Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan
2006-08-15
The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less
On the time-dependent Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Jing, Jian; Zhang, Yu-Fei; Wang, Kang; Long, Zheng-Wen; Dong, Shi-Hai
2017-11-01
The Aharonov-Bohm effect in the background of a time-dependent vector potential is re-examined for both non-relativistic and relativistic cases. Based on the solutions to the Schrodinger and Dirac equations which contain the time-dependent magnetic vector potential, we find that contrary to the conclusions in a recent paper (Singleton and Vagenas 2013 [4]), the interference pattern will be altered with respect to time because of the time-dependent vector potential.
NASA Astrophysics Data System (ADS)
Li, Qiu-Yan; Wang, Shuang-Jin; Li, Zai-Dong
2014-06-01
We report the analytical nonautonomous soliton solutions (NSSs) for two-component Bose—Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can affect the velocity of NSS. The velocity shows the characteristic of both increasing and oscillation with time. A detailed analysis for the asymptotic behavior of NSSs demonstrates that the collision of two NSSs of each component is elastic.
Wave Functions for Time-Dependent Dirac Equation under GUP
NASA Astrophysics Data System (ADS)
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
Functional differentiability in time-dependent quantum mechanics.
Penz, Markus; Ruggenthaler, Michael
2015-03-28
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
NASA Astrophysics Data System (ADS)
Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.
2017-04-01
Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.
NASA Astrophysics Data System (ADS)
Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.
2011-11-01
In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.
NASA Astrophysics Data System (ADS)
Kurth, Stefan; Stefanucci, Gianluca
2018-06-01
We have recently put forward a steady-state density functional theory (i-DFT) to calculate the transport coefficients of quantum junctions. Within i-DFT it is possible to obtain the steady density on and the steady current through an interacting junction using a fictitious noninteracting junction subject to an effective gate and bias potential. In this work we extend i-DFT to the time domain for the single-impurity Anderson model. By a reverse engineering procedure we extract the exchange-correlation (xc) potential and xc bias at temperatures above the Kondo temperature T K. The derivation is based on a generalization of a recent paper by Dittmann et al. [N. Dittmann et al., Phys. Rev. Lett. 120, 157701 (2018)]. Interestingly the time-dependent (TD) i-DFT potentials depend on the system's history only through the first time-derivative of the density. We perform numerical simulations of the early transient current and investigate the role of the history dependence. We also empirically extend the history-dependent TD i-DFT potentials to temperatures below T K. For this purpose we use a recently proposed parametrization of the i-DFT potentials which yields highly accurate results in the steady state.
Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdougall, James, E-mail: jbm34@mail.fresnostate.edu; Singleton, Douglas, E-mail: dougs@csufresno.edu
2014-04-15
Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology ofmore » the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.« less
NASA Astrophysics Data System (ADS)
Finster, Felix; Murro, Simone; Röken, Christian
2016-07-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understandmore » dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.« less
Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential
NASA Technical Reports Server (NTRS)
Campbell, Joel
2009-01-01
The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yaqin; Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: dawesr@mst.edu, E-mail: hguo@unm.edu; Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026
2014-08-28
The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributionsmore » of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.« less
Exponential integrators in time-dependent density-functional calculations
NASA Astrophysics Data System (ADS)
Kidd, Daniel; Covington, Cody; Varga, Kálmán
2017-12-01
The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.
Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.
Albers, Christian; Westkott, Maren; Pawelzik, Klaus
2016-01-01
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.
Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity
Albers, Christian; Westkott, Maren; Pawelzik, Klaus
2016-01-01
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messud, J.; Dinh, P. M.; Suraud, Eric
2009-10-15
We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent 'generalized SIC-OEP'. A straightforward approximation, using the spatial localization of one set of orbitals, leads to the 'generalized SIC-Slater' formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.
NASA Astrophysics Data System (ADS)
Messud, J.; Dinh, P. M.; Reinhard, P.-G.; Suraud, Eric
2009-10-01
We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent “generalized SIC-OEP.” A straightforward approximation, using the spatial localization of one set of orbitals, leads to the “generalized SIC-Slater” formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.
NASA Astrophysics Data System (ADS)
Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.
2015-09-01
We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Preferential inhibition of Ih in rat trigeminal ganglion neurons by an organic blocker.
Janigro, D; Martenson, M E; Baumann, T K
1997-11-15
The potency and specificity of a novel organic Ih current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 microM DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 microM DK or external Cs+ (3 mM) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely Ih. The block of Ih by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 microM) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as Ih, we conclude that 10 microM DK can preferentially reduce Ih without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of Ih in neurons.
Li, Yuan; Jalil, Mansoor B. A.; Tan, S. G.; Zhao, W.; Bai, R.; Zhou, G. H.
2014-01-01
Time-periodic perturbation can be used to modify the transport properties of the surface states of topological insulators, specifically their chiral tunneling property. Using the scattering matrix method, we study the tunneling transmission of the surface states of a topological insulator under the influence of a time-dependent potential and finite gate bias voltage. It is found that perfect transmission is obtained for electrons which are injected normally into the time-periodic potential region in the absence of any bias voltage. However, this signature of Klein tunneling is destroyed when a bias voltage is applied, with the transmission probability of normally incident electrons decreasing with increasing gate bias voltage. Likewise, the overall conductance of the system decreases significantly when a gate bias voltage is applied. The characteristic left-handed helicity of the transmitted spin polarization is also broken by the finite gate bias voltage. In addition, the time-dependent potential modifies the large-angle transmission profile, which exhibits an oscillatory or resonance-like behavior. Finally, time-dependent transport modes (with oscillating potential in the THz frequency) can result in enhanced overall conductance, irrespective of the presence or absence of the gate bias voltage. PMID:24713634
Detecting Moving Targets by Use of Soliton Resonances
NASA Technical Reports Server (NTRS)
Zak, Michael; Kulikov, Igor
2003-01-01
A proposed method of detecting moving targets in scenes that include cluttered or noisy backgrounds is based on a soliton-resonance mathematical model. The model is derived from asymptotic solutions of the cubic Schroedinger equation for a one-dimensional system excited by a position-and-time-dependent externally applied potential. The cubic Schroedinger equation has general significance for time-dependent dispersive waves. It has been used to approximate several phenomena in classical as well as quantum physics, including modulated beams in nonlinear optics, and superfluids (in particular, Bose-Einstein condensates). In the proposed method, one would take advantage of resonant interactions between (1) a soliton excited by the position-and-time-dependent potential associated with a moving target and (2) eigen-solitons, which represent dispersive waves and are solutions of the cubic Schroedinger equation for a time-independent potential.
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J
2006-10-11
Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.
Exponential propagators for the Schrödinger equation with a time-dependent potential.
Bader, Philipp; Blanes, Sergio; Kopylov, Nikita
2018-06-28
We consider the numerical integration of the Schrödinger equation with a time-dependent Hamiltonian given as the sum of the kinetic energy and a time-dependent potential. Commutator-free (CF) propagators are exponential propagators that have shown to be highly efficient for general time-dependent Hamiltonians. We propose new CF propagators that are tailored for Hamiltonians of the said structure, showing a considerably improved performance. We obtain new fourth- and sixth-order CF propagators as well as a novel sixth-order propagator that incorporates a double commutator that only depends on coordinates, so this term can be considered as cost-free. The algorithms require the computation of the action of exponentials on a vector similar to the well-known exponential midpoint propagator, and this is carried out using the Lanczos method. We illustrate the performance of the new methods on several numerical examples.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-13
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Giesbertz, K J H
2015-08-07
A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.
NASA Astrophysics Data System (ADS)
Guérin, T.; Dean, D. S.
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F >Fc , whereas for F
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
Theory of ion-matrix-sheath dynamics
NASA Astrophysics Data System (ADS)
Kos, L.; Tskhakaya, D. D.
2018-01-01
The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.
O'Neil, Shawn T; Bump, Joseph K; Beyer, Dean E
2017-11-01
Understanding landscape patterns in mortality risk is crucial for promoting recovery of threatened and endangered species. Humans affect mortality risk in large carnivores such as wolves ( Canis lupus ), but spatiotemporally varying density dependence can significantly influence the landscape of survival. This potentially occurs when density varies spatially and risk is unevenly distributed. We quantified spatiotemporal sources of variation in survival rates of gray wolves ( C. lupus ) during a 21-year period of population recovery in the Upper Peninsula of Michigan, USA. We focused on mapping risk across time using Cox Proportional Hazards (CPH) models with time-dependent covariates, thus exploring a shifting mosaic of survival. Extended CPH models and time-dependent covariates revealed influences of seasonality, density dependence and experience, as well as individual-level factors and landscape predictors of risk. We used results to predict the shifting landscape of risk at the beginning, middle, and end of the wolf recovery time series. Survival rates varied spatially and declined over time. Long-term change was density-dependent, with landscape predictors such as agricultural land cover and edge densities contributing negatively to survival. Survival also varied seasonally and depended on individual experience, sex, and resident versus transient status. The shifting landscape of survival suggested that increasing density contributed to greater potential for human conflict and wolf mortality risk. Long-term spatial variation in key population vital rates is largely unquantified in many threatened, endangered, and recovering species. Variation in risk may indicate potential for source-sink population dynamics, especially where individuals preemptively occupy suitable territories, which forces new individuals into riskier habitat types as density increases. We encourage managers to explore relationships between adult survival and localized changes in population density. Density-dependent risk maps can identify increasing conflict areas or potential habitat sinks which may persist due to high recruitment in adjacent habitats.
Guérin, T; Dean, D S
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F. The system is studied in the region where the force is close to the critical value F_{c} at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F>F_{c}, whereas for F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curchod, Basile F. E.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de; Gross, E. K. U.
Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrastmore » to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.« less
NASA Astrophysics Data System (ADS)
Mosquera, Martín A.
2017-10-01
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.
Dynamic thresholds and a summary ROC curve: Assessing prognostic accuracy of longitudinal markers.
Saha-Chaudhuri, P; Heagerty, P J
2018-04-19
Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention strategies. Since key medical decisions can be made on the basis of a longitudinal biomarker, it is important to evaluate the potential accuracy associated with longitudinal monitoring. To characterize the overall accuracy of a time-dependent marker, we introduce a summary ROC curve that displays the overall sensitivity associated with a time-dependent threshold that controls time-varying specificity. The proposed statistical methods are similar to concepts considered in disease screening, yet our methods are novel in choosing a potentially time-dependent threshold to define a positive test, and our methods allow time-specific control of the false-positive rate. The proposed summary ROC curve is a natural averaging of time-dependent incident/dynamic ROC curves and therefore provides a single summary of net error rates that can be achieved in the longitudinal setting. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kengne, E.; Lakhssassi, A.; Liu, W. M.
2017-08-01
A lossless nonlinear L C transmission network is considered. With the use of the reductive perturbation method in the semidiscrete limit, we show that the dynamics of matter-wave solitons in the network can be modeled by a one-dimensional Gross-Pitaevskii (GP) equation with a time-dependent linear potential in the presence of a chemical potential. An explicit expression for the growth rate of a purely growing modulational instability (MI) is presented and analyzed. We find that the potential parameter of the GP equation of the system does not affect the different regions of the MI. Neglecting the chemical potential in the GP equation, we derive exact analytical solutions which describe the propagation of both bright and dark solitary waves on continuous-wave (cw) backgrounds. Using the found exact analytical solutions of the GP equation, we investigate numerically the transmission of both bright and dark solitary voltage signals in the network. Our numerical studies show that the amplitude of a bright solitary voltage signal and the depth of a dark solitary voltage signal as well as their width, their motion, and their behavior depend on (i) the propagation frequencies, (ii) the potential parameter, and (iii) the amplitude of the cw background. The GP equation derived in this paper with a time-dependent linear potential opens up different ideas that may be of considerable theoretical interest for the management of matter-wave solitons in nonlinear L C transmission networks.
Ryabov, Artem; Berestneva, Ekaterina; Holubec, Viktor
2015-09-21
The paper addresses Brownian motion in the logarithmic potential with time-dependent strength, U(x, t) = g(t)log(x), subject to the absorbing boundary at the origin of coordinates. Such model can represent kinetics of diffusion-controlled reactions of charged molecules or escape of Brownian particles over a time-dependent entropic barrier at the end of a biological pore. We present a simple asymptotic theory which yields the long-time behavior of both the survival probability (first-passage properties) and the moments of the particle position (dynamics). The asymptotic survival probability, i.e., the probability that the particle will not hit the origin before a given time, is a functional of the potential strength. As such, it exhibits a rather varied behavior for different functions g(t). The latter can be grouped into three classes according to the regime of the asymptotic decay of the survival probability. We distinguish 1. the regular (power-law decay), 2. the marginal (power law times a slow function of time), and 3. the regime of enhanced absorption (decay faster than the power law, e.g., exponential). Results of the asymptotic theory show good agreement with numerical simulations.
NASA Astrophysics Data System (ADS)
Blender, R.
2009-04-01
An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.
NASA Astrophysics Data System (ADS)
Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.
2018-06-01
The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.
Adnan, Liyana Hazwani Mohd; Bakar, Nor Hidayah Abu; Mohamad, Nasir
2014-01-01
Methadone is widely being used for opioid substitution therapy. However, the administration of methadone to opioid dependent individual is frequently accompanied by withdrawal syndrome and chemical dependency develops. Other than that, it is also difficult to retain patients in the treatment programme making their retention rates are decreasing over time. This article is written to higlights the potential use of prophetic medicines, Nigella sativa, as a supplement for opioid dependent receiving methadone. It focuses on the potential role of N. sativa and its major active compound, Thymoquinone (TQ) as a calcium channel blocking agent to reduce withdrawal syndrome and opioid dependency. PMID:25859295
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Anirban; Hunt, Katharine L. C.
In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gaugemore » dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term H{sub m} and a field term H{sub f}, and show that both H{sub m} and H{sub f} have gauge-independent expectation values. Any gauge may be chosen for the calculations; but following our partitioning, the expectation values of the molecular Hamiltonian are identical to those obtained directly in the Coulomb gauge. As a corollary of this result, the power absorbed by a molecule from a time-dependent, applied electromagnetic field is equal to the time derivative of the non-adiabatic term in the molecular energy, in any gauge.« less
Violation of the zero-force theorem in the time-dependent Krieger-Li-Iafrate approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan; Leeuwen, Robert van
2007-05-15
We demonstrate that the time-dependent Krieger-Li-Iafrate approximation in combination with the exchange-only functional violates the zero-force theorem. By analyzing the time-dependent dipole moment of Na{sub 5} and Na{sub 9}{sup +}, we furthermore show that this can lead to an unphysical self-excitation of the system depending on the system properties and the excitation strength. Analytical aspects, especially the connection between the zero-force theorem and the generalized-translation invariance of the potential, are discussed.
NASA Astrophysics Data System (ADS)
Atanasov, Victor
2017-07-01
We extend the superconductor's free energy to include an interaction of the order parameter with the curvature of space-time. This interaction leads to geometry dependent coherence length and Ginzburg-Landau parameter which suggests that the curvature of space-time can change the superconductor's type. The curvature of space-time doesn't affect the ideal diamagnetism of the superconductor but acts as chemical potential. In a particular circumstance, the geometric field becomes order-parameter dependent, therefore the superconductor's order parameter dynamics affects the curvature of space-time and electrical or internal quantum mechanical energy can be channelled into the curvature of space-time. Experimental consequences are discussed.
Jones, Scott L; To, Minh-Son; Stuart, Greg J
2017-10-23
Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.
Single and double multiphoton ionization of Li and Be atoms by strong laser fields
NASA Astrophysics Data System (ADS)
Telnov, Dmitry; Heslar, John; Chu, Shih-I.
2011-05-01
The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Volkov basis for simulation of interaction of strong laser pulses and solids
NASA Astrophysics Data System (ADS)
Kidd, Daniel; Covington, Cody; Li, Yonghui; Varga, Kálmán
2018-01-01
An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches. The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix elements with a simple time-dependent phase factor.
Airy pulse shaping using time-dependent power-law potentials
NASA Astrophysics Data System (ADS)
Han, Tianwen; Chen, Hao; Qin, Chengzhi; Li, Wenwan; Wang, Bing; Lu, Peixiang
2018-06-01
We investigate the temporal and spectral evolutions of finite-energy Airy pulses in the presence of power-law optical potentials. The potentials are generated by the time-dependent pumped light, which propagates together with the Airy pulses in a highly nonlinear optical fiber. We show that the intrinsic acceleration of Airy pulses can be modified by an external force that stems from a linear potential, and hence unidirectional frequency shift can be realized. When a triangle potential is employed, the pulse will exhibit self-splitting both in temporal and spectral domains. Additionally, as a parabolic potential is utilized, both the temporal waveform and frequency spectrum of the Airy pulse will exchange alternately between the Airy and Gaussian profiles. By using higher-order power-law potentials, we also realize both revival and antirevival effects for the Airy pulses. The study may find wide applications in pulse reshaping and spectral-temporal imaging for both optical communication and signal processing.
Ghatpande, A S; Rao, S; Sikdar, S K
2001-01-01
Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247
Viscoelastic subdiffusion: from anomalous to normal.
Goychuk, Igor
2009-10-01
We study viscoelastic subdiffusion in bistable and periodic potentials within the generalized Langevin equation approach. Our results justify the (ultra)slow fluctuating rate view of the corresponding bistable non-Markovian dynamics which displays bursting and anticorrelation of the residence times in two potential wells. The transition kinetics is asymptotically stretched exponential when the potential barrier V0 several times exceeds thermal energy k(B)T [V(0) approximately (2-10)k(B)T] and it cannot be described by the non-Markovian rate theory (NMRT). The well-known NMRT result approximates, however, ever better with the increasing barrier height, the most probable logarithm of the residence times. Moreover, the rate description is gradually restored when the barrier height exceeds a fuzzy borderline which depends on the power-law exponent of free subdiffusion alpha . Such a potential-free subdiffusion is ergodic. Surprisingly, in periodic potentials it is not sensitive to the barrier height in the long time asymptotic limit. However, the transient to this asymptotic regime is extremally slow and it does profoundly depend on the barrier height. The time scale of such subdiffusion can exceed the mean residence time in a potential well or in a finite spatial domain by many orders of magnitude. All these features are in sharp contrast with an alternative subdiffusion mechanism involving jumps among traps with the divergent mean residence time in these traps.
NASA Astrophysics Data System (ADS)
Ndem Ikot, Akpan; Akpan, Ita O.; Abbey, T. M.; Hassanabadi, Hassan
2016-05-01
We propose improved ring shaped like potential of the form, V(r, θ) = V(r) + (ħ2/2Mr2)[(β sin2 θ + γ cos2 θ + λ) / sin θ cos θ]2 and its exact solutions are presented via the Nikiforov-Uvarov method. The angle dependent part V(θ) = (ħ2 / 2 Mr2)[(β sin2 θ + γ cos2 θ + λ) / sin θ cos θ]2, which is reported for the first time embodied the novel angle dependent (NAD) potential and harmonic novel angle dependent potential (HNAD) as special cases. We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.
Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R
2016-09-28
A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.
Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes
NASA Astrophysics Data System (ADS)
Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.
2017-12-01
We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.
Self-potential monitoring of a thermal pulse advecting through a preferential flow path
NASA Astrophysics Data System (ADS)
Ikard, S. J.; Revil, A.
2014-11-01
There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes experience temperature changes.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2012-06-01
We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.
Modeling Time-Dependent Association in Longitudinal Data: A Lag as Moderator Approach
ERIC Educational Resources Information Center
Selig, James P.; Preacher, Kristopher J.; Little, Todd D.
2012-01-01
We describe a straightforward, yet novel, approach to examine time-dependent association between variables. The approach relies on a measurement-lag research design in conjunction with statistical interaction models. We base arguments in favor of this approach on the potential for better understanding the associations between variables by…
Reconstruction of the action potential of ventricular myocardial fibres
Beeler, G. W.; Reuter, H.
1977-01-01
1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method. 2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model. 3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model. 4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model. 5. Possible inadequacies and shortcomings of the model are discussed. PMID:874889
Optimised effective potential for ground states, excited states, and time-dependent phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, E.K.U.
1996-12-31
(1) The optimized effective potential method is a variant of the traditional Kohn-Sham scheme. In this variant, the exchange-correlation energy E{sub xc} is an explicit functional of single-particle orbitals. The exchange-correlation potential, given as usual by the functional derivative v{sub xc} = {delta}E{sub xc}/{delta}{rho}, then satisfies as integral equation involving the single-particle orbitals. This integral equation in solved semi-analytically using a scheme recently proposed by Krieger, Li and Iafrate. If the exact (Fock) exchange-energy functional is employed together with the Colle-Salvetti orbital functional for the correlation energy, the mean absolute deviation of the resulting ground-state energies from the exact nonrelativisticmore » values is CT mH for the first-row atoms, as compared to 4.5 mH in a state-of-the-art CI calculation. The proposed scheme is thus significantly more accurate than the conventional Kohn-Sham method while the numerical effort involved is about the same as for an ordinary Hanree-Fock calculation. (2) A time-dependent generalization of the optimized-potential method is presented and applied to the linear-response regime. Since time-dependent density functional theory leads to a formally exact representation of the frequency-dependent linear density response and since the latter, as a function of frequency, has poles at the excitation energies of the fully interacting system, the formalism is suitable for the calculation of excitation energies. A simple additive correction to the Kohn-Sham single-particle excitation energies will be deduced and first results for atomic and molecular singlet and triplet excitation energies will be presented. (3) Beyond the regime of linear response, the time-dependent optimized-potential method is employed to describe atoms in strong emtosecond laser pulses. Ionization yields and harmonic spectra will be presented and compared with experimental data.« less
Levic, Snezana; Lv, Ping; Yamoah, Ebenezer N
2011-01-01
Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+) current that regulates patterning of action potentials is I(A). This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A) are not normally classified as Ca(2+)-dependent, we demonstrate that throughout the development of chicken hair cells, I(A) is greatly reduced by acute alterations of intracellular Ca(2+). As determinants of spike timing and firing frequency, intracellular Ca(2+) buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A) are tightly regulated by intracellular Ca(2+). Such feedback mechanism between the functional expression of I(A) and intracellular Ca(2+) may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea. © 2011 Levic et al.
Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials
NASA Astrophysics Data System (ADS)
Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele
2018-04-01
We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.
Ozone depletion and chlorine loading potentials
NASA Technical Reports Server (NTRS)
Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra
1991-01-01
The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.
Rotating field mass and velocity analyzer
NASA Technical Reports Server (NTRS)
Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)
1998-01-01
A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.
Subsystem real-time time dependent density functional theory.
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-21
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
M-currents and other potassium currents in bullfrog sympathetic neurones
Adams, P. R.; Brown, D. A.; Constanti, A.
1982-01-01
1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K+) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (IK) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (IC) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (IA) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K+ current, the M-current (IM). 2. IM was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance GM showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (ḠM) of 84±14 (S.E.M.) nS per neurone. The voltage sensitivity of GM could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle. 3. IM activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at ≃ 150 ms at -35 mV at 22 °C. 4. Instantaneous current—voltage (I/V) curves were approximately linear in the presence of IM, suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of IM. 5. It is suggested that IM exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation. PMID:6294290
The Time-Dependent Structure of the Electron Reconnection Layer
NASA Technical Reports Server (NTRS)
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2009-01-01
Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.
Nonequilibrium Steady State Generated by a Moving Defect: The Supersonic Threshold
NASA Astrophysics Data System (ADS)
Bastianello, Alvise; De Luca, Andrea
2018-02-01
We consider the dynamics of a system of free fermions on a 1D lattice in the presence of a defect moving at constant velocity. The defect has the form of a localized time-dependent variation of the chemical potential and induces at long times a nonequilibrium steady state (NESS), which spreads around the defect. We present a general formulation that allows recasting the time-dependent protocol in a scattering problem on a static potential. We obtain a complete characterization of the NESS. In particular, we show a strong dependence on the defect velocity and the existence of a sharp threshold when such velocity exceeds the speed of sound. Beyond this value, the NESS is not produced and, remarkably, the defect travels without significantly perturbing the system. We present an exact solution for a δ -like defect traveling with an arbitrary velocity and we develop a semiclassical approximation that provides accurate results for smooth defects.
NASA Technical Reports Server (NTRS)
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
Postextrasystolic potentiation and contractile reserve: requirements and restrictions.
Lust, R M; Lutherer, L O; Gardner, M E; Cooper, M W
1982-12-01
These studies were conducted to examine the basic characteristics of postextrasystolic potentiation (PESP) and the relationship of loading effects to PESP. Measurements of left ventricular (LV) and aortic pressures, the rate of pressure rise, and echocardiographically determined LV dimensions were made in anesthetized open-chest dogs. The hearts were paced, and timed extrasystoles were introduced that were followed by postextrasystoles (PES). PES's were elicited after an interval equal to either a full compensatory pause or a time when the diastolic properties of the LV could not be distinguished from control (isolength). Potentiation of contraction for the PES's introduced after an isolength pause was dependent on both the heart rate and the extrasystolic interval, whereas the PES's that occurred after a full pause showed no dependence on either of these intervals. PESP elicited during the isolength period was not dependent on either preload and afterload. It is concluded that PESP depends on the combination of heart rate and extrasystolic and postextrasystolic intervals. Further, PESP may be inaccurate in assessing contractile reserve unless the heart rate and extrasystolic interval are known and the PES is introduced after an isolength pause.
Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.
Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn; Ditlevsen, Susanne
2011-11-01
Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein-Uhlenbeck process is popular to describe the stochastic fluctuations in the membrane potential of a neuron, but also other models like the square-root model or models with a non-linear drift are sometimes applied. Data that can be described by such models have to be stationary and thus, the simple models can only be applied over short time windows. However, experimental data show varying time constants, state dependent noise, a graded firing threshold and time-inhomogeneous input. In the present study we build a jump diffusion model that incorporates these features, and introduce a firing mechanism with a state dependent intensity. In addition, we suggest statistical methods to estimate all unknown quantities and apply these to analyze turtle motoneuron membrane potentials. Finally, simulated and real data are compared and discussed. We find that a square-root diffusion describes the data much better than an Ornstein-Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential.
Investigating the time-dependent zeta potential of wood surfaces.
Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin
2018-05-15
This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-03-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Modelling particles moving in a potential field with pairwise interactions and an application
D. R. Brillinger; Haiganoush Preisler; M. J. Wisdom
2011-01-01
Motions of particles in fields characterized by real-valued potential functions, are considered. Three particular expressions for potential functions are studied. One, U, depends on the ith particleâs location, ri(t) at times t
Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2017-08-14
In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.
NASA Astrophysics Data System (ADS)
Vaccaro, S. R.
2011-09-01
The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.
NASA Astrophysics Data System (ADS)
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.
2012-06-01
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L
2012-06-13
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
Theory of slightly fluctuating ratchets
NASA Astrophysics Data System (ADS)
Rozenbaum, V. M.; Shapochkina, I. V.; Lin, S. H.; Trakhtenberg, L. I.
2017-04-01
We consider a Brownian particle moving in a slightly fluctuating potential. Using the perturbation theory on small potential fluctuations, we derive a general analytical expression for the average particle velocity valid for both flashing and rocking ratchets with arbitrary, stochastic or deterministic, time dependence of potential energy fluctuations. The result is determined by the Green's function for diffusion in the time-independent part of the potential and by the features of correlations in the fluctuating part of the potential. The generality of the result allows describing complex ratchet systems with competing characteristic times; these systems are exemplified by the model of a Brownian photomotor with relaxation processes of finite duration.
Transport in a capacitive ultracold atomtronic circuit
NASA Astrophysics Data System (ADS)
Eller, Benjamin; Warren, Kayla; Eckel, Stephen; Clark, Charles; Edwards, Mark
2016-05-01
A recent NIST experiment studied the transport of a gaseous Bose-Einstein condensate (BEC) confined in an atomtronic ``dumbbell'' circuit. The optically created condensate potential consisted of a tight harmonic potential in the vertical direction confining the BEC to a horizontial plane. The horizontal potential consisted of two cylindrical wells separated by a channel produced by a harmonic oscillator potential transverse to the line joining the wells. The BEC, formed in the ``source'' well, was released to flow toward the ``drain'' well. We modeled this system with the Gross-Pitaevskii (GP) equation and found good agreement with the data provided that the channel potential is carefully reproduced. The GP simulations show behavior, not detectable in the experiment, that atoms can jump out of the dumbbell area after filling up the drain well. We describe the GP evolution of this system with a model RCL circuit having a time-dependent resistance. This resistance exhibits a strong connection to the time-dependence of the atom loss in the drain. We also studied and present the dependence of the R and L parameters of this model circuit on the channel shape. Supported by NSF Grant PHY-1413768 and ARO Atomtronics MURI.
QPROP: A Schrödinger-solver for intense laser atom interaction
NASA Astrophysics Data System (ADS)
Bauer, Dieter; Koval, Peter
2006-03-01
The QPROP package is presented. QPROP has been developed to study laser-atom interaction in the nonperturbative regime where nonlinear phenomena such as above-threshold ionization, high order harmonic generation, and dynamic stabilization are known to occur. In the nonrelativistic regime and within the single active electron approximation, these phenomena can be studied with QPROP in the most rigorous way by solving the time-dependent Schrödinger equation in three spatial dimensions. Because QPROP is optimized for the study of quantum systems that are spherically symmetric in their initial, unperturbed configuration, all wavefunctions are expanded in spherical harmonics. Time-propagation of the wavefunctions is performed using a split-operator approach. Photoelectron spectra are calculated employing a window-operator technique. Besides the solution of the time-dependent Schrödinger equation in single active electron approximation, QPROP allows to study many-electron systems via the solution of the time-dependent Kohn-Sham equations. Program summaryProgram title:QPROP Catalogue number:ADXB Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXB Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer on which program has been tested:PC Pentium IV, Athlon Operating system:Linux Program language used:C++ Memory required to execute with typical data:Memory requirements depend on the number of propagated orbitals and on the size of the orbitals. For instance, time-propagation of a hydrogenic wavefunction in the perturbative regime requires about 64 KB RAM (4 radial orbitals with 1000 grid points). Propagation in the strongly nonperturbative regime providing energy spectra up to high energies may need 60 radial orbitals, each with 30000 grid points, i.e. about 30 MB. Examples are given in the article. No. of bits in a word:Real and complex valued numbers of double precision are used No. of lines in distributed program, including test data, etc.:69 995 No. of bytes in distributed program, including test data, etc.: 2 927 567 Peripheral used:Disk for input-output, terminal for interaction with the user CPU time required to execute test data:Execution time depends on the size of the propagated orbitals and the number of time-steps Distribution format:tar.gz Nature of the physical problem:Atoms put into the strong field of modern lasers display a wealth of novel phenomena that are not accessible to conventional perturbation theory where the external field is considered small as compared to inneratomic forces. Hence, the full ab initio solution of the time-dependent Schrödinger equation is desirable but in full dimensionality only feasible for no more than two (active) electrons. If many-electron effects come into play or effective ground state potentials are needed, (time-dependent) density functional theory may be employed. QPROP aims at providing tools for (i) the time-propagation of the wavefunction according to the time-dependent Schrödinger equation, (ii) the time-propagation of Kohn-Sham orbitals according to the time-dependent Kohn-Sham equations, and (iii) the energy-analysis of the final one-electron wavefunction (or the Kohn-Sham orbitals). Method of solution:An expansion of the wavefunction in spherical harmonics leads to a coupled set of equations for the radial wavefunctions. These radial wavefunctions are propagated using a split-operator technique and the Crank-Nicolson approximation for the short-time propagator. The initial ground state is obtained via imaginary time-propagation for spherically symmetric (but otherwise arbitrary) effective potentials. Excited states can be obtained through the combination of imaginary time-propagation and orthogonalization. For the Kohn-Sham scheme a multipole expansion of the effective potential is employed. Wavefunctions can be analyzed using the window-operator technique, facilitating the calculation of electron spectra, either angular-resolved or integrated Restrictions onto the complexity of the problem:The coupling of the atom to the external field is treated in dipole approximation. The time-dependent Schrödinger solver is restricted to the treatment of a single active electron. As concerns the time-dependent density functional mode of QPROP, the Hartree-potential (accounting for the classical electron-electron repulsion) is expanded up to the quadrupole. Only the monopole term of the Krieger-Li-Iafrate exchange potential is currently implemented. As in any nontrivial optimization problem, convergence to the optimal many-electron state (i.e. the ground state) is not automatically guaranteed External routines/libraries used:The program uses the well established libraries BLAS, LAPACK, and F2C
Mizuno, Yosuke; Nakamura, Kentaro
2010-12-01
We investigated the dependences of Brillouin frequency shift (BFS) on strain and temperature in a perfluorinated graded-index polymer optical fiber (PFGI-POF) at 1.55 μm wavelength. They showed negative dependences with coefficients of -121.8 MHz/% and -4.09 MHz/K, respectively, which are -0.2 and -3.5 times as large as those in silica fibers. These unique BFS dependences indicate that the Brillouin scattering in PFGI-POFs has a big potential for strain-insensitive high-accuracy temperature sensing.
