Sample records for time dependent pressure

  1. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  2. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  3. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-03-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  4. A New Method for Determining the Equation of State of Aluminized Explosive

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Qing; Nie, Jian-Xin; Guo, Xue-Yong; Wang, Qiu-Shi; Ou, Zhuo-Cheng; Jiao, Qing-Jie

    2015-01-01

    The time-dependent Jones—Wilkins—Lee equation of state (JWL-EOS) is applied to describe detonation state products for aluminized explosives. To obtain the time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydrocode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.

  5. Combined Effect of Piezoviscous Dependency and Non-Newtonian Couple Stress on Squeeze-Film Porous Annular Plate

    NASA Astrophysics Data System (ADS)

    Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.

  6. Molecular dynamics simulations of propane in slit shaped silica nano-pores: direct comparison with quasielastic neutron scattering experiments.

    PubMed

    Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David

    2017-12-13

    Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.

  7. Does the Arrhenius Temperature Dependence of the Johari-Goldstein Relaxation Persist above Tg?

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Roland, C. M.; Pawlus, S.; Zioło, J.; Ngai, K. L.

    2003-09-01

    Dielectric spectra of the polyalcohols sorbitol and xylitol were measured under isobaric pressures up to 1.8GPa. At elevated pressure, the separation between the α and β relaxation peaks is larger than at ambient pressure, enabling the β relaxation times to be unambiguously determined. Taking advantage of this, we show that the Arrhenius temperature dependence of the β relaxation time does not persist for temperatures above Tg. This result, consistent with inferences drawn from dielectric relaxation measurements at ambient pressure, is obtained directly, without the usual problematic deconvolution the β and α processes.

  8. Time and space variability of spectral estimates of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  9. Estimating Fluctuating Pressures From Distorted Measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1994-01-01

    Two algorithms extract estimates of time-dependent input (upstream) pressures from outputs of pressure sensors located at downstream ends of pneumatic tubes. Effect deconvolutions that account for distoring effects of tube upon pressure signal. Distortion of pressure measurements by pneumatic tubes also discussed in "Distortion of Pressure Signals in Pneumatic Tubes," (ARC-12868). Varying input pressure estimated from measured time-varying output pressure by one of two deconvolution algorithms that take account of measurement noise. Algorithms based on minimum-covariance (Kalman filtering) theory.

  10. The ignition delay times of hydrogen/silan/air mixtures at low temperatures

    NASA Astrophysics Data System (ADS)

    Tropin, D. A.; Bochenkov, E. S.; Fedorov, A. V.

    2018-03-01

    In the paper the ignition delay times of hydrogen-silane-air mixtures at low pressures from 0.4 atm to 1 atm and mixture temperatures from 300 K to 900 K using the detailed kinetic mechanisms were calculated. It was shown that dependencies of ignition delay time on temperature are non-monotonic. In these dependences a region of "negative temperature coefficient" is presented. The effect of the mixture pressure and the silane concentration in the mixture on the length of this region was revealed. It was shown that the increasing of the silane concentration in the mixture, as well as the increasing the mixture pressure, leads to increasing of the "negative temperature coefficient" region length.

  11. High-pressure cell for terahertz time-domain spectroscopy.

    PubMed

    Zhang, Wei; Nickel, Daniel; Mittleman, Daniel

    2017-02-06

    We introduce a sample cell that can be used for pressure-dependent terahertz time-domain spectroscopy. Compared with traditional far-IR spectroscopy with a diamond anvil cell, the larger aperture permits measurements down to much lower frequencies as low as 3.3 cm-1 (0.1 THz), giving access to new spectroscopic results. The pressure tuning range reaches up to 34.4 MPa, while the temperature range is from 100 to 473 K. With this large range of tuning parameters, we are able to map out phase diagrams of materials based on their THz spectrum, as well as to track the changing of the THz spectrum within a single phase as a function of temperature and pressure. Pressure-dependent THz-TDS results for nitrogen and R-camphor are shown as an example.

  12. Shock temperatures in anorthite glass

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.; Mitchell, A. C.

    1983-01-01

    Temperatures of CaAl2Si2O8 (anorthite glass) shocked to pressures between 48 and 117 GPa were measured in the range from 2500 to 5600 K, using optical pyrometry techniques. The pressure dependence of the shock temperatures deviates significantly from predictions based on a single high pressure phase. At least three phase transitions, at pressures of about 55, 85, and 100 GPa and with transition energies of about 0.5 MJ/kg each (approximately 1.5 MJ/kg total) are required to explain the shock temperature data. The phase transition at 100 GPa can possibly be identified with the stishovite melting transition. Theoretical models of the time dependence of the thermal radiation from the shocked anorthite based on the geometry of the experiment and the absorptive properties of the shocked material yields good agreement with observations, indicating that it is not necessary to invoke intrinsic time dependences to explain the data in many cases.

  13. Broadband Noise Predictions for an Airfoil in a Turbulent Stream

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.; Mish, P. F.; Devenport, W. J.

    2003-01-01

    Loading noise is predicted from unsteady surface pressure measurements on a NACA 0015 airfoil immersed in grid-generated turbulence. The time-dependent pressure is obtained from an array of synchronized transducers on the airfoil surface. Far field noise is predicted by using the time-dependent surface pressure as input to Formulation 1A of Farassat, a solution of the Ffowcs Williams - Hawkings equation. Acoustic predictions are performed with and without the effects of airfoil surface curvature. Scaling rules are developed to compare the present far field predictions with acoustic measurements that are available in the literature.

  14. DaDyn-RS: a tool for the time-dependent simulation of damage, fluid pressure and long-term instability in alpine rock slopes

    NASA Astrophysics Data System (ADS)

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.

    2017-04-01

    Large mountain slopes in alpine environments undergo a complex long-term evolution from glacial to postglacial environments, through a transient period of paraglacial readjustment. During and after this transition, the interplay among rock strength, topographic relief, and morpho-climatic drivers varying in space and time can lead to the development of different types of slope instability, from sudden catastrophic failures to large, slow, long-lasting yet potentially catastrophic rockslides. Understanding the long-term evolution of large rock slopes requires accounting for the time-dependence of deglaciation unloading, permeability and fluid pressure distribution, displacements and failure mechanisms. In turn, this is related to a convincing description of rock mass damage processes and to their transition from a sub-critical (progressive failure) to a critical (catastrophic failure) character. Although mechanisms of damage occurrence in rocks have been extensively studied in the laboratory, the description of time-dependent damage under gravitational load and variable external actions remains difficult. In this perspective, starting from a time-dependent model conceived for laboratory rock deformation, we developed Dadyn-RS, a tool to simulate the long-term evolution of real, large rock slopes. Dadyn-RS is a 2D, FEM model programmed in Matlab, which combines damage and time-to-failure laws to reproduce both diffused damage and strain localization meanwhile tracking long-term slope displacements from primary to tertiary creep stages. We implemented in the model the ability to account for rock mass heterogeneity and property upscaling, time-dependent deglaciation, as well as damage-dependent fluid pressure occurrence and stress corrosion. We first tested DaDyn-RS performance on synthetic case studies, to investigate the effect of the different model parameters on the mechanisms and timing of long-term slope behavior. The model reproduces complex interactions between topography, deglaciation rate, mechanical properties and fluid pressure occurrence, resulting in different kinematics, damage patterns and timing of slope instabilities. We assessed the role of groundwater on slope damage and deformation mechanisms by introducing time-dependent pressure cycling within simulations. Then, we applied DaDyn-RS to real slopes located in the Italian Central Alps, affected by an active rockslide and a Deep Seated Gravitational Slope Deformation, respectively. From Last Glacial Maximum to present conditions, our model allows reproducing in an explicitly time-dependent framework the progressive development of damage-induced permeability, strain localization and shear band differentiation at different times between the Lateglacial period and the Mid-Holocene climatic transition. Different mechanisms and timings characterize different styles of slope deformations, consistently with available dating constraints. DaDyn-RS is able to account for different long-term slope dynamics, from slow creep to the delayed transition to fast-moving rockslides.

  15. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship

    PubMed Central

    2013-01-01

    Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818

  16. Pressure Dependence of the Superfluid Fraction in 3He-A1

    NASA Astrophysics Data System (ADS)

    Bastea, M.; Okuda, Y.; Kojima, H.

    1995-03-01

    The superfluid fraction of 3He-A1 was determined in the Ginzburg-Landau (GL) region as a function of pressure between 10 and 30 bars from the measured spin-entropy wave velocity. The pressure dependence of the parameter β24, proportional to the fourth order coefficients of GL free energy expansion, was measured for the first time. At low pressures the parameter approaches the weak coupling limit in agreement with the theory of Sauls and Serene. The extracted strong coupling corrections to β24 and β5 at higher pressures are also consistent with the theory.

  17. Cellular Structures in the Flow Over the Flap of a Two-Element Wing

    NASA Technical Reports Server (NTRS)

    Yon, Steven A.; Katz, Joseph

    1997-01-01

    Flow visualization information and time dependent pressure coefficients were recorded for the flow over a two-element wing. The investigation focused on the stall onset; particularly at a condition where the flow is attached on the main element but separated on the flap. At this condition, spanwise separation cells were visible in the flow over the flap, and time dependent pressure data was measured along the centerline of the separation cell. The flow visualizations indicated that the spanwise occurrence of the separation cells depends on the flap (and not wing) aspect ratio.

  18. Combined effect of Piezo-viscous dependency and non- Newtonian couple stresses in Annular Plates Squeeze-Film characteristics

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Savitramma, G.; Salma, A.; Noorjahan

    2018-04-01

    In this article, the theoretical analysis of the combined study of non-Newtonian couple stresses with piezo-viscous dependency for annular plates squeeze film bearings have been carried out, with help of stokes micro continuum theory along with the exponential variation of viscosity with pressure. An approximate analytical solution is found using a small perturbation method. The solution for pressure and load capacity with distinct values of viscosity-pressure parameter are calculated and compared with iso-viscous couple stress and Newtonian lubricants and the results reveals that the effect of couple stresses and pressure-dependent viscosity variation enhances the load-carrying capacity and lengthens the squeeze film time.

  19. Viscoelastic modeling of deformation and gravity changes induced by pressurized magmatic sources

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda

    2018-05-01

    Gravity and height changes, which reflect magma accumulation in subsurface chambers, are evaluated using analytical and numerical models in order to investigate their relationships and temporal evolutions. The analysis focuses mainly on the exploration of the time-dependent response of gravity and height changes to the pressurization of ellipsoidal magmatic chambers in viscoelastic media. Firstly, the validation of the numerical Finite Element results is performed by comparison with analytical solutions, which are devised for a simple spherical source embedded in a homogeneous viscoelastic half-space medium. Then, the effect of several model parameters on time-dependent height and gravity changes is investigated thanks to the flexibility of the numerical method in handling complex configurations. Both homogeneous and viscoelastic shell models reveal significantly different amplitudes in the ratio between gravity and height changes depending on geometry factors and medium rheology. The results show that these factors also influence the relaxation characteristic times of the investigated geophysical changes. Overall, these temporal patterns are compatible with time-dependent height and gravity changes observed on Etna volcano during the 1994-1997 inflation period. By modeling the viscoelastic response of a pressurized prolate magmatic source, a general agreement between computed and observed geophysical variations is achieved.

  20. Effect of pressure on decoupling of ionic conductivity from structural relaxation in hydrated protic ionic liquid, lidocaine HCl.

    PubMed

    Swiety-Pospiech, A; Wojnarowska, Z; Hensel-Bielowka, S; Pionteck, J; Paluch, M

    2013-05-28

    Broadband dielectric spectroscopy and pressure-temperature-volume methods are employed to investigate the effect of hydrostatic pressure on the conductivity relaxation time (τσ), both in the supercooled and glassy states of protic ionic liquid lidocaine hydrochloride monohydrate. Due to the decoupling between the ion conductivity and structural dynamics, the characteristic change in behavior of τσ(T) dependence, i.e., from Vogel-Fulcher-Tammann-like to Arrhenius-like behavior, is observed. This crossover is a manifestation of the liquid-glass transition of lidocaine HCl. The similar pattern of behavior was also found for pressure dependent isothermal measurements. However, in this case the transition from one simple volume activated law to another was noticed. Additionally, by analyzing the changes of conductivity relaxation times during isothermal densification of the sample, it was found that compression enhances the decoupling of electrical conductivity from the structural relaxation. Herein, we propose a new parameter, dlogRτ∕dP, to quantify the pressure sensitivity of the decoupling phenomenon. Finally, the temperature and volume dependence of τσ is discussed in terms of thermodynamic scaling concept.

  1. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.

    PubMed

    Wu, J Z; Herzog, W

    2000-03-01

    Experimental evidence suggests that cells are extremely sensitive to their mechanical environment and react directly to mechanical stimuli. At present, it is technically difficult to measure fluid pressure, stress, and strain in cells, and to determine the time-dependent deformation of chondrocytes. For this reason, there are no data in the published literature that show the dynamic behavior of chondrocytes in articular cartilage. Similarly, the dynamic chondrocyte mechanics have not been calculated using theoretical models that account for the influence of cell volumetric fraction on cartilage mechanical properties. In the present investigation, the location- and time-dependent stress-strain state and fluid pressure distribution in chondrocytes in unconfined compression tests were simulated numerically using a finite element method. The technique involved two basic steps: first, cartilage was approximated as a macroscopically homogenized material and the mechanical behavior of cartilage was obtained using the homogenized model; second, the solution of the time-dependent displacements and fluid pressure fields of the homogenized model was used as the time-dependent boundary conditions for a microscopic submodel to obtain average location- and time-dependent mechanical behavior of cells. Cells and extracellular matrix were assumed to be biphasic materials composed of a fluid phase and a hyperelastic solid phase. The hydraulic permeability was assumed to be deformation dependent and the analysis was performed using a finite deformation approach. Numerical tests were made using configurations similar to those of experiments described in the literature. Our simulations show that the mechanical response of chondrocytes to cartilage loading depends on time, fluid boundary conditions, and the locations of the cells within the specimen. The present results are the first to suggest that chondrocyte deformation in a stress-relaxation type test may exceed the imposed system deformation by a factor of 3-4, that chondrocyte deformations are highly dynamic and do not reach a steady state within about 20 min of steady compression (in an unconfined test), and that cell deformations are very much location dependent.

  2. Pressure-dependent refractive indices of gases by THz time-domain spectroscopy.

    PubMed

    Sang, Bark Hyeon; Jeon, Tea-In

    2016-12-12

    Noncontact terahertz time-domain spectroscopy was employed to measure pressure-dependent refractive indices of gases such as helium (He), argon (Ar), krypton (Kr), oxygen (O2), nitrogen (N2), methane (CH4), and carbon dioxide (CO2). The refractive indices of these gases scaled linearly with pressure, for pressures in the 55-3,750 torr range. At the highest pressure, the refractive indices ((n-1) x 106) of He and CO2 were 170 and 2,390, respectively. The refractive index of CO2 was 14.1-fold higher than that of He, owing to the stronger polarizability of CO2. Although the studied gases differed in terms of their molecular structure, their refractive indices were strongly determined by polarizability. The measured refractive indices agreed well with the theoretical calculations.

  3. Time-dependent local and average structural evolution of δ-phase 239Pu-Ga alloys

    DOE PAGES

    Smith, Alice I.; Page, Katharine L.; Siewenie, Joan E.; ...

    2016-08-05

    Here, plutonium metal is a very unusual element, exhibiting six allotropes at ambient pressure, between room temperature and its melting point, a complicated phase diagram, and a complex electronic structure. Many phases of plutonium metal are unstable with changes in temperature, pressure, chemical additions, or time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long periods of time [1]. This paper presents a time-dependent neutron total scattering study of the local and average structure of naturally aging δ-phase 239Pu-Ga alloys, together with preliminary results on neutron tomography characterization.

  4. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  5. Methane oxidation behind reflected shock waves: Ignition delay times measured by pressure and flame band emission

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Robertson, T. F.

    1986-01-01

    Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.

  6. Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.

    2014-12-01

    We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the compaction and permeability decreases observed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.SAND2014-16586A

  7. Influence of hydrostatic pressure on the switching time and switching coefficient of NiZnCo ferrites

    NASA Astrophysics Data System (ADS)

    Romanowski, S.; Goldberg, S.

    1980-04-01

    Results of the investigation of the effect of hydrostatic pressure on the pulse performance of NiZnCo ferrites with square hysteresis loop are given. It is stated that with increasing hydrostatic pressure, the threshold field strength increases, the switching coefficient value decreases, while the switching time value may increase monotonically or reach a maximum depending on the magnetizing field strength.

  8. Endothermic decompositions of inorganic monocrystalline thin plates. I. Shape of polycrystalline product domains versus constraints and time

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Comperat, M.; Lallemant, M.; Watelle, G.

    1980-03-01

    Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with varying crystallographic orientations. The morphological and kinetic features of the trihydrate domains were examined. Different shapes were observed: polygons (parallelograms, hexagons) and ellipses; their conditions of occurrence are reported in the (P, T) diagram. At first (for about 2 min), the ratio of the long to the short axes of elliptical domains changes with time; these subsequently develop homothetically and the rate ratio is then only pressure dependent. Temperature influence is inferred from that of pressure. Polygonal shapes are time dependent and result in ellipses. So far, no model can be put forward. Yet, qualitatively, the polygonal shape of a domain may be explained by the prevalence of the crystal arrangement and the elliptical shape by that of the solid tensorial properties. The influence of those factors might be modulated versus pressure, temperature, interface extent, and, thus, time.

  9. The dependence of the sporicidal effects on the power and pressure of RF-generated plasma processes.

    PubMed

    Lassen, Klaus S; Nordby, Bolette; Grün, Reinar

    2005-07-01

    The sporicidal effect of 20 different radio-frequency plasma processes produced by combining five different gas mixtures [O(2), Ar/H(2) (50/50%), Ar/H(2) (5/95%), O(2)/H(2) (50/50%), O(2)/H(2) (95/5%)] with four power/pressure settings were tested. Sporicidal effects of oxygen-containing plasmas were dependent on power at low pressure settings but not at high pressure settings. In the absence of oxygen no power dependency was observed at either high or low pressure settings. Survivor curves obtained with the use of nonoxygen plasmas typically had a tailing tendency. Only a mixture-optimized Ar/H(2) (15/85%) plasma process was not encumbered by tailing, and produced a decimal reduction time (D value) below 2 min for Bacillus stearothermophilus spores. Scanning electron microscopy showed that a CF(4)/O(2) plasma did more damage to the substrate than the 15/85% Ar/H(2) plasma. The present results indicate that UV irradiation inactivation is swift and power and pressure independent. Additionally, it is produced at low energy. However, it is not complete. Inactivation through etching is highly power and pressure dependent; finally, inactivation by photodesorption is moderately power and pressure dependent. A sterilization process relying on this mechanism is very advantageous because it combines a highly sporicidal effect with low substrate damage. Copyright 2005 Wiley Periodicals, Inc.

  10. The prediction of the noise of supersonic propellers in time domain - New theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1983-01-01

    In this paper, a new formula for the prediction of the noise of supersonic propellers is derived in the time domain which is superior to the previous formulations in several respects. The governing equation is based on the Ffowcs Williams-Hawkings (FW-H) equation with the thickness source term replaced by an equivalent loading source term derived by Isom (1975). Using some results of generalized function theory and simple four-dimensional space-time geometry, the formal solution of the governing equation is manipulated to a form requiring only the knowledge of blade surface pressure data and geometry. The final form of the main result of this paper consists of some surface and line integrals. The surface integrals depend on the surface pressure, time rate of change of surface pressure, and surface pressure gradient. These integrals also involve blade surface curvatures. The line integrals which depend on local surface pressure are along the trailing edge, the shock traces on the blade, and the perimeter of the airfoil section at the inner radius of the blade. The new formulation is for the full blade surface and does not involve any numerical observer time differentiation. The method of implementation on a computer for numerical work is also discussed.

  11. Tracking a Solar Wind Dynamic Pressure Pulses' Impact Through the Magnetosphere Using the Heliophysics System Observatory

    NASA Astrophysics Data System (ADS)

    Vidal-Luengo, S.; Moldwin, M.

    2017-12-01

    During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.

  12. Relaxation limit of a compressible gas-liquid model with well-reservoir interaction

    NASA Astrophysics Data System (ADS)

    Solem, Susanne; Evje, Steinar

    2017-02-01

    This paper deals with the relaxation limit of a two-phase compressible gas-liquid model which contains a pressure-dependent well-reservoir interaction term of the form q (P_r - P) where q>0 is the rate of the pressure-dependent influx/efflux of gas, P is the (unknown) wellbore pressure, and P_r is the (known) surrounding reservoir pressure. The model can be used to study gas-kick flow scenarios relevant for various wellbore operations. One extreme case is when the wellbore pressure P is largely dictated by the surrounding reservoir pressure P_r. Formally, this model is obtained by deriving the limiting system as the relaxation parameter q in the full model tends to infinity. The main purpose of this work is to understand to what extent this case can be represented by a well-defined mathematical model for a fixed global time T>0. Well-posedness of the full model has been obtained in Evje (SIAM J Math Anal 45(2):518-546, 2013). However, as the estimates for the full model are dependent on the relaxation parameter q, new estimates must be obtained for the equilibrium model to ensure existence of solutions. By means of appropriate a priori assumptions and some restrictions on the model parameters, necessary estimates (low order and higher order) are obtained. These estimates that depend on the global time T together with smallness assumptions on the initial data are then used to obtain existence of solutions in suitable Sobolev spaces.

  13. Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Amano, Ryoichi Samuel; Lee, Eng Kwong

    A 1.829m (6ft) diameter industrial large flow-rate axial fan operated at 1770rpm was studied experimentally in laboratory conditions. The flow characteristics on the fan blade surfaces were investigated by measuring the pressure distributions on the blade suction and pressure surfaces and the results were discussed by comparing with analytical formulations and CFD. Flow visualizations were also performed to validate the flow characteristics near the blade surface and it was demonstrated that the flow characteristics near the fan blade surface were dominated by the centrifugal force of the fan rotation which resulted in strong three-dimensional flows. The time-dependent pressure measurement showed that the pressure oscillations on the fan blade were significantly dominated by vortex shedding from the fan blades. It was further demonstrated that the pressure distributions during the fan start-up were highly unsteady, and the main frequency variation of the static pressure was much smaller than the fan rotational frequency. The time-dependent pressure measurement when the fan operated at a constant speed showed that the magnitude of the blade pressure variation with time and the main variation frequency was much smaller than the fan rotational frequency. The pressure variations that were related to the vortex shedding were slightly smaller than the fan rotational frequency. The strain gages were used to measure the blade stress and the results were compared with FEA results.

  14. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  16. Explosion characteristics of LPG-air mixtures in closed vessels.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, D

    2009-06-15

    The experimental study of explosive combustion of LPG (liquefied petroleum gas)-air mixtures at ambient initial temperature was performed in two closed vessels with central ignition, at various total initial pressures within 0.3-1.3bar and various fuel/air ratios, within the flammability limits. The transient pressure-time records were used to determine several explosion characteristics of LPG-air: the peak explosion pressure, the explosion time (the time necessary to reach the peak pressure), the maximum rate of pressure rise and the severity factor. All explosion parameters are strongly dependent on initial pressure of fuel-air mixture and on fuel/air ratio. The explosion characteristics of LPG-air mixtures are discussed in comparison with data referring to the main components of LPG: propane and butane, obtained in identical conditions.

  17. Investigating the potential of Bacillus subtilis alpha-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processes.

    PubMed

    Grauwet, Tara; Van der Plancken, Iesel; Vervoort, Liesbeth; Hendrickx, Marc E; Van Loey, Ann

    2009-01-01

    The potential of Bacillus subtilis alpha-amylase (BSA) as a pressure-temperature-time indicator (pTTI) for high pressure pasteurization processing (400-600 MPa; T(i) 10-40 degrees C; 1-15 min) was investigated. A stepwise approach was followed for the development of an enzyme-based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA-MES 0.05 M pH 5.0) was kinetically calibrated under isobaric-isothermal conditions. Time dependent changes in activity could be modeled best by a first-order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T-dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two-sectional planes of a vertical, single vessel system. (c) 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009.

  18. An efficient method for unfolding kinetic pressure driven VISAR data

    DOE PAGES

    Mark Harry Hess; Peterson, Kyle; Harvey-Thompson, Adam James

    2015-08-18

    Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys.43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater.29, 181 (1998)] or a magnetic pressure [Lemkeet al., Intl J. Impact Eng.38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide amore » precise measurement of a flyer’s surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. As a result, the purpose of this paper is to elucidate a new method for quickly and reliably unfolding VISAR data.« less

  19. Framework flexibility of ZIF-8 under liquid intrusion: discovering time-dependent mechanical response and structural relaxation.

    PubMed

    Sun, Yueting; Li, Yibing; Tan, Jin-Chong

    2018-04-18

    The structural flexibility of a topical zeolitic imidazolate framework with sodalite topology, termed ZIF-8, has been elucidated through liquid intrusion under moderate pressures (i.e. tens of MPa). By tracking the evolution of water intrusion pressure under cyclic conditions, we interrogate the role of the gate-opening mechanism controlling the size variation of the pore channels of ZIF-8. Interestingly, we demonstrate that its channel deformation is recoverable through structural relaxation over time, hence revealing the viscoelastic mechanical response in ZIF-8. We propose a simple approach employing a glycerol-water solution mixture, which can significantly enhance the sensitivity of intrusion pressure for the detection of structural deformation in ZIF-8. By leveraging the time-dependent gate-opening phenomenon in ZIF-8, we achieved a notable improvement (50%) in energy dissipation during multicycle mechanical deformation experiments.

  20. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexey B.; Antman, Stuart S.

    2017-12-01

    This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

  1. Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro.

    PubMed

    Li, Fei-yan; Xie, Xi-sheng; Fan, Jun-ming; Li, Zi; Wu, Jiang; Zheng, Rong

    2009-09-01

    The effects of hydraulic pressure on renal tubular epithelial-myofibroblast transdifferentiation (TEMT) were investigated. We applied hydraulic pressure (50 cm H2O) to normal rat kidney tubular epithelial cells (NRK52E) for different durations. Furthermore, different pressure magnitudes were applied to cells. The morphology, cytoskeleton, and expression of myofibroblastic marker protein and transforming growth factor-beta1 (TGF-beta1) of NRK52E cells were examined. Disorganized actin filaments and formation of curling clusters in actin were seen in the cytoplasm of pressurized cells. We verified that de novo expression of alpha-smooth muscle actin induced by pressure, which indicated TEMT, was dependent on both the magnitude and duration of pressure. TGF-beta1 expression was significantly upregulated under certain conditions, which implies that the induction of TEMT by hydraulic pressure is related with TGF-beta1. We illustrate for the first time that hydraulic pressure can induce TEMT in a pressure magnitude- and duration-dependent manner, and that this TEMT is accompanied by TGF-beta1 secretion.

  2. The effects of time pressure on chess skill: an investigation into fast and slow processes underlying expert performance.

    PubMed

    van Harreveld, Frenk; Wagenmakers, Eric-Jan; van der Maas, Han L J

    2007-09-01

    The ability to play chess is generally assumed to depend on two types of processes: slow processes such as search, and fast processes such as pattern recognition. It has been argued that an increase in time pressure during a game selectively hinders the ability to engage in slow processes. Here we study the effect of time pressure on expert chess performance in order to test the hypothesis that compared to weak players, strong players depend relatively heavily on fast processes. In the first study we examine the performance of players of various strengths at an online chess server, for games played under different time controls. In a second study we examine the effect of time controls on performance in world championship matches. Both studies consistently show that skill differences between players become less predictive of the game outcome as the time controls are tightened. This result indicates that slow processes are at least as important for strong players as they are for weak players. Our findings pose a challenge for current theorizing in the field of expertise and chess.

  3. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  4. Globular cluster formation - The fossil record

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Lin, Douglas N. C.

    1992-01-01

    Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.

  5. Graphene Squeeze-Film Pressure Sensors.

    PubMed

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  6. Buoyancy Suppression in Gases at High Temperatures

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Gokoglu, Suleyman A.

    2005-01-01

    The computational fluid dynamics code FLUENT was used to study Rayleigh instability at large temperature differences in a sealed gas-filled enclosure with a cold top surface and a heated bottom wall (Benard problem). Both steady state and transient calculations were performed. The results define the boundaries of instability in a system depending on the geometry, temperature and pressure. It is shown that regardless of how fast the bottom-wall temperature can be ramped up to minimize the time spent in the unstable region of fluid motion, the eventual stability of the system depends on the prevailing final pressure after steady state has been reached. Calculations also show that the final state of the system can be different depending on whether the result is obtained via a steady-state solution or is reached by transient calculations. Changes in the slope of the pressure-versus-time curve are found to be a very good indicator of changes in the flow patterns in the system.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Mark Harry; Hutsel, Brian Thomas; Jennings, Christopher Ashley

    Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infermore » that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.« less

  8. Pressure induced ageing of polymers

    NASA Technical Reports Server (NTRS)

    Emri, I.; Knauss, W. G.

    1988-01-01

    The nonlinearly viscoelastic response of an amorphous homopolymer is considered under aspects of time dependent free volume behavior. In contrast to linearly viscoelastic solids, this model couples shear and volume deformation through a shift function which influences the rate of molecular relaxation or creep. Sample computations produce all those qualitative features one observes normally in uniaxial tension including the rate dependent formation of a yield point as a consequence of the history of an imposed pressure.

  9. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    NASA Astrophysics Data System (ADS)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  10. Damage Recovery in Carrara Marble

    NASA Astrophysics Data System (ADS)

    Meyer, G.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.

    2017-12-01

    We investigate the effect of confining pressure on the recovery of elastic wave velocities following deformation episodes in Carrara Marble. Dry Carrara Marble cores were deformed in the ductile regime (Pc = 40 MPa) up to 3% axial strain. After deformation, samples were held at constant stress conditions for extended periods of time (5-8 days) whilst continuously recording volumetric strain and seismic wave velocities. The velocity data were used to invert for microcrack densities using an effective medium approach. Finally, thin sections were produced to characterise the microstructures after recovery. During deformation, elastic wave speeds decreased with increasing strain by more than 30% of the value for the intact rock due to the formation of distributed microcracks. Under constant hydrostatic pressure, wave speeds progressively recovered 12-90% of the initial drop, depending on the applied confining pressure. In contrast, the strain recovery (deformation towards the initial shape of the sample) during holding time is negligible (of the order of 10-4). Tests performed under nonhydrostatic (triaxial) stress conditions during recovery showed some time-dependent creep deformation together with very significant recovery of wave velocities. The recovery is interpreted as a progressive reduction in crack density within the sample. The process is highly dependent on confining pressure, which favours it. We propose that the driving process for wave speed recovery is the time-dependent increase of contact area between crack surfaces due to the formation and growth of asperity contacts. We develop a micromechanical model for crack closure driven by asperity creep, which shows a good fit to the experimental data. Most of the recovery is achieved in the initial few hours, implying it is the fastest recovery or healing process, and thus occurs prior to any chemical healing or mineral precipitation. Our data corroborate field observations of post-seismic fault behavior.

  11. Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)

    NASA Astrophysics Data System (ADS)

    Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander

    2016-04-01

    Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of kimberlite and basaltic magmas at the T, P - parameters of the Earth's crust and upper mantle. The Russian Foundation for Basic Research (project 15-05-01318) and the Russian Science Foundation (project 14-27-00054) are acknowledged for the financial support. [1] Persikov, E.S. & Bukhtiyarov, P.G. (2009) Russian Geology & Geophysics, 50, No 12, 1079-1090.

  12. Highly Parallel Alternating Directions Algorithm for Time Dependent Problems

    NASA Astrophysics Data System (ADS)

    Ganzha, M.; Georgiev, K.; Lirkov, I.; Margenov, S.; Paprzycki, M.

    2011-11-01

    In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm induced by the direction splitting. The scheme used in the algorithm is composed of two parts: (i) velocity prediction, and (ii) pressure correction. This is a Crank-Nicolson-type two-stage time integration scheme for two and three dimensional parabolic problems in which the second-order derivative, with respect to each space variable, is treated implicitly while the other variable is made explicit at each time sub-step. In order to achieve a good parallel performance the solution of the Poison problem for the pressure correction is replaced by solving a sequence of one-dimensional second order elliptic boundary value problems in each spatial direction. The parallel code is implemented using the standard MPI functions and tested on two modern parallel computer systems. The performed numerical tests demonstrate good level of parallel efficiency and scalability of the studied direction-splitting-based algorithm.

  13. Critical heat flux phenomena depending on pre-pressurization in transient heat input

    NASA Astrophysics Data System (ADS)

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2017-07-01

    The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of various pressures and subcoolings by photographic study. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The objective of this work is to clarify the transient CHF phenomena due to HI or HSN by photographic.

  14. Stress-induced, time-dependent fracture closure at hydrothermal conditions

    USGS Publications Warehouse

    Beeler, N.M.; Hickman, S.H.

    2004-01-01

    Time-dependent closure of fractures in quartz was measured in situ at 22-530??C temperature and 0.1-150 MPa water pressure. Unlike previous crack healing and rock permeability studies, in this study, fracture aperture is monitored directly and continuously using a windowed pressure vessel, a long-working-distance microscope, and reflected-light interferometry. Thus the fracture volume and geometry can be measured as a function of time, temperature, and water pressure. Relatively uniform closure occurs rapidly at temperatures and pressures where quartz becomes significantly soluble in water. During closure the aperture is reduced by as much as 80% in a few hours. We infer that this closure results from the dissolution of small particles or asperities that prop the fracture open. The driving force for closure via dissolution of the prop is the sum of three chemical potential terms: (1) the dissolution potential, proportional to the logarithm of the degree of undersaturation of the solution; (2) the coarsening potential, proportional to the radius of curvature of the prop; and (3) the pressure solution potential, proportional to the effective normal stress at the contact between propping particles and the fracture wall. Our observations suggest that closure is controlled by a pressure solution-like process. The aperture of dilatant fractures and microcracks in the Earth that are similar to those in our experiments, such as ones generated from thermal stressing or brittle failure during earthquake rupture and slip, will decrease rapidly with time, especially if the macroscopic stress is nonhydrostatic.

  15. Stress-induced, time-dependent fracture closure at hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Hickman, S. H.

    2004-02-01

    Time-dependent closure of fractures in quartz was measured in situ at 22-530°C temperature and 0.1-150 MPa water pressure. Unlike previous crack healing and rock permeability studies, in this study, fracture aperture is monitored directly and continuously using a windowed pressure vessel, a long-working-distance microscope, and reflected-light interferometry. Thus the fracture volume and geometry can be measured as a function of time, temperature, and water pressure. Relatively uniform closure occurs rapidly at temperatures and pressures where quartz becomes significantly soluble in water. During closure the aperture is reduced by as much as 80% in a few hours. We infer that this closure results from the dissolution of small particles or asperities that prop the fracture open. The driving force for closure via dissolution of the prop is the sum of three chemical potential terms: (1) the dissolution potential, proportional to the logarithm of the degree of undersaturation of the solution; (2) the coarsening potential, proportional to the radius of curvature of the prop; and (3) the pressure solution potential, proportional to the effective normal stress at the contact between propping particles and the fracture wall. Our observations suggest that closure is controlled by a pressure solution-like process. The aperture of dilatant fractures and microcracks in the Earth that are similar to those in our experiments, such as ones generated from thermal stressing or brittle failure during earthquake rupture and slip, will decrease rapidly with time, especially if the macroscopic stress is nonhydrostatic.

  16. Estimation of Time Dependent Properties from Surface Pressure in Open Cavities

    DTIC Science & Technology

    2008-02-01

    static pressure of the cavity. The stagnation and static pressures are measured separately with Druck Model DPI 145 pressure transducers (with a quoted...interacting with the ZNMF actuator jets, the 2D shape of the vortical structures transform to a 3D shape with spanwise vortical structures. These...Therefore, the pressure gradient in the d direction is dd ° 3d Substituting Equation (5.3) into Equation (5.5) results in ^l = PJk(e^-Re^)/c^ (5.6

  17. Flexibility of orthographic and graphomotor coordination during a handwritten copy task: effect of time pressure

    PubMed Central

    Sausset, Solen; Lambert, Eric; Olive, Thierry

    2013-01-01

    The coordination of the various processes involved in language production is a subject of keen debate in writing research. Some authors hold that writing processes can be flexibly coordinated according to task demands, whereas others claim that process coordination is entirely inflexible. For instance, orthographic planning has been shown to be resource-dependent during handwriting, but inflexible in typing, even under time pressure. The present study therefore went one step further in studying flexibility in the coordination of orthographic processing and graphomotor execution, by measuring the impact of time pressure during a handwritten copy task. Orthographic and graphomotor processes were observed via syllable processing. Writers copied out two- and three-syllable words three times in a row, with and without time pressure. Latencies and letter measures at syllable boundaries were analyzed. We hypothesized that if coordination is flexible and varies according to task demands, it should be modified by time pressure, affecting both latency before execution and duration of execution. We therefore predicted that the extent of syllable processing before execution would be reduced under time pressure and, as a consequence, syllable effects during execution would be more salient. Results showed, however, that time pressure interacted neither with syllable number nor with syllable structure. Accordingly, syllable processing appears to remain the same regardless of time pressure. The flexibility of process coordination during handwriting is discussed, as is the operationalization of time pressure constraints. PMID:24319435

  18. Detection of an anomalous pressure on a magneto-inertial-fusion load current diagnostic

    DOE PAGES

    Hess, Mark Harry; Hutsel, Brian Thomas; Jennings, Christopher Ashley; ...

    2017-01-30

    Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infermore » that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.« less

  19. Theoretical and Experimental Investigations on Droplet Evaporation and Droplet Ignition at High Pressures

    NASA Technical Reports Server (NTRS)

    Ristau, R.; Nagel, U.; Iglseder, H.; Koenig, J.; Rath, H. J.; Normura, H.; Kono, M.; Tanabe, M.; Sato, J.

    1993-01-01

    The evaporation of fuel droplets under high ambient pressure and temperature in normal gravity and microgravity has been investigated experimentally. For subcritical ambient conditions, droplet evaporation after a heat-up period follows the d(exp 2)-law. For all data the evaporation constant increases as the ambient temperature increases. At identical ambient conditions the evaporation constant under microgravity is smaller compared to normal gravity. This effect can first be observed at 1 bar and increases with ambient pressure. Preliminary experiments on ignition delay for self-igniting fuel droplets have been performed. Above a 1 s delay time, at identical ambient conditions, significant differences in the results of the normal and microgravity data are observed. Self-ignition occurs within different temperature ranges due to the influence of gravity. The time dependent behavior of the droplet is examined theoretically. In the calculations two different approaches for the gas phase are applied. In the first approach the conditions at the interface are given using a quasi steady theory approximation. The second approach uses a set of time dependent governing equations for the gas phase which are then evaluated. In comparison, the second model shows a better agreement with the drop tower experiments. In both cases a time dependent gasification rate is observed.

  20. Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip

    NASA Astrophysics Data System (ADS)

    Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long

    2018-05-01

    In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.

  1. Time-Frequency Analysis of Rocket Nozzle Wall Pressures During Start-up Transients

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.

    2011-01-01

    Surveys of the fluctuating wall pressure were conducted on a sub-scale, thrust- optimized parabolic nozzle in order to develop a physical intuition for its Fourier-azimuthal mode behavior during fixed and transient start-up conditions. These unsteady signatures are driven by shock wave turbulent boundary layer interactions which depend on the nozzle pressure ratio and nozzle geometry. The focus however, is on the degree of similarity between the spectral footprints of these modes obtained from transient start-ups as opposed to a sequence of fixed nozzle pressure ratio conditions. For the latter, statistically converged spectra are computed using conventional Fourier analyses techniques, whereas the former are investigated by way of time-frequency analysis. The findings suggest that at low nozzle pressure ratios -- where the flow resides in a Free Shock Separation state -- strong spectral similarities occur between fixed and transient conditions. Conversely, at higher nozzle pressure ratios -- where the flow resides in Restricted Shock Separation -- stark differences are observed between the fixed and transient conditions and depends greatly on the ramping rate of the transient period. And so, it appears that an understanding of the dynamics during transient start-up conditions cannot be furnished by a way of fixed flow analysis.

  2. Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry.

    PubMed

    Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Qin, Zunqi; Zou, Shengliang

    2014-04-01

    We present a high precision and fast speed demodulation method for a polarized low-coherence interferometer with location-dependent birefringence dispersion. Based on the characteristics of location-dependent birefringence dispersion and five-step phase-shifting technology, the method accurately retrieves the peak position of zero-fringe at the central wavelength, which avoids the fringe order ambiguity. The method processes data only in the spatial domain and reduces the computational load greatly. We successfully demonstrated the effectiveness of the proposed method in an optical fiber Fabry-Perot barometric pressure sensing experiment system. Measurement precision of 0.091 kPa was realized in the pressure range of 160 kPa, and computation time was improved by 10 times compared to the traditional phase-based method that requires Fourier transform operation.

  3. Nitramine smokeless propellant research

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transient ballistics and combustion model was derived to represent the closed vessel experiment that is widely used to characterize propellants. The model incorporates the nitramine combustion mechanisms. A computer program was developed to solve the time dependent equations, and was applied to explain aspects of closed vessel behavior. It is found that the rate of pressurization in the closed vessel is insufficient at pressures of interest to augment the burning rate by time dependent processes. Series of T-burner experiments were performed to compare the combustion instability characteristics of nitramine (HMX) containing propellants and ammonium perchlorate (AP) propellants. It is found that the inclusion of HMX consistently renders the propellant more stable.

  4. Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    NASA Astrophysics Data System (ADS)

    Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken

    2007-07-01

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  5. Characteristics of time-varying intracranial pressure on blood flow through cerebral artery: A fluid-structure interaction approach.

    PubMed

    Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih

    2016-02-01

    Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. © IMechE 2015.

  6. The evaluation of daily living activities, pressure sores and risk factors.

    PubMed

    Aydın, Gökçen; Mucuk, Salime

    2015-01-01

    This study was conducted to assess daily living activities, pressure sores and risk factors. This was a descriptive study. The study was conducted at a rehabilitation center with 188 individuals participating in the study. Data were collected with a questionnaire form, Activities of Daily Living Scale (ADLS), Instrumental Activities of Daily Living Scale (IADLS) and Braden Risk Assessment Scale (BRAS). Among the participants, 48.9% were dependent according to activities of daily living and 71.8% were dependent on instrumental activities of daily living. It was noted that 4.8% had pressure sores and 38.8% were at high risk. A strong and positive correlation was found among ADLS, IADLS, and BRAS scores (p < .001). Participants who had a low body mass index, had lived at the rehabilitation center for a long time, and were fed on regime 1 or 2, had a higher risk of developing pressure sores (p < .001). Individuals who were dependent according to ADLS and IADLS were at increased risk for the development of pressure sores. Individuals who are treated at rehabilitation centers should be periodically assessed in terms of risk. Pressure sore development can be prevented with appropriate nursing interventions. To reduce the risk of developing pressure sores, nurses should describe the individual's degree of dependency according to ADLS and IADLS and initiate preventive nursing care. © 2014 Association of Rehabilitation Nurses.

  7. Transmission of magmatic pressure changes at Kilauea volcano

    NASA Astrophysics Data System (ADS)

    Montagna, C. P.; Gonnermann, H. M.

