    Vieluf, Solveig; Temprado, Jean-Jacques; Berton, Eric; Jirsa, Viktor K; Sleimen-Malkoun, Rita

    2015-03-13

    The present study aimed at characterizing the effects of increasing (relative) force level and aging on isometric force control. To achieve this objective and to infer changes in the underlying control mechanisms, measures of information transmission, as well as magnitude and time-frequency structure of behavioral variability were applied to force-time-series. Older adults were found to be weaker, more variable, and less efficient than young participants. As a function of force level, efficiency followed an inverted-U shape in both groups, suggesting a similar organization of the force control system. The time-frequency structure of force output fluctuations was only significantly affected by task conditions. Specifically, a narrower spectral distribution with more long-range correlations and an inverted-U pattern of complexity changes were observed with increasing force level. Although not significant older participants displayed on average a less complex behavior for low and intermediate force levels. The changes in force signal's regularity presented a strong dependence on time-scales, which significantly interacted with age and condition. An inverted-U profile was only observed for the time-scale relevant to the sensorimotor control process. However, in both groups the peak was not aligned with the optimum of efficiency. Our results support the view that behavioral variability, in terms of magnitude and structure, has a functional meaning and affords non-invasive markers of the adaptations of the sensorimotor control system to various constraints. The measures of efficiency and variability ought to be considered as complementary since they convey specific information on the organization of control processes. The reported weak age effect on variability and complexity measures suggests that the behavioral expression of the loss of complexity hypothesis is not as straightforward as conventionally admitted. However, group differences did not completely vanish, which suggests that age differences can be more or less apparent depending on task properties and whether difficulty is scaled in relative or absolute terms.

  5. Growth condition dependency is the major cause of non-responsiveness upon genetic perturbation

    PubMed Central

    Amini, Saman; Holstege, Frank C. P.

    2017-01-01

    Investigating the role and interplay between individual proteins in biological processes is often performed by assessing the functional consequences of gene inactivation or removal. Depending on the sensitivity of the assay used for determining phenotype, between 66% (growth) and 53% (gene expression) of Saccharomyces cerevisiae gene deletion strains show no defect when analyzed under a single condition. Although it is well known that this non-responsive behavior is caused by different types of redundancy mechanisms or by growth condition/cell type dependency, it is not known what the relative contribution of these different causes is. Understanding the underlying causes of and their relative contribution to non-responsive behavior upon genetic perturbation is extremely important for designing efficient strategies aimed at elucidating gene function and unraveling complex cellular systems. Here, we provide a systematic classification of the underlying causes of and their relative contribution to non-responsive behavior upon gene deletion. The overall contribution of redundancy to non-responsive behavior is estimated at 29%, of which approximately 17% is due to homology-based redundancy and 12% is due to pathway-based redundancy. The major determinant of non-responsiveness is condition dependency (71%). For approximately 14% of protein complexes, just-in-time assembly can be put forward as a potential mechanistic explanation for how proteins can be regulated in a condition dependent manner. Taken together, the results underscore the large contribution of growth condition requirement to non-responsive behavior, which needs to be taken into account for strategies aimed at determining gene function. The classification provided here, can also be further harnessed in systematic analyses of complex cellular systems. PMID:28257504

  6. A model for food and stimulus changes that signal time-based contingency changes.

    PubMed

    Cowie, Sarah; Davison, Michael; Elliffe, Douglas

    2014-11-01

    When the availability of reinforcers depends on time since an event, time functions as a discriminative stimulus. Behavioral control by elapsed time is generally weak, but may be enhanced by added stimuli that act as additional time markers. The present paper assessed the effect of brief and continuous added stimuli on control by time-based changes in the reinforcer differential, using a procedure in which the local reinforcer ratio reversed at a fixed time after the most recent reinforcer delivery. Local choice was enhanced by the presentation of the brief stimuli, even when the stimulus change signalled only elapsed time, but not the local reinforcer ratio. The effect of the brief stimulus presentations on choice decreased as a function of time since the most recent stimulus change. We compared the ability of several versions of a model of local choice to describe these data. The data were best described by a model which assumed that error in discriminating the local reinforcer ratio arose from imprecise discrimination of reinforcers in both time and space, suggesting that timing behavior is controlled not only by discrimination elapsed time, but by discrimination of the reinforcer differential in time. © Society for the Experimental Analysis of Behavior.

  7. Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Heedong; McKenna, Gregory B.

    2016-05-01

    Here, we report results from an investigation of nano-scale size or confinement effects on the glass transition and viscoelastic properties of physical vapor deposited selenium films. The viscoelastic response of freely standing Se films was determined using a biaxial membrane inflation or bubble inflation method [P. A. O'Connell and G. B. McKenna, Science 307, 1760-1763 (2005)] on films having thicknesses from 60 to 267 nm and over temperatures ranging from Tg, macroscopic - 15 °C to Tg, macroscopic + 21 °C. Time-temperature superposition and time-thickness superposition were found to hold for the films in the segmental dispersion. The responses are compared with macroscopic creep and recoverable creep compliance data for selenium [K. M. Bernatz et al., J. Non-Cryst. Solids 307, 790-801 (2002)]. The time-temperature shift factors for the thin films show weaker temperature dependence than seen in the macroscopic behavior, being near to Arrhenius-like in their temperature dependence. Furthermore, the Se films exhibit a "rubbery-like" stiffening that increases as film thickness decreases similar to prior observations [P. A. O'Connell et al., Macromolecules 45(5), 2453-2459 (2012)] for organic polymers. In spite of the differences from the macroscopic behavior in the temperature dependence of the viscoelastic response, virtually no change in Tg as determined from the thickness dependence of the retardation time defining Tg was observed in the bubble inflation creep experiments to thicknesses as small as 60 nm. We also find that the observed rubbery stiffening is consistent with the postulate of K. L. Ngai et al. [J. Polym. Sci., Part B: Polym. Phys. 51(3), 214-224 (2013)] that it should correlate with the change of the macroscopic segmental relaxation.

  8. Criticality and Phase Transition in Stock-Price Fluctuations

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu

    2006-02-01

    We analyze the behavior of the U.S. S&P 500 index from 1984 to 1995, and characterize the non-Gaussian probability density functions (PDF) of the log returns. The temporal dependence of fat tails in the PDF of a ten-minute log return shows a gradual, systematic increase in the probability of the appearance of large increments on approaching black Monday in October 1987, reminiscent of parameter tuning towards criticality. On the occurrence of the black Monday crash, this culminates in an abrupt transition of the scale dependence of the non-Gaussian PDF towards scale-invariance characteristic of critical behavior. These facts suggest the need for revisiting the turbulent cascade paradigm recently proposed for modeling the underlying dynamics of the financial index, to account for time varying—phase transitionlike and scale invariant-critical-like behavior.

  9. Novel continuous authentication using biometrics

    NASA Astrophysics Data System (ADS)

    Dubey, Prakash; Patidar, Rinku; Mishra, Vikas; Norman, Jasmine; Mangayarkarasi, R.

    2017-11-01

    We explore whether a classifier can consistent1y verify c1ients and interact with the computer using camera and behavior of users. In this paper we propose a new way of authentication of user which wi1l capture many images of user in random time and ana1ysis of its touch biometric behavior. In this system experiment the touch conduct of a c1ient/user between an en1istment stage is stored in the database and it is checked its mean time behavior during equa1 partition of time. This touch behavior wi1l ab1e to accept or reject the user. This wi1l modify the use of biometric more accurate to use. In this system the work p1an going to perform is the user wi1l ask single time to a1low to take it picture before 1ogin. Then it wi1l take images of user without permission of user automatica1ly and store in the database. This images and existing image of user wi1l be compare and reject or accept wi1l depend on its comparison. The user touch behavior wi1l keep storing with number of touch make in equa1 amount of time of the user. This touch behavior and image wi1l fina1ly perform authentication of the user automatically.

  10. Time-dependent perpendicular fluctuations in the driven lattice Lorentz gas

    NASA Astrophysics Data System (ADS)

    Leitmann, Sebastian; Schwab, Thomas; Franosch, Thomas

    2018-02-01

    We present results for the fluctuations of the displacement of a tracer particle on a planar lattice pulled by a step force in the presence of impenetrable, immobile obstacles. The fluctuations perpendicular to the applied force are evaluated exactly in first order of the obstacle density for arbitrarily strong pulling and all times. The complex time-dependent behavior is analyzed in terms of the diffusion coefficient, local exponent, and the non-Skellam parameter, which quantifies deviations from the dynamics on the lattice in the absence of obstacles. The non-Skellam parameter along the force is analyzed in terms of an asymptotic model and reveals a power-law growth for intermediate times.

  11. Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential

    NASA Astrophysics Data System (ADS)

    Kloss, Benedikt; Lev, Yevgeny Bar; Reichman, David

    2018-01-01

    We study the applicability of the time-dependent variational principle in matrix-product state manifolds for the long time description of quantum interacting systems. By studying integrable and nonintegrable systems for which the long time dynamics are known we demonstrate that convergence of long time observables is subtle and needs to be examined carefully. Remarkably, for the disordered nonintegrable system we consider the long time dynamics are in good agreement with the rigorously obtained short time behavior and with previous obtained numerically exact results, suggesting that at least in this case, the apparent convergence of this approach is reliable. Our study indicates that, while great care must be exercised in establishing the convergence of the method, it may still be asymptotically accurate for a class of disordered nonintegrable quantum systems.

  12. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity

    NASA Astrophysics Data System (ADS)

    Pandey, Vikash; Holm, Sverre

    2016-09-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.

  13. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.

    PubMed

    Pandey, Vikash; Holm, Sverre

    2016-09-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.

  14. Targeting Behavioral Symptoms and Functional Decline in Dementia: A Randomized Clinical Trial.

    PubMed

    Gitlin, Laura N; Arthur, Paul; Piersol, Catherine; Hessels, Virginia; Wu, Samuel S; Dai, Yunfeng; Mann, William C

    2018-02-01

    Dementia-related behavioral symptoms and functional dependence result in poor quality of life for persons with dementia and their caregivers. The goal was to determine whether a home-based activity program (Tailored Activity Program; TAP-VA) would reduce behavioral symptoms and functional dependence of veterans with dementia and caregiver burden. Single-blind (interviewer), parallel, randomized, controlled trial (Clinicaltrials.gov: NCT01357564). Veteran's homes. Veterans with dementia and their family caregivers (N = 160 dyads). Dyads in TAP-VA underwent 8 sessions with occupational therapists to customize activities to the interests and abilities of the veterans and educate their caregivers about dementia and use of customized activity. Caregivers assigned to attention control received up to 8 telephone-based dementia education sessions with a research team member. Primary outcomes included number of behaviors and frequency of their occurrence multiplied by severity of occurrence; secondary outcomes were functional dependence, pain, emotional well-being, caregiver burden (time spent caregiving, upset with behaviors) and affect at 4 (primary endpoint) and 8 months. Of 160 dyads (n = 76 TAP-VA; n = 84 control), 111 completed 4-month interviews (n = 51 TAP-VA; n = 60 control), and 103 completed 8-month interviews (n = 50 TAP-VA; n = 53 control). At 4 months, compared to controls, the TAP-VA group showed reductions in number (difference in mean change from baseline = -0.68, 95% CI = -1.23 to -0.13) and frequency by severity (-24.3, 95% CI = -45.6 to -3.1) of behavioral symptoms, number of activities needing assistance with (-0.80, 95% CI = -1.41 to -0.20), functional dependence level (4.09, 95% CI = 1.06, 7.13), and pain (-1.18, 95% CI = -2.10 to -0.26). Caregivers of veterans in TAP-VA reported less behavior-related distress. Benefits did not extend to 8 months. TAP-VA had positive immediate effects and no adverse events. Because TAP-VA reduces behavioral symptoms, slows functional dependence, and alleviates pain and caregiver distress, it is a viable treatment option for families. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  15. Strategies for sperm chemotaxis in the siphonophores and ascidians: a numerical simulation study.

    PubMed

    Ishikawa, Makiko; Tsutsui, Hidekazu; Cosson, Jacky; Oka, Yoshitaka; Morisawa, Masaaki

    2004-04-01

    Chemotactic swimming behaviors of spermatozoa toward an egg have been reported in various species. The strategies underlying these behaviors, however, are poorly understood. We focused on two types of chemotaxis, one in the siphonophores and the second in the ascidians, and then proposed two models based on experimental data. Both models assumed that the radius of the path curvature of a swimming spermatozoon depends on [Ca(2+)](i), the intracellular calcium concentration. The chemotaxis in the siphonophores could be simulated in a model that assumes that [Ca(2+)](i) depends on the local concentration of the attractant in the vicinity of the spermatozoon and that a substantial time period is required for the clearance of transient high [Ca(2+)](i). In the case of ascidians, trajectories similar to those in experiments could be adequately simulated by a variant of this model that assumes that [Ca(2+)](i) depends on the time derivative of the attractant concentration. The properties of these strategies and future problems are discussed in relation to these models.

  16. Measures of dependence for multivariate Lévy distributions

    NASA Astrophysics Data System (ADS)

    Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.

    2001-02-01

    Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.

  17. Low-temperature creep of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  18. On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared

    2017-04-12

    Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS 3/CFT 2 can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all ‘saddles’ that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, andmore » at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS 3. Furthermore, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.« less

  19. On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared

    2017-04-01

    Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS3/CFT2 can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all `saddles' that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, and at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS3. However, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.

  20. Behavior-dependent specialization of identified hippocampal interneurons

    PubMed Central

    Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2012-01-01

    A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613

  1. Mechanical and time-dependent behavior of wood-plastic composites subjected to bending

    Treesearch

    S. E. Hamel; John Hermanson; S. M. Cramer

    2015-01-01

    The most popular use of wood–plastic composite (WPC) members in the United States has been as outdoor decking material in residential construction. If the use of these products expands into more structural applications, such as beams and joists, it is imperative that the material’s mechanical behavior be understood. Since most of the potential structural uses of this...

  2. Effects of electromagnetic radiation exposure on stress-related behaviors and stress hormones in male wistar rats.

    PubMed

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan

    2014-11-01

    Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

  3. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical frameworkmore » that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.« less

  4. Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

    PubMed Central

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan

    2014-01-01

    Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure. PMID:25489427

  5. Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner

    PubMed Central

    2017-01-01

    The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul while monkeys performed saccade tasks toward instructed and freely chosen targets. Timing of stimulation was varied, starting before, at, or after onset of target(s). Stimulation affected saccade properties and target selection in a time-dependent manner. Stimulation starting before but overlapping with target onset shortened saccadic reaction times (RTs) for ipsiversive (to the stimulation site) target locations, whereas stimulation starting at and after target onset caused systematic delays for both ipsiversive and contraversive locations. Similarly, stimulation starting before the onset of bilateral targets increased ipsiversive target choices, whereas stimulation after target onset increased contraversive choices. Properties of dPul neurons and stimulation effects were consistent with an overall contraversive drive, with varying outcomes contingent upon behavioral demands. RT and choice effects were largely congruent in the visually-guided task, but stimulation during memory-guided saccades, while influencing RTs and errors, did not affect choice behavior. Together, these results show that the dPul plays a primary role in action planning as opposed to visual processing, that it exerts its strongest influence on spatial choices when decision and action are temporally close, and that this choice effect can be dissociated from motor effects on saccade initiation and execution. SIGNIFICANCE STATEMENT Despite a recent surge of interest, the core function of the pulvinar, the largest thalamic complex in primates, remains elusive. This understanding is crucial given the central role of the pulvinar in current theories of integrative brain functions supporting cognition and goal-directed behaviors, but electrophysiological and causal interference studies of dorsal pulvinar (dPul) are rare. Building on our previous studies that pharmacologically suppressed dPul activity for several hours, here we used transient electrical microstimulation at different periods while monkeys performed instructed and choice eye movement tasks, to determine time-specific contributions of pulvinar to saccade generation and decision making. We show that stimulation effects depend on timing and behavioral state and that effects on choices can be dissociated from motor effects. PMID:28119401

  6. A review of the deformation behavior of tungsten at temperatures less than 0.2 of the melting point /K/

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1974-01-01

    The deformation behavior of tungsten at temperatures below 0.2 times the absolute melting temperature is reviewed with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition. It is concluded that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. Future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of alloys of tungsten and other transition metal alloys.

  7. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy

    2018-03-01

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.

  8. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE PAGES

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...

    2018-03-06

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  9. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  10. Data series embedding and scale invariant statistics.