Wood, J L; Moreton, R B
1978-12-01
1. The conventional, two-electrode method for measuring potential difference across an epithelium is subject to error due to potential gradients caused by current flow in the bathing medium. Mathematical analysis shows that the error in measuring short-circuit current is proportional to the resistivity of the bathing medium and to the separation of the two recording electrodes. It is particularly serious for the insect larval midgut, where the resistivity of the medium is high, and that of the tissue is low. 2. A system has been devised, which uses a third recording electrode to monitor directly the potential gradient in the bathing medium. By suitable electrical connexions, the gradient can be automatically compensated, leaving a residual error which depends on the thickness of the tissue, but not on the electrode separation. Because the thicknesses of most epithelia are smaller than the smallest practical electrode spacing, this error is smaller than that inherent in a two-electrode system. 3. Since voltage-gradients are automatically compensated, it is possible to obtain continuous readings of potential and current. A 'voltage-clamp' circuit is described, which allows the time-course of the short-circuit current to be studied. 4.The three-electrode system has been used to study the larval midgut of Hyalophora cecropia. The average results from five experiments were: initial potential difference (open-circuit): 98+/-11 mV (S.E.M.); short-circuit current at time 60 min: 498+/-160 microA cm=2; 'steady-state' resistance at 60 min: 150+/-26 omega cm2. The current is equivalent to a net potassium transport of 18.6 mu-equiv cm-2 h-1. 5. The electrical parameters of the midgut change rapidly with time. The potential difference decays with a half-time of about 158 min, the resistance increases with a half-time of about 16 min, and the short-circuit current decays as the sum of two exponential terms, with half-times of about 16 and 158 min respectively. In addition, potential and short-circuit current show transient responses to step changes. 6. The properties of the midgut are compared with those of other transporting epithelia, and their dependence on the degree of folding of the preparation is discussed. Their time-dependence is discussed in the context of changes in potassium content of the tissue, and the implications for measurements depending on the assumption of a steady state are outlined.
NASA Astrophysics Data System (ADS)
Xie, Huijuan; Gong, Yubing; Wang, Baoying
In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.
Verhoog, Matthijs B; Mansvelder, Huibert D
2011-01-01
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create "timing" windows during which particular timing rules lead to synaptic changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bean, Bruce Palmer
The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in themore » hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.« less
Using NIAM to capture time dependencies in a domain of discourse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, S.D.
1994-07-01
This paper addresses the issues surrounding the use of NIAM to capture time dependencies in a domain of discourse. The NIAM concepts that support capturing time dependencies are in the event and process portions of the NIAM metamodel, which are the portions most poorly supported by a well-established methodology. This lack of methodological support is a potentially serious handicap in any attempt to apply NIAM to a domain of discourse in which time dependencies are a central issue. However, the capability that NIAM provides for validating and verifying the elementary facts in the domain may reduce the magnitude of themore » event/process-specification task to a level at which it could be effectively handled even without strong methodological support.« less
NASA Astrophysics Data System (ADS)
Zander, C.; Plastino, A. R.; Díaz-Alonso, J.
2015-11-01
We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.
Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates
Evans, R. C.; Maniar, Y. M.
2013-01-01
The striatum of the basal ganglia demonstrates distinctive upstate and downstate membrane potential oscillations during slow-wave sleep and under anesthetic. The upstates generate calcium transients in the dendrites, and the amplitude of these calcium transients depends strongly on the timing of the action potential (AP) within the upstate. Calcium is essential for synaptic plasticity in the striatum, and these large calcium transients during the upstates may control which synapses undergo plastic changes. To investigate the mechanisms that underlie the relationship between calcium and AP timing, we have developed a realistic biophysical model of a medium spiny neuron (MSN). We have implemented sophisticated calcium dynamics including calcium diffusion, buffering, and pump extrusion, which accurately replicate published data. Using this model, we found that either the slow inactivation of dendritic sodium channels (NaSI) or the calcium inactivation of voltage-gated calcium channels (CDI) can cause high calcium corresponding to early APs and lower calcium corresponding to later APs. We found that only CDI can account for the experimental observation that sensitivity to AP timing is dependent on NMDA receptors. Additional simulations demonstrated a mechanism by which MSNs can dynamically modulate their sensitivity to AP timing and show that sensitivity to specifically timed pre- and postsynaptic pairings (as in spike timing-dependent plasticity protocols) is altered by the timing of the pairing within the upstate. These findings have implications for synaptic plasticity in vivo during sleep when the upstate-downstate pattern is prominent in the striatum. PMID:23843436
Calibration and temperature correction of heat dissipation matric potential sensors
Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.
2002-01-01
This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.
NASA Astrophysics Data System (ADS)
Lu, Tiao; Cai, Wei
2008-10-01
In this paper, we propose a high order Fourier spectral-discontinuous Galerkin method for time-dependent Schrödinger-Poisson equations in 3-D spaces. The Fourier spectral Galerkin method is used for the two periodic transverse directions and a high order discontinuous Galerkin method for the longitudinal propagation direction. Such a combination results in a diagonal form for the differential operators along the transverse directions and a flexible method to handle the discontinuous potentials present in quantum heterojunction and supperlattice structures. As the derivative matrices are required for various time integration schemes such as the exponential time differencing and Crank Nicholson methods, explicit derivative matrices of the discontinuous Galerkin method of various orders are derived. Numerical results, using the proposed method with various time integration schemes, are provided to validate the method.
Time-dependent local potential in a Tomonaga-Luttinger liquid
NASA Astrophysics Data System (ADS)
Kamar, Naushad Ahmad; Giamarchi, Thierry
2017-12-01
We study the energy deposition in a one-dimensional interacting quantum system with a pointlike potential modulated in amplitude. The pointlike potential at position x =0 has a constant part and a small oscillation in time with a frequency ω . We use bosonization, renormalization group, and linear response theory to calculate the corresponding energy deposition. It exhibits a power law behavior as a function of the frequency that reflects the Tomonaga-Luttinger liquid (TLL) nature of the system. Depending on the interactions in the system, characterized by the TLL parameter K of the system, a crossover between weak and strong coupling for the backscattering due to the potential is possible. We compute the frequency scale ω*, at which such crossover exists. We find that the energy deposition due to the backscattering shows different exponents for K >1 and K <1 . We discuss possible experimental consequences, in the context of cold atomic gases, of our theoretical results.
Psychological Time and Sociology: A Research Agenda.
ERIC Educational Resources Information Center
Hogan, H. Wayne
1979-01-01
Psychological time is hypothesized as potentially being both an independent and a dependent dimension associated with such sociological and psychological phenomena as social change, environmental design, personal space, esthetics, and color considerations. (Author)
Time-dependent spin-density-functional-theory description of He+-He collisions
NASA Astrophysics Data System (ADS)
Baxter, Matthew; Kirchner, Tom; Engel, Eberhard
2017-09-01
Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.
Chéreau, Ronan; Saraceno, G Ezequiel; Angibaud, Julie; Cattaert, Daniel; Nägerl, U Valentin
2017-02-07
Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Arnold, Steven M.; Al-Zoubi, Nasser R.
2003-01-01
The influence of material time dependency and anisotropy in the context of two specific flywheel designs-preload and multi-directional composite (MDC)--is investigated. In particular, we focus on the following aspects: 1) geometric constraints, 2) material constraints, 3) loading type, and 4) the fundamental character of the time-dependent response, i.e., reversible or irreversible. The bulk of the results presented were obtained using a composite (PMC IM7/8552 at 135 C) material system. The material was characterized using a general multimechanism hereditary (viscoelastoplastic) model. As a general conclusion, the results have clearly shown that both the preload and the MDC rotor designs are significantly affected by time-dependent material behavior, which may impact the state of rotor balance and potentially reduce its operating life. In view of the results of the parametric studies and predictions made in the present study, the need for actual experimentation focusing on the time-dependent behavior of full-scale flywheel rotors is self-evident.
Representation of magnetic fields in space
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.
NASA Astrophysics Data System (ADS)
Kurzweil, Yair; Head-Gordon, Martin
2009-07-01
We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzweil, Yair; Head-Gordon, Martin
2009-07-15
We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchangemore » (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.« less
ERIC Educational Resources Information Center
Li, Qin; Burrell, Brian D.
2011-01-01
Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We…
A new technique for observationally derived boundary conditions for space weather
NASA Astrophysics Data System (ADS)
Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson
2018-04-01
Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a number of technical and scientific challenges that still need to be addressed. Nevertheless, we illustrate that coupling quasi-static and MHD simulations in this way can significantly reduce the computational time required to produce realistic space weather boundary conditions.
ERIC Educational Resources Information Center
Matteucci, G.
2007-01-01
In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…
Hsu, Chiu-Hsieh; Li, Yisheng; Long, Qi; Zhao, Qiuhong; Lance, Peter
2011-01-01
In colorectal polyp prevention trials, estimation of the rate of recurrence of adenomas at the end of the trial may be complicated by dependent censoring, that is, time to follow-up colonoscopy and dropout may be dependent on time to recurrence. Assuming that the auxiliary variables capture the dependence between recurrence and censoring times, we propose to fit two working models with the auxiliary variables as covariates to define risk groups and then extend an existing weighted logistic regression method for independent censoring to each risk group to accommodate potential dependent censoring. In a simulation study, we show that the proposed method results in both a gain in efficiency and reduction in bias for estimating the recurrence rate. We illustrate the methodology by analyzing a recurrent adenoma dataset from a colorectal polyp prevention trial. PMID:22065985
Delay time in a single barrier for a movable quantum shutter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Alberto
2010-05-15
The transient solution and delay time for a {delta} potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value {Delta}t{sub sat} in the limit of very short distances, which represents the maximum delay produced by the potential barrier nearmore » the interaction region. The phase time {tau}{sub {theta},} on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.« less
NASA Astrophysics Data System (ADS)
Ben-Asher, Anael; Moiseyev, Nimrod
2017-05-01
The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.
Ben-Asher, Anael; Moiseyev, Nimrod
2017-05-28
The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν=0→ν≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H 2 - in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H 2 - is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H 2 - with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.
NASA Astrophysics Data System (ADS)
Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.
2018-02-01
The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.
Phadnis, Milind A.; Shireman, Theresa I.; Wetmore, James B.; Rigler, Sally K.; Zhou, Xinhua; Spertus, John A.; Ellerbeck, Edward F.; Mahnken, Jonathan D.
2014-01-01
In a population of chronic dialysis patients with an extensive burden of cardiovascular disease, estimation of the effectiveness of cardioprotective medication in literature is based on calculation of a hazard ratio comparing hazard of mortality for two groups (with or without drug exposure) measured at a single point in time or through the cumulative metric of proportion of days covered (PDC) on medication. Though both approaches can be modeled in a time-dependent manner using a Cox regression model, we propose a more complete time-dependent metric for evaluating cardioprotective medication efficacy. We consider that drug effectiveness is potentially the result of interactions between three time-dependent covariate measures, current drug usage status (ON versus OFF), proportion of cumulative exposure to drug at a given point in time, and the patient’s switching behavior between taking and not taking the medication. We show that modeling of all three of these time-dependent measures illustrates more clearly how varying patterns of drug exposure affect drug effectiveness, which could remain obscured when modeled by the more standard single time-dependent covariate approaches. We propose that understanding the nature and directionality of these interactions will help the biopharmaceutical industry in better estimating drug efficacy. PMID:25343005
Phadnis, Milind A; Shireman, Theresa I; Wetmore, James B; Rigler, Sally K; Zhou, Xinhua; Spertus, John A; Ellerbeck, Edward F; Mahnken, Jonathan D
2014-01-01
In a population of chronic dialysis patients with an extensive burden of cardiovascular disease, estimation of the effectiveness of cardioprotective medication in literature is based on calculation of a hazard ratio comparing hazard of mortality for two groups (with or without drug exposure) measured at a single point in time or through the cumulative metric of proportion of days covered (PDC) on medication. Though both approaches can be modeled in a time-dependent manner using a Cox regression model, we propose a more complete time-dependent metric for evaluating cardioprotective medication efficacy. We consider that drug effectiveness is potentially the result of interactions between three time-dependent covariate measures, current drug usage status (ON versus OFF), proportion of cumulative exposure to drug at a given point in time, and the patient's switching behavior between taking and not taking the medication. We show that modeling of all three of these time-dependent measures illustrates more clearly how varying patterns of drug exposure affect drug effectiveness, which could remain obscured when modeled by the more standard single time-dependent covariate approaches. We propose that understanding the nature and directionality of these interactions will help the biopharmaceutical industry in better estimating drug efficacy.
DOT National Transportation Integrated Search
2016-08-01
The John A. Volpe National Transportation Systems Center (Volpe Center) was asked by the NOAA Office of Space Commercialization to analyze dependencies on Global Positioning System (GPS) positioning, navigation, and timing (PNT) services within the U...
Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...
2018-02-09
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.
An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less
Deformation dependence of proton decay rates and angular distributions in a time-dependent approach
NASA Astrophysics Data System (ADS)
Carjan, N.; Talou, P.; Strottman, D.
1998-12-01
A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
Iturrate, I; Montesano, L; Minguez, J
2013-04-01
A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Iturrate, I.; Montesano, L.; Minguez, J.
2013-04-01
Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
NASA Astrophysics Data System (ADS)
Zhao, Larry; Pantouvaki, Marianna; Croes, Kristof; Tőkei, Zsolt; Barbarin, Yohan; Wilson, Christopher J.; Baklanov, Mikhail R.; Beyer, Gerald P.; Claeys, Cor
2011-11-01
The role of copper in time dependent dielectric breakdown (TDDB) of a porous low-k dielectric with TaN/Ta barrier was investigated on a metal-insulator-metal capacitor configuration where Cu ions can drift into the low-k film by applying a positive potential on the top while they are not permitted to enter the low-k dielectric if a negative potential is applied on the top. No difference in TDDB performance was observed between the positive and negative bias conditions, suggesting that Cu cannot penetrate TaN/Ta barrier to play a critical role in the TDDB of porous low-k material.
Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro
Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak
2015-01-01
Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304
Angular distribution of scission neutrons studied with time-dependent Schrödinger equation
NASA Astrophysics Data System (ADS)
Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae
2018-03-01
We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections
Splitting Times of Doubly Quantized Vortices in Dilute Bose-Einstein Condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huhtamaeki, J. A. M.; Pietilae, V.; Virtanen, S. M. M.
2006-09-15
Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoretical simulations which closely mimic the experimental setup. We show that the combination of gravitational sag and time dependency of the trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good agreement with the experiments.
Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth
2015-02-10
Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.
Falgreen, Steffen; Laursen, Maria Bach; Bødker, Julie Støve; Kjeldsen, Malene Krag; Schmitz, Alexander; Nyegaard, Mette; Johnsen, Hans Erik; Dybkær, Karen; Bøgsted, Martin
2014-06-05
In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves' dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Time independent summary statistics may aid the understanding of drugs' action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies.
2014-01-01
Background In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves’ dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. Results First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Conclusion Time independent summary statistics may aid the understanding of drugs’ action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies. PMID:24902483
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1990-01-01
Transient eddy current calculations are presented for an EM wave-scattering and field-penetrating case in which a two-dimensional transverse magnetic field is incident on a good (i.e., not perfect) and infinitely long conductor. The problem thus posed is of initial boundary-value interface type, where the boundary of the conductor constitutes the interface. A potential function is used for time-domain modeling of the situation, and finite difference-time domain techniques are used to march the potential function explicitly in time. Attention is given to the case of LF radiation conditions.
Voltage-Clamp Studies on Uterine Smooth Muscle
Anderson, Nels C.
1969-01-01
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366
Photoinduced diffusion molecular transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozenbaum, Viktor M., E-mail: vik-roz@mail.ru, E-mail: litrakh@gmail.com; Dekhtyar, Marina L.; Lin, Sheng Hsien
2016-08-14
We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventionalmore » dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).« less
Langevin synchronization in a time-dependent, harmonic basin: An exact solution in 1D
NASA Astrophysics Data System (ADS)
Cadilhe, A.; Voter, Arthur F.
2018-02-01
The trajectories of two particles undergoing Langevin dynamics while sharing a common noise sequence can merge into a single (master) trajectory. Here, we present an exact solution for a particle undergoing Langevin dynamics in a harmonic, time-dependent potential, thus extending the idea of synchronization to nonequilibrium systems. We calculate the synchronization level, i.e., the mismatch between two trajectories sharing a common noise sequence, in the underdamped, critically damped, and overdamped regimes. Finally, we provide asymptotic expansions in various limiting cases and compare to the time independent case.
Electronic field emission models beyond the Fowler-Nordheim one
NASA Astrophysics Data System (ADS)
Lepetit, Bruno
2017-12-01
We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.
Li, Yan; Pelah, Avishay; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu
2014-01-01
Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O) and 2-(1-methylethenyl)oxirane (IP-3,4-O), both of which can be further metabolized to 2-methyl-2,2'-bioxirane (MBO). MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2) and human leukemia (HL60) cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 μM), although at low concentrations (≤200 μM) IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5-4 h) in L02 cells were different from each other: IP-1,2-O and MBO (200 μM) exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.
Integrability and chemical potential in the (3 + 1)-dimensional Skyrme model
NASA Astrophysics Data System (ADS)
Alvarez, P. D.; Canfora, F.; Dimakis, N.; Paliathanasis, A.
2017-10-01
Using a remarkable mapping from the original (3 + 1)dimensional Skyrme model to the Sine-Gordon model, we construct the first analytic examples of Skyrmions as well as of Skyrmions-anti-Skyrmions bound states within a finite box in 3 + 1 dimensional flat space-time. An analytic upper bound on the number of these Skyrmions-anti-Skyrmions bound states is derived. We compute the critical isospin chemical potential beyond which these Skyrmions cease to exist. With these tools, we also construct topologically protected time-crystals: time-periodic configurations whose time-dependence is protected by their non-trivial winding number. These are striking realizations of the ideas of Shapere and Wilczek. The critical isospin chemical potential for these time-crystals is determined.
Quasi-local action of curl-less vector potential on vortex dynamics in superconductors
NASA Astrophysics Data System (ADS)
Gulian, Armen M.; Nikoghosyan, Vahan R.; Gulian, Ellen D.; Melkonyan, Gurgen G.
2018-04-01
Studies of the Abrikosov vortex motion in superconductors based on time-dependent Ginzburg-Landau equations reveal an opportunity to detect the values of the Aharonov-Bohm type curl-less vector potentials without closed-loop electron trajectories encompassing the magnetic flux.
Verhoog, Matthijs B.; Mansvelder, Huibert D.
2011-01-01
Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes. PMID:21941664
SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Ackermann, M.; Adams, J.
2015-07-01
In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft γ-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. Themore » work presented here updates and extends previously published results to a longer period that covers 4 years of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates.« less
NASA Astrophysics Data System (ADS)
Marchenko, I. G.; Marchenko, I. I.; Zhiglo, A. V.
2018-01-01
We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes exceeding a certain value. At any fixed driving frequency Ω normal temperature dependence of the diffusivity is restored at low enough temperatures, T
Towards time-dependent current-density-functional theory in the non-linear regime
NASA Astrophysics Data System (ADS)
Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.
2015-02-01
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Towards time-dependent current-density-functional theory in the non-linear regime.
Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Elastic light scattering from single cells: orientational dynamics in optical trap.
Watson, Dakota; Hagen, Norbert; Diver, Jonathan; Marchand, Philippe; Chachisvilis, Mirianas
2004-08-01
Light-scattering diagrams (phase functions) from single living cells and beads suspended in an optical trap were recorded with 30-ms time resolution. The intensity of the scattered light was recorded over an angular range of 0.5-179.5 degrees using an optical setup based on an elliptical mirror and rotating aperture. Experiments revealed that light-scattering diagrams from biological cells exhibit significant and complex time dependence. We have attributed this dependence to the cell's orientational dynamics within the trap. We have also used experimentally measured phase function information to calculate the time dependence of the optical radiation pressure force on the trapped particle and show how it changes depending on the orientation of the particle. Relevance of these experiments to potential improvement in the sensitivity of label-free flow cytometry is discussed.
Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors.
Junginger, Andrej; Hernandez, Rigoberto
2016-03-03
Transition-state theories describing barrierless chemical reactions, or more general activated problems, are often hampered by the lack of a saddle around which the dividing surface can be constructed. For example, the time-dependent transition-state trajectory uncovering the nonrecrossing dividing surface in thermal reactions in the framework of the Langevin equation has relied on perturbative approaches in the vicinity of the saddle. We recently obtained an alternative approach using Lagrangian descriptors to construct time-dependent and recrossing-free dividing surfaces. This is a nonperturbative approach making no reference to a putative saddle. Here we show how the Lagrangian descriptor can be used to obtain the transition-state geometry of a dissipated and thermalized reaction across barrierless potentials. We illustrate the method in the case of a 1D Brownian motion for both barrierless and step potentials; however, the method is not restricted and can be directly applied to different kinds of potentials and higher dimensional systems.
NASA Astrophysics Data System (ADS)
Lin, Jack; Weis, Martin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-04-01
Transient measurements of impedance spectroscopy and electrical time-of-flight (TOF) techniques were used for the evaluation of carrier propagation dependence on applied potentials in a pentacene organic field effect transistor (OFET). These techniques are based on carrier propagation, thus isolates the effect of charge density. The intrinsic mobility which is free from contact resistance effects was obtained by measurement of various channel lengths. The obtained intrinsic mobility shows good correspondence with steady-state current-voltage measurement's saturation mobility. However, their power law relations on mobility vs applied potential resulted in different exponents, suggesting different carrier propagation mechanisms, which is attributable to filling of traps or space charge field in the channel region. The hypothesis was verified by a modified electrical TOF experiment which demonstrated how the accumulated charges in the channel influence the effective mobility.
NASA Astrophysics Data System (ADS)
Roldán, Édgar; Gupta, Shamik
2017-08-01
We study the dynamics of overdamped Brownian particles diffusing in conservative force fields and undergoing stochastic resetting to a given location at a generic space-dependent rate of resetting. We present a systematic approach involving path integrals and elements of renewal theory that allows us to derive analytical expressions for a variety of statistics of the dynamics such as (i) the propagator prior to first reset, (ii) the distribution of the first-reset time, and (iii) the spatial distribution of the particle at long times. We apply our approach to several representative and hitherto unexplored examples of resetting dynamics. A particularly interesting example for which we find analytical expressions for the statistics of resetting is that of a Brownian particle trapped in a harmonic potential with a rate of resetting that depends on the instantaneous energy of the particle. We find that using energy-dependent resetting processes is more effective in achieving spatial confinement of Brownian particles on a faster time scale than performing quenches of parameters of the harmonic potential.
Visitor Behavior at Melbourne Zoo.
ERIC Educational Resources Information Center
Churchman, David
The potential educational impact of the Melbourne Zoo (Australia) for recreational visitors was examined in this study using time as the major dependent variable. Specific goals included: (1) assessment of the potential cognitive and affective educational impact of zoos on recreational visitors; (2) determination of the temporal and spatial…
Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut
2010-03-07
The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.
Time-dependent photon migration imaging
NASA Astrophysics Data System (ADS)
Sevick, Eva M.; Wang, NaiGuang; Chance, Britton
1992-02-01
Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.
Wang, Tao; Huang, Jiang-hua; Lin, Lin; Zhan, Chang'an A
2013-01-01
To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.
Wu, Jianmei; Shaw, Jiajiu; Dubaisi, Sarah; Valeriote, Frederick; Li, Jing
2014-12-01
N-(2,4-dichlorophenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTL-5g), a potential chemo- and radioprotective agent, acts as a prodrug requiring bioactivation to the active metabolite 5-methylisoxazole-3-carboxylic acid (ISOX). UTL-5g hydrolysis to ISOX and 2,4-dichloroaniline (DCA) has been identified in porcine and rabbit liver esterases. The purpose of this study was to provide insights on the metabolism and drug interaction potential of UTL-5g in humans. The kinetics of UTL-5g hydrolysis was determined in human liver microsomes (HLM) and recombinant human carboxylesterases (hCE1b and hCE2). The potential of UTL-5g and its metabolites for competitive inhibition and time-dependent inhibition of microsomal cytochrome P450 (P450) was examined in HLM. UTL-5g hydrolysis to ISOX and DCA in HLM were NADPH-independent, with a maximum rate of reaction (Vmax) of 11.1 nmol/min per mg and substrate affinity (Km) of 41.6 µM. Both hCE1b and hCE2 effectively catalyzed UTL-5g hydrolysis, but hCE2 exhibited ∼30-fold higher catalytic efficiency (Vmax/Km) than hCE1b. UTL-5g and DCA competitively inhibited microsomal CYP1A2, CYP2B6, and CYP2C19 (IC50 values <50 µM), and exhibited time-dependent inhibition of microsomal CYP1A2 with the inactivation efficiency (kinact/KI) of 0.68 and 0.51 minute(-1)·mM(-1), respectively. ISOX did not inhibit or inactivate any tested microsomal P450. In conclusion, hCE1b and hCE2 play a key role in the bioactivation of UTL-5g. Factors influencing carboxylesterase activities may have a significant impact on the pharmacological and therapeutic effects of UTL-5g. UTL-5g has the potential to inhibit P450-mediated metabolism through competitive inhibition or time-dependent inhibition. Caution is particularly needed for potential drug interactions involving competitive inhibition or time-dependent inhibition of CYP1A2 in the future clinical development of UTL-5g. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Wu, Jianmei; Shaw, Jiajiu; Dubaisi, Sarah; Valeriote, Frederick
2014-01-01
N-(2,4-dichlorophenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTL-5g), a potential chemo- and radioprotective agent, acts as a prodrug requiring bioactivation to the active metabolite 5-methylisoxazole-3-carboxylic acid (ISOX). UTL-5g hydrolysis to ISOX and 2,4-dichloroaniline (DCA) has been identified in porcine and rabbit liver esterases. The purpose of this study was to provide insights on the metabolism and drug interaction potential of UTL-5g in humans. The kinetics of UTL-5g hydrolysis was determined in human liver microsomes (HLM) and recombinant human carboxylesterases (hCE1b and hCE2). The potential of UTL-5g and its metabolites for competitive inhibition and time-dependent inhibition of microsomal cytochrome P450 (P450) was examined in HLM. UTL-5g hydrolysis to ISOX and DCA in HLM were NADPH-independent, with a maximum rate of reaction (Vmax) of 11.1 nmol/min per mg and substrate affinity (Km) of 41.6 µM. Both hCE1b and hCE2 effectively catalyzed UTL-5g hydrolysis, but hCE2 exhibited ∼30-fold higher catalytic efficiency (Vmax/Km) than hCE1b. UTL-5g and DCA competitively inhibited microsomal CYP1A2, CYP2B6, and CYP2C19 (IC50 values <50 µM), and exhibited time-dependent inhibition of microsomal CYP1A2 with the inactivation efficiency (kinact/KI) of 0.68 and 0.51 minute−1·mM−1, respectively. ISOX did not inhibit or inactivate any tested microsomal P450. In conclusion, hCE1b and hCE2 play a key role in the bioactivation of UTL-5g. Factors influencing carboxylesterase activities may have a significant impact on the pharmacological and therapeutic effects of UTL-5g. UTL-5g has the potential to inhibit P450-mediated metabolism through competitive inhibition or time-dependent inhibition. Caution is particularly needed for potential drug interactions involving competitive inhibition or time-dependent inhibition of CYP1A2 in the future clinical development of UTL-5g. PMID:25249693
The timing of umbilical cord clamping at birth: physiological considerations.
Hooper, Stuart B; Binder-Heschl, Corinna; Polglase, Graeme R; Gill, Andrew W; Kluckow, Martin; Wallace, Euan M; Blank, Douglas; Te Pas, Arjan B
2016-01-01
While it is now recognized that umbilical cord clamping (UCC) at birth is not necessarily an innocuous act, there is still much confusion concerning the potential benefits and harms of this common procedure. It is most commonly assumed that delaying UCC will automatically result in a time-dependent net placental-to-infant blood transfusion, irrespective of the infant's physiological state. Whether or not this occurs, will likely depend on the infant's physiological state and not on the amount of time that has elapsed between birth and umbilical cord clamping (UCC). However, we believe that this is an overly simplistic view of what can occur during delayed UCC and ignores the benefits associated with maintaining the infant's venous return and cardiac output during transition. Recent experimental evidence and observations in humans have provided compelling evidence to demonstrate that time is not a major factor influencing placental-to-infant blood transfusion after birth. Indeed, there are many factors that influence blood flow in the umbilical vessels after birth, which depending on the dominating factors could potentially result in infant-to-placental blood transfusion. The most dominant factors that influence umbilical artery and venous blood flows after birth are lung aeration, spontaneous inspirations, crying and uterine contractions. It is still not entirely clear whether gravity differentially alters umbilical artery and venous flows, although the available data suggests that its influence, if present, is minimal. While there is much support for delaying UCC at birth, much of the debate has focused on a time-based approach, which we believe is misguided. While a time-based approach is much easier and convenient for the caregiver, ignoring the infant's physiology during delayed UCC can potentially be counter-productive for the infant.
Association mining of dependency between time series
NASA Astrophysics Data System (ADS)
Hafez, Alaaeldin
2001-03-01
Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.
GC-MS based metabolite profiling of rice Koji fermentation by various fungi.
Kim, Ah Jin; Choi, Jung Nam; Kim, Jiyoung; Park, Sait Byul; Yeo, Soo Hwan; Choi, Ji Ho; Lee, Choong Hwan
2010-01-01
In this study, Aspergillus kawachii, Aspergillus oryzae, and Rhizopus sp., were utilized for rice Koji fermentation, and the metabolites were analyzed in a time-dependent manner by gas chromatography-mass spectrometry. On Principal Component Analysis, the metabolite patterns were clearly distinguished based on the fungi species. This approach revealed that the quantities of glucose, galactose, and glycerol gradually increased as a function of fermentation time in all trials rice Koji fermentation. The time-dependent changes of these metabolites showed significant increases in glucose in the A. oryzae-treated rice, and in glycerol and galactose in the A. kawachii-treated rice. In addition, glycolysis-related enzyme activities were correlated with the changes in these metabolites. The results indicate that time-dependent metabolite production has the potential to be a valuable tool in selecting inoculant fungi and the optimal fermentation time for rice koji.
Reflection and Non-Reflection of Particle Wavepackets
ERIC Educational Resources Information Center
Cox, Timothy; Lekner, John
2008-01-01
Exact closed-form solutions of the time-dependent Schrodinger equation are obtained, describing the propagation of wavepackets in the neighbourhood of a potential. Examples given include zero reflection, total reflection and partial reflection of the wavepacket, for the sech[superscript 2]x/a, 1/x[superscript 2] and delta(x) potentials,…
NASA Astrophysics Data System (ADS)
Stange, P.; Bach, L. T.; Le Moigne, F. A. C.; Taucher, J.; Boxhammer, T.; Riebesell, U.
2017-01-01
The ocean's potential to export carbon to depth partly depends on the fraction of primary production (PP) sinking out of the euphotic zone (i.e., the e-ratio). Measurements of PP and export flux are often performed simultaneously in the field, although there is a temporal delay between those parameters. Thus, resulting e-ratio estimates often incorrectly assume an instantaneous downward export of PP to export flux. Evaluating results from four mesocosm studies, we find that peaks in organic matter sedimentation lag chlorophyll a peaks by 2 to 15 days. We discuss the implications of these time lags (TLs) for current e-ratio estimates and evaluate potential controls of TL. Our analysis reveals a strong correlation between TL and the duration of chlorophyll a buildup, indicating a dependency of TL on plankton food web dynamics. This study is one step further toward time-corrected e-ratio estimates.
Moos, Philip J.; Honeggar, Matthew; Malugin, Alexander; Herd, Heather; Thiagarajan, Giridhar; Ghandehari, Hamidreza
2013-01-01
Understanding the potential toxicities of manufactured nanoconstructs used for drug delivery and biomedical applications may help improve their safety. We sought to determine if surface modified silica nanoparticles and poly(amido amine) dendrimers elicit genotoxic responses on vascular endothelial cells. The nanoconstructs utilized in this study had distinct geometry (spheres vs. worms) and surface charge, which were used to evaluate the contributions of these parameters to any potential adverse effects of these materials. Time-dependent cytotoxicity was found for surfaced-functionalized but geometrically distinct silica materials while amine-terminated dendrimers displayed time-independent cytotoxicity and carboxylated dendrimers were nontoxic in our assays. Transcriptomic evaluation of HAEC responses indicated time-dependent gene induction following silica exposure, consisting of cell cycle gene repression and pro-inflammatory gene induction. However, the dendrimers did not induce genomic toxicity, despite displaying general cytotoxicity. PMID:23806026
Moos, Philip J; Honeggar, Matthew; Malugin, Alexander; Herd, Heather; Thiagarajan, Giridhar; Ghandehari, Hamidreza
2013-08-05
Understanding the potential toxicities of manufactured nanoconstructs used for drug delivery and biomedical applications may help improve their safety. We sought to determine if surface-modified silica nanoparticles and poly(amido amine) dendrimers elicit genotoxic responses on vascular endothelial cells. The nanoconstructs utilized in this study had a distinct geometry (spheres vs worms) and surface charge, which were used to evaluate the contributions of these parameters to any potential adverse effects of these materials. Time-dependent cytotoxicity was found for surfaced-functionalized but geometrically distinct silica materials, while amine-terminated dendrimers displayed time-independent cytotoxicity and carboxylated dendrimers were nontoxic in our assays. Transcriptomic evaluation of human aortic endothelial cell (HAEC) responses indicated time-dependent gene induction following silica exposure, consisting of cell cycle gene repression and pro-inflammatory gene induction. However, the dendrimers did not induce genomic toxicity, despite displaying general cytotoxicity.
