Sample records for time dependent problem

  1. Spectral methods for time dependent problems

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1990-01-01

    Spectral approximations are reviewed for time dependent problems. Some basic ingredients from the spectral Fourier and Chebyshev approximations theory are discussed. A brief survey was made of hyperbolic and parabolic time dependent problems which are dealt with by both the energy method and the related Fourier analysis. The ideas presented above are combined in the study of accuracy stability and convergence of the spectral Fourier approximation to time dependent problems.

  2. Optimal routing of coordinated aircraft to Identify moving surface contacts

    DTIC Science & Technology

    2017-06-01

    Time TAO Tactical Action Officer TSP Traveling Salesman Problem TSPTW TSP with Time Windows UAV unmanned aerial vehicle VRP Vehicle Routing...Orienteering Problem (OP), while the ORCA TI formulation follows the structure of a time dependent Traveling Salesman Problem (TSP), or a time dependent...Fox, Kenneth R., Bezalel Gavish, and Stephen C. Graves. 1980. “An n- Constraint Formulation of the ( Time Dependent) Traveling Salesman Problem

  3. Single Machine Scheduling and Due Date Assignment with Past-Sequence-Dependent Setup Time and Position-Dependent Processing Time

    PubMed Central

    Zhao, Chuan-Li; Hsu, Hua-Feng

    2014-01-01

    This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n 4) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n 3) time by providing a dynamic programming algorithm. PMID:25258727

  4. Single machine scheduling and due date assignment with past-sequence-dependent setup time and position-dependent processing time.

    PubMed

    Zhao, Chuan-Li; Hsu, Chou-Jung; Hsu, Hua-Feng

    2014-01-01

    This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n(4)) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n(3)) time by providing a dynamic programming algorithm.

  5. A Finite Element Projection Method for the Solution of Particle Transport Problems with Anisotropic Scattering.

    DTIC Science & Technology

    1984-07-01

    piecewise constant energy dependence. This is a seven-dimensional problem with time dependence, three spatial and two angular or directional variables and...in extending the computer implementation of the method to time and energy dependent problems, and to solving and validating this technique on a...problems they have severe limitations. The Monte Carlo method, usually requires the use of many hours of expensive computer time , and for deep

  6. Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.

    2018-03-01

    A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.

  7. Approximation and Numerical Analysis of Nonlinear Equations of Evolution.

    DTIC Science & Technology

    1980-01-31

    dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example

  8. An algorithm for a single machine scheduling problem with sequence dependent setup times and scheduling windows

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1975-01-01

    An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.

  9. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem.

    PubMed

    Schilde, M; Doerner, K F; Hartl, R F

    2014-10-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches.

  10. Time Dependent Heterogeneous Vehicle Routing Problem for Catering Service Delivery Problem

    NASA Astrophysics Data System (ADS)

    Azis, Zainal; Mawengkang, Herman

    2017-09-01

    The heterogeneous vehicle routing problem (HVRP) is a variant of vehicle routing problem (VRP) which describes various types of vehicles with different capacity to serve a set of customers with known geographical locations. This paper considers the optimal service deliveries of meals of a catering company located in Medan City, Indonesia. Due to the road condition as well as traffic, it is necessary for the company to use different type of vehicle to fulfill customers demand in time. The HVRP incorporates time dependency of travel times on the particular time of the day. The objective is to minimize the sum of the costs of travelling and elapsed time over the planning horizon. The problem can be modeled as a linear mixed integer program and we address a feasible neighbourhood search approach to solve the problem.

  11. Spectral methods for time dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1983-01-01

    The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.

  12. Choice of Variables and Preconditioning for Time Dependent Problems

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Vatsa, Verr N.

    2003-01-01

    We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.

  13. Landau problem with time dependent mass in time dependent electric and harmonic background fields

    NASA Astrophysics Data System (ADS)

    Lawson, Latévi M.; Avossevou, Gabriel Y. H.

    2018-04-01

    The spectrum of a Hamiltonian describing the dynamics of a Landau particle with time-dependent mass and frequency undergoing the influence of a uniform time-dependent electric field is obtained. The configuration space wave function of the model is expressed in terms of the generalised Laguerre polynomials. To diagonalize the time-dependent Hamiltonian, we employ the Lewis-Riesenfeld method of invariants. To this end, we introduce a unitary transformation in the framework of the algebraic formalism to construct the invariant operator of the system and then to obtain the exact solution of the Hamiltonian. We recover the solutions of the ordinary Landau problem in the absence of the electric and harmonic fields for a constant particle mass.

  14. Single machine total completion time minimization scheduling with a time-dependent learning effect and deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping

    2012-05-01

    In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.

  15. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  16. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem

    PubMed Central

    Schilde, M.; Doerner, K.F.; Hartl, R.F.

    2014-01-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013

  17. What Happens After Treatment? Long-Term Effects of Continued Substance Use, Psychiatric Problems and Help-Seeking on Social Status of Alcohol-Dependent Individuals.

    PubMed

    Karriker-Jaffe, Katherine J; Witbrodt, Jane; Subbaraman, Meenakshi S; Kaskutas, Lee Ann

    2018-03-30

    We examined whether alcohol-dependent individuals with sustained substance use or psychiatric problems after completing treatment were more likely to experience low social status and whether continued help-seeking would improve outcomes. Ongoing alcohol, drug and psychiatric problems after completing treatment were associated with increased odds of low social status (unemployment, unstable housing and/or living in high-poverty neighborhood) over 7 years. The impact of drug problems declined over time, and there were small, delayed benefits of AA attendance on social status. Alcohol-dependent individuals sampled from public and private treatment programs (N = 491; 62% male) in Northern California were interviewed at treatment entry and 1, 3, 5 and 7 years later. Random effects models tested relationships between problem severity (alcohol, drug and psychiatric problems) and help-seeking (attending specialty alcohol/drug treatment and Alcoholics Anonymous, AA) with low social status (unemployment, unstable housing and/or living in a high-poverty neighborhood) over time. The proportion of participants experiencing none of the indicators of low social status increased between baseline and the 1-year follow-up and remained stable thereafter. Higher alcohol problem scores and having any drug and/or psychiatric problems in the years after treatment were associated with increased odds of low social status over time. An interaction of drug problems with time indicated the impact of drug problems on social status declined over the 7-year period. Both treatment-seeking and AA attendance were associated with increased odds of low social status, although lagged models suggested there were small, delayed benefits of AA attendance on improved social status over time. Specialty addiction treatment alone was not sufficient to have positive long-term impacts on social status and social integration of most alcohol-dependent people.