    PubMed

    Michieli, I; Medved, B; Ristov, S

    2010-06-01

    Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.

  11. Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)

    NASA Astrophysics Data System (ADS)

    Möginger, B.; Kehret, L.; Hausnerova, B.; Steinhaus, J.

    2016-05-01

    3D-Printing is an efficient method in the field of additive manufacturing. In order to optimize the properties of manufactured parts it is essential to adapt the curing behavior of the resin systems with respect to the requirements. Thus, effects of resin composition, e.g. due to different additives such as thickener and curing agents, on the curing behavior have to be known. As the resin transfers from a liquid to a solid glass the time dependent ion viscosity was measured using DEA with flat IDEX sensors. This allows for a sensitive measurement of resin changes as the ion viscosity changes two to four decades. The investigated resin systems are based on the monomers styrene and HEMA. To account for the effects of copolymerization in the calculation of the reaction kinetics it was assumed that the reaction can be considered as a homo-polymerization having a reaction order n≠1. Then the measured ion viscosity curves are fitted with the solution of the reactions kinetics - the time dependent degree of conversion (DC-function) - for times exceeding the initiation phase representing the primary curing. The measured ion viscosity curves can nicely be fitted with the DC-function and the determined fit parameters distinguish distinctly between the investigated resin compositions.

  12. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    PubMed

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  13. An Agent-Based Model for Analyzing Control Policies and the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic Management Facility

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2006-01-01

    Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.

  14. A Cognitive Behavioral Therapy-Based Text Messaging Intervention for Methamphetamine Dependence

    PubMed Central

    Keoleian, Victoria; Stalcup, S. Alex; Polcin, Douglas L.; Brown, Michelle; Galloway, Gantt

    2013-01-01

    Psychosocial treatments for methamphetamine dependence are of limited effectiveness. Thus, a significant need exists for add-on therapy for this substance user disorder. The aim of this study was to develop and test a novel text messaging intervention for use as an adjunct to cognitive behavioral group therapy for methamphetamine users. Text messaging has the potential to support patients in real-time, around the clock. We convened 2 meetings of an expert panel, held 3 focus groups in current and former users, and conducted 15 semi-structured interviews with in-treatment users in order to develop a fully-automated, cognitive behavioral therapy-based text messaging intervention. We then conducted a randomized, crossover pre-test in 5 users seeking treatment. Participants’ ratings of ease of use and functionality of the system were high. During the pre-test we performed real-time assessments via text messaging on daily methamphetamine use, craving levels, and the perceived usefulness of messages; 79% of scheduled assessments were collected. The odds of messages being rated as “very” or “extremely” useful were 6.6 times [95% CI: 2.2, 19.4] higher in the active vs. placebo periods. The intervention is now ready for testing in randomized clinical trials. PMID:24592670

  15. Size-dependent fracture behavior of silver nanowires.

    PubMed

    Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang

    2018-07-20

    Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.

  16. Size-dependent fracture behavior of silver nanowires

    NASA Astrophysics Data System (ADS)

    Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang

    2018-07-01

    Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.

  17. Complex motion of a vehicle through a series of signals controlled by power-law phase

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  18. Andreev Bound States Formation and Quasiparticle Trapping in Quench Dynamics Revealed by Time-Dependent Counting Statistics.

    PubMed

    Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy

    2016-12-23

    We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.

  19. Priority queues with bursty arrivals of incoming tasks

    NASA Astrophysics Data System (ADS)

    Masuda, N.; Kim, J. S.; Kahng, B.

    2009-03-01

    Recently increased accessibility of large-scale digital records enables one to monitor human activities such as the interevent time distributions between two consecutive visits to a web portal by a single user, two consecutive emails sent out by a user, two consecutive library loans made by a single individual, etc. Interestingly, those distributions exhibit a universal behavior, D(τ)˜τ-δ , where τ is the interevent time, and δ≃1 or 3/2 . The universal behaviors have been modeled via the waiting-time distribution of a task in the queue operating based on priority; the waiting time follows a power-law distribution Pw(τ)˜τ-α with either α=1 or 3/2 depending on the detail of queuing dynamics. In these models, the number of incoming tasks in a unit time interval has been assumed to follow a Poisson-type distribution. For an email system, however, the number of emails delivered to a mail box in a unit time we measured follows a power-law distribution with general exponent γ . For this case, we obtain analytically the exponent α , which is not necessarily 1 or 3/2 and takes nonuniversal values depending on γ . We develop the generating function formalism to obtain the exponent α , which is distinct from the continuous time approximation used in the previous studies.

  20. Time of flight dependent linearity in diffuse imaging: how effective is it to evaluate the spatial resolution by measuring the edge response function?

    PubMed

    Ortiz-Rascón, E; Bruce, N C; Rodríguez-Rosales, A A; Garduño-Mejía, J

    2016-03-01

    We describe the behavior of linearity in diffuse imaging by evaluating the differences between time-resolved images produced by photons arriving at the detector at different times. Two approaches are considered: Monte Carlo simulations and experimental results. The images of two complete opaque bars embedded in a transparent or in a turbid medium with a slab geometry are analyzed; the optical properties of the turbid medium sample are close to those of breast tissue. A simple linearity test was designed involving a direct comparison between the intensity profile produced by two bars scanned at the same time and the intensity profile obtained by adding two profiles of each bar scanned one at a time. It is shown that the linearity improves substantially when short time of flight photons are used in the imaging process, but even then the nonlinear behavior prevails. As the edge response function (ERF) has been used widely for testing the spatial resolution in imaging systems, the main implication of a time dependent linearity is the weakness of the linearity assumption when evaluating the spatial resolution through the ERF in diffuse imaging systems, and the need to evaluate the spatial resolution by other methods.

  1. Pubertal timing and sexual risk behaviors among rural African American male youth: testing a model based on life history theory.

    PubMed

    Kogan, Steven M; Cho, Junhan; Simons, Leslie Gordon; Allen, Kimberly A; Beach, Steven R H; Simons, Ronald L; Gibbons, Frederick X

    2015-04-01

    Life History Theory (LHT), a branch of evolutionary biology, describes how organisms maximize their reproductive success in response to environmental conditions. This theory suggests that challenging environmental conditions will lead to early pubertal maturation, which in turn predicts heightened risky sexual behavior. Although largely confirmed among female adolescents, results with male youth are inconsistent. We tested a set of predictions based on LHT with a sample of 375 African American male youth assessed three times from age 11 to age 16. Harsh, unpredictable community environments and harsh, inconsistent, or unregulated parenting at age 11 were hypothesized to predict pubertal maturation at age 13; pubertal maturation was hypothesized to forecast risky sexual behavior, including early onset of intercourse, substance use during sexual activity, and lifetime numbers of sexual partners. Results were consistent with our hypotheses. Among African American male youth, community environments were a modest but significant predictor of pubertal timing. Among those youth with high negative emotionality, both parenting and community factors predicted pubertal timing. Pubertal timing at age 13 forecast risky sexual behavior at age 16. Results of analyses conducted to determine whether environmental effects on sexual risk behavior were mediated by pubertal timing were not significant. This suggests that, although evolutionary mechanisms may affect pubertal development via contextual influences for sensitive youth, the factors that predict sexual risk behavior depend less on pubertal maturation than LHT suggests.

  2. Repeated Administration of Cigarette Smoke Condensate Increases Glutamate Levels and Behavioral Sensitization

    PubMed Central

    Ryu, In Soo; Kim, Jieun; Seo, Su Yeon; Yang, Ju Hwan; Oh, Jeong Hwan; Lee, Dong Kun; Cho, Hyun-Wook; Lee, Kyuhong; Yoon, Seong Shoon; Seo, Joung-Wook; Shim, Insop; Choe, Eun Sang

    2018-01-01

    Nicotine, a nicotinic acetylcholine receptor agonist, produces the reinforcing effects of tobacco dependence by potentiating dopaminergic and glutamatergic neurotransmission. Non-nicotine alkaloids in tobacco also contribute to dependence by activating the cholinergic system. However, glutamatergic neurotransmission in the dorsal striatum associated with behavioral changes in response to cigarette smoking has not been investigated. In this study, the authors investigated alterations in glutamate levels in the rat dorsal striatum related to behavioral alterations after repeated administration of cigarette smoke condensate (CSC) using the real-time glutamate biosensing and an open-field behavioral assessment. Repeated administration of CSC including 0.4 mg nicotine (1.0 mL/kg/day, subcutaneous) for 14 days significantly increased extracellular glutamate concentrations more than repeated nicotine administration. In parallel with the hyperactivation of glutamate levels, repeated administration of CSC-evoked prolonged hypersensitization of psychomotor activity, including locomotor and rearing activities. These findings suggest that the CSC-induced psychomotor activities are closely associated with the elevation of glutamate concentrations in the rat dorsal striatum. PMID:29615877

  3. Persistent-random-walk approach to anomalous transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Sadjadi, Zeinab; Shaebani, M. Reza; Rieger, Heiko; Santen, Ludger

    2015-06-01

    The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.

  4. A model for the transfer of perceptual-motor skill learning in human behaviors.

    PubMed

    Rosalie, Simon M; Müller, Sean

    2012-09-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event create a unique transfer domain that specifies a range of potentially successful actions. Transfer comprises anticipatory subconscious and conscious mechanisms. The model also outlines how transfer occurs across a continuum, which depends on the individual's expertise and contextual variables occurring at the incidence of transfer

  5. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  6. Effects of radio transmitters on the behavior of Red-headed Woodpeckers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovich, Mark; Kilgo, John, C.

    2009-05-01

    ABSTRACT. Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior of and use of cavities byRed-headedWoodpeckers (Melanerpes erythrocephalus). Using backpack harnesses, we attached 2.1-g transmitter packages that averaged 3.1% of body weight (range = 2.5–3.6%) to Red-headed Woodpeckers. We observed both radio-tagged (N = 23) and nonradio-tagged (N = 28) woodpeckers and determined the percentage of time spent engagedmore » in each of five behaviors: flight, foraging, perching, preening, and territorial behavior. We found no difference between the two groups in the percentage of time engaged in each behavior. In addition, we found that transmitters had no apparent effect on use of cavities for roosting by radio-tagged woodpeckers (N = 25).We conclude that backpack transmitters weighing less than 3.6% of body weight had no impact on either their behavior or their ability to use cavities.« less

  7. Effects of radio transmitters on the behavior of Red-headed Woodpeckers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovich, Mark; Kilgo, John, C.

    ABSTRACT. Previous studies have revealed that radio-transmitters may affect bird behaviors, including feeding rates, foraging behavior, vigilance, and preening behavior. In addition, depending on the method of attachment, transmitters can potentially affect the ability of cavity-nesting birds to use cavities. Our objective was to evaluate effects of transmitters on the behavior of and use of cavities byRed-headedWoodpeckers (Melanerpes erythrocephalus). Using backpack harnesses, we attached 2.1-g transmitter packages that averaged 3.1% of body weight (range = 2.5–3.6%) to Red-headed Woodpeckers. We observed both radio-tagged (N = 23) and nonradio-tagged (N = 28) woodpeckers and determined the percentage of time spent engagedmore » in each of five behaviors: flight, foraging, perching, preening, and territorial behavior. We found no difference between the two groups in the percentage of time engaged in each behavior. In addition, we found that transmitters had no apparent effect on use of cavities for roosting by radio-tagged woodpeckers (N = 25).We conclude that backpack transmitters weighing less than 3.6% of body weight had no impact on either their behavior or their ability to use cavities.« less

  8. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Soppet, William K.

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less

  9. Dependability of Data Derived from Time Sampling Methods with Multiple Observation Targets

    ERIC Educational Resources Information Center

    Johnson, Austin H.; Chafouleas, Sandra M.; Briesch, Amy M.

    2017-01-01

    In this study, generalizability theory was used to examine the extent to which (a) time-sampling methodology, (b) number of simultaneous behavior targets, and (c) individual raters influenced variance in ratings of academic engagement for an elementary-aged student. Ten graduate-student raters, with an average of 7.20 hr of previous training in…

  10. Scale Dependence of Spatiotemporal Intermittence of Rain

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Siddani, Ravi K.

    2011-01-01

    It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.

  11. Crustal permeability

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Gleeson, Tom

    2017-01-01

    Permeability is the dominant parameter in most hydrogeologic studies. There is abundant evidence for dynamic variations in permeability in time as well as space, and throughout the crust. Whether this dynamic behavior should be included in quantitative models depends on the problem at hand.

  12. A Numerical Solution Routine for Investigating Oxidation-Induced Strength Degradation Mechanisms in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2015-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide (SiCSiC) composites with a boron nitride (BN) fiber coating decreases with time within the intermediate temperature range of 700-950 C. Various theories have been proposed to explain the cause of the time dependent stress rupture strength. Some previous authors have suggested that the observed composite strength behavior is due to the inherent time dependent strength of the fibers, which is caused by the slow growth of flaws within the fibers. Flaw growth is supposedly enabled by oxidation of free carbon at the grain boundaries. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of SiCSiC composites. This is achieved through the development of a numerically-based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time dependent behavior.

  13. Energy transport velocity in bidispersed magnetic colloids.

    PubMed

    Bhatt, Hem; Patel, Rajesh; Mehta, R V

    2012-07-01

    Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.

  14. Composition-dependent damping and relaxation dynamics in miscible polymer blends above glass transition temperature by anelastic spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xuebang; Shang, Shuying; Xu, Qiaoling; Liu, Changsong; Zhu, Zhengang; Zhang, Guangzhao

    2008-07-01

    Anelastic spectroscopy is used to study the composition dependence of the damping and molecular relaxation dynamics in miscible poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends above the glass transition temperature. The ultrahigh damping peak of the relaxation type is shown to be associated with the liquid-liquid transition of PMMA. A higher PEO concentration leads to a higher damping performance and a lower transition temperature. The decreasing activation energy with increasing PEO concentration indicates a drastic increase in molecular mobility. Moreover, the relaxation time reveals a transition from the Vogel-Fulcher-Tamman behavior to the Arrhenius behavior due to the intermolecular guest-host interactions.

  15. Strain partitioning in shales during elastic and creep deformation observed by synchrotron X-ray micro-tomography.

    NASA Astrophysics Data System (ADS)

    Sone, H.; Cheung, C.; Rivers, M. L.; Wang, Y.; Yu, T.

    2016-12-01

    Knowledge about the ductile time-dependent constitutive behavior of geological materials is essential when evaluating the long-term integrity of subsurface structures and predicting the long-term geomechanical response of the surrounding formations. To this end, it is not only important to measure the bulk time-dependent behavior but also essential to understand the microscale mechanism by which rocks exhibit time-dependence, because laboratory data needs to be extrapolated to time-scales much beyond laboratory experiments. We conducted long-term creep experiments using Green River shale samples and obtained synchrotron X-ray images during the tests in an attempt to capture the microscale strain-partitioning that occurs within the sample. Shale samples of few millimeter dimensions were stressed up to several tens of MPa by a spring-loaded device within an X-ray transparent load frame, and the load was held constant for up to several months to allow creep deformation. Tomographic images of about 5 micron resolution were reconstructed from images collected at different timings of the experiment, which allows us to investigate where and how much strain localized during elastic and creep deformation. Tracking the position of some outstanding features in the rock texture (e.g. pyrite grains, organic material patches) indicate that strain magnitudes expected from the sample elastic and relaxation modulus can be successfully recovered from the tomographic images. We also attempt to use digital volume correlation to track sub-voxel displacements and to characterize the spatial heterogeneity of the deformation.

  16. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.

    PubMed

    Fukutomi, Matasaburo; Someya, Makoto; Ogawa, Hiroto

    2015-12-01

    Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context. © 2015. Published by The Company of Biologists Ltd.

  17. The effect of a hot, spherical scattering cloud on quasi-periodic oscillation behavior

    NASA Astrophysics Data System (ADS)

    Bussard, R. W.; Weisskopf, M. C.; Elsner, R. F.; Shibazaki, N.

    1988-04-01

    A Monte Carlo technique is used to investigate the effects of a hot electron scattering cloud surrounding a time-dependent X-ray source. Results are presented for the time-averaged emergent energy spectra and the mean residence time in the cloud as a function of energy. Moreover, after Fourier transforming the scattering Green's function, it is shown how the cloud affects both the observed power spectrum of a time-dependent source and the cross spectrum (Fourier transform of a cross correlation between energy bands). It is found that the power spectra intrinsic to the source are related to those observed by a relatively simple frequency-dependent multiplicative factor (a transmission function). The cloud can severely attenuate high frequencies in the power spectra, depending on optical depth, and, at lower frequencies, the transmission function has roughly a Lorentzian shape. It is also found that if the intrinsic energy spectrum is constant in time, the phase of the cross spectrum is determined entirely by scattering. Finally, the implications of the results for studies of the X-ray quasi-periodic oscillators are discussed.