1989-07-01
surface because of the previous potential sweeps ). c- Cyclic voltamograms after different exposure times of the Hg drop electrode to a solution of lpg/ml...Cd + and 10-M NaCl. b - Cyclic voltamograms under similar conditions. Exposure time indicated, sweep rate O.2V/sec. specific capacitance < 4pf/cm 2...alamethicin. Cyclic voltametry shows (Fig. 3b) that it is the reduction current depending on the transport of TI+ ions across the monolayer to the electrode
Dantan, Etienne; Combescure, Christophe; Lorent, Marine; Ashton-Chess, Joanna; Daguin, Pascal; Classe, Jean-Marc; Giral, Magali; Foucher, Yohann
2014-04-01
Predicting chronic disease evolution from a prognostic marker is a key field of research in clinical epidemiology. However, the prognostic capacity of a marker is not systematically evaluated using the appropriate methodology. We proposed the use of simple equations to calculate time-dependent sensitivity and specificity based on published survival curves and other time-dependent indicators as predictive values, likelihood ratios, and posttest probability ratios to reappraise prognostic marker accuracy. The methodology is illustrated by back calculating time-dependent indicators from published articles presenting a marker as highly correlated with the time to event, concluding on the high prognostic capacity of the marker, and presenting the Kaplan-Meier survival curves. The tools necessary to run these direct and simple computations are available online at http://www.divat.fr/en/online-calculators/evalbiom. Our examples illustrate that published conclusions about prognostic marker accuracy may be overoptimistic, thus giving potential for major mistakes in therapeutic decisions. Our approach should help readers better evaluate clinical articles reporting on prognostic markers. Time-dependent sensitivity and specificity inform on the inherent prognostic capacity of a marker for a defined prognostic time. Time-dependent predictive values, likelihood ratios, and posttest probability ratios may additionally contribute to interpret the marker's prognostic capacity. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaluating linear response in active systems with no perturbing field
NASA Astrophysics Data System (ADS)
Szamel, Grzegorz
2017-03-01
We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed by Warren and Allen (Phys. Rev. Lett., 109 (2012) 250601) for out-of-equilibrium systems of passive Brownian particles. We illustrate our method by evaluating two linear response functions for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of many active particles interacting via a screened Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size.
NASA Astrophysics Data System (ADS)
Szamel, Grzegorz
We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed earlier for systems of (passive) Brownian particles. We illustrate our method by evaluating a linear response function for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of active particles interacting via a screened-Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size. Supported by NSF and ERC.
Exponentially decaying interaction potential of cavity solitons
NASA Astrophysics Data System (ADS)
Anbardan, Shayesteh Rahmani; Rimoldi, Cristina; Kheradmand, Reza; Tissoni, Giovanna; Prati, Franco
2018-03-01
We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser above threshold. We show that they experience an attractive force even when their distance is much larger than their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance, we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic times of the laser, photon lifetime, and carrier lifetime.
New Quantum Diffusion Monte Carlo Method for strong field time dependent problems
NASA Astrophysics Data System (ADS)
Kalinski, Matt
2017-04-01
We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.
White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid
NASA Technical Reports Server (NTRS)
Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn
1996-01-01
A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.
Mini-Shifts: An Alternative to Overtime
ERIC Educational Resources Information Center
Werther, William B., Jr.
1976-01-01
Widely held misconceptions about the dependability, availability, and ability of part-time manpower have prevented this reservoir of potential employees from realizing its full capabilities. These misconceptions are explored, the advantages to using part-time personnel are discussed, and a variety of possible schedule variations are described.…
Time-dependent effects of rapamycin on consolidation of predator stress-induced hyperarousal.
Fifield, Kathleen; Hebert, Mark; Williams, Kimberly; Linehan, Victoria; Whiteman, Jesse D; Mac Callum, Phillip; Blundell, Jacqueline
2015-06-01
Previous studies have indicated that rapamycin, a potent inhibitor of the mammalian target of rapamycin (mTOR) pathway, blocks consolidation of shock-induced associative fear memories. Moreover, rapamycin's block of associative fear memories is time-dependent. It is unknown, however, if rapamycin blocks consolidation of predator stress-induced non-associative fear memories. Furthermore, the temporal pattern of mTOR activation following predator stress is unknown. Thus, the goal of the current studies was to determine if rapamycin blocks consolidation of predator stress-induced fear memories and if so, whether rapamycin's effect is time-dependent. Male rats were injected systemically with rapamycin at various time points following predator stress. Predator stress involves an acute, unprotected exposure of a rat to a cat, which causes long-lasting non-associative fear memories manifested as generalized hyperarousal and increased anxiety-like behaviour. We show that rapamycin injected immediately after predator stress blocked consolidation of stress-induced startle. However, rapamycin injected 9, 24 or 48h post predator stress potentiated stress-induced startle. Consistent with shock-induced associative fear memories, we show that mTOR signalling is essential for consolidation of predator stress-induced hyperarousal. However, unlike shock-induced fear memories, a second, persistent, late phase mTOR-dependent process following predator stress actually dampens startle. Consistent with previous findings, our data support the potential role for rapamycin in treatment of stress related disorders such as posttraumatic stress disorder. However, our data suggest timing of rapamycin administration is critical. Copyright © 2015 Elsevier B.V. All rights reserved.
Magnetic field induced dynamical chaos.
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-01
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential
NASA Astrophysics Data System (ADS)
Kloss, Benedikt; Lev, Yevgeny Bar; Reichman, David
2018-01-01
We study the applicability of the time-dependent variational principle in matrix-product state manifolds for the long time description of quantum interacting systems. By studying integrable and nonintegrable systems for which the long time dynamics are known we demonstrate that convergence of long time observables is subtle and needs to be examined carefully. Remarkably, for the disordered nonintegrable system we consider the long time dynamics are in good agreement with the rigorously obtained short time behavior and with previous obtained numerically exact results, suggesting that at least in this case, the apparent convergence of this approach is reliable. Our study indicates that, while great care must be exercised in establishing the convergence of the method, it may still be asymptotically accurate for a class of disordered nonintegrable quantum systems.
NASA Astrophysics Data System (ADS)
Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.
2017-10-01
Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Kreider, K. L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
NASA Astrophysics Data System (ADS)
Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.
2018-04-01
The way to determine the renormalized energy of inhomogeneous systems of a quantum field under an external potential is established for both equilibrium and nonequilibrium scenarios based on thermo field dynamics. The key step is to find an extension of the on-shell concept valid in homogeneous case. In the nonequilibrium case, we expand the field operator by time-dependent wavefunctions that are solutions of the appropriately chosen differential equation, synchronizing with temporal change of thermal situation, and the quantum transport equation is derived from the renormalization procedure. Through numerical calculations of a triple-well model with a reservoir, we show that the number distribution and the time-dependent wavefunctions are relaxed consistently to the correct equilibrium forms at the long-term limit.
Removal of inactivation causes time-invariant sodium current decays
1988-01-01
The kinetic properties of the closing of Na channels were studied in frog skeletal muscle to obtain information about the dependence of channel closing on the past history of the channel. Channel closing was studied in normal and modified channels. Chloramine-T was used to modify the channels so that inactivation was virtually removed. A series of depolarizing prepulse potentials was used to activate Na channels, and a -140-mV postpulse was used to monitor the closing of the channels. Unmodified channels decay via a biexponential process with time constants of 72 and 534 microseconds at 12 degrees C. The observed time constants do not depend upon the potential used to activate the channels. The contribution of the slow component to the total decay increases as the activating prepulse is lengthened. After inactivation is removed, the biexponential character of the decay is retained, with no change in the magnitude of the time constants. However, increases in the duration of the activating prepulse over the range where the current is maximal 1-75 ms) produce identical biexponential decays. The presence of biexponential decays suggests that either two subtypes of Na channels are found in muscle, or Na channels can exist in one of two equally conductive states. The time- invariant decays observed suggest that channel closure does not depend upon their past history. PMID:2852208
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...
2016-04-07
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Linear summation in the barn owl's brainstem underlies responses to interaural time differences.
Kuokkanen, Paula T; Ashida, Go; Carr, Catherine E; Wagner, Hermann; Kempter, Richard
2013-07-01
The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic.
Stimulus waveform determines the characteristics of sensory nerve action potentials.
Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep
2016-03-01
In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
SO(4) algebraic approach to the three-body bound state problem in two dimensions
NASA Astrophysics Data System (ADS)
Dmitrašinović, V.; Salom, Igor
2014-08-01
We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the realmore » time propagation can be a challenge.« less
Quantum action for time-dependent Ginzburg-Landau equations
NASA Astrophysics Data System (ADS)
Thompson, R. S.
1994-02-01
A gauge-invariant formula is derived for the quantum action of a dirty superconductor with strong pair breaking. The major complication is the coupling between the order parameter and the electro-chemical potential, which is most simply expressed as an imaginary time integral. The perturbative modes of excitation are identified.
A model-free characterization of recurrences in stationary time series
NASA Astrophysics Data System (ADS)
Chicheportiche, Rémy; Chakraborti, Anirban
2017-05-01
Study of recurrences in earthquakes, climate, financial time-series, etc. is crucial to better forecast disasters and limit their consequences. Most of the previous phenomenological studies of recurrences have involved only a long-ranged autocorrelation function, and ignored the multi-scaling properties induced by potential higher order dependencies. We argue that copulas is a natural model-free framework to study non-linear dependencies in time series and related concepts like recurrences. Consequently, we arrive at the facts that (i) non-linear dependences do impact both the statistics and dynamics of recurrence times, and (ii) the scaling arguments for the unconditional distribution may not be applicable. Hence, fitting and/or simulating the intertemporal distribution of recurrence intervals is very much system specific, and cannot actually benefit from universal features, in contrast to the previous claims. This has important implications in epilepsy prognosis and financial risk management applications.
TRUMP. Transient & S-State Temperature Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1992-03-03
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
NASA Astrophysics Data System (ADS)
Tutschku, Kurt; Nakao, Akihiro
This paper introduces a methodology for engineering best-effort P2P algorithms into dependable P2P-based network control mechanism. The proposed method is built upon an iterative approach consisting of improving the original P2P algorithm by appropriate mechanisms and of thorough performance assessment with respect to dependability measures. The potential of the methodology is outlined by the example of timely routing control for vertical handover in B3G wireless networks. In detail, the well-known Pastry and CAN algorithms are enhanced to include locality. By showing how to combine algorithmic enhancements with performance indicators, this case study paves the way for future engineering of dependable network control mechanisms through P2P algorithms.
Decoding spike timing: the differential reverse correlation method
Tkačik, Gašper; Magnasco, Marcelo O.
2009-01-01
It is widely acknowledged that detailed timing of action potentials is used to encode information, for example in auditory pathways; however the computational tools required to analyze encoding through timing are still in their infancy. We present a simple example of encoding, based on a recent model of time-frequency analysis, in which units fire action potentials when a certain condition is met, but the timing of the action potential depends also on other features of the stimulus. We show that, as a result, spike-triggered averages are smoothed so much they do not represent the true features of the encoding. Inspired by this example, we present a simple method, differential reverse correlations, that can separate an analysis of what causes a neuron to spike, and what controls its timing. We analyze with this method the leaky integrate-and-fire neuron and show the method accurately reconstructs the model's kernel. PMID:18597928
Time-dependent resilience assessment and improvement of urban infrastructure systems
NASA Astrophysics Data System (ADS)
Ouyang, Min; Dueñas-Osorio, Leonardo
2012-09-01
This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems' ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems' future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.
Time-dependent resilience assessment and improvement of urban infrastructure systems.
Ouyang, Min; Dueñas-Osorio, Leonardo
2012-09-01
This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems' ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems' future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.
Vortex motion in doubly connected domains
NASA Astrophysics Data System (ADS)
Zannetti, L.; Gallizio, F.; Ottino, G. M.
The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.
Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao
2017-10-01
Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.
Thermal motion in proteins: Large effects on the time-averaged interaction energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel; Fita, Ignacio
As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothingmore » effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.« less
Thermal motion in proteins: Large effects on the time-averaged interaction energies
NASA Astrophysics Data System (ADS)
Goethe, Martin; Fita, Ignacio; Rubi, J. Miguel
2016-03-01
As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheviakov, Alexei F., E-mail: chevaikov@math.usask.ca
Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations,more » it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.« less
Angle-resolved Wigner time delay in atomic photoionization: The 4 d subshell of free and confined Xe
NASA Astrophysics Data System (ADS)
Mandal, A.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.
2017-11-01
The angular dependence of photoemission time delay for the inner n d3 /2 and n d5 /2 subshells of free and confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily confinement resonances, are demonstrated and detailed.
Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method
NASA Astrophysics Data System (ADS)
Iritani, T.; HAL QCD Collaboration
We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.
The Effective Potential Energy Surfaces of the Nonadiabatic Collision
2009-03-01
effective PESs data was extracted for the equilibrium H2 bond length and used to calculate inelastic scattering matrix elements using the time ...very grateful not only for the time he devoted each week to discussing the status of the work, but also his infectious love of learning that is...33 Structure of the Asymptotic Representation ................................................................. 43 The Time -Dependent
NASA Astrophysics Data System (ADS)
Pareek, Tribhuvan Prasad
2015-09-01
In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.
Rasgado-Flores, Hector; Mokashi, Ashwini; Hawkins, Richard A
2012-01-01
Luminal and abluminal plasma membranes were isolated from bovine brain microvessels and used to identify and characterize Na(+)-dependent and facilitative taurine transport. The calculated transmembrane potential was -59 mV at time 0; external Na(+) (or choline under putative zero-trans conditions) was 126 mM (T=25 °C). The apparent affinity constants of the taurine transporters were determined over a range of taurine concentrations from 0.24 μM to 11.4 μM. Abluminal membranes had both Na(+)-dependent taurine transport as well as facilitative transport while luminal membranes only had facilitative transport. The apparent K(m) for facilitative and Na(+)-dependent taurine transport were 0.06±0.02 μM and 0.7±0.1 μM, respectively. The Na(+)-dependent transport of taurine was voltage dependent over the range of voltages studied (-25 to -101 mV). The transport was over 5 times greater at -101 mV compared to when V(m) was -25 mV. The sensitivity to external osmolality of Na(+)-dependent transport was studied over a range of osmolalities (229 to 398 mOsm/kg H(2)O) using mannitol as the osmotic agent to adjust the osmolality. For these experiments the concentration of Na(+) was maintained constant at 50mM, and the calculated transmembrane potential was -59 mV. The Na(+)-dependent transport system was sensitive to osmolality with the greatest rate observed at 229 mOsm/kg H(2)O. Copyright © 2011 Elsevier Inc. All rights reserved.
2017-05-12
were resolved by a technical approach that included three well-integrated experimental tasks follows: Task A: Quantify the impact of time- dependent ...aggregate breakdown and colloid dispersion depending on the extent of Fe(III) reduction and altered the pore structure and chemical reactivity of the porous...have significant effect on the transport of molecular and colloidal tracers (but not on the ionic tracer Br-) and colloid generation depending on
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2015-09-01
Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escartín, J. M.; CNRS, UMR5152, F-31062 Toulouse Cedex; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT.more » This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.« less
NASA Astrophysics Data System (ADS)
Chong, Jacky Jia Wei
2018-04-01
We prove the global well-posedness of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equations in R^{1+1} with two-body interaction potential of the form N^{-1}v_N(x) = N^{β -1} v(N^β x) where v≥0 is a sufficiently regular radial function, i.e., v \\in L^1(R)\\cap C^∞ (R) . In particular, using methods of dispersive PDEs similar to the ones used in Grillakis and Machedon (Commun Partial Differ Equ 42:24-67, 2017), we are able to show for any scaling parameter β >0 the TDHFB equations are globally well-posed in some Strichartz-type spaces independent of N, cf. (Bach et al. in The time-dependent Hartree-Fock-Bogoliubov equations for Bosons, 2016. arXiv:1602.05171).
Singularities of Floquet scattering and tunneling
NASA Astrophysics Data System (ADS)
Landa, H.
2018-04-01
We study quasibound states and scattering with short-range potentials in three dimensions, subject to an axial periodic driving. We find that poles of the scattering S matrix can cross the real energy axis as a function of the drive amplitude, making the S matrix nonanalytic at a singular point. For the corresponding quasibound states that can tunnel out of (or get captured within) a potential well, this results in a discontinuous jump in both the angular momentum and energy of emitted (absorbed) waves. We also analyze elastic and inelastic scattering of slow particles in the time-dependent potential. For a drive amplitude at the singular point, there is a total absorption of incoming low-energy (s wave) particles and their conversion to high-energy outgoing (mostly p ) waves. We examine the relation of such Floquet singularities, lacking in an effective time-independent approximation, with well-known "spectral singularities" (or "exceptional points"). These results are based on an analytic approach for obtaining eigensolutions of time-dependent periodic Hamiltonians with mixed cylindrical and spherical symmetry, and apply broadly to particles interacting via power-law forces and subject to periodic fields, e.g., co-trapped ions and atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabst, M., E-mail: M.Pabst@fz-juelich.de
2014-06-14
Single charge densities and the potential are used to describe models of electrochemical systems. These quantities can be calculated by solving a system of time dependent nonlinear coupled partial differential equations, the Poisson-Nernst-Planck equations. Assuming small deviations from the electroneutral equilibrium, the linearized and decoupled equations are solved for a radial symmetric geometry, which represents the interface between a cell and a sensor device. The densities and the potential are expressed by Fourier-Bessels series. The system considered has a ratio between the Debye-length and its geometric dimension on the order of 10{sup −4} so the Fourier-Bessel series can be approximatedmore » by elementary functions. The time development of the system is characterized by two time constants, τ{sub c} and τ{sub g}. The constant τ{sub c} describes the approach to the stationary state of the total charge and the potential. τ{sub c} is several orders of magnitude smaller than the geometry-dependent constant τ{sub g}, which is on the order of 10 ms characterizing the transition to the stationary state of the single ion densities.« less
NASA Astrophysics Data System (ADS)
Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik
2018-06-01
A crossbar array of Pt/CeO2/Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼103, corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO2/Pt memristors as artificial synapses in highly connected neuron-synapse network.
Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik
2018-06-29
A crossbar array of Pt/CeO 2 /Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼10 3 , corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO 2 /Pt memristors as artificial synapses in highly connected neuron-synapse network.
Potential pitfalls of strain rate imaging: angle dependency
NASA Technical Reports Server (NTRS)
Castro, P. L.; Greenberg, N. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.
2000-01-01
Strain Rate Imaging (SRI) is a new echocardiographic technique that allows for the real-time determination of myocardial SR, which may be used for the early and accurate detection of coronary artery disease. We sought to study whether SR is affected by scan line alignment in a computer simulation and an in vivo experiment. Through the computer simulation and the in vivo experiment we generated and validated safe scanning sectors within the ultrasound scan sector and showed that while SRI will be an extremely valuable tool in detecting coronary artery disease there are potential pitfalls for the unwary clinician. Only after accounting for these affects due to angle dependency, can clinicians utilize SRI's potential as a valuable tool in detecting coronary artery disease.
Oscillon in Einstein-scalar system with double well potential and its properties.
NASA Astrophysics Data System (ADS)
Ikeda, Taishi; Yoo, Chul-Moon; Cardoso, Vitor
2018-01-01
The dynamical evolution of self-interacting scalar field has many nontrivial behaviors, which tell us many lessons in a nonlinear dynamics. On Minkowski spacetime, the scalar field with double well potential has localized, non-singular, time-dependent, long-lived solutions, which are called oscillons. The lifetime of the oscillon depends on the initial conditions. Furthermore, when the initial parameter is fine-tuned, oscillons can be infinitely, and type I critical behavior is observed. Here, we investigate the Einstein-scalar system with double well potential. We show that oscillons exist in this system, and discuss the behavior when the initial parameter is fine-tuned. Our results suggests that a new type of critical behavior appears in this theory.
Polymer deformation in Brownian ratchets: theory and molecular dynamics simulations.
Kenward, Martin; Slater, Gary W
2008-11-01
We examine polymers in the presence of an applied asymmetric sawtooth (ratchet) potential which is periodically switched on and off, using molecular dynamics (MD) simulations with an explicit Lennard-Jones solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional (3D) chain, nu=35 (U0=0), to that corresponding to a 2D compressed (pancake-shaped) polymer with a value of nu=34 for moderate U0. This has the added effect of decreasing a polymer's diffusion coefficient from its 3D value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a polymer then has a time-dependent diffusion coefficient D(t) during the ratchet off time. We further show that this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms of the relaxation time of the polymer, tauR. We also derive a modified version of the Bader ratchet model [Bader, Proc. Natl. Acad. Sci. U.S.A. 96, 13165 (1999)] which accounts for this deformation and we present a simple expression to describe the time dependent diffusion coefficient D(t). Using this model we then illustrate that polymer deformation can be used to modulate polymer migration in a ratchet potential.
Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex
Bender, Vanessa A.; Bender, Kevin J.; Brasier, Daniel J.; Feldman, Daniel E.
2011-01-01
Many cortical synapses exhibit spike timing-dependent plasticity (STDP) in which the precise timing of presynaptic and postsynaptic spikes induces synaptic strengthening [long-term potentiation (LTP)] or weakening [long-term depression (LTD)]. Standard models posit a single, postsynaptic, NMDA receptor-based coincidence detector for LTP and LTD components of STDP. We show instead that STDP at layer 4 to layer 2/3 synapses in somatosensory (S1) cortex involves separate calcium sources and coincidence detection mechanisms for LTP and LTD. LTP showed classical NMDA receptor dependence. LTD was independent of postsynaptic NMDA receptors and instead required group I metabotropic glutamate receptors and calcium from voltage-sensitive channels and IP3 receptor-gated stores. Downstream of postsynaptic calcium, LTD required retrograde endocannabinoid signaling, leading to presynaptic LTD expression, and also required activation of apparently presynaptic NMDA receptors. These LTP and LTD mechanisms detected firing coincidence on ~25 and ~125 ms time scales, respectively, and combined to implement the overall STDP rule. These findings indicate that STDP is not a unitary process and suggest that endocannabinoid-dependent LTD may be relevant to cortical map plasticity. PMID:16624937
Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Saini, Subhash (Technical Monitor)
1998-01-01
There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.
Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.
Casula, Elias Paolo; Pellicciari, Maria Concetta; Picazio, Silvia; Caltagirone, Carlo; Koch, Giacomo
2016-12-01
Changes in the synaptic strength of neural connections are induced by repeated coupling of activity of interconnected neurons with precise timing, a phenomenon known as spike-timing-dependent plasticity (STDP). It is debated if this mechanism exists in large-scale cortical networks in humans. We combined transcranial magnetic stimulation (TMS) with concurrent electroencephalography (EEG) to directly investigate the effects of two paired associative stimulation (PAS) protocols (fronto-parietal and parieto-frontal) of pre and post-synaptic inputs within the human fronto-parietal network. We found evidence that the dorsolateral prefrontal cortex (DLPFC) has the potential to form robust STDP. Long-term potentiation/depression of TMS-evoked cortical activity is prompted after that DLPFC stimulation is followed/preceded by posterior parietal stimulation. Such bidirectional changes are paralleled by sustained increase/decrease of high-frequency oscillatory activity, likely reflecting STDP responsivity. The current findings could be important to drive plasticity of damaged cortical circuits in patients with cognitive or psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
2013-08-01
cost due to potential warranty costs, repairs and loss of market share. Reliability is the probability that the system will perform its intended...MCMC and splitting sampling schemes. Our proposed SS/ STP method is presented in Section 4, including accuracy bounds and computational effort
Orbital structure in oscillating galactic potentials
NASA Astrophysics Data System (ADS)
Terzić, Balša; Kandrup, Henry E.
2004-01-01
Subjecting a galactic potential to (possibly damped) nearly periodic, time-dependent variations can lead to large numbers of chaotic orbits experiencing systematic changes in energy, and the resulting chaotic phase mixing could play an important role in explaining such phenomena as violent relaxation. This paper focuses on the simplest case of spherically symmetric potentials subjected to strictly periodic driving with the aim of understanding precisely why orbits become chaotic and under what circumstances they will exhibit systematic changes in energy. Four unperturbed potentials V0(r) were considered, each subjected to a time dependence of the form V(r, t) =V0(r)(1 +m0 sinωt). In each case, the orbits divide clearly into regular and chaotic, distinctions which appear absolute. In particular, transitions from regularity to chaos are seemingly impossible. Over finite time intervals, chaotic orbits subdivide into what can be termed `sticky' chaotic orbits, which exhibit no large-scale secular changes in energy and remain trapped in the phase-space region where they started; and `wildly' chaotic orbits, which do exhibit systematic drifts in energy as the orbits diffuse to different phase-space regions. This latter distinction is not absolute, transitions corresponding apparently to orbits penetrating a `leaky' phase-space barrier. The three different orbit types can be identified simply in terms of the frequencies for which their Fourier spectra have the most power. An examination of the statistical properties of orbit ensembles as a function of driving frequency ω allows us to identify the specific resonances that determine orbital structure. Attention focuses also on how, for fixed amplitude m0, such quantities as the mean energy shift, the relative measure of chaotic orbits and the mean value of the largest Lyapunov exponent vary with driving frequency ω and how, for fixed ω, the same quantities depend on m0.
Efficient variable time-stepping scheme for intense field-atom interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, C.; Kosloff, R.
1993-03-01
The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less
Stress-induced, time-dependent fracture closure at hydrothermal conditions
Beeler, N.M.; Hickman, S.H.
2004-01-01
Time-dependent closure of fractures in quartz was measured in situ at 22-530??C temperature and 0.1-150 MPa water pressure. Unlike previous crack healing and rock permeability studies, in this study, fracture aperture is monitored directly and continuously using a windowed pressure vessel, a long-working-distance microscope, and reflected-light interferometry. Thus the fracture volume and geometry can be measured as a function of time, temperature, and water pressure. Relatively uniform closure occurs rapidly at temperatures and pressures where quartz becomes significantly soluble in water. During closure the aperture is reduced by as much as 80% in a few hours. We infer that this closure results from the dissolution of small particles or asperities that prop the fracture open. The driving force for closure via dissolution of the prop is the sum of three chemical potential terms: (1) the dissolution potential, proportional to the logarithm of the degree of undersaturation of the solution; (2) the coarsening potential, proportional to the radius of curvature of the prop; and (3) the pressure solution potential, proportional to the effective normal stress at the contact between propping particles and the fracture wall. Our observations suggest that closure is controlled by a pressure solution-like process. The aperture of dilatant fractures and microcracks in the Earth that are similar to those in our experiments, such as ones generated from thermal stressing or brittle failure during earthquake rupture and slip, will decrease rapidly with time, especially if the macroscopic stress is nonhydrostatic.
Stress-induced, time-dependent fracture closure at hydrothermal conditions
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Hickman, S. H.
2004-02-01
Time-dependent closure of fractures in quartz was measured in situ at 22-530°C temperature and 0.1-150 MPa water pressure. Unlike previous crack healing and rock permeability studies, in this study, fracture aperture is monitored directly and continuously using a windowed pressure vessel, a long-working-distance microscope, and reflected-light interferometry. Thus the fracture volume and geometry can be measured as a function of time, temperature, and water pressure. Relatively uniform closure occurs rapidly at temperatures and pressures where quartz becomes significantly soluble in water. During closure the aperture is reduced by as much as 80% in a few hours. We infer that this closure results from the dissolution of small particles or asperities that prop the fracture open. The driving force for closure via dissolution of the prop is the sum of three chemical potential terms: (1) the dissolution potential, proportional to the logarithm of the degree of undersaturation of the solution; (2) the coarsening potential, proportional to the radius of curvature of the prop; and (3) the pressure solution potential, proportional to the effective normal stress at the contact between propping particles and the fracture wall. Our observations suggest that closure is controlled by a pressure solution-like process. The aperture of dilatant fractures and microcracks in the Earth that are similar to those in our experiments, such as ones generated from thermal stressing or brittle failure during earthquake rupture and slip, will decrease rapidly with time, especially if the macroscopic stress is nonhydrostatic.
Childhood and Adolescent Predictors of Alcohol Abuse and Dependence in Young Adulthood*
Guo, Jie; Hawkins, J. David; Hill, Karl G.; Abbott, Robert D
2007-01-01
Objective To provide a comprehensive examination of childhood and adolescent predictors of alcohol abuse and dependence at age 21, theoretically guided by the social development model. Method Data were taken from an ethnically diverse urban sample of 808 students [51% male), surveyed at age 10 and followed prospectively to age 21 in 1996. Potential predictors of alcohol abuse and dependence at age 21 were measured at ages 10, 14 and 16. Relationships between these predictors and alcohol abuse and dependence were examined at each age, to assess changes in their patterns of prediction over time. Results Strong bonding to school, close parental monitoring of children and clearly defined family rules for behavior, appropriate parental rewards for good behaviors, high level of refusal skills and strong belief in the moral order predicted a lower risk for alcohol abuse and dependence at age 21. Of these, strong bonding to school consistently predicted lower alcohol abuse and dependence from all three ages (10, 14 and 16). By contrast, youths who had a higher risk of alcohol abuse and dependence at age 21 engaged in more problem behaviors, had more opportunities to be involved with antisocial individuals and spent more time with and were more bonded to those individuals, viewed fewer negative consequences from antisocial behaviors and held more favorable views on alcohol use. Of these, prior problem behaviors and antisocial opportunities and involvements at ages 10, 14 and 16 consistently predicted alcohol abuse and dependence at age 21. Conclusions These important malleable predictors, identifiable as early as age 10, provide potential intervention targets for the prevention of alcohol abuse and dependence in early adulthood. PMID:11838912
Wang, G K
1984-01-01
The effects of externally applied chloramine-T on the excitability of single toad myelinated nerve fibres were studied. Chloramine-T is a mild oxidant which reacts specifically with the cysteine and methionine residues of proteins. Chloramine-T prolongs the action potential of a single myelinated fibre by more than 1000-fold. This effect is concentration- and time-dependent; higher concentrations and longer incubation times increase prolongation. Under voltage-clamp conditions, sodium channel inactivation is markedly inhibited by chloramine-T while sodium channel activation remains normal. Prolonged depolarization of the membrane leads to a maintained sodium current. The maintained sodium currents show activation kinetics, dependence on membrane potential, and reversal potentials which are similar to those of normal, inactivating sodium currents in untreated fibres. Both the maintained and the peak sodium currents are equally inhibited by tetrodotoxin. After partial removal of sodium inactivation by brief exposures to chloramine-T, the voltage dependence of the steady-state sodium current inactivation (h infinity) is shifted in the depolarized direction by about 20 mV, even after correction for the non-inactivating component contributed by the maintained current. The phenomena described here imply that cysteine or methionine residues are critical for the sodium channel inactivation processes. The two different modifications of inactivation, its removal shown by the maintained current, and the shift in the voltage-dependence of the remaining inactivatable channels, reveal that at least two separate residues are modified by chloramine-T. PMID:6321714
Learning complex temporal patterns with resource-dependent spike timing-dependent plasticity.
Hunzinger, Jason F; Chan, Victor H; Froemke, Robert C
2012-07-01
Studies of spike timing-dependent plasticity (STDP) have revealed that long-term changes in the strength of a synapse may be modulated substantially by temporal relationships between multiple presynaptic and postsynaptic spikes. Whereas long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength have been modeled as distinct or separate functional mechanisms, here, we propose a new shared resource model. A functional consequence of our model is fast, stable, and diverse unsupervised learning of temporal multispike patterns with a biologically consistent spiking neural network. Due to interdependencies between LTP and LTD, dendritic delays, and proactive homeostatic aspects of the model, neurons are equipped to learn to decode temporally coded information within spike bursts. Moreover, neurons learn spike timing with few exposures in substantial noise and jitter. Surprisingly, despite having only one parameter, the model also accurately predicts in vitro observations of STDP in more complex multispike trains, as well as rate-dependent effects. We discuss candidate commonalities in natural long-term plasticity mechanisms.
A new ultrasonic transducer sample cell for in situ small-angle scattering experiments
NASA Astrophysics Data System (ADS)
Gupta, Sudipta; Bleuel, Markus; Schneider, Gerald J.
2018-01-01
Ultrasound irradiation is a commonly used technique for nondestructive diagnostics or targeted destruction. We report on a new versatile sonication device that fits in a variety of standard sample environments for neutron and X-ray scattering instruments. A piezoelectric transducer permits measuring of the time-dependent response of the sample in situ during or after sonication. We use small-angle neutron scattering (SANS) to demonstrate the effect of a time-dependent perturbation on the structure factor of micelles formed from sodium dodecyl sulfate surfactant molecules. We observe a substantial change in the micellar structure during and after exposure to ultrasonic irradiation. We also observe a time-dependent relaxation to the equilibrium values of the unperturbed system. The strength of the perturbation of the structure factor depends systematically on the duration of sonication. The relaxation behavior can be well reproduced after multiple times of sonication. Accumulation of the recorded intensities of the different sonication cycles improves the signal-to-noise ratio and permits reaching very short relaxation times. In addition, we present SANS data for the micellar form factor on alkyl-poly (ethylene oxide) surfactant molecules irradiated by ultrasound. Due to the flexibility of our new in situ sonication device, different experiments can be performed, e.g., to explore molecular potentials in more detail by introducing a systematic time-dependent perturbation.