  18. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  20. Models of resource allocation optimization when solving the control problems in organizational systems

    NASA Astrophysics Data System (ADS)

    Menshikh, V.; Samorokovskiy, A.; Avsentev, O.

    2018-03-01

    The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.

  1. Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate

    NASA Astrophysics Data System (ADS)

    Ram, Paras; Joshi, Vimal Kumar; Sharma, Kushal; Walia, Mittu; Yadav, Nisha

    2016-01-01

    An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1]) and turbine rotor systems (Owen and Rogers [2]).

  2. Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems

    NASA Technical Reports Server (NTRS)

    Risch, Tim; Kostyk, Chris

    2016-01-01

    Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.

  3. Persistent cannabis dependence and alcohol dependence represent risks for midlife economic and social problems: A longitudinal cohort study

    PubMed Central

    Cerdá, Magdalena; Moffitt, Terrie E.; Meier, Madeline H.; Harrington, HonaLee; Houts, Renate; Ramrakha, Sandhya; Hogan, Sean; Poulton, Richie; Caspi, Avshalom

    2016-01-01

    With the increasing legalization of cannabis, understanding the consequences of cannabis use is particularly timely. We examined the association between cannabis use and dependence, prospectively assessed between ages 18–38, and economic and social problems at age 38. We studied participants in the Dunedin Longitudinal Study, a cohort (n=1,037) followed from birth to age 38. Study members with regular cannabis use and persistent dependence experienced downward socioeconomic mobility, more financial difficulties, workplace problems, and relationship conflict in early midlife. Cannabis dependence was not linked to traffic-related convictions. Associations were not explained by socioeconomic adversity, childhood psychopathology, achievement orientation, or family structure; cannabis-related criminal convictions; early onset of cannabis dependence; or comorbid substance dependence. Cannabis dependence was associated with more financial difficulties than alcohol dependence; no difference was found in risks for other economic or social problems. Cannabis dependence is not associated with fewer harmful economic and social problems than alcohol dependence. PMID:28008372

  4. Analysis of temporal decay of diffuse broadband sound fields in enclosures by decomposition in powers of an absorption parameter

    NASA Astrophysics Data System (ADS)

    Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben

    2005-09-01

    An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.

  5. A fully Sinc-Galerkin method for Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Lund, J.

    1990-01-01

    A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.

  6. Nicotine Dependence and Alcohol Problems from Adolescence to Young Adulthood.

    PubMed

    Dierker, Lisa; Selya, Arielle; Rose, Jennifer; Hedeker, Donald; Mermelstein, Robin

    Despite the highly replicated relationship between symptoms associated with both alcohol and nicotine, little is known about this association across time and exposure to both drinking and smoking. In the present study, we evaluate if problems associated with alcohol use are related to emerging nicotine dependence symptoms and whether this relationship varies from adolescence to young adulthood, after accounting for both alcohol and nicotine exposure. The sample was drawn from the Social and Emotional Contexts of Adolescent Smoking Patterns Study which measured smoking, nicotine dependence, alcohol use and alcohol related problems over 6 assessment waves spanning 6 years. Analyses were based on repeated assessment of 864 participants reporting some smoking and drinking 30 days prior to individual assessment waves. Mixed-effects regression models were estimated to examine potential time, smoking and/or alcohol varying effects in the association between alcohol problems and nicotine dependence. Inter-individual differences in mean levels of alcohol problems and within subject changes in alcohol problems from adolescence to young adulthood were each significantly associated with nicotine dependence symptoms over and above levels of smoking and drinking behaviour. This association was consistent across both time and increasing levels of smoking and drinking. Alcohol related problems are a consistent risk factor for nicotine dependence over and above measures of drinking and smoking and this association can be demonstrated from the earliest experiences with smoking in adolescents, through the establishment of more regular smoking patterns across the transition to young adulthood. These findings add to accumulating evidence suggesting that smoking and drinking may be related through a mechanism that cannot be wholly accounted for by exposure to either substance.

  7. Field quantization and squeezed states generation in resonators with time-dependent parameters

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Klimov, A. B.; Nikonov, D. E.

    1992-01-01

    The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources.

  8. Economic evaluation of interventions for problem drinking and alcohol dependence: cost per QALY estimates.

    PubMed

    Mortimer, Duncan; Segal, Leonie

    2005-01-01

    To compare the performance of competing and complementary interventions for prevention or treatment of problem drinking and alcohol dependence. To provide an example of how health maximising decision-makers might use performance measures such as cost per quality adjusted life year (QALY) league tables to formulate an optimal package of interventions for problem drinking and alcohol dependence. A time-dependent state-transition model was used to estimate QALYs gained per person for each intervention as compared to usual care in the relevant target population. Cost per QALY estimates for each of the interventions fall below any putative funding threshold for developed economies. Interventions for problem drinkers appear to offer better value than interventions targeted at those with a history of severe physical dependence. Formularies such as Australia's Medicare should include a comprehensive package of interventions for problem drinking and alcohol dependence.

  9. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    PubMed

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  10. Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2009-01-01

    The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.

  11. ALCHEMIC: Advanced time-dependent chemical kinetics

    NASA Astrophysics Data System (ADS)

    Semenov, Dmitry A.

    2017-08-01

    ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.

  12. Adjoint-Based Methodology for Time-Dependent Optimization

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2008-01-01

    This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.

  13. Domain decomposition in time for PDE-constrained optimization

    DOE PAGES

    Barker, Andrew T.; Stoll, Martin

    2015-08-28

    Here, PDE-constrained optimization problems have a wide range of applications, but they lead to very large and ill-conditioned linear systems, especially if the problems are time dependent. In this paper we outline an approach for dealing with such problems by decomposing them in time and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel computers to deal with the very large linear systems. We then illustrate the performance of our method on a variety of problems.