  18. Paramecium caudatum as a source of nitric oxide: Chemiluminescent detection based on Bluestar® Forensic reagent connected with microdialysis.

    PubMed

    Bancirova, Martina

    2017-11-01

    Nitric oxide (NO) chemistry inside the body is the most interesting part of its behavior. NO is involved in controlling blood pressure, and in transmitting nerve signals and a variety of other signaling processes. To explain the behavior of NO, it is necessary to determine its immediate concentration or observe time-dependent changes in its concentration. In Paramecium caudatum, NO is formed by calcium-dependent nNOS (NOS1)-like protein, which is distributed in the cytoplasm. NO synthesis affects the ciliary beat and consequent motility of cells and blocked NO synthesis reduces the ability of cells to move. The possibility of online coupling of microdialysis (of P. caudatum solution) with NO detection is demonstrated. Direct measurement of NO is carried out using dilute Bluestar ® Forensic reagent (luminol-H 2 O 2 system; one of the NO detections is based upon the chemiluminescent reaction between NO and the luminol-H 2 O 2 system, which is specifically reactive to NO). The effect of a nitric oxide synthase inhibitor, NG-nitro-l-arginine methyl ester was observed. NO production was inhibited and the movement of P. caudatum was restricted. These effects were time dependent and after a specific time were reversed. Copyright © 2017 John Wiley & Sons, Ltd.

  19. General Multimechanism Reversible-Irreversible Time-Dependent Constitutive Deformation Model Being Developed

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, Steven M.

    2001-01-01

    Since most advanced material systems (for example metallic-, polymer-, and ceramic-based systems) being currently researched and evaluated are for high-temperature airframe and propulsion system applications, the required constitutive models must account for both reversible and irreversible time-dependent deformations. Furthermore, since an integral part of continuum-based computational methodologies (be they microscale- or macroscale-based) is an accurate and computationally efficient constitutive model to describe the deformation behavior of the materials of interest, extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis of structures. From a more recent and comprehensive perspective, the NASA Glenn Research Center in conjunction with the University of Akron has emphasized concurrently addressing three important and related areas: that is, 1) Mathematical formulation; 2) Algorithmic developments for updating (integrating) the external (e.g., stress) and internal state variables; 3) Parameter estimation for characterizing the model. This concurrent perspective to constitutive modeling has enabled the overcoming of the two major obstacles to fully utilizing these sophisticated time-dependent (hereditary) constitutive models in practical engineering analysis. These obstacles are: 1) Lack of efficient and robust integration algorithms; 2) Difficulties associated with characterizing the large number of required material parameters, particularly when many of these parameters lack obvious or direct physical interpretations.

  20. Erosion and refilling of the plasmasphere during a geomagnetic storm modeled by a neural network

    NASA Astrophysics Data System (ADS)

    Chu, X. N.; Bortnik, J.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-07-01

    We present a history-dependent model of the equatorial plasma density of the inner magnetosphere using a feedforward neural network with two hidden layers. As the model inputs, we take locations and time series of SYM-H, AL, and F10.7 indices. By considering not only the instantaneous values but also the past values of geomagnetic and solar indices, the model is history dependent on levels of geomagnetic and solar activity. The modeled electron density is continuous both spatially and temporally so that the evolution of the density can be studied (such as plasmaspheric refilling). The model is trained using the electron density inferred from the spacecraft potential from three THEMIS probes. The equatorial electron density is shown to be accurately reconstructed with a correlation coefficient of r 0.953 between data and model target. Since the model is history dependent, it succeeds in reconstructing various density features and dynamic behaviors, such as the quiet time plasmasphere, erosion and recovery of the plasmasphere, as well as the plume formation during a storm on 4 February 2011. Our model may provide unprecedented insight into the behavior of the equatorial density at any time and location; as an example we show the inferred refilling rate from our model and compare it to previous estimates.

  1. Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.

    PubMed

    Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn

    2016-04-01

    In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.

  2. Effects of combat deployment on risky and self-destructive behavior among active duty military personnel.

    PubMed

    Thomsen, Cynthia J; Stander, Valerie A; McWhorter, Stephanie K; Rabenhorst, Mandy M; Milner, Joel S

    2011-10-01

    Although research has documented negative effects of combat deployment on mental health, few studies have examined whether deployment increases risky or self-destructive behavior. The present study addressed this issue. In addition, we examined whether deployment effects on risky behavior varied depending on history of pre-deployment risky behavior, and assessed whether psychiatric conditions mediated effects of deployment on risky behavior. In an anonymous survey, active duty members of the U.S. Marine Corps and U.S. Navy (N = 2116) described their deployment experiences and their participation in risky recreational activities, unprotected sex, illegal drug use, self-injurious behavior, and suicide attempts during three time frames (civilian, military pre-deployment, and military post-deployment). Respondents also reported whether they had problems with depression, anxiety, or PTSD during the same three time frames. Results revealed that risky behavior was much more common in civilian than in military life, with personnel who had not deployed, compared to those who had deployed, reporting more risky behavior and more psychiatric problems as civilians. For the current time period, in contrast, personnel who had deployed (versus never deployed) were significantly more likely to report both risky behavior and psychiatric problems. Importantly, deployment was associated with increases in risky behavior only for personnel with a pre-deployment history of engaging in risky behavior. Although psychiatric conditions were associated with higher levels of risky behavior, psychiatric problems did not mediate associations between deployment and risky behavior. Implications for understanding effects of combat deployment on active duty personnel and directions for future research are discussed. Published by Elsevier Ltd.

  3. Post-molting development of wind-elicited escape behavior in the cricket.

    PubMed

    Sato, Nodoka; Shidara, Hisashi; Ogawa, Hiroto

    2017-11-01

    Arthropods including insects grow through several developmental stages by molting. The abrupt changes in their body size and morphology accompanying the molting are responsible for the developmental changes in behavior. While in holometabolous insects, larval behaviors are transformed into adult-specific behaviors with drastic changes in nervous system during the pupal stage, hemimetabolous insects preserve most innate behaviors whole life long, which allow us to trace the maturation process of preserved behaviors after the changes in body. Wind-elicited escape behavior is one of these behaviors and mediated by cercal system, which is a mechanosensory organ equipped by all stages of nymph in orthopteran insects like crickets. However, the maturation process of the escape behavior after the molt is unclear. In this study, we examined time-series of changes in the wind-elicited escape behavior just after the imaginal molt in the cricket. The locomotor activities are developed over the elapsed time, and matured 24h after the molt. In contrast, a stimulus-angle dependency of moving direction was unchanged over time, meaning that the cercal sensory system detecting airflow direction was workable immediately after the molt, independent from the behavioral maturation. The post-molting development of the wind-elicited behavior was considered to result not simply from maturation of the exoskeleton or musculature because the escape response to heat-shock stimulus did not change after the molt. No effect of a temporal immobilization after the imaginal molt on the maturation of the wind-elicited behavior also implies that the maturation may be innately programmed without experience of locomotion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Partner dependence and sexual risk behavior among STI clinic patients.

    PubMed

    Senn, Theresa E; Carey, Michael P; Vanable, Peter A; Coury-Doniger, Patricia

    2010-01-01

    To investigate the relation between partner dependence and sexual risk behavior in the context of the information-motivation-behavioral skills (IMB) model. STI clinic patients (n = 1432) completed a computerized interview assessing partner dependence, condom use, and IMB variables. Men had higher partner-dependence scores than women did. Patients reporting greater dependence reported less condom use. Gender did not moderate the partner dependence-condom-use relationship. Partner dependence did not moderate the relation between IMB constructs and condom use. Further research is needed to determine how partner dependence can be incorporated into conceptual models of safer sex behaviors.

  5. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    NASA Astrophysics Data System (ADS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-09-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  6. Age-Dependent Effects of Oral Infection with Dengue Virus on Aedes aegypti (Diptera: Culicidae) Feeding Behavior, Survival, Oviposition Success and Fecundity

    PubMed Central

    Sylvestre, Gabriel; Gandini, Mariana; Maciel-de-Freitas, Rafael

    2013-01-01

    Background Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females. Methods/Principal Findings After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2nd and 3rd weeks post-infection, and also longer overall blood-feeding times in the 3rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group. Conclusions The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes. PMID:23555838

  7. NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress.

    PubMed

    Diniz, Cassiano R A F; Casarotto, Plínio C; Joca, Sâmia R L

    2016-07-01

    Hodological and genetic differences between dorsal (DH) and ventral (VH) hippocampus may convey distinct behavioral roles. DH is responsible for mediating cognitive process, such as learning and memory, while VH modulates neuroendocrine and emotional-motivational responses to stress. Manipulating glutamatergic NMDA receptors and nitric oxide (NO) systems of the hippocampus induces important changes in behavioral responses to stress. Nevertheless, there is no study concerning functional differences between DH and VH in the modulation of behavioral responses induced by stress models predictive of antidepressant effects. Thus, this study showed that reversible blockade of the DH or VH of animals submitted to the forced swimming test (FST), by using cobalt chloride (calcium-dependent synaptic neurotransmission blocker), was not able to change immobility time. Afterwards, the NMDA-NO system was evaluated in the FST by means of intra-DH or intra-VH administration of NMDA receptor antagonist (AP7), NOS1 and sGC inhibitors (N-PLA and ODQ, respectively). Bilateral intra-DH injections after pretest or before test were able to induce antidepressant-like effects in the FST. On the other hand, bilateral VH administration of AP-7, N-PLA and ODQ induced antidepressant-like effects only when injected before the test. Administration of NO scavenger (C-PTIO) intra-DH, after pretest and before test, or intra-VH before test induced similar results. Increased NOS1 levels was associated to stress exposure in the DH. These results suggest that the glutamatergic-NO system of the DH and VH are both able to modulate behavioral responses in the FST, albeit with differential participation along time after stress exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A case of oral spelling behavior: another environmental dependency syndrome.

    PubMed

    Ragno Paquier, Claire; Assal, Frédéric

    2007-12-01

    To present the case of a woman with a probable vascular dementia and a unique oral spelling behavior (OSB). Our aim was to better characterize the mechanisms underlying OSB in this patient with advanced cognitive and noncognitive deficits. Different kind of language deficits have been described in dementias and other related diseases. Other nonaphasic acquired communication disorders include a heterogeneous group of verbal impairment that are mainly due to attentional and executive impairments. We describe the neurolinguistic and neuropsychologic analysis of an 88-year-old woman with spontaneous OSB. Computed tomography-scan at the time of the clinical analysis is also presented. OSB occurred preferentially in spontaneous discourse, manifested in other language tasks, concerned all lexical categories, and was not accompanied by spelling deficit although language was not intact and disclosed foreign accent syndrome. Environmental dependency syndrome or utilization behavior was prominent and concerned various sensorimotor activities. We postulate that OSB was not secondary to a linguistic or more specifically to a spelling deficit but to another variant of environmental dependency syndrome and probably associated with a cortico-subcortical lesion including the left prefrontal region.

  9. Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level different on head-turning behavior.

    PubMed

    Poganiatz, I; Wagner, H

    2001-04-01

    Interaural level differences play an important role for elevational sound localization in barn owls. The changes of this cue with sound location are complex and frequency dependent. We exploited the opportunities offered by the virtual space technique to investigate the behavioral relevance of the overall interaural level difference by fixing this parameter in virtual stimuli to a constant value or introducing additional broadband level differences to normal virtual stimuli. Frequency-specific monaural cues in the stimuli were not manipulated. We observed an influence of the broadband interaural level differences on elevational, but not on azimuthal sound localization. Since results obtained with our manipulations explained only part of the variance in elevational turning angle, we conclude that frequency-specific cues are also important. The behavioral consequences of changes of the overall interaural level difference in a virtual sound depended on the combined interaural time difference contained in the stimulus, indicating an indirect influence of temporal cues on elevational sound localization as well. Thus, elevational sound localization is influenced by a combination of many spatial cues including frequency-dependent and temporal features.

  10. The ecological rationality of state-dependent valuation.

    PubMed

    McNamara, J M; Trimmer, P C; Houston, A I

    2012-01-01

    Laboratory studies on a range of animals have identified a bias that seems to violate basic principles of rational behavior: a preference is shown for feeding options that previously provided food when reserves were low, even though another option had been found to give the same reward with less delay. The bias presents a challenge to normative models of decision making (which only take account of expected rewards and the state of the animal at the decision time). To understand the behavior, we take a broad ecological perspective and consider how valuation mechanisms evolve when the best action depends upon the environment being faced. We show that in a changing and uncertain environment, state-dependent valuation can be favored by natural selection: Individuals should allow their hunger to affect learning for future decisions. The valuation mechanism that typically evolves produces the kind of behavior seen in standard laboratory tests. By providing an insight into why learning should be affected by the state of an individual, we provide a basis for understanding psychological principles in terms of an animal's ecology.

  11. Time-dependent deformation of titanium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.

    1995-01-01

    A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.

  12. Dielectric analysis of depth dependent curing behavior of dental resin composites.

    PubMed

    Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika

    2014-06-01

    The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by Elsevier Ltd.

  13. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters

    PubMed Central

    Catanese, Mary C.

    2017-01-01

    Estrogenic endocrine disrupting chemicals have been shown to disrupt maternal behavior in rodents. We investigated the effects of an emerging xenoestrogen, bisphenol S (BPS), on maternal behavior and brain in CD-1 mice exposed during pregnancy and lactation (F0 generation) and in female offspring exposed during gestation and perinatal development (F1 generation). We observed different effects in F0 and F1 dams for a number of components of maternal behavior, including time on the nest, time spent on nest building, latency to retrieve pups, and latency to retrieve the entire litter. We also characterized expression of estrogen receptor α in the medial preoptic area (MPOA) and quantified tyrosine hydroxylase immunoreactive cells in the ventral tegmental area, 2 brain regions critical for maternal care. BPS-treated females in the F0 generation had a statistically significant increase in estrogen receptor α expression in the caudal subregion of the central MPOA in a dose-dependent manner. In contrast, there were no statistically significant effects of BPS on the MPOA in F1 dams or the ventral tegmental area in either generation. This work demonstrates that BPS affects maternal behavior and brain with outcomes depending on generation, dose, and postpartum period. Many studies examining effects of endocrine disrupting chemicals view the mother as a means by which offspring can be exposed during critical periods of development. Here, we demonstrate that pregnancy and lactation are vulnerable periods for the mother. We also show that developmental BPS exposure alters maternal behavior later in adulthood. Both findings have potential public health implications. PMID:28005399

  14. Nociceptor Sensitization Depends on Age and Pain Chronicity123

    PubMed Central

    Dodge, Amanda K.