NASA Astrophysics Data System (ADS)
Cuansing, Eduardo C.; Liang, Gengchiau
2011-10-01
Time-dependent nonequilibrium Green's functions are used to study electron transport properties in a device consisting of two linear chain leads and a time-dependent interlead coupling that is switched on non-adiabatically. We derive a numerically exact expression for the particle current and examine its characteristics as it evolves in time from the transient regime to the long-time steady-state regime. We find that just after switch-on, the current initially overshoots the expected long-time steady-state value, oscillates and decays as a power law, and eventually settles to a steady-state value consistent with the value calculated using the Landauer formula. The power-law parameters depend on the values of the applied bias voltage, the strength of the couplings, and the speed of the switch-on. In particular, the oscillating transient current decays away longer for lower bias voltages. Furthermore, the power-law decay nature of the current suggests an equivalent series resistor-inductor-capacitor circuit wherein all of the components have time-dependent properties. Such dynamical resistive, inductive, and capacitive influences are generic in nano-circuits where dynamical switches are incorporated. We also examine the characteristics of the dynamical current in a nano-oscillator modeled by introducing a sinusoidally modulated interlead coupling between the two leads. We find that the current does not strictly follow the sinusoidal form of the coupling. In particular, the maximum current does not occur during times when the leads are exactly aligned. Instead, the times when the maximum current occurs depend on the values of the bias potential, nearest-neighbor coupling, and the interlead coupling.
Two-dimensional model of resonant electron collisions with diatomic molecules and molecular cations
NASA Astrophysics Data System (ADS)
Vana, Martin; Hvizdos, David; Houfek, Karel; Curik, Roman; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William
2016-05-01
A simple model for resonant collisions of electrons with diatomic molecules with one electronic and one nuclear degree of freedom (2D model) which was solved numerically exactly within the time-independent approach was used to probe the local complex potential approximation and nonlocal approximation to nuclear dynamics of these collisions. This model was reformulated in the time-dependent picture and extended to model also electron collisions with molecular cations, especially with H2+.This model enables an assessment of approximate methods, such as the boomerang model or the frame transformation theory. We will present both time-dependent and time-independent results and show how we can use the model to extract deeper insight into the dynamics of the resonant collisions.
a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions
NASA Astrophysics Data System (ADS)
Runge, Keith
A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the electron are seen to occur in the proton-Hydrogen atom system at low collision energies. The concepts and results derived from the approach provide new insight into the dynamics of nuclear screening and electronic rearrangement in atomic collisions.
Wilmes, Katharina Anna; Schleimer, Jan-Hendrik; Schreiber, Susanne
2017-04-01
Inhibition is known to influence the forward-directed flow of information within neurons. However, also regulation of backward-directed signals, such as backpropagating action potentials (bAPs), can enrich the functional repertoire of local circuits. Inhibitory control of bAP spread, for example, can provide a switch for the plasticity of excitatory synapses. Although such a mechanism is possible, it requires a precise timing of inhibition to annihilate bAPs without impairment of forward-directed excitatory information flow. Here, we propose a specific learning rule for inhibitory synapses to automatically generate the correct timing to gate bAPs in pyramidal cells when embedded in a local circuit of feedforward inhibition. Based on computational modeling of multi-compartmental neurons with physiological properties, we demonstrate that a learning rule with anti-Hebbian shape can establish the required temporal precision. In contrast to classical spike-timing dependent plasticity of excitatory synapses, the proposed inhibitory learning mechanism does not necessarily require the definition of an upper bound of synaptic weights because of its tendency to self-terminate once annihilation of bAPs has been reached. Our study provides a functional context in which one of the many time-dependent learning rules that have been observed experimentally - specifically, a learning rule with anti-Hebbian shape - is assigned a relevant role for inhibitory synapses. Moreover, the described mechanism is compatible with an upregulation of excitatory plasticity by disinhibition. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin.
Zhang, Yue; Addison, Owen; Yu, Fei; Troconis, Brendy C Rincon; Scully, John R; Davenport, Alison J
2018-02-16
There is increasing concern regarding the biological consequences of metal release from implants. However, the mechanisms underpinning implant surface degradation, especially in the absence of wear, are often poorly understood. Here the synergistic effect of albumin and H 2 O 2 on corrosion of Ti6Al4V in physiological saline is studied with electrochemical methods. It is found that albumin induces a time-dependent dissolution of Ti6Al4V in the presence of H 2 O 2 in physiology saline. Potentiostatic polarisation measurements show that albumin supresses dissolution in the presence of H 2 O 2 at short times (<24 h) but over longer time periods (120 h) it significantly accelerates corrosion, which is attributed to albumin-catalysed dissolution of the corrosion product layer resulting in formation of a thinner oxide film. Dissolution of Ti6Al4V in the presence of albumin and H 2 O 2 in physiological saline is also found to be dependent on potential: the titanium ion release rate is found to be higher (0.57 µg/cm 2 ) at a lower potential (90 mV), where the oxide capacitance and resistance inferred from Electrochemical Impedance Spectroscopy also suggests a less resistant oxide film. The study highlights the importance of using more realistic solutions, and considering behaviour over longer time periods when testing corrosion resistance of metallic biomaterials.
Jiménez-Aquino, J I; Romero-Bastida, M
2011-07-01
The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.
Dynamic kinetic energy potential for orbital-free density functional theory.
Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang
2011-04-14
A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.
Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja
2012-01-01
The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase activation involving generation of intracellular ROS. PMID:22792212
NASA Astrophysics Data System (ADS)
Rodak, C. M.; Silliman, S. E.; Bolster, D.
2012-12-01
A hypothetical case study of groundwater contaminant protection was carried out using time-dependent health risk calculations. The case study focuses on a hypothetical zoning project for parcels of land around a well field in northern Indiana, where the control of cancer risk relative to a mandated cancer risk threshold is of concern in the management strategy. Within our analysis, we include both uncertainty in the subsurface transport and variability in population behavior in the calculation of time-dependent health risks. From these results we introduce risk maps, a visual representation of the probability of an unacceptable health risk as a function of population behavior and the time at which exposure to the contaminant begins. We also evaluate the time-dependent risks with three criteria from water resource literature: reliability, resilience, and vulnerability (RRV). With respect to health risk from a groundwater well, the three criteria determine: the probability that a well produces safe water (reliability), the probability that a contaminated well returns to an uncontaminated state within a specified time interval (resilience), and the overall severity in terms of health impact of the contamination at a well head (vulnerability). The results demonstrate that the distributions of RRV values for each parcel of land are linked to the time-dependent concentration profile of the contaminant at the well, and the toxicological characteristics of the contaminant. The proposed time-dependent risk calculation expands on current techniques to include a continuous exposure start time, capable of reproducing the maximum risk while providing information on the severity and duration of health risks. Overall this study suggests that, especially in light of the inherent complexity of health-groundwater systems, RRV are viable criteria for relatively simple and effective evaluation of time-dependent health risk. It is argued that the RRV approach, as applied to consideration of potential health impact, allows for more informed, health-based decisions regarding zoning for wellhead protection.
Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena
White, William E.
2013-01-01
Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698
Bennekou, P; Kristensen, B I; Christophersen, P
2003-09-01
The activation/deactivation kinetics of the human erythrocyte voltage-dependent cation channel was characterized at the single-channel level using inside-out patches. It was found that the time dependence for voltage activation after steps to positive membrane potentials was slow ( t(1/2) about 30 s), whereas the deactivation was fast ( t(1/2) about 15 ms). Both activation and deactivation of this channel were also demonstrated in intact red cells in suspension. At very positive membrane potentials generated by suspension in extracellular low Cl(-) concentrations, the cation conductance switched on with a time constant of about 2 min. Deactivation of the cation channel was clearly demonstrated during transient activation of the Gárdos channel elicited by Ca(2+) influx via the cation channel and ensuing efflux via the Ca(2+) pump. Thus, the voltage-dependent cation channel, the Gárdos channel and the Ca(2+) pump constitute a coupled feedback-regulated system that may become operative under physiological conditions.
Critical quench dynamics in confined systems.
Collura, Mario; Karevski, Dragi
2010-05-21
We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
Kerr, Robert R; Burkitt, Anthony N; Thomas, Doreen A; Gilson, Matthieu; Grayden, David B
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.
Kerr, Robert R.; Burkitt, Anthony N.; Thomas, Doreen A.; Gilson, Matthieu; Grayden, David B.
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem. PMID:23408878
ERIC Educational Resources Information Center
Dallas, Andrea; DeDe, Gayle; Nicol, Janet
2013-01-01
The current study employed a neuro-imaging technique, Event-Related Potentials (ERP), to investigate real-time processing of sentences containing filler-gap dependencies by late-learning speakers of English as a second language (L2) with a Chinese native language background. An individual differences approach was also taken to examine the role of…
ERIC Educational Resources Information Center
Pu, Zhenwei; Krugers, Harm J.; Joels, Marian
2007-01-01
Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining whether corticosterone exerts opposite effects on…
SGK Protein Kinase Facilitates the Expression of Long-Term Potentiation in Hippocampal Neurons
ERIC Educational Resources Information Center
Ma, Yun L.; Tsai, Ming C.; Hsu, Wei L.; Lee, Eminy H.Y.
2006-01-01
Previous studies showed that the serum- and glucocorticoid-inducible kinase ("sgk") gene plays an important role in long-term memory formation. The present study further examined the role of SGK in long-term potentiation (LTP). The dominant-negative mutant of "sgk," SGKS422A, was used to inactivate SGK. Results revealed a time-dependent increase…
Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington
2010-01-01
The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.
Bursting Regimes in a Reaction-Diffusion System with Action Potential-Dependent Equilibrium
Meier, Stephen R.; Lancaster, Jarrett L.; Starobin, Joseph M.
2015-01-01
The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed. PMID:25823018
NASA Astrophysics Data System (ADS)
Yu, Jie; Wang, Sen-Ming; Yuan, Kai-Jun; Cong, Shu-Lin
2006-09-01
The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61Σ+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61Σ+ state can be extracted from the photoelectron energy spectra.
Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat
Rivera, Sofia; Leteur, Céline; Mégnin, Frédérique; Law, Frédéric; Martins, Isabelle; Kloos, Ioana; Depil, Stéphane; Modjtahedi, Nazanine; Perfettini, Jean Luc; Hennequin, Christophe; Deutsch, Eric
2017-01-01
Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi). Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin. Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC. PMID:28915585
Quantum work statistics of charged Dirac particles in time-dependent fields
Deffner, Sebastian; Saxena, Avadh
2015-09-28
The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.
Avalanches and plasticity for colloids in a time dependent optical trap
Olson Reichhardt, Cynthia Jane; McDermott, Danielle Marie; Reichhardt, Charles
2015-08-25
Here, with the use of optical traps it is possible to confine assemblies of colloidal particles in two-dimensional and quasi-one-dimensional arrays. Here we examine how colloidal particles rearrange in a quasi-one-dimensional trap with a time dependent confining potential. The particle motion occurs both through slow elastic uniaxial distortions as well as through abrupt large-scale two-dimensional avalanches associated with plastic rearrangements. During the avalanches the particle velocity distributions extend over a broad range and can be fit to a power law consistent with other studies of plastic events mediated by dislocations.
Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.
Jaquith, Michael; Muller, Erik M; Marohn, John A
2007-07-12
Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.
NASA Astrophysics Data System (ADS)
Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.
2017-02-01
Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.
Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films
NASA Astrophysics Data System (ADS)
Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team
2014-03-01
This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.
Time-delayed autosynchronous swarm control.
Biggs, James D; Bennet, Derek J; Dadzie, S Kokou
2012-01-01
In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.
Jupiter's Great Red Spot as a shallow water system
NASA Technical Reports Server (NTRS)
Dowling, Timothy E.; Ingersoll, Andrew P.
1989-01-01
Voyager cloud-top velocity data for Jupiter's Great Red Spot (GRS) is used to derive the bottom topography up to a constant that depends on the unknown radius of deformation. The bottom topography is inferred from the Bernoulli streamfunction, kinetic energy per unit mass, and absolute vorticity values derived from the velocity data. The results are used to calculate potential vorticity versus latitude far from the vortex. It is found that the deep atmosphere is in differential motion and that the far-field potential vorticity gradient changes sign at several latitudes. Numerical experiments are conducted to study the time-dependent behavior of the shallow water analog of Jupiter's analog.
Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.
Frémaux, Nicolas; Gerstner, Wulfram
2015-01-01
Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.
Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M
2015-09-11
Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.
NASA Astrophysics Data System (ADS)
Bruch, Anton; Lewenkopf, Caio; von Oppen, Felix
2018-03-01
We develop a Landauer-Büttiker theory of entropy evolution in time-dependent, strongly coupled electron systems. The formalism naturally avoids the problem of the system-bath distinction by defining the entropy current in the attached leads. This current can then be used to infer changes of the entropy of the system which we refer to as the inside-outside duality. We carry out this program in an adiabatic expansion up to first order beyond the quasistatic limit. When combined with particle and energy currents, as well as the work required to change an external potential, our formalism provides a full thermodynamic description, applicable to arbitrary noninteracting electron systems in contact with reservoirs. This provides a clear understanding of the relation between heat and entropy currents generated by time-dependent potentials and their connection to the occurring dissipation.
Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses
Delvendahl, Igor; Vyleta, Nicholas P.; von Gersdorff, Henrique; Hallermann, Stefan
2016-01-01
The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bonafide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin, but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin-, dynamin-, and actin-dependent. Furthermore, the speed of endocytosis is highly temperature-dependent with a Q10 of ~3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. PMID:27146271
Thermal fluctuations of dilaton black holes in gravity's rainbow
NASA Astrophysics Data System (ADS)
Dehghani, M.
2018-06-01
In this work, thermodynamics and phase transition of some new dilaton black hole solutions have been explored in the presence of the rainbow functions. By introducing an energy dependent space time, the dilaton potential has been obtained as the linear combination of two Liouville-type potentials and three new classes of black hole solutions have been constructed. The conserved and thermodynamic quantities of the new dilaton black holes have been calculated in the energy dependent space times. It has been shown that, even if some of the thermodynamic quantities are affected by the rainbow functions, the thermodynamical first law still remains valid. Also, the impacts of rainbow functions on the stability or phase transition of the new black hole solutions have been investigated. Finally, the quantum gravitational effects on the thermodynamics and phase transition of the solutions have been studied through consideration of the thermal fluctuations.
NASA Astrophysics Data System (ADS)
Gillmeister, K.; Kiel, M.; Widdra, W.
2018-02-01
For well-ordered ultrathin films of NiO(001) on Ag(001), a series of unoccupied states below the vacuum level has been found. The states show a nearly free electron dispersion and binding energies which are typical for image potential states. By time-resolved two-photon photoemission (2PPE), the lifetimes of the first three states and their dependence on oxide film thickness are determined. For NiO film thicknesses between 2 and 4 monolayers (ML), the lifetime of the first state is in the range of 28-42 fs and shows an oscillatory behavior with increasing thickness. The values for the second state decrease monotonically from 88 fs for 2 ML to 33 fs for 4 ML. These differences are discussed in terms of coupling of the unoccupied states to the layer-dependent electronic structure of the growing NiO film.
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
Surface potentials measure ion concentrations near lipid bilayers during rapid solution changes.
Laver, D R; Curtis, B A
1996-01-01
We describe a puffing method for changing solutions near one surface of lipid bilayers that allows simultaneous measurement of channel activity and extent of solution change at the bilayer surface. Ion adsorption to the lipid headgroups and screening of the bilayer surface charge by mobile ions provided a convenient probe for the ionic composition of the solution at the bilayer surface. Rapid ionic changes induced a shift in bilayer surface potential that generated a capacitive transient current under voltage-clamp conditions. This depended on the ion species and bilayer composition and was accurately described by the Stern-Gouy-Chapman theory. The time course of solute concentrations during solution changes could also be modeled by an exponential exchange of bath and puffing solutions with time constants ranging from 20 to 110 ms depending on the flow pressure. During changes in [Cs+] and [Ca2+] (applied separately or together) both the mixing model and capacitive currents predicted [Cs+] and [Ca2+] transients consistent with those determined experimentally from: 1) the known Cs(+)-dependent conductance of open ryanodine receptor channels and 2) the Ca(2+)-dependent gating of ryanodine receptor Ca2+ channels from cardiac and skeletal muscle. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 8 PMID:8842210
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shunsuke A.; Taniguchi, Yasutaka; Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functionalmore » which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.« less
Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil
2018-05-01
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Crago, Patrick E; Makowski, Nathaniel S
2014-10-01
Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.
Late time behaviors of an inhomogeneous rolling tachyon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, O-Kab; Lee, Chong Oh; Basic Science Research Institute, Chonbuk National University, Chonju 561-756
2006-06-15
We study an inhomogeneous decay of an unstable D-brane in the context of Dirac-Born-Infeld (DBI)-type effective action. We consider tachyon and electromagnetic fields with dependence of time and one spatial coordinate, and an exact solution is found under an exponentially decreasing tachyon potential, e{sup -|T|/{radical}}{sup (2)}, which is valid for the description of the late time behavior of an unstable D-brane. Though the obtained solution contains both time and spatial dependence, the corresponding momentum density vanishes over the entire spacetime region. The solution is governed by two parameters. One adjusts the distribution of energy density in the inhomogeneous direction, andmore » the other interpolates between the homogeneous rolling tachyon and static configuration. As time evolves, the energy of the unstable D-brane is converted into the electric flux and tachyon matter.« less
Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.
2015-01-01
By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.
Electron quantum dynamics in atom-ion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.
2016-04-07
Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less
Manoharan, Shanmugam; Panjamurthy, Kuppusamy; Balakrishnan, Subramanian; Vasudevan, Kalaiarasan; Vellaichamy, Lakshmanan
2009-01-01
Circadian time-dependent treatment with chemotherapeutic drugs (chronotherapy) optimizes the therapeutic index by maximizing treatment efficacy and minimizing toxicity. The circadian time-dependent chemopreventive and anti-lipid peroxidative efficacy of withaferin-A in 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis was investigated in the present study. We induced oral squamous cell carcinoma in the buccal pouches of golden Syrian hamsters during the day (4:00, 8:00, 12:00, 16:00, 20:00 and 24:00) by application of DMBA three times per week for 14 weeks. The circadian time-dependent tumor incidence, volume and burden were observed in hamsters treated with either DMBA alone or DMBA + withaferin-A. The circadian pattern of lipid peroxidation by-products, as measured by the formation of thiobarbituric acid reactive substances (TBARS) and enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], was also analyzed in the buccal mucosa of DMBA-treated hamsters. We found the highest incidence of tumor formation at 24.00 h in hamsters treated with DMBA alone as compared to other experimental groups. Circadian dysregulation of lipid peroxidation and antioxidant status was observed in DMBA-treated animals as compared to control animals. Oral (po) administration of withaferin-A (20 mg/kg) completely prevented the formation of tumors between 8.00 h and 12.00 h and synchronized the status of lipid peroxidation and antioxidants in the buccal mucosa of hamsters treated with DMBA alone. Also, oral administration of withaferin-A to DMBA-treated animals significantly reduced the formation of tumors and synchronized the status of lipid peroxidation and antioxidants in the rest of the time intervals. Our study thus suggests that withaferin-A has significant chemopreventive and anti-lipid peroxidative potential in DMBA-induced oral carcinogenesis, probably by interfering with DMBA-induced abnormal cell proliferation in the buccal mucosa.
Seal carrion is a predictable resource for coastal ecosystems
NASA Astrophysics Data System (ADS)
Quaggiotto, Maria-Martina; Barton, Philip S.; Morris, Christopher D.; Moss, Simon E. W.; Pomeroy, Patrick P.; McCafferty, Dominic J.; Bailey, David M.
2018-04-01
The timing, magnitude, and spatial distribution of resource inputs can have large effects on dependent organisms. Few studies have examined the predictability of such resources and no standard ecological measure of predictability exists. We examined the potential predictability of carrion resources provided by one of the UK's largest grey seal (Halichoerus grypus) colonies, on the Isle of May, Scotland. We used aerial (11 years) and ground surveys (3 years) to quantify the variability in time, space, quantity (kg), and quality (MJ) of seal carrion during the seal pupping season. We then compared the potential predictability of seal carrion to other periodic changes in food availability in nature. An average of 6893 kg of carrion •yr-1 corresponding to 110.5 × 103 MJ yr-1 was released for potential scavengers as placentae and dead animals. A fifth of the total biomass from dead seals was consumed by the end of the pupping season, mostly by avian scavengers. The spatial distribution of carcasses was similar across years, and 28% of the area containing >10 carcasses ha-1 was shared among all years. Relative standard errors (RSE) in space, time, quantity, and quality of carrion were all below 34%. This is similar to other allochthonous-dependent ecosystems, such as those affected by migratory salmon, and indicates high predictability of seal carrion as a resource. Our study illustrates how to quantify predictability in carrion, which is of general relevance to ecosystems that are dependent on this resource. We also highlight the importance of carrion to marine coastal ecosystems, where it sustains avian scavengers thus affecting ecosystem structure and function.
Cathodic Potential Dependence of Electrochemical Reduction of SiO2 Granules in Molten CaCl2
NASA Astrophysics Data System (ADS)
Yang, Xiao; Yasuda, Kouji; Nohira, Toshiyuki; Hagiwara, Rika; Homma, Takayuki
2016-09-01
As part of an ongoing fundamental study to develop a new process for producing solar-grade silicon, this paper examines the effects of cathodic potential on reduction kinetics, current efficiency, morphology, and purity of Si product during electrolysis of SiO2 granules in molten CaCl2 at 1123 K (850 °C). SiO2 granules were electrolyzed potentiostatically at different cathodic potentials (0.6, 0.8, 1.0, and 1.2 V vs Ca2+/Ca). The reduction kinetics was evaluated based on the growth of the reduced Si layer and the current behavior during electrolysis. The results suggest that a more negative cathodic potential is favorable for faster reduction. Current efficiencies in 60 minutes are greater than 65 pct at all the potentials examined. Si wires with sub-micron diameters are formed, and their morphologies show little dependence on the cathodic potential. The impurities in the Si product can be controlled at low level. The rate-determining step for the electrochemical reduction of SiO2 granules in molten CaCl2 changes with time. At the initial stage of electrolysis, the electron transfer is the rate-determining step. At the later stage, the diffusion of O2- ions is the rate-determining step. The major cause of the decrease in reduction rate with increasing electrolysis time is the potential drop from the current collector to the reaction front due to the increased contact resistance among the reduced Si particles.
Single-particle stochastic heat engine.
Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M
2014-10-01
We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.
ac-driven vortices and the Hall effect in a superconductor with a tilted washboard pinning potential
NASA Astrophysics Data System (ADS)
Shklovskij, Valerij A.; Dobrovolskiy, Oleksandr V.
2008-09-01
The Langevin equation for a two-dimensional (2D) nonlinear guided vortex motion in a tilted cosine pinning potential in the presence of an ac is exactly solved in terms of a matrix continued fraction at arbitrary value of the Hall effect. The influence of an ac of arbitrary amplitude and frequency on the dc and ac magnetoresistivity tensors is analyzed. The ac density and frequency dependence of the overall shape and the number and position of the Shapiro steps on the anisotropic current-voltage characteristics are considered. The influence of a subcritical or overcritical dc on the time-dependent stationary ac longitudinal and transverse resistive vortex responses (on the frequency of an ac drive Ω ) in terms of the nonlinear impedance tensor Ẑ and the nonlinear ac response at Ω harmonics are studied. Analytical formulas for 2D temperature-dependent linear impedance tensor ẐL in the presence of a dc which depend on the angle α between the current-density vector and the guiding direction of the washboard planar pinning potential are derived and analyzed. Influence of α anisotropy and the Hall effect on the nonlinear power absorption by vortices is discussed.
Optimal protocol for maximum work extraction in a feedback process with a time-varying potential
NASA Astrophysics Data System (ADS)
Kwon, Chulan
2017-12-01
The nonequilibrium nature of information thermodynamics is characterized by the inequality or non-negativity of the total entropy change of the system, memory, and reservoir. Mutual information change plays a crucial role in the inequality, in particular if work is extracted and the paradox of Maxwell's demon is raised. We consider the Brownian information engine where the protocol set of the harmonic potential is initially chosen by the measurement and varies in time. We confirm the inequality of the total entropy change by calculating, in detail, the entropic terms including the mutual information change. We rigorously find the optimal values of the time-dependent protocol for maximum extraction of work both for the finite-time and the quasi-static process.
Field induced transient current in one-dimensional nanostructure
NASA Astrophysics Data System (ADS)
Sako, Tokuei; Ishida, Hiroshi
2018-07-01
Field-induced transient current in one-dimensional nanostructures has been studied by a model of an electron confined in a 1D attractive Gaussian potential subjected both to electrodes at the terminals and to an ultrashort pulsed oscillatory electric field with the central frequency ω and the FWHM pulse width Γ. The time-propagation of the electron wave packet has been simulated by integrating the time-dependent Schrödinger equation directly relying on the second-order symplectic integrator method. The transient current has been calculated as the flux of the probability density of the escaping wave packet emitted from the downstream side of the confining potential. When a static bias-field E0 is suddenly applied, the resultant transient current shows an oscillatory decay behavior with time followed by a minimum structure before converging to a nearly constant value. The ω-dependence of the integrated transient current induced by the pulsed electric field has shown an asymmetric resonance line-shape for large Γ while it shows a fringe pattern on the spectral line profile for small Γ. These observations have been rationalized on the basis of the energy-level structure and lifetime of the quasibound states in the bias-field modified confining potential obtained by the complex-scaling Fourier grid Hamiltonian method.
Relative frequencies of seismic main shocks after strong shocks in Italy
NASA Astrophysics Data System (ADS)
Gasperini, Paolo; Lolli, Barbara; Vannucci, Gianfranco
2016-10-01
We analysed a catalogue of Italian earthquakes, covering 55 yr of data from 1960 to 2014 with magnitudes homogeneously converted to Mw, to compute the time-dependent relative frequencies with which strong seismic shocks (4.0 ≤ Mw < 5.0), widely felt by the population, have been followed by main shocks (Mw ≥ 5.0) that threatened the health and the properties of the persons living in the epicentral area. Assuming the stationarity of the seismic release properties, such frequencies are estimates of the probabilities of potentially destructive shocks after the occurrence of future strong shocks. We compared them with the time-independent relative frequencies of random occurrence in terms of the frequency gain that is the ratio between the time-dependent and time-independent relative frequencies. The time-dependent relative frequencies vary from less than 1 per cent to about 20 per cent, depending on the magnitudes of the shocks and the time windows considered (ranging from minutes to years). They remain almost constant for a few hours after the strong shock and then decrease with time logarithmically. Strong earthquakes (with Mw ≥ 6.0) mainly occurred within two or three months of the strong shock. The frequency gains vary from about 10 000 for very short time intervals to less than 10 for a time interval of 2 yr. Only about 1/3 of main shocks were preceded by at least a strong shock in the previous day and about 1/2 in the previous month.
NASA Astrophysics Data System (ADS)
Arce, Julio Cesar
1992-01-01
This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.
Polarity effects and apparent ion recombination in microionization chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Jessica R., E-mail: miller@humonc.wisc.edu; Hooten, Brian D.; Micka, John A.
Purpose: Microchambers demonstrate anomalous voltage-dependent polarity effects. Existing polarity and ion recombination correction factors do not account for these effects. As a result, many commercial microchamber models do not meet the specification of a reference-class ionization chamber as defined by the American Association of Physicists in Medicine. The purpose of this investigation is to determine the cause of these voltage-dependent polarity effects. Methods: A series of microchamber prototypes were produced to isolate the source of the voltage-dependent polarity effects. Parameters including ionization-chamber collecting-volume size, stem and cable irradiation, chamber assembly, contaminants, high-Z materials, and individual chamber components were investigated. Measurementsmore » were performed with electrodes coated with graphite to isolate electrode conductivity. Chamber response was measured as the potential bias of the guard electrode was altered with respect to the collecting electrode, through the integration of additional power supplies. Ionization chamber models were also simulated using COMSOL Multiphysics software to investigate the effect of a potential difference between electrodes on electric field lines and collecting volume definition. Results: Investigations with microchamber prototypes demonstrated that the significant source of the voltage-dependent polarity effects was a potential difference between the guard and collecting electrodes of the chambers. The voltage-dependent polarity effects for each prototype were primarily isolated to either the guard or collecting electrode. Polarity effects were reduced by coating the isolated electrode with a conductive layer of graphite. Polarity effects were increased by introducing a potential difference between the electrodes. COMSOL simulations further demonstrated that for a given potential difference between electrodes, the collecting volume of the chamber changed as the applied voltage was altered, producing voltage-dependent polarity effects in the chamber response. Ionization chamber measurements and COMSOL simulations demonstrated an inverse relationship between the chamber collecting volume size and the severity of voltage-dependent polarity effects on chamber response. The effect of a given potential difference on chamber polarity effects was roughly ten times greater for microchambers as compared to Farmer-type chambers. Stem and cable irradiations, chamber assembly, contaminants, and high-Z materials were not found to be a significant source of the voltage-dependent polarity effects. Conclusions: A potential difference between the guard and collecting electrodes was found to be the primary source of the voltage-dependent polarity effects demonstrated by microchambers. For a given potential difference between electrodes, the relative change in the collecting volume is smaller for larger-volume chambers, illustrating why these polarity effects are not seen in larger-volume chambers with similar guard and collecting electrode designs. Thus, for small-volume chambers, it is necessary to reduce the potential difference between the guard and collecting electrodes in order to reduce polarity effects for reference dosimetry measurements.« less
Markovian Anderson Model: Bounds for the Rate of Propagation
NASA Astrophysics Data System (ADS)
Tcheremchantsev, Serguei
We consider the Anderson model in with potentials whose values at any site of the lattice are Markovian independent random functions of time. For solutions to the time-dependent Schrödinger equation we show under some conditions that with probability 1
Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses
NASA Astrophysics Data System (ADS)
Kübel, M.; Arbeiter, M.; Burger, C.; Kling, Nora G.; Pischke, T.; Moshammer, R.; Fennel, T.; Kling, M. F.; Bergues, B.
2018-07-01
We investigate the carrier-envelope phase (CEP) and intensity dependence of the longitudinal momentum distribution of photoelectrons resulting from above threshold ionization of argon by few-cycle laser pulses. The intensity of the pulses with a center wavelength of 750 nm is varied in a range between 0.7 × 1014 and 5.5× {10}14 {{W}} {cm}}-2. Our measurements reveal a prominent maximum in the CEP-dependent asymmetry at photoelectron energies of 2 U P (U P being the ponderomotive potential), that is persistent over the entire intensity range. Further local maxima are observed around 0.3 and 0.8 U P. The experimental results are in good agreement with theoretical results obtained by solving the three-dimensional time-dependent Schrödinger equation. We show that for few-cycle pulses, the amplitude of the CEP-dependent asymmetry provides a reliable measure for the peak intensity on target. Moreover, the measured asymmetry amplitude exhibits an intensity-dependent interference structure at low photoelectron energy, which could be used to benchmark model potentials for complex atoms.
Excitation of collective modes in a quantum flute
NASA Astrophysics Data System (ADS)
Torfason, Kristinn; Manolescu, Andrei; Molodoveanu, Valeriu; Gudmundsson, Vidar
2012-06-01
We use a generalized master equation (GME) formalism to describe the nonequilibrium time-dependent transport of Coulomb interacting electrons through a short quantum wire connected to semi-infinite biased leads. The contact strength between the leads and the wire is modulated by out-of-phase time-dependent potentials that simulate a turnstile device. We explore this setup by keeping the contact with one lead at a fixed location at one end of the wire, whereas the contact with the other lead is placed on various sites along the length of the wire. We study the propagation of sinusoidal and rectangular pulses. We find that the current profiles in both leads depend not only on the shape of the pulses, but also on the position of the second contact. The current reflects standing waves created by the contact potentials, like in a wind musical instrument (for example, a flute), but occurring on the background of the equilibrium charge distribution. The number of electrons in our quantum “flute” device varies between two and three. We find that for rectangular pulses the currents in the leads may flow against the bias for short time intervals, due to the higher harmonics of the charge response. The GME is solved numerically in small time steps without resorting to the traditional Markov and rotating wave approximations. The Coulomb interaction between the electrons in the sample is included via the exact diagonalization method. The system (leads plus sample wire) is described by a lattice model.
Ada 9X Project Report, A Study of Implementation-Dependent Pragmas and Attributes in Ada
1989-11-01
here communicatons with the vendor were often required to firmly establish the behavior of some implementation-dependent features CMU-SEI-SR-89-19 3 2.2...compilers), by potential market penetration (percent coverage of all surveyed implementations), and by cross-compiler influence (percentage of cross...operations in the context of a tightly integrated development environment, specific underlying operating system services (beneath the Ada run- time kernel
Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B
2016-10-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.
Maltas, Jeff; Brumm, Peter; Wood, Kevin B.
2016-01-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095
A neural computational model for animal's time-to-collision estimation.