    2012-12-01

    Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We have modeled the propagation of such pressure variations, caused by eruptive magma withdrawal during the early eruptive episodes of the ongoing Pu`u `O`o-Kupaianaha eruption of Kilauea volcano. Tilt measurements show that the onset of eruptive episodes at Pu`u `O`o was typically accompanied by abrupt deflation and followed by a sudden onset of gradual re-inflation, once the eruptive episode ended. Tilt of Kilauea's summit underwent similar patterns of deflation and inflation, albeit with a time delay of several hours during most episodes. The observed delay times can be reproduced by a numerical model of pressure variations within an elastic-walled dike that connects Kilauea's summit to its east rift zone. As pressure changes travel through the dike, the interplay between elastic response of the dike wall and viscous resistance of the fluid determines the delay time. An example of the ability of the model to reproduce observed tilt data is presented in Figure 1, which shows measured tilt at Pu`u `O`o during episode 18, together with measured and modeled tilt at Kilauea's summit. Magma withdrawal beneath Pu`u `O`o causes a decrease in pressure and deflation. This pressure change is estimated from observed ground deformation, and it constitutes the time-dependent model boundary condition at Pu`u `O`o, which propagates to Kilauea's summit. The resultant increase in magma flux causes deflation of Kilauea's Halema`uma`u magma reservoir and the change and time delay of tilt are reproduced by the model. The time delay depends on elasticity of the wall rock, dike dimensions, magma viscosity, as well as magnitude and duration of the pressure variations themselves. In addition, these parameters also affect the attenuation of the amplitude of the pressure variation, as it travels between Puu Oo and summit. Pressure changes propagate noticeably faster (slower) in a slightly wider (narrower) dike, as a consequence of smaller (larger) viscous dissipation. Time delays and amplitude of deflation-inflation events at Kilauea have the potential to provide information on effective transport properties of magmatic pathways and changes thereof over time.bserved and modeled change in normalized tilt at Pu`u `O`o and summit for episode 18 of the Pu`u `O`o eruption

  8. Detailed Analysis of ECMWF Surface Pressure Data

    NASA Astrophysics Data System (ADS)

    Fagiolini, E.; Schmidt, T.; Schwarz, G.; Zenner, L.

    2012-04-01

    Investigations of temporal variations within the gravity field of the Earth led us to the analysis of common surface pressure data products delivered by ECMWF. We looked into the characteristics of global as well as spatially and temporally confined phenomena being visible in the data. In particular, we were interested in the overall data quality, the local and temporal signal-to-noise ratio of surface pressure data sets, and the identification of irregular data. To this end, we analyzed a time series of a full year of surface pressure operational analysis data and their nominal standard deviations. The use of pressure data on a Gaussian grid data allowed us to remain close to the internal computations at ECMWF during data assimilation. Thus, we circumvented potential interpolation effects that would otherwise occur in cylindrical projections of conventional map products. The results obtained by us demonstrate the identification of a few distinct outliers, data quality effects over land or water and along coastlines as well as neighborhood effects of samples within and outside of the tropics. Small scale neighborhood effects depend on their geographical direction, sampling distance, land or water, and local time. In addition, one notices large scale seasonal effects that are latitude and longitude dependent. As a consequence, we obtain a cause-and-effect survey of pressure data peculiarities. One can then use background corrected pressure data to analyze seasonal effects within given latitude belts. Here time series of pressure data allow the tracking of high and low pressure areas together with the identification of their actual extent, velocity and life time. This information is vital to overall mass transport calculations and the determination of temporally varying gravity fields. However, one has to note that the satellite and ground-based instruments and the assimilation software being used for the pressure calculations will not remain the same over the years. This has to taken into account for actual quality assessments of ECMWF data.

  9. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular pressure reactivity

    NASA Astrophysics Data System (ADS)

    Latka, M.; Turalska, M.; Kolodziej, W.; Latka, D.; West, B.

    2006-03-01

    We employ complex continuous wavelet transforms to develop a consistent mathematical framework capable of quantifying both cerebrospinal compensatory reserve and cerebrovascular pressure--reactivity. The wavelet gain, defined as the frequency dependent ratio of time averaged wavelet coefficients of intracranial (ICP) and arterial blood pressure (ABP) fluctuations, characterizes the dampening of spontaneous arterial blood oscillations. This gain is introduced as a novel measure of cerebrospinal compensatory reserve. For a group of 10 patients who died as a result of head trauma (Glasgow Outcome Scale GOS =1) the average gain is 0.45 calculated at 0.05 Hz significantly exceeds that of 16 patients with favorable outcome (GOS=2): with gain of 0.24 with p=4x10-5. We also study the dynamics of instantaneous phase difference between the fluctuations of the ABP and ICP time series. The time-averaged synchronization index, which depends upon frequency, yields the information about the stability of the phase difference and is used as a cerebrovascular pressure--reactivity index. The average phase difference for GOS=1 is close to zero in sharp contrast to the mean value of 30^o for patients with GOS=2. We hypothesize that in patients who died the impairment of cerebral autoregulation is followed by the break down of residual pressure reactivity.

  10. Permeability Sensitivity Functions and Rapid Simulation of Hydraulic-Testing Measurements Using Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Escobar Gómez, J. D.; Torres-Verdín, C.

    2018-03-01

    Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.

  11. Deplacement effect of the laminar boundary layer and the pressure drag

    NASA Technical Reports Server (NTRS)

    Gortler, H

    1951-01-01

    The displacement effect of the boundary layer on the outer frictionless flow is discussed for both steady and unsteady flows. The analysis is restricted to cases in which the potential flow pressure distribution remains valid for the boundary-layer calculation. Formulas are given for the dependence of the pressure drag, friction drag, and total drag of circular cylinders on the time from the start of motion for cases in which the velocity varies as a power of the time. Formulas for the locations and for the time for the appearance of the separation point are given for two dimensional bodies of arbitrary shape.

  12. Time burden of caring and depression among parents of individuals with cerebral palsy.

    PubMed

    Park, Eun-Young; Nam, Su-Jung

    2018-01-30

    The presence of an individual with disability in a family affects the whole family. Families of individuals with cerebral palsy (CP) experience increased psychological anxiety and financial problems; specifically, parents tend to feel time pressure and struggle to maintain their social and cultural activities. t-Tests and ANOVA with post hoc Tukey tests were used to compare caregiving time, time pressure, and depression between parents. Multivariate logistic regression analysis was used to examine the effect of caregiving time and time pressure on depression in parents. Regarding depression, 58 (38.2%) respondents scored ≥16 on the Center for Epidemiological Studies - Depression scale. Respondents supporting a preschool child spent more time than those supporting adults did; those supporting adults reported less time pressure than those supporting individuals of other ages. Caregiving time's effect on depression was not supported, whereas increased time pressure raised the risk of depression. The frequency of depression among parents supporting individuals with CP exceeded preceding findings. Time pressure due to support appears to directly predict depression. Total time spent caring appears unrelated to depression. Implications for Rehabilitation It is necessary to prepare various community and family support systems in order to relieve parental caregivers' burden and exhaustion. Interventions should focus on parents with higher time pressure than parents with high caregiving time. Physical and psychological difficulties experienced by parents supporting a child with a disability vary with the child's life stage, meaning that families' care burden partly depends on the age of the individual with disabilities.

  13. Effects of experimentally measured pressure oscillations on the vibration of a solid rocket motor

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.; Pierce, H. B.

    1972-01-01

    Results are presented of firing a Nike rocket against a backstop for the purpose of obtaining pressure fluctuations in the rocket case and determining their relationship to structural vibrations of the case. Special care was required to obtain these pressure fluctuations because of the much higher static pressure generated in the rocket. Very small pressure fluctuations within the rocket case can cause significant vibration levels. A previously observed high frequency was shown to decrease with time before completely disappearing at about 1 second of burning time. The vibration of the case itself is probably related to the longitudinal structural modes at frequencies below 500 Hz and is dependent on local structural conditions at frequencies above this value.

  14. High pressure study of molecular dynamics of protic ionic liquid lidocaine hydrochloride.

    PubMed

    Swiety-Pospiech, A; Wojnarowska, Z; Pionteck, J; Pawlus, S; Grzybowski, A; Hensel-Bielowka, S; Grzybowska, K; Szulc, A; Paluch, M

    2012-06-14

    In this paper, we investigate the effect of pressure on the molecular dynamics of protic ionic liquid lidocaine hydrochloride, a commonly used pharmaceutical, by means of dielectric spectroscopy and pressure-temperature-volume methods. We observed that near T(g) the pressure dependence of conductivity relaxation times reveals a peculiar behavior, which can be treated as a manifestation of decoupling between ion migration and structural relaxation times. Moreover, we discuss the validity of thermodynamic scaling in lidocaine HCl. We also employed the temperature-volume Avramov model to determine the value of pressure coefficient of glass transition temperature, dT(g)/dP|(P = 0.1). Finally, we investigate the role of thermal and density fluctuations in controlling of molecular dynamics of the examined compound.

  15. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  16. The Role of Convection in the Buildup of the Ring Current Pressure during the March 17, 2013 Storm

    NASA Astrophysics Data System (ADS)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Skoug, R. M.; Funsten, H. O.; Larsen, B.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.

    2016-12-01

    On March 17, 2013, the Van Allen Probes, with their apogee 1 hour post-midnight, measured the H+ and O+ fluxes of ring current during a large geomagnetic storm. Detailed examination of the pressure build-up during the storm shows that there can be large differences in the pressure measured by the two spacecraft with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H+ and O+ pressure contributions are about equal during the main phase in the near-earth plasma sheet outside L=5.5, the O+ pressure becomes dominant at lower L-values. We test whether adiabatic convective transport from the near earth plasma sheet (L>5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer '96 electric field we model the drift trajectories to show that the key features can be explained by the drift of a changing source population and energy and L-shell dependent access and drift times. Finally, we show that the dominance of O+ at low L-shells is due partly to a plasma sheet source that is preferentially enhanced in O+ at lower energies (5-10 keV) and partly due to the time dependence in the source, combined with the longer drift times to low L-shells. No source of O+ inside L=5.5 is required.

  17. Gas storage, transport and pressure changes in an evolving permeable volcanic edifice

    NASA Astrophysics Data System (ADS)

    Collinson, A. S. D.; Neuberg, J. W.

    2012-10-01

    The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an "open" system compared to one which is "closed". It is therefore essential to understand the entire degassing process: gas transport, storage and loss. A particular focus of this study is the effect different permeabilities and pressure gradients within a volcanic edifice have on the degree and pattern of the gas velocity. Gas loss is modelled numerically in two dimensions using a finite element approach, which allows the specification of boundary conditions with respect to pressure and different permeability domains within the volcanic edifice. By combining the time-dependent continuity equation and Darcy's law, a partial differential equation is derived and solved for the pressure. The associated pressure gradient is then used within Darcy's law to determine the corresponding gas velocity distribution. This method is used not only for stationary systems in equilibrium, but also as a time-dependent progression. It permits the modelling of different situations to study how various volcanic characteristics affect the gas loss. The model is used to investigate the change in pressure and gas in response to time-dependent scenarios. These are a dome collapse or sudden increase in permeability by magma rupture at the conduit margin, the formation of cracks within the lava dome and sealing by crystallisation. Our results show that a combination of high and low permeability regions is required for effective gas storage. High permeability allows the gas to enter the system, but impermeable areas act to confine the gas, thereby increasing its pressure and consequently, increasing the amount of gas which may be dissolved in the melt. Furthermore, our results show that permeability is an essential factor influencing the response time to system changes, which could be linked in future to deformation and other geophysical observations. Our model is highly versatile and sheds new light on the understanding of gas storage and transport in a permeable volcanic edifice.

  18. Low Pressure Flame Blowoff from the Forward Stagnation Region of a Blunt-Nosed Cast PMMA Cylinder in Axial Mixed Convective Flow

    NASA Technical Reports Server (NTRS)

    Marcum, J. W.; Rachow, P.; Ferkul, P. V.; Olson, S. L.

    2017-01-01

    Low-pressure blowoff experiments were conducted with a stagnation flame stabilized on the forward tip of cast PMMA rods in a vertical wind tunnel. Pressure, forced flow velocity, gravity, and ambient oxygen concentration were varied. Stagnation flame blowoff is determined from a time-stamped video recording of the test. The blowoff pressure is determined from test section pressure transducer data that is synchronized with the time stamp. The forced flow velocity is also determined from the choked flow orifice pressure. Most of the tests were performed in normal gravity, but a handful of microgravity tests were also conducted to determine the influence of buoyant flow velocity on the blowoff limits. The blowoff limits are found to have a linear dependence between the partial pressure of oxygen and the total pressure, regardless of forced flow velocity and gravity level. The flow velocity (forced and/or buoyant) affects the blowoff pressure through the critical Damkohler number residence time, which dictates the partial pressure of oxygen at blowoff. This is because the critical stretch rate increases linearly with increasing pressure at low pressure (sub-atmospheric pressures) since a second-order overall reaction rate with two-body reactions dominates in this pressure range.

  19. High pressure processing of fresh seafoods.

    PubMed

    Simpson, B K

    1998-01-01

    Crude proteolytic enzyme extracts were prepared from the muscle tissues of two fish species, bluefish and sheephead, and subjected to high hydrostatic pressure treatments (from 1,000-3,000 atm), and monitored for residual activity for cathepsin C, collagenase, chymotrypsin-like and trypsin-like enzymes versus homologous enzymes from bovine. The fish enzymes were more sensitive to hydrostatic pressure than the mammalian enzymes. The extent of enzyme inactivation achieved depended on both the amount of pressure applied, the duration of pressurization, and on the source material. Pressure treatment of fresh fish flesh formed products whose color deteriorated (cooked appearance) with increasing pressure as well as holding time. Application of pressure also improved tissue firmness or strength of fresh fish up to 2,000 atm and a holding time of 10 min, beyond which texture generally deteriorated. The combined use of pressure in combination with the broad spectrum protease inhibitor, alpha 2-macroglobulin, enhanced the capacity of the hydrostatic pressure technology to achieve a more lasting inactivation of endogenous enzymes to form stable fish gels.

  20. Laser ignition of liquid petroleum gas at elevated pressures

    NASA Astrophysics Data System (ADS)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  1. Flux transfer events at the dayside magnetopause: Transient reconnection or magnetosheath dynamic pressure pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, M.

    1991-04-01

    The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed flux transfer events, are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some two-regime observations made by two satellites simultaneously, one on either side ofmore » the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence in the case of magnetosheath FTEs, but does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing. This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magentosheath field is northward.« less

  2. Combustion of Micro- and Nanothermites under Elevating Pressure

    NASA Astrophysics Data System (ADS)

    Monogarov, K.; Pivkina, Alla; Muravyev, N.; Meerov, D.; Dilhan, D.

    Non-equilibrium process of combustion-wave propagation of thermite compositions (Mg/Fe2O3) inside the sealed steel tube have been investigated to study the burning rate at elevating pressure. Under confinement the hot gas-phase products, formed during thermite combustion result in considerable overpressure inside the tube that reverses the gas flow and leads to pressure-driven preheating effect of the burned-gas permeation. Convective origin of this preheating effect is discussed. The pressure-time dependency is obtained experimentally. The composition was pressed inside the steel tube in pellets; the size of each part was measured to obtain burning rate - pressure dependency. Both micro- and nanosized components were used to prepare thermite compositions under study. The significant difference in burning parameters of micron- and nanosized thermites is observed and analyzed. Based on obtained results, the combustion mechanism of thermites with the micro- and nanosized components is discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable statesmore » in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.« less

  4. Deriving properties of low-volatile substances from isothermal evaporation curves

    NASA Astrophysics Data System (ADS)

    Ralys, Ricardas V.; Uspenskiy, Alexander A.; Slobodov, Alexander A.

    2016-01-01

    Mass flux occurring when a substance evaporates from an open surface is proportional to its saturated vapor pressure at a given temperature. The proportionality coefficient that relates this flux to the vapor pressure shows how far a system is from equilibrium and is called the accommodation coefficient. Under vacuum, when a system deviates from equilibrium to the greatest extent possible, the accommodation coefficient equals unity. Under finite pressure, however, the accommodation coefficient is no longer equal to unity, and in fact, it is much less than unity. In this article, we consider the isothermal evaporation or sublimation of low-volatile individual substances under conditions of thermogravimetric analysis, when the external pressure of the purging gas is equal to the atmospheric pressure and the purging gas rate varies. When properly treated, the dependence of sample mass over time provides us with various information on the properties of the examined compound, such as saturated vapor pressure, diffusion coefficient, and density of the condensed (liquid or solid) phase at the temperature of experiment. We propose here the model describing the accommodation coefficient as a function of both substance properties and experimental conditions. This model gives the final expression for evaporation rate, and thus for mass dependence over time, with approximation parameters resulting in the properties being sought.

  5. Advanced Decontamination Technologies: High Hydrostatic Pressure on Meat Products

    NASA Astrophysics Data System (ADS)

    Garriga, Margarita; Aymerich, Teresa

    The increasing demand for “natural” foodstuffs, free from chemical additives, and preservatives has triggered novel approaches in food technology developments. In the last decade, practical use of high-pressure processing (HPP) made this emerging non-thermal technology very attractive from a commercial point of view. Despite the fact that the investment is still high, the resulting value-added products, with an extended and safe shelf-life, will fulfil the wishes of consumers who prefer preservative-free minimally processed foods, retaining sensorial characteristics of freshness. Moreover, unlike thermal treatment, pressure treatment is not time/mass dependant, thus reducing the time of processing.

  6. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  7. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.

    PubMed

    Luong, Trung Quan; Winter, Roland

    2015-09-21

    We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.

  8. Strengthening of synthetic quartz-rich sediments during time-dependent compaction due to pressure solution-precipitation compaction creep

    NASA Astrophysics Data System (ADS)

    Noda, H.; Okazaki, K.; Katayama, I.

    2013-12-01

    During diagenesis, incohesive sediments are compacted and gain strength against shear deformation for a geologically long time scale. The evolution of shear strength as well as the change in the mechanical and hydraulic characteristics under shear deformation is of significant importance in considering deformation at shallow part of the subduction zones and in accretionary prisms. Sediments after induration due to time-dependent diagenesis process probably deform with increases in porosity and permeability much more significantly than normally compacted incohesive sediments. An active fault in a shallow incohesive medium may favor thermal pressurization of pore fluid when slid rapidly, while the lack of time-dependent healing effect may cause stable (e.g., rate-strengthening) frictional property there. On the other hand, indurated sediments may deform with significant post-failure weakening, and thus exhibit localization of deformation or unstable behavior. In order to investigate how the time-dependent compaction and induration affect the mechanical and hydraulic characteristics of sediments under deformation, we have conducted a series of compaction experiments under hydrothermal conditions (at temperatures from R.T. to 500 °C, 200 MPa confining pressure, 100 MPa pore water pressure, and for various time), and following triaxial deformation experiments for the compacted samples, with monitoring permeability and storage capacity with pore pressure oscillation method [Fischer and Paterson, 1992]. Previous work [e.g., Niemeijer et at., 2003] reported that under the adopted conditions, quartz aggregate deforms by pressure solution-precipitation creep. The initial synthetic sediments have been prepared by depositing commercially available crushed quartzite the grain size of which is about 6 μm on average. 4 cm long samples have been extracted from the middle of 10 cm long deposited columns. The experiments have been performed with a gas-medium apparatus in Hiroshima University. As the compaction time and temperature increases, compressional strain increases and the synthetic sediments gain shear strength, flow stress during triaxial deformation tests. An uncooked sample yielded immediately on application of differential stress, and showed strengthening during triaxial deformation test with σ1-σ3 about 150 MPa at 0.1 compressional strain. On the other hand, a sample compacted at 500 °C for 5 hours (about 0.1 of isotropic compressional strain) deformed mainly elastically up to about 100 MPa differential stress. At 0.02 compressional strain σ1-σ3 reached 200 MPa which is the experimental limitation due to compressional strength of porous alumina spacers. In the presentation, we will focus on the relation between mechanical behavior under shear and the compressional strain during preceding compaction experiments.

  9. Studies on droplet evaporation and combustion in high pressures

    NASA Technical Reports Server (NTRS)

    Sato, J.

    1993-01-01

    High pressure droplet evaporation and combustion have been studied up to 15 MPa under normal and microgravity fields. From the evaporation studies, it has been found that in the supercritical environments, the droplet evaporation rate and lifetime take a maximum and a minimum at an ambient pressure over the critical pressure. Its maximum and minimum points move toward the lower ambient pressures if the ambient temperature is increased. It has been found from the combustion studies that the burning life time takes a minimum at an ambient pressure being equal to the critical pressure. It is attributable to both the pressure dependency of the diffusion rate and the droplet evaporation characteristics described above.

  10. Scaling of seismicity induced by nonlinear fluid-rock interaction after an injection stop

    NASA Astrophysics Data System (ADS)

    Johann, L.; Dinske, C.; Shapiro, S. A.

    2016-11-01

    Fluid injections into unconventional reservoirs, performed for fluid-mobility enhancement, are accompanied by microseismic activity also after the injection. Previous studies revealed that the triggering of seismic events can be effectively described by nonlinear diffusion of pore fluid pressure perturbations where the hydraulic diffusivity becomes pressure dependent. The spatiotemporal distribution of postinjection-induced microseismicity has two important features: the triggering front, corresponding to early and distant events, and the back front, representing the time-dependent spatial envelope of the growing seismic quiescence zone. Here for the first time, we describe analytically the temporal behavior of these two fronts after the injection stop in the case of nonlinear pore fluid pressure diffusion. We propose a scaling law for the fronts and show that they are sensitive to the degree of nonlinearity and to the Euclidean dimension of the dominant growth of seismicity clouds. To validate the theoretical finding, we numerically model nonlinear pore fluid pressure diffusion and generate synthetic catalogs of seismicity. Additionally, we apply the new scaling relation to several case studies of injection-induced seismicity. The derived scaling laws describe well synthetic and real data.

  11. Lubricant Rheology in Concentrated Contacts

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.

    1984-01-01

    Lubricant behavior in highly stressed situtations shows that a Newtonian model for lubricant rheology is insufficient for explanation of traction behavior. The oil film build up is predicted by using a Newtonian lubricant model except at high slide to roll ratios and at very high loads, where the nonNewtonian behavior starts to be important already outside the Hertzian contact area. Static and dynamic experiments are reported. In static experiments the pressure is applied to the lubricant more than a million times longer than in an EHD contact. Depending on the pressure-temperature history of the experiment the lubricant will become a crystallized or amorphous solid at high pressures. In dynamic experiments, the oil is in an amorphous solid state. Depending on the viscosity, time scale, elasticity of the oil and the bearing surfaces, the oil film pressure, shear strain rate and the type of lubricant, different properties of the oil are important for prediction of shear stresses in the oil. The different proposed models for the lubricant, which describe it to a Newtonian liquid, an elastic liquid, a plastic liquid and an elastic-plastic solid.

  12. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    NASA Astrophysics Data System (ADS)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  13. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation

    PubMed Central

    Maire, Micheline; Reichert, Carolin F.; Gabel, Virginie; Viola, Antoine U.; Krebs, Julia; Strobel, Werner; Landolt, Hans-Peter; Bachmann, Valérie; Cajochen, Christian; Schmidt, Christina

    2014-01-01

    Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e., state instability) in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3). By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition) and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition) in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER35/5) experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses) in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER34/4). These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioral vulnerability. PMID:24639634

  14. Turbine-99 unsteady simulations - Validation

    NASA Astrophysics Data System (ADS)

    Cervantes, M. J.; Andersson, U.; Lövgren, H. M.

    2010-08-01

    The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.

  15. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.

    2013-03-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  16. Effect of spatial inlet temperature and pressure distortion on turbofan engine stability

    NASA Technical Reports Server (NTRS)

    Mehalic, Charles M.

    1988-01-01

    The effects of circumferential and radial inlet temperature distortion, circumferential pressure distortion, and combined temperature and pressure distortion on the stability of an advanced turbofan engine were investigated experimentally at simulated altitude conditions. With circumferential and radial inlet temperature distortion, a flow instability generated by the fan operating near stall caused the high-pressure compressor to surge at, or near, the same time as the fan. The effect of combined distortion was dependent on the relative location of the high-temperature and low-pressure regions; high-pressure compressor stalls occurred when the regions coincided, and fan stalls occurred with the regions separated.

  17. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    NASA Astrophysics Data System (ADS)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor, suggesting a horizontal propagation of the air pressure waves.

  18. Effect of solvent on absorption spectra of all-trans-{beta}-carotene under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W. L.; Zheng, Z. R.; Liu, Z. G.

    The absorption spectra of all-trans-{beta}-carotene in n-hexane and carbon disulfide (CS{sub 2}) solutions are measured under high pressure at ambient temperature. The common redshift and broadening in the spectra are observed. Simulation of the absorption spectra was performed by using the time-domain formula of the stochastic model. The pressure dependence of the 0-0 band wavenumber is in agreement with the Bayliss theory at pressure higher than 0.2 GPa. The deviation of the linearity at lower pressure is ascribed to the reorientation of the solvent molecules. Both the redshift and broadening are stronger in CS{sub 2} than that in n-hexane becausemore » of the more sensitive pressure dependence of dispersive interactions in CS{sub 2} solution. The effect of pressure on the transition moment is explained with the aid of a simple model involving the relative dimension, location, and orientation of the solute and solvent molecules. The implication of these results for light-harvesting functions of carotenoids in photosynthesis is also discussed.« less

  19. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    NASA Astrophysics Data System (ADS)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  20. Linearized blade row compression component model. Stability and frequency response analysis of a J85-3 compressor

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Moszee, R. H.; Steenken, W. G.

    1976-01-01

    NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.

  1. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em

    2011-01-01

    We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548

  2. Differential response of peripheral arterial compliance-related indices to a vasoconstrictive stimulus.

    PubMed

    Guerrisi, Maria; Vannucci, Italo; Toschi, Nicola

    2009-01-01

    Peripheral arterial elastic properties are greatly affected by cardiovascular as well as other pathologies, and their assessment can provide useful diagnostic indicators. The photoplethysmographic technique can provide finger blood volume and pressure waveforms non-invasively, which can then be processed statically or beat-to-beat to characterize parameters of the vessel wall mechanics. We employ an occlusion-deflation protocol in 48 healthy volunteers to study peripheral artery compliance-related indices over positive and negative transmural pressure values as well as under the influence of a valid vasoconstrictor (cigarette smoking). We calculate beat-to-beat indices (compliance index CI, distensibility index DI, three viscoelastic model parameters (compliance C, viscosity R and inertia L), pressure-volume loop areas A and damping factor DF as well as symmetrical (C(max)) and asymmetrical (C(A)(max)) static compliance estimates, and their distributions over transmural pressure. All distributions are bell-shaped and centred on negative transmural pressure values. Distribution heights were significantly lower in the smoking group (w.r.t. the non-smoking group) for C, CI, DI and significantly higher in R and DF. The estimated volume signal time lag was also significantly lower in the smoking group. Left and right distribution widths were significantly different in all parameters/groups but DI (both groups), C(A)(max), A (smoking group) and L (non-smoking group), and positions of maxima/minima were significantly altered in C(A)(max), R and DF. C, DF and CI are seen to be most sensitive under this protocol, while C(max) and C(A)(max) are seen to be insensitive. These quantities provide complementary, time- and transmural pressure-dependent information about arterial wall mechanics, and the choice of index should depend on the physiological conditions at hand as well as relevant time resolution and transmural pressure range.

  3. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study.

    PubMed

    Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart

    2018-03-21

    The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acoustic Wave Propagation in Pressure Sense Lines

    NASA Technical Reports Server (NTRS)

    Vitarius, Patrick; Gregory, Don A.; Wiley, John; Korman, Valentin

    2003-01-01

    Sense lines are used in pressure measurements to passively transmit information from hostile environments to areas where transducers can be used. The transfer function of a sense line can be used to obtain information about the measured environment from the protected sensor. Several properties of this transfer function are examined, including frequency dependence, Helmholtz resonance, and time of flight delay.

  5. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    NASA Technical Reports Server (NTRS)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  6. Concentration-dependence of the explosion characteristics of chlorine dioxide gas.

    PubMed

    Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao

    2009-07-30

    The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.

  7. Effect of pressure dependent viscosity on couple stress squeeze film lubrication between porous circular stepped plates

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Raju, B. T.; Santhosh Kumar, J.; Vasanth, K. R.

    2018-04-01

    In this paper, the effect of PDV on the couple stress squeeze film lubrication between porous circular stepped plates is presented. Keeping the base of Christensen’s stochastic theory modified Reynolds equation is derived. Reynolds equation, fluid film pressure, squeeze film time and load carrying capacity are solved using standard perturbation technique. The results are tabulated and presented graphically for selected physical parameters and found that the squeeze effect is depleted in a porous bearing compared to its nonporous and increasing permeability has an adverse effect on the pressure, load carrying capacity and time of approach.

  8. The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores.

    PubMed

    Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas

    2013-09-01

    The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.

  9. Is vacuum ultraviolet detector a concentration or a mass dependent detector?

    PubMed

    Liu, Huian; Raffin, Guy; Trutt, Guillaume; Randon, Jérôme

    2017-12-29

    The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure. Even if for some experimental conditions, VUV looks like mass-flow sensitive detector, it has been demonstrated that VUV is a concentration sensitive detector. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Blood pressure and the contractility of a human leg muscle.

    PubMed

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  11. Blood pressure and the contractility of a human leg muscle

    PubMed Central

    Luu, Billy L; Fitzpatrick, Richard C

    2013-01-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K+ concentration. PMID:24018946

  12. The influence of temperature on brittle creep in sandstones

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.

    2009-04-01

    The characterization of time-dependent brittle rock deformation is fundamental to understanding the long-term evolution and dynamics of the Earth's upper crust. The presence of water promotes time-dependent deformation through environment-dependent stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure stress. Here we report results from an experimental study of the influence of an elevated temperature on time-dependent brittle creep in water-saturated samples of Darley Dale (initial porosity of 13%), Bentheim (23%) and Crab Orchard (4%) sandstones. We present results from both conventional creep experiments (or ‘static fatigue' tests) and stress-stepping creep experiments performed under 20°C and 75°C and an effective confining pressure of 30 MPa (50 MPa confining pressure and a 20 MPa pore fluid pressure). The evolution of crack damage was monitored throughout each experiment by measuring the three proxies for damage (1) axial strain (2) pore volume change and (3) the output of AE energy. Conventional creep experiments have demonstrated that, for any given applied differential stress, the time-to-failure is dramatically reduced and the creep strain rate is significantly increased by application of an elevated temperature. Stress-stepping creep experiments have allowed us to investigate the influence of temperature in detail. Results from these experiments show that the creep strain rate for Darley Dale and Bentheim sandstones increases by approximately 3 orders of magnitude, and for Crab Orchard sandstone increases by approximately 2 orders of magnitude, as temperature is increased from 20°C to 75°C at a fixed effective differential stress. We discuss these results in the context of the different mineralogical and microstructural properties of the three rock types and the micro-mechanical and chemical processes operating on them.

  13. Influence of hydrostatic pressure on dynamics and spatial distribution of protein partial molar volume: time-resolved surficial Kirkwood-Buff approach.

    PubMed

    Yu, Isseki; Tasaki, Tomohiro; Nakada, Kyoko; Nagaoka, Masataka

    2010-09-30

    The influence of hydrostatic pressure on the partial molar volume (PMV) of the protein apomyoglobin (AMb) was investigated by all-atom molecular dynamics (MD) simulations. Using the time-resolved Kirkwood-Buff (KB) approach, the dynamic behavior of the PMV was identified. The simulated time average value of the PMV and its reduction by 3000 bar pressurization correlated with experimental data. In addition, with the aid of the surficial KB integral method, we obtained the spatial distributions of the components of PMV to elucidate the detailed mechanism of the PMV reduction. New R-dependent PMV profiles identified the regions that increase or decrease the PMV under the high pressure condition. The results indicate that besides the hydration in the vicinity of the protein surface, the outer space of the first hydration layer also significantly influences the total PMV change. These results provide a direct and detailed picture of pressure induced PMV reduction.

  14. Numerical Study of Underwater Explosions and Following Bubble Pulses

    NASA Astrophysics Data System (ADS)

    Abe, Atsushi; Katayama, Masahide; Murata, Kenji; Kato, Yukio; Tanaka, Katsumi

    2007-06-01

    Underwater explosions and following bubble pulses were simulated by using the hydrocode AUTODYN. The pressure gradient depended on the water depth was applied to the water, and the effects of the atmospheric pressure and the gravity on the bubble properties were investigated numerically. In the deep and shallow water depth cases the bubble properties or pressure histories obtained numerically were compared with the empirical formula or the experimental data. Not only the pressure gradient in the water and the atmospheric pressure but also the application of the JWL EOS to slow energy release of the non-ideal explosive (Miller model) were found to be of great importance to simulate the generation of the bubble pulse precisely. Although the gravitational term during the dynamic analysis can be neglected in numerical analyses for very short time phenomena, it is indispensable to simulate the buoyancy of the bubble because the time range of the bubble behavior is some hundred times longer than that of the explosion phenomena.

  15. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which inmore » turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.« less

  16. Enhanced polymer capture speed and extended translocation time in pressure-solvation traps

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2018-06-01

    The efficiency of nanopore-based biosequencing techniques requires fast anionic polymer capture by like-charged pores followed by a prolonged translocation process. We show that this condition can be achieved by setting a pressure-solvation trap. Polyvalent cation addition to the KCl solution triggers the like-charge polymer-pore attraction. The attraction speeds-up the pressure-driven polymer capture but also traps the molecule at the pore exit, reducing the polymer capture time and extending the polymer escape time by several orders of magnitude. By direct comparison with translocation experiments [D. P. Hoogerheide et al., ACS Nano 8, 7384 (2014), 10.1021/nn5025829], we characterize as well the electrohydrodynamics of polymers transport in pressure-voltage traps. We derive scaling laws that can accurately reproduce the pressure dependence of the experimentally measured polymer translocation velocity and time. We also find that during polymer capture, the electrostatic barrier on the translocating molecule slows down the liquid flow. This prediction identifies the streaming current measurement as a potential way to probe electrostatic polymer-pore interactions.

  17. Life-course blood pressure in relation to brain volumes

    PubMed Central

    Power, Melinda C.; Schneider, Andrea L. C.; Wruck, Lisa; Griswold, Michael; Coker, Laura H.; Alonso, Alvaro; Jack, Clifford R.; Knopman, David; Mosley, Thomas H.; Gottesman, Rebecca F

    2016-01-01

    INTRODUCTION The impact of blood pressure on brain volumes may be time- or pattern-dependent. METHODS In 1678 participants from the Atherosclerosis Risk in Communities Neurocognitive Study, we quantified the association between measures and patterns of blood pressure over three time points (~24 or ~15 years prior and concurrent with neuroimaging) with late life brain volumes. RESULTS Higher diastolic blood pressure ~24 years prior, higher systolic and pulse pressure ~15 years prior, and consistently elevated or rising systolic blood pressure from ~15 years prior to concurrent with neuroimaging, but not blood pressures measured concurrent with neuroimaging, were associated with smaller volumes. The pattern of hypertension ~15 years prior and hypotension concurrent with neuroimaging was associated with smaller volumes in regions preferentially affected by Alzheimer’s disease (e.g., hippocampus: −0.27 standard units, 95%CI:−0.51,−0.03). DISCUSSION Hypertension 15 to 24 years prior is relevant to current brain volumes. Hypertension followed by hypotension appears particularly detrimental. PMID:27139841

  18. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Shimojo, Fuyuki; Yao, Makoto

    2015-08-01

    The dynamic properties of liquid B2O3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B2O3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto

    The dynamic properties of liquid B{sub 2}O{sub 3} under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B{sub 2}O{sub 3} shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-chargedmore » bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)« less

  20. Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles.

    PubMed

    Martín-Rodríguez, R; Valiente, R; Rodríguez, F; Bettinelli, M

    2011-07-01

    Since the crystal-field strength at the Cr(3+) site is very close to the excited-state crossover (ESCO), this work investigates the optical properties of Cr(3+)-doped Gd(3)Ga(5)O(12) (GGG) nanoparticles as a function of temperature and pressure in order to establish the effect of the ESCO on the optical behaviour of nanocrystalline GGG. Luminescence, time-resolved emission and lifetime measurements have been performed on GGG:0.5% Cr(3+) nanoparticles in the 25-300 K temperature range, as well as under hydrostatic pressure up to 20 GPa. We show how low temperature and high pressure progressively transforms Cr(3+)(4)T(2) --> (4)A(2) broadband emission into a ruby-like (2)E --> (4)A(2) luminescence. This behaviour together with the lifetime dependence on pressure and temperature are explained on the basis of the spin-orbit interaction between the (4)T(2) and (2)E states of Cr(3+).

  1. Redistribution of oxygen ions in single crystal YBa2Cu3O7-x owing to external hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Boiko, Yu. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhai, G. Ya.; Savich, S. V.

    2018-01-01

    The effect of high hydrostatic pressure on the temperature dependences of the electrical resistance in the basal plane of single crystal YBa2Cu3O7-x with an oxygen deficit is studied. It is found that an external hydrostatic pressure P ≈ 7 kbar substantially intensifies the diffusive coalescence of oxygen clusters, i.e., causes an increase in their average size. This, in turn, produces an increased number of negative U-centers whose presence leads to the appearance of a phase capable of generating paired carriers of electrical charge and is, therefore, characterized by a higher transition temperature Tc. Changes in the form of the temperature and time dependences of the electrical resistivity under external hydrostatic pressure are discussed in terms of this same hypothesis regarding the mechanism of diffusive coalescence of oxygen clusters.

  2. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.

    PubMed

    Maier, Maximilian B; Lenz, Christian A; Vogel, Rudi F

    2017-01-01

    The effect of high pressure thermal (HPT) processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal) was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction) was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa), which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min) illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.

  3. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  4. Prediction of non-cavitation propeller noise in time domain

    NASA Astrophysics Data System (ADS)

    Ye, Jin-Ming; Xiong, Ying; Xiao, Chang-Run; Bi, Yi

    2011-09-01

    The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time-dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.

  5. Semi-actuator disk theory for compressor choke flutter

    NASA Technical Reports Server (NTRS)

    Micklow, J.; Jeffers, J.

    1981-01-01

    A mathematical anaysis predict the unsteady aerodynamic utilizing semi actuator theory environment for a cascade of airfoils harmonically oscillating in choked flow was developed. A normal shock is located in the blade passage, its position depending on the time dependent geometry, and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade. Calculated unsteady aerodynamics were compared with isolated airfoil wind tunnel data, and choke flutter onset boundaries were compared with data from testing of an F100 high pressure compressor stage.

  6. Expansion tube test time predictions

    NASA Technical Reports Server (NTRS)

    Gourlay, Christopher M.

    1988-01-01

    The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.

  7. A negative feedback mechanism for the long-term stabilization of the earth's surface temperature

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Hays, P. B.; Kasting, J. F.

    1981-01-01

    It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

  8. PBX 9502 Gas Generation Progress Report FY17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Matthew David; Erickson, Michael Andrew Englert

    The self-ignition (“cookoff”) behavior of PBX 9502 depends on the dynamic evolution of gas permeability and physical damage in the material. The time-resolved measurement of product gas generation yields insight regarding the crucial properties that dominate cookoff behavior. We report on small-scale laboratory testing performed in FY17, in which small unconfined samples of PBX 9502 were heated in a small custom-built sealed pressure vessel to self-ignition. We recorded time-lapse video of the evolving physical changes in the sample, quasi-static long-duration pressure rise, then high-speed video and dynamic pressure rise of the cookoff event. We report the full pressure attained duringmore » the cookoff of a 1.02g sample in a free volume of 62.5 cm 3.« less

  9. Postextrasystolic potentiation and contractile reserve: requirements and restrictions.

    PubMed

    Lust, R M; Lutherer, L O; Gardner, M E; Cooper, M W

    1982-12-01

    These studies were conducted to examine the basic characteristics of postextrasystolic potentiation (PESP) and the relationship of loading effects to PESP. Measurements of left ventricular (LV) and aortic pressures, the rate of pressure rise, and echocardiographically determined LV dimensions were made in anesthetized open-chest dogs. The hearts were paced, and timed extrasystoles were introduced that were followed by postextrasystoles (PES). PES's were elicited after an interval equal to either a full compensatory pause or a time when the diastolic properties of the LV could not be distinguished from control (isolength). Potentiation of contraction for the PES's introduced after an isolength pause was dependent on both the heart rate and the extrasystolic interval, whereas the PES's that occurred after a full pause showed no dependence on either of these intervals. PESP elicited during the isolength period was not dependent on either preload and afterload. It is concluded that PESP depends on the combination of heart rate and extrasystolic and postextrasystolic intervals. Further, PESP may be inaccurate in assessing contractile reserve unless the heart rate and extrasystolic interval are known and the PES is introduced after an isolength pause.

  10. A fault constitutive relation accounting for thermal pressurization of pore fluid

    USGS Publications Warehouse

    Andrews, D.J.

    2002-01-01

    The heat generated in a slip zone during an earthquake can raise fluid pressure and thereby reduce frictional resistance to slip. The amount of fluid pressure rise depends on the associated fluid flow. The heat generated at a given time produces fluid pressure that decreases inversely with the square root of hydraulic diffusivity times the elapsed time. If the slip velocity function is crack-like, there is a prompt fluid pressure rise at the onset of slip, followed by a slower increase. The stress drop associated with the prompt fluid pressure rise increases with rupture propagation distance. The threshold propagation distance at which thermally induced stress drop starts to dominate over frictionally induced stress drop is proportional to hydraulic diffusivity. If hydraulic diffusivity is 0.02 m2/s, estimated from borehole samples of fault zone material, the threshold propagation distance is 300 m. The stress wave in an earthquake will induce an unknown amount of dilatancy and will increase hydraulic diffusivity, both of which will lessen the fluid pressure effect. Nevertheless, if hydraulic diffusivity is no more than two orders of magnitude larger than the laboratory value, then stress drop is complete in large earthquakes.

  11. Pressure-Dependent Detection of Carbon Monoxide Employing Wavelength Modulation Spectroscopy Using a Herriott-Type Cell.

    PubMed

    Li, Chuanliang; Wu, Yingfa; Qiu, Xuanbing; Wei, Jilin; Deng, Lunhua

    2017-05-01

    Wavelength modulation spectroscopy (WMS) combined with a multipass absorption cell has been used to measure a weak absorption line of carbon monoxide (CO) at 1.578 µm. A 0.95m Herriott-type cell provides an effective absorption path length of 55.1 m. The WMS signals from the first and second harmonic output of a lock-in amplifier (WMS-1 f and 2 f, respectively) agree with the Beer-Lambert law, especially at low concentrations. After boxcar averaging, the minimum detection limit achieved is 4.3 ppm for a measurement time of 0.125 s. The corresponding normalized detection limit is 84 ppm m Hz -1/2 . If the integrated time is increased to 88 s, the minimum detectable limit of CO can reach to 0.29 ppm based on an Allan variation analysis. The pressure-dependent relationship is validated after accounting for the pressure factor in data processing. Finally, a linear correlation between the WMS-2 f amplitudes and gas concentrations is obtained at concentration ratios less than 15.5%, and the accuracy is better than 92% at total pressure less than 62.7 Torr.