    2016-01-01

    Abstract Peripheral inflammation causes mechanical pain behavior and increased action potential firing. However, most studies examine inflammatory pain at acute, rather than chronic time points, despite the greater burden of chronic pain on patient populations, especially aged individuals. Furthermore, there is disagreement in the field about whether primary afferents contribute to chronic pain. Therefore, we sought to evaluate the contribution of nociceptor activity to the generation of pain behaviors during the acute and chronic phases of inflammation in both young and aged mice. We found that both young (2 months old) and aged (>18 months old) mice exhibited prominent pain behaviors during both acute (2 day) and chronic (8 week) inflammation. However, young mice exhibited greater behavioral sensitization to mechanical stimuli than their aged counterparts. Teased fiber recordings in young animals revealed a twofold mechanical sensitization in C fibers during acute inflammation, but an unexpected twofold reduction in firing during chronic inflammation. Responsiveness to capsaicin and mechanical responsiveness of A-mechanonociceptor (AM) fibers were also reduced chronically. Importantly, this lack of sensitization in afferent firing during chronic inflammation occurred even as these inflamed mice exhibited continued behavioral sensitization. Interestingly, C fibers from inflamed aged animals showed no change in mechanical firing compared with controls during either the acute or chronic inflammatory phases, despite strong behavioral sensitization to mechanical stimuli at these time points. These results reveal the following two important findings: (1) nociceptor sensitization to mechanical stimulation depends on age and the chronicity of injury; and (2) maintenance of chronic inflammatory pain does not rely on enhanced peripheral drive. PMID:26866058

  15. Muscle synergy space: learning model to create an optimal muscle synergy

    PubMed Central

    Alnajjar, Fady; Wojtara, Tytus; Kimura, Hidenori; Shimoda, Shingo

    2013-01-01

    Muscle redundancy allows the central nervous system (CNS) to choose a suitable combination of muscles from a number of options. This flexibility in muscle combinations allows for efficient behaviors to be generated in daily life. The computational mechanism of choosing muscle combinations, however, remains a long-standing challenge. One effective method of choosing muscle combinations is to create a set containing the muscle combinations of only efficient behaviors, and then to choose combinations from that set. The notion of muscle synergy, which was introduced to divide muscle activations into a lower-dimensional synergy space and time-dependent variables, is a suitable tool relevant to the discussion of this issue. The synergy space defines the suitable combinations of muscles, and time-dependent variables vary in lower-dimensional space to control behaviors. In this study, we investigated the mechanism the CNS may use to define the appropriate region and size of the synergy space when performing skilled behavior. Two indices were introduced in this study, one is the synergy stability index (SSI) that indicates the region of the synergy space, the other is the synergy coordination index (SCI) that indicates the size of the synergy space. The results on automatic posture response experiments show that SSI and SCI are positively correlated with the balance skill of the participants, and they are tunable by behavior training. These results suggest that the CNS has the ability to create optimal sets of efficient behaviors by optimizing the size of the synergy space at the appropriate region through interacting with the environment. PMID:24133444

  16. Thermo-viscoelastic response of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Lin, Kuen; Hwang, I. H.

    1988-01-01

    The thermo-viscoelastic behavior of composite material is studied analytically using a special finite-element formulation. Numerical results on stress and deformation histories are obtained for both unnotched and notched graphite/epoxy composites subjected to mechanical and thermal spectrum loads. The results indicate that time-dependent effects are important in composites with matrix-dominated layup orientations. Such effects also strongly depend on the specific environment condition and load spectrum applied.

  17. Association mining of dependency between time series

    NASA Astrophysics Data System (ADS)

    Hafez, Alaaeldin

    2001-03-01

    Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.

  18. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.

  19. Pectin from Husk Tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions.

    PubMed

    Morales-Contreras, Blanca E; Rosas-Flores, Walfred; Contreras-Esquivel, Juan C; Wicker, Louise; Morales-Castro, Juliana

    2018-01-01

    A rheological study was carried out to evaluate formulations of test dispersions and gels of high methoxyl pectins (HTHMP) obtained at different conditions from husk tomato waste (Physalis ixocarpa Brot.). The effect of extraction agent (hydrochloric acid or citric acid), blanching time (10 or 15min) and extraction time (15, 20 or 25min) on the rheology of the tested samples was evaluated. Flow behavior and activation energy were evaluated on the test dispersions, while (E a ) frequency sweeps, temperature sweep, creep-recovery test and penetration test were performed on the gels. HTHMP dispersions showed shear thinning flow behavior, while showing a good fit to Cross model. Extraction agent, blanching time and extraction time did not have effect on Cross parameters (η z , η∞, C, and m). E a decreased as blanching time and extraction time increased. Frequency sweeps revealed high dependence on frequency for both G' and G", while temperature sweeps (25- 95°C) showed thermostable husk tomato pectin gels. Hydrocloric acid (HCl) extracted pectin gels showed stronger structure than citric acid (CA) gels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Writing in the Air: Contributions of Finger Movement to Cognitive Processing

    PubMed Central

    Itaguchi, Yoshihiro; Yamada, Chiharu; Fukuzawa, Kazuyoshi

    2015-01-01

    The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life. PMID:26061273

  1. Writing in the Air: Contributions of Finger Movement to Cognitive Processing.

    PubMed

    Itaguchi, Yoshihiro; Yamada, Chiharu; Fukuzawa, Kazuyoshi

    2015-01-01

    The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life.

  2. Modeling pedestrian violation behavior at signalized crosswalks in China: a hazards-based duration approach.

    PubMed

    Guo, Hongwei; Gao, Ziyou; Yang, Xiaobao; Jiang, Xiaobei

    2011-02-01

    Pedestrian violation is a major cause of traffic accidents involving pedestrians. The research objectives were to investigate the relationship between waiting duration and pedestrian violation and to provide a qualitative and quantitative analysis of the effects of human factors and external environmental factors on street-crossing behavior. Pedestrians' street-crossing behavior was examined by modeling the waiting duration at signalized crosswalk. Pedestrian waiting duration was collected by video cameras and it was assigned as censored and uncensored data to distinguish between normal crossing and violating crossing. A nonparametric baseline duration model was introduced, and variables revealing personal characteristics, traffic conditions, and trip features were defined as covariates to describe the effects of internal and external factors. Pedestrians' crossing behaviors represented positive duration dependence that the longer the waiting time elapsed the more likely pedestrians would end the wait soon. The violation inclination of most pedestrians increased with the increasing waiting duration, but about 10 percent of pedestrians were at high risk of violation to cross the street. About half of pedestrians would still obey the traffic rules even after waiting for 50 s by the street. Human factors and the external environment played an important role in street-crossing behavior, especially for factors that involved pedestrians' subjective willingness. The street-crossing behavior of pedestrians was time dependent. Pedestrians behave differently under the effects of various factors. Pedestrian safety interventions that aim at reducing pedestrian injuries may need to consider these effects. The pedestrians' behavioral modifications, such as enhancing the safety awareness, might be the most efficient means to reducing the likelihood of pedestrian violation, though environmental modifications also worked well in improving pedestrian safety.

  3. [Conjugated variability of spontaneous activity and behavioral response to olfactory stimuli in the taiga tick (Ixodes persulcatus)].

    PubMed

    Romashchenko, A V; Shnaĭder, E P; Petrovskiĭ, D V; Moshkin, M P

    2013-01-01

    According to -the automatic tracing of the movement of ticks in a Petri dish, motivational variability of the spontaneous activity and behavioral response of the taiga tick to olfactory stimuli was analyzed. In the studied sample, two groups of ticks that differ in the movement trajectory in the absence of stimulus were isolated, including ticks that mainly moved on the edge of the dish at maximum accessible height (group 1) and ticks that mainly moved at the bottom and wall of the dish (group 2). It was registered that ticks of group 1 (as opposed to ticks of group 2) demonstrated a pronounced behavioral response to olfactory stimuli (human synthetic pheromones and ammonia) and negative geotaxis. It was established that belonging to these groups depended On the time of day when the testing was performed and did not depend on the physiological age and infectious status.

  4. Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.

    PubMed

    Xue, Kun; Wang, Lei; An, Jin; Xu, Jianbin

    2011-05-13

    The thermal decomposition of ultrathin HfO(2) films (∼0.6-1.2 nm) on Si by ultrahigh vacuum annealing (25-800 °C) is investigated in situ in real time by scanning tunneling microscopy. Two distinct thickness-dependent decomposition behaviors are observed. When the HfO(2) thickness is ∼ 0.6 nm, no discernible morphological changes are found below ∼ 700 °C. Then an abrupt reaction occurs at 750 °C with crystalline hafnium silicide nanostructures formed instantaneously. However, when the thickness is about 1.2 nm, the decomposition proceeds gradually with the creation and growth of two-dimensional voids at 800 °C. The observed thickness-dependent behavior is closely related to the SiO desorption, which is believed to be the rate-limiting step of the decomposition process.

  5. Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Mongkolsuttirat, Kittisun

    Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured modulus relaxation of Au films also proves that the films exhibit linear viscoelastic behavior. From this, a linear viscoelastic model is shown to fit very well to experimental steady state stress relaxation data and can predict time dependent stress for complex loading histories including the ability to predict stress-time behavior at other strain rates during loading. Two specific factors that are expected to influence the viscoelastic behavior-degree of alloying and grain size are investigated to explore the influence of V concentration in solid solution and grain size of pure Au. It is found that the normalized modulus of Au films is dependent on both concentration (C) and grain size (D) with proportionalities of C1/3 and D 2, respectively. A quantitative model of the rate-equation for dislocation glide plasticity based on Frost and Ashby is proposed and fitted well with steady state anelastic stress relaxation experimental data. The activation volume and the density of mobile dislocations is determined using repeated stress relaxation tests in order to further understand the viscoelastic relaxation mechanism. A rapid decrease of mobile dislocation density is found at the beginning of relaxation, which correlates well with a large reduction of viscoelastic modulus at the early stage of relaxation. The extracted activation volume and dislocation mobility can be ascribed to mobile dislocation loops with double kinks generated at grain boundaries, consistent with the dislocation mechanism proposed for the low activation energy measured in this study.

  6. Age influences the effects of nicotine and monoamine oxidase inhibition on mood-related behaviors in rats.

    PubMed

    Villégier, Anne-Sophie; Gallager, Brittney; Heston, Jon; Belluzzi, James D; Leslie, Frances M

    2010-03-01

    Epidemiological studies have demonstrated a comorbidity of smoking with depression and anxiety, particularly during adolescence. However, few animal studies have considered possible synergistic interactions between nicotine and other tobacco smoke constituents, such as monoamine oxidase (MAO) inhibitors, in the regulation of mood. The aim of the study was to test the hypothesis that nicotine combined with the irreversible MAO inhibitor, tranylcypromine, will differentially affect depression- and anxiety-related behaviors in adolescent and adult rats. Nicotine (0, 0.05, 0.2 mg/kg, s.c.) and tranylcypromine (3 mg/kg, i.p.) were tested separately, or together, on male rats aged postnatal days 30 and 68, in three mood-related behavioral tests: forced swim test (FST), elevated plus maze (EPM), and open field. Nicotine (0.2 mg/kg) in adults significantly decreased floating time in the FST and increased time spent in the open arm of the EPM, with no change in locomotor activity. Tranylcypromine pretreatment combined with nicotine (0.2 mg/kg) significantly increased locomotor activity and time spent in the center of the open field. Whereas nicotine alone had no significant effect on adolescents, it significantly increased locomotor activity and decreased floating time in the FST when combined with tranylcypromine pretreatment. There is an age-dependent effect of nicotine, alone and in combination with MAO inhibition, on mood-related behaviors. Whereas nicotine alone induces mood improvement in adults, it has no effect on adolescents. Nicotine combined with tranylcypromine has unique, age-dependent effects. Thus, experimental studies of smoking should consider both age and other tobacco constituents, such as MAO inhibitors, as critical factors.

  7. Dose-Dependent Effects of the Myosin Activator Omecamtiv Mecarbil on Cross-Bridge Behavior and Force Generation in Failing Human Myocardium.

    PubMed

    Mamidi, Ranganath; Li, Jiayang; Gresham, Kenneth S; Verma, Sujeet; Doh, Chang Yoon; Li, Amy; Lal, Sean; Dos Remedios, Cristobal G; Stelzer, Julian E

    2017-10-01

    Omecamtiv mecarbil (OM) enhances systolic function in vivo by directly binding the myosin cross-bridges (XBs) in the sarcomere. However, the mechanistic details governing OM-induced modulation of XB behavior in failing human myocardium are unclear. The effects of OM on steady state and dynamic XB behavior were measured in chemically skinned myocardial preparations isolated from human donor and heart failure (HF) left ventricle. HF myocardium exhibited impaired contractile function as evidenced by reduced maximal force, magnitude of XB recruitment ( P df ), and a slowed rate of XB detachment ( k rel ) at submaximal Ca 2+ activations. Ca 2+ sensitivity of force generation (pCa 50 ) was higher in HF myocardium when compared with donor myocardium, both prior to and after OM incubations. OM incubation (0.5 and 1.0 μmol/L) enhanced force generation at submaximal Ca 2+ activations in a dose-dependent manner. Notably, OM induced a slowing in k rel with 1.0 μmol/L OM but not with 0.5 μmol/L OM in HF myocardium. Additionally, OM exerted other differential effects on XB behavior in HF myocardium as evidenced by a greater enhancement in P df and slowing in the time course of cooperative XB recruitment ( T rec ), which collectively prolonged achievement of peak force development ( T pk ), compared with donor myocardium. Our findings demonstrate that OM augments force generation but also prolongs the time course of XB transitions to force-bearing states in remodeled HF myocardium, which may extend the systolic ejection time in vivo. Optimal OM dosing is critical for eliciting enhanced systolic function without excessive prolongation of systolic ejection time, which may compromise diastolic filling. © 2017 American Heart Association, Inc.

  8. Interaction of natural survival instincts and internalized social norms exploring the Titanic and Lusitania disasters.

    PubMed

    Frey, Bruno S; Savage, David A; Torgler, Benno

    2010-03-16

    To understand human behavior, it is important to know under what conditions people deviate from selfish rationality. This study explores the interaction of natural survival instincts and internalized social norms using data on the sinking of the Titanic and the Lusitania. We show that time pressure appears to be crucial when explaining behavior under extreme conditions of life and death. Even though the two vessels and the composition of their passengers were quite similar, the behavior of the individuals on board was dramatically different. On the Lusitania, selfish behavior dominated (which corresponds to the classical homo economicus); on the Titanic, social norms and social status (class) dominated, which contradicts standard economics. This difference could be attributed to the fact that the Lusitania sank in 18 min, creating a situation in which the short-run flight impulse dominated behavior. On the slowly sinking Titanic (2 h, 40 min), there was time for socially determined behavioral patterns to reemerge. Maritime disasters are traditionally not analyzed in a comparative manner with advanced statistical (econometric) techniques using individual data of the passengers and crew. Knowing human behavior under extreme conditions provides insight into how widely human behavior can vary, depending on differing external conditions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curchod, Basile F. E.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de; Gross, E. K. U.

    Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrastmore » to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.« less

  10. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.

  11. Calcium dynamics regulating the timing of decision-making in C. elegans.

    PubMed

    Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D

    2017-05-23

    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans . We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca 2+ ] i ), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca 2+ ] i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making.

  12. Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems.

    PubMed

    Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei

    2015-01-01

    The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode.

  13. Modern Methods for Modeling Change in Obesity Research in Nursing.

    PubMed

    Sereika, Susan M; Zheng, Yaguang; Hu, Lu; Burke, Lora E

    2017-08-01

    Persons receiving treatment for weight loss often demonstrate heterogeneity in lifestyle behaviors and health outcomes over time. Traditional repeated measures approaches focus on the estimation and testing of an average temporal pattern, ignoring the interindividual variability about the trajectory. An alternate person-centered approach, group-based trajectory modeling, can be used to identify distinct latent classes of individuals following similar trajectories of behavior or outcome change as a function of age or time and can be expanded to include time-invariant and time-dependent covariates and outcomes. Another latent class method, growth mixture modeling, builds on group-based trajectory modeling to investigate heterogeneity within the distinct trajectory classes. In this applied methodologic study, group-based trajectory modeling for analyzing changes in behaviors or outcomes is described and contrasted with growth mixture modeling. An illustration of group-based trajectory modeling is provided using calorie intake data from a single-group, single-center prospective study for weight loss in adults who are either overweight or obese.

  14. Calcium dynamics regulating the timing of decision-making in C. elegans

    PubMed Central

    Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Fujita, Kosuke; Kawazoe, Yuya; Miyanishi, Yosuke; Yamazaki, Shuhei J; Fei, Xianfeng; Busch, Karl Emanuel; Gengyo-Ando, Keiko; Nakai, Junichi; Iino, Yuichi; Iwasaki, Yuishi; Hashimoto, Koichi; Kimura, Koutarou D

    2017-01-01

    Brains regulate behavioral responses with distinct timings. Here we investigate the cellular and molecular mechanisms underlying the timing of decision-making during olfactory navigation in Caenorhabditis elegans. We find that, based on subtle changes in odor concentrations, the animals appear to choose the appropriate migratory direction from multiple trials as a form of behavioral decision-making. Through optophysiological, mathematical and genetic analyses of neural activity under virtual odor gradients, we further find that odor concentration information is temporally integrated for a decision by a gradual increase in intracellular calcium concentration ([Ca2+]i), which occurs via L-type voltage-gated calcium channels in a pair of olfactory neurons. In contrast, for a reflex-like behavioral response, [Ca2+]i rapidly increases via multiple types of calcium channels in a pair of nociceptive neurons. Thus, the timing of neuronal responses is determined by cell type-dependent involvement of calcium channels, which may serve as a cellular basis for decision-making. DOI: http://dx.doi.org/10.7554/eLife.21629.001 PMID:28532547

  15. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  16. Global Failure Modes in High Temperature Composite Structures

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1998-01-01

    Composite materials have been considered for many years as the major advance in the construction of energy efficient aerospace structures. Notable advances have been made in understanding the special design considerations that set composites apart from the usual "isotropic" engineering materials such as the metals. As a result, a number of significant engineering designs have been accomplished. However, one shortcoming of the currently favored composites is their relatively unforgiving behavior with respect to failure (brittleness) under seemingly mild impact conditions and large efforts are underway to rectify that situation, much along the lines of introducing thermoplastic matrix materials. Because of their relatively more pronounced (thermo) viscoelastic behavior these materials respond with "toughness" in fracture situations. From the point of view of applications requiring material strength, this property is highly desirable. This feature impacts several important and distinct engineering problems which have been' considered under this grant and cover the 1) effect of impact damage on structural (buckling) stability of composite panels, the 2) effect of time dependence on the progression of buckling instabilities, and the 3) evolution of damage and fracture at generic thickness discontinuities in structures. The latter topic has serious implications for structural stability problems (buckling failure in reinforced shell structures) as well as failure progression in stringer-reinforced shell structures. This grant has dealt with these issues. Polymer "toughness" is usually associated with uncrosslinked or thermo-plastic polymers. But, by comparison with their thermoset counterparts they tend to exhibit more pronounced time dependent material behavior; also, that time dependence can occur at lower temperatures which places restriction in the high temperature use of these "newer and tougher" materials that are not quite so serious with the thermoset matrix materials. From a structural point of view the implications of this material behavior are potentially severe in that structural failure characteristics are no longer readily observed in short term qualification tests so characteristic for aerospace structures built from typical engineering metals.