Wang, Ling; Yao, Dezhong
2013-04-17
The time-to-collision (TTC) is the time elapsed before a looming object hits the subject. An accurate estimation of TTC plays a critical role in the survival of animals in nature and acts as an important factor in artificial intelligence systems that depend on judging and avoiding potential dangers. The theoretic formula for TTC is 1/τ≈θ'/sin θ, where θ and θ' are the visual angle and its variation, respectively, and the widely used approximation computational model is θ'/θ. However, both of these measures are too complex to be implemented by a biological neuronal model. We propose a new simple computational model: 1/τ≈Mθ-P/(θ+Q)+N, where M, P, Q, and N are constants that depend on a predefined visual angle. This model, weighted summation of visual angle model (WSVAM), can achieve perfect implementation through a widely accepted biological neuronal model. WSVAM has additional merits, including a natural minimum consumption and simplicity. Thus, it yields a precise and neuronal-implemented estimation for TTC, which provides a simple and convenient implementation for artificial vision, and represents a potential visual brain mechanism.
Destructive impact of molecular noise on nanoscale electrochemical oscillators
NASA Astrophysics Data System (ADS)
Cosi, Filippo G.; Krischer, Katharina
2017-06-01
We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.
Development of an automated processing system for potential fishing zone forecast
NASA Astrophysics Data System (ADS)
Ardianto, R.; Setiawan, A.; Hidayat, J. J.; Zaky, A. R.
2017-01-01
The Institute for Marine Research and Observation (IMRO) - Ministry of Marine Affairs and Fisheries Republic of Indonesia (MMAF) has developed a potential fishing zone (PFZ) forecast using satellite data, called Peta Prakiraan Daerah Penangkapan Ikan (PPDPI). Since 2005, IMRO disseminates everyday PPDPI maps for fisheries marine ports and 3 days average for national areas. The accuracy in determining the PFZ and processing time of maps depend much on the experience of the operators creating them. This paper presents our research in developing an automated processing system for PPDPI in order to increase the accuracy and shorten processing time. PFZ are identified by combining MODIS sea surface temperature (SST) and chlorophyll-a (CHL) data in order to detect the presence of upwelling, thermal fronts and biological productivity enhancement, where the integration of these phenomena generally representing the PFZ. The whole process involves data download, map geo-process as well as layout that are carried out automatically by Python and ArcPy. The results showed that the automated processing system could be used to reduce the operator’s dependence on determining PFZ and speed up processing time.
Detecting changes in dynamic and complex acoustic environments
Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard
2017-01-01
Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095
Effects of the new imidazopyridine CL 86-02-01 on isolated papillary muscle of guinea-pig hearts.
Studenik, C; Lemmens-Gruber, R; Heistracher, P
1998-06-01
Inotropic activity and the effect of CL 86-02-01 (2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo[4,5-c]pyridine hydrochloride, CAS 109 792-24-7) on membrane resting and action potentials were studied in isolated guinea-pig papillary muscles. Membrane resting potential and action potential parameters were not significantly changed, while CL 86-02-01 exerted a concentration-dependent inotropic effect by increasing the maximum rate of force development and maximum rate of force relaxation. Time to peak force, relaxation time and total contraction time were reduced. These effects are similar to those of beta-adrenergic drugs and phosphodiesterase inhibitors, but markedly differ from those described for other positive inotropic agents like cardiac glycosides, calcium agonists, alpha-adrenergic drugs or increased extracellular calcium concentration.
Absorption dynamics and delay time in complex potentials
NASA Astrophysics Data System (ADS)
Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto
2018-05-01
The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.
Yang, Li-Zhen; Zhu, Yi-Chun
2015-07-05
We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.
Holthoff, Knut; Zecevic, Dejan; Konnerth, Arthur
2010-04-01
Axonally initiated action potentials back-propagate into spiny dendrites of central mammalian neurons and thereby regulate plasticity at excitatory synapses on individual spines as well as linear and supralinear integration of synaptic inputs along dendritic branches. Thus, the electrical behaviour of individual dendritic spines and terminal dendritic branches is critical for the integrative function of nerve cells. The actual dynamics of action potentials in spines and terminal branches, however, are not entirely clear, mostly because electrode recording from such small structures is not feasible. Additionally, the available membrane potential imaging techniques are limited in their sensitivity and require substantial signal averaging for the detection of electrical events at the spatial scale of individual spines. We made a critical improvement in the voltage-sensitive dye imaging technique to achieve multisite recordings of backpropagating action potentials from individual dendritic spines at a high frame rate. With this approach, we obtained direct evidence that in layer 5 pyramidal neurons from the visual cortex of juvenile mice, the rapid time course of somatic action potentials is preserved throughout all cellular compartments, including dendritic spines and terminal branches of basal and apical dendrites. The rapid time course of the action potential in spines may be a critical determinant for the precise regulation of spike timing-dependent synaptic plasticity within a narrow time window.
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Kammann, Claudia; Lucht, Wolfgang; Gerten, Dieter; Foidl, Nikolaus
2017-04-01
The efficiency of Negative Emission Technologies (NET) is dependent on (1) the transformation of the biomass carbon into a form that can be sequestered, (2) the mean residence time of the sequestered carbon, (3) the regrowth and thus carbon re-accumulation of the harvested biomass, and (4) the positive or negative priming of soil carbon. These four parameters define the time scale dependent C-balance of various NET-Systems and permit a global economic and environmental evaluation. As far as geologic CO2 storage is considered to be feasible with close to zero losses and if the energy for transport, transformation and disposal is taken from the process bioenergy, conventional BE-CCS has a C sequestration potential of 50 - 70 % depending on the type of biomass and the technology used. Beside unknown risks of deep stored CO2 and high costs, regrowth of C-accumulating biomass is hampered in the long-term as not only carbon but also essential soil nutrients are mined. Under this scenario, biomass regrowth is expected to slow down and soil carbon content to decrease. These factors enlarge the time horizon until a BE-CCS system becomes carbon neutral and eventual carbon negative (when biomass regrowth exceeds the difference between the harvested biomass carbon and BE-CCS stored carbon). Thermal treatment of biomass under a low oxygen regime (torrefaction, pyrolysis, gasification) can transform up to 85% of biomass carbon into various solid and liquid forms of recalcitrant carbon that can be sequestered. Depending on the process parameters and temperature, the mean residence time of the torrefied or pyrolysed biomass can last from several decennials to centennials when applied to the soil of the biomass production site. The carbon can thus be stored at comparatively low costs within the ecosystem itself. As the thermal treatment preserves most of the biomass-accumulated nutrients (except N), natural nutrient cycles are maintained within the biomass system. Depending on the quality of the charred biomass (biochar), post thermal treatment and plant nutrient enhancement, regrowth is expected to accelerate and soil carbon content to increase. Overall, the time until such a biochar based CSS systems generates negative carbon emissions (biomass regrowth exceeds the C-loss from CSS transformation) can thus be reduced compared to BE-CCS while increasing the sustainability of the global biomass production system and fostering ecosystem services. In our presentation we will provide first assessments of various biochar-based CCS systems and compare them to conventional BE-CCS, an evaluation of their global time scale dependent C-sequestration potential and their economic frame. E.g. (1) a biochar system with pyrolysis temperatures of 750°C and without liquefying the pyrolysis gases delivers a very recalcitrant biochar but the C-efficiency is low (40%) and fostering of regrowth is only about 10-15%. A (2) biochar system with trunk burial, pyrolysis of needles, bark, twigs, and branches with organic N-enhancement, and pyrolysis gas condensation and chemical oxidation could achieve a C-efficiency of 85% to 90% and foster regrowth over a time scale of 60% by up to 50%. Future challenges of biochar classification, certification, ecotoxicology, C-leaching, carbon credits and integration into agro-forestry practices will be discussed.
Quantum dynamics by the constrained adiabatic trajectory method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclerc, A.; Jolicard, G.; Guerin, S.
2011-03-15
We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are exploredmore » through simple examples.« less
Controlling directed transport of matter-wave solitons using the ratchet effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rietmann, M.; Carretero-Gonzalez, R.; Chacon, R.
2011-05-15
We demonstrate that directed transport of bright solitons formed in a quasi-one-dimensional Bose-Einstein condensate can be reliably controlled by tailoring a weak optical lattice potential, biharmonic in both space and time, in accordance with the degree of symmetry breaking mechanism. By considering the regime where matter-wave solitons are narrow compared to the lattice period, (i) we propose an analytical estimate for the dependence of the directed soliton current on the biharmonic potential parameters that is in good agreement with numerical experiments, and (ii) we show that the dependence of the directed soliton current on the number of atoms is amore » consequence of the ratchet universality.« less
Condensate oscillations in a Penrose tiling lattice
NASA Astrophysics Data System (ADS)
Akdeniz, Z.; Vignolo, P.
2017-07-01
We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.
Hardt, Oliver; Nader, Karim; Wang, Yu-Tian
2014-01-05
The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.
GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations
NASA Astrophysics Data System (ADS)
Nguyen, Trung Dac
2017-03-01
The Tersoff potential is one of the empirical many-body potentials that has been widely used in simulation studies at atomic scales. Unlike pair-wise potentials, the Tersoff potential involves three-body terms, which require much more arithmetic operations and data dependency. In this contribution, we have implemented the GPU-accelerated version of several variants of the Tersoff potential for LAMMPS, an open-source massively parallel Molecular Dynamics code. Compared to the existing MPI implementation in LAMMPS, the GPU implementation exhibits a better scalability and offers a speedup of 2.2X when run on 1000 compute nodes on the Titan supercomputer. On a single node, the speedup ranges from 2.0 to 8.0 times, depending on the number of atoms per GPU and hardware configurations. The most notable features of our GPU-accelerated version include its design for MPI/accelerator heterogeneous parallelism, its compatibility with other functionalities in LAMMPS, its ability to give deterministic results and to support both NVIDIA CUDA- and OpenCL-enabled accelerators. Our implementation is now part of the GPU package in LAMMPS and accessible for public use.
Time-dependent quantum wave packet calculation for nonadiabatic F(2P3/2,2P1/2)+H2 reaction
NASA Astrophysics Data System (ADS)
Zhang, Yan; Xie, Ting-Xian; Han, Ke-Li; Zhang, John Z. H.
2003-12-01
In this paper we present a time-dependent quantum wave packet calculation for the reaction of F(2P3/2,2P1/2)+H2 on the Alexander-Stark-Werner potential energy surface. The reaction probabilities and the integral cross sections for the reaction of F(2P3/2,2P1/2)+H2 (v=j=0) are computed using time-dependent quantum methods with the centrifugal sudden approximate. The results are compared with recent time-independent quantum calculations. The two-surface reaction probability for the initial ground spin-orbit state of J=0.5 is similar to the time-independent result obtained by Alexander et al. [J. Chem. Phys. 113, 11084 (2000)]. Our calculation also shows that electronic coupling has a relatively minor effect on the reactivity from the 2P3/2 state but a non-negligible one from the 2P1/2 state. By comparison with exact time-independent calculations, it is found that the Coriolis coupling plays a relatively minor role. In addition, most of the reactivity of the excited state of fluorine atom results from the spin-orbit coupling.
Gabriel, Erin E; Gilbert, Peter B
2014-04-01
Principal surrogate (PS) endpoints are relatively inexpensive and easy to measure study outcomes that can be used to reliably predict treatment effects on clinical endpoints of interest. Few statistical methods for assessing the validity of potential PSs utilize time-to-event clinical endpoint information and to our knowledge none allow for the characterization of time-varying treatment effects. We introduce the time-dependent and surrogate-dependent treatment efficacy curve, ${\\mathrm {TE}}(t|s)$, and a new augmented trial design for assessing the quality of a biomarker as a PS. We propose a novel Weibull model and an estimated maximum likelihood method for estimation of the ${\\mathrm {TE}}(t|s)$ curve. We describe the operating characteristics of our methods via simulations. We analyze data from the Diabetes Control and Complications Trial, in which we find evidence of a biomarker with value as a PS.
Constitutive Theory Developed for Monolithic Ceramic Materials
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.
1998-01-01
With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.
Interfacial ionic 'liquids': connecting static and dynamic structures
Uysal, Ahmet; Zhou, Hua; Feng, Guang; ...
2014-12-05
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. For this research, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. Lastly, the potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less
Interfacial ionic 'liquids': connecting static and dynamic structures.
Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul
2015-01-28
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
The Pursuit of Romantic Alternatives Online: Social Media Friends as Potential Alternatives.
Abbasi, Irum Saeed; Alghamdi, Nawal G
2018-01-02
What causes some marriages to stand the test of time while others fail? Marital commitment is the key force underlying the stability, quality, and longevity of the romantic relationship. Commitment is strengthened in the presence of marital satisfaction, the absence of alternative attractions, and steady investments made in the relationship. Commitment is also a consequence of increasing dependence. When partners are emotionally engaged with their virtual connections, their dependence on the significant other decreases. On the contrary, dependence on the partner increases when people feel satisfied with their relationship, think unfavorably about the quality of available alternatives, and feel that they have made great investments in their relationship. Technological advancements of the present era have spawned a wide array of social networking sites (SNSs) that display boastfully curated profiles of virtual connections. These overly glossed profiles may lead social media users to feel deficient in their lives. Previous research has shown that Facebook use can reduce relationship satisfaction by providing potential romantic alternatives and deflecting time and emotional investments away from the committed relationship. This article examines the commitment literature and discusses how commitment is undermined in the contemporary era. Finally, marital therapy is addressed with suggestions for future areas of exploration.
Mean Field Limits for Interacting Diffusions in a Two-Scale Potential
NASA Astrophysics Data System (ADS)
Gomes, S. N.; Pavliotis, G. A.
2018-06-01
In this paper, we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in Duncan et al. (Brownian motion in an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.
Scaling and efficiency determine the irreversible evolution of a market
Baldovin, F.; Stella, A. L.
2007-01-01
In setting up a stochastic description of the time evolution of a financial index, the challenge consists in devising a model compatible with all stylized facts emerging from the analysis of financial time series and providing a reliable basis for simulating such series. Based on constraints imposed by market efficiency and on an inhomogeneous-time generalization of standard simple scaling, we propose an analytical model which accounts simultaneously for empirical results like the linear decorrelation of successive returns, the power law dependence on time of the volatility autocorrelation function, and the multiscaling associated to this dependence. In addition, our approach gives a justification and a quantitative assessment of the irreversible character of the index dynamics. This irreversibility enters as a key ingredient in a novel simulation strategy of index evolution which demonstrates the predictive potential of the model.
The hysteretic evapotranspiration—Vapor pressure deficit relation
NASA Astrophysics Data System (ADS)
Zhang, Quan; Manzoni, Stefano; Katul, Gabriel; Porporato, Amilcare; Yang, Dawen
2014-02-01
Diurnal hysteresis between evapotranspiration (ET) and vapor pressure deficit (VPD) was reported in many ecosystems, but justification for its onset and magnitude remains incomplete with biotic and abiotic factors invoked as possible explanations. To place these explanations within a holistic framework, the occurrence of hysteresis was theoretically assessed along a hierarchy of model systems where both abiotic and biotic components are sequentially added. Lysimeter evaporation (E) measurements and model calculations using the Penman equation were used to investigate the effect of the time lag between net radiation and VPD on the hysteresis in the absence of any biotic effects. Modulations from biotic effects on the ET-VPD hysteresis were then added using soil-plant-atmosphere models of different complexities applied to a grassland ecosystem. The results suggest that the hysteresis magnitude depends on the radiation-VPD lag, while the plant and soil water potentials are both key factors modulating the hysteretic ET-VPD relation as soil moisture declines. In particular, larger hysteresis magnitude is achieved at less negative leaf water potential, root water potential, and soil water potential. While plant hydraulic capacitance affects the leaf water potential-ET relation, it has negligible effects on the ET-VPD hysteresis. Therefore, the genesis and magnitude of the ET-VPD hysteresis are controlled directly by both abiotic factors such as soil water availability, biotic factors (leaf and root water potentials, which in turn depend on soil moisture), and the time lag between radiation and VPD.
Hasselmo, Michael E
2005-01-01
The extensive physiological data on hippocampal theta rhythm provide an opportunity to evaluate hypotheses about the role of theta rhythm for hippocampal network function. Computational models based on these hypotheses help to link behavioral data with physiological measurements of different variables during theta rhythm. This paper reviews work on network models in which theta rhythm contributes to the following functions: (1) separating the dynamics of encoding and retrieval, (2) enhancing the context-dependent retrieval of sequences, (3) buffering of novel information in entorhinal cortex (EC) for episodic encoding, and (4) timing interactions between prefrontal cortex and hippocampus for memory-guided action selection. Modeling shows how these functional mechanisms are related to physiological data from the hippocampal formation, including (1) the phase relationships of synaptic currents during theta rhythm measured by current source density analysis of electroencephalographic data from region CA1 and dentate gyrus, (2) the timing of action potentials, including the theta phase precession of single place cells during running on a linear track, the context-dependent changes in theta phase precession across trials on each day, and the context-dependent firing properties of hippocampal neurons in spatial alternation (e.g., "splitter cells"), (3) the cholinergic regulation of sustained activity in entorhinal cortical neurons, and (4) the phasic timing of prefrontal cortical neurons relative to hippocampal theta rhythm. Copyright 2005 Wiley-Liss, Inc.
Teichert, Tobias
2017-10-01
Amplitudes of auditory evoked potentials (AEP) increase with the intensity/loudness of sounds (loudness-dependence of AEP, LDAEP), and the time between adjacent sounds (time-dependence of AEP, TDAEP). Both, blunted LDAEP and blunted TDAEP are markers of altered auditory function in schizophrenia (SZ). However, while blunted LDAEP has been attributed to altered serotonergic function, blunted TDAEP has been linked to altered NMDA receptor function. Despite phenomenological similarities of the two effects, no common pharmacological underpinnings have been identified. To test whether LDAEP and TDAEP are both affected by NMDA receptor blockade, two rhesus macaques passively listened to auditory clicks of 5 different intensities presented with stimulus-onset asynchronies ranging between 0.2 and 6.4s. 8 AEP components were analyzed, including the N85, the presumed human N1 homolog. LDAEP and TDAEP were estimated as the slopes of AEP amplitude with intensity and the logarithm of stimulus-onset asynchrony, respectively. On different days, AEPs were collected after systemic injection of MK-801 or vehicle. Both TDAEP and LDAEP of the N85 were blunted by the NMDA blocker MK-801 and recapitulate the SZ phenotype. In summary, LDAEP and TDAEP share important pharmacological commonalities that may help identify a common pharmacological intervention to normalize both electrophysiological phenotypes in SZ. Copyright © 2017 Elsevier B.V. All rights reserved.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
Membrane Potential Controls the Efficacy of Catecholamine-induced β1-Adrenoceptor Activity*
Birk, Alexandra; Rinne, Andreas; Bünemann, Moritz
2015-01-01
G protein-coupled receptors (GPCRs) are membrane-located proteins and, therefore, are exposed to changes in membrane potential (VM) in excitable tissues. These changes have been shown to alter receptor activation of certain Gi-and Gq-coupled GPCRs. By means of a combination of whole-cell patch-clamp and Förster resonance energy transfer (FRET) in single cells, we demonstrate that the activation of the Gs-coupled β1-adrenoreceptor (β1-AR) by the catecholamines isoprenaline (Iso) and adrenaline (Adr) is regulated by VM. This voltage-dependence is also transmitted to G protein and arrestin 3 signaling. Voltage-dependence of β2-AR activation, however, was weak compared with β1-AR voltage-dependence. Drug efficacy is a major target of β1-AR voltage-dependence as depolarization attenuated receptor activation, even under saturating concentrations of agonists, with significantly faster kinetics than the deactivation upon agonist withdrawal. Also the efficacy of the endogenous full agonist adrenaline was reduced by depolarization. This is a unique finding since reports of natural full agonists at other voltage-dependent GPCRs only show alterations in affinity during depolarization. Based on a Boltzmann function fit to the relationship of VM and receptor-arrestin 3 interaction we determined the voltage-dependence with highest sensitivity in the physiological range of membrane potential. Our data suggest that under physiological conditions voltage regulates the activity of agonist-occupied β1-adrenoceptors on a very fast time scale. PMID:26408198
NASA Astrophysics Data System (ADS)
Sakanoi, T.; Fukunishi, H.; Mukai, T.
1995-10-01
The inverted-V field-aligned acceleration region existing in the altitude range of several thousand kilometers plays an essential role for the magnetosphere-ionosphere coupling system. The adiabatic plasma theory predicts a linear relationship between field-aligned current density (J∥) and parallel potential drop (Φ∥), that is, J∥=KΦ∥, where K is the field-aligned conductance. We examined this relationship using the charged particle and magnetic field data obtained from the Akebono (Exos D) satellite. The potential drop above the satellite was derived from the peak energy of downward electrons, while the potential drop below the satellite was derived from two different methods: the peak energy of upward ions and the energy-dependent widening of electron loss cone. On the other hand, field-aligned current densities in the inverted-V region were estimated from the Akebono magnetometer data. Using these potential drops and field-aligned current densities, we estimated the linear field-aligned conductance KJΦ. Further, we obtained the corrected field-aligned conductance KCJΦ by applying the full Knight's formula to the current-voltage relationship. We also independently estimated the field-aligned conductance KTN from the number density and the thermal temperature of magnetospheric source electrons which were obtained by fitting accelerated Maxwellian functions for precipitating electrons. The results are summarized as follows: (1) The latitudinal dependence of parallel potential drops is characterized by a narrow V-shaped structure with a width of 0.4°-1.0°. (2) Although the inverted-V potential region exactly corresponds to the upward field aligned current region, the latitudinal dependence of upward current intensity is an inverted-U shape rather than an inverted-V shape. Thus it is suggested that the field-aligned conductance KCJΦ changes with a V-shaped latitudinal dependence. In many cases, KCJΦ values at the edge of the inverted-V region are about 5-10 times larger than those at the center. (3) By comparing KCJΦ with KTN, KCJΦ is found to be about 2-20 times larger than KTN. These results suggest that low-energy electrons such as trapped electrons, secondary and back-scattered electrons, and ionospheric electrons significantly contribute to upward field-aligned currents in the inverted-V region. It is therefore inferred that non adiabatic pitch angle scattering processes play an important role in the inverted-V region. .
Yamakata, Akira; Yoshida, Masaaki; Kubota, Jun; Osawa, Masatoshi; Domen, Kazunari
2011-07-27
Recombination kinetics of photogenerated electrons in n-type and p-type GaN photoelectrodes active for H(2) and O(2) evolution, respectively, from water was examined by time-resolved IR absorption (TR-IR) spectroscopy. Illumination of a GaN film with UV pulse (355 nm and 6 ns in duration) gives transient interference spectra in both transmittance and reflection modes. Simulation shows that the interference spectra are caused by photogenerated electrons. We observed that recombination in the microsecond region is greatly affected by the applied potentials, the lifetime becoming longer at negative and positive potentials for n- and p-type GaN electrodes, respectively. There is a good correlation between potential dependence of the steady-state reaction efficiency and that of the number of surviving electrons in the millisecond region. We also performed potential jump measurement to examine the shift in Fermi level by photogenerated charge carriers. In the case of n-type GaN, the electrode potential jumps to the negative side by accumulation of electrons in the bulk. However, in the case of p-type GaN, the electrode potential first jumps to the negative side within 20 μs and gradually shifts to the positive side in a few milliseconds, while the number of charge carriers is constant at >0.2 ms. This two-step process is ascribed to electron transport from the bulk to the surface of GaN, because the electrode potential is sensitive to the number of electrons in the bulk. The results confirm that TR-IR combined with potential jump measurement provides useful information for understanding the behavior of charge carriers in photoelectrochemical systems.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
Uiberacker, Christoph; Jakubetz, Werner
2004-06-22
We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Tsujimura, Sho; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto
2014-08-01
To expand upon our previous report [Appl. Phys. Express 5, 064101 (2012) 064101], we provide here the modified poly(4-diphenylaminostyrene) (PDAS)-based photorefractive (PR) device on the basis of wavelength dependency, and demonstrate dynamic holographic images by using the PDAS-based PR device under the obtained appropriate conditions. The PR devices containing the triphenylamine unit have potential application to dynamic holographic images, which will be useful for real-time holographic displays.
Multivalued classical mechanics arising from singularity loops in complex time
NASA Astrophysics Data System (ADS)
Koch, Werner; Tannor, David J.
2018-02-01
Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.
Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain
Vugmeyster, Liliya; Ostrovsky, Dmitry
2012-01-01
Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′−13Cα CSA/dipolar and 13C′/13C′−15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone. PMID:21416162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less
1993-02-01
of the bottom sediments at a given site. From long time -series measurements of the flow and sediment-transport environment on Georges Bank...significantly affect flows and sediment transport depends, in part, on timing . Biological effects on seafloor stability may be more pronounced, for example...potentially can enhance particle retention time within the tube bed via skimming flow (described earlier), although it is unclear if natural populations of
Space-time adaptive solution of inverse problems with the discrete adjoint method
NASA Astrophysics Data System (ADS)
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.
Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R
2015-04-28
The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.
An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water
Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.
2010-01-01
Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073
DiFranco, Marino; Capote, Joana; Quiñonez, Marbella; Vergara, Julio L
2007-12-01
Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC(4)(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC(4)(5). The peak DeltaF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC(4)(5) exhibit DeltaF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.
NASA Astrophysics Data System (ADS)
Yuan, Kai-Jun; Bandrauk, André D.
2018-02-01
We present symmetry effects of laser fields and molecular geometries in circularly polarized high-order harmonic generation by bichromatic counter-rotating circularly polarized laser pulses. Simulations are performed on oriented molecules by numerically solving time-dependent Schrödinger equations. We discuss how electron recollision trajectories by the orthogonal laser field polarizations influence the harmonic polarization by using a time-frequency analysis of harmonics. It is found that orientation-dependent asymmetric ionization in linear molecules due to Coulomb potentials gives rise to a dependence of the polarization on the harmonic frequency. Effects of Coriolis forces are also presented on harmonic generation. Electron recollision trajectories illustrate the effects of the relative symmetry of the field and the molecule, thus paving a method for circularly polarized attosecond pulse generation and molecular orbital imaging in more complex systems.
Dambinova, S A; Gorodinskiĭ, A I
1984-01-01
The binding of L-[3H]glutamate to rat cerebral cortex synaptic membranes was investigated. Two types of binding sites, a Na+-independent (Kd = 140-160 nm; Bmax = 3.8-4.5 pmol-mg of protein) and a Na+-dependent (Kd = 2.0 microM; Bmax = 45-50 pmol/mg of protein) ones, were detected. The dependence of Na+-insensitive binding on time and temperature and membrane content in a sample was determined. Mono- and divalent cations (5-10 mM) potentiated specific binding by 2.1-3.3 times. The Na+-dependent binding is associated with active transport systems, while the Na+-independent one-with true receptor binding. The relationship between CNS glutamate receptors and Na+-independent binding sites is discussed.
NASA Astrophysics Data System (ADS)
Tang, Guoning; Xu, Kesheng; Jiang, Luoluo
2011-10-01
The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.
Networked event-triggered control: an introduction and research trends
NASA Astrophysics Data System (ADS)
Mahmoud, Magdi S.; Sabih, Muhammad
2014-11-01
A physical system can be studied as either continuous time or discrete-time system depending upon the control objectives. Discrete-time control systems can be further classified into two categories based on the sampling: (1) time-triggered control systems and (2) event-triggered control systems. Time-triggered systems sample states and calculate controls at every sampling instant in a periodic fashion, even in cases when states and calculated control do not change much. This indicates unnecessary and useless data transmission and computation efforts of a time-triggered system, thus inefficiency. For networked systems, the transmission of measurement and control signals, thus, cause unnecessary network traffic. Event-triggered systems, on the other hand, have potential to reduce the communication burden in addition to reducing the computation of control signals. This paper provides an up-to-date survey on the event-triggered methods for control systems and highlights the potential research directions.
Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules
Frémaux, Nicolas; Gerstner, Wulfram
2016-01-01
Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide “when” to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators. PMID:26834568
Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet
2018-06-18
The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Dependency on Smartphone Use and Its Association with Anxiety in Korea.
Lee, Kyung Eun; Kim, Si-Heon; Ha, Tae-Yang; Yoo, Young-Myong; Han, Jai-Jun; Jung, Jae-Hyuk; Jang, Jae-Yeon
2016-01-01
South Korea has the highest rate of smartphone ownership worldwide, which is a potential concern given that smartphone dependency may have deleterious effects on health. We investigated the relationship between smartphone dependency and anxiety. Participants included 1,236 smartphone-using students (725 men and 511 women) from six universities in Suwon, South Korea. Participants completed measures of smartphone use, smartphone dependency, anxiety, and general characteristics (i.e., demographic, health-related, and socioeconomic characteristics). To measure smartphone dependency and anxiety, we used questionnaires of Yang's test developed from Young's Internet Addiction Test and Zung's Self-Rating Anxiety Scale. We used multiple logistic regression to determine the association between smartphone dependency and anxiety after adjusting for relevant factors. On a scale from 25 to 100, with higher scores on the smartphone dependency test indicating greater dependency, women were significantly more dependent on smartphones than were men (mean smartphone dependency score: 50.7 vs. 56.0 for men and women, respectively, p<0.001). However, the amount of time spent using smartphones and the purpose of smartphone use affected smartphone dependency in both men and women. Particularly, when daily use time increased, smartphone dependency showed an increasing trend. Compared with times of use <2 hours vs. ≥6 hours, men scored 46.2 and 56.0 on the smartphone dependency test, while women scored 48.0 and 60.4, respectively (p<0.001). Finally, for both men and women, increases in smartphone dependency were associated with increased anxiety scores. With each one-point increase in smartphone dependency score, the risk of abnormal anxiety in men and women increased by 10.1% and 9.2%, respectively (p<0.001). Among this group of university students in South Korea, smartphone dependency appeared to be associated with increased anxiety. Standards for smartphone use might help prevent deleterious health effects.
Dependency on Smartphone Use and Its Association with Anxiety in Korea
Lee, Kyung Eun; Kim, Si-Heon; Ha, Tae-Yang; Yoo, Young-Myong; Han, Jai-Jun; Jung, Jae-Hyuk
2016-01-01
Objective South Korea has the highest rate of smartphone ownership worldwide, which is a potential concern given that smartphone dependency may have deleterious effects on health. We investigated the relationship between smartphone dependency and anxiety. Methods Participants included 1,236 smartphone-using students (725 men and 511 women) from six universities in Suwon, South Korea. Participants completed measures of smartphone use, smartphone dependency, anxiety, and general characteristics (i.e., demographic, health-related, and socioeconomic characteristics). To measure smartphone dependency and anxiety, we used questionnaires of Yang's test developed from Young's Internet Addiction Test and Zung's Self-Rating Anxiety Scale. We used multiple logistic regression to determine the association between smartphone dependency and anxiety after adjusting for relevant factors. Results On a scale from 25 to 100, with higher scores on the smartphone dependency test indicating greater dependency, women were significantly more dependent on smartphones than were men (mean smartphone dependency score: 50.7 vs. 56.0 for men and women, respectively, p<0.001). However, the amount of time spent using smartphones and the purpose of smartphone use affected smartphone dependency in both men and women. Particularly, when daily use time increased, smartphone dependency showed an increasing trend. Compared with times of use <2 hours vs. ≥6 hours, men scored 46.2 and 56.0 on the smartphone dependency test, while women scored 48.0 and 60.4, respectively (p<0.001). Finally, for both men and women, increases in smartphone dependency were associated with increased anxiety scores. With each one-point increase in smartphone dependency score, the risk of abnormal anxiety in men and women increased by 10.1% and 9.2%, respectively (p<0.001). Conclusion Among this group of university students in South Korea, smartphone dependency appeared to be associated with increased anxiety. Standards for smartphone use might help prevent deleterious health effects. PMID:27252561
Internal Electrostatic Discharge Monitor - IESDM
NASA Technical Reports Server (NTRS)
Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.
2011-01-01
A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).
Nakata, Atsushi; Nomoto, Tomonori; Toyota, Taro; Fujinami, Masanori
2013-01-01
Tip-enhanced Raman spectroscopy (TERS) of supported phospholipid bilayers in an aqueous environment is discussed in this paper. Two bilayer membranes were examined: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We fabricated alumina- and silver-coated tungsten tips that are very robust in water. There was a large time-dependence in the TERS spectra for the DOPC bilayers, whereas no such time-dependence was observed in the DPPC bilayer spectra under the probe tip. The spectral changes of DOPC bilayers are discussed in terms of the fluidity of the liquid crystalline phase. Time-resolved TERS thus has the potential to characterize inhomogeneity and diffusion in fluidic phospholipid bilayer membranes.
Transition of multidiffusive states in a biased periodic potential
NASA Astrophysics Data System (ADS)
Zhang, Jia-Ming; Bao, Jing-Dong
2017-03-01
We study a frequency-dependent damping model of hyperdiffusion within the generalized Langevin equation. The model allows for the colored noise defined by its spectral density, assumed to be proportional to ωδ -1 at low frequencies with 0 <δ <1 (sub-Ohmic damping) or 1 <δ <2 (super-Ohmic damping), where the frequency-dependent damping is deduced from the noise by means of the fluctuation-dissipation theorem. It is shown that for super-Ohmic damping and certain parameters, the diffusive process of the particle in a titled periodic potential undergos sequentially four time regimes: thermalization, hyperdiffusion, collapse, and asymptotical restoration. For analyzing transition phenomenon of multidiffusive states, we demonstrate that the first exist time of the particle escaping from the locked state into the running state abides by an exponential distribution. The concept of an equivalent velocity trap is introduced in the present model; moreover, reformation of ballistic diffusive system is also considered as a marginal situation but does not exhibit the collapsed state of diffusion.
Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses.