  12. Thermodynamic evaluation of transonic compressor rotors using the finite volume approach

    NASA Technical Reports Server (NTRS)

    Moore, J.; Nicholson, S.; Moore, J. G.

    1985-01-01

    Research at NASA Lewis Research Center gave the opportunity to incorporate new control volumes in the Denton 3-D finite-volume time marching code. For duct flows, the new control volumes require no transverse smoothing and this allows calculations with large transverse gradients in properties without significant numerical total pressure losses. Possibilities for improving the Denton code to obtain better distributions of properties through shocks were demonstrated. Much better total pressure distributions through shocks are obtained when the interpolated effective pressure, needed to stabilize the solution procedure, is used to calculate the total pressure. This simple change largely eliminates the undershoot in total pressure down-stream of a shock. Overshoots and undershoots in total pressure can then be further reduced by a factor of 10 by adopting the effective density method, rather than the effective pressure method. Use of a Mach number dependent interpolation scheme for pressure then removes the overshoot in static pressure downstream of a shock. The stability of interpolation schemes used for the calculation of effective density is analyzed and a Mach number dependent scheme is developed, combining the advantages of the correct perfect gas equation for subsonic flow with the stability of 2-point and 3-point interpolation schemes for supersonic flow.

  13. The Gassmann-Burgers Model to Simulate Seismic Waves at the Earth Crust And Mantle

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Craglietto, Aronne

    2017-03-01

    The upper part of the crust shows generally brittle behaviour while deeper zones, including the mantle, may present ductile behaviour, depending on the pressure-temperature conditions; moreover, some parts are melted. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, such that very small effective pressures (the presence of overpressured fluids) may substantially decrease the P- and S-wave velocities, mainly the latter, by opening of cracks and weakening of grain contacts. Similarly, high temperatures induce the same effect by partial melting. To model these effects, we consider a poro-viscoelastic model based on Gassmann equations and Burgers mechanical model to represent the properties of the rock frame and describe ductility in which deformation takes place by shear plastic flow. The Burgers elements allow us to model the effects of seismic attenuation, velocity dispersion and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water and steam) are modeled using the equations provided by the NIST website, including supercritical behaviour. The theory allows us to obtain the phase velocity and quality factor as a function of depth and geological pressure and temperature as well as time frequency. We then obtain the PS and SH equations of motion recast in the velocity-stress formulation, including memory variables to avoid the computation of time convolutions. The equations correspond to isotropic anelastic and inhomogeneous media and are solved by a direct grid method based on the Runge-Kutta time stepping technique and the Fourier pseudospectral method. The algorithm is tested with success against known analytical solutions for different shear viscosities. An example shows how anomalous conditions of pressure and temperature can in principle be detected with seismic waves.

  14. A study on the unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel: A numerical approach

    NASA Astrophysics Data System (ADS)

    Devakar, M.; Raje, Ankush

    2018-05-01

    The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.

  15. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue.

    PubMed

    Kelly, Nicola; McGarry, J Patrick

    2012-05-01

    The inelastic pressure dependent compressive behaviour of bovine trabecular bone is investigated through experimental and computational analysis. Two loading configurations are implemented, uniaxial and confined compression, providing two distinct loading paths in the von Mises-pressure stress plane. Experimental results reveal distinctive yielding followed by a constant nominal stress plateau for both uniaxial and confined compression. Computational simulation of the experimental tests using the Drucker-Prager and Mohr-Coulomb plasticity models fails to capture the confined compression behaviour of trabecular bone. The high pressure developed during confined compression does not result in plastic deformation using these formulations, and a near elastic response is computed. In contrast, the crushable foam plasticity models provide accurate simulation of the confined compression tests, with distinctive yield and plateau behaviour being predicted. The elliptical yield surfaces of the crushable foam formulations in the von Mises-pressure stress plane accurately characterise the plastic behaviour of trabecular bone. Results reveal that the hydrostatic yield stress is equal to the uniaxial yield stress for trabecular bone, demonstrating the importance of accurate characterisation and simulation of the pressure dependent plasticity. It is also demonstrated in this study that a commercially available trabecular bone analogue material, cellular rigid polyurethane foam, exhibits similar pressure dependent yield behaviour, despite having a lower stiffness and strength than trabecular bone. This study provides a novel insight into the pressure dependent yield behaviour of trabecular bone, demonstrating the inadequacy of uniaxial testing alone. For the first time, crushable foam plasticity formulations are implemented for trabecular bone. The enhanced understanding of the inelastic behaviour of trabecular bone established in this study will allow for more realistic simulation of orthopaedic device implantation and failure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Numerical Study of Pressure Fluctuations due to a Mach 6 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2013-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub t) approx. =. 464. The emphasis is on comparing the primarily vortical pressure signal at the wall with the acoustic freestream signal under higher Mach number conditions. Moreover, the Mach-number dependence of pressure signals is demonstrated by comparing the current results with those of a supersonic boundary layer at Mach 2.5 and Re(sub t) approx. = 510. It is found that the freestream pressure intensity exhibits a strong Mach number dependence, irrespective of whether it is normalized by the mean wall shear stress or by the mean pressure, with the normalized fluctuation amplitude being significantly larger for the Mach 6 case. Spectral analysis shows that both the wall and freestream pressure fluctuations of the Mach 6 boundary layer have enhanced energy content at high frequencies, with the peak of the premultiplied frequency spectrum of freestream pressure fluctuations being at a frequency of omega(delta)/U(sub infinity) approx. = 3.1, which is more than twice the corresponding frequency in the Mach 2.5 case. The space-time correlations indicate that the pressure-carrying eddies for the higher Mach number case are of smaller size, less elongated in the spanwise direction, and convect with higher convection speeds relative to the Mach 2.5 case. The demonstrated Mach-number dependence of the pressure field, including radiation intensity, directionality, and convection speed, is consistent with the trend exhibited in experimental data and can be qualitatively explained by the notion of "eddy Mach wave" radiation.

  17. Numerical calculations of velocity and pressure distribution around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.; Kobiske, M.

    1974-01-01

    An analytical procedure based on the Navier-Stokes equations was developed for analyzing and representing properties of unsteady viscous flow around oscillating obstacles. A variational formulation of the vorticity transport equation was discretized in finite element form and integrated numerically. At each time step of the numerical integration, the velocity field around the obstacle was determined for the instantaneous vorticity distribution from the finite element solution of Poisson's equation. The time-dependent boundary conditions around the oscillating obstacle were introduced as external constraints, using the Lagrangian Multiplier Technique, at each time step of the numerical integration. The procedure was then applied for determining pressures around obstacles oscillating in unsteady flow. The obtained results for a cylinder and an airfoil were illustrated in the form of streamlines and vorticity and pressure distributions.

  18. The effect of orthostatic stress on multiscale entropy of heart rate and blood pressure.

    PubMed

    Turianikova, Zuzana; Javorka, Kamil; Baumert, Mathias; Calkovska, Andrea; Javorka, Michal

    2011-09-01

    Cardiovascular control acts over multiple time scales, which introduces a significant amount of complexity to heart rate and blood pressure time series. Multiscale entropy (MSE) analysis has been developed to quantify the complexity of a time series over multiple time scales. In previous studies, MSE analyses identified impaired cardiovascular control and increased cardiovascular risk in various pathological conditions. Despite the increasing acceptance of the MSE technique in clinical research, information underpinning the involvement of the autonomic nervous system in the MSE of heart rate and blood pressure is lacking. The objective of this study is to investigate the effect of orthostatic challenge on the MSE of heart rate and blood pressure variability (HRV, BPV) and the correlation between MSE (complexity measures) and traditional linear (time and frequency domain) measures. MSE analysis of HRV and BPV was performed in 28 healthy young subjects on 1000 consecutive heart beats in the supine and standing positions. Sample entropy values were assessed on scales of 1-10. We found that MSE of heart rate and blood pressure signals is sensitive to changes in autonomic balance caused by postural change from the supine to the standing position. The effect of orthostatic challenge on heart rate and blood pressure complexity depended on the time scale under investigation. Entropy values did not correlate with the mean values of heart rate and blood pressure and showed only weak correlations with linear HRV and BPV measures. In conclusion, the MSE analysis of heart rate and blood pressure provides a sensitive tool to detect changes in autonomic balance as induced by postural change.

  19. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  20. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  1. Retirement investment theory explains patterns in songbird nest-site choice

    USGS Publications Warehouse

    Streby, Henry M.; Refsnider, Jeanine M.; Peterson, Sean M.; Andersen, David E.

    2014-01-01

    When opposing evolutionary selection pressures act on a behavioural trait, the result is often stabilizing selection for an intermediate optimal phenotype, with deviations from the predicted optimum attributed to tracking a moving target, development of behavioural syndromes or shifts in riskiness over an individual's lifetime. We investigated nest-site choice by female golden-winged warblers, and the selection pressures acting on that choice by two fitness components, nest success and fledgling survival. We observed strong and consistent opposing selection pressures on nest-site choice for maximizing these two fitness components, and an abrupt, within-season switch in the fitness component birds prioritize via nest-site choice, dependent on the time remaining for additional nesting attempts. We found that females consistently deviated from the predicted optimal behaviour when choosing nest sites because they can make multiple attempts at one fitness component, nest success, but only one attempt at the subsequent component, fledgling survival. Our results demonstrate a unique natural strategy for balancing opposing selection pressures to maximize total fitness. This time-dependent switch from high to low risk tolerance in nest-site choice maximizes songbird fitness in the same way a well-timed switch in human investor risk tolerance can maximize one's nest egg at retirement. Our results also provide strong evidence for the adaptive nature of songbird nest-site choice, which we suggest has been elusive primarily due to a lack of consideration for fledgling survival.

  2. The Seismic Velocity In Gas-charged Magma

    NASA Astrophysics Data System (ADS)

    Sturton, S.; Neuberg, J. W.

    2001-12-01

    Long-period and hybrid events, seen at the Soufrière Hills Volcano, Montserrat, show dominant low frequency content suggesting the seismic wavefield is formed as a result of interface waves at the boundary between a fluid and a solid medium. This wavefield will depend on the impedance contrast between the two media and therefore the difference in seismic velocity. For a gas-charged magma, increasing pressure with depth reduces the volume of gas exsolved, increasing the seismic velocity with depth in the conduit. The seismic radiation pattern along the conduit can then be modelled. Where single events merge into tremor, gliding lines can sometimes be seen in the spectra and indicate either changes in the seismic parameters with time or varying triggering rates of single events.The differential equation describing the time dependence of bubble growth by diffusion is solved numerically for a stationary magma column undergoing a decompression event. The volume of gas is depth dependent and increases with time as the bubbles grow and expand. It is used to calculate the depth and time dependence of the density, pressure and seismic velocity. The effect of different viscosities associated with different magma types and concentration of water in the melt on the rate of bubble growth is explored. Crystal growth, which increases the concentration of water in the melt, affects the amount of gas that can be exsolved.

  3. Monitoring the impact of pressure on the assessment of skin perfusion and oxygenation using a novel pressure device

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica C.; Ho, Thuan; Le, Du; Ghassemi, Pejhman; Nguyen, Thu; Lichy, Alison; Groah, Suzanne

    2013-03-01

    Skin perfusion and oxygenation is easily disrupted by imposed pressure. Fiber optics probes, particularly those spectroscopy or Doppler based, may relay misleading information about tissue microcirculation dynamics depending on external forces on the sensor. Such forces could be caused by something as simple as tape used to secure the fiber probe to the test subject, or as in our studies by the full weight of a patient with spinal cord injury (SCI) sitting on the probe. We are conducting a study on patients with SCI conducting pressure relief maneuvers in their wheelchairs. This study aims to provide experimental evidence of the optimal timing between pressure relief maneuvers. We have devised a wireless pressure-controlling device; a pressure sensor positioned on a compression aluminum plate reads the imposed pressure in real time and sends the information to a feedback system controlling two position actuators. The actuators move accordingly to maintain a preset value of pressure onto the sample. This apparatus was used to monitor the effect of increasing values of pressure on spectroscopic fiber probes built to monitor tissue oxygenation and Doppler probes used to assess tissue perfusion.

  4. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  5. The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm

    NASA Astrophysics Data System (ADS)

    Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.

  6. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    NASA Astrophysics Data System (ADS)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  7. Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow

    PubMed Central

    Zhuang, Luwen; Qin, Chao‐Zhong; de Waal, Arjen

    2017-01-01

    Abstract The difference between average pressures of two immiscible fluids is commonly assumed to be the same as macroscopic capillary pressure, which is considered to be a function of saturation only. However, under transient conditions, a dependence of this pressure difference on the time rate of saturation change has been observed by many researchers. This is commonly referred to as dynamic capillarity effect. As a first‐order approximation, the dynamic term is assumed to be linearly dependent on the time rate of change of saturation, through a material coefficient denoted by τ. In this study, a series of laboratory experiments were carried out to quantify the dynamic capillarity effect in an unsaturated sandy soil. Primary, main, and scanning drainage experiments, under both static and dynamic conditions, were performed on a sandy soil in a small cell. The value of the dynamic capillarity coefficient τ was calculated from the air‐water pressure differences and average saturation values during static and dynamic drainage experiments. We found a dependence of τ on saturation, which showed a similar trend for all drainage conditions. However, at any given saturation, the value of τ for primary drainage was larger than the value for main drainage and that was in turn larger than the value for scanning drainage. Each data set was fit a simple log‐linear equation, with different values of fitting parameters. This nonuniqueness of the relationship between τ and saturation and possible causes is discussed. PMID:29398729

  8. Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow

    NASA Astrophysics Data System (ADS)

    Zhuang, Luwen; Hassanizadeh, S. Majid; Qin, Chao-Zhong; de Waal, Arjen

    2017-11-01

    The difference between average pressures of two immiscible fluids is commonly assumed to be the same as macroscopic capillary pressure, which is considered to be a function of saturation only. However, under transient conditions, a dependence of this pressure difference on the time rate of saturation change has been observed by many researchers. This is commonly referred to as dynamic capillarity effect. As a first-order approximation, the dynamic term is assumed to be linearly dependent on the time rate of change of saturation, through a material coefficient denoted by τ. In this study, a series of laboratory experiments were carried out to quantify the dynamic capillarity effect in an unsaturated sandy soil. Primary, main, and scanning drainage experiments, under both static and dynamic conditions, were performed on a sandy soil in a small cell. The value of the dynamic capillarity coefficient τ was calculated from the air-water pressure differences and average saturation values during static and dynamic drainage experiments. We found a dependence of τ on saturation, which showed a similar trend for all drainage conditions. However, at any given saturation, the value of τ for primary drainage was larger than the value for main drainage and that was in turn larger than the value for scanning drainage. Each data set was fit a simple log-linear equation, with different values of fitting parameters. This nonuniqueness of the relationship between τ and saturation and possible causes is discussed.

  9. Options for Dealing with Pressure Dependence of Pulse Wave Velocity as a Measure of Arterial Stiffness: An Update of Cardio-Ankle Vascular Index (CAVI) and CAVI0.

    PubMed

    Spronck, Bart; Delhaas, Tammo; Butlin, Mark; Reesink, Koen D; Avolio, Alberto P

    2018-03-01

    Pulse wave velocity (PWV), a marker of arterial stiffness, is known to change instantaneously with changes in blood pressure. In this mini-review, we discuss two main approaches for handling the blood pressure dependence of PWV: (1) converting PWV into a pressure-independent index, and (2) correcting PWV per se for the pressure dependence. Under option 1, we focus on cardio-ankle vascular index (CAVI). CAVI is essentially a form of stiffness index β - CAVI is estimated for a (heart-to-ankle) trajectory, whereas β is estimated for a single artery from pressure and diameter measurements. Stiffness index β, and therefore also CAVI, have been shown to theoretically exhibit a slight residual blood pressure dependence due to the use of diastolic blood pressure instead of a fixed reference blood pressure. Additionally, CAVI exhibits pressure dependence due to the use of an estimated derivative of the pressure-diameter relationship. In this mini-review, we will address CAVI's blood pressure dependence theoretically, but also statistically. Furthermore, we review corrected indices (CAVI 0 and β 0 ) that theoretically do not show a residual blood pressure dependence. Under option 2, three ways of correcting PWV are reviewed: (1) using an exponential relationship between pressure and cross-sectional area, (2) by statistical model adjustment, and (3) through reference values or rule of thumb. Method 2 requires a population to be studied to characterise the statistical model, and method 3 requires a representative reference study. Given these limitations, method 1 seems preferable for correcting PWV per se for its blood pressure dependence. In summary, several options are available to handle the blood pressure dependence of PWV. If a blood pressure-independent index is sought, CAVI 0 is theoretically preferable over CAVI. If correcting PWV per se is required, using an exponential pressure-area relationship provides the user with a method to correct PWV on an individual basis.

  10. Experimental evaluation of the pressure and temperature dependence of ion-induced nucleation.

    PubMed

    Munir, Muhammad Miftahul; Suhendi, Asep; Ogi, Takashi; Iskandar, Ferry; Okuyama, Kikuo

    2010-09-28

    An experimental system for the study of ion-induced nucleation in a SO(2)/H(2)O/N(2) gas mixture was developed, employing a soft x-ray at different pressure and temperature levels. The difficulties associated with these experiments included the changes in physical properties of the gas mixture when temperature and pressure were varied. Changes in the relative humidity (RH) as a function of pressure and temperature also had a significant effect on the different behaviors of the mobility distributions of particles. In order to accomplish reliable measurement and minimize uncertainties, an integrated on-line control system was utilized. As the pressure decreased in a range of 500-980 hPa, the peak concentration of both ions and nanometer-sized particles decreased, which suggests that higher pressure tended to enhance the growth of particles nucleated by ion-induced nucleation. Moreover, the modal diameters of the measured particle size distributions showed a systematic shift to larger sizes with increasing pressure. However, in the temperature range of 5-20 °C, temperature increases had no significant effects on the mobility distribution of particles. The effects of residence time, RH (7%-70%), and SO(2) concentration (0.08-6.7 ppm) on ion-induced nucleation were also systematically investigated. The results show that the nucleation and growth were significantly dependent on the residence time, RH, and SO(2) concentration, which is in agreement with both a previous model and previous observations. This research will be inevitable for a better understanding of the role of ions in an atmospheric nucleation mechanism.

  11. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  12. Microinjection of acetylcholine into cerebellar fastigial nucleus induces blood depressor response in anesthetized rats.

    PubMed

    Zhang, Changzheng; Luo, Wen; Zhou, Peiling; Sun, Tingzhe

    2016-08-26

    It is well known that the cerebellar fastigial nucleus (FN) is involved in cardiovascular modulation, and has direct evidence of cholinergic activity; however, whether and how acetylcholine (ACh) in the FN modulates blood pressure has not been investigated. In this study, we analyzed mean arterial pressure, maximal change in mean arterial pressure, and the reaction time of blood pressure changes after microinjection of cholinergic reagents into the FN in anesthetized rats. The results showed that ACh evoked a concentration-dependent (10, 30 and 100mM) effect on blood pressure down-regulation. The muscarinic ACh (mACh) receptor antagonist atropine, but not the nicotinic ACh (nACh) receptor antagonist mecamylamine, blocked the ACh-mediated depressor response. The mACh receptor agonist oxotremorine M, rather than nACh receptor agonist nicotine, mimicked the ACh-mediated blood pressure decrease in a dose-dependent manner (10, 30 and 100mM). These results indicate that cholinergic input in the cerebellar FN exerts a depressor effect on systemic blood pressure regulation, and such effects are substantially contributed by mACh rather than nACh receptors, although the precise mechanism concerning the role of mACh receptor in FN-mediated blood pressure modulation remains to be elucidated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    PubMed

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  15. The judgment of the All-melted-moment during using electron beam melting equipment to purify silicon

    NASA Astrophysics Data System (ADS)

    Han, Xiaojie; Meng, Jianxiong; Wang, Shuaiye; Jiang, Tonghao; Wang, Feng; Tan, Yi; Jiang, Dachuan

    2017-06-01

    Experiment has proved that the rate of impurity removal depends on the pressure and the temperature of the vacuum chamber during using electron beam to smelt silicon, and the amount of removed-impurity depends on time when other conditions are the same. In the actual production process, smelting time is a decisive factor of impurity removal amount while pressure and temperature of the vacuum chamber is certain due to a certain melting power. To avoiding the influence of human control and improving the quality of production, thinking of using cooling water temperature to estimate the state of material during metal smelting is considered. We try to use the change of cooling water temperature to judge that when silicon is all melted and to evaluate the effectiveness of this method.

  16. Pressure spectra from single-snapshot tomographic PIV

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio

    2018-03-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV and the microphone reference data. The VIC-based approach, on the other hand, returns results on the order of the reference.

  17. How does information congruence influence diagnosis performance?

    PubMed

    Chen, Kejin; Li, Zhizhong

    2015-01-01

    Diagnosis performance is critical for the safety of high-consequence industrial systems. It depends highly on the information provided, perceived, interpreted and integrated by operators. This article examines the influence of information congruence (congruent information vs. conflicting information vs. missing information) and its interaction with time pressure (high vs. low) on diagnosis performance on a simulated platform. The experimental results reveal that the participants confronted with conflicting information spent significantly more time generating correct hypotheses and rated the results with lower probability values than when confronted with the other two levels of information congruence and were more prone to arrive at a wrong diagnosis result than when they were provided with congruent information. This finding stresses the importance of the proper processing of non-congruent information in safety-critical systems. Time pressure significantly influenced display switching frequency and completion time. This result indicates the decisive role of time pressure. Practitioner Summary: This article examines the influence of information congruence and its interaction with time pressure on human diagnosis performance on a simulated platform. For complex systems in the process control industry, the results stress the importance of the proper processing of non-congruent information in safety-critical systems.

  18. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  19. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  20. Estimating maximum instantaneous distortion from inlet total pressure rms and PSD measurements. [Root Mean Square and Power Spectral Density methods

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.

    1975-01-01

    An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.

  1. The effects of a decompression on seismic parameter profiles in a gas-charged magma

    NASA Astrophysics Data System (ADS)

    Sturton, Susan; Neuberg, Jürgen

    2003-11-01

    Seismic velocities in a gas-charged magma vary with depth and time. Relationships between pressure, density, exsolved gas content, and seismic velocity are derived and used in conjunction with expressions describing diffusive bubble growth to find a series of velocity profiles which depend on time. An equilibrium solution is obtained by considering a column of magma in which the gas distribution corresponds to the magmastatic pressure profile with depth. Decompression events of various sizes are simulated, and the resulting disequilibrium between the gas pressure and magmastatic pressure leads to bubble growth and therefore to a change of seismic velocity and density with time. Bubble growth stops when the system reaches a new equilibrium. The corresponding volume increase is accommodated by accelerating the magma column upwards and an extrusion of lava. A timescale for the system to return to equilibrium can be obtained. The effect of changes in magma viscosity and bubble number density is examined.

  2. Evaluating the time and temperature dependent biaxial strength of Gore-Select ® series 57 proton exchange membrane using a pressure loaded blister test

    NASA Astrophysics Data System (ADS)

    Grohs, Jacob R.; Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.

    Temperature and humidity fluctuations in operating fuel cells impose significant biaxial stresses in the constrained proton exchange membranes (PEMs) of a fuel cell stack. The strength of the PEM, and its ability to withstand cyclic environment-induced stresses, plays an important role in membrane integrity and consequently, fuel cell durability. In this study, a pressure loaded blister test is used to characterize the biaxial strength of Gore-Select ® series 57 over a range of times and temperatures. Hencky's classical solution for a pressurized circular membrane is used to estimate biaxial strength values from burst pressure measurements. A hereditary integral is employed to construct the linear viscoelastic analog to Hencky's linear elastic exact solution. Biaxial strength master curves are constructed using traditional time-temperature superposition principle techniques and the associated temperature shift factors show good agreement with shift factors obtained from constitutive (stress relaxation) and fracture (knife slit) tests of the material.

  3. Wave Reflection and Central Aortic Pressure Are Increased in Response to Static and Dynamic Muscle Contraction at Comparable Workloads

    DTIC Science & Technology

    2008-02-01

    pulse pressures are lower in the aorta than in the arms and legs where they are amplified to varying degrees depending on elasticity and distance to...index (STI), diastolic pressure-time index ( DTI ), and subendocardial viability ratio (SEVR). The STI, or area under the systolic portion of the curve...has been shown to be related to systolic load or the work of the heart and oxygen consumption, and DTI , or area under the diastolic portion of the

  4. A root-mean-square pressure fluctuations model for internal flow applications

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1985-01-01

    A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.

  5. TRUMP; transient and steady state temperature distribution. [IBM360,370; CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, andmore » among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.IBM360,370;CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC); OS/360 (IBM360), OS/370 (IBM370), SCOPE 2.1.5 (CDC7600); As dimensioned, the program requires 400K bytes of storage on an IBM370 and 145,100 (octal) words on a CDC7600.« less

  6. Simulation of the Solar Wind Dynamic Pressure Increase in 2014 and Its Effect on Energetic Neutral Atom Fluxes from the Heliosphere

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Heerikhuisen, J.; McComas, D. J.; Pogorelov, N. V.; Reisenfeld, D. B.; Szalay, J. R.

    2018-06-01

    In late 2014, the solar wind dynamic pressure increased by ∼50% over a relatively short time (∼6 months). In early 2017, the Interstellar Boundary Explorer (IBEX) observed an increase in heliospheric energetic neutral atom (ENA) fluxes from directions near the front of the heliosphere. These enhanced ENA emissions resulted from the increase in SW pressure propagating through the inner heliosheath (IHS), affecting the IHS plasma pressure and emission of ∼keV ENA fluxes. We expand on the analysis by McComas et al. on the effects of this pressure change on ENA fluxes observed at 1 au using a three-dimensional, time-dependent simulation of the heliosphere. The pressure front has likely already crossed the termination shock (TS) in all directions, but ENA fluxes observed at 1 au will change over the coming years, as the TS, heliopause, and IHS plasma pressure continue to change in response to the SW pressure increase. Taken in isolation, the pressure front creates a “ring” of increasing ENA fluxes projected in the sky that expands in angular radius over time, as a function of the distances to the heliosphere boundaries and the ENA propagation speed. By tracking the position of this ring over time in our simulation, we demonstrate a method for estimating the distances to the TS, heliopause, and ENA source region that can be applied to IBEX data. This will require IBEX observations at 4.3 keV up through ∼2020, and longer times at lower ENA energies, in order to observe significant changes from the heliotail.

  7. High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, A.; Cardinal Stefan Wyszynski University, College of Science, Department of Mathematics and Natural Sciences, Dewajtis 5, 01-815 Warsaw; Jankowski, D.

    High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with ab initio calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electricmore » field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.« less

  8. Study of Defect Levels in InAs/InAsSb Type-II Superlattice Using Pressure-Dependent Photoluminescence

    DTIC Science & Technology

    2015-07-07

    pressure is confirmed from power dependent PL measurements. We also examined the thermal activation energies at ambient pressure and close to the...with pressure is confirmed from power dependent PL measurements. We also examined the thermal activation energies at ambient pressure and close to...We also examined the thermal activation energies at ambient pressure and close to the crossover pressure. These results support and are consistent

  9. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing.

    PubMed

    Baicu, Catalin F; Li, Jiayu; Zhang, Yuhua; Kasiganesan, Harinath; Cooper, George; Zile, Michael R; Bradshaw, Amy D

    2012-11-01

    Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function.

  10. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast postsynthetic procollagen processing

    PubMed Central

    Baicu, Catalin F.; Li, Jiayu; Zhang, Yuhua; Kasiganesan, Harinath; Cooper, George; Zile, Michael R.

    2012-01-01

    Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function. PMID:22942178

  11. Pressure evolution equation for the particulate phase in inhomogeneous compressible disperse multiphase flows

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Balachandar, S.; Sridharan, P.; Jackson, T. L.

    2017-02-01

    An analytical expression describing the unsteady pressure evolution of the dispersed phase driven by variations in the carrier phase is presented. In this article, the term "dispersed phase" represents rigid particles, droplets, or bubbles. Letting both the dispersed and continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure equation describes the particle response and its eventual equilibration with that of the carrier fluid. The study involves impingement of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure calculation due to a single wave. The ambient or continuous fluid's pressure and density-weighted normal velocity are identified as the source terms governing the particle pressure. Analogous to the generalized Faxén theorem, which is applicable to the particle equation of motion, the pressure expression is also written in terms of the surface average of time-varying incoming flow properties. The surface average allows the current formulation to be generalized for any complex incident flow, including situations where the particle size is comparable to that of the incoming flow. Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to predict the unsteady pressure variation inside an aluminum particle subjected to normal shock waves. The results are compared against numerical simulations and found to be in good agreement. Furthermore, it is shown that, although the analysis is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dispersed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an equation describing the time-dependent particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the linear limit.

  12. Mathematics of Ventilator-induced Lung Injury.

    PubMed

    Rahaman, Ubaidur

    2017-08-01

    Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.

  13. Feasibility of controlling speed-dependent low-frequency brake vibration amplification by modulating actuation pressure

    NASA Astrophysics Data System (ADS)

    Sen, Osman Taha; Dreyer, Jason T.; Singh, Rajendra

    2014-12-01

    In this article, a feasibility study of controlling the low frequency torque response of a disc brake system with modulated actuation pressure (in the open loop mode) is conducted. First, a quasi-linear model of the torsional system is introduced, and analytical solutions are proposed to incorporate the modulation effect. Tractable expressions for three different modulation schemes are obtained, and conditions that would lead to a reduction in the oscillatory amplitudes are identified. Second, these conditions are evaluated with a numerical model of the torsional system with clearance nonlinearity, and analytical solutions are verified in terms of the trends observed. Finally, a laboratory experiment with a solenoid valve is built to modulate actuation pressure with a constant duty cycle, and time-frequency domain data are acquired. Measurements are utilized to assess analytical observations, and all methods show that the speed-dependent brake torque amplitudes can be altered with an appropriate modulation of actuation pressure.

  14. All about Orthodontia

    MedlinePlus

    ... custom made and worn for specified amounts of time. These appliances exert pressure on the malpositioned teeth and move them gradually into their correct position. How long each appliance in the series must be worn depends on the individual treatment ...

  15. Quantitative measurement of channel-block hydraulic interactions by experimental saturation of a large, natural, fissured rock mass.

    PubMed

    Guglielmi, Y; Mudry, J

    2001-01-01

    The hydrodynamic behavior of fissured media relies on the relationships between a few very conductive fractures (channels) and the remaining low-conductivity fractures and matrix (blocks). We made a quantitative measurement of those relationships and their effect on water drainage and storage in a 19,000 m3 natural reservoir consisting of karstified limestones. This reservoir was artificially saturated with water by closing a water gate on the main outlet during a varying time (delta t) fixed by the operator. The water gate was completely or partly closed until the water pressure reached a particular specified value. If the water gate was left completely closed long enough, the water pressure was fixed by the elevation of temporary outlets at the site boundaries. The water elevation within the reservoir was monitored by means of pressure cells located on single fractures representative of the bedding plane and the two families of fractures of the massif network. The comparison of pressure variations with the network geometry allows us to identify a typical double permeability characterized by a few very conductive channels along 10 vertical faults. These channels limit blocks consisting of low-conductivity bedding planes and a rather impervious matrix. Depending on the closure interval, delta t, of the water gate, the total volume of water stored in the reservoir can vary from 0.8 m3 (delta t = 5 minutes) to 18.6 m3 (delta t = 2 days). Such a variance of storage versus closure time is explained by the reservoir's double permeability that is characterized by blocks that saturate much more slowly than channels. If plotted versus time, this injected volume fits a power relationship, according to the saturation state of the blocks. In less than 34 minutes, storage is close to zero in the blocks and to 1.6 to 2 m3 in the channels. For closing times shorter than 1 hour, only 1% of the volume that flows in the channels is stored into the blocks. Depending on the water pressure and for a given delta t = 3000 minutes, the volume of water stored is controlled by the geometry of the joint network and of the aquifer boundaries. Such an experiment shows that the flow is concentrated in about 10% of the fractured network (channels). The water storage that takes place in the 90% remaining fractures (blocks) depends mainly on time during which pressure remains high into the 10% channels. The accurate modeling of such typical double-permeability media needs a careful study of the geometry of the channels whose narrowings modify the flow and induce dam effects that maintain a high pressure gradient with surrounding blocks.

  16. Earliest effects of sudden occlusions on pressure profiles in selected locations of the human systemic arterial system

    NASA Astrophysics Data System (ADS)

    Majka, Marcin; Gadda, Giacomo; Taibi, Angelo; Gałązka, Mirosław; Zieliński, Piotr

    2017-03-01

    We have developed a numerical simulation method for predicting the time dependence (wave form) of pressure at any location in the systemic arterial system in humans. The method uses the matlab-Simulink environment. The input data include explicitly the geometry of the arterial tree, treated up to an arbitrary bifurcation level, and the elastic properties of arteries as well as rheological parameters of blood. Thus, the impact of anatomic details of an individual subject can be studied. The method is applied here to reveal the earliest stages of mechanical reaction of the pressure profiles to sudden local blockages (thromboses or embolisms) of selected arteries. The results obtained with a purely passive model provide reference data indispensable for studies of longer-term effects due to neural and humoral mechanisms. The reliability of the results has been checked by comparison of two available sets of anatomic, elastic, and rheological data involving (i) 55 and (ii) 138 arterial segments. The remaining arteries have been replaced with the appropriate resistive elements. Both models are efficient in predicting an overall shift of pressure, whereas the accuracy of the 55-segment model in reproducing the detailed wave forms and stabilization times turns out dependent on the location of the blockage and the observation point.

  17. Effect of non-linear fluid pressure diffusion on modeling induced seismicity during reservoir stimulation

    NASA Astrophysics Data System (ADS)

    Gischig, V.; Goertz-Allmann, B. P.; Bachmann, C. E.; Wiemer, S.

    2012-04-01

    Success of future enhanced geothermal systems relies on an appropriate pre-estimate of seismic risk associated with fluid injection at high pressure. A forward-model based on a semi-stochastic approach was created, which is able to compute synthetic earthquake catalogues. It proved to be able to reproduce characteristics of the seismic cloud detected during the geothermal project in Basel (Switzerland), such as radial dependence of stress drop and b-values as well as higher probability of large magnitude earthquakes (M>3) after shut-in. The modeling strategy relies on a simplistic fluid pressure model used to trigger failure points (so-called seeds) that are randomly distributed around an injection well. The seed points are assigned principal stress magnitudes drawn from Gaussian distributions representative of the ambient stress field. Once the effective stress state at a seed point meets a pre-defined Mohr-Coulomb failure criterion due to a fluid pressure increase a seismic event is induced. We assume a negative linear relationship between b-values and differential stress. Thus, for each event a magnitude can be drawn from a Gutenberg-Richter distribution with a b-value corresponding to differential stress at failure. The result is a seismic cloud evolving in time and space. Triggering of seismic events depends on appropriately calculating the transient fluid pressure field. Hence an effective continuum reservoir model able to reasonably reproduce the hydraulic behavior of the reservoir during stimulation is required. While analytical solutions for pressure diffusion are computationally efficient, they rely on linear pressure diffusion with constant hydraulic parameters, and only consider well head pressure while neglecting fluid injection rate. They cannot be considered appropriate in a stimulation experiment where permeability irreversibly increases by orders of magnitude during injection. We here suggest a numerical continuum model of non-linear pressure diffusion. Permeability increases both reversibly and, if a certain pressure threshold is reached, irreversibly in the form of a smoothed step-function. The models are able to reproduce realistic well head pressure magnitudes for injection rates common during reservoir stimulation. We connect this numerical model with the semi-stochastic seismicity model, and demonstrate the role of non-linear pressure diffusion on earthquakes probability estimates. We further use the model to explore various injection histories to assess the dependence of seismicity on injection strategy. It allows to qualitatively explore the probability of larger magnitude earthquakes (M>3) for different injection volumes, injection times, as well as injection build-up and shut-in strategies.

  18. Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX

    NASA Astrophysics Data System (ADS)

    Springer, H. K.; Tarver, C. M.; Bastea, S.

    2017-01-01

    The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase to primarily include pore collapse and growth phase to primarily include post-collapse grain burning. We are able to track late-time, post-collapse burning due to the unique loading conditions employed in these calculations. We find that (dF/dt)gr > (dF/dt)ig for all pressures considered. (dF/dt)gr changes more significantly from 25 to 38 GPa (from 0.05/µs to >10-100/µs) than from 15 to 25 GPa (from 0.005/µs to 0.05/µs). There is a three order-of-magnitude difference in the reaction from 15 to 38 GPa just after pore collapse. This is qualitatively consistent with fitting the (macroscopic) Ignition and Growth model to high pressure shock initiation data, where much larger reaction fractions are needed to capture the early stages of reaction. Calculated burn rates demonstrate better agreement with data at intermediate times in the growth phase for 15 to 25 GPa and late times for 30 GPa then at any time in the growth phase for 38 GPa. Our calculations are much higher than burn rate data at the earliest times in the growth phase for all pressures, which may reflect the higher localized pressures and temperatures just after pore collapse in the ignition phase. Our calculations with spherical, conical, and elliptical pores show that the influence of morphology on reaction rate is pressure dependent and the most influential pore shapes at lower pressures aren't the same at higher pressures in the regime studied. Altogether these studies provide the basis for developing microstructure-aware models that can be used to design new explosives with optimal performance-safety characteristics. Such models can be used to guide additive manufacturing of explosives and fully exploit their disruptive nature.

  19. Impact of clocking on the aero-thermodynamics of a second stator tested in a one and a half stage HP turbine

    NASA Astrophysics Data System (ADS)

    Billiard, N.; Paniagua, Guillermo; Dénos, R.

    2008-06-01

    This paper focuses on the experimental investigation of the time-averaged and time-accurate aero-thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the upstream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of clocking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.

  20. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE PAGES

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya; ...

    2017-05-23

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  1. Coarse-grained modeling of polyethylene melts: Effect on dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya

    The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less

  2. Time-dependent observables in heavy ion collisions. Part II. In search of pressure isotropization in the φ 4 theory

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Wu, Bin

    2018-03-01

    To understand the dynamics of thermalization in heavy ion collisions in the perturbative framework it is essential to first find corrections to the free-streaming classical gluon fields of the McLerran-Venugopalan model. The corrections that lead to deviations from free streaming (and that dominate at late proper time) would provide evidence for the onset of isotropization (and, possibly, thermalization) of the produced medium. To find such corrections we calculate the late-time two-point Green function and the energy-momentum tensor due to a single 2 → 2 scattering process involving two classical fields. To make the calculation tractable we employ the scalar φ 4 theory instead of QCD. We compare our exact diagrammatic results for these quantities to those in kinetic theory and find disagreement between the two. The disagreement is in the dependence on the proper time τ and, for the case of the two-point function, is also in the dependence on the space-time rapidity η: the exact diagrammatic calculation is, in fact, consistent with the free streaming scenario. Kinetic theory predicts a build-up of longitudinal pressure, which, however, is not observed in the exact calculation. We conclude that we find no evidence for the beginning of the transition from the free-streaming classical fields to the kinetic theory description of the produced matter after a single 2 → 2 rescattering.

  3. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation.

    PubMed

    Park, Eun-Hyoung; Eide, Per Kristian; Zurakowski, David; Madsen, Joseph R

    2012-12-01

    The pathophysiology of normal pressure hydrocephalus (NPH), and the related problem of patient selection for treatment of this condition, have been of great interest since the description of this seemingly paradoxical condition nearly 50 years ago. Recently, Eide has reported that measurements of the amplitude of the intracranial pressure (ICP) can both positively and negatively predict response to CSF shunting. Specifically, the fraction of time spent in a "high amplitude" (> 4 mm Hg) state predicted response to shunting, which may represent a marker for hydrocephalic pathophysiology. Increased ICP amplitude might suggest decreased brain compliance, meaning a static measure of a pressure-volume ratio. Recent studies of canine data have shown that the brain compliance can be described as a frequency-dependent function. The normal canine brain seems to show enhanced ability to absorb the pulsations around the heart rate, quantified as a cardiac pulsation absorbance (CPA), with properties like a notch filter in engineering. This frequency dependence of the function is diminished with development of hydrocephalus in dogs. In this pilot study, the authors sought to determine whether frequency dependence could be observed in humans, and whether the frequency dependence would be any different in epochs with high ICP amplitude compared with epochs of low ICP amplitude. Systems analysis was applied to arterial blood pressure (ABP) and ICP waveforms recorded from 10 patients undergoing evaluations of idiopathic NPH to calculate a time-varying transfer function that reveals frequency dependence and CPA, the measure of frequency-dependent compliance previously used in animal experiments. The ICP amplitude was also calculated in the same samples, so that epochs with high (> 4 mm Hg) versus low (≤ 4 mm Hg) amplitude could be compared in CPA and transfer functions. Transfer function analysis for the more "normal" epochs with low amplitude exhibits a dip or notch in the physiological frequency range of the heart rate, confirming in humans the pulsation absorber phenomenon previously observed in canine studies. Under high amplitude, however, the dip in the transfer function is absent. An inverse relationship between CPA index and ICP amplitude is evident and statistically significant. Thus, elevated ICP amplitude indicates decreased performance of the human pulsation absorber. The results suggest that the human intracranial system shows frequency dependence as seen in animal experiments. There is an inverse relationship between CPA index and ICP amplitude, indicating that higher amplitudes may occur with a reduced performance of the pulsation absorber. Our findings show that frequency dependence can be observed in humans and imply that reduced frequency-dependent compliance may be responsible for elevated ICP amplitude observed in patients who respond to CSF shunting.

  4. Pressure dependence of the electron-phonon interaction and the normal-state resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, O.; Sundqvist, B.

    1981-07-01

    Accurate measurements of the electrical resistance as a function of temperature and pressure are reported for Sn, Zr, dhcp La, and V. These measurements cover a temperature region around room temperature and pressures up to 1.3 GPa. From these data, including also our previous measurements for Al and published results for Pb, the pressure dependence of drho/dT (the resistivity-temperature derivative) is obtained. This quantity is found to be a significant factor in the pressure dependence of the electron-phonon interaction parameter lambda. For the nontransition metals the relative pressure dependence of drho/dT is much larger than the compressibility. Therefore the pressuremore » dependence of the superconducting T/sub c/ is quantitatively well accounted for by the resistance data for these metals. For the transition metals the pressure dependence of drho/dT is relatively smaller and T/sub c/(p) calculated from the resistance data is, at the best, only qualitatively correct. These differences are discussed. Estimates for the pressure dependence of the plasma frequency are obtained.« less

  5. Retirement investment theory explains patterns in songbird nest-site choice

    PubMed Central

    Streby, Henry M.; Refsnider, Jeanine M.; Peterson, Sean M.; Andersen, David E.