  14. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D S

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  15. Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature

    NASA Astrophysics Data System (ADS)

    Lotfy, K.; Sarkar, N.

    2017-11-01

    In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.

  16. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

    NASA Astrophysics Data System (ADS)

    Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele

    2018-04-01

    We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

  17. Time-dependent wave splitting and source separation

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nataf, Frédéric; Assous, Franck

    2017-02-01

    Starting from classical absorbing boundary conditions, we propose a method for the separation of time-dependent scattered wave fields due to multiple sources or obstacles. In contrast to previous techniques, our method is local in space and time, deterministic, and avoids a priori assumptions on the frequency spectrum of the signal. Numerical examples in two space dimensions illustrate the usefulness of wave splitting for time-dependent scattering problems.

  18. Numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis - Stanford Univ., Mar. 1989

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1990-01-01

    The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.

  19. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    NASA Astrophysics Data System (ADS)

    Muruganandam, P.; Adhikari, S. K.

    2009-10-01

    Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

  20. New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

    NASA Astrophysics Data System (ADS)

    Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid

    2017-09-01

    In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.

  1. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    DTIC Science & Technology

    2014-03-01

    accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re

  2. A Well-Tempered Hybrid Method for Solving Challenging Time-Dependent Density Functional Theory (TDDFT) Systems.

    PubMed

    Kasper, Joseph M; Williams-Young, David B; Vecharynski, Eugene; Yang, Chao; Li, Xiaosong

    2018-04-10

    The time-dependent Hartree-Fock (TDHF) and time-dependent density functional theory (TDDFT) equations allow one to probe electronic resonances of a system quickly and inexpensively. However, the iterative solution of the eigenvalue problem can be challenging or impossible to converge, using standard methods such as the Davidson algorithm for spectrally dense regions in the interior of the spectrum, as are common in X-ray absorption spectroscopy (XAS). More robust solvers, such as the generalized preconditioned locally harmonic residual (GPLHR) method, can alleviate this problem, but at the expense of higher average computational cost. A hybrid method is proposed which adapts to the problem in order to maximize computational performance while providing the superior convergence of GPLHR. In addition, a modification to the GPLHR algorithm is proposed to adaptively choose the shift parameter to enforce a convergence of states above a predefined energy threshold.

  3. Very Efficient High-order Hyperbolic Schemes for Time-dependent Advection Diffusion Problems: Third-, Fourth-, and Sixth-order

    DTIC Science & Technology

    2014-07-07

    boundary condition (x ¼ 7p =2; j ¼ 2p; U ¼ 1; m ¼ 1) on N ¼ 10 uniform nodes (Dt ¼ 0:01.) Table 10 Unsteady linear advection–diffusion problem with periodic...500 3rd 55 2 4th 55 2 6th 55 2 1000 3rd 116 2 4th 116 2 6th 116 2 Table 11 Unsteady linear advection–diffusion problem with oscillatory BC (x ¼ 7p =2; a...dependent problem with oscillatory BC (x ¼ 7p =2; a ¼ 1.) using the third-order RD-GT scheme with the BDF3 time discretization. Number of nodes Dt (BDF3

  4. An unjustified benefit: immortal time bias in the analysis of time-dependent events.

    PubMed

    Gleiss, Andreas; Oberbauer, Rainer; Heinze, Georg

    2018-02-01

    Immortal time bias is a problem arising from methodologically wrong analyses of time-dependent events in survival analyses. We illustrate the problem by analysis of a kidney transplantation study. Following patients from transplantation to death, groups defined by the occurrence or nonoccurrence of graft failure during follow-up seemingly had equal overall mortality. Such naive analysis assumes that patients were assigned to the two groups at time of transplantation, which actually are a consequence of occurrence of a time-dependent event later during follow-up. We introduce landmark analysis as the method of choice to avoid immortal time bias. Landmark analysis splits the follow-up time at a common, prespecified time point, the so-called landmark. Groups are then defined by time-dependent events having occurred before the landmark, and outcome events are only considered if occurring after the landmark. Landmark analysis can be easily implemented with common statistical software. In our kidney transplantation example, landmark analyses with landmarks set at 30 and 60 months clearly identified graft failure as a risk factor for overall mortality. We give further typical examples from transplantation research and discuss strengths and limitations of landmark analysis and other methods to address immortal time bias such as Cox regression with time-dependent covariables. © 2017 Steunstichting ESOT.

  5. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.

    PubMed

    Hesselmann, Andreas; Görling, Andreas

    2011-01-21

    A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.

  6. Dependence of two-proton radioactivity on nuclear pairing models

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro

    2017-10-01

    Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.

  7. Development and Application of Compatible Discretizations of Maxwell's Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Koning, J; Rieben, R

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less

  8. On non-autonomous dynamical systems

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2015-04-01

    In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.

  9. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

    NASA Astrophysics Data System (ADS)

    Kifonidis, K.; Müller, E.

    2012-08-01

    Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a Courant number of nine thousand, even complete multigrid breakdown is observed. Local Fourier analysis indicates that the degradation of the convergence rate is associated with the coarse-grid correction algorithm. An implicit scheme for the Euler equations that makes use of the present method was, nevertheless, able to outperform a standard explicit scheme on a time-dependent problem with a Courant number of order 1000. Conclusions: For steady-state problems, the described approach enables the construction of parallelizable, efficient, and robust implicit hydrodynamics solvers. The applicability of the method to time-dependent problems is presently restricted to cases with moderately high Courant numbers. This is due to an insufficient coarse-grid correction of the employed multigrid algorithm for large time steps. Further research will be required to help us to understand and overcome the observed multigrid convergence difficulties for time-dependent problems.

  10. First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2014-01-01

    A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.