  17. Universality of market superstatistics

    NASA Astrophysics Data System (ADS)

    Denys, Mateusz; Gubiec, Tomasz; Kutner, Ryszard; Jagielski, Maciej; Stanley, H. Eugene

    2016-10-01

    We use a key concept of the continuous-time random walk formalism, i.e., continuous and fluctuating interevent times in which mutual dependence is taken into account, to model market fluctuation data when traders experience excessive (or superthreshold) losses or excessive (or superthreshold) profits. We analytically derive a class of "superstatistics" that accurately model empirical market activity data supplied by Bogachev, Ludescher, Tsallis, and Bunde that exhibit transition thresholds. We measure the interevent times between excessive losses and excessive profits and use the mean interevent discrete (or step) time as a control variable to derive a universal description of empirical data collapse. Our dominant superstatistic value is a power-law corrected by the lower incomplete gamma function, which asymptotically tends toward robustness but initially gives an exponential. We find that the scaling shape exponent that drives our superstatistics subordinates itself and a "superscaling" configuration emerges. Thanks to the Weibull copula function, our approach reproduces the empirically proven dependence between successive interevent times. We also use the approach to calculate a dynamic risk function and hence the dynamic VaR, which is significant in financial risk analysis. Our results indicate that there is a functional (but not literal) balance between excessive profits and excessive losses that can be described using the same body of superstatistics but different calibration values and driving parameters. We also extend our original approach to cover empirical seismic activity data (e.g., given by Corral), the interevent times of which range from minutes to years. Superpositioned superstatistics is another class of superstatistics that protects power-law behavior both for short- and long-time behaviors. These behaviors describe well the collapse of seismic activity data and capture so-called volatility clustering phenomena.

  18. Longitudinal experiences of children remaining at home after a first-time investigation for suspected maltreatment

    PubMed Central

    Campbell, Kristine A.; Thomas, Andrea M.; Cook, Lawrence J.; Keenan, Heather T.

    2012-01-01

    Objective To describe longitudinal change in risk for children remaining at home following a first-time investigation for suspected maltreatment. Study design A retrospective cohort study of children remaining at home following first-time investigation for maltreatment using a nationally representative sample of households involved with Child Protective Services (CPS). Outcomes include poverty, social support, caregiver depression, intimate partner violence (IPV), drug/alcohol dependence, corporal punishment, and child behavior problems at baseline, 18, and 36 months following first-time CPS investigation. We present longitudinal models to 1) estimate prevalence of risk factors at each timepoint and 2) examine associations between risk-specific service referrals and longitudinal change in risk factor prevalence. Results Our sample represented 1,057,056 U.S. children remaining at home following first-time investigation for maltreatment. Almost 100,000 (9.2%) children experienced out-of-home placement within 36 months. The prevalence of poverty (44.3%), poor social support (36.3%), caregiver depression (24.4%), IPV (22.1%), and internalizing (30.0%) and externalizing (35.8%) child behavior problems was above general population prevalence at baseline and remained high over the next 36 months. Referral to risk-specific services occurred in a minority of cases, but was associated with significant longitudinal reductions in IPV, drug/alcohol dependence, and externalizing child behavior problems. Conclusions Children remaining at home following a first-time investigation for maltreatment live with persistent risk factors for repeat maltreatment. Appropriate service referrals are uncommon, but may be associated with meaningful reduction in risk over time. Pediatricians and policy makers may be able to improve outcomes in these families with appropriate service provision and referrals. PMID:22480699

  19. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  20. Memoryless control of boundary concentrations of diffusing particles.

    PubMed

    Singer, A; Schuss, Z; Nadler, B; Eisenberg, R S

    2004-12-01

    Flux between regions of different concentration occurs in nearly every device involving diffusion, whether an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory has calculated that flux since the time of Fick (1855), and the flux has been known to arise from the stochastic behavior of Brownian trajectories since the time of Einstein (1905), yet the mathematical description of the behavior of trajectories corresponding to different types of boundaries is not complete. We consider the trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations. Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain average concentrations at the boundaries of the region at their values in the baths, a control mechanism is needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference between the time evolution and the steady state concentrations. While the time evolution of the density is governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator. The boundary conditions for the time dependent density depend on the model of the controller; however, this dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers, however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, because even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains concentrations of noninteracting particles without creating spurious boundary layers at the interface requires the solution of the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a source of ingoing trajectories on the boundary (the so called albedo problem).

  1. Partner Dependence and Sexual Risk Behavior Among STI Clinic Patients

    PubMed Central

    Senn, Theresa E.; Carey, Michael P.; Vanable, Peter A.; Coury-Doniger, Patricia

    2010-01-01

    Objectives To investigate the relation between partner dependence and sexual risk behavior in the context of the information-motivation-behavioral skills (IMB) model. Methods STI clinic patients (n = 1432) completed a computerized interview assessing partner dependence, condom use, and IMB variables. Results Men had higher partner-dependence scores than women did. Patients reporting greater dependence reported less condom use. Gender did not moderate the partner dependence-condom-use relationship. Partner dependence did not moderate the relation between IMB constructs and condom use. Conclusions Further research is needed to determine how partner dependence can be incorporated into conceptual models of safer sex behaviors. PMID:20001183

  2. Super-Arrhenius diffusion in an undercooled binary Lennard-Jones liquid results from a quantifiable correlation effect.

    PubMed

    de Souza, Vanessa K; Wales, David J

    2006-02-10

    On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.

  3. Time-dependent dynamical behavior of surface tension on rotating fluids under microgravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.

  4. Time-dependent gas-liquid interaction in molecular-sized nanopores.

    PubMed

    Sun, Yueting; Li, Penghui; Qiao, Yu; Li, Yibing

    2014-10-08

    Different from a bulk phase, a gas nanophase can have a significant effect on liquid motion. Herein we report a series of experimental results on molecular behaviors of water in a zeolite β of molecular-sized nanopores. If sufficient time is provided, the confined water molecules can be "locked" inside a nanopore; otherwise, gas nanophase provides a driving force for water "outflow". This is due to the difficult molecular site exchanges and the relatively slow gas-liquid diffusion in the nanoenvironment. Depending on the loading rate, the zeolite β/water system may exhibit either liquid-spring or energy-absorber characteristics.

  5. Evaluation of cognitive behaviors in young offspring of C57BL/6J mice after gestational nicotine exposure during different time-windows.

    PubMed

    Alkam, Tursun; Kim, Hyoung-Chun; Mamiya, Takayoshi; Yamada, Kiyofumi; Hiramatsu, Masayuki; Nabeshima, Toshitaka

    2013-12-01

    Gestational nicotine exposure is associated with cognitive abnormalities in young offspring. However, practical strategies for prevention or treatment of impaired cognitive behaviors of offspring are not available due to the lack of systematic investigation of underlying mechanism. Therefore, this study aimed at examining the effects of gestational and/or perinatal nicotine exposure (GPNE) on cognitive behaviors in offspring of C57BL/6J mice to provide systematic behavioral data. Pregnant mice were exposed to nicotine via sweetened drinking water during six time-windows, including gestational day 0 to day 13 (G0-G13), G14-postnatal day 0 (P0), G0-P0, G14-P7, G0-P7, and P0-P7. During P42-P56 days, both male and female offspring were given a battery of behavioral tests. Depending on the time of exposure, GPNE impaired working memory, object-based attention, and prepulse inhibition in male and female offspring to different extents. Nicotine exposure during G14-P0 also decreased norepinephrine turnover in the prefrontal cortex on P28 and P56. Overall results indicate that nicotine exposure during any time-windows of development impairs cognitive behaviors in offspring, and suggest that certain time-windows, e.g., G14-P0, should be selected for further studies on the underlying neurochemical or molecular mechanisms.

  6. Maternal swimming exercise during pregnancy attenuates anxiety/depressive-like behaviors and voluntary morphine consumption in the pubertal male and female rat offspring born from morphine dependent mothers.

    PubMed

    Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein

    2017-10-17

    This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Effects of Marginal Deviations on Behavioral Development.

    PubMed

    Caprara, Gian Vittorio; Dodge, Kenneth A; Pastorelli, Concetta; Zelli, Arnaldo

    2006-01-01

    This investigation was conceptually framed within the theory of marginal deviations (Caprara & Zimbardo, 1996) and sought evidence for the general hypothesis that some children who initially show marginal behavioral problems may, over time, develop more serious problems depending partly on other personal and behavioral characteristics. To this end, the findings of two studies conducted, respectively, with American elementary school children and Italian middle school students are reviewed. These two studies show that hyperactivity, cognitive difficulties, low special preference, and lack of prosocial behavior increase a child's risk for growth in aggressive behavior over several school years. More importantly, they also show that equivalent levels of these risk factors have a greater impact on the development of children who, early on, were marginally aggressive.

  8. Influences of immunocontraception on time budgets, social behavior, and body condition in feral horses

    USGS Publications Warehouse

    Ransom, J.I.; Cade, B.S.; Hobbs, N.T.

    2010-01-01

    Managers concerned with shrinking habitats and limited resources for wildlife seek effective tools for limiting population growth in some species. Fertility control is one such tool, yet little is known about its impacts on the behavioral ecology of wild, free-roaming animals. We investigated influences of the immunocontraceptive porcine zona pellucida (PZP) on individual and social behavior in bands of feral horses (Equus caballus) in three discrete populations and used 14 hierarchical mixed effect models to gain insight into the influences of PZP treatment on feral horse behavior. A model of body condition was the strongest predictor of feeding, resting, maintenance, and social behaviors, with treated females allocating their time similarly to control females. Time spent feeding declined 11.4% from low condition to high condition females (F1,154 = 26.427, P < 0.001) and was partially reciprocated by a 6.0% increase in resting (F1,154 = 7.629, P = 0.006), 0.9% increase in maintenance (F1,154 = 7.028, P = 0.009), and 1.8% increase in social behavior (F1,154 = 15.064, P < 0.001). There was no difference detected in body condition of treated versus control females (F1,154 = 0.033, P = 0.856), but females with a dependent foal had lower body condition than those without a foal (F1,154 = 4.512, P = 0.038). Herding behavior was best explained by a model of treatment and the interaction of band fidelity and foal presence (AICc weight = 0.660) which estimated no difference in rate of herding behavior directed toward control versus treated females (F1,102 = 0.196, P = 0.659), but resident females without a dependent foal were herded 50.9% more than resident females with a foal (F3,102 = 8.269, P < 0.001). Treated females received 54.5% more reproductive behaviors from stallions than control mares (F1,105 = 5.155, P = 0.025), with the model containing only treatment being the most-supported (AICc weight = 0.530). Treated and control females received harem-tending behaviors from stallions equally (F1,105 = 0.001, P = 0.969) and agonistic behaviors from stallions equally (F1,105 < 0.001, P = 0.986). Direct effects of PZP treatment on the behavior of feral horses appear to be limited primarily to reproductive behaviors and most other differences detected were attributed to the effects of body condition, band fidelity, or foal presence. PZP is a promising alternative to traditional hormone-based contraceptives and appears to contribute few short-term behavioral modifications in feral horses.

  9. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    PubMed

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  10. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    PubMed Central

    Cho, Gye-Chun

    2018-01-01

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5) and mid-strain (10−5 to 10−3) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass. PMID:29596371

  11. Adolescents' empathy and prosocial behavior in the family context: a longitudinal study.

    PubMed

    Yoo, Hana; Feng, Xin; Day, Randal D

    2013-12-01

    Children's empathy and prosocial behavior play an important role in their social competence. Of the influential factors, research has demonstrated that parental behaviors and the quality of the parent-child relationship are important correlates of children's development of empathy and prosocial behavior. The current study examined the associations between different types of parental behaviors (i.e., parental knowledge, parental solicitation, and parental psychological control), "balanced connectedness" in the parent-child relationship, which allows for both closeness and autonomy, and empathy and prosocial behavior in adolescents. The participants were 335 married couples (more than 80 % European American) and their adolescent child (49.0 % female; 10-13 years). Data were collected at three time points for parental behaviors, balanced parent-child connectedness, and adolescents' empathy and prosocial behavior, respectively. The results of structural equation modeling suggested that adolescents' perceptions of parental solicitation and parental psychological control may be associated with their empathy and prosocial behavior through their perceived balanced connectedness with parents. These findings suggest that enhancing balanced connectedness in the parent-child relationship may contribute to promoting empathy and prosocial behavior in adolescents over time. Further, this study suggests that parental solicitation may play a role in adolescents' empathic and prosocial development, possibly depending on the quality of the parent-child relationship.

  12. Physical activity and nicotine dependence among a national sample of young U.S. adults who smoke daily: evaluation of cross-sectional and longitudinal associations to determine which behavior drives this relationship.

    PubMed

    Loprinzi, Paul D; Kane, Christy J; Mahoney, Sara; Walker, Jerome F

    2015-02-01

    The association between nicotine dependence and physical activity (PA) is relatively unknown. No study has concurrently examined the cross-sectional and longitudinal associations between PA and nicotine dependence, which was the primary purpose of this study. A secondary purpose was to examine how well nicotine dependence and PA behavior track over a two-year period. Data from the 2003-2005 National Youth Smoking Cessation Survey (NYSCS) were used, with young adults (18-24 yrs; n=1168) being followed over a two-year period. Physical activity was assessed using a questionnaire and nicotine dependence was assessed using the modified Fagerstrom Test for Nicotine Dependence scale. This study identified three notable findings: 1) baseline PA and nicotine dependence demonstrated a bidirectional, cross-sectional association (e.g., β=-0.23; 95% CI: -0.44 to -0.02; p=0.02); 2) when examined longitudinally, nicotine dependence influenced PA (OR=0.90; 95% CI: 0.82-0.99; p=0.04), but there was no evidence of the reverse pathway (i.e., PA influencing 2-year follow-up smoking status [OR=0.95; 95% CI: 0.66-1.39; p=0.82) or nicotine dependence (β=0.05; 95% CI: -0.14 to 0.24, p=0.61]); and 3) both PA (OR=3.52, 95% CI: 2.68-4.69; p<0.001) and nicotine dependence (β=0.52; 95% CI: 0.46-0.58, p<0.001) tracked relatively well over a two-year period during early adulthood. These findings suggest that both behaviors (physical activity and nicotine dependence) track over time, but nicotine dependence appears to be driving the cross-sectional relationship between nicotine dependence and physical activity, as opposed to the reverse pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    NASA Astrophysics Data System (ADS)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-07-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  14. Social Network Analysis of Crowds

    DTIC Science & Technology

    2009-08-06

    crowd responses to non-lethal weapons d tan sys ems – Prior, existing social relationships – Real time social interactions – Formal/informal...Crowd Behavior Testbed Layout Video Cameras on Trusses Importance of Social Factors • Response to non-lethal weapons fire depends on social ... relationships among crowd members – Pre-existing Personal Relationships – Ongoing Real Time Social Interactions – Formal/Informal Hierarchies • Therefore

  15. Substance use and violent behavior in women with antisocial personality disorder.

    PubMed

    Lewis, Catherine F

    2011-01-01

    The purpose of this study was to examine the relationship between substance abuse and dependence and violent behavior in a sample of incarcerated women with antisocial personality disorder (ASPD). Among male populations, substance dependence is associated with aggression and criminal behavior. Individuals with ASPD have more severe substance dependence, including higher symptom counts, earlier age of onset, and more frequent co-morbidity. Incarcerated women have a high prevalence of ASPD and substance dependence, but there has been little detailed work regarding addiction severity. Similarly, work on association of substance abuse and dependence with specific violent behaviors has been limited. This study examined a group of 41 mid-sentence female felons with a diagnosis of ASPD to determine associations with substance abuse and dependence. Data were gathered through administration of the Semi-Structured Assessment of the Genetics of Alcoholism II (SSAGA II). Substance dependence was highly prevalent (i.e., alcohol dependence, 56.1%; opiate dependence, 48.8%; cocaine dependence, 61.0%). While specific diagnoses were not associated with violent behavior and offending, symptom severity (i.e., age of onset, symptom count, co-morbidity) was associated with violent behavior in women dependent on opiates, alcohol, and cocaine. Arrest for an assault 1 was associated with alcohol dependence and opiate dependence. These data suggest that measurement of symptom severity and co-morbidity is important in assessing violent behavior in incarcerated women with ASPD. These findings are potentially important in examining non-incarcerated, substance-dependent women. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Scale size-dependent characteristics of the nightside aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.