    2014-01-01

    When opposing evolutionary selection pressures act on a behavioural trait, the result is often stabilizing selection for an intermediate optimal phenotype, with deviations from the predicted optimum attributed to tracking a moving target, development of behavioural syndromes or shifts in riskiness over an individual's lifetime. We investigated nest-site choice by female golden-winged warblers, and the selection pressures acting on that choice by two fitness components, nest success and fledgling survival. We observed strong and consistent opposing selection pressures on nest-site choice for maximizing these two fitness components, and an abrupt, within-season switch in the fitness component birds prioritize via nest-site choice, dependent on the time remaining for additional nesting attempts. We found that females consistently deviated from the predicted optimal behaviour when choosing nest sites because they can make multiple attempts at one fitness component, nest success, but only one attempt at the subsequent component, fledgling survival. Our results demonstrate a unique natural strategy for balancing opposing selection pressures to maximize total fitness. This time-dependent switch from high to low risk tolerance in nest-site choice maximizes songbird fitness in the same way a well-timed switch in human investor risk tolerance can maximize one's nest egg at retirement. Our results also provide strong evidence for the adaptive nature of songbird nest-site choice, which we suggest has been elusive primarily due to a lack of consideration for fledgling survival. PMID:24403320

  6. Dependence of Plastic TATB Shock-Wave Sensitivity on Temperature, Density and Technology Factors

    NASA Astrophysics Data System (ADS)

    Vlasov, Yu. A.; Kosolapov, V. B.; Fomicheva, L. V.; Khabarov, I. P.

    1999-06-01

    Mixed TATB-based HE is the most perspective because of the manufacture and exploitation safety of its items. At the same time the safety of these explosive, at high temperatures, which take place at emergencies, causes the certain anxiety. Plastic TATB shock-wave sensitivity (SWS) researches has shown that temperature as one of the important factors of external influence is not always the determining reason of SWS change. It is known that density influence on SWS significantly. At the same time density depends on temperature and technology of details manufacturing. In this connection in this work the temperature dependence of plastic TATB SWS was studied in view of convertible and irreversible changes of density (p) under heating at -50[C up to 90[C . It is shown that during these influences the dependence of threshold pressure of initiation (P) from temperature is explained, first of all, by change of HE density, caused by its thermal expansion (compression), and also by irreversible changes of p and HE structure, arising at heating. It is found also that the share of irreversible change of density depends on technology of HE details manufacturing and is explained by relaxation of residual pressure in them. The mentioned relaxation is finished after the first cycles of thermal influence. The value of density change, caused by this factor, depends on temperature and duration of heating.

  7. Development of a Design Technology for Ground Support for Tunnels in Soil : Vol. I. Time Dependent Response Due to Consolidation in Clays

    DOT National Transportation Integrated Search

    1983-02-01

    The report presents an investigation of the phenomenon of tunnel related movements, due to consolidation in clayey or silty soils, as a result of dissipation of excess pore pressures induced during construction. A review of field data showing time de...

  8. Negative Pressure Vitrification of the Isochorically Confined Liquid in Nanopores.

    PubMed

    Adrjanowicz, K; Kaminski, K; Koperwas, K; Paluch, M

    2015-12-31

    Dielectric relaxation studies for model glass-forming liquids confined to nanoporous alumina matrices were examined together with high-pressure results. For confined liquids which show the deviation from bulk dynamics upon approaching the glass transition (the change from the Vogel-Fulcher-Tammann to the Arrhenius law), we have observed a striking agreement between the temperature dependence of the α-relaxation time in the Arrhenius-like region and the isochoric relaxation times extrapolated from the positive range of pressure to the negative pressure domain. Our finding provides strong evidence that glass-forming liquid confined to native nanopores enters the isochoric conditions once the mobility of the interfacial layer becomes frozen in. This results in the negative pressure effects on cooling. We also demonstrate that differences in the sensitivity of various glass-forming liquids to the "confinement effects" can be rationalized by considering the relative importance of thermal energy and density contributions in controlling the α-relaxation dynamics (the E(v)/E(p) ratio).

  9. Reconstruction of Pressure Profile Evolution during Levitated Dipole Experiments

    NASA Astrophysics Data System (ADS)

    Mauel, M.; Garnier, D.; Boxer, A.; Ellsworth, J.; Kesner, J.

    2008-11-01

    Magnetic levitation of the LDX superconducting dipole causes significant changes in the measured diamagnetic flux and what appears to be an isotropic plasma pressure profile (p˜p||). This poster describes the reconstruction of plasma current and plasma pressure profiles from external measurements of the equilibrium magnetic field, which vary substantially as a function of time depending upon variations in neutral pressure and multifrequency ECRH power levels. Previous free-boundary reconstructions of plasma equilibrium showed the plasma to be anisotropic and highly peaked at the location of the cyclotron resonance of the microwave heating sources. Reconstructions of the peaked plasma pressures confined by a levitated dipole incorporate the small axial motion of the dipole (±5 mm), time varying levitation coil currents, eddy currents flowing in the vacuum vessel, constant magnetic flux linking the superconductor, and new flux loops located near the hot plasma in order to closely couple to plasma current and dipole current variations. I. Karim, et al., J. Fusion Energy, 26 (2007) 99.

  10. Office blood pressure or ambulatory blood pressure for the prediction of cardiovascular events.

    PubMed

    Mortensen, Rikke Nørmark; Gerds, Thomas Alexander; Jeppesen, Jørgen Lykke; Torp-Pedersen, Christian

    2017-11-21

    To determine the added value of (i) 24-h ambulatory blood pressure relative to office blood pressure and (ii) night-time ambulatory blood pressure relative to daytime ambulatory blood pressure for 10-year person-specific absolute risks of fatal and non-fatal cardiovascular events. A total of 7927 participants were included from the International Database on Ambulatory blood pressure monitoring in relation to Cardiovascular Outcomes. We used cause-specific Cox regression to predict 10-year person-specific absolute risks of fatal and non-fatal cardiovascular events. Discrimination of 10-year outcomes was assessed by time-dependent area under the receiver operating characteristic curve (AUC). No differences in predicted risks were observed when comparing office blood pressure and ambulatory blood pressure. The median difference in 10-year risks (1st; 3rd quartile) was -0.01% (-0.3%; 0.1%) for cardiovascular mortality and -0.1% (-1.1%; 0.5%) for cardiovascular events. The difference in AUC (95% confidence interval) was 0.65% (0.22-1.08%) for cardiovascular mortality and 1.33% (0.83-1.84%) for cardiovascular events. Comparing daytime and night-time blood pressure, the median difference in 10-year risks was 0.002% (-0.1%; 0.1%) for cardiovascular mortality and -0.01% (-0.5%; 0.2%) for cardiovascular events. The difference in AUC was 0.10% (-0.08 to 0.29%) for cardiovascular mortality and 0.15% (-0.06 to 0.35%) for cardiovascular events. Ten-year predictions obtained from ambulatory blood pressure are similar to predictions from office blood pressure. Night-time blood pressure does not improve 10-year predictions obtained from daytime measurements. For an otherwise healthy population sufficient prognostic accuracy of cardiovascular risks can be achieved with office blood pressure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  11. Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures

    NASA Technical Reports Server (NTRS)

    Roberts, Ted A.; Burton, Rodney L.; Krier, Herman

    1993-01-01

    The ignition and combustion of Al, Mg, and Al/Mg alloy particles in 99 percent O2/1 percent N2 mixtures is investigated at high temperatures and pressures for rocket engine applications. The 20-micron particles contain 0, 5, 10, 20, 40, 60, 80, and 100 wt pct Mg alloyed with Al, and are ignited in oxygen using the reflected shock in a single-pulse shock tube near the endwall. Using this technique, the ignition delay and combustion times of the particles are measured at temperatures up to 3250 K as a function of Mg content for oxygen pressures of 8.5, 17, and 34 atm. An ignition model is developed that employs a simple lumped capacitance energy equation and temperature and pressure dependent particle and gas properties. Good agreement is achieved between the measured and predicted trends in the ignition delay times.

  12. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  13. Pressure dependence of coherence-incoherence crossover behavior in KFe2As2 observed by resistivity and 75As-NMR/NQR

    NASA Astrophysics Data System (ADS)

    Wiecki, P.; Taufour, V.; Chung, D. Y.; Kanatzidis, M. G.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2018-02-01

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe2As2 under pressure (p ). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3 d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure pc=1.8 GPa where a change of slope of the superconducting (SC) transition temperature Tc(p ) has been observed. In contrast, Tc(p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1 /T1 data, although such a correlation cannot be seen in the replacement effects of A in the A Fe2As2 (A =K , Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1 s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1 /T1 L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe2As2 under pressure.

  14. Elastic light scattering from single cells: orientational dynamics in optical trap.

    PubMed

    Watson, Dakota; Hagen, Norbert; Diver, Jonathan; Marchand, Philippe; Chachisvilis, Mirianas

    2004-08-01

    Light-scattering diagrams (phase functions) from single living cells and beads suspended in an optical trap were recorded with 30-ms time resolution. The intensity of the scattered light was recorded over an angular range of 0.5-179.5 degrees using an optical setup based on an elliptical mirror and rotating aperture. Experiments revealed that light-scattering diagrams from biological cells exhibit significant and complex time dependence. We have attributed this dependence to the cell's orientational dynamics within the trap. We have also used experimentally measured phase function information to calculate the time dependence of the optical radiation pressure force on the trapped particle and show how it changes depending on the orientation of the particle. Relevance of these experiments to potential improvement in the sensitivity of label-free flow cytometry is discussed.

  15. Effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of atrial β-adrenergic receptors.

    PubMed

    das Neves, Vander José; Tanno, Ana Paula; Cunha, Tatiana Sousa; Fernandes, Tiago; Guzzoni, Vinicius; da Silva, Carlos Alberto; de Oliveira, Edilamar Menezes; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2013-05-30

    This study was performed to assess isolated and combined effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of the β1- and β2-adrenergic receptors in the heart of rats. Wistar rats were randomly divided into four groups and submitted to a 6-week treatment with nandrolone and/or resistance training. Cardiac hypertrophy was accessed by the ratio of heart weight to the final body weight. Blood pressure was determined by a computerized tail-cuff system. Electrocardiography analyses were performed. Western blotting was used to access the protein levels of the β1- and β2-adrenergic receptors in the right atrium and left ventricle. Both resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased systolic blood pressure depending on the treatment time. Resistance training decreased systolic, diastolic and mean arterial blood pressure, as well as induced resting bradycardia. Nandrolone prolonged the QTc interval for both trained and non-trained groups when they were compared to their respective vehicle-treated one. Nandrolone increased the expression of β1- and β2-adrenergic receptors in the right atrium for both trained and non-trained groups when they were compared to their respective vehicle-treated one. This study indicated that nandrolone, associated or not with resistance training increases blood pressure depending on the treatment time, induces prolongation of the QTc interval, and increases the expression of β1- and β2-adrenergic receptors in the cardiac right atrium, but not in the left ventricle. Copyright © 2013. Published by Elsevier Inc.

  16. High pressure studies of potassium perchlorate

    DOE PAGES

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; ...

    2016-07-29

    Two experiments are reported on KClO 4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO 4 hv→ KCl + 2O 2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O 2 was monitored. The decomposition rate slowed at higher pressures. As a result, we present the first direct evidence for O 2 crystallization at higher pressures,more » demonstrating that O 2 molecules aggregate at high pressure.« less

  17. Effect of accelerated crucible rotation on melt composition in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2000-02-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing. The rate of mixing depends strongly on the length of the ACRT cycle, with an optimum half-cycle length between 2 and 4 Ekman time units. Significant melting of the crystal occurs during a portion of the rotation cycle, caused by periodic reversal of the secondary flow at the solid-liquid interface, indicating the possibility of compositional striations.

  18. Numerical investigation of flow structure and pressure pulsation in the Francis-99 turbine during startup

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Sentyabov, A.; Platonov, D.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.

  19. A Proposed Dynamic Pressure and Temperature Primary Standard

    PubMed Central

    Rosasco, Gregory J.; Bean, Vern E.; Hurst, Wilbur S.

    1990-01-01

    Diatomic gas molecules have a fundamental vibrational motion whose frequency is affected by pressure in a simple way. In addition, these molecules have well defined rotational energy levels whose populations provide a reliable measure of the thermodynamic temperature. Since information concerning the frequency of vibration and the relative populations can be determined by laser spectroscopy, the gas molecules themselves can serve as sensors of pressure and temperature. Through measurements under static conditions, the pressure and temperature dependence of the spectra of selected molecules is now understood. As the time required for the spectroscopic measurement can be reduced to nanoseconds, the diatomic gas molecule is an excellent candidate for a dynamic pressure/temperature primary standard. The temporal response in this case will be limited by the equilibration time for the molecules to respond to changes in local thermodynamic variables. Preliminary feasibility studies suggest that by using coherent anti-Stokes Raman spectroscopy we will be able to measure dynamic pressure up to 108 Pa and dynamic temperature up to 1500 K with an uncertainty of 5%. PMID:28179756

  20. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2000-01-01

    To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.

  1. Influence of fuel injection timing and pressure on in-flame soot particles in an automotive-size diesel engine.

    PubMed

    Zhang, Renlin; Kook, Sanghoon

    2014-07-15

    The current understanding of soot particle morphology in diesel engines and their dependency on the fuel injection timing and pressure is limited to those sampled from the exhaust. In this study, a thermophoretic sampling and subsequent transmission electron microscope imaging were applied to the in-flame soot particles inside the cylinder of a working diesel engine for various fuel injection timings and pressures. The results show that the number count of soot particles per image decreases by more than 80% when the injection timing is retarded from -12 to -2 crank angle degrees after the top dead center. The late injection also results in over 90% reduction of the projection area of soot particles on the TEM image and the size of soot aggregates also become smaller. The primary particle size, however, is found to be insensitive to the variations in fuel injection timing. For injection pressure variations, both the size of primary particles and soot aggregates are found to decrease with increasing injection pressure, demonstrating the benefits of high injection velocity and momentum. Detailed analysis shows that the number count of soot particles per image increases with increasing injection pressure up to 130 MPa, primarily due to the increased small particle aggregates that are less than 40 nm in the radius of gyration. The fractal dimension shows an overall decrease with the increasing injection pressure. However, there is a case that the fractal dimension shows an unexpected increase between 100 and 130 MPa injection pressure. It is because the small aggregates with more compact and agglomerated structures outnumber the large aggregates with more stretched chain-like structures.

  2. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  3. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  4. Inertial objects in complex flows

    NASA Astrophysics Data System (ADS)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  5. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often in the range of millimetres to a very few centimetres and can be linked to annual groundwater fluctuations. Due to pore pressure variations HM coupling can influence seepage forces and effective stresses in the rock mass. Effective stress changes can adversely affect the stability and deformation behaviour of deep-seated rock slides by influencing the shear strength or the time dependent (viscous) material behaviour of the basal shear zone. The shear strength of active shear zones is often reasonably well described by Coulomb's law. In Coulomb's law the operative normal stresses to the shear surface/zone are effective stresses and hence pore pressures which should be taken into account reduces the shear strength. According to the time dependent material behaviour a few effective stress based viscous models exists which are able to consider pore pressures. For slowly moving rock slides HM coupling could be highly relevant when low-permeability clayey-silty shear zones (fault gouges) are existing. An important parameters therefore is the hydraulic diffusivity, which is controlled by the permeability and fluid-pore compressibility of the shear zone, and by fluid viscosity. Thus time dependent pore pressure diffusion in the shear zone can either control the stability condition or the viscous behaviour (creep) of the rock slide. Numerous cases studies show that HM coupling can effect deformability, shear strength and time dependent behaviour of fractured rock masses. A process-based consideration can be important to avoid unexpected impacts on infrastructures and to understand complex rock mass as well rock slide behaviour.

  6. Time-dependent strains and stresses in a pumpkin balloon

    NASA Technical Reports Server (NTRS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2006-01-01

    This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:

  7. The Reliability of Pharyngeal High Resolution Manometry with Impedance for Derivation of Measures of Swallowing Function in Healthy Volunteers

    PubMed Central

    Omari, Taher I.; Savilampi, Johanna; Kokkinn, Karmen; Schar, Mistyka; Lamvik, Kristin; Doeltgen, Sebastian; Cock, Charles

    2016-01-01

    Purpose. We evaluated the intra- and interrater agreement and test-retest reliability of analyst derivation of swallow function variables based on repeated high resolution manometry with impedance measurements. Methods. Five subjects swallowed 10 × 10 mL saline on two occasions one week apart producing a database of 100 swallows. Swallows were repeat-analysed by six observers using software. Swallow variables were indicative of contractility, intrabolus pressure, and flow timing. Results. The average intraclass correlation coefficients (ICC) for intra- and interrater comparisons of all variable means showed substantial to excellent agreement (intrarater ICC 0.85–1.00; mean interrater ICC 0.77–1.00). Test-retest results were less reliable. ICC for test-retest comparisons ranged from slight to excellent depending on the class of variable. Contractility variables differed most in terms of test-retest reliability. Amongst contractility variables, UES basal pressure showed excellent test-retest agreement (mean ICC 0.94), measures of UES postrelaxation contractile pressure showed moderate to substantial test-retest agreement (mean Interrater ICC 0.47–0.67), and test-retest agreement of pharyngeal contractile pressure ranged from slight to substantial (mean Interrater ICC 0.15–0.61). Conclusions. Test-retest reliability of HRIM measures depends on the class of variable. Measures of bolus distension pressure and flow timing appear to be more test-retest reliable than measures of contractility. PMID:27190520

  8. Osmosis-Based Pressure Generation: Dynamics and Application

    PubMed Central

    Li, Suyi; Billeh, Yazan N.; Wang, K. W.; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators. PMID:24614529

  9. Fiber-optic sensor for handgrip-strength monitoring: conception and design

    NASA Astrophysics Data System (ADS)

    Paul, Jinu; Zhao, Liping; Ngoi, Bryan K. A.

    2005-06-01

    Handgrip strength is an easy measure of skeletal muscle function as well as a powerful predictor of disability, morbidity, and mortality. In order to measure grip strength, a novel fiber-optic approach is proposed and demonstrated. The strain-dependent wavelength response of fiber Bragg gratings has been utilized to obtain the strength of individual fingers. Finite-element analysis is carried out to optimize the pressure transmission from the finger to the fiber Bragg grating. The effect of stiffness of the pressurizing media, its thickness, and the effect of contact fraction are evaluated. It is found that significant enhancement in the pressure sensitivity and wavelength-tuning range is achievable by optimizing these parameters. Also the stress-induced birefringence could be reduced to an insignificant near-zero value. The device is calibrated in terms of load to convert the wavelength shift to the strength of the grip. The time-dependent wavelength fluctuation is also studied and presented.

  10. Force-endurance capabilities of extravehicular activity (EVA) gloves at different pressure levels

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn K.

    1993-01-01

    The human hand is a very useful multipurpose tool in all environments. However, performance capabilities are compromised considerably when gloves are donned. This is especially true to extravehicular activity (EVA) gloves. The primary intent was to answer the question of how long a person can perform tasks requiring certain levels of exertion. The objective was to develop grip force-endurance relations. Six subjects participated in a factorial experiment involving three hand conditions, three pressure differentials, and four levels of force exertion. The results indicate that, while the force that could be exerted depended on the glove, pressure differential, and the level of exertion, the endurance time at any exertion level depended just on the level of exertion expressed as a percentage of maximum exertion possible at that condition. The impact of these findings for practitioners as well as theoreticians is discussed.

  11. [A simple model for describing pressure-volume curves in free balloon dilatation with reference the dynamics of inflation hydraulic aspects].

    PubMed

    Bloss, P; Werner, C

    2000-06-01

    We propose a simple model to describe pressure-time and pressure-volume curves for the free balloon (balloon in air) of balloon catheters, taking into account the dynamics of the inflation device. On the basis of our investigations of the flow rate-dependence of characteristic parameters of the pressure-time curves, the appropriateness of this simple model is demonstrated using a representative example. Basic considerations lead to the following assumptions: (1) the flow within the shaft of the catheter is laminar, and (ii) the volume decrease of the liquid used for inflation due to pressurization can be neglected if the liquid is carefully degassed prior to inflation, and if the total volume of the liquid in the system is less than 2 ml. Taking into account the dynamics of the inflation device used for pumping the liquid into the proximal end of the shaft during inflation, the inflation process can be subdivided into the following three phases: initial phase, filling phase and dilatation phase. For these three phases, the transformation of the time into the volume coordinates is given. On the basis of our model, the following parameters of the balloon catheter can be determined from a measured pressure-time curve: (1) the resistance to flow of the liquid through the shaft of the catheter and the resulting pressure drop across the shaft, (2) the residual volume and residual pressure of the balloon, and (3) the volume compliance of the balloon catheter with and without the inflation device.

  12. The differences between soil grouting with cement slurry and cement-water glass slurry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  13. Ignition and combustion of lunar propellants

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.; Roberts, Ted A.; Krier, Herman

    1993-01-01

    The ignition and combustion of Al, Mg, and Al/Mg alloy particles in 99 percent O2/1 percent N2 mixtures is investigated at high temperatures and pressures for rocket engine applications. The 20 micron particles contain 0, 5, 10, 20, 40, 60, 80, and 100 weight percent Mg alloyed with Al, and are ignited in oxygen using the reflected shock in a shock tube near the endwall. Using this technique, the ignition delay and combustion times of the particles are measured at temperatures up to 3250 K as a function of Mg content for oxygen pressures of 8.5, 17, and 34 atm. An ignition model is developed which employs a simple lumped capacitance energy equation and temperature and pressure dependent particle and gas properties. Good agreement is achieved between the measured and predicted trends in the ignition delay times. For the particles investigated, the contribution of heterogeneous reaction to the heating of the particle is found to be significant at lower temperatures, but may be neglected as gas temperatures above 3000 K. As little as 10 percent Mg reduces the ignition delay time substantially at all pressures tested. The particle ignition delay times decrease with increasing Mg content, and this reduction becomes less pronounced as oxidizer temperature and pressure are increased.

  14. Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa.

    PubMed

    Glascoe, Elizabeth A; Zaug, Joseph M; Burnham, Alan K

    2009-12-03

    The effect of pressure on the global thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Global decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low-to-moderate pressures (i.e., between ambient pressure and 0.1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure-enhanced autocatalysis, whereas the deceleration at high pressures is attributed to pressure-inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both the beta- and delta-polymorphs of HMX are sensitive to pressure in the thermally induced decomposition kinetics.

  15. Magnetic Resonance Imaging Measurement of Transmission of Arterial Pulsation to the Brain on Propranolol Versus Amlodipine.

    PubMed

    Webb, Alastair J S; Rothwell, Peter M

    2016-06-01

    Cerebral arterial pulsatility is associated with leukoaraiosis and depends on central arterial pulsatility and arterial stiffness. The effect of antihypertensive drugs on transmission of central arterial pulsatility to the cerebral circulation is unknown, partly because of limited methods of assessment. In a technique-development pilot study, 10 healthy volunteers were randomized to crossover treatment with amlodipine and propranolol. At baseline and on each drug, we assessed aortic (Sphygmocor) and middle cerebral artery pulsatility (TCDtranscranial ultrasound). We also performed whole-brain, 3-tesla multiband blood-oxygen level dependent magnetic resonance imaging (multiband factor 6, repetition time=0.43s), concurrent with a novel method of continuous noninvasive blood pressure monitoring. Drug effects on relationships between cardiac cycle variation in blood pressure and blood-oxygen level dependent imaging were determined (fMRI Expert Analysis Tool, fMRIB Software Library [FEAT-FSL]). Aortic pulsatility was similar on amlodipine (27.3 mm Hg) and propranolol (27.9 mm Hg, P diff=0.33), while MCA pulsatility increased nonsignificantly more from baseline on propranolol (+6%; P=0.09) than amlodipine (+1.5%; P=0.58). On magnetic resonance imaging, cardiac frequency blood pressure variations were found to be significantly more strongly associated with blood-oxygen level dependent imaging on propranolol than amlodipine. We piloted a novel method of assessment of arterial pulsatility with concurrent high-frequency blood-oxygen level dependent magnetic resonance imaging and noninvasive blood pressure monitoring. This method was able to identify greater transmission of aortic pulsation on propranolol than amlodipine, which warrants further investigation. © 2016 American Heart Association, Inc.

  16. Pressure-induced kinetics of the α to ω transition in zirconium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K.; Velisavljevic, N., E-mail: nenad@lanl.gov; Sinogeikin, S. V.

    Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less

  17. Pressure-induced kinetics of the α to ω transition in zirconium

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.; Sinogeikin, S. V.

    2015-07-13

    Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less

  18. Experimental study of thermal conductivity at high pressures: Implications for the deep Earth’s interior

    DOE PAGES

    Goncharov, Alexander F.; Lobanov, Sergey S.; Tan, Xiaojing; ...

    2015-02-24

    Lattice thermal conductivity of ferropericlase and radiative thermal conductivity of iron bearing magnesium silicate perovskite (bridgmanite) – the major mineral of Earth’s lower mantle– has been measured at room temperature up to 30 and 46 GPa, respectively, using time domain thermoreflectance and optical spectroscopy techniques in diamond anvil cells. The results provide new constraints for the pressure dependencies of the thermal conductivities of Fe bearing minerals. The lattice thermal conductivity of ferropericlase (Mg 0.9Fe 0.1)O is 5.7(6) W/(m*K) at ambient conditions, which is almost 10 times smaller than that of pure MgO; however, it increases with pressure much faster (6.1(7)%/GPamore » vs 3.6%/GPa). The radiative conductivity of Mg 0.94Fe 0.06SiO 3 bridgmanite single crystal agrees with previously determined values at ambient pressure; it is almost pressure-independent in the investigated pressure range. Furthermore, our results confirm the reduced radiative conductivity scenario for the Earth’s lower mantle, while the assessment of the heat flow through the core-mantle boundary still requires in situ measurements at the relevant pressure-temperature conditions.« less

  19. Rate laws for water-assisted compaction and stress-induced water-rock interaction in sandstones

    NASA Astrophysics Data System (ADS)

    Dewers, Thomas; Hajash, Andrew

    1995-07-01

    Mineral-water interactions under conditions of nonhydrostatic stress play a role in subjects as diverse as ductile creep in fault zones, phase relations in metamorphic rocks, mass redistribution and replacement reactions during diagenesis, and loss of porosity in deep sedimentary basins. As a step toward understanding the fundamental geochemical processes involved, using naturally rounded St. Peter sand, we have investigated the kinetics of pore volume loss and quartz-water reactions under nonhydrostatic, hydrothermal conditions in flow-through reactors. Rate laws for creep and mineral-water reaction are derived from the time rate of change of pore volume, sand-water dissolution kinetics, and (flow rate independent) steady state silica concentrations, and reveal functional dependencies of rates on grain size, volume strain, temperature, effective pressure (confining minus pore pressure), and specific surface areas. Together the mechanical and chemical rate laws form a self-consistent model for coupled deformation and water-rock interaction of porous sands under nonhydrostatic conditions. Microstructural evidence shows a progressive widening of nominally circular and nominally flat grain-grain contacts with increasing strain or, equivalently, porosity loss, and small quartz overgrowths occurring at grain contact peripheries. The mechanical and chemical data suggest that the dominant creep mechanism is due to removal of mass from grain contacts (termed pressure solution or solution transfer), with a lesser component of time-dependent crack growth and healing. The magnitude of a stress-dependent concentration increase is too large to be accounted for by elastic or dislocation strain energy-induced supersaturations, favoring instead the normal stress dependence of molar Gibbs free energy associated with grain-grain interfaces.

  20. Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes.

    PubMed

    Lister, Callum; Arbuckle, Kevin; Jackson, Timothy N W; Debono, Jordan; Zdenek, Christina N; Dashevsky, Daniel; Dunstan, Nathan; Allen, Luke; Hay, Chris; Bush, Brian; Gillett, Amber; Fry, Bryan G

    2017-11-01

    A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical arms race. This study examined differential co-factor dependence, variations relative to dietary preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this toxin type. Consistent with this, the venoms did not display differences on the plasma of different taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme negative selection pressure for diversification, this in turn puts a strong negative selection pressure upon the toxins as sequence diversification could result in a drift away from the target. Thus this study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the target is under negative selection pressure for diversification. Consistent with this high level of toxin conservation, the antivenom showed extremely high-levels of cross-reactivity. There was however a strong statistical correlation between relative degree of phospholipid-dependence and clotting time, with the least dependent venoms producing faster clotting times than the other venoms even in the presence of phospholipid. The results of this study are not only of interest to evolutionary and ecological disciplines, but also have implications for clinical toxinology. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.

    2016-07-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  2. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhitao; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245; Banishev, Alexandr A.

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersedmore » in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.« less

  3. Transient difference solutions of the inhomogeneous wave equation - Simulation of the Green's function

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  4. Transient difference solutions of the inhomogeneous wave equation: Simulation of the Green's function

    NASA Technical Reports Server (NTRS)

    Baumeiste, K. J.

    1983-01-01

    A time-dependent finite difference formulation to the inhomogeneous wave equation is derived for plane wave propagation with harmonic noise sources. The difference equation and boundary conditions are developed along with the techniques to simulate the Dirac delta function associated with a concentrated noise source. Example calculations are presented for the Green's function and distributed noise sources. For the example considered, the desired Fourier transformed acoustic pressures are determined from the transient pressures by use of a ramping function and an integration technique, both of which eliminates the nonharmonic pressure associated with the initial transient.

  5. Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure

    NASA Astrophysics Data System (ADS)

    Shiltagh, Nagham M.; Mendoza Luna, Luis G.; Watkins, Mark J.; Thornton, Stuart C.; von Haeften, Klaus

    2018-01-01

    A new apparatus was constructed to investigate the visible and near infrared fluorescence spectroscopy of electronically excited helium over a wide range of pressures and temperatures, covering both the gaseous and liquid phases. To achieve sufficient throughput, increased sensitivity was established by employing a micro-discharge cell and a high performance lens system that allows for a large collection solid angle. With this set-up, several thousand spectra were recorded. The atomic 3 s 1 S → 2 p 1 P and 3 s 3 S → 2 p 3 P atomic transitions showed line shifts, spectral broadening and intensity changes that were dependent in magnitude on pressure, temperature and thermodynamic phase. While in the gas phase the lines showed little dependency on the discharge cell temperature, the opposite was observed for the liquid phase, suggesting that a significant number of atoms were solvated. Triplet lines were up to a factor of 50 times stronger in intensity than the singlet lines, depending on pressure. When taking the particle density into account, this effect was stronger in the gas phase than in the liquid phase of helium. This was attributed to the recombination of He2 +, He3 + and He4 + with electrons, which is facilitated in the gas phase because of the significantly higher mobility.

  6. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  7. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE PAGES

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    2015-10-20

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  8. On pressure measurement and seasonal pressure variations during the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Taylor, Peter A.; Kahanpää, Henrik; Weng, Wensong; Akingunola, Ayodeji; Cook, Clive; Daly, Mike; Dickinson, Cameron; Harri, Ari-Matti; Hill, Darren; Hipkin, Victoria; Polkko, Jouni; Whiteway, Jim

    2010-03-01

    In situ surface pressures measured at 2 s intervals during the 150 sol Phoenix mission are presented and seasonal variations discussed. The lightweight Barocap®/Thermocap® pressure sensor system performed moderately well. However, the original data processing routine had problems because the thermal environment of the sensor was subject to more rapid variations than had been expected. Hence, the data processing routine was updated after Phoenix landed. Further evaluation and the development of a correction are needed since the temperature dependences of the Barocap sensor heads have drifted after the calibration of the sensor. The inaccuracy caused by this appears when the temperature of the unit rises above 0°C. This frequently affects data in the afternoons and precludes a full study of diurnal pressure variations at this time. Short-term fluctuations, on time scales of order 20 s are unaffected and are reported in a separate paper in this issue. Seasonal variations are not significantly affected by this problem and show general agreement with previous measurements from Mars. During the 151 sol mission the surface pressure dropped from around 860 Pa to a minimum (daily average) of 724 Pa on sol 140 (Ls 143). This local minimum occurred several sols earlier than expected based on GCM studies and Viking data. Since battery power was lost on sol 151 we are not sure if the timing of the minimum that we saw could have been advanced by a low-pressure meteorological event. On sol 95 (Ls 122), we also saw a relatively low-pressure feature. This was accompanied by a large number of vertical vortex events, characterized by short, localized (in time), low-pressure perturbations.

  9. Two-step optimization of pressure and recovery of reverse osmosis desalination process.

    PubMed

    Liang, Shuang; Liu, Cui; Song, Lianfa

    2009-05-01

    Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-step optimization procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the optimal net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the optimal recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the optimal net driving pressure and recovery. The dependences of the optimal net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed.

  10. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  11. RTM simulations and experiments for fiber-reinforced turbine blades forming

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Linh; Marchand, Christophe

    2018-05-01

    The one-shot (full part) forming of tidal turbine blades by RTM (Resin Transfer Molding) process is a complex process due to the complexity of reinforcements and geometry of blades. In this work, beside the experimental tests which have been realized using IRT JV high capacity machines, the RTM simulations using Moldex3D RTM software have been carried out. First of all, simulations have been done on a 1/7th scale part in order to determine the best injection strategy. Different tested strategies vary by the disposition of injection points (Inlet)/vacuum points (Outlet). Then, the chosen strategy has been applied on the full scale part (˜ 7m length) of high thickness with more complex reinforcement draping. In both cases, the stage of meshing is important to take into account the draping plan with different fiber orientation and fiber types. Attention should be paid on the neck of the blade as the structure of reinforcement changes. A sensitivity study of different parameters (permeability, pressure, temperature) has been then done to understand their influence on the injection time. The permeability which lies to the choice of reinforcement type and fiber volume fraction plays an important role. As the thickness of the part is high, an experimental campaign for measuring the 3D permeability is required. Among the process controllable parameters, the pressure seems the fastest way to reduce the injection time. However, increasing the injection pressure (or the vacuum) could deform the reinforcement. Moreover, the maximal pressure depends on the machine capacity. The influence of temperature shows the thermo-dependence of resin viscosity, the injection time thus decreases as the temperature increases. Nevertheless, the gel time is more limited for injection stage if the resin is heated too much.

  12. An in situ tensile test apparatus for polymers in high pressure hydrogen

    DOE PAGES

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; ...

    2014-10-31

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up tomore » 5,000 psi. Here, modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.« less

  13. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3.

  14. Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time.

    PubMed

    Barjaktarović, Branislava; Sovilj, Milan; Knez, Zeljko

    2005-04-06

    Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.

  15. Strength and Anisotropy in Tournemire Shale: Temperature, Pressure and Time Dependences

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Schubnel, A.; Zhi, G.; David, C.; Dick, P.

    2017-12-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. We conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France, under two different temperatures (26°C, 75°C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1along, perpendicular and 45° to bedding). In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1 15 minutes. The brittle creep failure stress of our Tournemire shale samples was systematically observed 50% higher than its short-term peak strength, with larger final axial strain accumulated. During creep, ultrasonic wave velocities first decreased, and then increased gradually. The magnitude of elastic wave velocity variations showed an important orientation and temperature dependence: velocities measured perpendicular to bedding showed increased variation, variation that was enhanced at higher temperature and higher pressure. The case of complete elastic anisotropy reversal was observed for sample deformed perpendicular to bedding, with amount of axial strain needed to reach anisotropy reversal reduced at higher temperature. SEM observations highlight the competition between crack growth, sealing/healing, and possibly mineral rotation, pressure solution or anisotropic compaction during creep defromation. Our study highlights that the short-term peak strength has little meaning in shale material, which can over-consolidate importantly by `plastic' flow. In addition, we show that elastic anisotropy can switch and even reverse over relatively short time periods (<10 days) and for relatively small amount of plastic deformation (<5%).

  16. Pore-scale Analysis of the effects of Contact Angle Hysteresis on Blob Mobilization in a Pore Doublet

    NASA Astrophysics Data System (ADS)

    Hsu, Shao-Yiu; Glantz, Roland; Hilpert, Markus

    2011-11-01

    The mobilization of residual oil blobs in porous media is of major interest to the petroleum industry. We studied the Jamin effect, which hampers the blob mobilization, experimentally in a pore doublet model and explain the Jamin effect through contact angle hysteresis. A liquid blob was trapped in one of the tubes of the pore doublet model and then subjected to different pressure gradients. We measured the contact angles (in 2D and 3D) as well as the mean curvatures of the blob. Due to gravity effects and hysteresis, the contact angles of the blob were initially (zero pressure gradient) non-uniform and exhibited a pronounced altitude dependence. As the pressure gradient was increased, the contact angles became more uniform and the altitude dependence of the contact angle decreased. At the same time, the mean curvature of the drainage interface increased, and the mean curvature of the imbibition interface decreased. The pressure drops across the pore model, which we inferred with our theory from the measured contact angles and mean curvatures, were in line with the directly measured pressure data. We not only show that a trapped blob can sustain a finite pressure gradient but also develop methods to measure the contact angles and mean curvatures in 3D.

  17. Survival of microbial life under shock compression: implications for Panspermia

    NASA Astrophysics Data System (ADS)

    Burchell, M.

    2007-09-01

    An analysis is carried out of the survival fraction of micro-organisms exposed to extreme shock pressures. A variety of data sources are used in this analysis. The key findings are that survival depends on the behaviour of the cell wall. Below a critical shock pressure there is a relatively slow fall in survival fraction as shock pressures increase. Above the critical threshold survival starts to fall rapidly as shock pressure increases further. The critical shock pressures found here are in the range 2.4 to 20 GPa, and vary not only from organism to organism, but also depend on the growth stage of given organisms, with starved (i.e., no growth) states favoured for survival. At the shock pressures typical of those involved in interplanetary transfer of rocky materials, the survival fractions are found to be small but finite. This lends credence to the idea of Panspermia, i.e. life may naturally migrate through space. Thus for example, Martian meteorites should not a prior be considered as sterile due to the shock processes they have undergone, but their lack of viable micro-organisms either reflects no such life being present at the source at the time of departure or the influence of other hazardous processes such as radiation in space or heating of surfaces during entry into a planetary atmosphere.

  18. Partial pressure analysis in space testing

    NASA Technical Reports Server (NTRS)

    Tilford, Charles R.

    1994-01-01

    For vacuum-system or test-article analysis it is often desirable to know the species and partial pressures of the vacuum gases. Residual gas or Partial Pressure Analyzers (PPA's) are commonly used for this purpose. These are mass spectrometer-type instruments, most commonly employing quadrupole filters. These instruments can be extremely useful, but they should be used with caution. Depending on the instrument design, calibration procedures, and conditions of use, measurements made with these instruments can be accurate to within a few percent, or in error by two or more orders of magnitude. Significant sources of error can include relative gas sensitivities that differ from handbook values by an order of magnitude, changes in sensitivity with pressure by as much as two orders of magnitude, changes in sensitivity with time after exposure to chemically active gases, and the dependence of the sensitivity for one gas on the pressures of other gases. However, for most instruments, these errors can be greatly reduced with proper operating procedures and conditions of use. In this paper, data are presented illustrating performance characteristics for different instruments and gases, operating parameters are recommended to minimize some errors, and calibrations procedures are described that can detect and/or correct other errors.

  19. Minimally invasive wireless motility capsule to study canine gastrointestinal motility and pH.

    PubMed

    Warrit, K; Boscan, P; Ferguson, L E; Bradley, A M; Dowers, K L; Rao, S; Twedt, D C

    2017-09-01

    The aim of this study was to describe the feasibility of using a gastrointestinal tract wireless motility capsule (WMC) that measured intraluminal pressure, pH and transit time through the gastrointestinal tract, in dogs in their home environment. Forty-four adult healthy dogs, eating a standard diet, were prospectively enrolled. The WMC was well tolerated by all dogs and provided data from the different sections of the gastrointestinal tract. Median gastric emptying time was 20h (range, 6.3-119h), demonstrating a large range. The gastric pressure pattern and pH depended on the phase of food consumption. The small bowel transit time was 3.1h (range, 1.6-5.4h) with average contraction pressures of 6.5mmHg (range, 1.1-21.4mmHg) and pH 7.8 (range, 7-8.9). The large bowel transit time was 21h (range, 1-69h) with average contractions pressures of 0.9mmHg (range, 0.3-2.7mmHg) and pH 6.4 (range, 5.3-8.2). There was considerable individual variation in motility patterns and transit times between dogs. No difference was observed between the sexes. No relationships between any transit time, bowel pH or pressure pattern and bodyweights were identified. The WMC likely represents movement of a large non-digestible particle rather than normal ingesta. Due to its large size, the WMC should not be use in smaller dogs. The WMC is a promising minimally invasive tool to assess GIT solid phase transit times, pressures and pH. However, further studies are necessary due to the current limitations observed. Published by Elsevier Ltd.

  20. Estimation of the molecular characteristics of polymers by the SPRT method and study of their influence on the properties of compositions

    NASA Astrophysics Data System (ADS)

    Kimel'blat, V. I.; Volfson, S. I.; Chebotareva, I. G.; Malysheva, T. V.

    1998-09-01

    Pressure relaxation was examined in the cylinder of an MPT Monsanto processability tester after stopping the piston. The experimental function of the pressure drop F(t) was smoothed over and approximated by cubic splines. The spectra of pressure relaxation times (SPRT) were obtained according to the method of Schwarzl-Staverman. The SPRT method served well for estimating the spectra of the molecular-mass distribution (MMD) of polymers close in their physical sense to the SPRT. The correlation of the characteristic relaxation times and average molecular mass of ethylene-propylene rubbers and polyethylenes obtained by gel permeation chromatography was approximated by optimum models used for calculating the the molecular mass of rubbers according to the measurement results of the relaxation pressure of melts. The SPRT and characteristic relaxation times were used to analyze the significant technical properties of compositions based on polyethylene and rubber. The SPRT method was used to examine the failure of the cure network of butyl rubber and the dependence of the mechanical properties of thermoplastic elastomers on the molecular features of the decomposite.

  1. Resolving Structural Isomers of Monosaccharide Methyl Glycosides Using Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry

    PubMed Central

    Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.

    2013-01-01

    Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760

  2. Zirconium-nickel crystals—hydrogen accumulators: Dissolution and penetration of hydrogen atoms in alloys

    NASA Astrophysics Data System (ADS)

    Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.; Kamenetskaya, E. A.

    2016-07-01

    The calculation of the free energy, thermodynamic equilibrium equations, and kinetic equations of the intermetallic compound Zr2NiH x has been carried out based on molecular-kinetic concepts. The equilibrium hydrogen concentration depending on the temperature, pressure, and energy parameters has been calculated. The absorption-desorption of hydrogen has been studied, and the possibility of the realization of the hysteresis effect has been revealed. The kinetics of the dissolution and permeability of hydrogen is considered, the time dependence of these values has been found, and conditions for the extremum character of their time dependence have been determined. Relaxation times of the dissolution and permeability of hydrogen into the alloy have been calculated. The calculation results are compared with the experimental data available in the literature.

  3. Evidence for a Time-Invariant Phase Variable in Human Ankle Control

    PubMed Central

    Gregg, Robert D.; Rouse, Elliott J.; Hargrove, Levi J.; Sensinger, Jonathon W.

    2014-01-01

    Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control. PMID:24558485

  4. Towards Overhauser DNP in supercritical CO(2).

    PubMed

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  6. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-10-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  7. Pressure Dependence of Coherence-Incoherence Crossover Behavior in KFe 2As 2 Observed by Resistivity and 75As-NMR/NQR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Taufour, V.; Chung, D. Y.