  11. Alcohol Dependence, Mortality, and Chronic Health Conditions in a Rural Population in Korea

    PubMed Central

    Noh, Samuel; Shin, Jongho; Ahn, Joung-Sook; Kim, Tae-Hui

    2008-01-01

    To determine the effects of excessive drinking and alcohol dependency on mortality and chronic health problems in a rural community in South Korea, this study represents a nested case-control study. In 1998, we conducted the Alcohol Dependence Survey (ADS), a population survey of a village in Korea. To measure the effects of alcohol on chronic health conditions and mortality over time, in 2004, we identified 290 adults from the ADS sample (N=1,058) for follow-up. Of those selected, 145 were adults who had alcohol problems, either alcohol dependence as assessed in the ADS by the Severity of Alcohol Dependence Questionnaire (N=59), or excessive drinking without dependency (N=86). Further 145 nondrinkers were identified, matching those with alcohol problems in age and sex. We revisited the village in 2004 and completed personal interviews with them. In multivariate logistic regressions, the rates of mortality and morbidity of chronic health conditions were three times greater for alcohol dependents compared with the rate for nondrinkers. Importantly, however, excessive drinking without dependency was not associated with the rates of either mortality or morbidity. Future investigations would benefit by attending more specifically to measures for alcohol dependence as well as measures for alcohol consumption. PMID:18303191

  12. Stabilization and control of distributed systems with time-dependent spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1990-01-01

    This paper considers the problem of the stabilization and control of distributed systems with time-dependent spatial domains. The evolution of the spatial domains with time is described by a finite-dimensional system of ordinary differential equations, while the distributed systems are described by first-order or second-order linear evolution equations defined on appropriate Hilbert spaces. First, results pertaining to the existence and uniqueness of solutions of the system equations are presented. Then, various optimal control and stabilization problems are considered. The paper concludes with some examples which illustrate the application of the main results.

  13. Solidification of a binary mixture

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1982-01-01

    The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.

  14. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    NASA Astrophysics Data System (ADS)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  15. Student Understanding of Time Dependence in Quantum Mechanics

    ERIC Educational Resources Information Center

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  16. Attention problems among children with a positive family history of alcohol abuse or dependence and controls. Prevalence and course for the period from preteen to early teen years.

    PubMed

    Barnow, Sven; Schuckit, Marc; Smith, Tom; Spitzer, Carsten; Freyberger, Harald-J

    2007-01-01

    This longitudinal study investigated the scope and course of attention problems over a period of time from preteen (ages 7-12 years) to early teen years (ages 13-17 years). We compared symptoms in subjects with and without a family history (FH) of alcohol abuse or dependence from among families without evidence of antisocial personality disorder. Evaluations of attention problems for the offspring were based on the Child Behavior Checklist and a validated semistructured interview carried out with the mother. The findings indicate no higher risk for attention problems and attention-deficit hyperactivity disorder (ADHD)-like symptoms in the children of families with an alcohol use disorder. Regarding the course of problems, the ADHD symptom count tended to decrease over time, especially for children without a FH of alcohol abuse or dependence. Further research will be needed to determine whether results can be replicated with families from different social strata and including subjects with the antisocial personality disorder.

  17. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    van Horssen, Wim T.; Wang, Yandong; Cao, Guohua

    2018-06-01

    In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.

  18. On convergence of solutions to variational-hemivariational inequalities

    NASA Astrophysics Data System (ADS)

    Zeng, Biao; Liu, Zhenhai; Migórski, Stanisław

    2018-06-01

    In this paper we investigate the convergence behavior of the solutions to the time-dependent variational-hemivariational inequalities with respect to the data. First, we give an existence and uniqueness result for the problem, and then, deliver a continuous dependence result when all the data are subjected to perturbations. A semipermeability problem is given to illustrate our main results.

  19. Exact Solutions to Time-dependent Mdps

    NASA Technical Reports Server (NTRS)

    Boyan, Justin A.; Littman, Michael L.

    2000-01-01

    We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  20. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  1. TRUMP; transient and steady state temperature distribution. [IBM360,370; CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, andmore » among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.IBM360,370;CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC); OS/360 (IBM360), OS/370 (IBM370), SCOPE 2.1.5 (CDC7600); As dimensioned, the program requires 400K bytes of storage on an IBM370 and 145,100 (octal) words on a CDC7600.« less

  2. Delay-distribution-dependent H∞ state estimation for delayed neural networks with (x,v)-dependent noises and fading channels.

    PubMed

    Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E

    2016-12-01

    This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. On regularization and error estimates for the backward heat conduction problem with time-dependent thermal diffusivity factor

    NASA Astrophysics Data System (ADS)

    Karimi, Milad; Moradlou, Fridoun; Hajipour, Mojtaba

    2018-10-01

    This paper is concerned with a backward heat conduction problem with time-dependent thermal diffusivity factor in an infinite "strip". This problem is drastically ill-posed which is caused by the amplified infinitely growth in the frequency components. A new regularization method based on the Meyer wavelet technique is developed to solve the considered problem. Using the Meyer wavelet technique, some new stable estimates are proposed in the Hölder and Logarithmic types which are optimal in the sense of given by Tautenhahn. The stability and convergence rate of the proposed regularization technique are proved. The good performance and the high-accuracy of this technique is demonstrated through various one and two dimensional examples. Numerical simulations and some comparative results are presented.

  4. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  5. Freight distribution problems in congested urban areas : fast and effective solution procedures to time-dependent vehicle routing problems

    DOT National Transportation Integrated Search

    2011-01-01

    Congestion is a common phenomenon in all medium to large cities of the world. Reliability of freight movement in urban areas is an important : issue to manufacturing or service companies whose operation is based in just-in-time approaches. These comp...

  6. A global time-dependent model of thunderstorm electricity. I - Mathematical properties of the physical and numerical models

    NASA Technical Reports Server (NTRS)

    Browning, G. L.; Tzur, I.; Roble, R. G.