Delvendahl, Igor; Vyleta, Nicholas P; von Gersdorff, Henrique; Hallermann, Stefan
2016-05-04
The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bona-fide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin, dynamin, and actin dependent. Furthermore, the speed of endocytosis is highly temperature dependent with a Q10 of ∼3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori
2017-05-01
We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.
NASA Astrophysics Data System (ADS)
Jin, Jingyu; Song, Dongxing; Geng, Jiafeng; Jing, Dengwei
2018-02-01
Ferrofluids can exhibit the anisotropic thermodynamic properties under magnetic fields. The dynamic optical properties of ferrofluids in the presence of magnetic fields are of particular interest due to their potential application as various optical devices. Although time-dependent light scattering by ferrofluids have been extensively studied, the effect of wavelength of incident light have been rarely considered. Here, for the first time, we investigated both the time- and wavelength-dependent light scattering in water based ferrofluids containing Fe3O4 nanoparticles under an external magnetic field. The field-induced response behavior of the prepared ferrofluid samples was determined and verified first by thermal conductivity measurement and numerical simulation. Double-beam UV-Vis spectrophotometer was employed to record the temporal evolution of transmitted intensity of incident light of various wavelengths passing through the ferrofluid sample and propagating parallel to the applied field. As expected, the light intensity decreases to a certain value right after the field is turned on due to the thermal fluctuation induced disorder inside the flexible particle chains. Then the light intensity further decreases with time until the appearance of a minimum at time τ0 followed by an inversed increase before finally reaches equilibrium at a particular time. More importantly, the characteristic inversion time τ0 was found to follow a power law increase with the wavelength of incident light (τ0 ∼ λα, where α = 2.07). A quantitative explanation for the wavelength dependence of characteristic time was proposed based on the finite-difference time-domain (FDTD) method. The simulation results are in good agreement with our experimental observations. The time-dependent light scattering in ferrofluids under different incident wavelengths was rationalized by considering both the coarsening process of the particle chains and the occurrence of resonance within the magnetic scatterers. Our finding should be of value for the development of various light-tunable optical devices.
Entanglement entropy of one-dimensional gases.
Calabrese, Pasquale; Mintchev, Mihail; Vicari, Ettore
2011-07-08
We introduce a systematic framework to calculate the bipartite entanglement entropy of a spatial subsystem in a one-dimensional quantum gas which can be mapped into a noninteracting fermion system. To show the wide range of applicability of the proposed formalism, we use it for the calculation of the entanglement in the eigenstates of periodic systems, in a gas confined by boundaries or external potentials, in junctions of quantum wires, and in a time-dependent parabolic potential.
2013-05-14
enzymes . At sufficiently high doses of glutamate, this process culminates in excitogenic cell death [1]. Treatments to mitigate neuronal damage during...To evaluate the potential for therapeutic screening, we assessed the effect of several small molecule antagonists on excitotoxicity in a moderate...C. Current clamp recordings showing repeated overshooting action potentials are evoked by injection of a 75 pA current. D. Voltage-clamp recordings
Quantum transport under ac drive from the leads: A Redfield quantum master equation approach
NASA Astrophysics Data System (ADS)
Purkayastha, Archak; Dubi, Yonatan
2017-08-01
Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Hong, Siyu
2018-07-01
In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.
Theoretical analysis of degradation mechanisms in the formation of morphogen gradients
NASA Astrophysics Data System (ADS)
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
2015-07-01
Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.
Gobas, Frank A P C; Lai, Hao-Feng; Mackay, Donald; Padilla, Lauren E; Goetz, Andy; Jackson, Scott H
2018-10-15
A time-dependent environmental fate and food-web bioaccumulation model is developed to improve the evaluation of the behaviour of non-ionic hydrophobic organic pesticides in farm ponds. The performance of the model was tested by simulating the behaviour of 3 hydrophobic organic pesticides, i.e., metaflumizone (CAS Number: 139968-49-3), kresoxim-methyl (CAS Number: 144167-04-4) and pyraclostrobin (CAS Number: 175013-18-0), in microcosm studies and a Bluegill bioconcentration study for metaflumizone. In general, model-calculated concentrations of the pesticides were in reasonable agreement with the observed concentrations. Also, calculated bioaccumulation metrics were in good agreement with observed values. The model's application to simulate concentrations of organic pesticides in water, sediment and biota of farm ponds after episodic pesticide applications is illustrated. It is further shown that the time dependent model has substantially better accuracy in simulating the concentrations of pesticides in farm ponds resulting from episodic pesticide application than corresponding steady-state models. The time dependent model is particularly useful in describing the behaviour of highly hydrophobic pesticides that have a potential to biomagnify in aquatic food-webs. Copyright © 2018 Elsevier B.V. All rights reserved.
Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
NASA Astrophysics Data System (ADS)
Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David
2018-05-01
The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.
Crago, Patrick E; Makowski, Nathan S
2014-01-01
Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation. PMID:25161163
NASA Astrophysics Data System (ADS)
Crago, Patrick E.; Makowski, Nathaniel S.
2014-10-01
Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.
Functional quantitative susceptibility mapping (fQSM).
Balla, Dávid Z; Sanchez-Panchuelo, Rosa M; Wharton, Samuel J; Hagberg, Gisela E; Scheffler, Klaus; Francis, Susan T; Bowtell, Richard
2014-10-15
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a powerful technique, typically based on the statistical analysis of the magnitude component of the complex time-series. Here, we additionally interrogated the phase data of the fMRI time-series and used quantitative susceptibility mapping (QSM) in order to investigate the potential of functional QSM (fQSM) relative to standard magnitude BOLD fMRI. High spatial resolution data (1mm isotropic) were acquired every 3 seconds using zoomed multi-slice gradient-echo EPI collected at 7 T in single orientation (SO) and multiple orientation (MO) experiments, the latter involving 4 repetitions with the subject's head rotated relative to B0. Statistical parametric maps (SPM) were reconstructed for magnitude, phase and QSM time-series and each was subjected to detailed analysis. Several fQSM pipelines were evaluated and compared based on the relative number of voxels that were coincidentally found to be significant in QSM and magnitude SPMs (common voxels). We found that sensitivity and spatial reliability of fQSM relative to the magnitude data depended strongly on the arbitrary significance threshold defining "activated" voxels in SPMs, and on the efficiency of spatio-temporal filtering of the phase time-series. Sensitivity and spatial reliability depended slightly on whether MO or SO fQSM was performed and on the QSM calculation approach used for SO data. Our results present the potential of fQSM as a quantitative method of mapping BOLD changes. We also critically discuss the technical challenges and issues linked to this intriguing new technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano
2013-01-01
The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.
Nanolaminate microfluidic device for mobility selection of particles
Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA
2006-10-10
A microfluidic device made from nanolaminate materials that are capable of electrophoretic selection of particles on the basis of their mobility. Nanolaminate materials are generally alternating layers of two materials (one conducting, one insulating) that are made by sputter coating a flat substrate with a large number of layers. Specific subsets of the conducting layers are coupled together to form a single, extended electrode, interleaved with other similar electrodes. Thereby, the subsets of conducting layers may be dynamically charged to create time-dependent potential fields that can trap or transport charge colloidal particles. The addition of time-dependence is applicable to all geometries of nanolaminate electrophoretic and electrochemical designs from sinusoidal to nearly step-like.
The time-dependent response of 3- and 5-layer sandwich beams
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Oleksuk, L. S. S.; Bowles, D. E.
1992-01-01
Simple sandwich beam models have been developed to study the effect of the time-dependent constitutive properties of fiber-reinforced polymer matrix composites, considered for use in orbiting precision segmented reflectors, on the overall deformations. The 3- and 5-layer beam models include layers representing the face sheets, the core, and the adhesive. The static elastic deformation response of the sandwich beam models to a midspan point load is studied using the principle of stationary potential energy. In addition to quantitative conclusions, several assumptions are discussed which simplify the analysis for the case of more complicated material models. It is shown that the simple three-layer model is sufficient in many situations.
Cukras, Janusz; Kauczor, Joanna; Norman, Patrick; Rizzo, Antonio; Rikken, Geert L J A; Coriani, Sonia
2016-05-21
A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree-Fock and time-dependent density functional theory. Magneto-chiral dichroism and magneto-chiral birefringence spectra in the (resonant) frequency region below the first ionization threshold of R-methyloxirane and l-alanine are presented and compared with the corresponding results obtained for both the electronic circular dichroism and the magnetic circular dichroism. The additional information content yielded by the magneto-chiral phenomena, as well as their potential experimental detectability for the selected species, is discussed.
Mokkath, Junais Habeeb
2017-12-20
Using first-principles time-dependent density functional theory calculations, we investigate the shape-anisotropy effects on the optical response of a spherical aluminium nanoparticle subjected to a stretching process in different directions. Progressively increased stretching in one direction resulted in prolate spheroid (nanorice) geometries and produced a couple of well-distinguishable dominant peaks together with some satellite peaks in the UV-visible region of the electromagnetic spectrum. On the other hand, progressively increased stretching in two directions caused multiple peaks to appear in the UV-visible region of the electromagnetic spectrum. We believe that our findings can be beneficial for the emerging and potentially far-reaching field of aluminum plasmonics.
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht
2014-01-14
We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xingxia; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210; University of Chinese Academy of Sciences, Beijing 100049
2015-12-14
Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.
Time-dependent landslide probability mapping
Campbell, Russell H.; Bernknopf, Richard L.; ,
1993-01-01
Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.
NASA Astrophysics Data System (ADS)
Jolivet, R.; Simons, M.
2018-02-01
Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.
Maximum likelihood estimation for semiparametric transformation models with interval-censored data
Mao, Lu; Lin, D. Y.
2016-01-01
Abstract Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject. We devise an EM-type algorithm that converges stably, even in the presence of time-dependent covariates, and show that the estimators for the regression parameters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated covariance matrix. Finally, we demonstrate the performance of our procedures through simulation studies and application to an HIV/AIDS study conducted in Thailand. PMID:27279656
Estimation and enhancement of real-time software reliability through mutation analysis
NASA Technical Reports Server (NTRS)
Geist, Robert; Offutt, A. J.; Harris, Frederick C., Jr.
1992-01-01
A simulation-based technique for obtaining numerical estimates of the reliability of N-version, real-time software is presented. An extended stochastic Petri net is employed to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. Test results utilizing specifications for NASA's planetary lander control software indicate that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions.
Reassortment among picobirnaviruses found in wolves.
Conceição-Neto, Nádia; Mesquita, João Rodrigo; Zeller, Mark; Yinda, Claude Kwe; Álvares, Francisco; Roque, Sara; Petrucci-Fonseca, Francisco; Godinho, Raquel; Heylen, Elisabeth; Van Ranst, Marc; Matthijnssens, Jelle
2016-10-01
We conducted a viral metagenomics study in diarrheic free-ranging wolves in Portugal, revealing for the first time the presence of reassortant picobirnaviruses. These viruses shared identical capsid segments together with diverse RNA-dependent RNA polymerase segments. Even though causality between these picobirnaviruses and diarrhea could not be established, the study nonetheless confirms for the first time that wolves are a potential reservoir for picobirnaviruses, which might play a role as enteric pathogens.
Time-dependent density functional theory beyond Kohn-Sham Slater determinants.
Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T
2016-08-03
When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.
Chen, Xia; Fu, Junhong; Cheng, Wenbo; Song, Desheng; Qu, Xiaolei; Yang, Zhuo; Zhao, Kanxing
2017-01-01
Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation. Markedly broader temporal windows were found in robust tLTP and tLTD in the V1M of the deprived visual cortex in mice after 6-day MD and DE. The underlying mechanism for the changes seen with visual deprivation in juvenile mice using 6 days of dark exposure or monocular lid suture involves an increased fraction of NR2b-containing NMDAR and the consequent prolongation of NMDAR-mediated response duration. Moreover, a decrease in NR2A protein expression at the synapse is attributable to the reduction of the NR2A/2B ratio in the deprived cortex. PMID:28520739
NASA Astrophysics Data System (ADS)
Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin
2016-05-01
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
Real time visualization of quantum walk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Akihide; Hamada, Shinji; Sekino, Hideo
2014-02-20
Time evolution of quantum particles like electrons is described by time-dependent Schrödinger equation (TDSE). The TDSE is regarded as the diffusion equation of electrons with imaginary diffusion coefficients. And the TDSE is solved by quantum walk (QW) which is regarded as a quantum version of a classical random walk. The diffusion equation is solved in discretized space/time as in the case of classical random walk with additional unitary transformation of internal degree of freedom typical for quantum particles. We call the QW for solution of the TDSE a Schrödinger walk (SW). For observation of one quantum particle evolution under amore » given potential in atto-second scale, we attempt a successive computation and visualization of the SW. Using Pure Data programming, we observe the correct behavior of a probability distribution under the given potential in real time for observers of atto-second scale.« less
Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian
2012-07-21
By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.
Anxiety profile in morphine-dependent and withdrawn rats: effect of voluntary exercise.
Miladi-Gorji, Hossein; Rashidy-Pour, Ali; Fathollahi, Yaghoub
2012-01-18
Withdrawal from chronic opiates is associated with an increase in anxiogenic-like behaviours, but the anxiety profile in the morphine-dependent animals is not clear. Thus, one of the aims of the present study was to examine whether morphine-dependent rats would increase the expression of anxiogenic-like behaviours in novel and stressful conditions. Additionally, recent studies have shown that voluntary exercise can reduce anxiety levels in rodents. Therefore, another aim of this study was to examine the effect of voluntary exercise on the anxiety profile in both morphine-dependent animals and animals experiencing withdrawal. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine over a period of 10 days in which they were also allowed voluntary exercise. Following these injections, anxiety-like behaviours were tested in the elevated plus-maze (EPM) model and the light/dark (L/D) box. We found reductions in time spent in, and entries into, the EPM open arms and reductions in time spent in the lit side of the L/D box for both sedentary morphine-dependent and withdrawn rats as compared to the sedentary control groups. The exercising morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries and L/D box lit side time as compared with the sedentary control groups. We conclude that voluntary exercise decreases the severity of the anxiogenic-like behaviours in both morphine-dependent and withdrawn rats. Thus, voluntary exercise could be a potential natural method to ameliorate some of the deleterious behavioural consequences of opiate abuse. Copyright © 2011 Elsevier Inc. All rights reserved.
Metadynamics convergence law in a multidimensional system
NASA Astrophysics Data System (ADS)
Crespo, Yanier; Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro
2010-05-01
Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to reconstruct the free-energy surface as a function of the relevant collective variables s . In Bussi [Phys. Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased estimate of the free energy F(s) . We here study the convergence properties of this approach in a multidimensional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo metadynamics simulation of an Ising model the time average of the history-dependent potential converge to F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows recovering an accurate estimate of F(s) . These results have been obtained introducing a functional form of the history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy landscape.
Metadynamics convergence law in a multidimensional system.
Crespo, Yanier; Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro
2010-05-01
Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to reconstruct the free-energy surface as a function of the relevant collective variables s . In Bussi [Phys. Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased estimate of the free energy F(s) . We here study the convergence properties of this approach in a multidimensional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo metadynamics simulation of an Ising model the time average of the history-dependent potential converge to F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows recovering an accurate estimate of F(s) . These results have been obtained introducing a functional form of the history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy landscape.
NASA Astrophysics Data System (ADS)
El Mahdy, A. M.; Halim, Shimaa Abdel; Taha, H. O.
2018-05-01
Density functional theory (DFT) and time-dependent DFT calculations have been employed to model metallotetraphenylporphyrin dyes and metallotetraphenylporphyrin -fullerene complexes in order to investigate the geometries, electronic structures, the density of states, non-linear optical properties (NLO), IR-vis spectra, molecular electrostatic potential contours, and electrophilicity. To calculate the excited states of the tetraphenyl porphyrin analogs, time-dependent density functional theory (TD-DFT) are used. Their UV-vis spectra were also obtained and a comparison with available experimental and theoretical results is included. The results reveal that the metal and the tertiary butyl groups of the dyes are electron donors, and the tetraphenylporphyrin rings are electron acceptors. The HOMOs of the dyes fall within the (TiO2)60 and Ti38O76 band gaps and support the issue of typical interfacial electron transfer reaction. The resulting potential drop of Mn-TPP-C60 increased by ca. 3.50% under the effect of the tertiary butyl groups. The increase in the potential drop indicates that the tertiary butyl complexes could be a better choice for the strong operation of the molecular rectifiers. The introduction of metal atom and tertiary butyl groups to the tetraphenyl porphyrin moiety leads to a stronger response to the external electric field and induces higher photo-to-current conversion efficiency. This also shifts the absorption in the dyes and makes them potential candidates for harvesting light in the entire visible and near IR region for photovoltaic applications.
Breathing Bright Solitons in a Bose Einstein Condensate
NASA Astrophysics Data System (ADS)
Chong, Gui-Shu; Hai, Wen-Hua; Xie, Qiong-Tao
2003-12-01
A Bose-Einstein condensate with time varying scattering length in time-dependent harmonic trap is analytically investigated and soliton-like solutions of the Gross-Pitaeviskii equation are obtained to describe single soliton, bisoliton and N-soliton properties of the matter wave. The influences of the geometrical property and modulate frequency of trapping potential on soliton behaviour are discussed. When the trap potential has a very small trap aspect ratio or oscillates with a high frequency, the matter wave preserves its shape nearly like a soliton train in propagation, while the breathing behaviour, which displays the periodic collapse and revival of the matter wave, is found for a relatively large aspect ratio or slow varying potential. Meanwhile mass centre of the matter wave translates and/or oscillates for different trap aspect ratio and trap frequencies.
Characterization of mixing in an electroosmotically stirred continuous micro mixer
NASA Astrophysics Data System (ADS)
Beskok, Ali
2005-11-01
We present theoretical and numerical studies of mixing in a straight micro channel with zeta potential patterned surfaces. A steady pressure driven flow is maintained in the channel in addition to a time dependent electroosmotic flow, generated by a stream-wise AC electric field. The zeta potential patterns are placed critically in the channel to achieve spatially asymmetric time-dependent flow patterns that lead to chaotic stirring. Fixing the geometry, we performed parametric studies of passive particle motion that led to generation of Poincare sections and characterization of chaotic strength by finite time Lyapunov exponents. The parametric studies were performed as a function of the Womersley number (normalized AC frequency) and the ratio of Poiseuille flow and electroosmotic velocities. After determining the non-dimensional parameters that led to high chaotic strength, we performed spectral element simulations of species transport and mixing at high Peclet numbers, and characterized mixing efficiency using the Mixing Index inverse. Mixing lengths proportional to the natural logarithm of the Peclet number are reported. Using the optimum non-dimensional parameters and the typical magnitudes involved in electroosmotic flows, we were able to determine the physical dimensions and operation conditions for a prototype micro-mixer.
Short time propagation of a singular wave function: Some surprising results
NASA Astrophysics Data System (ADS)
Marchewka, A.; Granot, E.; Schuss, Z.
2007-08-01
The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.
A Parametric Computational Model of the Action Potential of Pacemaker Cells.
Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L
2018-01-01
A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.
Dissolution of Platinum in the Operational Range of Fuel Cells
Keeley, Gareth P.; Geiger, Simon; Zeradjanin, Aleksandar R.; Hodnik, Nejc; Kulyk, Nadiia
2015-01-01
Abstract One of the most important practical issues in low‐temperature fuel‐cell catalyst degradation is platinum dissolution. According to the literature, it initiates at 0.6–0.9 VRHE, whereas previous time‐ and potential‐resolved inductively coupled plasma mass spectrometry (ICP–MS) experiments, however, revealed dissolution onset at only 1.05 VRHE. In this manuscript, the apparent discrepancy is addressed by investigating bulk and nanoparticulated catalysts. It is shown that, given enough time for accumulation, traces of platinum can be detected at potentials as low as 0.85 VRHE. At these low potentials, anodic dissolution is the dominant process, whereas, at more positive potentials, more platinum dissolves during the oxide reduction after accumulation. Interestingly, the potential and time dissolution dependence is similar for both types of electrode. Dissolution processes are discussed with relevance to fuel‐cell operation and plausible dissolution mechanisms are considered. PMID:27525206
Achieving swift equilibration of a Brownian particle using flow-fields
NASA Astrophysics Data System (ADS)
Patra, Ayoti; Jarzynski, Christopher
Can a system be driven to a targeted equilibrium state on a timescale that is much shorter than its natural equilibration time? In a recent experiment, the swift equilibration of an overdamped Brownian particle was achieved by use of an appropriately designed, time-dependent optical trap potential. Motivated by these results, we develop a general theoretical approach for guiding an ensemble of Brownian particles to track the instantaneous equilibrium distribution of a desired potential U (q , t) . In our approach, we use flow-fields associated with the parametric evolution of the targeted equilibrium state to construct an auxiliary potential U (q , t) , such that dynamics under the composite potential U (t) + U (t) achieves the desired evolution. Our results establish a close connection between the swift equilibration of Brownian particles, quantum shortcuts to adiabaticity, and the dissipationless driving of a classical, Hamiltonian system.
van Meer, R; Gritsenko, O V; Baerends, E J
2014-10-14
In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).
Ghisi, Enedir; Cardoso, Karla Albino; Rupp, Ricardo Forgiarini
2012-06-15
The main objective of this article is to assess the possibility of using short-term instead of long-term rainfall time series to evaluate the potential for potable water savings by using rainwater in houses. The analysis was performed considering rainfall data from 1960 to 1995 for the city of Santa Bárbara do Oeste, located in the state of São Paulo, southeastern Brazil. The influence of the rainfall time series, roof area, potable water demand and percentage rainwater demand on the potential for potable water savings was evaluated. The potential for potable water savings was estimated using computer simulations considering a set of long-term rainfall time series and different sets of short-term rainfall time series. The ideal rainwater tank capacity was also assessed for some cases. It was observed that the higher the percentage rainwater demand and the shorter the rainfall time series, the larger the difference between the potential for potable water savings and the greater the variation in the ideal rainwater tank size. The sets of short-term rainfall time series considered adequate for different scenarios ranged from 1 to 13 years depending on the roof area, percentage rainwater demand and potable water demand. The main finding of the research is that sets of short-term rainfall time series can be used to assess the potential for potable water savings by using rainwater, as the results obtained are similar to those obtained from the long-term rainfall time series. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yoon, T; Shin, D-M; Kim, S; Lee, S; Lee, T G; Kim, K
2017-04-01
We investigated the temperature-dependent locomotion of Caenorhabditis elegans by using the mobile phone-based microscope. We developed the customized imaging system with mini incubator and smartphone to effectively control the thermal stimulation for precisely observing the temperature-dependent locomotory behaviours of C. elegans. Using the mobile phone-based microscope, we successfully followed the long-term progress of specimens of C. elegans in real time as they hatched and explored their temperature-dependent locomotory behaviour. We are convinced that the mobile phone-based microscope is a useful device for real time and long-term observations of biological samples during incubation, and can make it possible to carry out live observations via wireless communications regardless of location. In addition, this microscope has the potential for widespread use owing to its low cost and compact design. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Spike-timing dependent plasticity in primate corticospinal connections induced during free behavior
Nishimura, Yukio; Perlmutter, Steve I.; Eaton, Ryan W.; Fetz, Eberhard E.
2014-01-01
Motor learning and functional recovery from brain damage involve changes in the strength of synaptic connections between neurons. Relevant in vivo evidence on the underlying cellular mechanisms remains limited and indirect. We found that the strength of neural connections between motor cortex and spinal cord in monkeys can be modified with an autonomous recurrent neural interface that delivers electrical stimuli in the spinal cord triggered by action potentials of corticospinal cells during free behavior. The activity-dependent stimulation modified the strength of the terminal connections of single corticomotoneuronal cells, consistent with a bidirectional spike-timing dependent plasticity rule previously derived from in vitro experiments. For some cells the changes lasted for days after the end of conditioning, but most effects eventually reverted to preconditioning levels. These results provide the first direct evidence of corticospinal synaptic plasticity in vivo at the level of single neurons induced by normal firing patterns during free behavior. PMID:24210907
Methylxanthines and drug dependence: a focus on interactions with substances of abuse.
Morelli, Micaela; Simola, Nicola
2011-01-01
This chapter examines the psychostimulant actions of methylxanthines, with a focus on the consequences of their excessive use. Consumption of methylxanthines is pervasive and their use is often associated with that of substances known to produce dependence and to have abuse potential. Therefore, the consequences of this combined use are taken into consideration in order to evaluate whether, and to what extent, methylxanthines could influence dependence on or abuse of other centrally active substances, leading to either amplification or attenuation of their effects. Since the methylxanthine that mostly influences mental processes and readily induces psychostimulation is caffeine, this review mainly focuses on caffeine as a prototype of methylxanthine-produced dependence, examining, at the same time, the risks related to caffeine use.
Consumption and foraging behaviors for common stimulants (nicotine, caffeine).
Phillips, James G; Currie, Jonathan; Ogeil, Rowan P
2016-01-01
Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.
Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M
2017-08-18
Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Meyer, Hans-Dieter
2017-05-01
To study the scattering of CO off a movable Cu(100) surface, extensive multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations are performed based on the SAP [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] potential energy surface in conjunction with a recently developed expansion model [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)] for including lattice motion. The surface vibration potential is constructed by a sum of Morse potentials where the parameters are determined by simulating the vibrational energies of a clean Cu(100) surface. Having constructed the total Hamiltonian, extensive dynamical calculations in both time-independent and time-dependent schemes are performed. Two-layer MCTDH (i.e., normal MCTDH) block-improved-relaxations (time-independent scheme) show that increasing the number of included surface vibrational dimensions lets the vibrational energies of CO/Cu(100) decrease for the frustrated translation (T mode), which is of low energy but increase those of the frustrated rotation (R mode) and the CO-Cu stretch (S mode), whose vibrational energies are larger than the energies of the in-plane surface vibrations (˜79 cm-1). This energy-shifting behavior was predicted and discussed by a simple model in our previous publication [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)]. By the flux analysis of the MCTDH/ML-MCTDH propagated wave packets, we calculated the sticking probabilities for the X + 0D, X + 1D, X + 3D, X + 5D, and X + 15D systems, where "X" stands for the used dimensionality of the CO/rigid-surface system and the second entry denotes the number of surface degrees of freedom included. From these sticking probabilities, the X + 5D/15D calculations predict a slower decrease of sticking with increasing energy as compared to the sticking of the X + 0D/1D/3D calculations. This is because the translational energy of CO is more easily transferred to surface vibrations, when the vibrational dimensionality of the surface is enlarged.
NASA Astrophysics Data System (ADS)
Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.
2003-08-01
Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.
NASA Astrophysics Data System (ADS)
Bueschel, A.; Klinkel, S.; Wagner, W.
2011-04-01
Smart materials are active and multifunctional materials, which play an important part for sensor and actuator applications. These materials have the potential to transform passive structures into adaptive systems. However, a prerequisite for the design and the optimization of these materials is, that reliable models exist, which incorporate the interaction between the different combinations of thermal, electrical, magnetic, optical and mechanical effects. Polymeric electroelastic materials, so-called electroactive polymer (EAP), own the characteristic to deform if an electric field is applied. EAP's possesses the benefit that they share the characteristic of polymers, these are lightweight, inexpensive, fracture tolerant, elastic, and the chemical and physical structure is well understood. However, the description "electroactive polymer" is a generic term for many kinds of different microscopic mechanisms and polymeric materials. Based on the laws of electromagnetism and elasticity, a visco-electroelastic model is developed and implemented into the finite element method (FEM). The presented three-dimensional solid element has eight nodes and trilinear interpolation functions for the displacement and the electric potential. The continuum mechanics model contains finite deformations, the time dependency and the nearly incompressible behavior of the material. To describe the possible, large time dependent deformations, a finite viscoelastic model with a split of the deformation gradient is used. Thereby the time dependent characteristic of polymeric materials is incorporated through the free energy function. The electromechanical interactions are considered by the electrostatic forces and inside the energy function.
Na+/Ca2+ exchange in cardiac myocytes. Effect of ouabain on voltage dependence.
Lee, H C; Clusin, W T
1987-02-01
Sarcolemmal sodium/calcium exchange activity was examined in individual chick embryonic myocardial cell aggregates that were loaded with quin 2. The baseline [Ca2+]i was 68 +/- 4 nM (n = 29). Abrupt superfusion with sodium-free lithium solution produced a fourfold increase in steady-state [Ca2+]i to 290 +/- 19 nM, which was reversible upon sodium restitution. Other methods of increasing [Ca2+]i such as KCl-depolarization or caffeine produced a dose-dependent increase in quin 2 fluorescence, accompanied by sustained contracture. The [Ca2+]i increase in zero sodium was linear, and its half-time (t1/2) of 15.1 +/- 0.1 s was similar to that of the sodium-free contracture (t1/2 = 14.4 +/- 0.5 s) under the same conditions. The sodium-dependent [Ca2+]i increase was not significantly greater when potassium served as the sodium substitute instead of lithium. This suggests that sodium/calcium exchange has little voltage dependence in this situation. However, in aggregates pretreated with ouabain (2.5 microM), the [Ca2+]i increase was almost threefold greater with potassium than with lithium (P less than 0.007). Ouabain therefore potentiated the effect of membrane potential on calcium influx. We propose that elevation of [Na2+]i is a prerequisite for voltage dependence of the sodium/calcium exchange under the conditions studied. Sodium loading will then drastically increase calcium influx during the action potential while inducing an outward membrane current that could accelerate repolarization.
High-Energy Polarization: Scientific Potential and Model Predictions
Zhang, Haocheng
2017-07-28
Understanding magnetic field strength and morphology is very important for studying astrophysical jets. Polarization signatures have been a standard way to probe the jet magnetic field. Radio and optical polarization monitoring programs have been very successful in studying the space- and time-dependent jet polarization behaviors. A new era is now arriving with high-energy polarimetry. X-ray and γ-ray polarimetry can probe the most active jet regions with the most efficient particle acceleration. This new opportunity will make a strong impact on our current understanding of jet systems. Here, this article summarizes the scientific potential and current model predictions for X-ray andmore » γ-ray polarization of astrophysical jets. In particular, we discuss the advantages of using high-energy polarimetry to constrain several important problems in the jet physics, including the jet radiation mechanisms, particle acceleration mechanisms, and jet kinetic and magnetic energy composition. Here we take blazars as a study case, but the general approach can be similarly applied to other astrophysical jets. We conclude that by comparing combined magnetohydrodynamics (MHD), particle transport, and polarization-dependent radiation transfer simulations with multi-wavelength time-dependent radiation and polarization observations, we will obtain the strongest constraints and the best knowledge of jet physics.« less
High-Energy Polarization: Scientific Potential and Model Predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haocheng
Understanding magnetic field strength and morphology is very important for studying astrophysical jets. Polarization signatures have been a standard way to probe the jet magnetic field. Radio and optical polarization monitoring programs have been very successful in studying the space- and time-dependent jet polarization behaviors. A new era is now arriving with high-energy polarimetry. X-ray and γ-ray polarimetry can probe the most active jet regions with the most efficient particle acceleration. This new opportunity will make a strong impact on our current understanding of jet systems. Here, this article summarizes the scientific potential and current model predictions for X-ray andmore » γ-ray polarization of astrophysical jets. In particular, we discuss the advantages of using high-energy polarimetry to constrain several important problems in the jet physics, including the jet radiation mechanisms, particle acceleration mechanisms, and jet kinetic and magnetic energy composition. Here we take blazars as a study case, but the general approach can be similarly applied to other astrophysical jets. We conclude that by comparing combined magnetohydrodynamics (MHD), particle transport, and polarization-dependent radiation transfer simulations with multi-wavelength time-dependent radiation and polarization observations, we will obtain the strongest constraints and the best knowledge of jet physics.« less
2014-01-01
Background Radix Trichosanthis (RT), the dry root tuber of Trichosanthis kirilowii Maxim (Cucurbitaceae), is a traditional Chinese medicine. Although a wide range of saponin pharmacological properties has been identified, to our knowledge, this may be the first report to investigate the crude saponins from RT. The purpose of this study was to delineate the antioxidant activity both in vitro and in vivo by using ethyl acetate (EtOAc), n-butanol, and the mixture of n-butanol and EtOAc fractions. Methods In vitro antioxidant activity was detected by using DPPH free radical, hydrogen peroxide scavenging, and reducing power assays. After pretreatment with different fractions saponins at 2 mg/kg/d and 3 mg/kg/d of crude drug, respectively, an established CCl4 induced acute cytotoxicity model was used to evaluate the in vivo antioxidant potential by detection of superoxide dismutase (SOD), malonaldehyde (MDA), lactate dehydrogenase (LDH), and total antioxidant capacity (T-AOC) levels. Results The in vitro assay showed that the antioxidant activity of all the three fractions was promising. The reducing power of the EtOAc and the mixture of n-butanol and EtOAc extracts increased in a dose dependent manner. However, both the n-butanol and the mixture of n-butanol and EtOAc fractions in low dose exhibited in a time dependent manner with prolonged reaction time. As for hydrogen peroxide scavenging capability, the n-butanol fraction mainly demonstrated a time dependent manner, whereas EtOAc fraction showed a dose dependent manner. However, in case of in vivo assay, an increase of SOD and T-AOC and decrease of MDA and LDH levels were only observed in n-butanol (2 mg/kg/d of crude drug) extracts pretreatment group. Conclusions RT saponins in n-butanol fraction might be a potential antioxidant candidate, as CCl4-induced oxidative stress has been found to be alleviated, which may be associated with the time dependent manner of n-butanol saponins in a low dose. Further studies will be needed to investigate the active individual components in n-butanol extract, in vivo antioxidant activities and antioxidant mechanisms. PMID:24597831
Gallic acid induced apoptotic events in HCT-15 colon cancer cells.
Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu
2016-04-21
To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells.
Gallic acid induced apoptotic events in HCT-15 colon cancer cells
Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu
2016-01-01
AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438
Liu, Gong Xin; Daut, Jürgen
2002-01-01
K+ channels of isolated guinea-pig cardiomyocytes were studied using the patch-clamp technique. At transmembrane potentials between −120 and −220 mV we observed inward currents through an apparently novel channel. The novel channel was strongly rectifying, no outward currents could be recorded. Between −200 and −160 mV it had a slope conductance of 42.8 ± 3.0 pS (s.d.; n = 96). The open probability (Po) showed a sigmoid voltage dependence and reached a maximum of 0.93 at −200 mV, half-maximal activation was approximately −150 mV. The voltage dependence of Po was not affected by application of 50 μm isoproterenol. The open-time distribution could be described by a single exponential function, the mean open time ranged between 73.5 ms at −220 mV and 1.4 ms at −160 mV. At least two exponential components were required to fit the closed time distribution. Experiments with different external Na+, K+ and Cl− concentrations suggested that the novel channel is K+ selective. Extracellular Ba2+ ions gave rise to a voltage-dependent reduction in Po by inducing long closed states; Cs+ markedly reduced mean open time at −200 mV. In cell-attached recordings the novel channel frequently converted to a classical inward rectifier channel, and vice versa. This conversion was not voltage dependent. After excision of the patch, the novel channel always converted to a classical inward rectifier channel within 0–3 min. This conversion was not affected by intracellular Mg2+, phosphatidylinositol (4,5)-bisphosphate or spermine. Taken together, our findings suggest that the novel K+ channel represents a different ‘mode’ of the classical inward rectifier channel in which opening occurs only at very negative potentials. PMID:11897847
ERIC Educational Resources Information Center
Bundy, Donald, Ed.
2011-01-01
School health and nutrition programs can contribute to achieving the goals of the Education for All initiative (EFA) by helping children enroll on time, complete their education, and realize their cognitive potential. Achieving these goals depends on reaching the children most in need. One strong feature of school health and nutrition programs is…
HYPERSPECTRAL REMOTE SENSING OF WATER QUALITY PARAMETERS FOR LARGE RIVERS IN THE OHIO RIVER BASIN
Optical indicators of water quality have the potential of enhancing the abilities of resource managers to monitor water bodies in a timely and cost-effective manner. However, the degree to which optical indicators are useful may depend on their applicability to data collected fr...
DOT National Transportation Integrated Search
2012-03-01
Currently, strategies are being examined with regard to their potential for mitigating the negative impacts of the surface transportation sector on the environment. The focus of this study is to evaluate an ITS (intelligent transportation systems)-ba...
USDA-ARS?s Scientific Manuscript database
Given a time series of potential evapotranspiration and rainfall data, there are at least two approaches for estimating vertical percolation rates. One approach involves solving Richards' equation (RE) with a plant uptake model. An alternative approach involves applying a simple soil moisture accoun...
The development and use of a molecular model for soybean maturity groups
USDA-ARS?s Scientific Manuscript database
Achieving appropriate maturity in a target environment is essential to maximizing crop yield potential. In soybean [Glycine max (L.) Merr.], the time to maturity is largely dependent on developmental response to dark periods. Once the critical photoperiod is reached, flowering is initiated and rep...
Kellner, Manuela; Steindorff, Marina M; Strempel, Jürgen F; Winkel, Andreas; Kühnel, Mark P; Stiesch, Meike
2014-06-01
Autologous therapy via stem cell-based tissue regeneration is an aim to rebuild natural teeth. One option is the use of adult stem cells from the dental pulp (DPSCs), which have been shown to differentiate into several types of tissue in vitro and in vivo, especially into tooth-like structures. DPSCs are mainly isolated from the dental pulp of third molars routinely extracted for orthodontic reasons. Due to the extraction of third molars at various phases of life, DPSCs are isolated at different developmental stages of the tooth. The present study addressed the question whether DPSCs from patients of different ages were similar in their growth characteristics with respect to the stage of tooth development. Therefore DPSCs from third molars of 12-30 year-old patients were extracted, and growth characteristics, e.g. doubling time and maximal cell division potential were analysed. In addition, pulp and hard dental material weight were recorded. Irrespective of the age of patients almost all isolated cells reached 40-60 generations with no correlation between maximal cell division potential and patient age. Cells from patients <22 years showed a significantly faster doubling time than the cells from patients ≥22 years. The age of patients at the time of stem cell isolation is not a crucial factor concerning maximal cell division potential, but does have an impact on the doubling time. However, differences in individuals regarding growth characteristics were more pronounced than age-dependent differences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nisin depletes ATP and proton motive force in mycobacteria.
Chung, H J; Montville, T J; Chikindas, M L
2000-12-01
This study examined the inhibitory effect of nisin and its mode of action against Mycobacterium smegmatis, a non-pathogenic species of mycobacteria, and M. bovis-Bacill Carmette Guerin (BCG), a vaccine strain of pathogenic M. bovis. In agar diffusion assays, 2.5 mg ml(-1) nisin was required to inhibit M. bovis-BCG. Nisin caused a slow, gradual, time- and concentration-dependent decrease in internal ATP levels in M. bovis-BCG, but no ATP efflux was detected. In mycobacteria, nisin decreased both components of proton motive force (membrane potential, Delta Psi and Delta pH) in a time- and concentration-dependent manner. However, mycobacteria maintained their intracellular ATP levels during the initial time period of Delta Psi and Delta pH dissipation. These data suggest that the mechanism of nisin in mycobacteria is similar to that in food-borne pathogens.
On system behaviour using complex networks of a compression algorithm
NASA Astrophysics Data System (ADS)
Walker, David M.; Correa, Debora C.; Small, Michael
2018-01-01
We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.
Electron beam charging of insulators: A self-consistent flight-drift model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.
2006-06-01
Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges {rho}(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate {sigma}(t) and the surfacemore » potential V{sub 0}(t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and {sigma}=1. Especially for low electron beam energies E{sub 0}<4 keV the incorporation of mainly positive charges can be controlled by the potential V{sub G} of a vacuum grid in front of the target surface. For high beam energies E{sub 0}=10, 20, and 30 keV high negative surface potentials V{sub 0}=-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected.« less
Ruan, Hongyu; Yao, Wei-Dong
2017-01-25
Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to relapse. We found that repeated cocaine exposure alters a Hebbian associative synaptic learning rule that governs activity-dependent synaptic plasticity in the mouse prefrontal cortex, characterized by a broader temporal window and a lower threshold for spike-timing-dependent LTP (t-LTP), a cellular form of learning and memory. This rule change is caused by cocaine-exacerbated D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons that in turn pathologically recruits l-type Ca 2+ channels to facilitate coincidence detection during t-LTP induction. Our study provides novel insights on how cocaine, even with only brief exposure, may prime neural circuits for subsequent experience-dependent remodeling that may underlie certain addictive behavior. Copyright © 2017 the authors 0270-6474/17/370986-12$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, Jose A.; Perciante, Cesar D
2008-07-10
The behavior of photochromic glasses during activation and bleaching is investigated. A two-state phenomenological model describing light-induced activation (darkening) and thermal bleaching is presented. The proposed model is based on first-order kinetics. We demonstrate that the time behavior in the activation process (acting simultaneously with the thermal fading) can be characterized by two relaxation times that depend on the intensity of the activating light. These characteristic times are lower than the decay times of the pure thermal bleaching process. We study the temporal evolution of the glass optical density and its dependence on the activating intensity. We also present amore » series of activation and bleaching experiments that validate the proposed model. Our approach may be used to gain more insight into the transmittance behavior of photosensitive glasses, which could be potentially relevant in a broad range of applications, e.g., real-time holography and reconfigurable optical memories.« less
The time scale of quasifission process in reactions with heavy ions
NASA Astrophysics Data System (ADS)
Knyazheva, G. N.; Itkis, I. M.; Kozulin, E. M.
2014-05-01
The study of mass-energy distributions of binary fragments obtained in the reactions of 36S, 48Ca, 58Fe and 64Ni ions with the 232Th, 238U, 244Pu and 248Cm at energies below and above the Coulomb barrier is presented. These data have been measured by two time-of-flight CORSET spectrometer. The mass resolution of the spectrometer for these measurements was about 3u. It allows to investigate the features of mass distributions with good accuracy. The properties of mass and TKE of QF fragments in dependence on interaction energy have been investigated and compared with characteristics of the fusion-fission process. To describe the quasifission mass distribution the simple method has been proposed. This method is based on the driving potential of the system and time dependent mass drift. This procedure allows to estimate QF time scale from the measured mass distributions. It has been found that the QF time exponentially decreases when the reaction Coulomb factor Z1Z2 increases.
Graph-Based Semantic Web Service Composition for Healthcare Data Integration.
Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena
2017-01-01
Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.
Graph-Based Semantic Web Service Composition for Healthcare Data Integration
2017-01-01
Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602
Degirmenci, Sinan; Olgar, Yusuf; Durak, Aysegul; Tuncay, Erkan; Turan, Belma
2018-07-01
Intracellular labile (free) Zn 2+ -level ([Zn 2+ ] i ) is low and increases markedly under pathophysiological conditions in cardiomyocytes. High [Zn 2+ ] i is associated with alterations in excitability and ionic-conductances while exact mechanisms are not clarified yet. Therefore, we examined the elevated-[Zn 2+ ] i on some sarcolemmal ionic-mechanisms, which can mediate cardiomyocyte dysfunction. High-[Zn 2+ ] i induced significant changes in action potential (AP) parameters, including depolarization in resting membrane-potential and prolongations in AP-repolarizing phases. We detected also the time-dependent effects such as induction of spontaneous APs at the time of ≥ 3 min following [Zn 2+ ] i increases, a manner of cellular ATP dependent and reversible with disulfide-reducing agent dithiothreitol, DTT. High-[Zn 2+ ] i induced inhibitions in voltage-dependent K + -channel currents, such as transient outward K + -currents, I to , steady-state currents, I ss and inward-rectifier K + -currents, I K1 , reversible with DTT seemed to be responsible from the prolongations in APs. We, for the first time, demonstrated that lowering cellular ATP level induced significant decreaeses in both I ss and I K1 , while no effect on I to . However, the increased-[Zn 2+ ] i could induce marked activation in ATP-sensitive K + -channel currents, I KATP , depending on low cellular ATP and thiol-oxidation levels of these channels. The mRNA levels of Kv4.3, Kv1.4 and Kv2.1 were depressed markedly with increased-[Zn 2+ ] i with no change in mRNA level of Kv4.2, while the mRNA level of I KATP subunit, SUR2A was increased significantly with increased-[Zn 2+ ] i , being reversible with DTT. Overall we demonstrated that high-[Zn 2+ ] i, even if nanomolar levels, alters cardiac function via prolonged APs of cardiomyocytes, at most, due to inhibitions in voltage-dependent K + -currents, although activation of I KATP is playing cardioprotective role, through some biochemical changes in cellular ATP- and thiol-oxidation levels. It seems, a well-controlled [Zn 2+ ] i can be novel therapeutic target for cardiac complications under pathological conditions including oxidative stress. Copyright © 2018 Elsevier GmbH. All rights reserved.
Coupled matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Golam Ali, Sk; Talukdar, B.
2009-06-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution they exhibit decay and revival.
Adams, Henry D.; Germino, Matthew J.; Breshears, David D.; Barron-Gafford, Greg A.; Guardiola-Claramonte, Maite; Zou, Chris B.; Huxman, Travis E.
2013-01-01
* Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species.
Betel-quid dependence and oral potentially malignant disorders in six Asian countries.
Lee, Chien-Hung; Ko, Albert Min-Shan; Yen, Cheng-Fang; Chu, Koung-Shing; Gao, Yi-Jun; Warnakulasuriya, Saman; Sunarjo; Ibrahim, Salah Osman; Zain, Rosnah Binti; Patrick, Walter K; Ko, Ying-Chin
2012-11-01
Despite gradual understanding of the multidimensional health consequences of betel-quid chewing, information on the effects of dependent use is scant. To investigate the 12-month prevalence patterns of betel-quid dependence in six Asian populations and the impact of this dependence on oral potentially malignant disorders (OPMD). A multistage random sample of 8922 participants was recruited from Taiwan, mainland China, Indonesia, Malaysia, Sri Lanka and Nepal. Participants were evaluated for betel-quid dependency using DSM-IV and ICD-10 criteria and assessed clinically for oral mucosal lesions. The 12-month prevalence of dependence was 2.8-39.2% across the six Asian samples, and 20.9-99.6% of those who chewed betel-quid were betel-quid dependent. Men dominated the prevalence among the east Asian samples and women dominated the prevalence in south-east Asian samples. 'Time spent chewing' and 'craving' were the central dependence domains endorsed by the Chinese and southern/south-east Asian samples respectively, whereas the Nepalese samples endorsed 'tolerance' and 'withdrawal'. Dependency was linked to age, gender, schooling years, drinking, smoking, tobacco-added betel-quid use and environmental accessibility of betel-quid. Compared with non-users, those with betel-quid dependency had higher pre-neoplastic risks (adjusted odds ratios 8.0-51.3) than people with non-dependent betel-quid use (adjusted odds ratio 4.5-5.9) in the six Asian populations. By elucidating differences in domain-level symptoms of betel-quid dependency and individual and environmental factors, this study draws attention to the population-level psychiatric problems of betel-quid chewing that undermine health consequences for OPMD in six Asian communities.
Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; ...
2018-02-07
The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less
Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.
The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less
NASA Astrophysics Data System (ADS)
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-01
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo
2018-05-14
Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.
Effective time-independent analysis for quantum kicked systems.
Bandyopadhyay, Jayendra N; Guha Sarkar, Tapomoy
2015-03-01
We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
Effective time-independent analysis for quantum kicked systems
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy
2015-03-01
We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
Direction dependence of displacement time for two-fluid electroosmotic flow.
Lim, Chun Yee; Lam, Yee Cheong
2012-03-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.
Direction dependence of displacement time for two-fluid electroosmotic flow
Lim, Chun Yee; Lam, Yee Cheong
2012-01-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083
A three-ions model of electrodiffusion kinetics in a nanochannel
NASA Astrophysics Data System (ADS)
Sebechlebská, Táňa; Neogrády, Pavel; Valent, Ivan
2016-10-01
Nanoscale electrodiffusion transport is involved in many electrochemical, technological and biological processes. Developments in computer power and numerical algorithms allow for solving full time-dependent Nernst-Planck and Poisson equations without simplifying approximations. We simulate spatio-temporal profiles of concentration and electric potential changes after a potential jump in a 10 nm channel with two cations (with opposite concentration gradients and different mobilities) and one anion (of uniform concentration). The temporal dynamics shows three exponential phases and damped oscillations of the electric potential. Despite the absence of surface charges in the studied model, an asymmetric current-voltage characteristic was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deumens, E.; Diz, A.; Longo, R.
1994-07-01
An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems.more » The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the [ital ab] [ital initio] Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed.« less
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Soltani, H.
2018-04-01
The results of time-dependent one-dimensional modelling of a dielectric barrier discharge (DBD) in a nitrogen-oxygen-water vapor mixture at atmospheric pressure are presented. The voltage-current characteristics curves and the production of active species are studied. The discharge is driven by a sinusoidal alternating high voltage-power supply at 30 kV with frequency of 27 kHz. The electrodes and the dielectric are assumed to be copper and quartz, respectively. The current discharge consists of an electrical breakdown that occurs in each half-period. A detailed description of the electron attachment and detachment processes, surface charge accumulation, charged species recombination, conversion of negative and positive ions, ion production and losses, excitations and dissociations of molecules are taken into account. Time-dependent one-dimensional electron density, electric field, electric potential, electron temperature, densities of reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as: O, O-, O+, {O}2^{ - } , {O}2^{ + } , O3, {N}, {N}2^{ + } , N2s and {N}2^{ - } are simulated versus time across the gas gap. The results of this work could be used in plasma-based pollutant degradation devices.
Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph
2012-08-01
The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.
Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph
2012-01-01
The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836
Critical insight into the influence of the potential energy surface on fission dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurek, K.; Grand Accelerateur National d'Ions Lourds; Schmitt, C.
The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. Whenmore » utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.« less
High-latitude spacecraft charging in low-Earth polar orbit
NASA Astrophysics Data System (ADS)
Frooninckx, Thomas B.
Spacecraft charging within the upper ionosphere is commonly thought to be insignificant and thus has received little attention. Recent experimental evidence has shown that electric potential differences as severe as 680 volts can develop between Defense Meteorological Satellite Program (DMSP) polar-orbiting (840 kilometers) spacecraft and their high-latitude environment. To explore space vehicle charging in this region more fully, an analysis was performed using DMSP F6, F7, F8, and F9 satellite precipitating particle and ambient plasma measurements taken during the winters of 1986-87 (solar minimum) and 1989-90 (solar maximum). An extreme solar cycle dependence was discovered as charging occurred more frequently and with greater severity during the period of solar minimum. One hundred seventy charging events ranging from -46 to 1,430 volts were identified, and satellite measurements and Time Dependent Ionospheric Model (TDIM) output were used to characterize the environments which generated and inhibited these potentials. All current sources were considered to determine the cause of the solar cycle dependence.
Internal Charmonium Evolution in the Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Chen, Baoyi; Du, Xiaojian; Rapp, Ralf
2017-08-01
We employ a time-dependent Schrödinger equation to study the evolution of a c c ‾ dipole in a quark-gluon plasma (QGP). Medium effects on the heavy-quark potential in the QGP are found to significantly affect the timescales of the internal evolution of the dipole. Color-screening can enhance the overlap of the expanding wavepackage with excited states at high temperature, while it is reduced at lower temperatures where the dipole favors the formation of the charmonium ground state. We investigate the consequences of this mechanism on the double ratio of charmonium nuclear modification factors, RAAψ (2 S) /RAAJ/ψ, in heavy-ion collisions. The impact of the transition mechanisms on this ratio turns out to be rather sensitive to the attractive strength of the potential, and to its temperature dependence.
Operations automation using temporal dependency networks
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.
1991-01-01
Precalibration activities for the Deep Space Network are time- and work force-intensive. Significant gains in availability and efficiency could be realized by intelligently incorporating automation techniques. An approach is presented to automation based on the use of Temporal Dependency Networks (TDNs). A TDN represents an activity by breaking it down into its component pieces and formalizing the precedence and other constraints associated with lower level activities. The representations are described which are used to implement a TDN and the underlying system architecture needed to support its use. The commercial applications of this technique are numerous. It has potential for application in any system which requires real-time, system-level control, and accurate monitoring of health, status, and configuration in an asynchronous environment.
NASA Astrophysics Data System (ADS)
Ferradás, R.; Berger, J. A.; Romaniello, Pina
2018-06-01
We present the optical conductivity as well as the electron-energy loss spectra of the alkali metals Na, K, Rb, and Cs calculated within time-dependent current-density functional theory. Our ab initio formulation describes from first principles both the Drude-tail and the interband absorption of these metals as well as the most dominant relativistic effects. We show that by using a recently derived current functional [Berger, Phys. Rev. Lett. 115, 137402 (2015)] we obtain an overall good agreement with experiment at a computational cost that is equivalent to the random-phase approximation. We also highlight the importance of the choice of the exchange-correlation potential of the ground state.
Classical and quantum dynamics of a kicked relativistic particle in a box
NASA Astrophysics Data System (ADS)
Yusupov, J. R.; Otajanov, D. M.; Eshniyazov, V. E.; Matrasulov, D. U.
2018-03-01
We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppressed. However, in case of regular motion energy fluctuates around certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation with delta-kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending on the values of the kicking parameters, the average kinetic energy can be quasi periodic, or fluctuating around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian wave packet and by analyzing the trembling motion.
An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.E.; Ritchie, A.B.
1997-12-31
One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less
PCTDSE: A parallel Cartesian-grid-based TDSE solver for modeling laser-atom interactions
NASA Astrophysics Data System (ADS)
Fu, Yongsheng; Zeng, Jiaolong; Yuan, Jianmin
2017-01-01
We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for modeling laser-atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary time-dependent vector potentials. We use a split-operator method combined with fast Fourier transforms (FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark problems coming from the references and obtain repeatable results. The extensions to other laser-atom systems are straightforward with minimal modifications of the source code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui
2016-07-21
The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less
Spin-flip transitions in self-assembled quantum dots
NASA Astrophysics Data System (ADS)
Stavrou, V. N.
2017-12-01
Detailed realistic calculations of the spin-flip time (T 1) for an electron in a self-assembled quantum dot (SAQD) due to emission of an acoustic phonon, using only bulk properties with no fitting parameters, are presented. Ellipsoidal lens shaped Inx Ga1-x As quantum dots, with electronic states calculated using 8-band strain dependent {k \\cdot p} theory, are considered. The phonons are treated as bulk acoustic phonons coupled to the electron by both deformation potential and piezoelectric interactions. The dependence of T 1 on the geometry of SAQD, on the applied external magnetic field and on the lattice temperature is highlighted. The theoretical results are close to the experimental measurements on the spin-flip times for a single electron in QD.
Nicergoline inhibits T-type Ca2+ channels in rat isolated hippocampal CA1 pyramidal neurones.
Takahashi, K.; Akaike, N.
1990-01-01
1. The effects of nicergoline on the T- and L-type Ca2+ currents in pyramidal cells freshly isolated from rat hippocampal CA1 region were investigated by use of a 'concentration-clamp' technique. The technique combines a suction-pipette technique, which allows intracellular perfusion under a single-electrode voltage-clamp, and rapid exchange of extracellular solution within 2 ms. 2. T-type Ca2+ currents were evoked by step depolarizations from a holding potential of -100 mV to potentials more positive than -70 to -60 mV, and reached a peak at about -30 mV in the current-voltage relationship. Activation and inactivation of T-type Ca2+ currents were highly potential-dependent. 3. Nicergoline and other Ca2+ antagonists dose-dependently blocked the T-type Ca2+ channel with an order of potency nicardipine greater than nicergoline greater than diltiazem. 4. The L-type Ca2+ channel was also blocked in the order nicardipine greater than nicergoline greater than diltiazem, although the T-type Ca2+ channel was more sensitive to nicergoline. 5. The inhibitory effects of nicergoline and nicardipine on the T-type Ca2+ current were voltage-, time-, and use-dependent, and the inhibition increased with a decrease in the external Ca2+ concentration. Diltiazem showed only a use-dependent block. PMID:2169937
Nicergoline inhibits T-type Ca2+ channels in rat isolated hippocampal CA1 pyramidal neurones.
Takahashi, K; Akaike, N
1990-08-01
1. The effects of nicergoline on the T- and L-type Ca2+ currents in pyramidal cells freshly isolated from rat hippocampal CA1 region were investigated by use of a 'concentration-clamp' technique. The technique combines a suction-pipette technique, which allows intracellular perfusion under a single-electrode voltage-clamp, and rapid exchange of extracellular solution within 2 ms. 2. T-type Ca2+ currents were evoked by step depolarizations from a holding potential of -100 mV to potentials more positive than -70 to -60 mV, and reached a peak at about -30 mV in the current-voltage relationship. Activation and inactivation of T-type Ca2+ currents were highly potential-dependent. 3. Nicergoline and other Ca2+ antagonists dose-dependently blocked the T-type Ca2+ channel with an order of potency nicardipine greater than nicergoline greater than diltiazem. 4. The L-type Ca2+ channel was also blocked in the order nicardipine greater than nicergoline greater than diltiazem, although the T-type Ca2+ channel was more sensitive to nicergoline. 5. The inhibitory effects of nicergoline and nicardipine on the T-type Ca2+ current were voltage-, time-, and use-dependent, and the inhibition increased with a decrease in the external Ca2+ concentration. Diltiazem showed only a use-dependent block.
NASA Astrophysics Data System (ADS)
Elizaga Navascués, Beatriz; Martín de Blas, Daniel; Mena Marugán, Guillermo A.
2018-02-01
Loop quantum cosmology has recently been applied in order to extend the analysis of primordial perturbations to the Planck era and discuss the possible effects of quantum geometry on the cosmic microwave background. Two approaches to loop quantum cosmology with admissible ultraviolet behavior leading to predictions that are compatible with observations are the so-called hybrid and dressed metric approaches. In spite of their similarities and relations, we show in this work that the effective equations that they provide for the evolution of the tensor and scalar perturbations are somewhat different. When backreaction is neglected, the discrepancy appears only in the time-dependent mass term of the corresponding field equations. We explain the origin of this difference, arising from the distinct quantization procedures. Besides, given the privileged role that the big bounce plays in loop quantum cosmology, e.g. as a natural instant of time to set initial conditions for the perturbations, we also analyze the positivity of the time-dependent mass when this bounce occurs. We prove that the mass of the tensor perturbations is positive in the hybrid approach when the kinetic contribution to the energy density of the inflaton dominates over its potential, as well as for a considerably large sector of backgrounds around that situation, while this mass is always nonpositive in the dressed metric approach. Similar results are demonstrated for the scalar perturbations in a sector of background solutions that includes the kinetically dominated ones; namely, the mass then is positive for the hybrid approach, whereas it typically becomes negative in the dressed metric case. More precisely, this last statement is strictly valid when the potential is quadratic for values of the inflaton mass that are phenomenologically favored.
Kramer, Megan E; Suskauer, Stacy J; Christensen, James R; DeMatt, Ellen J; Trovato, Melissa K; Salorio, Cynthia F; Slomine, Beth S
2013-01-01
To examine in a pilot cohort factors associated with functional outcome at discharge and 3-month follow-up after discharge from inpatient rehabilitation in children with severe traumatic brain injury (TBI) who entered rehabilitation with the lowest level of functional skills. Thirty-nine children and adolescents (3-18 years old) who sustained a severe TBI and had the lowest possible rating at rehabilitation admission on the Functional Independence Measure for Children (total score = 18). Retrospective review of data collected as part of routine clinical care. At discharge, 59% of the children were partially dependent for basic activities, while 41% remained dependent for basic activities. Initial Glasgow Coma Scale score, time to follow commands, and time from injury to rehabilitation admission were correlated with functional status at discharge. Time to follow commands and time from injury to rehabilitation admission were correlated with functional status at 3-month follow-up. Changes in functional status during the first few weeks of admission were associated with functional status at discharge and follow-up. Even children with the most severe brain injuries, who enter rehabilitation completely dependent for all daily activities, have the potential to make significant gains in functioning by discharge and in the following few months. Assessment of functional status early in the course of rehabilitation contributes to the ability to predict outcome from severe TBI.
Quasar Astrophysics with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn
2007-01-01
Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
Time-Dependent Traveling Wave Tube Model for Intersymbol Interference Investigations
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a computational model has been used to provide a direct description of the effects of the traveling wave tube (TWT) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion, gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black-box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).
A flexible cure rate model with dependent censoring and a known cure threshold.
Bernhardt, Paul W
2016-11-10
We propose a flexible cure rate model that accommodates different censoring distributions for the cured and uncured groups and also allows for some individuals to be observed as cured when their survival time exceeds a known threshold. We model the survival times for the uncured group using an accelerated failure time model with errors distributed according to the seminonparametric distribution, potentially truncated at a known threshold. We suggest a straightforward extension of the usual expectation-maximization algorithm approach for obtaining estimates in cure rate models to accommodate the cure threshold and dependent censoring. We additionally suggest a likelihood ratio test for testing for the presence of dependent censoring in the proposed cure rate model. We show through numerical studies that our model has desirable properties and leads to approximately unbiased parameter estimates in a variety of scenarios. To demonstrate how our method performs in practice, we analyze data from a bone marrow transplantation study and a liver transplant study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Recent Advances in Near-Net-Shape Fabrication of Al-Li Alloy 2195 for Launch Vehicles
NASA Technical Reports Server (NTRS)
Wagner, John; Domack, Marcia; Hoffman, Eric
2007-01-01
Recent applications in launch vehicles use 2195 processed to Super Lightweight Tank specifications. Potential benefits exist by tailoring heat treatment and other processing parameters to the application. Assess the potential benefits and advocate application of Al-Li near-net-shape technologies for other launch vehicle structural components. Work with manufacturing and material producers to optimize Al-Li ingot shape and size for enhanced near-net-shape processing. Examine time dependent properties of 2195 critical for reusable applications.
Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.
Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua
2014-10-28
Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.
Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution
NASA Astrophysics Data System (ADS)
Jivani, A. R.; Jani, A. R.
2011-12-01
Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.
Active, capable, and potentially active faults - a paleoseismic perspective
Machette, M.N.
2000-01-01
Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.
NASA Astrophysics Data System (ADS)
Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.
2017-04-01
Large mountain slopes in alpine environments undergo a complex long-term evolution from glacial to postglacial environments, through a transient period of paraglacial readjustment. During and after this transition, the interplay among rock strength, topographic relief, and morpho-climatic drivers varying in space and time can lead to the development of different types of slope instability, from sudden catastrophic failures to large, slow, long-lasting yet potentially catastrophic rockslides. Understanding the long-term evolution of large rock slopes requires accounting for the time-dependence of deglaciation unloading, permeability and fluid pressure distribution, displacements and failure mechanisms. In turn, this is related to a convincing description of rock mass damage processes and to their transition from a sub-critical (progressive failure) to a critical (catastrophic failure) character. Although mechanisms of damage occurrence in rocks have been extensively studied in the laboratory, the description of time-dependent damage under gravitational load and variable external actions remains difficult. In this perspective, starting from a time-dependent model conceived for laboratory rock deformation, we developed Dadyn-RS, a tool to simulate the long-term evolution of real, large rock slopes. Dadyn-RS is a 2D, FEM model programmed in Matlab, which combines damage and time-to-failure laws to reproduce both diffused damage and strain localization meanwhile tracking long-term slope displacements from primary to tertiary creep stages. We implemented in the model the ability to account for rock mass heterogeneity and property upscaling, time-dependent deglaciation, as well as damage-dependent fluid pressure occurrence and stress corrosion. We first tested DaDyn-RS performance on synthetic case studies, to investigate the effect of the different model parameters on the mechanisms and timing of long-term slope behavior. The model reproduces complex interactions between topography, deglaciation rate, mechanical properties and fluid pressure occurrence, resulting in different kinematics, damage patterns and timing of slope instabilities. We assessed the role of groundwater on slope damage and deformation mechanisms by introducing time-dependent pressure cycling within simulations. Then, we applied DaDyn-RS to real slopes located in the Italian Central Alps, affected by an active rockslide and a Deep Seated Gravitational Slope Deformation, respectively. From Last Glacial Maximum to present conditions, our model allows reproducing in an explicitly time-dependent framework the progressive development of damage-induced permeability, strain localization and shear band differentiation at different times between the Lateglacial period and the Mid-Holocene climatic transition. Different mechanisms and timings characterize different styles of slope deformations, consistently with available dating constraints. DaDyn-RS is able to account for different long-term slope dynamics, from slow creep to the delayed transition to fast-moving rockslides.
Data on copula modeling of mixed discrete and continuous neural time series.
Hu, Meng; Li, Mingyao; Li, Wu; Liang, Hualou
2016-06-01
Copula is an important tool for modeling neural dependence. Recent work on copula has been expanded to jointly model mixed time series in neuroscience ("Hu et al., 2016, Joint Analysis of Spikes and Local Field Potentials using Copula" [1]). Here we present further data for joint analysis of spike and local field potential (LFP) with copula modeling. In particular, the details of different model orders and the influence of possible spike contamination in LFP data from the same and different electrode recordings are presented. To further facilitate the use of our copula model for the analysis of mixed data, we provide the Matlab codes, together with example data.
Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.
Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su
2014-11-19
BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.
NASA Astrophysics Data System (ADS)
Lifton, N. A.
2014-12-01
A recently published cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) (Lifton et al., 2014, Earth Planet. Sci. Lett. 386, 149-160: termed the LSD model) provides two main advantages over previous scaling models: identification and quantification of potential sources of bias in the earlier models, and the ability to generate nuclide-specific scaling factors easily for a wide range of input parameters. The new model also provides a flexible framework for exploring the implications of advances in model inputs. In this work, the scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene will be explored. Korte and Constable (2011, Phys. Earth Planet. Int. 188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models used by Lifton et al. (2014) with paleomagnetic measurements from sediment cores in addition to archeomagnetic and volcanic data. These updated models offer improved accuracy over the previous versions, in part to due to increased temporal and spatial data coverage. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC- the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to the earlier models. These results will be compared to scaling predictions using another recent time-dependent spherical harmonic model of the Holocene geomagnetic field by Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109), based solely on archeomagnetic and volcanic paleomagnetic data, but extending to 14 ka. In addition, the potential effects of time-dependent atmospheric models on LSD scaling predictions will be presented. Given the typical dominance of altitudinal over latitudinal scaling effects on cosmogenic nuclide production, incorporating transient global simulations of atmospheric structure (e.g., Liu et al., 2009, Science 325, 310-314) into scaling frameworks may contribute to improved understanding of long-term production rate variations.