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe 2As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T *). T * is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbitalderived bands with the itinerant electron bands. No anomaly in T * is seen at the critical pressure pc = 1.8 GPa where a change ofmore » slope of the superconducting (SC) transition temperature Tc(p) has been observed. In contrast, Tc(p) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T1 data, although such a correlation cannot be seen in the replacement effects of A in the KFe 2As 2 (A = K, Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1/T1L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less

  8. Pressure dependence of coherence-incoherence crossover behavior in KFe 2 As 2 observed by resistivity and As 75 -NMR/NQR

    DOE PAGES

    Wiecki, P.; Taufour, V.; Chung, D. Y.; ...

    2018-02-13

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KF e2 As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T 1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure p c= 1.8 GPa where a change of slopemore » of the superconducting (SC) transition temperature T c( p ) has been observed. In contrast, T c( p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T 1 data, although such a correlation cannot be seen in the replacement effects of A in the AFe 2As 2 (A=K,Rb,Cs) family. In the superconducting state, two T 1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T 1s indicates a nearly gapless state below T c. On the other hand, the temperature dependence of the long component 1/T 1Limplies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less

  9. Pressure dependence of coherence-incoherence crossover behavior in KFe 2 As 2 observed by resistivity and As 75 -NMR/NQR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Taufour, V.; Chung, D. Y.

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KF e2 As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T 1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure p c= 1.8 GPa where a change of slopemore » of the superconducting (SC) transition temperature T c( p ) has been observed. In contrast, T c( p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T 1 data, although such a correlation cannot be seen in the replacement effects of A in the AFe 2As 2 (A=K,Rb,Cs) family. In the superconducting state, two T 1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T 1s indicates a nearly gapless state below T c. On the other hand, the temperature dependence of the long component 1/T 1Limplies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less

  10. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  11. Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.

  12. Factors determining the level and changes in intra-articular pressure in the knee joint of the dog.

    PubMed Central

    Nade, S; Newbold, P J

    1983-01-01

    Intra-articular pressure levels were determined for joint positions throughout the normal physiological range of movement of dogs' knee joints. Change in joint position resulted in change in intra-articular pressure. It was demonstrated that intra-articular pressure is highest with the joint in the fully flexed position. Minimum pressure was recorded at a position between 80 degrees and 120 degrees. Minimum pressures were usually subatmospheric. The rate of change of joint position affected intra-articular pressure. The relationship of intra-articular pressure and joint position before and after full flexion demonstrated a hysteresis effect; the pressures were lower than for the same joint position before flexion. Maintenance of the joint in the fully flexed position for increasing periods of time between repeated movement cycles resulted in a similar reduction, of constant magnitude, in pressure between joint positions before and after each period of flexion. However, there was also a progressive decrease in pressure for all joint angles over the total number of movement cycles. There is a contribution to intra-articular pressure of joint capsular compliance and fluid movement into and out of the joint (both of which are time-dependent). The recording of intra-articular pressure in conscious, upright dogs revealed similar pressure levels to those measured in anaesthetized supine dogs. The major determinants of intra-articular pressure in normal dog knee joints include joint size, synovial fluid volume, position of joint, peri-articular tissue and joint anatomy, membrane permeability, capsular compliance, and movement of fluid into and out of the joint. Images Fig. 1 PMID:6875957

  13. Task demands and the pressures of everyday life: associations between cardiovascular reactivity and work blood pressure and heart rate.

    PubMed

    Steptoe, A; Cropley, M; Joekes, K

    2000-01-01

    Associations between cardiovascular stress reactivity and blood pressure and heart rate recorded in everyday life were hypothesized to depend on the stressfulness of the ambulatory monitoring period relative to standardized tasks and on activity levels at the time of measurement. One hundred two female and 60 male school teachers carried out high- and low-demand tasks under standardized conditions and ambulatory monitoring during the working day. Stress ratings during the day were close to those recorded during the low-demand task. Reactions to the low-demand task were significant predictors of ambulatory blood pressure and heart rate independent of baseline, age, gender, and body mass. Associations were more consistent for ambulatory recordings taken when participants were seated than when they were standing and when the ambulatory monitoring day was considered to be as stressful as usual or more stressful than usual, and not less stressful than usual. Laboratory-field associations of cardiovascular activity depend in part on the congruence of stressfulness and physical activity level in the 2 situations.

  14. Diffusion coalescence in НоBa2Cu3O7-x single crystals under the application of hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Boiko, Y. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhaj, G. Ya; Kamchatnaya, S. N.; Goulatis, I. L.; Chroneos, A.

    2017-09-01

    Experimental results on the effect of external hydrostatic pressure up to 5 kbar on the ρ(T) dependence in the ab plane of HoBa2Cu3O7-x single crystals (x  ≈  0.35) in the temperature range from 300 K to the superconducting transition temperature T c are presented and discussed. It was established that the application of external hydrostatic pressure P  =  5 kbar significantly intensified the process of diffusion coalescence of oxygen clusters, causing the growth of their average size. This leads to an increase in the number of negative U-centers, the presence of which results to the appearance of a phase capable of generating paired carriers of electric charge and, correspondingly, characterized by a higher transition temperature T c. Employing this hypothesis that concerns the mechanism of the diffusion coalescence of oxygen clusters, the change in the form of the temperature and time dependences of the electrical resistivity under the application of external hydrostatic pressure is discussed.

  15. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    NASA Astrophysics Data System (ADS)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  16. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  17. Theory and simulation of time-fractional fluid diffusion in porous media

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Sanchez-Sesma, Francisco J.; Luzón, Francisco; Perez Gavilán, Juan J.

    2013-08-01

    We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald-Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’.

  18. Control of sound radiation from a wavepacket over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; El Hady, Nabil M.

    1989-01-01

    Active control of acoustic pressure in the far field resulting from the growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is investigated numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. The acoustic far field exhibits directivity type of behavior that points upstream to the flow direction. A fixed control algorithm is used where the attenuation signal is synthesized by a filter which actively adapt it to the amplitude-time response of the outgoing acoustic wave.

  19. Observations of magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.

  20. Multiphysics Model of Palladium Hydride Isotope Exchange Accounting for Higher Dimensionality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozloo, Patricia E.; Eliassi, Mehdi; Bon, Bradley Luis

    2015-03-01

    This report summarizes computational model developm ent and simulations results for a series of isotope exchange dynamics experiments i ncluding long and thin isothermal beds similar to the Foltz and Melius beds and a lar ger non-isothermal experiment on the NENG7 test bed. The multiphysics 2D axi-symmetr ic model simulates the temperature and pressure dependent exchange reactio n kinetics, pressure and isotope dependent stoichiometry, heat generation from the r eaction, reacting gas flow through porous media, and non-uniformities in the bed perme ability. The new model is now able to replicate the curved reaction front and asy mmetry of themore » exit gas mass fractions over time. The improved understanding of the exchange process and its dependence on the non-uniform bed properties and te mperatures in these larger systems is critical to the future design of such sy stems.« less

  1. Kinetics and mechanism of the pressure-induced lamellar order/disorder transition in phosphatidylethanolamine: a time-resolved X-ray diffraction study.

    PubMed

    Mencke, A P; Caffrey, M

    1991-03-05

    By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.

  2. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  3. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  4. Large-Amplitude, High-Rate Roll Oscillations of a 65 deg Delta Wing at High Incidence

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    2000-01-01

    The IAR/WL 65 deg delta wing experimental results provide both detail pressure measurements and a wide range of flow conditions covering from simple attached flow, through fully developed vortex and vortex burst flow, up to fully-stalled flow at very high incidence. Thus, the Computational Unsteady Aerodynamics researchers can use it at different level of validating the corresponding code. In this section a range of CFD results are provided for the 65 deg delta wing at selected flow conditions. The time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate the unsteady vertical flow. Two sting angles and two large- amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental pressures, forces, moments and roll angle time history. In addition, surface and off-surface flow particle streaks are also presented.

  5. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    2001-01-01

    We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.

  6. Interpretation of changes in water level accompanying fault creep and implications for earthquake prediction.

    USGS Publications Warehouse

    Wesson, R.L.

    1981-01-01

    Quantitative calculations for the effect of a fault creep event on observations of changes in water level in wells provide an approach to the tectonic interpretation of these phenomena. For the pore pressure field associated with an idealized creep event having an exponential displacement versus time curve, an analytic expression has been obtained in terms of exponential-integral functions. The pore pressure versus time curves for observation points near the fault are pulselike; a sharp pressure increase (or decrease, depending on the direction of propagation) is followed by more gradual decay to the normal level after the creep event. The time function of the water level change may be obtained by applying the filter - derived by A.G.Johnson and others to determine the influence of atmospheric pressure on water level - to the analytic pore pressure versus time curves. The resulting water level curves show a fairly rapid increase (or decrease) and then a very gradual return to normal. The results of this analytic model do not reproduce the steplike changes in water level observed by Johnson and others. If the procedure used to obtain the water level from the pore pressure is correct, these results suggest that steplike changes in water level are not produced by smoothly propagating creep events but by creep events that propagate discontinuously, by changes in the bulk properties of the region around the well, or by some other mechanism.-Author

  7. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  8. Partial discharge detection and analysis in low pressure environments

    NASA Astrophysics Data System (ADS)

    Liu, Xin

    Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current pulse waveforms are dependent on the pressure. (2) The rise time of the waveform is another effective PD current pulse characteristic indicator. (3) PD fingerprint patterns that are already available for atmospheric pressure (760 Torr) conditions are inadequate for the evaluation of PD pulses at low pressures. (4) Various wavelet transform techniques can be used effectively for PD pulse signal denoising purposes, and for PD pulse waveform transient feature recognition.

  9. High pressure ferroelastic phase transition in SrTiO3

    NASA Astrophysics Data System (ADS)

    Salje, E. K. H.; Guennou, M.; Bouvier, P.; Carpenter, M. A.; Kreisel, J.

    2011-07-01

    High pressure measurements of the ferroelastic phase transition of SrTiO3 (Guennou et al 2010 Phys. Rev. B 81 054115) showed a linear pressure dependence of the transition temperature between the cubic and tetragonal phase. Furthermore, the pressure induced transition becomes second order while the temperature dependent transition is near a tricritical point. The phase transition mechanism is characterized by the elongation and tilt of the TiO6 octahedra in the tetragonal phase, which leads to strongly nonlinear couplings between the structural order parameter, the volume strain and the applied pressure. The phase diagram is derived from the Clausius-Clapeyron relationship and is directly related to a pressure dependent Landau potential. The nonlinearities of the pressure dependent strains lead to an increase of the fourth order Landau coefficient with increasing pressure and, hence, to a tricritical-second order crossover. This behaviour is reminiscent of the doping related crossover in isostructural KMnF3.

  10. Method of Determining the Filtration Properties of oil-Bearing Crops in the Process of Their Pressing by the Example of Rape-oil Extrusion

    NASA Astrophysics Data System (ADS)

    Slavnov, E. V.; Petrov, I. A.

    2014-07-01

    A method of determining the change in the fi ltration properties of oil-bearing crops in the process of their pressing by repeated dynamic loading is proposed. The use of this method is demonstrated by the example of rape-oil extrusion. It was established that the change in the mass concentration of the oil in a rape mix from 0.45 to 0.23 leads to a decrease in the permeability of the mix by 101.5-102 times depending on the pressure applied to it. It is shown that the dependence of the permeability of this mix on the pressure applied to it is nonmonotone in character.

  11. Time-resolved optical emission spectroscopic studies of picosecond laser produced Cr plasma

    NASA Astrophysics Data System (ADS)

    Rao, Kavya H.; Smijesh, N.; Klemke, N.; Philip, R.; Litvinyuk, I. V.; Sang, R. T.

    2018-06-01

    Time-resolved optical emission spectroscopic measurements of a plasma generated by irradiating a Cr target using 60 picosecond (ps) and 300 ps laser pulses are carried out to investigate the variation in the line width (δλ) of emission from neutrals and ions for increasing ambient pressures. Measurements ranging from 10-6 Torr to 102 Torr show a distinctly different variation in the δλ of neutrals (Cr I) compared to that of singly ionized Cr (Cr II), for both irradiations. δλ increases monotonously with pressure for Cr II, but an oscillation is evident at intermediate pressures for Cr I. This oscillation does not depend on the laser pulse widths used. In spite of the differences in the plasma formation mechanisms, it is experimentally found that there is an optimum intermediate background pressure for which δλ of neutrals drops to a minimum. Importantly, these results underline the fact that for intermediate pressures, the usual practice of calculating the plasma number density from the δλ of neutrals needs to be judiciously done, to avoid reaching inaccurate conclusions.

  12. Investigations into the origin of the high pressure neurological syndrome: the interaction between pressure, strychnine and 1,2-propandiols in the mouse.

    PubMed Central

    Bowser-Riley, F.; Daniels, S.; Smith, E. B.

    1988-01-01

    1. The effects of a variety of structural isomers of the centrally acting muscle relaxant mephenesin on the high pressure neurological syndrome have been investigated. Threshold pressures for the onset of the behavioural signs, tremors and convulsions, were established. The effects of these compounds on the response to pressure were also compared with their ability to antagonize the convulsive action of strychnine. 2. The dose-response relationships for strychnine and picrotoxin were investigated at fixed pressures. Additionally, the dose-response relationship of strychnine, in the presence of mephenesin, at pressure was investigated. 3. All the isomers of mephenesin protected against the effects of both pressure and strychnine. The relative potency was found to be identical with respect to both. Mephenesin was clearly the most effective; it raised the threshold pressure for tremors by 2.5 times, that for convulsions elicited by pressure by 1.5 and the ED50 for strychnine convulsions by 1.6 times. Strychnine was found to be strictly additive with pressure whereas picrotoxin exhibited gross deviations from additivity. Mephenesin ameliorated the combined effects of pressure and strychnine equally. 4. The marked dependence on structure of the anticonvulsant activity of the mephenesin isomers can be interpreted as evidence that pressure acts not by some general perturbation of the membranes of excitable cells but rather via some specific interaction. The finding that strychnine and pressure are strictly additive supports the idea of specificity and also indicates that they may share a common mechanism in the production of convulsions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3207974

  13. Water-soluble CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng

    2015-02-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  14. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)

  15. Timed and Untimed Grammaticality Judgments Measure Distinct Types of Knowledge: Evidence from Eye-Movement Patterns

    ERIC Educational Resources Information Center

    Godfroid, Aline; Loewen, Shawn; Jung, Sehoon; Park, Ji-Hyun; Gass, Susan; Ellis, Rod

    2015-01-01

    Grammaticality judgment tests (GJTs) have been used to elicit data reflecting second language (L2) speakers' knowledge of L2 grammar. However, the exact constructs measured by GJTs, whether primarily implicit or explicit knowledge, are disputed and have been argued to differ depending on test-related variables (i.e., time pressure and item…

  16. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  17. Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Andersson, S.; Bäckström, G.

    1986-08-01

    The paper describes a method for measuring the pressure dependence of the thermal conductivity and the heat capacity of hard materials and single crystals. Two parallel metal strips are evaporated onto a flat surface of the specimen, one being used as a heater, the other as a resistance thermometer. The appropriate theoretical expression for a specimen in a liquid medium is fitted to the temperature, sampled at constant time intervals. The thermophysical properties of the liquid high-pressure medium are taken from hot-wire experiments. The procedure has been thoroughly tested at atmospheric pressure using an MgO crystal and glass as specimens and liquids of different characteristics in lieu of high-pressure medium. The accuracy attainable was found to be 3% or better, the standard deviation of the measurements being about 0.3%. The potential of the system was demonstrated by measurements on single-crystal MgO under pressures up to 1 GPa.

  18. Collapsing granular beds: the role of interstitial air.

    PubMed

    Homan, Tess; Gjaltema, Christa; van der Meer, Devaraj

    2014-05-01

    A prefluidized sand bed consisting of fine particles compactifies when it is subjected to a shock. We observe that the response depends on both the shock strength and the ambient pressure, where, counterintuitively, at high ambient pressure the compaction is larger, which we connect to a decrease of the static friction inside the bed. We find that the interstitial air is trapped inside the bed during and long after compaction. We deduce this from measuring the pressure changes above and below the bed: The top pressure decreases abruptly, on the time scale of the compaction, whereas that below the bed slowly rises to a maximum. Subsequently, both gently relax to ambient values. We formulate a one-dimensional diffusion model that uses only the change in bed height and the ambient pressure as an input, and we show that it leads to a fully quantitative understanding of the measured pressure variations.

  19. Pressure-Dependent Yields and Product Branching Ratios in the Broadband Photolysis of Chlorine Nitrate

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Sander, Stanley P.; Friedl, Randall R.

    1996-01-01

    The photolysis of chlorine nitrate was studied using broadband flash photolysis coupled with long-path ultraviolet-visible absorption spectroscopy. Branching ratios for the Cl + NO3 and ClO + NO2 product channels were determined from time-dependent measurements of ClO and NO3 concentrations. Yields of the ClO and NO3 products displayed a dependence on the bath gas density and the spectral distribution of the photolysis pulse. Product yields decreased with increasing bath gas density regardless of the spectral distribution of the photolysis pulse; however, the decrease in product yield was much more pronounced when photolysis was limited to longer wavelengths. For photolysis in a quartz cell (lambda > 200 nm) the yield decreased by a factor of 2 over the pressure 10-100 Torr. In a Pyrex cell (lambda > 300 nm), the yield decreased by a factor of 50 over the same pressure range. When photolysis was limited to lambda > 350 nm, the yield decreased by a factor of 250. Branching ratios for the photolysis channels [ClONO2 + h.nu yields ClO + NO2 (1a) and ClONO2 + h.nu yields Cl + NO3 (lb)] were determined from the relative ClO and NO3 product yields at various pressures. Although the absolute product yield displayed a pressure dependence, the branching between the two channels was independent of pressure. The relative branching ratios (assuming negligible contributions from other channels) are 0.61 +/- 0.20 for channel 1a and 0.39 +/- 0.20 for channel lb for photolysis with lambda > 200 nm and 0.44 +/- 0.08 for channel 1a and 0.56 +/- 0.08 for channel 1b for photolysis with lambda > 300 nm. The implications of these results for the chemistry of the lower stratosphere are discussed.

  20. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  1. Hydro-mechanical pressure response to fluid injection into finite aquifers highlights the non-local behavior of storage

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesus

    2017-04-01

    Specific storage reflects the volumetric deformation capacity of permeable media. Classical groundwater hydrology equals elastic storage to medium compressibility, which is a constant-in-time and locally-defined parameter. This allows simplifying the flow equation into a linear diffusion equation that is relatively easy to solve. However, the hydraulic gradients, generated by fluid injection or pumping, act as forces that push the medium in the direction of flow causing it to deform, even in regions where pressure has not changed. Actual deformation depends on the elastic properties of the medium, but also on aquifer geometry and on surrounding strata, which act like constraints to displacements. Therefore the storage results to be non-local (i.e., the volume of water released at a point depends on the poroelastic response over the whole aquifer) and the proper evaluation of transient pressure requires acknowledging the hydro-mechanical (HM) coupling, which is generally disregarded by conventional hydrogeology. Here we discuss whether HM coupling effects are relevant, which is of special interest for the activities of enhanced geothermics, waste disposal, CO2 storage or shale gas extraction. We propose analytic solutions to the HM problem of fluid injection (or extraction) into finite aquifers with one-dimensional or cylindrical geometries. We find that the deviation respect to traditional purely hydraulic solutions is significant when the aquifer has limited capacity to deform. The most relevant implications are that the response time is faster and the pressure variation greater than expected, which may be relevant for aquifer characterization and for the evaluation of pressure build-up due to fluid injection.

  2. Poromechanics of stick-slip frictional sliding and strength recovery on tectonic faults

    DOE PAGES

    Scuderi, Marco M.; Carpenter, Brett M.; Johnson, Paul A.; ...

    2015-10-22

    Pore fluids influence many aspects of tectonic faulting including frictional strength aseismic creep and effective stress during the seismic cycle. But, the role of pore fluid pressure during earthquake nucleation and dynamic rupture remains poorly understood. Here we report on the evolution of pore fluid pressure and porosity during laboratory stick-slip events as an analog for the seismic cycle. We sheared layers of simulated fault gouge consisting of glass beads in a double-direct shear configuration under true triaxial stresses using drained and undrained fluid conditions and effective normal stress of 5–10 MPa. Shear stress was applied via a constant displacementmore » rate, which we varied in velocity step tests from 0.1 to 30 µm/s. Here, we observe net pore pressure increases, or compaction, during dynamic failure and pore pressure decreases, or dilation, during the interseismic period, depending on fluid boundary conditions. In some cases, a brief period of dilation is attendant with the onset of dynamic stick slip. Our data show that time-dependent strengthening and dynamic stress drop increase with effective normal stress and vary with fluid conditions. For undrained conditions, dilation and preseismic slip are directly related to pore fluid depressurization; they increase with effective normal stress and recurrence time. Microstructural observations confirm the role of water-activated contact growth and shear-driven elastoplastic processes at grain junctions. These results indicate that physicochemical processes acting at grain junctions together with fluid pressure changes dictate stick-slip stress drop and interseismic creep rates and thus play a key role in earthquake nucleation and rupture propagation.« less

  3. The Modified VFT law of glass former materials under pressure: Part II: Relation with the equation of state.

    PubMed

    Rault, Jacques

    2015-08-01

    The dynamical properties of glass formers (GFs) as a function of P, V, and T are reanalyzed in relation with the equations of state (EOS) proposed recently (Eur. Phys. J. E 37, 113 (2014)). The relaxation times τ of the cooperative non-Arrhenius α process and the individual Arrhenius β process are coupled via the Kohlrausch exponent n S(T, P). In the model n S is the sigmoidal logistic function depending on T (and P, and the α relaxation time τ α of GFs above T g verifies the pressure-modified VFT law: log τ α ∼ E β /nsRT, which can be put into a form with separated variables: log τ α ∼ f(T)g(P). From the variation of n S and τ α with T and P the Vogel temperature T 0 (τ α → ∝, n S = 0) and the crossover temperature (also called the merging or splitting temperature) T B (τ α ∼ τ β, n S ∼ 1) are determined. The proposed sm-VFT equation fits with excellent accuracy the experimental data of fragile and strong GFs under pressure. The properties generally observed in organic mineral and metallic GFs are explained: a) The Vogel temperature is independent of P (as suggested by the EOS properties), the crossover is pressure-dependent. b) In crystallizable GFs the T B (P) and Clapeyron curves T m(P) coincide. c) The α and β processes have the same ratio of the activation energies and volume, E*/V* (T- and P-independent), the compensation law is observed, this ratio depends on the anharmonicity Slater-Grüneisen parameter and on the critical pressure P* deduced from the EOS. d) The properties of the Fan Structure of the Tangents (FST) to the isotherms and isobars curves log τ versus P and T and to the isochrones curves P(T). e) The scaling law log τ = f(V (Λ) ) and the relation between Γ and γ. We conclude that these properties should be studied in detail in GFs submitted to negative pressures.

  4. Evaluating the use of seafloor pressure data for the study of slow slip earthquakes; insights from the 2011-2015 Cascadia Initiative deployment

    NASA Astrophysics Data System (ADS)

    Fredrickson, E. K.; Wilcock, W. S. D.; MacCready, P.; Roland, E. C.; Schmidt, D. A.; Zumberge, M. A.; Sasagawa, G. S.; Kurapov, A. L.

    2017-12-01

    The Cascadia subduction zone produces M8-9 megathrust earthquakes with a recurrence interval of 500 years. While land-based geodetic measurements indicate a large degree of locking offshore, these observations cannot resolve the extent of locking nearest the trench. One method for detecting displacement at shallow depths on the megathrust is through the use of seafloor pressure to track uplift and subsidence of the seafloor, a technique that shows potential for both constraining long term plate locking behavior and searching for slow slip transients. Past studies using seafloor pressure for geodesy have used differenced pairs of pressure records to eliminate oceanographic noise, a primary noise source of seafloor pressure, on the assumption that oceanographic signals are uniform between stations. These studies have identified vertical displacements associated with slow slip on the order of 1-5 cm over instrument separations from 1-50 km in subduction zone settings across the globe. We present an analysis of pressure records from 30 stations in the 2011-2015 Cascadia Initiative experiment and regional physical oceanographic hind cast models developed using the Regional Ocean Modeling System, which have been validated with oceanographic observations, but not previously analyzed for seafloor pressure. We study the root mean square (RMS) amplitude of time series of pressure and pressure differences at periods of 5-30 days to assess the scale, spatial dependence, and temporal dependence of seafloor pressure oceanographic signals. The results indicate that these signals are strongly depth dependent, with filtered pressure RMS values decreasing with depth from >4.5 cm on the continental shelf to <1.5 cm on the abyssal plane for the pressure observations and from >2.5 cm to <1 cm for the model. In contrast, oceanographic signals vary more slowly along depth contours and both data and model show RMS values varying <1 cm at separations >100 km. Based on our noise analysis, we infer that experiments that search for slow slip events should deploy pressure sensors along strike, rather than solely in across strike profiles. We will also explore using temporally and spatially coincident oceanographic models and physical data to correct pressure signals and assess the impact on the threshold for slow slip event detection.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diallo, S. O.; Zhang, Q.; O'Neill, H.

    Here we present a pressure-dependence study of the dynamics of lysozyme protein powder immersed in deuterated , α-trehalose environment via quasielastic neutron scattering (QENS). The goal is to assess the baroprotective benefits of trehalose on biomolecules by comparing the findings with those of a trehalose-free reference study. While the mean-square displacement of the trehalose-free protein (hydrated to d D₂O ≃40 w%) as a whole, is reduced by increasing pressure, the actual observable relaxation dynamics in the picoseconds to nanoseconds time range remains largely unaffected by pressure up to the maximum investigated pressure of 2.78(2) Kbar. Our observation is independent ofmore » whether or not the protein is mixed with the deuterated sugar. This suggests that the hydrated protein s conformational states at atmospheric pressure remain unaltered by hydrostatic pressures, below 2.78 Kbar. We also found the QENS response to be totally recoverable after ambient pressure conditions are restored. Small-angle neutron diffraction measurements confirm that the protein-protein correlation remains undisturbed.We observe, however, a clear narrowing of the QENS response as the temperature is decreased from 290 to 230 K in both cases, which we parametrize using the Kohlrausch-Williams-Watts stretched exponential model. Finally, only the fraction of protons that are immobile on the accessible time window of the instrument, referred to as the elastic incoherent structure factor, is observably sensitive to pressure, increasing only marginally but systematically with increasing pressure.« less

  6. Modeling and Real-Time Process Monitoring of Organometallic Chemical Vapor Deposition of III-V Phosphides and Nitrides at Low and High Pressure

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.

    1999-01-01

    The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.

  7. Temperature-dependent inotropic and lusitropic indices based on half-logistic time constants for four segmental phases in isovolumic left ventricular pressure-time curve in excised, cross-circulated canine heart.

    PubMed

    Mizuno, Ju; Mohri, Satoshi; Yokoyama, Takeshi; Otsuji, Mikiya; Arita, Hideko; Hanaoka, Kazuo

    2017-02-01

    Varying temperature affects cardiac systolic and diastolic function and the left ventricular (LV) pressure-time curve (PTC) waveform that includes information about LV inotropism and lusitropism. Our proposed half-logistic (h-L) time constants obtained by fitting using h-L functions for four segmental phases (Phases I-IV) in the isovolumic LV PTC are more useful indices for estimating LV inotropism and lusitropism during contraction and relaxation periods than the mono-exponential (m-E) time constants at normal temperature. In this study, we investigated whether the superiority of the goodness of h-L fits remained even at hypothermia and hyperthermia. Phases I-IV in the isovolumic LV PTCs in eight excised, cross-circulated canine hearts at 33, 36, and 38 °C were analyzed using h-L and m-E functions and the least-squares method. The h-L and m-E time constants for Phases I-IV significantly shortened with increasing temperature. Curve fitting using h-L functions was significantly better than that using m-E functions for Phases I-IV at all temperatures. Therefore, the superiority of the goodness of h-L fit vs. m-E fit remained at all temperatures. As LV inotropic and lusitropic indices, temperature-dependent h-L time constants could be more useful than m-E time constants for Phases I-IV.

  8. Pressure effect on the long-range order in CeB6

    NASA Astrophysics Data System (ADS)

    Sera, M.; Ikeda, S.; Iwakubo, H.; Uwatoko, Y.; Hane, S.; Kosaka, M.; Kunii, S.

    2006-08-01

    The pressure effect of CeB6 was investigated. The pressure dependence of the Néel temperature, TN and the critical field from the antiferro-magnetic phase III to antiferro-quadrupolar phase II, HcIII-II of CeB6 exhibits the unusual pressure dependence that the suppression rate of HcIII-II is much larger than that of TN. In order to explain this unusual result, we have performed the mean field calculation for the 4-sublattice model assuming that the pressure dependence of TN, the antiferro-octupolar and quadrupolar temperatures, Toct and TQ as follows; dTN/dP<0, dToct/dP>dTQ/dP>0 and could explain the unusual pressure dependence of TN and HcIII-II.

  9. Pressure-dependent attenuation with microbubbles at low mechanical index.

    PubMed

    Tang, Meng-Xing; Eckersley, Robert J; Noble, J Alison

    2005-03-01

    It has previously been shown that the attenuation of ultrasound (US) by microbubble contrast agents is dependent on acoustic pressure (Chen et al. 2002). Although previous studies have modelled the pressure-dependence of attenuation in single bubbles, this paper investigates this subject by considering a bulk volume of bubbles together with other linear attenuators. Specifically, a new pressure-dependent attenuation model for an inhomogeneous volume of attenuators is proposed. In this model, the effect of the attenuation on US propagation is considered. The model was validated using experimental measurements on the US contrast agent Sonovue. The results indicate, at low acoustic pressures, a linear relationship between the attenuation of Sonovue, measured in dB, and the insonating acoustic pressure.

  10. Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: Impact of interfacial rigidity

    NASA Astrophysics Data System (ADS)

    Le Merrer, Marie; Cohen-Addad, Sylvie; Höhler, Reinhard

    2013-08-01

    In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.

  11. A Study of the Time Dependence in Fracture Processes Relating to Service Life Prediction of Adhesive Joints and Advanced Composites.

    DTIC Science & Technology

    1981-04-30

    fluid temperature should exceed 145°F. The flow control module contains all the hydraulic circuit elements necessary for both the pressure line to and...are contained in three basic modules : 1) the hydraulic power supply, 2) a flow control module containing valving, accumulators and filters, and 3) the...hydraulic transient overpressures, is located in the flow control module , as are the high and low pressure filters. The load frame (MTS Systems Corp

  12. Gaseous Electronics Conference (35th) Held at Dallas, Texas, 19-22 October 1982.

    DTIC Science & Technology

    1982-12-31

    Hz LTE arcs con- taining mrury and metal halide additives such as Nal and Sc13 . , Using a well defined cylindrical arc vessel and a known mercury ...termination of the high pressure mercury arc will be presented. 1 F.E. Irons, J.Quant.Spect.Radiat.Transfer 22,1,(1979). 41IBLANK I- CA-3 Time Dependent...High pressure mercury lamps were. operated on a perioically pulsed supply voltage. From optically thin mercury line emission the variation of the axial

  13. Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Jani, A. R.

    2011-12-01

    Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.

  14. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    PubMed

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  15. [Special artificial respiration procedures and intracranial pressure. Animal experiment studies, development and use of a new pressure measuring technic, clinical aspects].

    PubMed

    Schedl, R

    1985-01-01

    We investigated the influence of Forced Diffusion Ventilation (FDV), a special form of High Frequency Ventilation (HFV), on elevated intracranial pressure (ICP) in 5 dogs. Elevation of ICP was standardized by inflation of an epidural balloon. A typical finding with FDV is a reduced intrapleural pressure and therefore one could expect a better cerebrovenous drainage influencing ICP. Nevertheless, we found no changes in mean ICP under conditions of FDV compared with IPPV. Respirator-synchronous fluctuations of ICP, cisternal cerebrospinal fluid pressure and intrapleural pressure were drastically reduced with FDV. This phenomenon has been already reported by other groups as a typical effect of HFV with rates of 100/min. One can speculate, that this immediate impact of HFV on ICP-curves might be of some advantage in patients with critically reduced intracranial compliance requiring long-term artificial ventilation, because peaks and amplitudes of ICP are reduced. Our clinical experience with High Frequency Pulsation (HFP) includes 11 patients with severe brain trauma. In clinical routine this method of HFV is more facile to applicate than FDV, because there is no need of a special endotracheal tube and sufficient CO2-elimination is not strongly dependent on precise position of the tube. But HFP, as FDV, includes all advantages of respiratory systems, that are open against atmosphere (coughing and simultaneous breathing, without drastically increasing airway pressure, suction during respiration, etc.). However, we could find no special advantages or disadvantages in ICP-course during long-term application of HFP (up to 10 days). Because application of HFV is dependent on special technical equipment, we investigated in 6 patients the influence of respiratory frequency, tidal volume and inspiratory flow on ICP-fluctuations using conventional ventilators. ICP was recorded by a new, self constructed pneumatic epidural pressure sensor. Ventilator-related ICP-fluctuations were found to be markedly reduced at frequencies of 20/min and usually eliminated at 30/min. We found an exponential correlation between ICP-fluctuations and respiratory frequency and there was no correlation between tidal volume and ICP. Central venous pressure amplitudes were found to be in linear correlation with respiratory frequency and tidal volumes as well. The amplitude of respiratory ICP-fluctuations seems to be more dependent on duration of expiratory time. As our findings demonstrate, artificial ventilation without entilator-related fluctuations in ICP ("brain-protective" ventilation) may be performed by conventional volume-constant, time-cycled ventilators.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. High-pressure Injection Injuries of the Hand.

    PubMed

    Cannon, Tyler A

    2016-07-01

    High-pressure injection hand injuries are often overlooked, with severe complications owing to the acute inflammatory response. Prognosis for depends on the type of material injected, location of injection, involved pressure, and timing to surgical decompression and debridement. Acute management involves broad-spectrum antibiotics, tetanus prophylaxis, emergent decompression within 6 hours, and complete removal of the injected material. Most patients have residual sequelae of stiffness, pain, sensation loss, and difficulties in returning to work. The hand surgeon's role is prompt surgical intervention, early postoperative motion, and education of patient and staff regarding short- and long-term expectations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.

    PubMed

    Momcilovic, Milos; Kuzmanovic, Miroslav; Rankovic, Dragan; Ciganovic, Jovan; Stoiljkovic, Milovan; Savovic, Jelena; Trtica, Milan

    2015-04-01

    Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay.

  18. Pressure mapping with textile sensors for compression therapy monitoring.

    PubMed

    Baldoli, Ilaria; Mazzocchi, Tommaso; Paoletti, Clara; Ricotti, Leonardo; Salvo, Pietro; Dini, Valentina; Laschi, Cecilia; Francesco, Fabio Di; Menciassi, Arianna

    2016-08-01

    Compression therapy is the cornerstone of treatment in the case of venous leg ulcers. The therapy outcome is strictly dependent on the pressure distribution produced by bandages along the lower limb length. To date, pressure monitoring has been carried out using sensors that present considerable drawbacks, such as single point instead of distributed sensing, no shape conformability, bulkiness and constraints on patient's movements. In this work, matrix textile sensing technologies were explored in terms of their ability to measure the sub-bandage pressure with a suitable temporal and spatial resolution. A multilayered textile matrix based on a piezoresistive sensing principle was developed, calibrated and tested with human subjects, with the aim of assessing real-time distributed pressure sensing at the skin/bandage interface. Experimental tests were carried out on three healthy volunteers, using two different bandage types, from among those most commonly used. Such tests allowed the trends of pressure distribution to be evaluated over time, both at rest and during daily life activities. Results revealed that the proposed device enables the dynamic assessment of compression mapping, with a suitable spatial and temporal resolution (20 mm and 10 Hz, respectively). In addition, the sensor is flexible and conformable, thus well accepted by the patient. Overall, this study demonstrates the adequacy of the proposed piezoresistive textile sensor for the real-time monitoring of bandage-based therapeutic treatments. © IMechE 2016.

  19. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct

    NASA Technical Reports Server (NTRS)

    Gashev, Anatoliy A.; Davis, Michael J.; Zawieja, David C.; Delp, M. D. (Principal Investigator)

    2002-01-01

    There are only a few reports of the influence of imposed flow on an active lymph pump under conditions of controlled intraluminal pressure. Thus, the mechanisms are not clearly defined. Rat mesenteric lymphatics and thoracic ducts were isolated, cannulated and pressurized. Input and output pressures were adjusted to impose various flows. Lymphatic systolic and diastolic diameters were measured and used to determine contraction frequency and pump flow indices. Imposed flow inhibited the active lymph pump in both mesenteric lymphatics and in the thoracic duct. The active pump of the thoracic duct appeared more sensitive to flow than did the active pump of the mesenteric lymphatics. Imposed flow reduced the frequency and amplitude of the contractions and accordingly the active pump flow. Flow-induced inhibition of the active lymph pump followed two temporal patterns. The first pattern was a rapidly developing inhibition of contraction frequency. Upon imposition of flow, the contraction frequency immediately fell and then partially recovered over time during continued flow. This effect was dependent on the magnitude of imposed flow, but did not depend on the direction of flow. The effect also depended upon the rate of change in the direction of flow. The second pattern was a slowly developing reduction of the amplitude of the lymphatic contractions, which increased over time during continued flow. The inhibition of contraction amplitude was dependent on the direction of the imposed flow, but independent of the magnitude of flow. Nitric oxide was partly but not completely responsible for the influence of flow on the mesenteric lymph pump. Exposure to NO mimicked the effects of flow, and inhibition of the NO synthase by N (G)-monomethyl-L-arginine attenuated but did not completely abolish the effects of flow.

  20. OCT Study of Mechanical Properties Associated with Trabecular Meshwork and Collector Channel Motion in Human Eyes

    PubMed Central

    Xin, Chen; Johnstone, Murray; Wang, Ningli; Wang, Ruikang K.

    2016-01-01

    We report the use of a high-resolution optical coherence tomography (OCT) imaging platform to identify and quantify pressure-dependent aqueous outflow system (AOS) tissue relationships and to infer mechanical stiffness through examination of tissue properties in ex vivo human eyes. Five enucleated human eyes are included in this study, with each eye prepared with four equal-sized quadrants, each encompassing 90 degrees of the limbal circumference. In radial limbal segments perfusion pressure within Schlemm’s canal (SC) is controlled by means of a perfusion cannula inserted into the canal lumen, while the other end of the cannula leads to a reservoir at a height that can control the pressure in the cannula. The OCT system images the sample with a spatial resolution of about 5 μm from the trabecular meshwork (TM) surface. Geometric parameters are quantified from the 2D OCT images acquired from the sample subjected to controlled changes in perfusion pressures; parameters include area and height of the lumen of SC, collector channel entrances (CCE) and intrascleral collector channels (ISCC). We show that 3D OCT imaging permits the identification of 3-D relationships of the SC, CCE and ISCC lumen dimensions. Collagen flaps or leaflets are found at CCE that are attached or hinged at only one end, whilst the flaps are connected to the TM by cylindrical structures spanning SC. Increasing static SC pressures resulted in SC lumen enlargement with corresponding enlargement of the CCE and ISCC lumen. Pressure-dependent SC lumen area and height changes are significant at the 0.01 levels for ANOVA, and at the 0.05 for both polynomial curves and Tukey paired comparisons. Dynamic measurements demonstrate a synchronous increase in SC, CCE and ISCC lumen height in response to pressure changes from 0 to 10, 30 or 50 mm Hg, respectively, and the response time is within the 50-millisecond range. From the measured SC volume and corresponding IOP values, we demonstrate that an elastance curve can be developed to infer the mechanical stiffness of the TM by means of quantifying pressure-dependent SC volume changes over a 2 mm radial region of SC. Our study finds pressure-dependent motion of the TM that corresponds to collagen leaflet configuration motion at CCE; the synchronous tissue motion also corresponds with synchrony of SC and CCE lumen dimension changes. PMID:27598990

  1. Pressure Dependence of the Boson Peak of Glassy Glycerol

    DOE PAGES

    Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.; ...

    2017-05-31

    The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less

  2. Prediction of failure pressure and leak rate of stress corrosion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, S.; Kasza, K.; Park, J. Y.

    2002-06-24

    An ''equivalent rectangular crack'' approach was employed to predict rupture pressures and leak rates through laboratory generated stress corrosion cracks and steam generator tubes removed from the McGuire Nuclear Station. Specimen flaws were sized by post-test fractography in addition to a pre-test advanced eddy current technique. The predicted and observed test data on rupture and leak rate are compared. In general, the test failure pressures and leak rates are closer to those predicted on the basis of fractography than on nondestructive evaluation (NDE). However, the predictions based on NDE results are encouraging, particularly because they have the potential to determinemore » a more detailed geometry of ligamented cracks, from which failure pressure and leak rate can be more accurately predicted. One test specimen displayed a time-dependent increase of leak rate under constant pressure.« less

  3. Calculation of Internal Pressures in the Fuel Tube of a Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B. M.; Allen, G.

    1952-01-01

    General procedures for computing internal pressures in fuel tubes of nuclear reactors are described and the effects on the pressure of varying neutron flux, fissioning material, and operating temperatures are discussed. A general proof is given that during pile operation each fission product is monotonically increasing and therefore a maximum amount of all elements is present at the time of shit down. The post-shutdown build-up of elements that are held in check during pile operation because of their inordinately high capture cross sections is calculated quantitatively. An account of chemical interactions between the many fission-product elements and the resulting effect on the total pressure completes the discussion. The general methods are illustrated by calculations applied to a system consisting of 90 percent enriched U235 in the form of UO2 packed into a hollow metal cylinder or "pin", operating at a flux of 8 x 10(exp 14) at 2000 F. Calculations of the pressure inside a pin are made with and without a sodium metal heat-transfer additive. The bulk of the pressure is shown to depend on the four elements, xenon, krypton, rubidium, and cesium; the amount of free oxygen, however, was also significant. For a shutdown time of 10(exp 6) seconds, the pressure was about 100 atmospheres.

  4. Why climate change will invariably alter selection pressures on phenology.

    PubMed

    Gienapp, Phillip; Reed, Thomas E; Visser, Marcel E

    2014-10-22

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Rate dependent deformation of porous sandstone across the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Jefferd, M.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.

    2017-12-01

    Porous sandstones transition from dilatant, brittle deformation at low pressure, to compactant, ductile deformation at high pressure. Both deformation modes are driven by microcracking, and are expected to exhibit a time dependency due to chemical interactions between the pore fluid and the rock matrix. In the brittle regime, time-dependent failure and brittle creep are well documented. However, much less is understood in the ductile regime. We present results from a series of triaxial deformation experiments, performed in the brittle-ductile transition zone of fluid saturated Bleurswiller sandstone (initial porosity = 23%). Samples were deformed at 40 MPa effective pressure, to 4% axial strain, under either constant strain rate (10-5 s-1) or constant stress (creep) conditions. In addition to stress, axial strain and pore volume change, P wave velocities and acoustic emission were monitored throughout. During constant stress tests, the strain rate initially decreased with increasing strain, before reaching a minimum and accelerating to a constant level beyond 2% axial strain. When plotted against axial strain, the strain rate evolution under constant stress conditions, mirrors the stress evolution during the constant strain rate tests; where strain hardening occurs prior to peak stress, which is followed by strain softening and an eventual plateau. In all our tests, the minimum strain rate during creep occurs at the same inelastic strain as the peak stress during constant strain tests, and strongly decreases with decreasing applied stress. The microstructural state of the rock, as interpreted from similar volumetric strain curves, as well as the P-wave velocity evolution and AE production rate, appears to be solely a function of the total inelastic strain, and is independent of the length of time required to reach said strain. We tested the sensitivity of fluid chemistry on the time dependency, through a series of experiments performed under similar stress conditions, but with chemically inert decane instead of water as the pore fluid. Under the same applied stress, decane saturated samples reached a minimum strain rate 2 orders of magnitude lower than the water saturated samples. This is consistent with a mechanism of subcritical crack growth driven by chemical interactions between the pore fluid and the rock.