    1987-01-01

    A time-dependent model is introduced that can be used to simulate the interaction of a thunderstorm with its global electrical environment. The model solves the continuity equation of the Maxwell current, which is assumed to be composed of the conduction, displacement, and source currents. Boundary conditions which can be used in conjunction with the continuity equation to form a well-posed initial-boundary value problem are determined. Properties of various components of solutions of the initial-boundary value problem are analytically determined. The results indicate that the problem has two time scales, one determined by the background electrical conductivity and the other by the time variation of the source function. A numerical method for obtaining quantitative results is introduced, and its properties are studied. Some simulation results on the evolution of the displacement and conduction currents during the electrification of a storm are presented.

  7. Feedback control for unsteady flow and its application to the stochastic Burgers equation

    NASA Technical Reports Server (NTRS)

    Choi, Haecheon; Temam, Roger; Moin, Parviz; Kim, John

    1993-01-01

    The study applies mathematical methods of control theory to the problem of control of fluid flow with the long-range objective of developing effective methods for the control of turbulent flows. Model problems are employed through the formalism and language of control theory to present the procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory. Methods of calculus of variations through the adjoint state and gradient algorithms are used to present a suboptimal control and feedback procedure for stationary and time-dependent problems. Two types of controls are investigated: distributed and boundary controls. Several cases of both controls are numerically simulated to investigate the performances of the control algorithm. Most cases considered show significant reductions of the costs to be minimized. The dependence of the control algorithm on the time-descretization method is discussed.

  8. Developments in boundary element methods - 2

    NASA Astrophysics Data System (ADS)

    Banerjee, P. K.; Shaw, R. P.

    This book is a continuation of the effort to demonstrate the power and versatility of boundary element methods which began in Volume 1 of this series. While Volume 1 was designed to introduce the reader to a selected range of problems in engineering for which the method has been shown to be efficient, the present volume has been restricted to time-dependent problems in engineering. Boundary element formulation for melting and solidification problems in considered along with transient flow through porous elastic media, applications of boundary element methods to problems of water waves, and problems of general viscous flow. Attention is given to time-dependent inelastic deformation of metals by boundary element methods, the determination of eigenvalues by boundary element methods, transient stress analysis of tunnels and caverns of arbitrary shape due to traveling waves, an analysis of hydrodynamic loads by boundary element methods, and acoustic emissions from submerged structures.

  9. Low adolescent self-esteem leads to multiple interpersonal problems: a test a social-adaptation theory.

    PubMed

    Kahle, L R; Kulka, R A; Klingel, D M

    1980-09-01

    This article reports the results of a study that annually monitored the self-esteem and interpersonal problems of over 100 boys during their sophomore, junior, and senior years of high school. Cross-lagged panel correlation differences show that low self-esteem leads to interpersonal problems in all three time lags when multiple interpersonal problems constitute the dependent variable but not when single interpersonal problem criteria constitute the dependent variable. These results are interpreted as supporting social-adaptation theory rather than self-perception theory. Implications for the conceptual status of personality variables as causal antecedents and for the assessment of individual differences are discussed.

  10. Finite element procedures for time-dependent convection-diffusion-reaction systems

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Park, Y. J.; Deans, H. A.

    1988-01-01

    New finite element procedures based on the streamline-upwind/Petrov-Galerkin formulations are developed for time-dependent convection-diffusion-reaction equations. These procedures minimize spurious oscillations for convection-dominated and reaction-dominated problems. The results obtained for representative numerical examples are accurate with minimal oscillations. As a special application problem, the single-well chemical tracer test (a procedure for measuring oil remaining in a depleted field) is simulated numerically. The results show the importance of temperature effects on the interpreted value of residual oil saturation from such tests.

  11. Student understanding of time dependence in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  12. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.

  13. Optimized effective potential in real time: Problems and prospects in time-dependent density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundt, Michael; Kuemmel, Stephan

    2006-08-15

    The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less

  14. Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.

    2017-06-01

    The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.

  15. Changes in psychiatric symptoms among persons with methamphetamine dependence predicts changes in severity of drug problems but not frequency of use.

    PubMed

    Polcin, Douglas L; Korcha, Rachael; Bond, Jason; Galloway, Gantt; Nayak, Madhabika

    2016-01-01

    Few studies have examined how changes in psychiatric symptoms over time are associated with changes in drug use and severity of drug problems. No studies have examined these relationships among methamphetamine (MA)-dependent persons receiving motivational interviewing within the context of standard outpatient treatment. Two hundred seventeen individuals with MA dependence were randomly assigned to a standard single session of motivational interviewing (MI) or an intensive 9-session model of MI. Both groups received standard outpatient group treatment. The Addiction Severity Index (ASI) and timeline follow-back (TLFB) for MA use were administered at treatment entry and 2-, 4-, and 6-month follow-ups. Changes in ASI psychiatric severity between baseline and 2 months predicted changes in ASI drug severity during the same time period, but not changes on measures of MA use. Item analysis of the ASI drug scale showed that psychiatric severity predicted how troubled or bothered participants were by their drug us, how important they felt it was for them to get treatment, and the number of days they experienced drug problems. However, it did not predict the number days they used drugs in the past 30 days. These associations did not differ between study conditions, and they persisted when psychiatric severity and outcomes were compared across 4- and 6-month time periods. Results are among the first to track how changes in psychiatric severity over time are associated with changes in MA use and severity of drug problems. Treatment efforts targeting reduction of psychiatric symptoms among MA-dependent persons might be helpful in reducing the level of distress and problems associated with MA use but not how often it is used. There is a need for additional research describing the circumstances under which the experiences and perceptions of drug-related problems diverge from frequency of consumption.

  16. Highly Parallel Alternating Directions Algorithm for Time Dependent Problems

    NASA Astrophysics Data System (ADS)

    Ganzha, M.; Georgiev, K.; Lirkov, I.; Margenov, S.; Paprzycki, M.

    2011-11-01

    In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm induced by the direction splitting. The scheme used in the algorithm is composed of two parts: (i) velocity prediction, and (ii) pressure correction. This is a Crank-Nicolson-type two-stage time integration scheme for two and three dimensional parabolic problems in which the second-order derivative, with respect to each space variable, is treated implicitly while the other variable is made explicit at each time sub-step. In order to achieve a good parallel performance the solution of the Poison problem for the pressure correction is replaced by solving a sequence of one-dimensional second order elliptic boundary value problems in each spatial direction. The parallel code is implemented using the standard MPI functions and tested on two modern parallel computer systems. The performed numerical tests demonstrate good level of parallel efficiency and scalability of the studied direction-splitting-based algorithm.