    2017-02-01

    We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.

  17. On the Determination of Magnesium Degradation Rates under Physiological Conditions.

    PubMed

    Nidadavolu, Eshwara Phani Shubhakar; Feyerabend, Frank; Ebel, Thomas; Willumeit-Römer, Regine; Dahms, Michael

    2016-07-28

    The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy's degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation characteristics might differ with increased immersion times. Furthermore, studies concerning Mg corrosion extrapolate the corrosion rate from a single time point measurement to the order of a year (mm/y), which might not be appropriate because of time dependent degradation behavior. In this work, the above issues are addressed and a new methodology of performing long-term immersion tests in determining the degradation rates of Mg alloys was put forth. For this purpose, cast and extruded Mg-2Ag and powder pressed and sintered Mg-0.3Ca alloy systems were chosen. DMEM Glutamax +10% FBS (Fetal Bovine Serum) +1% Penicillin streptomycin was used as cell culture medium. The advantages of such a method in predicting the degradation rates in vivo deduced from in vitro experiments are discussed.

  18. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  19. Study of the character of the time dependence of the ratio of signals in the IR and visible channels of a radiometric apparatus when fragments of space junk are observed

    NASA Astrophysics Data System (ADS)

    Pavlov, N. I.; Él'Ts, E. É.

    2006-01-01

    A more accurate expression is derived for determining the specific load of fragments of space junk via the time dependence of the ratio of signals in the IR and visible channels of on-board radiometric observation apparatus. Results are presented of a calculation of the time behavior of this ratio when aluminum and plastic debris is observed on near-earth orbits. The cases considered here involve constant heating of the debris by solar radiation and the variation of this heating according to a harmonic law because the debris rotates around its center of mass.

  20. Multiaxial Temperature- and Time-Dependent Failure Model

    NASA Technical Reports Server (NTRS)

    Richardson, David; McLennan, Michael; Anderson, Gregory; Macon, David; Batista-Rodriquez, Alicia

    2003-01-01

    A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from -20 to 115 F (-29 to 46 C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months..

  1. Hospital-treated mental and behavioral disorders and risk of Alzheimer's disease: A nationwide nested case-control study.

    PubMed

    Tapiainen, V; Hartikainen, S; Taipale, H; Tiihonen, J; Tolppanen, A-M

    2017-06-01

    Studies investigating psychiatric disorders as Alzheimer's disease (AD) risk factors have yielded heterogeneous findings. Differences in time windows between the exposure and outcome could be one explanation. We examined whether (1) mental and behavioral disorders in general or (2) specific mental and behavioral disorder categories increase the risk of AD and (3) how the width of the time window between the exposure and outcome affects the results. A nationwide nested case-control study of all Finnish clinically verified AD cases, alive in 2005 and their age, sex and region of residence matched controls (n of case-control pairs 27,948). History of hospital-treated mental and behavioral disorders was available since 1972. Altogether 6.9% (n=1932) of the AD cases and 6.4% (n=1784) of controls had a history of any mental and behavioral disorder. Having any mental and behavioral disorder (adjusted OR=1.07, 95% CI=1.00-1.16) or depression/other mood disorder (adjusted OR=1.17, 95% CI=1.05-1.30) were associated with higher risk of AD with 5-year time window but not with 10-year time window (adjusted OR, 95% CI 0.99, 0.91-1.08 for any disorder and 1.08, 0.96-1.23 for depression). The associations between mental and behavioral disorders and AD were modest and dependent on the time window. Therefore, some of the disorders may represent misdiagnosed prodromal symptoms of AD, which underlines the importance of proper differential diagnostics among older persons. These findings also highlight the importance of appropriate time window in psychiatric and neuroepidemiology research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  3. Neuropeptide Secreted from a Pacemaker Activates Neurons to Control a Rhythmic Behavior

    PubMed Central

    Wang, Han; Girskis, Kelly; Janssen, Tom; Chan, Jason P.; Dasgupta, Krishnakali; Knowles, James A.; Schoofs, Liliane; Sieburth, Derek

    2013-01-01

    Summary Background Rhythmic behaviors are driven by endogenous biological clocks in pacemakers, which must reliably transmit timing information to target tissues that execute rhythmic outputs. During the defecation motor program in C. elegans, calcium oscillations in the pacemaker (intestine), which occur about every 50 seconds, trigger rhythmic enteric muscle contractions through downstream GABAergic neurons that innervate enteric muscles. However, the identity of the timing signal released by the pacemaker and the mechanism underlying the delivery of timing information to the GABAergic neurons are unknown. Results Here we show that a neuropeptide-like protein (NLP-40) released by the pacemaker triggers a single rapid calcium transient in the GABAergic neurons during each defecation cycle. We find that mutants lacking nlp-40 have normal pacemaker function, but lack enteric muscle contractions. NLP-40 undergoes calcium-dependent release that is mediated by the calcium sensor, SNT-2/synaptotagmin. We identify AEX-2, the G protein-coupled receptor on the GABAergic neurons, as the receptor of NLP-40. Functional calcium imaging reveals that NLP-40 and AEX-2/GPCR are both necessary for rhythmic activation of these neurons. Furthermore, acute application of synthetic NLP-40-derived peptide depolarizes the GABAergic neurons in vivo. Conclusions Our results show that NLP-40 carries the timing information from the pacemaker via calcium-dependent release and delivers it to the GABAergic neurons by instructing their activation. Thus, we propose that rhythmic release of neuropeptides can deliver temporal information from pacemakers to downstream neurons to execute rhythmic behaviors. PMID:23583549

  4. Quantitative comparisons of the acute neurotoxicity of toluene in rats and humans.

    PubMed

    Benignus, Vernon A; Boyes, William K; Kenyon, Elaina M; Bushnell, Philip J

    2007-11-01

    The behavioral and neurophysiological effects of acute exposure to toluene are the most thoroughly explored of all the hydrocarbon solvents. Behavioral effects have been experimentally studied in humans and other species, for example, rats. The existence of both rat and human dosimetric data offers the opportunity to quantitatively compare the relative sensitivity to acute toluene exposure. The purpose of this study was to fit dose-effect curves to existing data and to estimate the dose-equivalence equation (DEE) between rats and humans. The DEE gives the doses that produce the same magnitude of effect in the two species. Doses were brain concentrations of toluene estimated from physiologically based pharmacokinetic models. Human experiments measuring toluene effects on choice reaction time (CRT) were meta-analyzed. Rat studies employed various dependent variables: amplitude of visual-evoked potentials (VEPs), signal detection (SIGDET) accuracy (ACCU) and reaction time (RT), and escape-avoidance (ES-AV) behaviors. Comparison of dose-effect functions showed that human and rat sensitivity was practically the same for those two task regimens that exerted the least control over the behaviors being measured (VEP in rats and CRT in humans) and the sensitivity was progressively lower for SIGDET RT, SIGDET ACCU, and ES-AV behaviors in rats. These results suggested that the sensitivity to impairment by toluene depends on the strength of control over the measured behavior rather than on the species being tested. This interpretation suggests that (1) sensitivity to toluene would be equivalent in humans and rats if both species performed behaviors that were controlled to the same extent, (2) the most sensitive tests of neurobehavioral effects would be those in which least control is exerted on the behavior being measured, and (3) effects of toluene in humans may be estimated using the DEEs from rat studies despite differences in the amount of control exerted by the experimental regimen or differences in the behaviors under investigation.

  5. Diverse spike-timing-dependent plasticity based on multilevel HfO x memristor for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Lu, Ke; Li, Yi; He, Wei-Fan; Chen, Jia; Zhou, Ya-Xiong; Duan, Nian; Jin, Miao-Miao; Gu, Wei; Xue, Kan-Hao; Sun, Hua-Jun; Miao, Xiang-Shui

    2018-06-01

    Memristors have emerged as promising candidates for artificial synaptic devices, serving as the building block of brain-inspired neuromorphic computing. In this letter, we developed a Pt/HfO x /Ti memristor with nonvolatile multilevel resistive switching behaviors due to the evolution of the conductive filaments and the variation in the Schottky barrier. Diverse state-dependent spike-timing-dependent-plasticity (STDP) functions were implemented with different initial resistance states. The measured STDP forms were adopted as the learning rule for a three-layer spiking neural network which achieves a 75.74% recognition accuracy for MNIST handwritten digit dataset. This work has shown the capability of memristive synapse in spiking neural networks for pattern recognition application.

  6. Physical Activity and Variation in Momentary Behavioral Cognitions: An Ecological Momentary Assessment Study.

    PubMed

    Pickering, Trevor A; Huh, Jimi; Intille, Stephen; Liao, Yue; Pentz, Mary Ann; Dunton, Genevieve F

    2016-03-01

    Decisions to perform moderate-to-vigorous physical activity (MVPA) involve behavioral cognitive processes that may differ within individuals depending on the situation. Ecological momentary assessment (EMA) was used to examine the relationships of momentary behavioral cognitions (ie, self-efficacy, outcome expectancy, intentions) with MVPA (measured by accelerometer). A sample of 116 adults (mean age, 40.3 years; 72.4% female) provided real-time EMA responses via mobile phones across 4 days. Multilevel models were used to test whether momentary behavioral cognitions differed across contexts and were associated with subsequent MVPA. Mixed-effects location scale models were used to examine whether subject-level means and within-subjects variances in behavioral cognitions were associated with average daily MVPA. Momentary behavioral cognitions differed across contexts for self-efficacy (P = .007) but not for outcome expectancy (P = .53) or intentions (P = .16). Momentary self-efficacy, intentions, and their interaction predicted MVPA within the subsequent 2 hours (Ps < .01). Average daily MVPA was positively associated with within-subjects variance in momentary self-efficacy and intentions for physical activity (Ps < .05). Although momentary behavioral cognitions are related to subsequent MVPA, adults with higher average MVPA have more variation in physical activity self-efficacy and intentions. Performing MVPA may depend more on how much behavioral cognitions vary across the day than whether they are generally high or low.

  7. Dopamine modulates male sexual behavior in Japanese quail in part via actions on noradrenergic receptors.

    PubMed

    Cornil, Charlotte A; Dejace, Christel; Ball, Gregory F; Balthazart, Jacques

    2005-08-30

    In rats, dopamine (DA) facilitates male sexual behavior through its combined action on D1- and D2-like receptors, in the medial preoptic area (MPOA) as well as other brain areas. In Japanese quail, systemic injections of dopaminergic drugs suggested a similar pharmacology but central injections have never been performed. Recent electrophysiological experiments demonstrated that DA effects in the MPOA of quail are mediated mainly through the activation of alpha2-noradrenergic receptors. Previous studies of DA action on behavior used specific dopaminergic agonists/antagonists and therefore unintentionally avoided the potential cross-reaction with alpha2-receptors. The present study was thus designed to investigate directly the effects of DA on male sexual behavior and to test whether the interaction of DA with heterologous receptors affects this behavior. Intracerebroventricular (i.c.v.) injection of DA or NE inhibited copulation in a dose-dependent manner. Systemic injections of yohimbine, an alpha2-noradrenergic antagonist, modulated copulation in a bimodal manner depending on the dose injected. Interestingly, a behaviorally ineffective dose of yohimbine markedly reduced the inhibitory effects of DA when injected 15min before. Together, these results show for the first time that i.c.v. injections of DA itself inhibit male sexual behavior in quail and suggest that the interaction of DA with alpha2-receptors has behavioral significance.

  8. Does Gender Moderate the Relations Between Externalizing Behavior and Key Emergent Literacy Abilities? Evidence From a Longitudinal Study.

    PubMed

    Allan, Nicholas P; Joye, Shauna W; Lonigan, Christopher J

    2017-05-01

    There is a significant negative relation between externalizing behavior and emergent literacy skills among preschool children. The purpose of this study was to examine the impact of gender on the predictive relation of externalizing behavior and emergent literacy in a group of 178 preschool children (mean age = 48.50 months, SD = 3.66; 48% boys). Externalizing behaviors predicted emergent literacy over time. Distinct patterns of predictive associations dependent on gender were found. Girls with higher levels of externalizing behaviors experienced less change in their vocabulary skills compared with the vocabulary change shown by girls with lower levels of these problem behaviors. The results suggest that early identification programs that include externalizing behavior problems and their relation with emergent literacy development should account for potential gender differences. A theoretical framework in which girls with behavior problems receive less opportunity for vocabulary acquisition is presented.

  9. Effects of novelty on behavior in the adolescent and adult rat.

    PubMed

    Stansfield, Kirstie H; Kirstein, Cheryl L

    2006-01-01

    Adolescence is a time of high-risk behavior and increased exploration. This developmental period is marked by a greater probability of initiating drug use and is associated with an increased risk to develop addiction and dependency in adulthood. Human adolescents are predisposed towards an increased likelihood of risk taking behaviors (Zuckerman, 1986), including drug use or initiation. The purpose of the study was to examine differences in developmental risk taking behaviors. Adolescent and adult animals were exposed to a novel stimulus in a familiar environment to assess impulsive behaviors, novelty preference, and exploratory behaviors. Adolescent animals had greater novelty-induced locomotor activity, greater novelty preference, and showed higher approach and exploratory behaviors compared to adult animals. These data support the notion that adolescents may be predisposed toward sensation seeking and consequently, are more likely to engage in risk-taking behaviors, such as drug use initiation. Copyright 2005 Wiley Periodicals, Inc.

  10. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.

    PubMed

    Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco

    2015-02-01

    Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.

  11. Developmental process emerges from extended brain-body-behavior networks

    PubMed Central

    Byrge, Lisa; Sporns, Olaf; Smith, Linda B.

    2014-01-01

    Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251

  12. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations.

    PubMed

    Revilla, Eloy; Wiegand, Thorsten

    2008-12-09

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.

  13. Temporal Processing Dysfunction in Schizophrenia

    ERIC Educational Resources Information Center

    Carroll, Christine A.; Boggs, Jennifer; O'Donnell, Brian F.; Shekhar, Anantha; Hetrick, William P.

    2008-01-01

    Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the…

  14. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat.

    PubMed

    Becker, J B; Rudick, C N; Jenkins, W J

    2001-05-01

    Dopamine in dialysate from the nucleus accumbens (NAcc) increases during sexual and feeding behavior and after administration of drugs of abuse, even those that do not directly activate dopaminergic systems (e.g., morphine or nicotine). These findings and others have led to hypotheses that propose that dopamine is rewarding, predicts that reinforcement will occur, or attributes incentive salience. Examining increases in dopamine in NAcc or striatum during sexual behavior in female rats provides a unique situation to study these relations. This is because, for the female rat, sexual behavior is associated with an increase in NAcc dopamine and conditioned place preference only under certain testing conditions. This experiment was conducted to determine what factors are important for the increase in dopamine in dialysate from NAcc and striatum during sexual behavior in female rats. The factors considered were the number of contacts by the male, the timing of contacts by the male, or the ability of the female to control contacts by the male. The results indicate that increased NAcc dopamine is dependent on the timing of copulatory stimuli, independent of whether the female rat is actively engaged in regulating this timing. For the striatum, the timing of copulatory behavior influences the magnitude of the increase in dopamine in dialysate, but other factors are also involved. We conclude that increased extracellular dopamine in the NAcc and striatum conveys qualitative or interpretive information about the rewarding value of stimuli. Sexual behavior in the female rat is proposed as a model to determine the role of dopamine in motivated behavior.