  6. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    PubMed

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  7. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  8. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    NASA Technical Reports Server (NTRS)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  9. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    NASA Astrophysics Data System (ADS)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy barrier in thermal activation to obtain our final result for the temperature-dependent critical pressure, which is significantly below the results if only parameter renormalization or only thermal activation is considered.

  10. Raman linewidth measurements using time-resolved hybrid picosecond/nanosecond rotational CARS.

    PubMed

    Nordström, Emil; Hosseinnia, Ali; Brackmann, Christian; Bood, Joakim; Bengtsson, Per-Erik

    2015-12-15

    We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.

  11. High-pressure dynamics of hydrated protein in bioprotective trehalose environment

    DOE PAGES

    Diallo, S. O.; Zhang, Q.; O'Neill, H.; ...

    2014-10-30

    Here we present a pressure-dependence study of the dynamics of lysozyme protein powder immersed in deuterated , α-trehalose environment via quasielastic neutron scattering (QENS). The goal is to assess the baroprotective benefits of trehalose on biomolecules by comparing the findings with those of a trehalose-free reference study. While the mean-square displacement of the trehalose-free protein (hydrated to d D₂O ≃40 w%) as a whole, is reduced by increasing pressure, the actual observable relaxation dynamics in the picoseconds to nanoseconds time range remains largely unaffected by pressure up to the maximum investigated pressure of 2.78(2) Kbar. Our observation is independent ofmore » whether or not the protein is mixed with the deuterated sugar. This suggests that the hydrated protein s conformational states at atmospheric pressure remain unaltered by hydrostatic pressures, below 2.78 Kbar. We also found the QENS response to be totally recoverable after ambient pressure conditions are restored. Small-angle neutron diffraction measurements confirm that the protein-protein correlation remains undisturbed.We observe, however, a clear narrowing of the QENS response as the temperature is decreased from 290 to 230 K in both cases, which we parametrize using the Kohlrausch-Williams-Watts stretched exponential model. Finally, only the fraction of protons that are immobile on the accessible time window of the instrument, referred to as the elastic incoherent structure factor, is observably sensitive to pressure, increasing only marginally but systematically with increasing pressure.« less

  12. Pressure ulcers: Current understanding and newer modalities of treatment

    PubMed Central

    Bhattacharya, Surajit; Mishra, R. K.

    2015-01-01

    This article reviews the mechanism, symptoms, causes, severity, diagnosis, prevention and present recommendations for surgical as well as non-surgical management of pressure ulcers. Particular focus has been placed on the current understandings and the newer modalities for the treatment of pressure ulcers. The paper also covers the role of nutrition and pressure-release devices such as cushions and mattresses as a part of the treatment algorithm for preventing and quick healing process of these wounds. Pressure ulcers develop primarily from pressure and shear; are progressive in nature and most frequently found in bedridden, chair bound or immobile people. They often develop in people who have been hospitalised for a long time generally for a different problem and increase the overall time as well as cost of hospitalisation that have detrimental effects on patient's quality of life. Loss of sensation compounds the problem manifold, and failure of reactive hyperaemia cycle of the pressure prone area remains the most important aetiopathology. Pressure ulcers are largely preventable in nature, and their management depends on their severity. The available literature about severity of pressure ulcers, their classification and medical care protocols have been described in this paper. The present treatment options include various approaches of cleaning the wound, debridement, optimised dressings, role of antibiotics and reconstructive surgery. The newer treatment options such as negative pressure wound therapy, hyperbaric oxygen therapy, cell therapy have been discussed, and the advantages and disadvantages of current and newer methods have also been described. PMID:25991879

  13. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels1[OPEN

    PubMed Central

    Liu, Jinyu; Tyree, Melvin T.

    2015-01-01

    Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry’s law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. PMID:26468516

  14. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels.

    PubMed

    Wang, Yujie; Liu, Jinyu; Tyree, Melvin T

    2015-12-01

    Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry's law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Long term effects of guar gum on metabolic control, serum cholesterol and blood pressure levels in type 2 (non-insulin-dependent) diabetic patients with high blood pressure.

    PubMed

    Uusitupa, M; Tuomilehto, J; Karttunen, P; Wolf, E

    1984-01-01

    A double-blind, placebo-controlled trial was carried out in 17 Type 2 (non-insulin-dependent) diabetic patients, treated with diet therapy alone to study the effects of guar gum on metabolic control, serum lipids, and blood pressure levels. Thirteen of the patients had drug treatment for hypertension. Guar gum was taken with meals three times a day, and the dose was gradually increased to 21 g per day. A slight, but not significant improvement was found in the metabolic control of the patients after the guar gum treatment compared to the placebo. Serum total cholesterol was 11% (p greater than 0.01) lower after the guar gum but no significant differences were found in HDL-cholesterol or serum triglycerides during the guar gum treatment compared to the placebo. Diastolic blood pressure level was significantly lower during the guar gum treatment compared to placebo. No difference was observed in systolic blood pressure levels between the guar gum and placebo treatments. The reduction of diastolic blood pressure was independent of changes in fasting blood glucose level or body weight, but could in part be due to simultaneous reduction in serum cholesterol concentration. The changes associated with guar gum supplementation suggest a reduction in the risk for cardiovascular complications in diabetic patients.

  16. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Serra, J. L.

    2007-01-01

    T-300 carbon fibers and T-300 carbon fiber reinforced silicon carbide composites (C/SiC) were oxidized in flowing reduced oxygen partial pressure environments at a total pressure of one atmosphere (0.5 atm O2, 0.05 atm O2 and 0.005 atm O2, balance argon). Experiments were conducted at four temperatures (816deg, 1149deg, 1343deg, and 1538 C). The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were oxidized to completion for times between 0.6 and 90 h. Results indicated that fiber oxidation kinetics were gas phase diffusion controlled. Oxidation rates had an oxygen partial pressure dependence with a power law exponent close to one. In addition, oxidation rates were only weakly dependent on temperature. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. In general, weight losses were observed indicating oxidation of the carbon fibers dominated the oxidation behavior. Low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were primarily attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC since these reduced rates were observed even at the lowest oxygen partial pressures where SiC oxidation is minimal.

  17. Galactic star formation enhanced and quenched by ram pressure in groups and clusters

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2014-02-01

    We investigate how ram pressure of intragroup and intracluster medium can influence the spatial and temporal variations of star formation (SF) of disc galaxies with halo masses (Mh) ranging from 1010 to 1012 M⊙ (i.e. from dwarf irregular to Milky Way-type) in groups and clusters with 1013 ≤ Mh/M⊙ ≤ 1015 by using numerical simulations with a new model for time-varying ram pressure. The long-term evolution of SF rates and Hα morphologies corresponding to the distributions of star-forming regions are particularly investigated for different model parameters. The principal results are as follows. Whether ram pressure can enhance or reduce SF depends on Mh of disc galaxies and inclination angles of gas discs with respect to their orbital directions for a given orbit and a given environment. For example, SF can be moderately enhanced in disc galaxies with Mh = 1012 M⊙ at the pericentre passages in a cluster with Mh = 1014 M⊙ whereas it can be completely shut down (`quenching') for low-mass discs with Mh = 1010 M⊙. Ram pressure can reduce the Hα-to-optical-disc-size ratios of discs and the level of the reduction depends on Mh and orbits of disc galaxies for a given environment. Disc galaxies under strong ram pressure show characteristic Hα morphologies such as ring-like, one-sided and crescent-like distributions.

  18. Phase behaviour, thermal expansion and compressibility of SnMo2O8

    NASA Astrophysics Data System (ADS)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.; Evans, John S. O.

    2018-02-01

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298-513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ‧. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family. Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ∼36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.

  19. Phase behaviour, thermal expansion and compressibility of SnMo 2 O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298–513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ'. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family.more » Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ~36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.« less

  20. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  1. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less

  2. Investigation of the dielectric recovery in synthetic air in a high voltage circuit breaker

    NASA Astrophysics Data System (ADS)

    Seeger, M.; Naidis, G.; Steffens, A.; Nordborg, H.; Claessens, M.

    2005-06-01

    The dielectric recovery of an axially blown arc in an experimental set-up based on a conventional HV circuit breaker was investigated both experimentally and theoretically. As a quenching gas, synthetic air was used. The investigated time range was from 10 µs to 10 ms after current zero (CZ). A fast rise in the dielectric strength during the first 100 µs, followed by a plateau and further rise later was observed. The dependences on the breaking current and pressure were determined. The measured dielectric recovery during the first 100 µs after CZ could be reproduced with good accuracy by computational fluid dynamics simulations. From that it could be deduced that the temperature decay in the axis does not depend sensitively on the pressure. The dielectric recovery during the first 100 µs scales therefore mainly with the filling pressure. The plateau in the breakdown characteristic is due to a hot vapour layer from the still evaporating PTFE nozzle surface.

  3. Cross spectra between pressure and temperature in a constant-area duct downstream of a hydrogen-fueled combustor

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.

    1983-01-01

    Pressure temperature cross spectra are necessary in predicting noise propagation in regions of velocity gradients downstream of combustors if the effect of convective entropy disturbances is included. Pressure temperature cross spectra and coherences were measured at spatially separated points in a combustion rig fueled with hydrogen. Temperature-temperature and pressure-pressure cross spectra and coherences between the spatially separated points as well as temperature and pressure autospectra were measured. These test results were compared with previous results obtained in the same combustion rig using Jet A fuel in order to investigate their dependence on the type of combustion process. The phase relationships are not consistent with a simple source model that assumes that pressure and temperature are in phase at a point in the combustor and at all other points downstream are related to one another by only a time delay due to convection of temperature disturbances. Thus these test results indicate that a more complex model of the source is required.

  4. Characteristics of low-and high-fat beef patties: effect of high hydrostatic pressure.

    PubMed

    Carballo, J; Fernandez, P; Carrascosa, A V; Solas, M T; Colmenero, F J

    1997-01-01

    The purpose of this study was to analyze the consequences of applying high pressures (100 and 300 MPa for 5 or 20 min) on characteristics such as water- and fat-binding properties, texture, color, microstructure, and microbiology of low-fat (9.2%) and high-fat (20.3%) beef patties. In nonpressurized patties, the low-fat product exhibited significantly poorer (P < 0.05) binding properties and higher (P < 0.05) Kramer shear force and Kramer energy than did high-fat patties. Although high pressure did not clearly influence the binding properties of low- and high-fat beef patties, it did produce a rise in the Kramer shear force and energy which were more pronounced at 300 MPa. High pressures altered patty color, the extent of alteration depending on fat content, pressure, and pressurizing time. Pressurizing high- and low-fat beef patties at 300 MPa not only produced a lethal effect (P < 0.05) on microorganisms, but caused sublethal damage as well.

  5. Atmospheric pressure loading parameters from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  6. Solution NMR investigation of the response of the lactose repressor core domain dimer to hydrostatic pressure.

    PubMed

    Fuglestad, Brian; Stetz, Matthew A; Belnavis, Zachary; Wand, A Joshua

    2017-12-01

    Previous investigations of the sensitivity of the lac repressor to high-hydrostatic pressure have led to varying conclusions. Here high-pressure solution NMR spectroscopy is used to provide an atomic level view of the pressure induced structural transition of the lactose repressor regulatory domain (LacI* RD) bound to the ligand IPTG. As the pressure is raised from ambient to 3kbar the native state of the protein is converted to a partially unfolded form. Estimates of rotational correlation times using transverse optimized relaxation indicates that a monomeric state is never reached and that the predominate form of the LacI* RD is dimeric throughout this pressure change. Spectral analysis suggests that the pressure-induced transition is localized and is associated with a volume change of approximately -115mlmol -1 and an average pressure dependent change in compressibility of approximately 30mlmol -1 kbar -1 . In addition, a subset of resonances emerge at high-pressures indicating the presence of a non-native but folded alternate state. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  8. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  9. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID:28521045

  10. An effective medium approach to modelling the pressure-dependent electrical properties of porous rocks

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng

    2018-07-01

    Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.

  11. Does the pressure dependence of kinetic isotope effects report usefully on dynamics in enzyme H-transfer reactions?

    PubMed

    Hoeven, Robin; Heyes, Derren J; Hay, Sam; Scrutton, Nigel S

    2015-08-01

    The temperature dependence of kinetic isotope effects (KIEs) has emerged as the main experimental probe of enzymatic H-transfer by quantum tunnelling. Implicit in the interpretation is a presumed role for dynamic coupling of H-transfer chemistry to the protein environment, the so-called 'promoting motions/vibrations hypothesis'. This idea remains contentious, and others have questioned the importance and/or existence of promoting motions/vibrations. New experimental methods of addressing this problem are emerging, including use of mass-modulated enzymes and time-resolved spectroscopy. The pressure dependence of KIEs has been considered as a potential probe of quantum tunnelling reactions, because semi-classical KIEs, which are defined by differences in zero-point vibrational energy, are relatively insensitive to kbar changes in pressure. Reported combined pressure and temperature (p-T) dependence studies of H-transfer reactions are, however, limited. Here, we extend and review the available p-T studies that have utilized well-defined experimental systems in which quantum mechanical tunnelling is established. These include flavoproteins, quinoproteins, light-activated enzymes and chemical model systems. We show that there is no clear general trend between the p-T dependencies of the KIEs in these systems. Given the complex nature of p-T studies, we conclude that computational simulations using determined (e.g. X-ray) structures are also needed alongside experimental measurements of reaction rates/KIEs to guide the interpretation of p-T effects. In providing new insight into H-transfer/environmental coupling, combined approaches that unite both atomistic understanding with experimental rate measurements will require careful evaluation on a case-by-case basis. Although individually informative, we conclude that p-T studies do not provide the more generalized insight that has come from studies of the temperature dependence of KIEs. © 2015 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  12. Physics in Oceanography.

    ERIC Educational Resources Information Center

    Charnock, H.

    1980-01-01

    Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…

  13. In situ metrology to characterize water vapor delivery during atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmido, Tariq, E-mail: tariq.ahmido@nist.gov; Kimes, William A.; Sperling, Brent A.

    Water is often employed as the oxygen source in metal oxide atomic layer deposition (ALD) processes. It has been reported that variations in the amount of water delivered during metal oxide ALD can impact the oxide film properties. Hence, one contribution to optimizing metal oxide ALD processes would be to identify methods to better control water dose. The development of rapid, quantitative techniques for in situ water vapor measurements during ALD processes would be beneficial to achieve this goal. In this report, the performance of an in situ tunable diode laser absorption spectroscopy (TDLAS) scheme for performing rapid, quantitative watermore » partial pressure measurements in a representative quarter-inch ALD delivery line is described. This implementation of TDLAS, which utilizes a near-infrared distributed-feedback diode laser and wavelength modulation spectroscopy, provides measurements of water partial pressure on a timescale comparable to or shorter than the timescale of the gas dynamics in typical ALD systems. Depending on the degree of signal averaging, this TDLAS system was capable of measuring the water partial pressure with a detection limit in the range of ∼0.80 to ∼0.08 Pa. The utility of this TDLAS scheme was demonstrated by using it to identify characteristics of a representative water delivery system that otherwise would have been difficult to predict. Those characteristics include (1) the magnitude and time dependence of the pressure transient that can occur during water injection, and (2) the dependence of the steady-state water partial pressure on the carrier gas flow rate and the setting of the water ampoule flow restriction.« less

  14. The effects of some hydrophobic gases on the pulmonary surfactant system.

    PubMed Central

    Daniels, S; Paton, W D; Smith, E B

    1979-01-01

    1. Decompression from exposures to raised ambient pressure of sulphur hexafluoride, carbon tetrafluoride, hexafluoro-ethane and nitrous oxide results in the formation of dense foam and pulmonary oedema. 2. The degree of pulmonary oedema produced is dependent on the exposure pressure, although the exposure time required is short in comparison to tissue saturation times. 3. The effect is not prevented by atropine, ephedrine or hydrocortisone. 4. The effect is also produced in vitro by saturated solutions of halothane, chloroform and ether. 5. It is suggested that the mechanism of action is physical with physico-chemical factor involved being a differential partition of these gases within the surfactant: membrane complex. PMID:581651

  15. An estimate of the outgassing of space payloads, their internal pressures, contaminations and gaseous influences on the environment

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1985-01-01

    Experimentally measured outgassing as a function of time is presented for 14 space systems including several spacecraft instruments, spacecraft, the shuttle bay, and a spent solid fuel motor. The weights, volumes, and some of the scientific functions of the instruments involved are indicated. The methods used to obtain the data are briefly described. General indications on how to use the data to obtain the internal pressure versus time for a payload, its self-contamination, the gaseous flow in its vicinity, the column densities in its field of view, and other environmental parameters which are dependent on the outgassing of a payload are provided.

  16. Thermoplastic Ribbon-Ply Bonding Model

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.

    1996-01-01

    The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.

  17. Ignition transient analysis of solid rocket motor

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    To predict pressure-time and thrust-time behavior of solid rocket motors, a one-dimensional numerical model is developed. The ignition phase of solid rocket motors (time less than 0.4 sec) depends critically on complex interactions among many elements, such as rocket geometry, heat and mass transfer, flow development, and chemical reactions. The present model solves the mass, momentum, and energy equations governing the transfer processes in the rocket chamber as well as the attached converging-diverging nozzle. A qualitative agreement with the SRM test data in terms of head-end pressure gradient and the total thrust build-up is obtained. Numerical results show that the burning rate in the star-segmented head-end section and the erosive burning are two important parameters in the ignition transient of the solid rocket motor (SRM).

  18. Pressure dependence of the radial mode frequency in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Uma; Masica, D.; Sumanasekara, G.; Eklund, P.

    2003-03-01

    Recently, an analytical expression for the radial breathing mode frequency, ω_R, was derived by considering the oscillations of a thin hollow cylinder.[1] Using this result and the experimental pressure-dependence of the elastic and lattice constants of graphite, we show that the pressure derivative of ωR depends inversely on the nanotube diameter, D. Since ωR also depends inversely on D, the above result implies that the logarithmic pressure derivative of ω_R, i.e., dlnω_R/dP should be independent of D. We have performed high-pressure Raman scattering experiments on HiPCO-SWNT bundles using different laser excitations, thereby probing the radial modes from different diameter tubes. These measurements show an increase in dlnω_R/dP with increasing D. This difference between the predictions and experiments suggests that the main contribution to ω_R's pressure dependence in SWNT bundles stems from the tube-tube interactions within the bundle and from pressure-induced distortions to the tube cross-section. [1] G.D. Mahan, Phys. Rev. B 65, 235402 (2002).

  19. Investigating Gender Differences under Time Pressure in Financial Risk Taking.

    PubMed

    Xie, Zhixin; Page, Lionel; Hardy, Ben

    2017-01-01

    There is a significant gender imbalance on financial trading floors. This motivated us to investigate gender differences in financial risk taking under pressure. We used a well-established approach from behavior economics to analyze a series of risky monetary choices by male and female participants with and without time pressure. We also used second to fourth digit ratio (2D:4D) and face width-to-height ratio (fWHR) as correlates of pre-natal exposure to testosterone. We constructed a structural model and estimated the participants' risk attitudes and probability perceptions via maximum likelihood estimation under both expected utility (EU) and rank-dependent utility (RDU) models. In line with existing research, we found that male participants are less risk averse and that the gender gap in risk attitudes increases under moderate time pressure. We found that female participants with lower 2D:4D ratios and higher fWHR are less risk averse in RDU estimates. Males with lower 2D:4D ratios were less risk averse in EU estimations, but more risk averse using RDU estimates. We also observe that men whose ratios indicate a greater prenatal exposure to testosterone exhibit a greater optimism and overestimation of small probabilities of success.

  20. Ozone kinetics in low-pressure discharges

    NASA Astrophysics Data System (ADS)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  1. A framework for relating the structures and recovery statistics in pressure time-series surveys for dust devils

    NASA Astrophysics Data System (ADS)

    Jackson, Brian; Lorenz, Ralph; Davis, Karan

    2018-01-01

    Dust devils are likely the dominant source of dust for the martian atmosphere, but the amount and frequency of dust-lifting depend on the statistical distribution of dust devil parameters. Dust devils exhibit pressure perturbations and, if they pass near a barometric sensor, they may register as a discernible dip in a pressure time-series. Leveraging this fact, several surveys using barometric sensors on landed spacecraft have revealed dust devil structures and occurrence rates. However powerful they are, though, such surveys suffer from non-trivial biases that skew the inferred dust devil properties. For example, such surveys are most sensitive to dust devils with the widest and deepest pressure profiles, but the recovered profiles will be distorted, broader and shallow than the actual profiles. In addition, such surveys often do not provide wind speed measurements alongside the pressure time series, and so the durations of the dust devil signals in the time series cannot be directly converted to profile widths. Fortunately, simple statistical and geometric considerations can de-bias these surveys, allowing conversion of the duration of dust devil signals into physical widths, given only a distribution of likely translation velocities, and the recovery of the underlying distributions of physical parameters. In this study, we develop a scheme for de-biasing such surveys. Applying our model to an in-situ survey using data from the Phoenix lander suggests a larger dust flux and a dust devil occurrence rate about ten times larger than previously inferred. Comparing our results to dust devil track surveys suggests only about one in five low-pressure cells lifts sufficient dust to leave a visible track.

  2. Improvement of water desalination technologies in reverse osmosis plants

    NASA Astrophysics Data System (ADS)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was analyzed and the dependence of the output of desalinated water (permeate) through the membranes on the pressure of influent water for desalination and the dependence of the permeate output on the water viscosity and the dependence of the specific permeate output on the velocity and length of the motion of the desalination water flux were built. The values of the optimum pressure of source influent water for desalination in a reverse osmosis device were found. Provided the current prices for membrane elements (800 to 1200 USD) and cost of electricity (0.06-0.1 USD), the optimum pressure is 1.0 to 1.4 MPa.

  3. Classifying individuals based on a densely captured sequence of vital signs: An example using repeated blood pressure measurements during hemodialysis treatment.

    PubMed

    Goldstein, Benjamin A; Chang, Tara I; Winkelmayer, Wolfgang C

    2015-10-01

    Electronic Health Records (EHRs) present the opportunity to observe serial measurements on patients. While potentially informative, analyzing these data can be challenging. In this work we present a means to classify individuals based on a series of measurements collected by an EHR. Using patients undergoing hemodialysis, we categorized people based on their intradialytic blood pressure. Our primary criteria were that the classifications were time dependent and independent of other subjects. We fit a curve of intradialytic blood pressure using regression splines and then calculated first and second derivatives to come up with four mutually exclusive classifications at different time points. We show that these classifications relate to near term risk of cardiac events and are moderately stable over a succeeding two-week period. This work has general application for analyzing dense EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A Simplified Model for Detonation Based Pressure-Gain Combustors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2010-01-01

    A time-dependent model is presented which simulates the essential physics of a detonative or otherwise constant volume, pressure-gain combustor for gas turbine applications. The model utilizes simple, global thermodynamic relations to determine an assumed instantaneous and uniform post-combustion state in one of many envisioned tubes comprising the device. A simple, second order, non-upwinding computational fluid dynamic algorithm is then used to compute the (continuous) flowfield properties during the blowdown and refill stages of the periodic cycle which each tube undergoes. The exhausted flow is averaged to provide mixed total pressure and enthalpy which may be used as a cycle performance metric for benefits analysis. The simplicity of the model allows for nearly instantaneous results when implemented on a personal computer. The results compare favorably with higher resolution numerical codes which are more difficult to configure, and more time consuming to operate.

  5. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  6. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects.

    PubMed

    Lemke, Sonja; Handle, Philip H; Plaga, Lucie J; Stern, Josef N; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-21

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  7. Study of discharge cleaning process in JIPP T-2 Torus by residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Noda, N.; Hirokura, S.; Taniguchi, Y.; Tanahashi, S.

    1982-12-01

    During discharge cleaning, decay time of water vapor pressure changes when the pressure reaches a certain level. A long decay time observed in the later phase can be interpreted as a result of a slow deoxidization rate of chromium oxide, which may dominate the cleaning process in this phase. Optimization of plasma density for the cleaning is discussed comparing the experimental results on density dependence of water vapor pressure with a result based on a zero dimensional calculation for particle balance. One of the essential points for effective cleaning is the raising of the electron density of the plasma high enough that the dissociation loss rate of H2O is as large as the sticking loss rate. A density as high as 10 to the 11th power/cu cm is required for a clean surface condition where sticking probability is presumed to be around 0.5.

  8. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects

    NASA Astrophysics Data System (ADS)

    Lemke, Sonja; Handle, Philip H.; Plaga, Lucie J.; Stern, Josef N.; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W.; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-01

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  9. Sport Skill-Specific Expertise Biases Sensory Integration for Spatial Referencing and Postural Control.

    PubMed

    Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia

    2017-09-15

    The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.

  10. Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering.

    PubMed

    Miller, Joseph D; Dedic, Chloe E; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-02-27

    Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, low-temperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, thereby improving thermometric accuracy with a time- and frequency-resolved theoretical model.

  11. Vibration of a hydrostatic gas bearing due to supply pressure oscillations

    NASA Technical Reports Server (NTRS)

    Branch, H. D.; Watkins, C. B.; Eronini, I. E.

    1984-01-01

    The vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating supply pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and the sleeve is solved numerically together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The results presented include Bode plots of bearing oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency. The results are compared with the results of an earlier study involving the response of a similar bearing to oscillating exhaust pressure.

  12. Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1997-01-01

    A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200C and 1400C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+,' was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+ believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.

  13. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  14. Mode I Fracture Toughness of Rock - Intrinsic Property or Pressure-Dependent?

    NASA Astrophysics Data System (ADS)

    Stoeckhert, F.; Brenne, S.; Molenda, M.; Alber, M.

    2016-12-01

    The mode I fracture toughness of rock is usually regarded as an intrinsic material parameter independent of pressure. However, most fracture toughness laboratory tests are conducted only at ambient pressure. To investigate fracture toughness of rock under elevated pressures, sleeve fracturing laboratory experiments were conducted with various rock types and a new numerical method was developed for the evaluation of these experiments. The sleeve fracturing experiments involve rock cores with central axial boreholes that are placed in a Hoek triaxial pressure cell to apply an isostatic confining pressure. A polymere tube is pressurized inside these hollow rock cylinders until they fail by tensile fracturing. Numerical simulations incorporating fracture mechanical models are used to obtain a relation between tensile fracture propagation and injection pressure. These simulations indicate that the magnitude of the injection pressure at specimen failure is only depending on the fracture toughness of the tested material, the specimen dimensions and the magnitude of external loading. The latter two are known parameters in the experiments. Thus, the fracture toughness can be calculated from the injection pressure recorded at specimen breakdown. All specimens had a borehole diameter to outer diameter ratio of about 1:10 with outer diameters of 40 and 62 mm. The length of the specimens was about two times the diameter. Maximum external loading was 7.5 MPa corresponding to maximum injection pressures at specimen breakdown of about 100 MPa. The sample set tested in this work includes Permian and Carboniferous sandstones, Jurassic limestones, Triassic marble, Permian volcanic rocks and Devonian slate from Central Europe. The fracture toughness values determined from the sleeve fracturing experiments without confinement using the new numerical method were found to be in good agreement with those from Chevron bend testing according to the ISRM suggested methods. At elevated confining pressures, the results indicate a significant positive correlation between fracture toughness and confining pressure for most tested rock types.

  15. Kinetics of OH + CO reaction under atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Wine, P. H.; Ravishankara, A. R.

    1986-01-01

    A pulsed laser photolysis-pulsed laser-induced fluorescence technique is used to directly measure the temperature, pressure, and H2O concentration dependence on k1 in air. K1 is found to increase linearly with increasing pressure at pressures of not greater than 1 atm, and the pressure dependence of k1 at 299 K is the same in N2 buffer gas as in O2 buffer gas. The rate constant in the low-pressure limit and the slope of the k1 versus pressure dependence are shown to be the same at 262 K as at 299 K. The present results significantly reduce the current atmospheric model uncertainties in the temperature dependence under atmospheric conditions, in the third body efficiency of O2, and in the effect of water vapor on k1.

  16. Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters

    NASA Astrophysics Data System (ADS)

    Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.

    2018-03-01

    The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.

  17. Load dependence of left ventricular contraction and relaxation. Effects of caffeine.

    PubMed

    Leite-Moreira, A F; Correia-Pinto, J; Gillebert, T C

    1999-08-01

    Load dependence of left ventricular (LV) contraction and relaxation was investigated at baseline and after alteration of intracellular calcium handling by caffeine. Afterload was increased by aortic clamp occlusions (n = 281) in anesthetized open-chest dogs (n = 7). Control and first heartbeat after the intervention were considered for analysis. Caffeine (50 mg/kg, iv) had no inotropic effect. The systolic LV pressure (LVP), developed in response to aortic occlusion, decreased as ejection proceeded and this pressure generating capacity was not affected by caffeine. Late-systolic aortic occlusions induced premature onset and accelerated rate of initial LVP fall at baseline and similarly after caffeine. Graded diastolic aortic occlusions induced systolic LVP elevations of various magnitudes. Smaller LVP elevations prolonged ejection and accelerated LVP fall, while larger elevations had opposite effects. The transition from acceleration to deceleration was observed at 83.1 +/- 1.1% of peak isovolumetric LVP at baseline and at lower loads, at 77.6 +/- 1.2%, after caffeine (p < 0.01). Isovolumetric heartbeats prolonged the time constant tau by 238 +/- 70% at baseline and only by 155 +/- 44% after caffeine (p < 0.01). The relaxation-systolic pressure relation, which describes afterload dependence of relaxation, was also modified by caffeine. Caffeine affected LV relaxation without altering contractility. As a consequence contraction-relaxation coupling was modified by caffeine. These results might help to understand load dependence of relaxation in conditions where intracellular calcium handling is altered.

  18. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  19. Special Considerations for Qualifying Thin Films for Supper Pressure Pumpkin Ultra Long Duration Balloon (ULDB) Missions

    NASA Astrophysics Data System (ADS)

    Said, M.

    Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in service. In this work, a special emphasis will be given to the creep and dynamic characteristics of selected coextruded films and their dependence on the loading level and temperature. Preliminary testing has suggested t at the creep behavior of theh coextruded linear low density resin films is highly dependent on temperature and that the dynamic response depends on the make up of the composite film. In addition, the paper will, in general, highlight the process of qualify ing thin films for the pumpkin class of super pressure balloons.

  20. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress.

    PubMed

    El Sayed, Khadigeh; Macefield, Vaughan G; Hissen, Sarah L; Joyner, Michael J; Taylor, Chloe E

    2016-12-15

    Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders. Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post-exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s -1 ) compared with positive responders (0.4 ± 0.1 mmHg s -1 ; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  1. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress

    PubMed Central

    El Sayed, Khadigeh; Macefield, Vaughan G.; Hissen, Sarah L.; Joyner, Michael J.

    2016-01-01

    Key points Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress.In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders.Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven.This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Abstract Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post‐exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s−1) compared with positive responders (0.4 ± 0.1 mmHg s−1; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. PMID:27690366

  2. Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.

    PubMed

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2014-04-08

    High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.

  3. High-pressure dynamics of hydrated protein in bioprotective trehalose environment

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.; Zhang, Q.; O'Neill, H.; Mamontov, E.

    2014-10-01

    We present a pressure-dependence study of the dynamics of lysozyme protein powder immersed in deuterated α ,α -trehalose environment via quasielastic neutron scattering (QENS). The goal is to assess the baroprotective benefits of trehalose on biomolecules by comparing the findings with those of a trehalose-free reference study. While the mean-square displacement of the trehalose-free protein (hydrated to dD2O≃ 40 w%) as a whole, is reduced by increasing pressure, the actual observable relaxation dynamics in the picoseconds to nanoseconds time range remains largely unaffected by pressure—up to the maximum investigated pressure of 2.78(2) Kbar. Our observation is independent of whether or not the protein is mixed with the deuterated sugar. This suggests that the hydrated protein's conformational states at atmospheric pressure remain unaltered by hydrostatic pressures, below 2.78 Kbar. We also found the QENS response to be totally recoverable after ambient pressure conditions are restored. Small-angle neutron diffraction measurements confirm that the protein-protein correlation remains undisturbed. We observe, however, a clear narrowing of the QENS response as the temperature is decreased from 290 to 230 K in both cases, which we parametrize using the Kohlrausch-Williams-Watts stretched exponential model. Only the fraction of protons that are immobile on the accessible time window of the instrument, referred to as the elastic incoherent structure factor, is observably sensitive to pressure, increasing only marginally but systematically with increasing pressure.

  4. Viscous Impact

    NASA Astrophysics Data System (ADS)

    Driscoll, Michelle; Stevens, Cacey; Nagel, Sidney

    2008-11-01

    The splashing of both inviscid and viscous drops on smooth, dry surfaces can be completely suppressed by decreasing the pressure of the surrounding gas [1,2,3]. However, at sufficiently high pressure when splashing does occur, the shape and dynamics of the ejected liquid sheets depends strongly on the liquid viscosity. This, as well as the dependence of the threshold pressure on viscosity [2], suggests that the splashing of viscous and inviscid liquids is caused by different mechanisms. When a low-viscosity (˜1 cst) liquid splashes, a corona is ejected immediately upon impact. In more viscous fluids (10 cst silicone oil), our experiments show that a thin sheet, resembling a flattened version of the corona seen in the inviscid case, emerges out of a much thicker spreading film. However, for these viscous fluids, the ejection of the thin sheet does not occur immediately. As the ambient pressure is lowered, the sheet ejection time is delayed longer and longer after impact until no sheet is ejected at all. [1] L. Xu, W.W. Zhang, S.R. Nagel, Phys. Rev. Lett. 94, 184505 (2005). [2] L. Xu, Phys. Rev. E 75, 056316 (2007). [3] C. Stevens et al., FC.00003 DFD 2007

  5. A cautionary note on the use of some mass flow controllers

    NASA Astrophysics Data System (ADS)

    Weinheimer, Andrew J.; Ridley, Brian A.

    1990-06-01

    Commercial mass flow controllers are widely used in atmospheric research where precise and constant gas flows are required. We have determined, however, that some commonly used controllers are far more sensitive to ambient pressure than is acknowledged in the literature of the manufacturers. Since a flow error can lead directly to a measurement error of the same magnitude, this is a matter of great concern. Indeed, in our particular application, were we not aware of this problem, our measurements would be subject to a systematic error that increased with altitude (i.e., a drift), up to a factor of 2 at the highest altitudes (˜37 km). In this note we present laboratory measurements of the errors of two brands of flow controllers when operated at pressures down to a few millibars. The errors are as large as a factor of 2 to 3 and depend not simply on the ambient pressure at a given time, but also on the pressure history. In addition there is a large dependence on flow setting. In light of these flow errors, some past measurements of chemical species in the stratosphere will need to be revised.

  6. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  7. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow

    PubMed Central

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2012-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  8. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  9. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  10. Automatic limb identification and sleeping parameters assessment for pressure ulcer prevention.

    PubMed

    Baran Pouyan, Maziyar; Birjandtalab, Javad; Nourani, Mehrdad; Matthew Pompeo, M D

    2016-08-01

    Pressure ulcers (PUs) are common among vulnerable patients such as elderly, bedridden and diabetic. PUs are very painful for patients and costly for hospitals and nursing homes. Assessment of sleeping parameters on at-risk limbs is critical for ulcer prevention. An effective assessment depends on automatic identification and tracking of at-risk limbs. An accurate limb identification can be used to analyze the pressure distribution and assess risk for each limb. In this paper, we propose a graph-based clustering approach to extract the body limbs from the pressure data collected by a commercial pressure map system. A robust signature-based technique is employed to automatically label each limb. Finally, an assessment technique is applied to evaluate the experienced stress by each limb over time. The experimental results indicate high performance and more than 94% average accuracy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Incompressible spectral-element method: Derivation of equations

    NASA Technical Reports Server (NTRS)

    Deanna, Russell G.

    1993-01-01

    A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.

  12. Effects of parental hypertension on longitudinal trends in blood pressure and plasma metabolic profile: mixed-effects model analysis.

    PubMed

    Mitsumata, Kaneto; Saitoh, Shigeyuki; Ohnishi, Hirofumi; Akasaka, Hiroshi; Miura, Tetsuji

    2012-11-01

    The mechanism underlying the association of parental hypertension with cardiovascular events in offspring remains unclear. In this study, the effects of parental hypertension on longitudinal trends of blood pressure and metabolic parameters were examined by mixed-effects model analysis. From 1977 to 2006, 5198 subjects participated in the Tanno-Sobetsu Study, and we selected 2607 subjects (1095 men and 1512 women) for whom data on parental history of hypertension were available. In both men and women with and without parental hypertension, systolic blood pressure and fasting blood glucose levels consistently increased from the third to eighth decades of life, whereas diastolic blood pressure and serum triglyceride levels followed biphasic (inverted U shape) time courses during that period. However, the relationships between the parameters and age were significantly shifted upward (by ≈5.3 mm Hg in systolic blood pressure, 2.8 mm Hg in diastolic blood pressure, 0.30 mmol/L in blood glucose, and 0.09 mmol/L in triglyceride) in the group with parental hypertension compared with those in the group without parental hypertension. Both paternal and maternal histories of hypertension were determinants of systolic blood pressure and diastolic blood pressure, and there was no significant interaction between the sides of parental history. There were no significant effects of parental hypertension on age-dependent or body mass index-dependent changes in serum low-density lipoprotein cholesterol or high-density lipoprotein cholesterol level. The present results indicate that parental hypertension has an age-independent impact on elevation of blood pressure, plasma glucose, and triglyceride levels, which may underlie the reported increase in cardiovascular events by family history of hypertension.

  13. Time-dependent recovery of microcrack damage and seismic wave speeds in deformed limestone

    NASA Astrophysics Data System (ADS)

    Brantut, Nicolas

    2015-12-01

    Limestone samples were deformed up to 5% inelastic axial strain at an effective confining pressure Peff=50 MPa in the cataclastic flow regime and subsequently maintained under constant static stress conditions (either isostatic of triaxial) for extended periods of time while elastic wave speeds and permeability were continuously monitored. During deformation, both seismic wave speeds and permeability decrease with increasing strain, due to the growth of subvertical microcracks and inelastic porosity reduction. During the static hold period under water-saturated conditions, the seismic wave speeds recovered gradually, typically by around 5% (relative to their initial value) after 2 days, while permeability remained constant. The recovery in wave speed increases with increasing confining pressure but decreases with increasing applied differential stress. The recovery is markedly lower when the samples are saturated with an inert fluid as opposed to water. The evolution in wave speed is interpreted quantitatively in terms of microcrack density, which shows that the post-deformation recovery is associated with a decrease in effective microcrack length, typically of the order to 10% after 2 days. The proposed mechanism for the observed damage recovery is microcrack closure due to a combination of backsliding on wing cracks driven by time-dependent friction and closure due to pressure solution at contacts between propping particles or asperities and microcrack walls. The recovery rates observed in the experiments, and the proposed underlying mechanisms, are compatible with seismological observations of seismic wave speed recovery along faults following earthquakes.

  14. Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.

    PubMed

    Braakman, R; Sipkema, P; Westerhof, N

    1990-06-01

    The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.

  15. Challenges of the "HOW" Journal in Spreading Teachers' Works in Times of Ranking Pressures

    ERIC Educational Resources Information Center

    Cárdenas, Melba L.

    2016-01-01

    Colombian universities and some professional organisations have faced the challenge of gaining visibility, mainly via accredited publications whose reputation depends upon their inclusion in prestigious rankings. This article contains a documentary analysis of the evolution of the "HOW" journal, the authors' profiles, and their preferred…

  16. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  17. Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.

    1994-01-01

    The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

  18. The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach

    NASA Astrophysics Data System (ADS)

    Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick

    2017-09-01

    An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the modeling presented herein will assist in the management and optimization of geotechnical engineering projects within granite.

  19. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model

    PubMed Central

    Macaskill, Charlie; Davis, Michael J.; Moore, James E.

    2016-01-01

    The observed properties of valves in collecting lymphatic vessels include transmural pressure-dependent bias to the open state and hysteresis. The bias may reduce resistance to flow when the vessel is functioning as a conduit. However, lymphatic pumping implies a streamwise increase in mean pressure across each valve, suggesting that the bias is then potentially unhelpful. Lymph pumping by a model of several collecting lymphatic vessel segments (lymphangions) in series, which incorporated these properties, was investigated under conditions of adverse pressure difference while varying the refractory period between active muscular contractions and the inter-lymphangion contraction delay. It was found that many combinations of the timing parameters and the adverse pressure difference led to one or more intermediate valves remaining open instead of switching between open and closed states during repetitive contraction cycles. Cyclic valve switching was reliably indicated if the mean pressure in a lymphangion over a cycle was higher than that in the lymphangion upstream, but either lack of or very brief valve closure could cause mean pressure to be lower downstream. Widely separated combinations of refractory period and delay time were found to produce the greatest flow-rate for a given pressure difference. The efficiency of pumping was always maximized by a long refractory period and lymphangion contraction starting when the contraction of the lymphangion immediately upstream was peaking. By means of an ex vivo experiment, it was verified that intermediate valves in a chain of pumping lymphangions can remain open, while the lymphangions on either side of the open valve continue to execute contractions. PMID:26747501

  20. The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Menz, A. M.; Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.

    2017-01-01

    On 17 March 2013, the Van Allen Probes measured the H+ and O+ fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H+ and O+ pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O+ pressure dominates at lower L values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O+ at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O+ at lower energies (5-10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. No source of O+ inside L = 5.5 is required to explain the observations at low L shells.

  1. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Jiwen; Song, Yang, E-mail: yang.song@uwo.ca; Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the solemore » product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.« less

  3. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Guan, Jiwen; Song, Yang

    2016-06-01

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  4. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Kang, Zhitao; Bansihev, Alexandr A.; Breidenich, Jennifer; Scripka, David A.; Christensen, James M.; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.; Zhou, Min

    2016-01-01

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  5. Common/Dependent-Pressure-Vessel Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.

    2003-01-01

    The term "common/dependent pressure vessel" (C/DPV) denotes a proposed alternative configuration for a nickelhydrogen battery. The C/DPV configuration is so named because it is a hybrid of two prior configurations called "common pressure vessel" (CPV) and "dependent pressure vessel" (DPV). The C/DPV configuration has been proposed as a basis for designing highly reliable, long-life Ni/H2-batteries and cells for anticipated special applications in which it is expected that small charge capacities will suffice and sizes and weights must be minimized.