  17. Applications of NASTRAN to nuclear problems

    NASA Technical Reports Server (NTRS)

    Spreeuw, E.

    1972-01-01

    The extent to which suitable solutions may be obtained for one physics problem and two engineering type problems is traced. NASTRAN appears to be a practical tool to solve one-group steady-state neutron diffusion equations. Transient diffusion analysis may be performed after new levels that allow time-dependent temperature calculations are developed. NASTRAN piecewise linear anlaysis may be applied to solve those plasticity problems for which a smooth stress-strain curve can be used to describe the nonlinear material behavior. The accuracy decreases when sharp transitions in the stress-strain relations are involved. Improved NASTRAN usefulness will be obtained when nonlinear material capabilities are extended to axisymmetric elements and to include provisions for time-dependent material properties and creep analysis. Rigid formats 3 and 5 proved to be very convenient for the buckling and normal-mode analysis of a nuclear fuel element.

  18. Single-machine group scheduling problems with deteriorating and learning effect

    NASA Astrophysics Data System (ADS)

    Xingong, Zhang; Yong, Wang; Shikun, Bai

    2016-07-01

    The concepts of deteriorating jobs and learning effects have been individually studied in many scheduling problems. However, most studies considering the deteriorating and learning effects ignore the fact that production efficiency can be increased by grouping various parts and products with similar designs and/or production processes. This phenomenon is known as 'group technology' in the literature. In this paper, a new group scheduling model with deteriorating and learning effects is proposed, where learning effect depends not only on job position, but also on the position of the corresponding job group; deteriorating effect depends on its starting time of the job. This paper shows that the makespan and the total completion time problems remain polynomial optimal solvable under the proposed model. In addition, a polynomial optimal solution is also presented to minimise the maximum lateness problem under certain agreeable restriction.

  19. Parametric Study of a YAV-8B Harrier in Ground Effect Using Time-Dependent Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Shishir, Pandya; Chaderjian, Neal; Ahmad, Jsaim; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Flow simulations using the time-dependent Navier-Stokes equations remain a challenge for several reasons. Principal among them are the difficulty to accurately model complex flows, and the time needed to perform the computations. A parametric study of such complex problems is not considered practical due to the large cost associated with computing many time-dependent solutions. The computation time for each solution must be reduced in order to make a parametric study possible. With successful reduction of computation time, the issue of accuracy, and appropriateness of turbulence models will become more tractable.

  20. Effect of a Starting Model on the Solution of a Travel Time Seismic Tomography Problem

    NASA Astrophysics Data System (ADS)

    Yanovskaya, T. B.; Medvedev, S. V.; Gobarenko, V. S.

    2018-03-01

    In the problems of three-dimensional (3D) travel time seismic tomography where the data are travel times of diving waves and the starting model is a system of plane layers where the velocity is a function of depth alone, the solution turns out to strongly depend on the selection of the starting model. This is due to the fact that in the different starting models, the rays between the same points can intersect different layers, which makes the tomography problem fundamentally nonlinear. This effect is demonstrated by the model example. Based on the same example, it is shown how the starting model should be selected to ensure a solution close to the true velocity distribution. The starting model (the average dependence of the seismic velocity on depth) should be determined by the method of successive iterations at each step of which the horizontal velocity variations in the layers are determined by solving the two-dimensional tomography problem. An example illustrating the application of this technique to the P-wave travel time data in the region of the Black Sea basin is presented.

  1. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  2. The Importance of Contexts in Strategies of Environmental Organizations with Regard to Climate Change

    PubMed

    Pleune

    1997-09-01

    / The purpose of the study was to investigate the extent to which strategies of environmental organizations depend on contexts. I examined this dependence by analyzing the strategies of five environmental organizations in the Netherlands with regard to climate change. These strategies were investigated over time and compared with the strategies these organizations had used in relation to ozone depletion and acidification. The results indicate that several of the organizations changed their strategies with respect to climate change over time. Furthermore, different strategies were used simultaneously in relation to the three problems. The findings suggest that strategies concerning climate change were to a considerable extent determined by the dominant framing of the problem in society. This framing was defined mainly by actors other than environmental organizations. The initial framing of climate change as a CO2 problem, which brought the issue into the energy debate, as well as the more general definition of the problem in the late 1980s as a greenhouse problem, were very important for determining the strategies of the organizations. It can be concluded that strategies of Dutch environmental organizations with regard to climate change were strongly dependent on the context.KEY WORDS: Environmental organization; Strategy; Climate change; Man-nature relationship; Problem definition; Context

  3. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  4. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  5. Sell in May and Go Away? Learning and Risk Taking in Nonmonotonic Decision Problems

    ERIC Educational Resources Information Center

    Frey, Renato; Rieskamp, Jörg; Hertwig, Ralph

    2015-01-01

    In nonmonotonic decision problems, the magnitude of outcomes can both increase and decrease over time depending on the state of the decision problem. These increases and decreases may occur repeatedly and result in a variety of possible outcome distributions. In many previously investigated sequential decision problems, in contrast, outcomes (or…

  6. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier–Stokes equations with vacuum

    NASA Astrophysics Data System (ADS)

    Lü, Boqiang; Shi, Xiaoding; Zhong, Xin

    2018-06-01

    We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.

  7. Time-dependent perturbation of a two-state quantum mechanical system

    NASA Technical Reports Server (NTRS)

    Dion, D. R.

    1974-01-01

    A two- (nondegenerate) level quantum system interacting with a classical monochromatic radiation field is described. The existing work on this problem is reviewed and some novel aspects of the problems are presented.