  15. Economic dependence and unprotected sex: the role of sexual assertiveness among young urban mothers.

    PubMed

    Biello, Katie Brooks; Sipsma, Heather L; Ickovics, Jeannette R; Kershaw, Trace

    2010-05-01

    In the USA, sexual intercourse is the leading route of human immunodeficiency virus transmission among women, primarily through their main partner. Because male condom use is not directly under a woman's control, gender inequalities may help shape this sexual risk behavior. To examine this association, data came from follow-up interviews of young, primarily minority, pregnant women enrolled in a prospective, randomized controlled trial. Specifically, we aimed to determine the relationship between economic dependence on a male partner and condom use, and to establish whether this relationship was mediated by sexual assertiveness. Overall, 28% of women reported being economically dependent on a male partner. Young women dependent on a male partner were 1.6 times more likely to report not using a condom at last sex than women not dependent on their partner (95% confidence interval = 1.11-2.32; p = 0.01). Sexual assertiveness mediated the relationship between economic dependence and condom use (Sobel = 2.05, p = 0.04). Coupled with past research, this study supports the premise that sexual behaviors may be rooted in a complex web of social determinants. Addressing gender inequalities in contextual factors may promote healthier decisions within sexual relationships.

  16. The determinants of response time in a repeated constant-sum game: A robust Bayesian hierarchical dual-process model.

    PubMed

    Spiliopoulos, Leonidas

    2018-03-01

    The investigation of response time and behavior has a long tradition in cognitive psychology, particularly for non-strategic decision-making. Recently, experimental economists have also studied response time in strategic interactions, but with an emphasis on either one-shot games or repeated social-dilemmas. I investigate the determinants of response time in a repeated (pure-conflict) game, admitting a unique mixed strategy Nash equilibrium, with fixed partner matching. Response times depend upon the interaction of two decision models embedded in a dual-process framework (Achtziger and Alós-Ferrer, 2014; Alós-Ferrer, 2016). The first decision model is the commonly used win-stay/lose-shift heuristic and the second the pattern-detecting reinforcement learning model in Spiliopoulos (2013b). The former is less complex and can be executed more quickly than the latter. As predicted, conflict between these two models (i.e., each one recommending a different course of action) led to longer response times than cases without conflict. The dual-process framework makes other qualitative response time predictions arising from the interaction between the existence (or not) of conflict and which one of the two decision models the chosen action is consistent with-these were broadly verified by the data. Other determinants of RT were hypothesized on the basis of existing theory and tested empirically. Response times were strongly dependent on the actions chosen by both players in the previous rounds and the resulting outcomes. Specifically, response time was shortest after a win in the previous round where the maximum possible payoff was obtained; response time after losses was significantly longer. Strongly auto-correlated behavior (regardless of its sign) was also associated with longer response times. I conclude that, similar to other tasks, there is a strong coupling in repeated games between behavior and RT, which can be exploited to further our understanding of decision making. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, J.P.; Canonico, D.A.; Richardson, M.

    The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a /sup 1///sub 6/-scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the innermore » surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating.« less

  18. Low-temperature dielectric behavior of Nb{sub 2}O{sub 5}-SiO{sub 2} solid solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choosuwan, H.; Guo, R.; Bhalla, A. S.

    2003-03-01

    Dielectric properties of Nb{sub 2}O{sub 5}(0.92):SiO{sub 2}(0.08) ceramic were measured in the temperature range of 10-300 K by the cryostat system. Frequency-dependent dielectric loss suggests the relaxation behavior of this material. The relaxation mechanism was analyzed by the Arrhenius relationship and the Cole-Cole plot. Calculated distribution of relaxation time reveals deviation from the pure Debye relaxation.

  19. Impulsivity, risky behaviors and accidents in alcohol-dependent patients

    PubMed Central

    Jakubczyk, Andrzej; Klimkiewicz, Anna; Wnorowska, Anna; Mika, Katarzyna; Bugaj, Marcin; Podgórska, Anna; Barry, Kristen; Blow, Frederic C.; Brower, Kirk J.; Wojnar, Marcin

    2013-01-01

    Impulsivity and alcohol drinking are both considered as important predictors of unintentional as well as intentional injuries. However, relationships of impulsivity with risky behaviors and a history of accidents have not been investigated in alcohol dependence. The aim of this study was to analyze relationships between the frequency of risky behaviors and level of behavioral as well as cognitive impulsivity in alcohol-dependent patients. By means of Barratt’s Impulsiveness Scale (BIS) and stop-signal task, the levels of cognitive and behavioral impulsivity among 304 alcohol-dependent patients were measured. Also, patients were asked to answer questions from the Short Inventory of Problems applying to risky behaviors and accidents after alcohol drinking. In addition participants completed a questionnaire to assess frequency of other behaviors from the analyzed spectrum (use of other drugs, driving or aggressive behavior after alcohol drinking). The statistical analysis revealed a significant association between impulsivity and frequency of risky behaviors in alcohol-dependent patients. Individuals with higher scores in BIS behaved more frequently in a risky way and had significantly more accidents after alcohol drinking. The association with risky behaviors was strongest for non-planning and attentional impulsivity subscales, whereas frequency of accidents was particularly associated with motor impulsivity. A multivariate analysis revealed that impulsivity was the most important predictor of risky behaviors, but did not significantly predict a history of accidents. Our study confirms that impulsivity is an important correlate of risky behaviors in alcohol-dependent individuals, along with global psychopathology and severity of alcohol dependence. PMID:23246707

  20. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    PubMed

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  1. Pressure induced ageing of polymers

    NASA Technical Reports Server (NTRS)

    Emri, I.; Knauss, W. G.

    1988-01-01

    The nonlinearly viscoelastic response of an amorphous homopolymer is considered under aspects of time dependent free volume behavior. In contrast to linearly viscoelastic solids, this model couples shear and volume deformation through a shift function which influences the rate of molecular relaxation or creep. Sample computations produce all those qualitative features one observes normally in uniaxial tension including the rate dependent formation of a yield point as a consequence of the history of an imposed pressure.

  2. Final Shape of Precision Molded Optics: Part 1 - Computational Approach, Material Definitions and the Effect of Lens Shape

    DTIC Science & Technology

    2012-05-15

    subroutine by adding time-dependence to the thermal expansion coefficient. The user subroutine was written in Intel Visual Fortran that is compatible...temperature history dependent expansion and contraction, and the molds were modeled as elastic taking into account both mechanical and thermal strain. In...behavior was approximated by assuming the thermal coefficient of expansion to be a fourth order polynomial function of temperature. The authors

  3. Ada 9X Project Report, A Study of Implementation-Dependent Pragmas and Attributes in Ada

    DTIC Science & Technology

    1989-11-01

    here communicatons with the vendor were often required to firmly establish the behavior of some implementation-dependent features CMU-SEI-SR-89-19 3 2.2...compilers), by potential market penetration (percent coverage of all surveyed implementations), and by cross-compiler influence (percentage of cross...operations in the context of a tightly integrated development environment, specific underlying operating system services (beneath the Ada run- time kernel

  4. Pigmentation, anesthesia, behavioral factors, and salicylate uptake.

    PubMed

    Jastreboff, P J; Issing, W; Brennan, J F; Sasaki, C T

    1988-02-01

    In four experiments, 54 pigmented rats were used to examine the time course of sodium salicylate uptake in serum, cerebrospinal fluid, and perilymph. Subjects were tested under sodium pentobarbital anesthesia or while conscious. Compared with previously reported data from albino rats, pigmented subjects generally showed increased salicylate uptake. Moreover, the data suggested two different, time-dependent clearance mechanisms in conscious animals not observed in anesthetized rats. Daily injections of salicylate did not produce an accumulation of salicylate in serum. Systematically higher levels of salicylate were observed in perilymph compared with cerebrospinal fluid. Behavioral procedures, including water deprivation and conditioned suppression of ongoing drinking levels, had no effect on salicylate levels.

  5. Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Li, Xue-yan; Li, Xue-mei; Yang, Lingrun; Li, Jing

    2018-07-01

    Most of the previous studies on dynamic traffic assignment are based on traditional analytical framework, for instance, the idea of Dynamic User Equilibrium has been widely used in depicting both the route choice and the departure time choice. However, some recent studies have demonstrated that the dynamic traffic flow assignment largely depends on travelers' rationality degree, travelers' heterogeneity and what the traffic information the travelers have. In this paper, we develop a new self-adaptive multi agent model to depict travelers' behavior in Dynamic Traffic Assignment. We use Cumulative Prospect Theory with heterogeneous reference points to illustrate travelers' bounded rationality. We use reinforcement-learning model to depict travelers' route and departure time choosing behavior under the condition of imperfect information. We design the evolution rule of travelers' expected arrival time and the algorithm of traffic flow assignment. Compared with the traditional model, the self-adaptive multi agent model we proposed in this paper can effectively help travelers avoid the rush hour. Finally, we report and analyze the effect of travelers' group behavior on the transportation system, and give some insights into the relation between travelers' group behavior and the performance of transportation system.

  6. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior.

    PubMed

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-01-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  7. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior

    NASA Astrophysics Data System (ADS)

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two-dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  8. Global Genetic Response in a Cancer Cell: Self-Organized Coherent Expression Dynamics

    PubMed Central

    Tsuchiya, Masa; Hashimoto, Midori; Takenaka, Yoshiko; Motoike, Ikuko N.; Yoshikawa, Kenichi

    2014-01-01

    Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome. PMID:24831017

  9. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock.

    PubMed

    Abbott, Sabra M; Arnold, Jennifer M; Chang, Qing; Miao, Hai; Ota, Nobutoshi; Cecala, Christine; Gold, Paul E; Sweedler, Jonathan V; Gillette, Martha U

    2013-01-01

    Sleep-wake cycling is controlled by the complex interplay between two brain systems, one which controls vigilance state, regulating the transition between sleep and wake, and the other circadian, which communicates time-of-day. Together, they align sleep appropriately with energetic need and the day-night cycle. Neural circuits connect brain stem sites that regulate vigilance state with the suprachiasmatic nucleus (SCN), the master circadian clock, but the function of these connections has been unknown. Coupling discrete stimulation of pontine nuclei controlling vigilance state with analytical chemical measurements of intra-SCN microdialysates in mouse, we found significant neurotransmitter release at the SCN and, concomitantly, resetting of behavioral circadian rhythms. Depending upon stimulus conditions and time-of-day, SCN acetylcholine and/or glutamate levels were augmented and generated shifts of behavioral rhythms. These results establish modes of neurochemical communication from brain regions controlling vigilance state to the central circadian clock, with behavioral consequences. They suggest a basis for dynamic integration across brain systems that regulate vigilance states, and a potential vulnerability to altered communication in sleep disorders.

  10. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  11. Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas

    NASA Astrophysics Data System (ADS)

    Paul, Subhajit; Das, Subir K.

    2018-03-01

    Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.

  12. Minority games with score-dependent and agent-dependent payoffs

    NASA Astrophysics Data System (ADS)

    Ren, F.; Zheng, B.; Qiu, T.; Trimper, S.

    2006-10-01

    Score-dependent and agent-dependent payoffs of the strategies are introduced into the standard minority game. The intrinsic periodicity is consequently removed, and the stylized facts arise, such as long-range volatility correlations and “fat tails” in the distribution of the returns. The agent dependence of the payoffs is essential in producing the long-range volatility correlations. The new payoffs lead to a better performance in the dynamic behavior nonlocal in time, and can coexist with the inactive strategy. We also observe that the standard deviation σ2/N is significantly reduced, thus the efficiency of the system is distinctly improved. Based on this observation, we give a qualitative explanation for the long-range volatility correlations.

  13. Increasing Self-Regulation and Classroom Participation of a Child Who Is Deafblind.

    PubMed

    Nelson, Catherine; Hyte, Holly A; Greenfield, Robin

    2016-01-01

    Self-regulation has been identified as essential to school success. However, for a variety of reasons, its development may be compromised in children and youth who are deafblind. A single-case multiple-baseline study of a child who was deafblind examined the effects of three groups of evidence-based interventions on variables thought to be associated with self-regulation. The dependent variables were (a) frequency and duration of behaviors thought to indicate dysregulation, (b) active participation in school activities, and (c) time from onset of behaviors indicating dysregulation until achievement of a calm, regulated state. The interventions, which included provision of meaningful, enjoyable, and interactive activities, anticipatory strategies, and calming strategies, significantly influenced the dependent variables and are described in detail.

  14. Collective Behavior of Market Participants during Abrupt Stock Price Changes

    PubMed Central

    Maskawa, Jun-ichi

    2016-01-01

    Under uncertainty, human and animal collectives often respond stochastically to events they encounter. Human or animal individuals behave depending on others’ actions, and sometimes follow choices that are sub-optimal for individuals. Such mimetic behaviors are enhanced during emergencies, creating collective behavior of a group. A stock market that is about to crash, as markets did immediately after the Lehman Brothers bankruptcy, provides illustrative examples of such behaviors. We provide empirical evidence proving the existence of collective behavior among stock market participants in emergent situations. We investigated the resolution of extreme supply-and-demand order imbalances by increased balancing counter orders: buy and sell orders for excess supply and demand respectively, during times of price adjustment, so-called special quotes on the Tokyo Stock Exchange. Counter orders increase positively depending on the quantity of revealed counter orders: the accumulated orders in the book until then. Statistics of the coming counter order are well described using a logistic regression model with the ratio of revealed orders until then to the finally revealed orders as the explanatory variable. Results given here show that the market participants make Bayesian estimations of optimal choices to ascertain whether to order using information about orders of other participants. PMID:27513335

  15. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons

    PubMed Central

    Tabuchi, Masashi; Sakurai, Takeshi; Mitsuno, Hidefumi; Namiki, Shigehiro; Minegishi, Ryo; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Haupt, Stephan Shuichi; Nakatani, Kei; Kanzaki, Ryohei

    2013-01-01

    The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs’ responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness. PMID:24006366

  16. Collective Behavior of Market Participants during Abrupt Stock Price Changes.

    PubMed

    Maskawa, Jun-Ichi

    2016-01-01

    Under uncertainty, human and animal collectives often respond stochastically to events they encounter. Human or animal individuals behave depending on others' actions, and sometimes follow choices that are sub-optimal for individuals. Such mimetic behaviors are enhanced during emergencies, creating collective behavior of a group. A stock market that is about to crash, as markets did immediately after the Lehman Brothers bankruptcy, provides illustrative examples of such behaviors. We provide empirical evidence proving the existence of collective behavior among stock market participants in emergent situations. We investigated the resolution of extreme supply-and-demand order imbalances by increased balancing counter orders: buy and sell orders for excess supply and demand respectively, during times of price adjustment, so-called special quotes on the Tokyo Stock Exchange. Counter orders increase positively depending on the quantity of revealed counter orders: the accumulated orders in the book until then. Statistics of the coming counter order are well described using a logistic regression model with the ratio of revealed orders until then to the finally revealed orders as the explanatory variable. Results given here show that the market participants make Bayesian estimations of optimal choices to ascertain whether to order using information about orders of other participants.

  17. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  18. The effects of heterospecifics and climatic conditions on incubation behavior within a mixed-species colony

    USGS Publications Warehouse

    Coates, Peter S.; Brussee, Brianne E.; Hothem, Roger L.; Howe, Kristy H.; Casazza, Michael L.; Eadie, John M.

    2016-01-01

    Parental incubation behavior largely influences nest survival, a critical demographic process in avian population dynamics, and behaviors vary across species with different life history breeding strategies. Although research has identified nest survival advantages of mixing colonies, behavioral mechanisms that might explain these effects is largely lacking. We examined parental incubation behavior using video-monitoring techniques on Alcatraz Island, California, of black-crowned night-heron Nycticorax nycticorax(hereinafter, night-heron) in a mixed-species colony with California gulls Larus californicus and western gulls L. occidentalis. We first quantified general nesting behaviors (i.e. incubation constancy, and nest attendance), and a suite of specific nesting behaviors (i.e. inactivity, vigilance, preening, and nest maintenance) with respect to six different daily time periods. We employed linear mixed effects models to investigate environmental and temporal factors as sources of variation in incubation constancy and nest attendance using 211 nest days across three nesting seasons (2010–2012). We found incubation constancy (percent of time on the eggs) and nest attendance (percent of time at the nest) were lower for nests that were located < 3 m from one or more gull nest, which indirectly supports the predator protection hypothesis, whereby heterospecifics provide protection allowing more time for foraging and other self-maintenance activities. To our knowledge, this is the first empirical evidence of the influence of one nesting species on the incubation behavior of another. We also identified distinct differences between incubation constancy and nest attentiveness, indicating that these biparental incubating species do not share similar energetic constraints as those that are observed for uniparental species. Additionally, we found that variation in incubation behavior was a function of temperature and precipitation, where the strength of these effects was dependent on the time of day. Overall, these findings strengthen our understanding of incubation behavior and nest ecology of a colonial-nesting species.