  6. Uniaxial Pressure and High-Field Effects on Superconducting Single-Crystal CeCoIn5

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter David

    We have measured the a.c. susceptibility response of single-crystal CeCoIn 5 under uniaxial pressure up to 4.07 kbar and in d.c. field parallel to the c axis up to 5 T. From these measurements we report on several pressure and field characteristics of the superconducting state. The results are divided into 3 chapters: (1) We find a non-linear dependence of the superconducting transition temperature Tc on pressure, with a maximum close to 2 kbar. The transition also broadens significantly as pressure increases. We model the broadening as a product of non-uniform pressure and discuss its implications for the pressure dependence of the transition temperature. We relate our measurements to previous theoretical work. (2) We provided evidence and pressure dependence for the FFLO phase with field and pressure along the c axis. The FFLO phase boundary is temperature independent and tracks with the suppression to lower fields of the upper critical field with pressure. We also report the strengthening of the Pauli-limited field in this orientation by calculating the increase of the orbitally-limited field with uniaxial pressure. (3) We extract the critical current using the Bean critical state model and compare it to the expected Ginzberg-Landau behavior. We find that the exponent of the critical current depends on uniaxial pressure and d.c. field. Within a d.c. field the pressure dependence of the exponent may be obscured by the field effect. We have also measured resistivity, susceptibility, and specific heat of high-quality single-crystal YIn3 below 1 K and present a refinement of Tc from previous measurements. We make suggestions for experimental comparisons to the heavy fermion family CeXIn5, (X = Rh, Ir, Co) and the parent compound CeIn3.

  7. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judi, David R.; Mcpherson, Timothy N.

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storagemore » in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.« less

  8. Muscarinic acetylcholine receptor in cerebellar cortex participates in acetylcholine-mediated blood depressor response in rats.

    PubMed

    Zhou, Peiling; Zhu, Qingfeng; Liu, Ming; Li, Jing; Wang, Yong; Zhang, Changzheng; Hua, Tianmiao

    2015-04-23

    Our previous investigations have revealed that cerebellar cholinergic innervation is involved in cardiovascular regulation. This study was performed to examine the effects of the muscarinic cholinergic receptor (mAChR) in the cerebellar cortex on blood pressure (BP) modulation in rats. Acetylcholine (ACh, 100mM), nonselective mAChR agonist (oxotremorine M; Oxo-M, 10, 30 and 100mM) and 100mM ACh mixed with nonselective mAChR antagonist atropine (1, 3 and 10mM) were microinjected into the cerebellar cortex of anesthetized rats. Mean arterial pressure (MAP), maximal decreased MAP (MDMAP), and reaction time (duration required for BP to return to basal values) were measured and analyzed. The results showed that Oxo-M dose-dependently decreased MAP, increased MDMAP, and prolonged reaction time, which displayed a homodromous effect of ACh-mediated blood depressor response; meanwhile, atropine concentration-dependently blocked the effect of ACh on the BP regulation. In conclusion, the present study showed for the first time that mAChRs in cerebellar cortex could modulate somatic BP by participation in ACh-mediated depressor response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Structure of nickel-copper alloys subjected to high-pressure torsion to saturation stage

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Stolbovsky, A. V.; Popova, E. N.

    2017-11-01

    Transmission electron microscopy and microhardness measurements were used to study the structure of Ni-Cu alloys subjected to high-pressure torsion (to saturation state) at room-temperature using five revolutions. It was shown that, when passing from copper to nickel, the submicrocrystalline structure becomes substantially refined, and the microhardness increases by more than 1.5 times. This is related to differences in the melting temperature and stacking fault energy. The simultaneous effect of these two factors leads to the nonlinearity of the composition dependences of the crystallite size and microhardness.

  10. Temperature Dependences for the Reactions of O2- and O- with N and O Atoms in a Selected-Ion Flow Tube Instrument

    DTIC Science & Technology

    2013-10-07

    quadrupole mass filter, mass selected, and injected into the flow reactor via a Venturi - type inlet. Ions undergo ∼105 collisions with helium buffer... gas at pressures of 0.4 to 0.8 Torr resulting in complete or near-complete thermalization.10 The higher pressure was used when studying the high...butterfly gate valve resulting in lower pumping speeds and thus longer reaction times. Neutrals were injected 49 cm before the end of the flow tube and

  11. How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization.

    PubMed

    Vedurmudi, A P; Goulet, J; Christensen-Dalsgaard, J; Young, B A; Williams, R; van Hemmen, J L

    2016-01-15

    In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.

  12. Sound produced by an oscillating arc in a high-pressure gas

    NASA Astrophysics Data System (ADS)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  13. Effect of Pressure in Thermoplastic Ribbon Thermal Welding

    NASA Technical Reports Server (NTRS)

    Hinkley, J. A.; Messier, B. C.; Marchello, J. M.

    1996-01-01

    An inexpensive apparatus was designed to simulate some features of on-the-fly thermal welding in heated-head tow placement. Previous studies have shown how ply/ply weld strength depends on weld time/temperature history. The apparatus has been modified recently to apply higher contact forces. Welding at pressures up to 1.7MPa (250psi) produced more consistent welds and fewer intra-ply voids, This has permitted a study of the conditions required for achieving the limiting ply/ply cohesive strength in simulated tow placement of a polyimide oligomer.

  14. Continuum model for hydrogen pickup in zirconium alloys of LWR fuel cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2017-04-01

    A continuum model for calculating the time-dependent hydrogen pickup fractions in various Zirconium alloys under steam and pressured water oxidation has been developed in this study. Using only one fitting parameter, the effective hydrogen gas partial pressure at the oxide surface, a qualitative agreement is obtained between the predicted and previously measured hydrogen pickup fractions. The calculation results therefore demonstrate that H diffusion through the dense oxide layer plays an important role in the hydrogen pickup process. The limitations and possible improvement of the model are also discussed.

  15. Simple and Double Alfven Waves: Hamiltonian Aspects

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Hu, Q.; le Roux, J. A.; Dasgupta, B.

    2011-12-01

    We discuss the nature of simple and double Alfvén waves. Simple waves depend on a single phase variable \\varphi, but double waves depend on two independent phase variables \\varphi1 and \\varphi2. The phase variables depend on the space and time coordinates x and t. Simple and double Alfvén waves have the same integrals, namely, the entropy, density, magnetic pressure, and group velocity (the sum of the Alfvén and fluid velocities) are constant throughout the flow. We present examples of both simple and double Alfvén waves, and discuss Hamiltonian formulations of the waves.

  16. Kinematically irreversible particle motion in 2D suspensions due to surface-pressure-dependent surface rheology

    NASA Astrophysics Data System (ADS)

    Manikantan, Harishankar; Squires, Todd

    2017-11-01

    The surface viscosity of many insoluble surfactants depends strongly on the surface pressure (or surface tension) of that surfactant. Surface pressure gradients naturally arise in interfacial flows, and surface-pressure-dependent surface rheology alters 2D suspension dynamics in significant ways. We use the Lorentz reciprocal theorem to asymptotically quantify the irreversible dynamics that break Newtonian symmetries. We first show that a particle embedded in a surfactant-laden interface and translating parallel to or rotating near an interfacial boundary experiences a force in the direction perpendicular to the boundary. Building on this, we extend the theory to compute the first effects of pressure-dependent surface viscosity on 2D particle pairs in suspension. The fore-aft symmetry of pair trajectories in a Newtonian interface is lost, leading to well-separated (when pressure-thickening) or aggregated (when pressure-thinning) particles. Notably, the relative motion is kinematically irreversible, and pairs steadily evolve toward a particular displacement. Based on these irreversible pair interactions, we hypothesize that pressure-thickening (or -thinning) leads to shear-thinning (or -thickening) in 2D suspensions.

  17. Active-Controlled Fluid Film Based on Wave-Bearing Technology

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Hendricks, Robert C.

    2011-01-01

    It has been known since 1967 that the steady-state and dynamic performance, including the stability of a wave bearing, are highly dependent on the wave amplitude. A wave-bearing profile can be readily obtained by elastically distorting the stationary bearing sleeve surface. The force that distorts the elastic sleeve surface could be an applied force or pressure. The magnitude and response of the distorting force would be defined by the relation between the bearing surface stiffness and the bearing pressure, or load, in a feedback loop controller. Using such devices as piezoelectric or other electromechanical elements, one could step control or fully control the bearing. The selection between these systems depends on the manner in which the distortion forces are applied, the running speed, and the reaction time of the feedback loop. With these techniques, both liquid- (oil-) or gas- (air-) lubricated wave bearings could be controlled. This report gives some examples of the dependency of the bearing's performance on the wave amplitude. The analysis also was proven experimentally.

  18. Dynamics of vapor bubbles growth at boiling resulting from enthalpy excess of the surrounding superheated liquid and sound pulses generated by bubbles

    NASA Astrophysics Data System (ADS)

    Dorofeev, B. M.; Volkova, V. I.

    2016-01-01

    The results of experiments investigating the exponential dependence of the vapor bubble radius on time at saturated boiling are generalized. Three different methods to obtain this dependence are suggested: (1) by the application of the transient heat conduction equation, (2) by using the correlations of energy conservation, and (3) by solving a similar electrodynamic problem. Based on the known experimental data, the accuracy of the dependence up to one percent and a few percent accuracy of its description based on the sound pressure generated by a vapor bubble have been determined. A significant divergence of the power dependence of the vapor bubble radius on time (with an exponent of 1/2) with the experimental results and its inadequacy for the description of the sound pulse generated by the bubble have been demonstrated.

  19. Characteristics of a novel nanosecond DBD microplasma reactor for flow applications

    NASA Astrophysics Data System (ADS)

    Elkholy, A.; Nijdam, S.; van Veldhuizen, E.; Dam, N.; van Oijen, J.; Ebert, U.; de Goey, L. Philip H.

    2018-05-01

    We present a novel microplasma flow reactor using a dielectric barrier discharge (DBD) driven by repetitive nanosecond high-voltage pulses. Our DBD-based geometry can generate a non-thermal plasma discharge at atmospheric pressure and below in a regular pattern of micro-channels. This reactor can work continuously up to about 100 min in air, depending on the pulse repetition rate and operating pressure. We here present the geometry and main characteristics of the reactor. Pulse energies of 1.46 and 1.3 μJ per channel at atmospheric pressure and 50 mbar, respectively, have been determined by time-resolved measurements of current and voltage. Time-resolved optical emission spectroscopy measurements have been performed to calculate the relative species concentrations and temperatures (vibrational and rotational) of the discharge. The effects of the operating pressure and flow velocity on the discharge intensity have been investigated. In addition, the effective reduced electric field strength {(E/N)}eff} has been obtained from the intensity ratio of vibronic emission bands of molecular nitrogen at different operating pressures and different locations. The derived {(E/N)}eff} increases gradually from about 550 to 4600 Td when decreasing the pressure from 1 bar to 100 mbar. Below 100 mbar, further pressure reduction results in a significant increase in {(E/N)}eff} up to about 10000 Td at 50 mbar.

  20. High-sensitivity NMR beyond 200,000 atmospheres of pressure

    NASA Astrophysics Data System (ADS)

    Meier, T.; Reichardt, S.; Haase, J.

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. 1 H NMR of water shows sensitivity and resolution obtained with the cells, and 63 Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. 115 In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry.

  1. Increasing dwell time of mitomycin C in the upper tract with a reverse thermosensitive polymer.

    PubMed

    Wang, Agnes J; Goldsmith, Zachariah G; Neisius, Andreas; Astroza, Gaston M; Oredein-McCoy, Olugbemisola; Iqbal, Muhammad W; Simmons, W Neal; Madden, John F; Preminger, Glenn M; Inman, Brant A; Lipkin, Michael E; Ferrandino, Michael N

    2013-03-01

    Abstract Background and Purpose: Topical chemotherapy for urothelial cancer is dependent on adequate contact time of the chemotherapeutic agent with the urothelium. To date, there has not been a reliable method of maintaining this contact for renal or ureteral urothelial carcinoma. We evaluated the safety and feasibility of using a reverse thermosensitive polymer to improve dwell times of mitomycin C (MMC) in the upper tract. Using a porcine model, four animals were treated ureteroscopically with both upper urinary tracts receiving MMC mixed with iodinated contrast. One additional animal received MMC percutaneously. The treatment side had ureteral outflow blocked with a reverse thermosensitive polymer plug. MMC dwell time was monitored fluoroscopically and intrarenal pressures measured. Two animals were euthanized immediately, and three animals were euthanized 5 days afterward. In control kidneys, drainage occurred at a mean of 5.3±0.58 minutes. Intrarenal pressures stayed fairly stable: 9.7±14.0 cm H20. In treatment kidneys, dwell time was extended to 60 minutes, when the polymer was washed out. Intrarenal pressures in the treatment kidneys peaked at 75.0±14.7 cm H20 and reached steady state at 60 cm H20. Pressures normalized after washout of the polymer with cool saline. Average washout time was 11.8±9.6 minutes. No histopathologic differences were seen between the control and treatment kidneys, or with immediate compared with delayed euthanasia. A reverse thermosensitive polymer can retain MMC in the upper urinary tract and appears to be safe from our examination of intrarenal pressures and histopathology. This technique may improve the efficacy of topical chemotherapy in the management of upper tract urothelial carcinoma.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.

    The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less

  3. High pressure, temperature and time-dependent effects on enzymatic and microbial properties of fresh sugarcane juice.

    PubMed

    Chauhan, O P; Ravi, N; Roopa, N; Kumar, Sumeet; Raju, P S

    2017-11-01

    Efficacy of variable high pressure, temperature and time on the browning causing enzymes and microbial activities, which are major spoilage factors during preservation of sugarcane juice, was studied. The juice was processed at 200-600 MPa pressure for 2-8 min at 40 and 60 °C and their effect on polyphenol oxidase and peroxidase as well as microbiological quality in terms of total plate count, yeast and molds and total coliforms was studied. Application of high pressures were found to cause significant decrease in enzymatic and microbial activities. The effects were found to be significantly more pronounced at 60 °C as compared to 40 °C. Process time also caused significant ( p  < 0.05) negative effect on microbial and enzyme activities. The sugarcane juice treated at 600 MPa for 6 min at 60 °C was found sufficient to inactivate the microbial counts completely. Whereas, enzymes were found to be completely inactivated in the samples processed at 600 MPa for 8 min at 60 °C. A pressure of 600 MPa at 60 °C for 8 min could be applied during commercial preservation of sugarcane juice for getting complete inactivation of browning causing enzymes and spoilage causing microorganisms.

  4. Soil-Moisture Retention Curves, Capillary Pressure Curves, and Mercury Porosimetry: A Theoretical and Computational Investigation of the Determination of the Geometric Properties of the Pore Space

    NASA Astrophysics Data System (ADS)

    Strand, T. E.; Wang, H. F.

    2003-12-01

    Immiscible displacement protocols have long been used to infer the geometric properties of the void space in granular porous media. The three most commonly used experimental techniques are the measurement of soil-moisture retention curves and relative permeability-capillary pressure-saturation relations, as well as mercury intrusion porosimetry experiments. A coupled theoretical and computational investigation was performed that provides insight into the limitations associated with each technique and quantifies the relationship between experimental observations and the geometric properties of the void space. It is demonstrated that the inference of the pore space geometry from both mercury porosimetry experiments and measurements of capillary pressure curves is influenced by trapping/mobilization phenomena and subject to scaling behavior. In addition, both techniques also assume that the capillary pressure at a location on the meniscus can be approximated by a pressure difference across a region or sample. For example, when performing capillary pressure measurements, the capillary pressure, taken to be the difference between the injected fluid pressure at the inlet and the defending fluid pressure at the outlet, is increased in a series of small steps and the fluid saturation is measured each time the system reaches steady. Regions of defending fluid that become entrapped by the invading fluid can be subsequently mobilized at higher flow rates (capillary pressures), contributing to a scale-dependence of the capillary pressure-saturation curve that complicates the determination of the properties of the pore space. This scale-dependence is particularly problematic for measurements performed at the core scale. Mercury porosimetry experiments are subject to similar limitations. Trapped regions of defending fluid are also present during the measurement of soil-moisture retention curves, but the effects of scaling behavior on the evaluation of the pore space properties from the immiscible displacement structure are much simpler to account for due to the control of mobilization phenomena. Some mobilization may occur due to film flow, but this can be limited by keeping time scales relatively small or exploited at longer time scales in order to quantify the rate of film flow. Computer simulations of gradient-stabilized drainage and imbibition to the (respective) equilibrium positions were performed using a pore-scale modified invasion percolation (MIP) model in order to quantify the relationship between the saturation profile and the geometric properties of the void space. These simulations are similar to the experimental measurement of soil-moisture retention curves. Results show that the equilibrium height and the width of the equilibrium fringe depend on two length scale distributions, one controlling the imbibition equilibrium structure and the other controlling the drainage structure. The equilibrium height is related to the mean value of the appropriate distribution as described by Jurin's law, and the width of the equilibrium fringe scales as a function of a combined parameter, the Bond number, Bo, divided by the coefficient of variation (cov). Simulations also demonstrate that the apparent radius distribution obtained from saturation profiles using direct inversion by Jurin's law is a subset of the actual distribution in the porous medium. The relationship between the apparent and actual radius distributions is quantified in terms of the combined parameter, Bo/cov, and the mean coordination number of the porous medium.

  5. Investigation of the Martian environment by infrared spectroscopy on Mariner 9

    NASA Technical Reports Server (NTRS)

    Conrath, H. R.; Conrath, B. J.; Novis, W.; Kunde, V. G.; Lowman, P.; Maguire, W.; Pearl, J. C.; Pirraglia, J.; Prabhakara, C.; Schlachman, B.

    1972-01-01

    Measurements obtained during and after the planet-wide dust storm indicate that large diurnal variations in atmospheric temperature existed up to at least 30 km; winds inferred from the temperature fields show a strong tidal component and significant ageostrophic behavior. With the dissipation of the dust, the daily maximum in the atmospheric temperature field moved from approximately latitude -60 and late afternoon local time to near the subsolar point in latitude and time. Analysis of spectral features due to the atmospheric dust indicates as SIO2 content of 60 ? 10%, implying that substantial geochemical differentiation has occurred. Water vapor estimates indicate abundances of 10 to 20 precipitable micrometers. Between November 1971 and April 1972 no gross latitudinal or temporal dependence in the water vapor distribution was detected from the south polar region to the equator. Water vapor was not detected over the north polar regions. Surface pressure mapping was carried out from which topographic relief of nearly two pressure scale heights is inferred. Extensive regions were found where the surface pressure exceeds the triple point pressure of water.

  6. Enhancing maximum measurable sound reduction index using sound intensity method and strong receiving room absorption.

    PubMed

    Hongisto, V; Lindgren, M; Keränen, J

    2001-01-01

    The sound intensity method is usually recommended instead of the pressure method in the presence of strong flanking transmission. Especially when small and/or heavy specimens are tested, the flanking often causes problems in laboratories practicing only the pressure method. The purpose of this study was to determine experimentally the difference between the maximum sound reduction indices obtained by the intensity method, RI,max, and by the pressure method, Rmax. In addition, the influence of adding room absorption to the receiving room was studied. The experiments were carried out in an ordinary two-room test laboratory. The exact value of RI,max was estimated by applying a fitting equation to the measured data points. The fitting equation involved the dependence of the pressure-intensity indicator on measured acoustical parameters. In an empty receiving room, the difference between RI,max and Rmax was 4-15 dB, depending on frequency. When the average reverberation time was reduced from 3.5 to 0.6 s, the values of RI,max increased by 2-10 dB compared to the results in the empty room. Thus, it is possible to measure wall structures having 9-22 dB better sound reduction index using the intensity method than with the pressure method. This facilitates the measurements of small and/or heavy specimens in the presence of flanking. Moreover, when new laboratories are designed, the intensity method is an alternative to the pressure method which presupposes expensive isolation structures between the rooms.

  7. Influence of the renal endothelin system on the autoregulation of renal blood flow in spontaneously hypertensive rats.

    PubMed

    Braun, C; Lang, C; Hocher, B; Gretz, N; van der Woude, F J; Rohmeiss, P

    1997-01-01

    The renal endothelin (ET) system has been claimed to play an important role in the regulation of renal blood flow (RBF) and sodium excretion in primary hypertension. The aim of the present study was to investigate the contribution of the endogenous ET system in the autoregulation of total RBF, cortical blood flow (CBF), pressure-dependent plasma renin activity (PRA) and pressure natriuresis in spontaneously hypertensive rats (SHR) by means of the combined (A/B) ET-receptor antagonist, bosentan. In anesthetized rats, RBF was measured by transit-time flow probes and CBF by laser flow probes. During the experiments, the rats received an intrarenal infusion of either bosentan (1 mg/kg/h) or vehicle. Renal perfusion pressure (RPP) was lowered in pressure steps of 5 mm Hg with a servo-controlled electropneumatic device via an inflatable suprarenal cuff. Bosentan had no effect on resting RPP, CBF, PRA and renal sodium excretion, whereas RBF was lowered by 30% (p < 0.05). Furthermore after bosentan the rats revealed a complete loss of RBF autoregulation. In contrast no changes in autoregulation of CBF, pressure-dependent PRA and pressure natriuresis were observed. Our findings demonstrate a significant impairment in total RBF autoregulatory ability during renal ET-receptor blockade which is not confined to the cortical vessels. These data suggest that the renal ET system plays an important role in the dynamic regulation of renal blood flow in SHR.

  8. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    PubMed

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  9. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO₂.

    PubMed

    Zhai, Wentao; Ko, Yoorim; Zhu, Wenli; Wong, Anson; Park, Chul B

    2009-12-16

    The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO(2) was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO(2) exposure significantly increased PLA's crystallization rate; a high crystallinity of 16.5% was achieved after CO(2) treatment for only 1 min at 100 degrees C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA's crystallization equilibrium.

  10. Time-dependent brittle deformation (creep) at Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.

    2009-04-01

    Mt. Etna is the largest and most active volcano in Europe. Time-dependent weakening mechanisms, leading to slow fracturing, have been shown to act during pre-eruptive patterns of flank eruptions at Mt. Etna volcano. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.

  11. Time-dependent brittle deformation at Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Heap, Michael; Meredith, Philip; Vinciguerra, Sergio; Bell, Andrew; Main, Ian

    2010-05-01

    Time-dependent weakening mechanisms, leading to slow fracturing, are likely to act during the build up to flank eruptions at Mt. Etna volcano and are potentially a primary control on pre-eruptive patterns of seismicity and deformation. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts a large water reservoir (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations and inverse seismicity plots using our experimental AE data. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.

  12. Optimization of stable quadruped locomotion using mutual information

    NASA Astrophysics Data System (ADS)

    Silva, Pedro; Santos, Cristina P.; Polani, Daniel

    2013-10-01

    Central Pattern Generators (CPG)s have been widely used in the field of robotics to address the task of legged locomotion generation. The adequate configuration of these structures for a given platform can be accessed through evolutionary strategies, according to task dependent selection pressures. Information driven evolution, accounts for information theoretical measures as selection pressures, as an alternative to a fully task dependent selection pressure. In this work we exploit this concept and evaluate the use of mean Mutual Information, as a selection pressure towards a CPG configuration capable of faster, yet more coordinated and stabler locomotion than when only a task dependent selection pressure is used.

  13. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na-filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.

  14. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.

    PubMed

    Marcos; Yang, C; Ooi, K T; Wong, T N; Masliyah, J H

    2004-07-15

    This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study. Copyright 2004 Elsevier Inc.

  15. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  16. Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell

    DOE PAGES

    Crane, Matthew J.; Smith, Bennett E.; Meisenheimer, Peter B.; ...

    2018-05-17

    Nanodiamonds have emerged as promising materials for quantum computing, biolabeling, and sensing due to their ability to host color centers with remarkable photostability and long spin-coherence times at room temperature. Recently, a bottom-up, high-pressure, high-temperature (HPHT) approach was demonstrated for growing nanodiamonds with color centers from amorphous carbon precursors in a laser-heated diamond anvil cell (LH-DAC) that was supported by a near-hydrostatic noble gas pressure medium. However, a detailed understanding of the photothermal heating and its effect on diamond growth, including the phase conversion conditions and the temperature-dependence of color center formation, has not been reported. In this work, wemore » measure blackbody radiation during LH-DAC synthesis of nanodiamond from carbon aerogel to examine these temperature-dependent effects. Blackbody temperature measurements suggest that nanodiamond growth can occur at 16.3 GPa and 1800 K. We use Mie theory and analytical heat transport to develop a predictive photothermal heating model. This model demonstrates that melting the noble gas pressure medium during laser heating decreases the local thermal conductivity to drive a high spatial resolution of phase conversion to diamond. In conclusion, we observe a temperature-dependent formation of nitrogen vacancy centers and interpret this phenomenon in the context of HPHT carbon vacancy diffusion.« less

  17. Quantifying the clay content with borehole depth and impact on reservoir flow

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  18. Pressure-jump small-angle x-ray scattering detected kinetics of staphylococcal nuclease folding.

    PubMed Central

    Woenckhaus, J; Köhling, R; Thiyagarajan, P; Littrell, K C; Seifert, S; Royer, C A; Winter, R

    2001-01-01

    The kinetics of chain disruption and collapse of staphylococcal nuclease after positive or negative pressure jumps was monitored by real-time small-angle x-ray scattering under pressure. We used this method to probe the overall conformation of the protein by measuring its radius of gyration and pair-distance-distribution function p(r) which are sensitive to the spatial extent and shape of the particle. At all pressures and temperatures tested, the relaxation profiles were well described by a single exponential function. No fast collapse was observed, indicating that the rate limiting step for chain collapse is the same as that for secondary and tertiary structure formation. Whereas refolding at low pressures occurred in a few seconds, at high pressures the relaxation was quite slow, approximately 1 h, due to a large positive activation volume for the rate-limiting step for chain collapse. A large increase in the system volume upon folding implies significant dehydration of the transition state and a high degree of similarity in terms of the packing density between the native and transition states in this system. This study of the time-dependence of the tertiary structure in pressure-induced folding/unfolding reactions demonstrates that novel information about the nature of protein folding transitions and transition states can be obtained from a combination of small-angle x-ray scattering using high intensity synchrotron radiation with the high pressure perturbation technique. PMID:11222312

  19. Bubble pump: scalable strategy for in-plane liquid routing.

    PubMed

    Oskooei, Ali; Günther, Axel

    2015-07-07

    We present an on-chip liquid routing technique intended for application in well-based microfluidic systems that require long-term active pumping at low to medium flowrates. Our technique requires only one fluidic feature layer, one pneumatic control line and does not rely on flexible membranes and mechanical or moving parts. The presented bubble pump is therefore compatible with both elastomeric and rigid substrate materials and the associated scalable manufacturing processes. Directed liquid flow was achieved in a microchannel by an in-series configuration of two previously described "bubble gates", i.e., by gas-bubble enabled miniature gate valves. Only one time-dependent pressure signal is required and initiates at the upstream (active) bubble gate a reciprocating bubble motion. Applied at the downstream (passive) gate a time-constant gas pressure level is applied. In its rest state, the passive gate remains closed and only temporarily opens while the liquid pressure rises due to the active gate's reciprocating bubble motion. We have designed, fabricated and consistently operated our bubble pump with a variety of working liquids for >72 hours. Flow rates of 0-5.5 μl min(-1), were obtained and depended on the selected geometric dimensions, working fluids and actuation frequencies. The maximum operational pressure was 2.9 kPa-9.1 kPa and depended on the interfacial tension of the working fluids. Attainable flow rates compared favorably with those of available micropumps. We achieved flow rate enhancements of 30-100% by operating two bubble pumps in tandem and demonstrated scalability of the concept in a multi-well format with 12 individually and uniformly perfused microchannels (variation in flow rate <7%). We envision the demonstrated concept to allow for the consistent on-chip delivery of a wide range of different liquids that may even include highly reactive or moisture sensitive solutions. The presented bubble pump may provide active flow control for analytical and point-of-care diagnostic devices, as well as for microfluidic cells culture and organ-on-chip platforms.

  20. Compressible Turbulence

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.

    1997-06-01

    We present a model to treat fully compressible, nonlocal, time-dependent turbulent convection in the presence of large-scale flows and arbitrary density stratification. The problem is of interest, for example, in stellar pulsation problems, especially since accurate helioseismological data are now available, as well as in accretion disks. Owing to the difficulties in formulating an analytical model, it is not surprising that most of the work has gone into numerical simulations. At present, there are three analytical models: one by the author, which leads to a rather complicated set of equations; one by Yoshizawa; and one by Xiong. The latter two use a Reynolds stress model together with phenomenological relations with adjustable parameters whose determination on the basis of terrestrial flows does not guarantee that they may be extrapolated to astrophysical flows. Moreover, all third-order moments representing nonlocality are taken to be of the down gradient form (which in the case of the planetary boundary layer yields incorrect results). In addition, correlations among pressure, temperature, and velocities are often neglected or treated as in the incompressible case. To avoid phenomenological relations, we derive the full set of dynamic, time-dependent, nonlocal equations to describe all mean variables, second- and third-order moments. Closures are carried out at the fourth order following standard procedures in turbulence modeling. The equations are collected in an Appendix. Some of the novelties of the treatment are (1) new flux conservation law that includes the large-scale flow, (2) increase of the rate of dissipation of turbulent kinetic energy owing to compressibility and thus (3) a smaller overshooting, and (4) a new source of mean temperature due to compressibility; moreover, contrary to some phenomenological suggestions, the adiabatic temperature gradient depends only on the thermal pressure, while in the equation for the large-scale flow, the physical pressure is the sum of thermal plus turbulent pressure.

  1. Effects of pressure distribution on parallel circular porous plates with combined effect of piezo-viscous dependency and non-Newtonian couple stress fluid

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kesavan, Sundarammal

    2018-04-01

    Piezo-viscous effect i.e., Viscosity-pressure dependency has an important part in the applications of fluid flows like fluid lubrication, micro fluidics and geophysics. In this paper, the joint effects of piezo-viscous dependency and non-Newtonian couple stresses on the performance of circular porous plate’s squeeze film bearing have been studied. The results for pressure with various values of viscosity-pressure parameters are numerically calculated and compared with iso-viscous couple stress and Newtonian lubricants. Due to piezo-viscous effect, the pressure with piezo-viscous Non-Newtonian is significantly higher than the pressure with iso-viscous Newtonian and iso-viscous Non-Newtonian fluid.

  2. A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating

    NASA Astrophysics Data System (ADS)

    Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.

    2018-05-01

    A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.

  3. Implementation into earthquake sequence simulations of a rate- and state-dependent friction law incorporating pressure solution creep

    NASA Astrophysics Data System (ADS)

    Noda, H.

    2016-05-01

    Pressure solution creep (PSC) is an important elementary process in rock friction at high temperatures where solubilities of rock-forming minerals are significantly large. It significantly changes the frictional resistance and enhances time-dependent strengthening. A recent microphysical model for PSC-involved friction of clay-quartz mixtures, which can explain a transition between dilatant and non-dilatant deformation (d-nd transition), was modified here and implemented in dynamic earthquake sequence simulations. The original model resulted in essentially a kind of rate- and state-dependent friction (RSF) law, but assumed a constant friction coefficient for clay resulting in zero instantaneous rate dependency in the dilatant regime. In this study, an instantaneous rate dependency for the clay friction coefficient was introduced, consistent with experiments, resulting in a friction law suitable for earthquake sequence simulations. In addition, a term for time-dependent strengthening due to PSC was added which makes the friction law logarithmically rate-weakening in the dilatant regime. The width of the zone in which clasts overlap or, equivalently, the interface porosity involved in PSC plays a role as the state variable. Such a concrete physical meaning of the state variable is a great advantage in future modelling studies incorporating other physical processes such as hydraulic effects. Earthquake sequence simulations with different pore pressure distributions demonstrated that excess pore pressure at depth causes deeper rupture propagation with smaller slip per event and a shorter recurrence interval. The simulated ruptures were arrested a few kilometres below the point of pre-seismic peak stress at the d-nd transition and did not propagate spontaneously into the region of pre-seismic non-dilatant deformation. PSC weakens the fault against slow deformation and thus such a region cannot produce a dynamic stress drop. Dynamic rupture propagation further down to brittle-plastic transition, evidenced by geological observations, would require even smaller frictional resistance at coseismic slip rate, suggesting the importance of implementation of dynamic weakening activated at coseismic slip rates for more realistic simulation of earthquake sequences. The present models produced much smaller afterslip at deeper parts of arrested ruptures than those with logarithmic RSF laws because of a more significant rate-strengthening effect due to linearly viscous PSC. Detailed investigation of afterslip would give a clue to understand the deformation mechanism which controls shear resistance of the fault in a region of arrest of earthquake ruptures.

  4. The Time-Dependency of Deformation in Porous Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.

    2016-12-01

    Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.

  5. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  6. Comparisons of Fabric Strength and Development in Polycrystalline Ice at Atmospheric and Basal Hydrostatic Pressures

    NASA Astrophysics Data System (ADS)

    Breton, Daniel; Baker, Ian; Cole, David

    2013-04-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests to ~10% strain on 917 kg m-3, initially randomly-oriented polycrystalline ice specimens at 0.1 (atmospheric) and 20 MPa (simulating ~2,000 m depth) hydrostatic pressures, performing microstructural analyses on the resulting deformed specimens to characterize the evolution and strength of crystal fabric. Our microstructural analysis technique simultaneously collects grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtains crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and orientation data. We present creep and microstructural data to demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice and discuss possible mechanisms for the observed differences.

  7. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators

    NASA Astrophysics Data System (ADS)

    Bek, Marko; Betjes, Joris; von Bernstorff, Bernd-Steffen; Emri, Igor

    2017-12-01

    This paper presents the analysis of pressure dependence of three thermoplastic polyurethane (TPU) materials on vibration isolation. The three TPU Elastollan® materials are 1190A, 1175A, and 1195D. The aim of this investigation was to analyze how much the performance of isolation can be enhanced using patented Dissipative bulk and granular systems technology. The technology uses granular polymeric materials to enhance materials properties (without changing its chemical or molecular composition) by exposing them to "self-pressurization," which shifts material energy absorption maxima toward lower frequencies, to match the excitation frequency of dynamic loading to which a mechanical system is exposed. Relaxation experiments on materials were performed at different isobaric and isothermal states to construct mastercurves, the time-temperature-pressure interrelation was modeled using the Fillers-Moonan-Tschoegl model. Dynamic material functions, related to isolation stiffness and energy absorption, were determined with the Schwarzl approximation. An increase in stiffness and energy absorption at selected hydrostatic pressure, compared to its stiffness and energy absorption at ambient conditions, is represented with κk(p, ω), defining the increase in stiffness and κd(p, ω), defining the increase in energy absorption. The study showed that close to the glassy state, moduli of 1190A and 1195D are about 6-9 times higher compared to 1175A, whereas their properties at ambient conditions are, for all practical purposes, the same. TPU 1190A turns out to be most sensitive to pressure: at 300 MPa its properties are shifted for 5.5 decades, while for 1195D and 1175A this shift is only 3.5 and 1.5 decades, respectively. In conclusion, the stiffness and energy absorption of isolation may be increased with pressure for about 100 times for 1190A and 1195D and for about 10 times for 1175A.

  8. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2016-06-01

    Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.

  9. Effect of infiltrated water on rheology of plagioclase feldspar under lower crustal condition

    NASA Astrophysics Data System (ADS)

    Kido, M.; Muto, J.; Koizumi, S.; Nagahama, H.

    2016-12-01

    Fluids in the deep crust have an important role in deformation of lithosphere and seismicity. In this study, we performed deformation experiments to reveal rheological properties of plagioclase feldspars as a main constituent of crustal materials with infilitrated water. Axial compression tests on synthetic polycrystalline anorthite (An) were performed in a Griggs-type deformation apparatus at temparature of 900 °C, strain rates of roughly about 10-5 s-1 and various confining pressures of 0.8-1.4 GPa. Distilled water was added on samples before tests. Times for infiltration of water into samples were changed to investigate the variation of strength associated with diffusion of water. Strengths of wet An tended to decrease with infiltration time or strain magnitude. If other conditions such as temperature, time and strain being the same, strengths increase with confining pressures. Recovered samples show that deformation was concentrated in the lower part of samples. Differential stresses were significantly lower than predicted values by a previous flow law for wet An obtained by low pressure gas apparatus ( 0.4 GPa, Rybacki et al., 2006). This implies that the effect of water on mechanical behavior in higher pressure might be larger than those predicted by lower pressure experiments. Ideal water concentration and strength profile of internal of samples were estimated by one-dimensional model of grain boundary diffusion. Estimated strength of internal part of samples was significant higher than measured stresses. There is possibility that cataclastic flow partially occurred in samples. In addition, deformation-enhanced fluid flow probably occurred. In conclusion, strength of wet An depends on water infiltration time, strain magnitude and confining pressure. The results suggest that the strength of fluid-rich regions in the lower crust becomes lower than that predicted by previous studies.

  10. Modeling the densification of metal matrix composite monotape

    NASA Technical Reports Server (NTRS)

    Elzey, D. M.; Wadley, H. N. G.

    1993-01-01

    We present a first model that enables prediction of the density (and its time evolution) of a monotape lay-up subjected to a hot isostatic or vacuum hot pressing consolidation cycle. Our approach is to break down the complicated (and probabilistic) consolidation problem into simple, analyzable parts and to combine them in a way that correctly represents the statistical aspects of the problem, the change in the problem's interior geometry, and the evolving contributions of the different deformation mechanisms. The model gives two types of output. One is in the form of maps showing the relative density dependence upon pressure, temperature, and time for step function temperature and pressure cycles. They are useful for quickly determining the best place to begin developing an optimized process. The second gives the evolution of density over time for any (arbitrary) applied temperature and pressure cycle. This has promise for refining process cycles and possibly for process control. Examples of the models application are given for Ti3Al + Nb, gamma TiAl, Ti6Al4V, and pure aluminum.

  11. Foot Type Biomechanics Part 1: Structure and Function of the Asymptomatic Foot

    PubMed Central

    Hillstrom, Howard J.; Song, Jinsup; Kraszewski, Andrew P.; Hafer, Jocelyn F.; Mootanah, Rajshree; Dufour, Alyssa B.; PT, Betty (Shingpui) Chow; Deland, Jonathan T.

    2012-01-01

    Background Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? Aim To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Methods Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMatII gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pairwise comparisons. Results Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Conclusions Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. PMID:23107625

  12. Foot type biomechanics part 1: structure and function of the asymptomatic foot.

    PubMed

    Hillstrom, Howard J; Song, Jinsup; Kraszewski, Andrew P; Hafer, Jocelyn F; Mootanah, Rajshree; Dufour, Alyssa B; Chow, Betty Shingpui; Deland, Jonathan T

    2013-03-01

    Differences in foot structure are thought to be associated with differences in foot function during movement. Many foot pathologies are of a biomechanical nature and often associated with foot type. Fundamental to the understanding of foot pathomechanics is the question: do different foot types have distinctly different structure and function? To determine if objective measures of foot structure and function differ between planus, rectus and cavus foot types in asymptomatic individuals. Sixty-one asymptomatic healthy adults between 18 and 77 years old, that had the same foot type bilaterally (44 planus feet, 54 rectus feet, and 24 cavus feet), were recruited. Structural and functional measurements were taken using custom equipment, an emed-x plantar pressure measuring device, a GaitMat II gait pattern measurement system, and a goniometer. Generalized Estimation Equation modeling was employed to determine if each dependent variable of foot structure and function was significantly different across foot type while accounting for potential dependencies between sides. Post hoc testing was performed to assess pair wise comparisons. Several measures of foot structure (malleolar valgus index and arch height index) were significantly different between foot types. Gait pattern parameters were invariant across foot types. Peak pressure, maximum force, pressure-time-integral, force-time-integral and contact area were significantly different in several medial forefoot and arch locations between foot types. Planus feet exhibited significantly different center of pressure excursion indices compared to rectus and cavus feet. Planus, rectus and cavus feet exhibited significantly different measures of foot structure and function. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.

    1995-01-01

    Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.

  14. Time-resolved gas-phase kinetic, quantum chemical, and RRKM studies of reactions of silylene with alcohols.

    PubMed

    Becerra, Rosa; Cannady, J Pat; Walsh, Robin

    2011-05-05

    Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modeled using RRKM theory, based on E(0) values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k(∞) values in the range (1.9-4.5) × 10(-10) cm(3) molecule(-1) s(-1). These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16% and 67% of the collision rates for these reactions. In the reaction of SiH(2) + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalyzed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H(2)O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.

  15. It's about Relationships: Creating Positive School Climates

    ERIC Educational Resources Information Center

    Ashley, Dana M.

    2016-01-01

    When teachers wonder "What should I do?" in response to challenging student behaviors, the answers are not as simple as they might seem. What teachers can do also depends, at least in part, on external demands (e.g., discipline codes, principal expectations, time pressures on teaching content and testing) that can either facilitate or…

  16. Reforming U.S. Teacher Education in the 1990s.

    ERIC Educational Resources Information Center

    Parker, Franklin

    In the spirit of educational reform efforts, public schools have national goals for the first time and are under pressure to adopt a national curriculum, national testing, and parental choice of schools. School reform depends on upgrading teacher education. Only a more carefully recruited, better prepared, and more professionally rewarded teaching…

  17. Effect of pressure on the α relaxation in glycerol and xylitol

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  18. Ram Pressure Stripping Made Easy: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Köppen, J.; Jáchym, P.; Taylor, R.; Palouš, J.

    2018-06-01

    The removal of gas by ram pressure stripping of galaxies is treated by a purely kinematic description. The solution has two asymptotic limits: if the duration of the ram pressure pulse exceeds the period of vertical oscillations perpendicular to the galactic plane, the commonly used quasi-static criterion of Gunn & Gott is obtained which uses the maximum ram pressure that the galaxy has experienced along its orbit. For shorter pulses the outcome depends on the time-integrated ram pressure. This parameter pair fully describes the gas mass fraction that is stripped from a given galaxy. This approach closely reproduces results from SPH simulations. We show that typical galaxies follow a very tight relation in this parameter space corresponding to a pressure pulse length of about 300 Myr. Thus, the Gunn & Gott criterion provides a good description for galaxies in larger clusters. Applying the analytic description to a sample of 232 Virgo galaxies from the GoldMine database, we show that the ICM provides indeed the ram pressures needed to explain the deficiencies. We also can distinguish current and past strippers, including objects whose stripping state was unknown.

  19. Correlates of blood pressure in young insulin-dependent diabetics and their families.

    PubMed

    Tarn, A C; Thomas, J M; Drury, P L

    1990-09-01

    We compared the correlates of blood pressure in 163 young patients with insulin-dependent diabetes and in 232 of their non-diabetic siblings. A single observer recorded blood pressure in all subjects, plus all their available parents, using a standardized technique. Other variables recorded included age, weight, height, presence of diabetes and urinary albumin. The major factors accounting for over 50% of the variance of systolic blood pressure (SBP) in both groups were age, weight, paternal SBP and sex. In addition, in the diabetic group the logarithm of the random urinary albumin concentration was a significant explanatory variable. For diastolic blood pressure (DBP) approximately 16% of the variance was explained by age, weight and maternal DBP. Parental blood pressure was an important determinant of blood pressure in both the diabetic and non-diabetic sibling groups. The similarity of the correlates of blood pressure in the two groups suggests that the determinants of blood pressure in young insulin-dependent diabetic patients and in the general population are similar.