  8. A Novel Connectionist Network for Solving Long Time-Lag Prediction Tasks

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; MacNish, Cara

    Traditional Recurrent Neural Networks (RNNs) perform poorly on learning tasks involving long time-lag dependencies. More recent approaches such as LSTM and its variants significantly improve on RNNs ability to learn this type of problem. We present an alternative approach to encoding temporal dependencies that associates temporal features with nodes rather than state values, where the nodes explicitly encode dependencies over variable time delays. We show promising results comparing the network's performance to LSTM variants on an extended Reber grammar task.

  9. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  10. On optimal control of linear systems in the presence of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1976-01-01

    This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.

  11. Segmented-memory recurrent neural networks.

    PubMed

    Chen, Jinmiao; Chaudhari, Narendra S

    2009-08-01

    Conventional recurrent neural networks (RNNs) have difficulties in learning long-term dependencies. To tackle this problem, we propose an architecture called segmented-memory recurrent neural network (SMRNN). A symbolic sequence is broken into segments and then presented as inputs to the SMRNN one symbol per cycle. The SMRNN uses separate internal states to store symbol-level context, as well as segment-level context. The symbol-level context is updated for each symbol presented for input. The segment-level context is updated after each segment. The SMRNN is trained using an extended real-time recurrent learning algorithm. We test the performance of SMRNN on the information latching problem, the "two-sequence problem" and the problem of protein secondary structure (PSS) prediction. Our implementation results indicate that SMRNN performs better on long-term dependency problems than conventional RNNs. Besides, we also theoretically analyze how the segmented memory of SMRNN helps learning long-term temporal dependencies and study the impact of the segment length.

  12. Getting stuck in the blues: persistence of mental health problems in Australia.

    PubMed

    Roy, John; Schurer, Stefanie

    2013-09-01

    Do episodes of mental health (MH) problems cause future MH problems, and if yes, how strong are these dynamics? We quantify the degree of persistence in MH problems using nationally representative, longitudinal data from Australia and system generalized method of moments (GMM), and correlated random effects approaches are applied to separate true from spurious state dependence. Our results suggest only a moderate degree of persistence in MH problems when assuming that persistence is constant across the MH distribution once individual-specific heterogeneity is accounted for. However, individuals who fell once below a threshold that indicates an episode of depression are up to five times more likely to experience such a low score again a year later, indicating a strong element of state dependence in depression. Low income is a strong risk factor in state dependence for both men and women, which has important policy implications. Copyright © 2013 John Wiley & Sons, Ltd.

  13. An Exact Solution to the Draining Reservoir Problem of the Incompressible and Non-Viscous Liquid

    ERIC Educational Resources Information Center

    Hong, Seok-In

    2009-01-01

    The exact expressions for the drain time and the height, velocity and acceleration of the free surface are found for the draining reservoir problem of the incompressible and non-viscous liquid. Contrary to the conventional approximate results, they correctly describe the initial time dependence of the liquid velocity and acceleration. Torricelli's…

  14. Higher order sensitivity of solutions to convex programming problems without strict complementarity

    NASA Technical Reports Server (NTRS)

    Malanowski, Kazimierz

    1988-01-01

    Consideration is given to a family of convex programming problems which depend on a vector parameter. It is shown that the solutions of the problems and the associated Lagrange multipliers are arbitrarily many times directionally differentiable functions of the parameter, provided that the data of the problems are sufficiently regular. The characterizations of the respective derivatives are given.

  15. Economic evaluation of interventions for problem drinking and alcohol dependence: do within-family external effects make a difference?

    PubMed

    Mortimer, Duncan; Segal, Leonie

    2006-01-01

    To propose methods for the inclusion of within-family external effects in clinical and economic evaluations. To demonstrate the extent of bias due to the exclusion of within-family external effects when measuring the relative performance of interventions for problem drinking and alcohol dependence. The timing and magnitude of treatment effects are modified to accommodate the external health-related quality of life impact of having a problem or dependent drinker in the family home. The inclusion of within-family external effects reduces cost per QALY estimates of interventions for problem drinking and alcohol dependence thereby improving the performance of all evaluated interventions. In addition, the inclusion of within-family external effects improves the relative performance of interventions targeted at those with moderate-to-severe alcohol dependence as compared to interventions targeted at less severe alcohol problems. Failure to take account of external effects in clinical and economic evaluations results in an uneven playing field. Interventions with readily quantifiable health benefits (where social costs and benefits are predominantly comprised of private costs and benefits) are at a distinct advantage when competing for public funding against interventions with quantitatively important external effects.

  16. The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    DTIC Science & Technology

    2013-06-01

    AI Artificial Intelligence AUV Autonomous Underwater Vehicle CLP Clover Leaf Problem CSP Covering Salesman Problem CTP Covering Tour Problem CVRP...introduces a new formalization - the DMOMCTP. Related works from routing problems, Artificial Intelligence ( AI ), and MOPs are discussed briefly. As a...the rest of that framework being replaced. The codebase differs from jMetal 4.2 in that it can handle the time and DM dependent nature of the DMOMCTP

  17. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  18. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less

  19. Wave packet dynamics for a system with position and time-dependent effective mass in an infinite square well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vubangsi, M.; Tchoffo, M.; Fai, L. C.

    The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .

  20. Environmental factors selectively impact co-occurrence of problem/pathological gambling with specific drug-use disorders in male twins.

    PubMed

    Xian, Hong; Giddens, Justine L; Scherrer, Jeffrey F; Eisen, Seth A; Potenza, Marc N