Lavikainen, Piia; Helin-Salmivaara, Arja; Eerola, Mervi; Fang, Gang; Hartikainen, Juha; Huupponen, Risto; Korhonen, Maarit Jaana
2016-06-03
Previous studies on the effect of statin adherence on cardiovascular events in the primary prevention of cardiovascular disease have adjusted for time-dependent confounding, but potentially introduced bias into their estimates as adherence and confounders were measured simultaneously. We aimed to evaluate the effect when accounting for time-dependent confounding affected by previous adherence as well as time sequence between factors. Retrospective cohort study. Finnish healthcare registers. Women aged 45-64 years initiating statin use for primary prevention of cardiovascular disease in 2001-2004 (n=42 807). Acute cardiovascular event defined as a composite of acute coronary syndrome and acute ischaemic stroke was our primary outcome. Low-energy fractures were used as a negative control outcome to evaluate the healthy-adherer effect. During the 3-year follow-up, 474 women experienced the primary outcome event and 557 suffered a low-energy fracture. The causal HR estimated with marginal structural model for acute cardiovascular events for all the women who remained adherent (proportion of days covered ≥80%) to statin therapy during the previous adherence assessment year was 0.78 (95% CI: 0.65 to 0.94) when compared with everybody remaining non-adherent (proportion of days covered <80%). The result was robust against alternative model specifications. Statin adherers had a potentially reduced risk of experiencing low-energy fractures compared with non-adherers (HR 0.90, 95% CI 0.76 to 1.07). Our study, which took into account the time dependence of adherence and confounders, as well as temporal order between these factors, is support for the concept that adherence to statins in women in primary prevention decreases the risk of acute cardiovascular events by about one-fifth in comparison to non-adherence. However, part of the observed effect of statin adherence on acute cardiovascular events may be due to the healthy-adherer effect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Yamada, Hiroaki; Ikeda, Kensuke S
2002-04-01
It was shown that localization in one-dimensional disordered (quantum) electronic system is destroyed against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion [Yamada and Ikeda, Phys. Rev. E 59, 5214 (1999)]. The appearance of diffusion implies that the system has potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in the form of a "heat" flow when we couple the system with another dynamical degree of freedom. In the concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly approaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal quantum systems in which a distinct nonequilibrium statistical behavior is self-induced.
Awortwe, Charles; Bouic, Patrick J.; Masimirembwa, Collen M.; Rosenkranz, Bernd
2015-01-01
The purpose of this study was to evaluate the potential risk of common herbal medicines used by HIV-infected patients in Africa for herb-drug interactions (HDI). High throughput screening assays consisting of recombinant Cytochrome P450 enzymes (CYPs) and fluorescent probes, and parallel artificial membrane permeability assays (PAMPA) were used. The potential of herbal medicines to cause HDI was ranked according to FDA guidelines for reversible inhibition and categorization of time dependent inhibition was based on the normalized ratio. CYPs 1A2 and 3A4 were most inhibited by the herbal extracts. H. hemerocallidea (IC50 = 0.63 μg/mL and 58 μg/mL) and E. purpurea (IC50 = 20 μg/mL and 12 μg/mL) were the potent inhibitors of CYPs 1A2 and 3A4 respectively. L. frutescens and H. hemerocallidea showed clear time dependent inhibition on CYP3A4. Furthermore, the inhibitory effect of both H. hemerocallidea and L. frutescens before and after PAMPA were identical. The results indicate potential HDI of H. hemerocallidea, L. frutescens and E. purpurea with substrates of the affected enzymes if maximum in vivo concentration is achieved. PMID:24475926
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ongonwou, F., E-mail: fred.ongonwou@gmail.com; Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com; Ekogo, T.B., E-mail: tekogo@yahoo.fr
In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the firstmore » kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.« less
NASA Astrophysics Data System (ADS)
Silaev, A. A.; Romanov, A. A.; Vvedenskii, N. V.
2018-03-01
In the numerical solution of the time-dependent Schrödinger equation by grid methods, an important problem is the reflection and wrap-around of the wave packets at the grid boundaries. Non-optimal absorption of the wave function leads to possible large artifacts in the results of numerical simulations. We propose a new method for the construction of the complex absorbing potentials for wave suppression at the grid boundaries. The method is based on the use of the multi-hump imaginary potential which contains a sequence of smooth and symmetric humps whose widths and amplitudes are optimized for wave absorption in different spectral intervals. We show that this can ensure a high efficiency of absorption in a wide range of de Broglie wavelengths, which includes wavelengths comparable to the width of the absorbing layer. Therefore, this method can be used for high-precision simulations of various phenomena where strong spreading of the wave function takes place, including the phenomena accompanying the interaction of strong fields with atoms and molecules. The efficiency of the proposed method is demonstrated in the calculation of the spectrum of high-order harmonics generated during the interaction of hydrogen atoms with an intense infrared laser pulse.
Liebregts, Nienke; van der Pol, Peggy; Van Laar, Margriet; de Graaf, Ron; van den Brink, Wim; Korf, Dirk J.
2013-01-01
Life course theory considers events in study and work as potential turning points in deviance, including illicit drug use. This qualitative study explores the role of occupational life in cannabis use and dependence in young adults. Two and three years after the initial structured interview, 47 at baseline frequent cannabis users were interviewed in-depth about the dynamics underlying changes in their cannabis use and dependence. Overall, cannabis use and dependence declined, including interviewees who quit using cannabis completely, in particular with students, both during their study and after they got employed. Life course theory appeared to be a useful framework to explore how and why occupational life is related to cannabis use and dependence over time. Our study showed that life events in this realm are rather common in young adults and can have a strong impact on cannabis use. While sometimes changes in use are temporary, turning points can evolve from changes in educational and employment situations; an effect that seems to be related to the consequences of these changes in terms of amount of leisure time and agency (i.e., feelings of being in control). PMID:23950748
NASA Technical Reports Server (NTRS)
Morino, L.
1980-01-01
Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.
Kékedy-Nagy, László; Ferapontova, Elena E; Brand, Izabella
2017-02-23
Unique electronic and ligand recognition properties of the DNA double helix provide basis for DNA applications in biomolecular electronic and biosensor devices. However, the relation between the structure of DNA at electrified interfaces and its electronic properties is still not well understood. Here, potential-driven changes in the submolecular structure of DNA double helices composed of either adenine-thymine (dAdT) 25 or cytosine-guanine (dGdC) 20 base pairs tethered to the gold electrodes are for the first time analyzed by in situ polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) performed under the electrochemical control. It is shown that the conformation of the DNA duplexes tethered to gold electrodes via the C 6 alkanethiol linker strongly depends on the nucleic acid sequence composition. The tilt of purine and pyrimidine rings of the complementary base pairs (dAdT and dGdC) depends on the potential applied to the electrode. By contrast, neither the conformation nor orientation of the ionic in character phosphate-sugar backbone is affected by the electrode potentials. At potentials more positive than the potential of zero charge (pzc), a gradual tilting of the double helix is observed. In this tilted orientation, the planes of the complementary purine and pyrimidine rings lie ideally parallel to each other. These potentials do not affect the integral stability of the DNA double helix at the charged interface. At potentials more negative than the pzc, DNA helices adopt a vertical to the gold surface orientation. Tilt of the purine and pyrimidine rings depends on the composition of the double helix. In monolayers composed of (dAdT) 25 molecules the rings of the complementary base pairs lie parallel to each other. By contrast, the tilt of purine and pyrimidine rings in (dGdC) 20 helices depends on the potential applied to the electrode. Such potential-induced mobility of the complementary base pairs can destabilize the helix structure at a submolecular level. These pioneer results on the potential-driven changes in the submolecular structure of double stranded DNA adsorbed on conductive supports contribute to further understanding of the potential-driven sequence-specific electronic properties of surface-tethered oligonucleotides.
Exciplex vacuum ultraviolet emission spectra of KrAr: Temperature dependence and potentials
NASA Astrophysics Data System (ADS)
Subtil, J.-L.; Jonin, C.; Laporte, P.; Reininger, R.; Spiegelmann, F.; Gürtler, P.
1996-11-01
The temperature dependence of the emissions from the 0+(3P1)and 1(3P2) Kr*Ar exciplex states in the range 85-350 K was studied using time resolved techniques, vacuum ultraviolet synchrotron radiation, and argon samples doped with minimal amounts of krypton. As the temperature is increased, the emission shifts to the blue, its width increases by almost a factor of 2, and the line shape becomes asymmetrical. The experimental line shapes have been simulated by means of Franck-Condon density calculations using the available ground state potential of Aziz and Slaman [Mol. Phys. 58, 679 (1986)] and by modeling the exciplex potentials as Morse curves. The potential parameters for the 0+ and 1 states are re=5.05±0.01 and 5.07±0.01 a0, respectively; De=1150±200 cm-1 and β=1.4±0.1 a0-1 for both states. The latter two values yield ωe=140 cm-1 and ωexe=4.3 cm-1. The energy positions of the exciplexes's wells and their depths are compared with published results.
Al-Shekhlee, Amer; Katirji, Bashar
2004-03-01
West Nile virus (WNV) infection is a potentially fatal disease, with meningoencephalitis being its most common neurological manifestation. Guillain-Barré syndrome (GBS) has also been described, but acute paralytic poliomyelitis has only recently been recognized. We report the clinical and electrodiagnostic findings of five patients with WNV infection, who presented with acute paralytic poliomyelitis. Three patients manifested focal asymmetrical weakness, and two had rapid ascending quadriplegia mimicking GBS. Electrodiagnostic studies during the acute illness showed normal sensory nerve action potentials, compound motor action potentials of normal or reduced amplitude, and no slowing of nerve conduction velocities. Depending on the timing of the examination, fibrillation potentials were widespread, including in those with focal weakness. Cervical magnetic resonance imaging in one patient showed abnormal T2-weighted signals in the spinal cord gray matter. On follow-up, signs of clinical improvement were seen in one patient, whereas two remained quadriplegic and ventilator-dependent 5 months after the onset. This report highlights the value of the electrodiagnostic studies in the diagnosis and prognosis of focal or generalized weakness due to acute paralytic poliomyelitis associated with WNV infection.
IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik, E-mail: acongdon@jpl.nasa.go, E-mail: keeton@physics.rutgers.ed, E-mail: nordgren@sas.upenn.ed
2010-02-01
We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxiesmore » with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.« less
Identifying Anomalies in Gravitational Lens Time Delays
NASA Astrophysics Data System (ADS)
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik
2010-02-01
We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a "fold" lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.
Creating Situational Awareness in Spacecraft Operations with the Machine Learning Approach
NASA Astrophysics Data System (ADS)
Li, Z.
2016-09-01
This paper presents a machine learning approach for the situational awareness capability in spacecraft operations. There are two types of time dependent data patterns for spacecraft datasets: the absolute time pattern (ATP) and the relative time pattern (RTP). The machine learning captures the data patterns of the satellite datasets through the data training during the normal operations, which is represented by its time dependent trend. The data monitoring compares the values of the incoming data with the predictions of machine learning algorithm, which can detect any meaningful changes to a dataset above the noise level. If the difference between the value of incoming telemetry and the machine learning prediction are larger than the threshold defined by the standard deviation of datasets, it could indicate the potential anomaly that may need special attention. The application of the machine-learning approach to the Advanced Himawari Imager (AHI) on Japanese Himawari spacecraft series is presented, which has the same configuration as the Advanced Baseline Imager (ABI) on Geostationary Environment Operational Satellite (GOES) R series. The time dependent trends generated by the data-training algorithm are in excellent agreement with the datasets. The standard deviation in the time dependent trend provides a metric for measuring the data quality, which is particularly useful in evaluating the detector quality for both AHI and ABI with multiple detectors in each channel. The machine-learning approach creates the situational awareness capability, and enables engineers to handle the huge data volume that would have been impossible with the existing approach, and it leads to significant advances to more dynamic, proactive, and autonomous spacecraft operations.
Bucher, Dirk; Goaillard, Jean-Marc
2011-01-01
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent. PMID:21708220
Liu, L; Krinsky, V I; Grant, A O; Starmer, C F
1996-01-01
Recent voltage-clamp studies of isolated myocytes have demonstrated widespread occurrence of a transient outward current (I(to)) carried by potassium ions. In the canine ventricle, this current is well developed in epicardial cells but not in endocardial cells. The resultant spatial dispersion of refractoriness is potentially proarrhythmic and may be amplified by channel blockade. The inactivation and recovery time constants of this channel are in excess of several hundred milliseconds, and consequently channel availability is frequency dependent at physiological stimulation rates. When the time constants associated with transitions between different channel conformations are rapid relative to drug binding kinetics, the interactions between drugs and an ion channel can be approximated by a sequence of first-order reactions, in which binding occurs in pulses in response to pulse train stimulation (pulse chemistry). When channel conformation transition time constants do not meet this constraint, analytical characterizations of the drug-channel interaction must then be modified to reflect the channel time-dependent properties. Here we report that the rate and steady-state amount of frequency-dependent inactivation of I(to) are consistent with a generalization of the channel blockade model: channel availability is reduced in a pulsatile exponential pattern as the stimulation frequency is increased, and the rate of reduction is a linear function of the pulse train depolarizing and recovery intervals. I(to) was reduced in the presence of quinidine. After accounting for the use-dependent availability of I(to) channels, we found little evidence of an additional use-dependent component of block after exposure to quinidine, suggesting that quinidine reacts with both open and closed I(to) channels as though the binding site is continuously accessible. The model provides a useful tool for assessing drug-channel interactions when the reaction cannot be continuously monitored.
NASA Astrophysics Data System (ADS)
Colibaba, G. V.
2018-06-01
The additive Matthiessen's rule is the simplest and most widely used rule for the rapid experimental characterization and modeling of the charge carrier mobility. However, the error when using this rule can be higher than 40% and the contribution of the assumed additional scattering channels due to the difference between the experimental data and results calculated based on this rule can be misestimated by several times. In this study, a universal semi-additive equation is proposed for the total mobility and Hall factor, which is applicable to any quantity of scattering mechanisms, where it considers the energy dependence of the relaxation time and the error is 10-20 times lower compared with Matthiessen's rule. Calculations with accuracy of 99% are demonstrated for materials with polar-optical phonon, acoustic phonon via the piezoelectric potential, ionized, and neutral impurity scattering. The proposed method is extended to the deformation potential, dislocation, localized defect, alloy potential, and dipole scattering, for nondegenerate and partially degenerate materials.
Plötner, Jürgen; Tozer, David J; Dreuw, Andreas
2010-08-10
Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.
Effects of Event Knowledge in Processing Verbal Arguments
ERIC Educational Resources Information Center
Bicknell, Klinton; Elman, Jeffrey L.; Hare, Mary; McRae, Ken; Kutas, Marta
2010-01-01
This research tests whether comprehenders use their knowledge of typical events in real time to process verbal arguments. In self-paced reading and event-related brain potential (ERP) experiments, we used materials in which the likelihood of a specific patient noun ("brakes" or "spelling") depended on the combination of an agent and verb…
Yield potential of spring-harvested sugar beet depends on autumn planting time
USDA-ARS?s Scientific Manuscript database
Sugar crops grown for biofuel production provide a source of simple sugars that can readily be made into advanced biofuels. In the mild climate of the southeastern USA, sugar beet can be grown as a winter crop, providing growers with an alternative crop. Experiments evaluated autumn planting dates...
ERIC Educational Resources Information Center
Rowley, Tom
Telecommunications technologies have great potential for linking rural homes, schools, businesses, and government. Experts agree that rural development depends on investment in additional telecommunications infrastructure and on local access to the Internet, but getting advanced telecommunications services to rural areas will take time. This…
An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology
NASA Astrophysics Data System (ADS)
Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca
2017-10-01
In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \
Bioassay of the Nucleopolyhedrosis Virus of Neodiprion sertifer (Hymenoptera: Diprionidae)
M.A. Mohamed; J.D. Podgwaite
1982-01-01
Linear regression analysis of probit mortality versus several concentrations of nucleopolyhedrosis virus of Neodiprion sertifer resulted in the equation Y = 2.170 + 0.872X. An LC50 was calculated at 1758 PIB/ml. Also, the incubation time of the virus was dependent on its concentration. Most insect viruses possess the potential...
Design and Analysis of Turbomachinery for Space Applications
NASA Technical Reports Server (NTRS)
Dorney, D.; Garcia, Roberto (Technical Monitor)
2002-01-01
This presentation provides an overview of CORSAIR, a three dimensional computational fluid dynamics software code for the analysis of turbomachinery components available from NASA, and discusses its potential use in the design of these parts. Topics covered include: time-dependent equations of motion, grid topology, turbulence models, boundary conditions, parallel simulations and miscellaneous capabilities.
P300 Latency and the Development of Memory Span.
ERIC Educational Resources Information Center
Howard, Lawrence
The way cognitive, event-related brain potentials (ERPs) can aid in further understanding of memory span change in children is discussed. ERPs are time-dependent changes in electrical activity of the brain (as recorded by scalp electrodes) following the presentation of a physical stimulus through auditory, visual, or somatosensory modalities. The…
NASA Astrophysics Data System (ADS)
Sanyal, Tanmoy; Shell, M. Scott
2016-07-01
Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.
The Great Wall in the CfA survey - Its origin and imprint on the microwave background radiation
NASA Technical Reports Server (NTRS)
Atrio-Barandela, F.; Kashlinsky, A.
1992-01-01
The paper models the evolution of the Great Wall (GW) after recombination and the influence of its time-dependent gravitational potential on the MBR. It is shown that within the framework of the Zel'dovich approximation the (pre)GW region can be treated as an ellipsoid. The GW is approximated as an oblate ellipsoid that started at recombination with an almost spherical shape, but with initial density contrast, delta-i, much smaller than it had to be in the spherical model in order to reach the observed density contrast of beta-f of 5. The resultant delta-i is compatible with the rms value of delta-rho/rho on the GW scale at recombination for models with the n less than 0 power spectrum of the primordial density field. It is shown that the time-dependent potential of the GW will induce a detectable fluctuation in MBR. The possibility of similar structures located at higher redshifts producing measurable and perhaps dominant statistical MBR anisotropies by this effect is also discussed.
Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices
Zarudnyi, Konstantin; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Hudziak, Stephen; Kenyon, Anthony J.
2018-01-01
Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiOx) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks. PMID:29472837
NASA Astrophysics Data System (ADS)
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Posfai, Eszter; Petropoulos, Sophie; de Barros, Flavia Regina Oliveira; Schell, John Paul; Jurisica, Igor; Sandberg, Rickard; Lanner, Fredrik; Rossant, Janet
2017-01-01
The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling. DOI: http://dx.doi.org/10.7554/eLife.22906.001 PMID:28226240
Investigation of self-help oil-spill response techniques and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enderlin, W I; Downing, J P; Enderlin, C W
1992-06-01
The US Coast Guard commissioned Pacific Northwest Laboratory (PNL) to conduct this study of 45 self-help oil-spill response techniques and equipment for oceangoing tankers and inland tank barges to assess the potential effectiveness of the proposed countermeasure categories. This study considers the hypothetical outflow of oil in the case of side damage and bottom damage to single-hull designs. The results will be considered by the Coast Guard in drafting regulations pertaining to the requirement for tanker vessels to carry oil pollution response equipment (i.e., in response to the oil Pollution Act of 1990). PNL's approach to this investigation included: assessingmore » time-dependent oil outflow in the cases of collision and grounding of both tankers and barges; identifying environmental constraints on self-help countermeasure operation; identifying human factor issues, such as crew performance, safety, and training requirements for the self-help countermeasures considered; and assessing each self-help countermeasure with respect to its potential for minimizing oil loss to the environment. Results from the time-dependent oil outflow, environmental limitations, and human factors requirements were input into a simulation model.« less
Two competing species in super-diffusive dynamical regimes
NASA Astrophysics Data System (ADS)
La Cognata, A.; Valenti, D.; Spagnolo, B.; Dubkov, A. A.
2010-09-01
The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative α-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive α-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative noise and additive noise on the dynamics of the two species are studied.
Think spatial: the representation in mental rotation is nonvisual.
Liesefeld, Heinrich R; Zimmer, Hubert D
2013-01-01
For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.
Rassier, D E; MacIntosh, B R
2000-04-01
In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.
Felipe, T.; Braun, D. C.; Birch, A. C.
2018-01-01
Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods. PMID:29670298
Felipe, T; Braun, D C; Birch, A C
2017-01-01
Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods.
NASA Astrophysics Data System (ADS)
Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de
2018-03-01
This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.
An efficient method for quantum transport simulations in the time domain
NASA Astrophysics Data System (ADS)
Wang, Y.; Yam, C.-Y.; Frauenheim, Th.; Chen, G. H.; Niehaus, T. A.
2011-11-01
An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. The density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissipative terms in the equation of motion which are calculated from first principles in the wide band limit. In contrast to earlier ab initio implementations of this formalism, the Hamiltonian is here approximated in the spirit of the density functional based tight-binding (DFTB) method. Results are presented for two prototypical molecular devices and compared to full TDDFT calculations. The temporal profile of the current traces is qualitatively well captured by the DFTB scheme. Steady state currents show considerable variations, both in comparison of approximate and full TDDFT, but also among TDDFT calculations with different basis sets.
NASA Astrophysics Data System (ADS)
Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.
2014-04-01
The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.
Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors.
Arbor, Nicolas; Higueret, Stephane; Elazhar, Halima; Combe, Rodolphe; Meyer, Philippe; Dehaynin, Nicolas; Taupin, Florence; Husson, Daniel
2017-03-07
The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photo-neutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in γ/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.
Spatial-dependence recurrence sample entropy
NASA Astrophysics Data System (ADS)
Pham, Tuan D.; Yan, Hong
2018-03-01
Measuring complexity in terms of the predictability of time series is a major area of research in science and engineering, and its applications are spreading throughout many scientific disciplines, where the analysis of physiological signals is perhaps the most widely reported in literature. Sample entropy is a popular measure for quantifying signal irregularity. However, the sample entropy does not take sequential information, which is inherently useful, into its calculation of sample similarity. Here, we develop a method that is based on the mathematical principle of the sample entropy and enables the capture of sequential information of a time series in the context of spatial dependence provided by the binary-level co-occurrence matrix of a recurrence plot. Experimental results on time-series data of the Lorenz system, physiological signals of gait maturation in healthy children, and gait dynamics in Huntington's disease show the potential of the proposed method.
NASA Astrophysics Data System (ADS)
Bhowmick, Somnath; B, Renjith; Mishra, Manoj K.; Sarma, Manabendra
2012-08-01
Effect of electron correlation on single strand breaks (SSBs) induced by low energy electron (LEE) has been investigated in a fragment excised from a DNA, viz., 2'-deoxycytidine-3'-monophosphate [3'-dCMPH] molecule in gas phase at DFT-B3LYP/6-31+G(d) accuracy level and using local complex potential based time dependent wave packet (LCP-TDWP) approach. The results obtained, in conjunction with our earlier investigation, show the possibility of SSB at very low energy (0.15 eV) where the LEE transfers from π* to σ* resonance state which resembles a SN2 type mechanism. In addition, for the first time, an indication of quantum mechanical tunneling in strand breaking is seen from the highest anionic bound vibrational state (χ5), which may have a substantial role during DNA damage.
Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.
Shelley, M J; Tao, L
2001-01-01
To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.
Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso
2016-12-24
Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.
Do, Tai; Hu, Zheng; Otto, Jean; Rohrbeck, Patricia
2013-09-01
Although suicide is a leading cause of death among new mothers during the postpartum period, there has been limited research on self-harm in the postpartum period and associated risk factors. One potential risk factor for suicidality (completed suicides, suicide attempts, and suicide ideation including thoughts of self harm) during the postpartum period is postpartum depression (PPD). In this study of women who gave birth for the first time between 1 January 2007 and 31 December 2011, 5,267 (9.9% of all who delivered) active component service women and 10,301 (8.2%) dependent spouses received incident PPD diagnoses during the one year postpartum period; 213 (0.4%) service women and 221 (0.2%) dependent spouses were diagnosed with incident suicidality. After adjusting for the effects of other covariates, service women with PPD had 42.2 times the odds to be diagnosed with suicidality in the postpartum period compared to service women without PPD; dependent spouses with PPD had 14.5 times the odds compared to those without PPD. The findings of this report suggest that a history of mental disorders was common among service women and dependent spouses with PPD in the postpartum period, and, in turn, PPD was a strong predictor for suicidality in the postpartum period. These results emphasize the importance of PPD screening during the postpartum period. They also suggest that additional focused screening for suicidal behavior among those already diagnosed with PPD may be warranted.
do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent
2007-02-07
The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.
NASA Astrophysics Data System (ADS)
Levashov, Valentin A.; Morris, James R.; Egami, Takeshi
2012-02-01
Temporal and spatial correlations among the local atomic level shear stresses were studied for a model liquid iron by molecular dynamics simulation [PRL 106,115703]. Integration over time and space of the shear stress correlation function F(r,t) yields viscosity via Green-Kubo relation. The stress correlation function in time and space F(r,t) was Fourier transformed to study the dependence on frequency, E, and wave vector, Q. The results, F(Q,E), showed damped shear stress waves propagating in the liquid for small Q at high and low temperatures. We also observed additional diffuse feature that appears as temperature is reduced below crossover temperature of potential energy landscape at relatively low frequencies at small Q. We suggest that this additional feature might be related to dynamic heterogeneity and boson peaks. We also discuss a relation between the time-scale of the stress-stress correlation function and the alpha-relaxation time of the intermediate self-scattering function S(Q,E).
Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.
Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M
2010-05-01
The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).
Dialyzer Reuse with Peracetic Acid Does Not Impact Patient Mortality
Bond, T. Christopher; Krishnan, Mahesh; Wilson, Steven M.; Mayne, Tracy
2011-01-01
Summary Background and objectives Numerous studies have shown the overall benefits of dialysis filter reuse, including superior biocompatibility and decreased nonbiodegradable medical waste generation, without increased risk of mortality. A recent study reported that dialyzer reprocessing was associated with decreased patient survival; however, it did not control for sources of potential confounding. We sought to determine the effect of dialyzer reprocessing with peracetic acid on patient mortality using contemporary outcomes data and rigorous analytical techniques. Design, setting, participants, & measurements We conducted a series of analyses of hemodialysis patients examining the effects of reuse on mortality using three techniques to control for potential confounding: instrumental variables, propensity-score matching, and time-dependent survival analysis. Results In the instrumental variables analysis, patients at high reuse centers had 16.2 versus 15.9 deaths/100 patient-years in nonreuse centers. In the propensity-score matched analysis, patients with reuse had a lower death rate per 100 patient-years than those without reuse (15.2 versus 15.5). The risk ratios for the time-dependent survival analyses were 0.993 (per percent of sessions with reuse) and 0.995 (per unit of last reuse), respectively. Over the study period, 13.8 million dialyzers were saved, representing 10,000 metric tons of medical waste. Conclusions Despite the large sample size, powered to detect miniscule effects, neither the instrumental variables nor propensity-matched analyses were statistically significant. The time-dependent survival analysis showed a protective effect of reuse. These data are consistent with the preponderance of evidence showing reuse limits medical waste generation without negatively affecting clinical outcomes. PMID:21566107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hyunjin; Bergeron, Eric; Senta, Helena
2010-08-27
Research highlights: {yields} We show for the first time the effect of sanguinarine (SA) on MG63 and SaOS-2 cells. {yields} SA altered osteosarcoma cell viability in a concentration and time dependent manner. {yields} SA induced osteosarcoma cell apoptosis and increased caspase-8 and -9 activities. {yields} SA decreased dose dependently the Bcl-2 protein level only in MG63 cells. {yields} SaOS-2 which are osteoblast-derived, seemed more resistant to SA than MG63. -- Abstract: The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma,more » a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 {mu}mol/L sanguinarine for 4 and 24 h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 {mu}mol/L sanguinarine killed almost 100% of both cell populations within 24 h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1 h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy.« less
Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.
Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M
1991-06-01
An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.
Naito, M; Fuchikami, N; Sasaki, N; Kambara, T
1991-01-01
The dynamic response of the lipid bilayer membrane is studied theoretically using a microscopic model of the membrane. The time courses of membrane potential variations due to monovalent salt stimulation are calculated explicitly under various conditions. A set of equations describing the time evolution of membrane surface potential and diffusion potential is derived and solved numerically. It is shown that a rather simple membrane such as lipid bilayer has functions capable of reproducing the following properties of dynamic response observed in gustatory receptor potential. Initial transient depolarization does not occur under Ringer adaptation but does under water. It appears only for comparatively rapid flows of stimuli, the peak height of transient response is expressed by a power function of the flow rate, and the membrane potential gradually decreases after reaching its peak under long and strong stimulation. The dynamic responses in the present model arise from the differences between the time dependences in the surface potential phi s and the diffusion potential phi d across a membrane. Under salt stimulation phi d cannot immediately follow the variation in phi s because of the delay due to the charging up of membrane capacitance. It is suggested that lipid bilayer in the apical membrane is the most probable agency producing the initial phasic response to the stimulation. PMID:1873461
Klingemann, Justyna Iwona
2012-01-01
The study provides an in-depth qualitative understanding of the maintenance stage when recovering from alcohol dependence with a focus on the broader social context of change of addictive behaviour. It explores the recovery as a subjective process within the abstinence-oriented Polish treatment system organized on the basis of the Minnesota model and is probes for group differences between treated and non-treated populations. The study is based on qualitative data from a media-recruited sample of 29 treated and non-treated former alcohol dependents (ICD-10) in Warsaw/Poland 2006/2007. They reported a recovery time of at least 2 years (M(recovery) = 11, SD = 9). In-depth, semi-structured interviews were analysed according to the problem-centred interview method using ATLAS.ti software. A wide range of maintenance strategies potentially contributing to the stabilization of recovery from alcohol dependence was identified. However, from the respondents' point of view, the change process is contingent upon the subjective weighing of specific maintenance factors and the importance attributed to their interplay. This includes time management as well as one's ability to invest available resources and strengths in shaping and pursuing personal goals. More commonalities than differences can be observed between groups during the maintenance stage, regardless of respondents' type of the pathway out of addiction. However, when confronting professional concepts of recovery with subjective accounts, only a subgroup conforms to the invasive, potentially normative definitions of recovery, while others do not link their recovery with identity transformation.
The effect of mineral reactions and microstructure on long-term experimental fault zone weakening
NASA Astrophysics Data System (ADS)
Niemeijer, Andre R.
2017-04-01
The frictional properties of fault rocks and, in particular, the velocity dependence of friction and associated rate-and-state parameters, are thought to exert an important control on earthquake nucleation and propagation. Experimental results obtained from natural fault gouges typically show that the velocity dependence of friction is a function of both temperature and sliding velocity, indicating that thermally activated time-dependent processes are fundamentally responsible for causing velocity-weakening behavior in silicate-bearing gouges at earthquake "nucleation velocities" (˜ 1 μm/s) and temperatures around 150-300 ˚ C. In addition, slow experiments at velocities of 10s of nm/s using three different fault gouge types all exhibit major weakening with ongoing displacement at constant velocity. Microstructural and microanalytical analyses demonstrate that the development of a weak through-going foliation as well as the (shear-enhanced) formation of new, weak minerals such as talc or muscovite occurred, which both presumably contributed to the observed weakening. Importantly, the slow deformation rates allow for time-dependent viscous deformation (e.g. pressure solution) to occur at low shear stress within the hard, frictionally strong minerals such as quartz. The results highlight the importance of the chemical effects of fluids and microstructural development on long-term fault weakening under slow loading conditions. The resultant frictionally weak fault gouges allow strain to remain localized, yield a strong permeability anisotropy and provide a barrier for rupture propagation. Along-fault variations in the chemical conditions thus have the potential to produce strong contrasts in frictional properties, which can have a large effect on potential earthquake rupture size and style.
Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird
Dunn, Jenny C.; Hamer, Keith C.; Benton, Tim G.
2015-01-01
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success. PMID:26431173
Size-Dependent Realized Fecundity in Two Lepidopteran Capital Breeders.
Rhainds, Marc
2015-08-01
Body size is correlated with potential fecundity in capital breeders, but size-dependent functions of realized fecundity may be impacted by reproductive losses due to mating failure or oviposition time limitations (number of eggs remaining in the abdomen of females at death). Post-mortem assessment of adults collected in the field after natural death represents a sound approach to quantify how body size affects realized fecundity. This approach is used here for two Lepidoptera for which replicated field data are available, the spruce budworm Choristoneura fumiferana Clemens (Tortricidae) and bagworm Metisa plana Walker (Psychidae). Dead female budworms were collected on drop trays placed beneath tree canopies at four locations. Most females had mated during their lifetime (presence of a spermatophore in spermatheca), and body size did not influence mating failure. Oviposition time limitation was the major factor restricting realized fecundity of females, and its incidence was independent of body size at three of the four locations. Both realized and potential fecundity of female budworms increased linearly with body size. Female bagworms are neotenous and reproduce within a bag; hence, parameters related to realized fecundity are unusually tractable. For each of five consecutive generations of bagworms, mating probability increased with body size, so that virgin-dead females were predominantly small, least fecund individuals. The implication of size-dependent reproductive losses are compared for the two organisms in terms of life history theory and population dynamics, with an emphasis on how differential female motility affects the evolutionary and ecological consequences of size-dependent realized fecundity. © Crown copyright 2015.
Qaddoumi, Mohamed; Lee, Vincent H L
2004-07-01
To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.