  19. Indispensable finite time corrections for Fokker-Planck equations from time series data.

    PubMed

    Ragwitz, M; Kantz, H

    2001-12-17

    The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from finite sampling rates. We show that previously published results are degraded considerably by such effects. We present correction terms which yield a robust estimation of the diffusion terms, together with a novel method for one-dimensional problems. We apply these methods to time series data of local surface wind velocities, where the dependence of the diffusion constant on the state variable shows a different behavior than previously suggested.

  20. Delay-dependent dynamical analysis of complex-valued memristive neural networks: Continuous-time and discrete-time cases.

    PubMed

    Wang, Jinling; Jiang, Haijun; Ma, Tianlong; Hu, Cheng

    2018-05-01

    This paper considers the delay-dependent stability of memristive complex-valued neural networks (MCVNNs). A novel linear mapping function is presented to transform the complex-valued system into the real-valued system. Under such mapping function, both continuous-time and discrete-time MCVNNs are analyzed in this paper. Firstly, when activation functions are continuous but not Lipschitz continuous, an extended matrix inequality is proved to ensure the stability of continuous-time MCVNNs. Furthermore, if activation functions are discontinuous, a discontinuous adaptive controller is designed to acquire its stability by applying Lyapunov-Krasovskii functionals. Secondly, compared with techniques in continuous-time MCVNNs, the Halanay-type inequality and comparison principle are firstly used to exploit the dynamical behaviors of discrete-time MCVNNs. Finally, the effectiveness of theoretical results is illustrated through numerical examples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia.

    PubMed

    Robinson, Lucy F; Atlas, Lauren Y; Wager, Tor D

    2015-03-01

    We present a new method, State-based Dynamic Community Structure, that detects time-dependent community structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is static in time, or differs between task conditions with known timing. Our goal is to determine whether brain network topology remains stationary over time, or if changes in network organization occur at unknown time points. Changes in network organization may be related to shifts in neurological state, such as those associated with learning, drug uptake or experimental conditions. Using a hidden Markov stochastic blockmodel, we define a time-dependent community structure. We apply this approach to data from a functional magnetic resonance imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that networks involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market

    NASA Astrophysics Data System (ADS)

    Czarnecki, Łukasz; Grech, Dariusz; Pamuła, Grzegorz

    2008-12-01

    We confront global and local methods to analyze the financial crash-like events on the Polish financial market from the critical phenomena point of view. These methods are based on the analysis of log-periodicity and the local fractal properties of financial time series in the vicinity of phase transitions (crashes). The whole history (1991-2008) of Warsaw Stock Exchange Index (WIG) describing the largest developing financial market in Europe, is analyzed in a daily time horizon. We find that crash-like events on the Polish financial market are described better by the log-divergent price model decorated with log-periodic behavior than the corresponding power-law-divergent price model. Predictions coming from log-periodicity scenario are verified for all main crashes that took place in WIG history. It is argued that crash predictions within log-periodicity model strongly depend on the amount of data taken to make a fit and therefore are likely to contain huge inaccuracies. Turning to local fractal description, we calculate the so-called local (time dependent) Hurst exponent H for the WIG time series and we find the dependence between the behavior of the local fractal properties of the WIG time series and the crashes appearance on the financial market. The latter method seems to work better than the global approach - both for developing as for developed markets. The current situation on the market, particularly related to the Fed intervention in September’07 and the situation on the market immediately after this intervention is also analyzed from the fractional Brownian motion point of view.

  3. Stress generation in a developmental context: the role of youth depressive symptoms, maternal depression, the parent-child relationship, and family stress.

    PubMed

    Chan, Priscilla T; Doan, Stacey N; Tompson, Martha C

    2014-02-01

    The present study examined stress generation in a developmental and family context among 171 mothers and their preadolescent children, ages 8-12 years, at baseline (Time 1) and 1-year follow-up (Time 2). In the current study, we examined the bidirectional relationship between children's depressive symptoms and dependent family stress. Results suggest that children's baseline level of depressive symptoms predicted the generation of dependent family stress 1 year later. However, baseline dependent family stress did not predict an increase in children's depressive symptoms 1 year later. In addition, we examined whether a larger context of both child chronic strain (indicated by academic, behavioral, and peer stress) and family factors, including socioeconomic status and parent-child relationship quality, would influence the stress generation process. Although both chronic strain and socioeconomic status were not associated with dependent family stress at Time 2, poorer parent-child relationship quality significantly predicted greater dependent family stress at Time 2. Child chronic strain, but neither socioeconomic status nor parent-child relationship quality, predicted children's depression symptoms at Time 2. Finally, gender, maternal depression history, and current maternal depressive symptoms did not moderate the relationship between level of dependent family stress and depressive symptoms. Overall, findings provide partial support for a developmental stress generation model operating in the preadolescent period.

  4. TIME-DEPENDENT NEUROBIOLOGICAL EFFECTS OF COLCHICINE ADMINISTERED DIRECTLY INTO THE HIPPOCAMPUS OF RATS (JOURNAL VERSION)

    EPA Science Inventory

    Rats were given bilateral injections of colchicine into the dorsal and ventral hippocampus. Behavioral, neurochemical and histopathological measurements were taken up to 12 weeks after surgery. Colchicine produced a consistent increase in spontaneous motor activity, enhanced acou...

  5. Characterization of time-dependent changes in strength and stiffness of Florida base materials : final report, October 2008.

    DOT National Transportation Integrated Search

    2008-10-01

    Resilient modulus and Youngs modulus are parameters increasingly used to fundamentally characterize the behavior : of pavement materials both in the laboratory and in the field. This study documents the small-strain Youngs modulus : and larger-...

  6. Modification of Comprehension Deficits in Learning Disabled Children.

    ERIC Educational Resources Information Center

    Swanson, Lee

    1981-01-01

    Three experiments investigated the effects of self recording, tokens and contingent free time on learning disabled children's reading comprehension performance. Results of these three experiments supported recent findings that only minimal changes occur on comprehension performance when left as an untargeted dependent behavior. (Author)

  7. Time-dependent behavior in a transport-barrier model for the quasi-single helcity state

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Whelan, G. G.

    2014-09-01

    Time-dependent behavior that follows from a recent theory of the quasi-single-helicity (QSH) state of the reversed field pinch is considered. The theory (Kim and Terry 2012 Phys. Plasmas 19 122304) treats QSH as a core fluctuation structure tied to a tearing mode of the same helicity, and shows that strong magnetic and velocity shears in the structure suppress the nonlinear interaction with other fluctuations. By summing the multiple helicity fluctuation energies over wavenumber, we reduce the theory to a predator-prey model. The suppression of the nonlinear interaction is governed by the single helicity energy, which, for fixed radial structure, controls the magnetic and velocity shearing rates. It is also controlled by plasma current which, in the theory, sets the shearing threshold for suppression. The model shows a limit cycle oscillation in which the system toggles between QSH and multiple helicity states, with the single helicity phase becoming increasingly long-lived relative to the multiple helicity phase as plasma current increases.

  8. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching.

    PubMed

    Babaei, Behzad; Velasquez-Mao, Aaron J; Thomopoulos, Stavros; Elson, Elliot L; Abramowitch, Steven D; Genin, Guy M

    2017-05-01

    The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ∼10s. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching

    PubMed Central

    Babaei, Behzad; Velasquez-Mao, Aaron J.; Thomopoulos, Stavros; Elson, Elliot L.; Abramowitch, Steven D.; Genin, Guy M.

    2017-01-01

    The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ~10 seconds. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. PMID:28088071

  10. The impact of reward and punishment on skill learning depends on task demands

    PubMed Central

    Steel, Adam; Silson, Edward H.; Stagg, Charlotte J.; Baker, Chris I.

    2016-01-01

    Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion. PMID:27786302

  11. The impact of reward and punishment on skill learning depends on task demands.

    PubMed

    Steel, Adam; Silson, Edward H; Stagg, Charlotte J; Baker, Chris I

    2016-10-27

    Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.

  12. The relationship between performance-based self-esteem and self-reported work and health behaviors among Danish knowledge workers.

    PubMed

    Persson, Roger; Albertsen, Karen; Garde, Anne Helene; Rugulies, Reiner

    2012-02-01

    Since knowledge intensive work often requires self-management, one might fear that persons who are dependent on work success for self-esteem will have difficulties in finding a healthful and sustainable balance between internal needs and external demands. Accordingly, we examined to what degree work-related performance-based self-esteem (PBS) was linked to work and health behaviors in 392 knowledge workers (226 women, 166 men). In the women group, multiple binary logistic regression analyses with repeated measurements showed that the PBS score was associated with 10 of the 17 examined work and health behaviors. For men the corresponding figure was 3 of 17. In both men and women, higher PBS scores were positively associated with reports of efforts and strivings for work as well as attending work while ill. In conclusion, statistically significant relationships between PBS and work and health behaviors were more clearly visible among women than men. Whether this gender difference is dependent on the study design, or on true inherent differences between women and men, cannot be concluded with any certainty. However, persons who described themselves as being relatively more dependent on work accomplishments for a high self-esteem, as expressed by the PBS score, seem to display work behaviors that may lessen their restitution time. In addition, they also seem to be more prone to work while sick. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  13. Rheological Behavior and Microstructure of Ceramic Particulate/Aluminum Alloy Composites. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Moon, Hee-Kyung

    1990-01-01

    The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.

  14. Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals.

    PubMed

    Moussaieff, Arieh; Gross, Moshe; Nesher, Elimelech; Tikhonov, Tatiana; Yadid, Gal; Pinhasov, Albert

    2012-12-01

    Incensole acetate (IA), a constituent of Boswellia resin ('frankincense'), was previously demonstrated to exhibit an antidepressive-like effect in the Forced Swim Test (FST) in mice following single dose administration (50 mg/kg). Here, we show that acute administration of considerably lower dose (10 mg/kg) IA to selectively bred mice, showing prominent submissive behavior, exerted significant antidepressant-like effects in the FST. Furthermore, chronic administration of 1 or 5 mg/kg per day of IA for three consecutive weeks dose- and time-dependently reduced the submissiveness of the mice in the Dominant-Submissive Relationship test, developed to screen the chronic effect of antidepressants. This behavioral effect was concomitant to reduced serum corticosterone levels, dose-dependent down-regulation of corticotropin releasing factor and up-regulation of brain derived neurotrophic factor transcripts IV and VI expression in the hippocampus. These data suggest that IA modulates the hypothalamic-pituitary-adrenal (HPA) axis and influences hippocampal gene expression, leading to beneficial behavioral effects supporting its potential as a novel treatment of depressive-like disorders.

  15. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    DOE PAGES

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; ...

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less

  16. Measures for the Dynamics in a Few-Body Quantum System with Harmonic Interactions

    NASA Astrophysics Data System (ADS)

    Nagy, I.; Pipek, J.; Glasser, M. L.

    2018-01-01

    We determine the exact time-dependent non-idempotent one-particle reduced density matrix and its spectral decomposition for a harmonically confined two-particle correlated one-dimensional system when the interaction terms in the Schrödinger Hamiltonian are changed abruptly. Based on this matrix in coordinate space we derive a precise condition for the equivalence of the purity and the overlap-square of the correlated and non-correlated wave functions as the model system with harmonic interactions evolves in time. This equivalence holds only if the interparticle interactions are affected, while the confinement terms are unaffected within the stability range of the system. Under this condition we analyze various time-dependent measures of entanglement and demonstrate that, depending on the magnitude of the changes made in the Hamiltonian, periodic, logarithmically increasing or constant value behavior of the von Neumann entropy can occur.

  17. The Time-Dependent Structure of the Electron Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2009-01-01

    Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.

  18. The influence of oxidation time on the properties of oxidized zinc films

    NASA Astrophysics Data System (ADS)

    Rambu, A. P.

    2012-09-01

    The effect of oxidation time on the structural characteristics and electronic transport mechanism of zinc oxide thin films prepared by thermal oxidation, have been investigated. Zinc metallic films were deposited by thermal evaporation under vacuum, the subsequent oxidation of Zn films being carried out in open atmosphere. XRD and AFM analysis indicate that obtained films posses a polycrystalline structure, the crystallites having a preferential orientation. Structural analysis reveals that microstructure of the films (crystallite size, surface roughness, internal stress) is depending on the oxidation time of metallic films. The electrical behavior of ZnO films was investigated, during a heat treatment (two heating/cooling cycles). It was observed that after the first heating, the temperature dependences of electrical conductivity become reversible. Mott variable range hopping model was proposed to analyze the temperature dependence of the electrical conductivity, in low temperature ranges. Values of some characteristic parameters were calculated.

  19. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells.

    PubMed Central

    Marengo, J J; Hidalgo, C; Bull, R

    1998-01-01

    The calcium dependence of ryanodine-sensitive single calcium channels was studied after fusing with planar lipid bilayers sarcoendoplasmic reticulum vesicles isolated from excitable tissues. Native channels from mammalian or amphibian skeletal muscle displayed three different calcium dependencies, cardiac (C), mammalian skeletal (MS), and low fractional open times (low Po), as reported for channels from brain cortex. Native channels from cardiac muscle presented only the MS and C dependencies. Channels with the MS or low Po behaviors showed bell-shaped calcium dependencies, but the latter had fractional open times of <0.1 at all [Ca2+]. Channels with C calcium dependence were activated by [Ca2+] < 10 microM and were not inhibited by increasing cis [Ca2+] up to 0.5 mM. After oxidation with 2,2'-dithiodipyridine or thimerosal, channels with low Po or MS dependencies increased their activity. These channels modified their calcium dependencies sequentially, from low Po to MS and C, or from MS to C. Reduction with glutathione of channels with C dependence (native or oxidized) decreased their fractional open times in 0.5 mM cis [Ca2+], from near unity to 0.1-0.3. These results show that all native channels displayed at least two calcium dependencies regardless of their origin, and that these changed after treatment with redox reagents. PMID:9512024

  20. Prevalence of exercise dependence and other behavioral addictions among clients of a Parisian fitness room.

    PubMed

    Lejoyeux, Michel; Avril, Marine; Richoux, Charlotte; Embouazza, Houcine; Nivoli, Fabrizia

    2008-01-01

    Exercise dependence is an inadequate pattern of exercise leading to clinically significant negative consequences. Subjects present loss of control of their physical activity, tolerance, and withdrawal symptoms when they do not practice sport. We studied the prevalence of exercise dependence among clients of a Parisian fitness room. We also assessed alcohol and nicotine use disorders, 2 other "socially tolerated" behavioral addictions (compulsive buying and Internet addiction), and 2 disorders related to anxiety focused on the body (bulimia and hypochondria). All clients of the fitness room 18 years and older were invited to participate in the study. Three hundred subjects were included; 125 (42%) presented diagnostic criteria of exercise dependence. Unsurprisingly, exercise dependents spent more hours each day in the fitness center practicing (2.1 vs 1.5 hours per day). They went to the fitness center more often each week (3.5 vs 2.9 days per week). Exercise addicts smoked less; alcohol consumption was equivalent in both groups. Compulsive buying was significantly more frequent in exercise dependents (63% vs 38%), which means they scored higher in the compulsive buying scale (5.4 vs 4.1). Prevalence of hypochondria was equivalent in both groups, but scores in the Whiteley Index of Hypochondria were higher (4.1 vs 3) in the exercise-dependent group. Bulimia was significantly more frequent among exercise dependents (70% vs 47%), who also presented a higher number of bulimic episodes each week (2.5 vs 1.3). Subjects with exercise dependence spent more time on their computer each day (3.9 vs 2.4 hours per day). We found no difference regarding time spent using Internet, the number of e-mails sent or received, and their time at speaking on a cellular phone. Our results lead to systematically study the addictive relation to exercise among regular clients of the fitness rooms. Exercise addicts are exposed to negative consequences for their excess of physical activity. Exercise addiction is also associated to compulsive buying, bulimia, and, in a lesser extent, hypochondria.

Top