  20. Predicted and experimental steady and unsteady transonic flows about a biconvex airfoil

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.

    1981-01-01

    Results of computer code time dependent solutions of the two dimensional compressible Navier-Stokes equations and the results of independent experiments are compared to verify the Mach number range for instabilities in the transonic flow field about a 14 percent thick biconvex airfoil at an angle of attack of 0 deg and a Reynolds number of 7 million. The experiments were conducted in a transonic, slotted wall wind tunnel. The computer code included an algebraic eddy viscosity turbulence model developed for steady flows, and all computations were made using free flight boundary conditions. All of the features documented experimentally for both steady and unsteady flows were predicted qualitatively; even with the above simplifications, the predictions were, on the whole, in good quantitative agreement with experiment. In particular, predicted time histories of shock wave position, surface pressures, lift, and pitching moment were found to be in very good agreement with experiment for an unsteady flow. Depending upon the free stream Mach number for steady flows, the surface pressure downstream of the shock wave or the shock wave location was not well predicted.

  1. Modelling linewidths of Kepler red giants in NGC 6819

    NASA Astrophysics Data System (ADS)

    Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen

    2018-04-01

    We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.

  2. Modelling linewidths of Kepler red giants in NGC 6819

    NASA Astrophysics Data System (ADS)

    Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen

    2018-07-01

    We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler light curves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the non-local convection model.

  3. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  4. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less

  5. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  6. Time dependence of volcano inflation: mass influx or viscoelastic relaxation? Insights from Grímsvötn volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Segall, P.

    2017-12-01

    Distinguishing magma chamber pressurization from relaxation of a viscoelastic aureole surrounding the chamber based on geodetic measurements has remained challenging. Elastic models with mass inflow proportional to the pressure difference between the chamber and a deep reservoir predict exponentially decaying flux. For a spherical chamber surrounded by a Maxwell viscoelastic shell with pressure dependent recharge, the surface deformation is the sum of two exponentials (Segall, 2016). GPS displacements following eruptions of Grímsvötn, Iceland in 2004 and 2011 exhibit rapid post-eruptive inflation (time scale of 0.1 yr), followed by inflation with a much longer time constant. Markov Chain Monte Carlo inversion with the viscoelastic model shows the GPS time series can be fit with viscosity of 2e16 Pa-s, and a relatively incompressible magma, B = beta_c/ (beta_m + beta_c) > 0.6, where beta_m and beta_c are chamber and magma compressibility. The latter appears to conflict with the ratio of erupted volume to geodetically inferred source volume change, rv 10, obtained for the best fitting spherical (Mogi ) source (Hreinsdóttir, 2014). Since rv = 1/B, this implies a relatively compressible melt, B 0.1. Reexamination of the co-eruptive GPS and tilt data with the more general ellipsoidal model of Cervelli (2013), reveals that the best fitting sources are oblate (b/a 3), deeper, and with larger volume changes, rv 3, relative to spherical models. Oblate magma chambers are consistent with seismic tomography. FEM calculations including free surface effects lead to even larger co-eruptive volume changes, smaller rv and hence larger B. I conclude that the data are consistent with rapid post-eruptive inflation driven by viscoelastic relaxation with a relatively incompressible magma, although other interpretations will be discussed.

  7. The Abundance of Molecular Hydrogen and Its Correlation with Midplane Pressure in Galaxies: Non-equilibrium, Turbulent, Chemical Models

    NASA Astrophysics Data System (ADS)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-02-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  8. Chronobiometric assessment of autogenic training effects upon blood pressure and heart rate.

    PubMed

    Watanabe, Y; Halberg, F; Cornélissen, G; Saito, Y; Fukuda, K; Otsuka, K; Kikuchi, T

    1996-12-01

    Autogenic training, a method of self-hypnosis, lowers the extent of within-day variation of systolic blood pressure assessed by the circadian double amplitude. The blood pressure and heart rate of ten patients, conventionally diagnosed as having hypertension or white-coat hypertension, were automatically monitored at 30-min intervals for 7 days before autogenic training and again for 7 days, at 1 or 2 months after the start of autogenic training (practiced three times daily). The circadian double amplitude of systolic blood pressure of the patients investigated was 3 to 17 mm Hg lower on autogenic training. In 5 patients, reductions by 7 to 17 mm Hg were statistically significant. These results are regarded as provisional statistics, the utility of which depends on replication. By contrast, the over-all group reduction of the circadian double amplitude of systolic blood pressure by 8 mm Hg on the average can be taken at face value. Autogenic training also lowered the circadian double amplitude of diastolic blood pressure, but the effect was small as was the effect of autogenic training upon the MESOR (a rhythm adjusted mean) and acrophase (a measure of the timing of over-all high values recurring each day). The effect of autogenic training upon the circadian double amplitude of systolic blood pressure suggests its trial as first-line treatment of patients with an excessive circadian blood pressure amplitude, a condition which, even in the absence of an elevated 24-hr, average of blood pressure, is associated with a large increase in the risk of developing ischemic stroke or nephropathy.

  9. Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.

  10. Microvessel rupture induced by high-intensity therapeutic ultrasound-a study of parameter sensitivity in a simple in vivo model.

    PubMed

    Kim, Yeonho; Nabili, Marjan; Acharya, Priyanka; Lopez, Asis; Myers, Matthew R

    2017-01-01

    Safety analyses of transcranial therapeutic ultrasound procedures require knowledge of the dependence of the rupture probability and rupture time upon sonication parameters. As previous vessel-rupture studies have concentrated on a specific set of exposure conditions, there is a need for more comprehensive parametric studies. Probability of rupture and rupture times were measured by exposing the large blood vessel of a live earthworm to high-intensity focused ultrasound pulse trains of various characteristics. Pressures generated by the ultrasound transducers were estimated through numerical solutions to the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation. Three ultrasound frequencies (1.1, 2.5, and 3.3 MHz) were considered, as were three pulse repetition frequencies (1, 3, and 10 Hz), and two duty factors (0.0001, 0.001). The pressures produced ranged from 4 to 18 MPa. Exposures of up to 10 min in duration were employed. Trials were repeated an average of 11 times. No trends as a function of pulse repetition rate were identifiable, for either probability of rupture or rupture time. Rupture time was found to be a strong function of duty factor at the lower pressures; at 1.1 MHz the rupture time was an order of magnitude lower for the 0.001 duty factor than the 0.0001. At moderate pressures, the difference between the duty factors was less, and there was essentially no difference between duty factors at the highest pressure. Probability of rupture was not found to be a strong function of duty factor. Rupture thresholds were about 4 MPa for the 1.1 MHz frequency, 7 MPa at 3.3 MHz, and 11 MPa for the 2.5 MHz, though the pressure value at 2.5 MHz frequency will likely be reduced when steep-angle corrections are accounted for in the KZK model used to estimate pressures. Mechanical index provided a better collapse of the data (less separation of the curves pertaining to the different frequencies) than peak negative pressure, for both probability of rupture and rupture time. The results provide a database with which investigations in more complex animal models can be compared, potentially establishing trends by which bioeffects in human vessels can be estimated.

  11. Investigating Gender Differences under Time Pressure in Financial Risk Taking

    PubMed Central

    Xie, Zhixin; Page, Lionel; Hardy, Ben

    2017-01-01

    There is a significant gender imbalance on financial trading floors. This motivated us to investigate gender differences in financial risk taking under pressure. We used a well-established approach from behavior economics to analyze a series of risky monetary choices by male and female participants with and without time pressure. We also used second to fourth digit ratio (2D:4D) and face width-to-height ratio (fWHR) as correlates of pre-natal exposure to testosterone. We constructed a structural model and estimated the participants' risk attitudes and probability perceptions via maximum likelihood estimation under both expected utility (EU) and rank-dependent utility (RDU) models. In line with existing research, we found that male participants are less risk averse and that the gender gap in risk attitudes increases under moderate time pressure. We found that female participants with lower 2D:4D ratios and higher fWHR are less risk averse in RDU estimates. Males with lower 2D:4D ratios were less risk averse in EU estimations, but more risk averse using RDU estimates. We also observe that men whose ratios indicate a greater prenatal exposure to testosterone exhibit a greater optimism and overestimation of small probabilities of success. PMID:29326566

  12. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  13. Fragment Production and Survival in Irradiated Disks: A Comprehensive Cooling Criterion

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin M.; Murray-Clay, Ruth A.

    2011-10-01

    Accretion disks that become gravitationally unstable can fragment into stellar or substellar companions. The formation and survival of these fragments depends on the precarious balance between self-gravity, internal pressure, tidal shearing, and rotation. Disk fragmentation depends on two key factors: (1) whether the disk can get to the fragmentation boundary of Q = 1 and (2) whether fragments can survive for many orbital periods. Previous work suggests that to reach Q = 1, and have fragments survive, a disk must cool on an orbital timescale. Here we show that disks heated primarily by external irradiation always satisfy the standard cooling time criterion. Thus, even though irradiation heats disks and makes them more stable in general, once they reach the fragmentation boundary, they fragment more easily. We derive a new cooling criterion that determines fragment survival and calculate a pressure-modified Hill radius, which sets the maximum size of pressure-supported objects in a Keplerian disk. We conclude that fragmentation in protostellar disks might occur at slightly smaller radii than previously thought and recommend tests for future simulations that will better predict the outcome of fragmentation in real disks.

  14. Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Liu, Pengyu; Luo, Tao; Xing, Jie; Xu, Hong; Hao, Huiying; Liu, Hao; Dong, Jingjing

    2017-10-01

    High-quality WS2 film with the single domain size up to 400 μm was grown on Si/SiO2 wafer by atmospheric pressure chemical vapor deposition. The effects of some important fabrication parameters on the controlled growth of WS2 film have been investigated in detail, including the choice of precursors, tube pressure, growing temperature, holding time, the amount of sulfur powder, and gas flow rate. By optimizing the growth conditions at one atmospheric pressure, we obtained tungsten disulfide single domains with an average size over 100 μm. Raman spectra, atomic force microscopy, and transmission electron microscopy provided direct evidence that the WS2 film had an atomic layer thickness and a single-domain hexagonal structure with a high crystal quality. And the photoluminescence spectra indicated that the tungsten disulfide films showed an evident layer-number-dependent fluorescence efficiency, depending on their energy band structure. Our study provides an important experimental basis for large-area, controllable preparation of atom-thick tungsten disulfide thin film and can also expedite the development of scalable high-performance optoelectronic devices based on WS2 film.

  15. Nucleation speed limit on remote fluid induced earthquakes

    USGS Publications Warehouse

    Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  16. Oxygen partial pressure dependence of thermoelectric power factor in polycrystalline n-type SrTiO3: Consequences for long term stability in thermoelectric oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Peter A.; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.

    2017-04-01

    The Seebeck coefficient and electrical conductivity have been measured as functions of oxygen partial pressure over the range of 10-22 to 10-1 atm at 1173 K for a 10% niobium-doped SrTiO3 ceramic with a grain size comparable to the oxygen diffusion length. Temperature-dependent measurements performed from 320 to 1275 K for as-prepared samples reveal metallic-like conduction and good thermoelectric properties. However, upon exposure to progressively increasing oxygen partial pressure, the thermoelectric power factor decreased over time scales of 24 h, culminating in a three order of magnitude reduction over the entire operating range. Identical measurements on single crystal samples show negligible changes in the power factor so that the instability of ceramic samples is primarily tied to the kinetics of grain boundary diffusion. This work provides a framework for understanding the stability of thermoelectric properties in oxides under different atmospheric conditions. The control of the oxygen atmosphere remains a significant challenge in oxide thermoelectrics.

  17. Nucleation speed limit on remote fluid-induced earthquakes.

    PubMed

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-08-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth's crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.

  18. Nucleation speed limit on remote fluid-induced earthquakes

    PubMed Central

    Parsons, Tom; Malagnini, Luca; Akinci, Aybige

    2017-01-01

    Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448

  19. Comparing kinetic curves in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Kurganov, A. A.; Kanat'eva, A. Yu.; Yakubenko, E. E.; Popova, T. P.; Shiryaeva, V. E.

    2017-01-01

    Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t 0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.

  20. Instability and sound emission from a flow over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.

    1988-01-01

    The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.

  1. Ultrafast dynamic response of single-crystal β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Austin, Ryan A.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Goldman, Nir; Ferranti, Louis; Saw, Cheng K.; Swan, Raymond A.; Gross, Richard; Fried, Laurence E.

    2018-05-01

    We report experimental and computational studies of shock wave dynamics in single-crystal β-HMX on an ultrafast time scale. Here, a laser-based compression drive (˜1 ns in duration; stresses of up to ˜40 GPa) is used to propagate shock waves normal to the (110) and (010) lattice planes. Ultrafast time-domain interferometry measurements reveal distinct, time-dependent relationships between the shock wave velocity and particle velocity for each crystal orientation, which suggest evolving physical processes on a sub-nanosecond time scale. To help interpret the experimental data, elastic shock wave response was simulated using a finite-strain model of crystal thermoelasticity. At early propagation times (<500 ps), the model is in agreement with the data, which indicates that the mechanical response is dominated by thermoelastic deformation. The model agreement depends on the inclusion of nonlinear elastic effects in both the spherical and deviatoric stress-strain responses. This is achieved by employing an equation-of-state and a pressure-dependent stiffness tensor, which was computed via atomistic simulation. At later times (>500 ps), the crystal samples exhibit signatures of inelastic deformation, structural phase transformation, or chemical reaction, depending on the direction of wave propagation.

  2. Phenomenological description of depoling current in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression: Relaxation model

    NASA Astrophysics Data System (ADS)

    Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun

    2012-05-01

    By assuming a relaxation process for depolarization associated with the ferroelectric (FE) to antiferroelectric (AFE) phase transition in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression, we build a new model for the depoling current, which is different from both the traditional constant current source (CCS) model and the phase transition kinetics (PTK) model. The characteristic relaxation time and new-equilibrated polarization are dependent on both the shock pressure and electric field. After incorporating a Maxwell s equation, the relaxation model developed applies to all the depoling currents under short-circuit condition and high-impedance condition. Influences of shock pressure, load resistance, dielectric property, and electrical conductivity on the depoling current are also discussed. The relaxation model gives a good description about the suppressing effect of the self-generated electric field on the FE-to-AFE phase transition at low shock pressures, which cannot be described by the traditional models. After incorporating a time- and electric-field-dependent repolarization, this model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. Finally, we make the comparison between our relaxation model and the traditional CCS model and PTK model.

  3. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  4. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    PubMed

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  5. Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.

    PubMed

    Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji

    2017-09-01

    Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.

  6. Economic and clinical benefit of collagenase ointment compared to a hydrogel dressing for pressure ulcer debridement in a long-term care setting.

    PubMed

    Waycaster, Curtis; Milne, Catherine

    2013-06-01

    The purpose of this study is to determine the cost-effectiveness of collagenase ointment relative to autolysis with a hydrogel dressing when debriding necrotic pressure ulcers in a long-term care setting. A Markov decision process model with 2 states (necrotic nonviable wound bed transitioning to a granulated viable wound bed) was developed using data derived from a prospective, randomized, 6-week, single-center trial of 27 institutionalized subjects with pressure ulcers that were ≥ 85% necrotic nonviable tissue. Direct medical costs from the payer perspective included study treatments, wound treatment supplies, and nursing time. Clinical benefit was measured as "granulation days" and was derived from the time-dependent debridement rates of the alternative products. The average cost per patient for 42 days of pressure ulcer care was $1,817 in 2012 for the collagenase group and $1,611 for the hydrogel group. Days spent with a granulated wound were 3.6 times higher for collagenase (23.4 vs 6.5) than with the hydrogel. The estimated cost per granulation day was > 3.2 times higher for hydrogel ($249) vs collagenase ($78). In this economic analysis based on a randomized, controlled clinical trial, collagenase ointment resulted in a faster time to complete debridement and was more cost-effective than hydrogel autolysis for pressure ulcers in a long-term care setting. Even though collagenase ointment has a higher acquisition cost than hydrogel, the clinical benefit offsets the initial cost difference, resulting in lower cost per granulation day to the nursing home over the course of the 42-day analysis.

  7. Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure.

    PubMed

    Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian

    2016-02-01

    Mechanical loads which are macroscopically acting onto bony organs, are known to influence the activities of biological cells located in the pore spaces of bone, in particular so the signaling and production processes mediated by osteocytes. The exact mechanisms by which osteocytes are actually able to "feel" the mechanical loading and changes thereof, has been the subject of numerous studies, and, while several hypotheses have been brought forth over time, this topic has remained a matter of debate. Relaxation times reported in a recent experimental study of Gardinier et al. (Bone 46(4):1075-1081, 2010) strongly suggest that the lacunar pores are likely to experience, during typical physiological load cycles, not only fluid transport, but also undrained conditions. The latter entail the buildup of lacunar pore pressures, which we here quantify by means of a thorough multiscale modeling approach. In particular, the proposed model is based on classical poroelasticity theory, and able to account for multiple pore spaces. First, the model reveals distinct nonlinear dependencies of the resulting lacunar (and vascular) pore pressures on the underlying bone composition, highlighting the importance of a rigorous multiscale approach for appropriate computation of the aforementioned pore pressures. Then, the derived equations are evaluated for macroscopic (uniaxial as well as hydrostatic) mechanical loading of physiological magnitude. The resulting model-predicted pore pressures agree very well with the pressures that have been revealed, by means of in vitro studies, to be of adequate magnitude for modulating the responses of biological cells, including osteocytes. This underlines that osteocytes may respond to many types of loading stimuli at the same time, in particular so to fluid flow and hydrostatic pressure.

  8. Clinical application of diadenosine tetraphosphate (Ap4A:F-1500) for controlled hypotension.

    PubMed

    Kikuta, Y; Ohiwa, E; Okada, K; Watanabe, A; Haruki, S

    1999-01-01

    In our animal study, it was revealed that diadenosine tetraphosphate (Ap4A:F-1500) has a dose-dependent hypotension effect of up to 60% decrease in mean arterial pressure compared to control value. Furthermore, in healthy male volunteers, the safety of Ap4A up to 4 mg.min-1 was confirmed. In patients who require surgical procedures under general anesthesia together with controlled hypotension, hypotension was induced by Ap4A in order to examine its hypotensive effect and modulating action on the blood pressure. Ten patients who required controlled hypotension and who were scheduled for elective surgery under general anesthesia were studied. Anesthesia was maintained with isoflurane (n = 7) or sevoflurane (n = 3) in oxygen-nitrous oxide. Controlled hypotension was induced by Ap4A administered at a rate of 10-20 micrograms.kg-1.min-1. The dose was adjusted at a maximum rate of 80 micrograms.kg-1.min-1 until the target blood pressure was achieved. Arterial blood pressure and heart rate were monitored. Arterial samples were drawn at 4 separate time points to measure the concentration of Ap4A in the plasma. The time required for attaining the target blood pressure after initiation of Ap4A infusion was about 16 min, and the time lapse between withdrawal of infusion to recovery of blood pressure was about 18 min. No reflex tachycardia was observed during infusion of Ap4A and no rebound hypertension was evident after withdrawal. The plasma Ap4A concentration increased in response to the acceleration rate of Ap4A administration with a tendency of augmented hypotensive effect. As it produces an excellent hypotensive effect together with a modulating action on blood pressure, Ap4A was assessed as useful in producing controlled hypotension.

  9. A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man.

    PubMed Central

    Gamble, J; Gartside, I B; Christ, F

    1993-01-01

    1. We have used non-invasive mercury in a silastic strain gauge system to assess the effect of pressure step size, on the time course of the rapid volume response (RVR) to occlusion pressure. We also obtained values for hydraulic conductance (Kf), isovolumetric venous pressure (Pvi) and venous pressure (Pv) in thirty-five studies on the legs of twenty-three supine control subjects. 2. The initial rapid volume response to small (9.53 +/- 0.45 mmHg, mean +/- S.E.M.) stepped increases in venous pressure, the rapid volume response, could be described by a single exponential of time constant 15.54 +/- 1.14 s. 3. Increasing the size of the pressure step, to 49.8 +/- 1.1 mmHg, gave a larger value for the RVR time constant (mean 77.3 +/- 11.6 s). 4. We propose that the pressure-dependent difference in the duration of the rapid volume response, in these two situations, might be due to a vascular smooth muscle-based mechanism, e.g. the veni-arteriolar reflex. 5. The mean (+/- S.E.M.) values for Kf, Pvi and Pv were 4.27 +/- 0.18 (units, ml min-1 (100 g)-1 mmHg-1 x 10(-3), 21.50 +/- 0.81 (units, mmHg) and 9.11 +/- 0.94 (units, mmHg), respectively. 6. During simultaneous assessment of these parameters in arms and legs, it was found that they did not differ significantly from one another. 7. We propose that the mercury strain gauge system offers a useful, non-invasive means of studying the mechanisms governing fluid filtration in human limbs. Images Fig. 1 PMID:8229810

  10. The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menz, A. M.; Kistler, L. M.; Mouikis, C. G.

    We report on 17 March 2013, the Van Allen Probes measured the H + and O + fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H + and O + pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O + pressure dominates at lower Lmore » values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O + at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O + at lower energies (5–10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. Lastly, no source of O + inside L = 5.5 is required to explain the observations at low L shells.« less

  11. The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm

    DOE PAGES

    Menz, A. M.; Kistler, L. M.; Mouikis, C. G.; ...

    2017-01-21

    We report on 17 March 2013, the Van Allen Probes measured the H + and O + fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H + and O + pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O + pressure dominates at lower Lmore » values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O + at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O + at lower energies (5–10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. Lastly, no source of O + inside L = 5.5 is required to explain the observations at low L shells.« less

  12. A chest drainage system with a real-time pressure monitoring device

    PubMed Central

    Liu, Tsang-Pai; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung

    2015-01-01

    Background Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the “tidaling phenomenon” in the bottle can be reflective of the extent of patient’s recovery. Objectives However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. Methods The device is made of a pressure sensor with an operating range between −100 to +100 cmH2O and an amplifying using the “Wheatstone bridge” concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. Results The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. Conclusions This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system. PMID:26380726

  13. A chest drainage system with a real-time pressure monitoring device.

    PubMed

    Chen, Chih-Hao; Liu, Tsang-Pai; Chang, Ho; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung

    2015-07-01

    Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the "tidaling phenomenon" in the bottle can be reflective of the extent of patient's recovery. However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. The device is made of a pressure sensor with an operating range between -100 to +100 cmH2O and an amplifying using the "Wheatstone bridge" concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system.

  14. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  15. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  16. Role of hyaluronan chain length in buffering interstitial flow across synovium in rabbits

    PubMed Central

    Coleman, P J; Scott, D; Mason, R M; Levick, J R

    2000-01-01

    Synovial fluid drains out of joints through an interstitial pathway. Hyaluronan, the major polysaccharide of synovial fluid, attenuates this fluid drainage; it creates a graded opposition to outflow that increases with pressure (outflow ‘buffering’). This has been attributed to size-related molecular reflection at the interstitium-fluid interface. Chain length is reduced in inflammatory arthritis. We therefore investigated the dependence of outflow buffering on hyaluronan chain length.Hyaluronan molecules of mean molecular mass ≈2200, 530, 300 and 90 kDa and concentration 3.6 mg ml−1 were infused into the knees of anaesthetized rabbits, with Ringer solution as control in the contralateral joint. Trans-synovial drainage rate was recorded at known joint pressures. Pressure was raised in steps every 30–60 min (range 2–24 cmH2O).With hyaluronan-90 and hyaluronan-300 the fluid drainage rate was reduced relative to Ringer solution (P < 0.001, ANOVA) but increased steeply with pressure. The opposition to outflow, defined as the pressure required to drive unit outflow, did not increase with pressure, i.e. there was no outflow buffering.With hyaluronan-530 and hyaluronan-2000 the fluid drainage rate became relatively insensitive to pressure, causing a near plateau of flow. Opposition to outflow increased markedly with pressure, by up to 3.3 times over the explored pressures.Hyaluronan concentration in the joint cavity increased over the drainage period, indicating partial reflection of hyaluronan by synovial interstitium. Reflected fractions were 0.12, 0.33, 0.25 and 0.79 for hyaluronan-90, -300, -530 and -2200, respectively.Thus the flow-buffering effect of hyaluronan depended on chain length, and shortening the chains reduced the degree of molecular reflection. The latter should reduce the concentration polarization at the tissue interface, and hence the local osmotic pressure opposing fluid drainage. In rheumatoid arthritis the reduced chain length will facilitate the escape of hyaluronan and fluid. PMID:10896731

  17. Other satellite atmospheres: Their nature and planetary interactions

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1982-01-01

    The Io sodium cloud model was successfully generated to include the time and spatial dependent lifetime sink produced by electron impact ionization as the plasma torus oscillates about the satellite plane, while simultaneously including the additional time dependence introduced by the action of solar radiation pressure on the cloud. Very preliminary model results are discussed and continuing progress in analysis of the peculiar directional features of the sodium cloud is also reported. Significant progress was made in developing a model for the Io potassium cloud and differences anticipated between the potassium and sodium cloud are described. An effort to understand the hydrogen atmosphere associated with Saturn's rings was initiated and preliminary results of a very and study are summarized.

  18. Integrated Structural/Acoustic Modeling of Heterogeneous Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett, A.; Aboudi, Jacob; Arnold, Steven, M.; Pennline, James, A.

    2012-01-01

    A model for the dynamic response of heterogeneous media is presented. A given medium is discretized into a number of subvolumes, each of which may contain an elastic anisotropic material, void, or fluid, and time-dependent boundary conditions are applied to simulate impact or incident pressure waves. The full time-dependent displacement and stress response throughout the medium is then determined via an explicit solution procedure. The model is applied to simulate the coupled structural/acoustic response of foam core sandwich panels as well as aluminum panels with foam inserts. Emphasis is placed on the acoustic absorption performance of the panels versus weight and the effects of the arrangement of the materials and incident wave frequency.

  19. Dynamic nightside electron precipitation at Mars: ggeographical and solar wind dependence

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Brain, D. A.

    2012-12-01

    Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 AM local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: 1) 'stable' regions where fluxes increase mildly with SW pressure, 2) 'high flux' regions where accelerated spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, 3) permanent plasma voids and 4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and appreciably with IMF direction proxy. Overall, average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for one primary IMF direction proxy compared with the other. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.; Stereographic maps of nightside downward electron flux between 96 and 148 eV, measured at 2 AM local time, averaged over the period 05/1999-11/2006. The top, middle and bottom rows are for solar wind pressure proxy ranges of 0-30 nT, 30-50 nT and >50 nT. The left and right columns are for IMF direction proxy ranges of 320-140° and 140-320°. Contour lines are represented on the vertical color bars by horizontal lines.

  20. Anomalous pressure dependence of magnetic ordering temperature in Tb revealed by resistivity measurements to 141 GPa. Comparison with Gd and Dy

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2015-05-26

    In previous studies the pressure dependence of the magnetic ordering temperature T o of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence T o(P) mirrors that of both Dy and Gd. However, at higher pressures T o(P) for Tb becomes highly anomalous. Thismore » result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less

  1. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  2. Large Eddy Simulation in the Computation of Jet Noise

    NASA Technical Reports Server (NTRS)

    Mankbadi, R. R.; Goldstein, M. E.; Povinelli, L. A.; Hayder, M. E.; Turkel, E.

    1999-01-01

    Noise can be predicted by solving Full (time-dependent) Compressible Navier-Stokes Equation (FCNSE) with computational domain. The fluctuating near field of the jet produces propagating pressure waves that produce far-field sound. The fluctuating flow field as a function of time is needed in order to calculate sound from first principles. Noise can be predicted by solving the full, time-dependent, compressible Navier-Stokes equations with the computational domain extended to far field - but this is not feasible as indicated above. At high Reynolds number of technological interest turbulence has large range of scales. Direct numerical simulations (DNS) can not capture the small scales of turbulence. The large scales are more efficient than the small scales in radiating sound. The emphasize is thus on calculating sound radiated by large scales.

  3. Modelling the Effects of Magma Properties, Pressure and Conduit Dimensions on the Seismic Signature

    NASA Astrophysics Data System (ADS)

    Sturton, S.; Neuberg, J.

    2002-12-01

    A finite-difference scheme is used to model the seismic radiation pattern for a fluid filled conduit surrounded by a solid medium. Seismic waves travel slower than the acoustic velocity inside the conduit and the propagation velocity is frequency dependent. At the ends of the conduit the waves are partly reflected back along the conduit and also leak into the solid medium. The seismometer signal obtained is therefore composed of a series of events released from the ends of the conduit. Each signal can be characterised by the repeat time of the events and the dispersion seen within each event. These characteristics are dependent on the seismic parameters and the conduit dimensions. For a gas-charged magma, increasing the pressure with depth reduces the volume of gas exsolved, thereby increasing the seismic velocity lower in the conduit. From the volume of gas exsolved, profiles of seismic parameters within the conduit and their evolution with time can be obtained. The differences between a varying velocity with depth and a constant velocity with depth are seen in the synthetic seismograms and spectrograms. At Soufriere Hills Volcano, Montserrat, single hybrid events merge into tremor and occasionally gliding lines are observed in the spectra indicating changes in the seismic parameters with time or varying triggering rates of single events. The synthetic seismograms are compared to the observational data and used to constrain the magnitude of pressure changes necessary to produce the gliding lines. Further constraints are obtained from the dispersion patterns in both the synthetic seismograms and the observed data.

  4. Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni3Al

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.

    2018-01-01

    The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.

  5. Viscoelastic dynamic arterial response.

    PubMed

    Charalambous, Haralambia P; Roussis, Panayiotis C; Giannakopoulos, Antonios E

    2017-10-01

    Arteries undergo large deformations under applied intraluminal pressure and may exhibit small hysteresis due to creep or relaxation process. The mechanical response of arteries depends, among others, on their topology along the arterial tree. Viscoelasticity of arterial tissues, which is the topic investigated in this study, is mainly a characteristic mechanical response of arteries that are located away from the heart and have increased smooth muscle cells content. The arterial wall viscosity is simulated by adopting a generalized Maxwell model and the method of internal variables, as proposed by Bonet and Holzapfel et al. The total stresses consist of elastic long-term stresses and viscoelastic stresses, requiring an iterative procedure for their calculation. The cross-section of the artery is modeled as a circular ring, consisting of a single homogenized layer, under a time-varying blood pressure. Two different loading approximations for the aortic pressure vs time are considered. A novel numerical method is developed in order to solve the controlling integro-differential equation. A large number of numerical investigations are performed and typical response time-profiles are presented in pictorial form. Results suggest that the viscoelastic arterial response is mainly affected by the ratio of the relaxation time to the characteristic time of the response and by the pressure-time approximation. Numerical examples, based on data available in the literature, are conducted. The investigation presented in this study reveals the effect of each material parameter on the viscoelastic arterial response. Thus, a better understanding of the behavior of viscoelastic arteries is achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  7. Solar wind conditions in the outer heliosphere and the distance to the termination shock

    NASA Technical Reports Server (NTRS)

    Belcher, John W.; Lazarus, Alan J.; Mcnutt, Ralph L., Jr.; Gordon, George S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the properties of solar wind protons from 1 to 40.4 AU. We use these observations to discuss the probable location and motion of the termination shock of the solar wind. Assuming that the interstellar pressure is due to a 5 micro-G magnetic field draped over the upstream face of the heliopause, the radial variation of ram pressure implies that the termination shock will be located at an average distance near 89 AU. This distance scales inversely as the assumed field strength. There are also large variations in ram pressure on time scales of tens of days, due primarily to large variations in solar wind density at a given radius. Such rapid changes in the solar wind ram pressure can cause large perturbations in the location of the termination shock. We study the nonequilibrium location of the termination shock as it responds to these ram pressure changes. The results of this study suggest that the position of the termination shock can vary by as much as 10 AU in a single year, depending on the nature of variations in the ram pressure, and that multiple crossings of the termination shock by a given outer heliosphere spacecraft are likely. After the first crossing, such models of shock motion will be useful for predicting the timing of subsequent crossings.

  8. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  9. Variations of permeability and pore size distribution of porous media with pressure.

    PubMed

    Chen, Quan; Kinzelbach, Wolfgang; Ye, Chaohui; Yue, Yong

    2002-01-01

    Porosity and permeability of porous and fractured geological media decrease with the exploitation of formation fluids such as petroleum, natural gas, or ground water. This may result in ground subsidence and a decrease of recovery of petroleum, natural gas, or ground water. Therefore, an evaluation of the behavior of permeability and porosity under formation fluid pressure changes is important to petroleum and ground water industries. This study for the first time establishes a method, which allows for the measurement of permeability, porosity, and pore size distribution of cores simultaneously. From the observation of the pore size distribution by low-field nuclear magnetic resonance (NMR) relaxation time spectrometry the mechanisms of pressure-dependent porosity and permeability change can be derived. This information cannot be obtained by traditional methods. As the large-size pores or fractures contribute significantly to the permeability, their change consequently leads to a large permeability change. The contribution of fractures to permeability is even larger than that of pores. Thus, the permeability of the cores with fractures decreased more than that of cores without fractures during formation pressure decrease. Furthermore, it did not recover during formation pressure increase. It can be concluded that in fractures, mainly plastic deformation takes place, while matrix pores mainly show elastic deformation. Therefore, it is very important to keep an appropriate formation fluid pressure during the exploitation of ground water and petroleum in a fractured formation.

  10. Wave impact on a deck or baffle

    NASA Astrophysics Data System (ADS)

    Md Noar, Nor Aida Zuraimi; Greenhow, Martin

    2015-02-01

    Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.

  11. Turbine Vane External Heat Transfer. Volume 2. Numerical Solutions of the Navier-stokes Equations for Two- and Three-dimensional Turbine Cascades with Heat Transfer

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Weinberg, B. C.; Shamroth, S. J.; Mcdonald, H.

    1985-01-01

    The application of the time-dependent ensemble-averaged Navier-Stokes equations to transonic turbine cascade flow fields was examined. In particular, efforts focused on an assessment of the procedure in conjunction with a suitable turbulence model to calculate steady turbine flow fields using an O-type coordinate system. Three cascade configurations were considered. Comparisons were made between the predicted and measured surface pressures and heat transfer distributions wherever available. In general, the pressure predictions were in good agreement with the data. Heat transfer calculations also showed good agreement when an empirical transition model was used. However, further work in the development of laminar-turbulent transitional models is indicated. The calculations showed most of the known features associated with turbine cascade flow fields. These results indicate the ability of the Navier-Stokes analysis to predict, in reasonable amounts of computation time, the surface pressure distribution, heat transfer rates, and viscous flow development for turbine cascades operating at realistic conditions.

  12. Transition mechanism of sH to filled-ice Ih structure of methane hydrate under fixed pressure condition

    NASA Astrophysics Data System (ADS)

    Kadobayashi, H.; Hirai, H.; Ohfuji, H.; Kojima, Y.; Ohishi, Y.; Hirao, N.; Ohtake, M.; Yamamoto, Y.

    2017-10-01

    The phase transition mechanism of methane hydrate from sH to filled-ice Ih structure was examined using a combination of time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device (CCD) camera observation under fixed pressure conditions. Prior to time-resolved Raman experiments, the typical C-H vibration modes and their pressure dependence of three methane hydrate structures, fluid methane and solid methane were measured using Raman spectroscopy to distinguish the phase transitions of methane hydrates from decomposition to solid methane and ice VI or VII. Experimental results by XRD, Raman spectroscopy and CCD camera observation revealed that the structural transition of sH to filled-ice Ih occurs through a collapse of the sH framework followed by the release of fluid methane that is then gradually incorporated into the filled-ice Ih to reconstruct its structure. These observations suggest that the phase transition of sH to filled-ice Ih takes place by a typical reconstructive mechanism.

  13. Mechanisms of anomalous compressibility of vitreous silica

    NASA Astrophysics Data System (ADS)

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Sen, Sabyasachi

    2014-11-01

    The anomalous compressibility of vitreous silica has been known for nearly a century, but the mechanisms responsible for it remain poorly understood. Using GHz-ultrasonic interferometry, we measured longitudinal and transverse acoustic wave travel times at pressures up to 5 GPa in vitreous silica with fictive temperatures (Tf) ranging between 985 °C and 1500 °C. The maximum in ultrasonic wave travel times-corresponding to a minimum in acoustic velocities-shifts to higher pressure with increasing Tf for both acoustic waves, with complete reversibility below 5 GPa. These relationships reflect polyamorphism in the supercooled liquid, which results in a glassy state possessing different proportions of domains of high- and low-density amorphous phases (HDA and LDA, respectively). The relative proportion of HDA and LDA is set at Tf and remains fixed on compression below the permanent densification pressure. The bulk material exhibits compression behavior systematically dependent on synthesis conditions that arise from the presence of floppy modes in a mixture of HDA and LDA domains.

  14. Use of Narrative Nursing Records for Nursing Research

    PubMed Central

    Park, Hyeoun-Ae; Cho, InSook; Ahn, Hee-Jung

    2012-01-01

    To explore the usefulness of narrative nursing records documented using a standardized terminology-based electronic nursing records system, we conducted three different studies on (1) the gaps between the required nursing care time and the actual nursing care time, (2) the practice variations in pressure ulcer care, and (3) the surveillance of adverse drug events. The narrative nursing notes, documented at the point of care using standardized nursing statements, were extracted from the clinical data repository at a teaching hospital in Korea and analyzed. Our findings were: the pediatric and geriatric units showed relatively high staffing needs; overall incidence rate of pressure ulcer among the intensive-care patients was 15.0% and the nursing interventions provided for pressure-ulcer care varied depending on nursing units; and at least one adverse drug event was noted in 53.0% of the cancer patients who were treated with cisplatin. A standardized nursing terminology-based electronic nursing record system allowed us to explore answers to different various research questions. PMID:24199111

  15. Effect of anode shape on correlation of neutron emission with pinch energy for a 2.7 kJ Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, S. S.; Murtaza, Ghulam; Zakaullah, M.

    Correlation of neutron emission with pinch energy for a Mather-type plasma focus energized by a single capacitor 12.5 muF, 21 kV (2.7 kJ) is investigated by employing time resolved and time integrated detectors for two different anode shapes. The maximum average neutron yield of about 1.3x10{sup 8} per shot is recorded with cylindrical anode, that increases to 1.6x10{sup 8} per shot for tapered anode. At optimum pressure the input energy converted to pinch energy is about 24% for cylindrical anode as compared to 36% for tapered anode. It is found that the tapered anode enhances neutron flux about 25+-5% bothmore » in axial and radial directions and also broadens the pressure range for neutron emission as well as pinch energy. The neutron yield and optimum gas filling pressures are found strongly dependent on the anode shape.« less

  16. Dimensioning Principles in Potash and Salt: Stability and Integrity

    NASA Astrophysics Data System (ADS)

    Minkley, W.; Mühlbauer, J.; Lüdeling, C.

    2016-11-01

    The paper describes the principal geomechanical approaches to mine dimensioning in salt and potash mining, focusing on stability of the mining system and integrity of the hydraulic barrier. Several common dimensioning are subjected to a comparative analysis. We identify geomechanical discontinuum models as essential physical ingredients for examining the collapse of working fields in potash mining. The basic mechanisms rely on the softening behaviour of salt rocks and the interfaces. A visco-elasto-plastic material model with strain softening, dilatancy and creep describes the time-dependent softening behaviour of the salt pillars, while a shear model with velocity-dependent adhesive friction with shear displacement-dependent softening is used for bedding planes and discontinuities. Pillar stability critically depends on the shear conditions of the bedding planes to the overlying and underlying beds, which provide the necessary confining pressure for the pillar core, but can fail dynamically, leading to large-scale field collapses. We further discuss the integrity conditions for the hydraulic barrier, most notably the minimal stress criterion, the violation of which leads to pressure-driven percolation as the mechanism of fluid transport and hence barrier failure. We present a number of examples where violation of the minimal stress criterion has led to mine floodings.

  17. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures

    DOE PAGES

    Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...

    2013-03-12

    The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H 2/CO/O 2/N 2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistrymore » for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H 2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H 2 + HO˙ 2 ↔ H˙+H 2O 2 followed by H 2O 2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H 2+HO˙ 2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. As a result, a rate constant for this reaction is recommended based on available literature values and on our mechanism validation.« less

  18. Direct means of obtaining CAVI0-a corrected cardio-ankle vascular stiffness index (CAVI)-from conventional CAVI measurements or their underlying variables.

    PubMed

    Spronck, Bart; Mestanik, Michal; Tonhajzerova, Ingrid; Jurko, Alexander; Jurko, Tomas; Avolio, Alberto P; Butlin, Mark

    2017-09-21

    Cardio-ankle vascular index (CAVI) as measured using the VaSera device (CAVI VS , Fukuda Denshi), has been proposed as a stiffness index that does not depend on blood pressure. We have recently shown theoretically that CAVI VS still exhibits blood pressure dependence, and proposed the corrected index CAVI 0 . The present study aims to establish a method of calculating [Formula: see text] either (i) from VaSera-reported values of cardiac-brachial and brachial-ankle pulse transit times (tb and tba, respectively) and blood pressure, or (ii) directly from CAVI VS . To derive this method, the relationship among CAVI VS and its scale constants a and b, tb, tba, and blood pressure has to be established. From data of 497 subjects, eight candidate CAVI parameters were defined and calculated, containing all combinations of left or right tb/tba/blood pressure. Candidates were evaluated through correlation with measured left and right CAVI VS . Correlations were compared statistically. Once the correct candidates were determined, two constants (a and b) required for converting CAVI VS to CAVI 0 were estimated through linear regression. Left and right CAVI VS are calculated using left and right tba; however, both left and right CAVI VS are calculated using right brachial blood pressures and right tb. Constants a and b for conversion of CAVI VS to CAVI 0 were estimated to be 0.842 [0.836 0.848] and 0.753 [0.721 0.786] (mean [95%CI]), respectively. Equations to estimate CAVI 0 from CAVI VS , and to directly calculate CAVI 0 from the VaSera output are provided in this paper, as well as in a directly usable spreadsheet supplement. Our results permit straightforward calculation of [Formula: see text] during a study, as well as retrospective estimation of [Formula: see text] from CAVI VS in already published studies or where the original transit time values are not available, paving the way for thorough comparison of CAVI 0 to CAVI VS in clinical and research settings. Novelty and significance Cardio-ankle vascular index (CAVI) as measured using the VaSera device (CAVI VS , Fukuda Denshi), has been proposed as a blood pressure-independent arterial stiffness index. We have recently shown theoretically that CAVI VS still exhibits pressure dependence, and proposed a corrected index, CAVI 0 . In the present study, we derived equations to directly obtain CAVI 0 using data from the VaSera device. Our results permit straightforward calculation of [Formula: see text] during a study, as well as retrospective estimation of [Formula: see text] from CAVI VS in already published studies, paving the way for thorough comparison of CAVI 0 to CAVI VS in clinical and research settings.

  19. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  20. Cellular and molecular responses of Neurospora crassa to non-thermal plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Park, Gyungsoon; Ryu, Young H.; Hong, Young J.; Choi, Eun H.; Uhm, Han S.

    2012-02-01

    Filamentous fungi have been rarely explored in terms of plasma treatments. This letter presents the cellular and molecular responses of the filamentous fungus Neurospora crassa to an argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

Top