    2014-04-01

    Multiple forms of drug abuse/dependence frequently co-occur with problem/pathological gambling (PPG). The current study examines the extent to which genetic and environmental factors contribute to their co-occurrence. Bivariate models investigated the magnitude and correlation of genetic and environmental contributions to problem/pathological gambling and its co-occurrence with nicotine dependence, cannabis abuse/dependence and stimulant abuse/dependence. Computer-assisted telephone interviews in the community. Participants were 7869 male twins in the Vietnam Era Twin Registry, a USA-based national twin registry. Life-time DSM-III-R diagnoses for problem/pathological gambling, nicotine dependence, cannabis abuse/dependence and stimulant abuse/dependence were determined using the Diagnostic Interview Schedule. All drug-use disorders displayed additive genetic and non-shared environmental contributions, with cannabis abuse/dependence also displaying shared environmental contributions. Both genetic [genetic correlation rA  = 0.22; 95% confidence interval (CI) = 0.10-0.34] and non-shared environmental components (environmental correlation rE  = 0.24; 95% CI = 0.10-0.37) contributed to the co-occurrence of problem/pathological gambling and nicotine dependence. This pattern was shared by cannabis abuse/dependence (rA  = 0.32; 95% CI = 0.05-1.0; rE  = 0.36; 95% CI = 0.16-0.55) but not stimulant abuse/dependence (SAD), which showed only genetic contributions to the co-occurrence with problem/pathological gambling (rA  = 0.58; 95% CI = 0.45-0.73). Strong links between gambling and stimulant-use disorders may relate to the neurochemical properties of stimulants or the illicit nature of using 'hard' drugs such as cocaine. The greater contribution of environmental factors to the co-occurrence between problem/pathological gambling and 'softer' forms of drug abuse/dependence (cannabis, tobacco) suggest that environmental interventions (perhaps relating to availability and legality) may help to diminish the relationship between problem/pathological gambling and tobacco- and cannabis-use disorders. © 2013 Society for the Study of Addiction.

  1. Heating 7.2 user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  2. Heating 7. 2 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  3. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; Govind, Niranjan; Yang, Chao

    2017-12-01

    We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.

  4. An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations

    NASA Astrophysics Data System (ADS)

    Bernede, Adrien; Poëtte, Gaël

    2018-02-01

    In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.

  5. Linear and nonlinear trending and prediction for AVHRR time series data

    NASA Technical Reports Server (NTRS)

    Smid, J.; Volf, P.; Slama, M.; Palus, M.

    1995-01-01

    The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.

  6. The Effect of Time on Difficulty of Learning (The Case of Problem Solving with Natural Numbers)

    ERIC Educational Resources Information Center

    Kaya, Deniz; Kesan, Cenk

    2017-01-01

    The main purpose of this study is to determine the time-dependent learning difficulty of "solving problems that require making four operations with natural numbers" of the sixth grade students. The study, adopting the scanning model, consisted of a total of 140 students, including 69 female and 71 male students at the sixth grade. Data…

  7. An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times

    NASA Astrophysics Data System (ADS)

    Xiao, Long; Liu, Xinggao; Ma, Liang; Zhang, Zeyin

    2018-03-01

    Dynamic optimisation problem with characteristic times, widely existing in many areas, is one of the frontiers and hotspots of dynamic optimisation researches. This paper considers a class of dynamic optimisation problems with constraints that depend on the interior points either fixed or variable, where a novel direct pseudospectral method using Legendre-Gauss (LG) collocation points for solving these problems is presented. The formula for the state at the terminal time of each subdomain is derived, which results in a linear combination of the state at the LG points in the subdomains so as to avoid the complex nonlinear integral. The sensitivities of the state at the collocation points with respect to the variable characteristic times are derived to improve the efficiency of the method. Three well-known characteristic time dynamic optimisation problems are solved and compared in detail among the reported literature methods. The research results show the effectiveness of the proposed method.

  8. Solving the transient water age distribution problem in environmental flow systems

    NASA Astrophysics Data System (ADS)

    Cornaton, F. J.

    2011-12-01

    The temporal evolution of groundwater age and its frequency distributions can display important changes as flow regimes vary due to the natural change in climate and hydrologic conditions and/or to human induced pressures on the resource to satisfy the water demand. Groundwater age being nowadays frequently used to investigate reservoir properties and recharge conditions, special attention needs to be put on the way this property is characterized, would it be using isotopic methods, multiple tracer techniques, or mathematical modelling. Steady-state age frequency distributions can be modelled using standard numerical techniques, since the general balance equation describing age transport under steady-state flow conditions is exactly equivalent to a standard advection-dispersion equation. The time-dependent problem is however described by an extended transport operator that incorporates an additional coordinate for water age. The consequence is that numerical solutions can hardly be achieved, especially for real 3-D applications over large time periods of interest. The absence of any robust method has thus left us in the quantitative hydrogeology community dodging the issue of transience. Novel algorithms for solving the age distribution problem under time-varying flow regimes are presented and, for some specific configurations, extended to the problem of generalized component exposure time. The solution strategy is based on the combination of the Laplace Transform technique applied to the age (or exposure time) coordinate with standard time-marching schemes. The method is well-suited for groundwater problems with possible density-dependency of fluid flow (e.g. coupled flow and heat/salt concentration problems), but also presents significance to the homogeneous flow (compressible case) problem. The approach is validated using 1-D analytical solutions and exercised on some demonstration problems that are relevant to topical issues in groundwater age, including analysis of transfer times in the vadose zone, aquifer-aquitard interactions and the induction of transient age distributions when a well pump is started.

  9. Time as an Observable in Nonrelativistic Quantum Mechanics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2003-01-01

    The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.

  10. Finite-time H∞ control for a class of discrete-time switched time-delay systems with quantized feedback

    NASA Astrophysics Data System (ADS)

    Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An

    2012-12-01

    This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.

  11. An evaluation of superminicomputers for thermal analysis

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Vidal, J. B.; Jones, G. K.

    1962-01-01

    The feasibility and cost effectiveness of solving thermal analysis problems on superminicomputers is demonstrated. Conventional thermal analysis and the changing computer environment, computer hardware and software used, six thermal analysis test problems, performance of superminicomputers (CPU time, accuracy, turnaround, and cost) and comparison with large computers are considered. Although the CPU times for superminicomputers were 15 to 30 times greater than the fastest mainframe computer, the minimum cost to obtain the solutions on superminicomputers was from 11 percent to 59 percent of the cost of mainframe solutions. The turnaround (elapsed) time is highly dependent on the computer load, but for large problems, superminicomputers produced results in less elapsed time than a typically loaded mainframe computer.

  12. Single product lot-sizing on unrelated parallel machines with non-decreasing processing times

    NASA Astrophysics Data System (ADS)

    Eremeev, A.; Kovalyov, M.; Kuznetsov, P.

    2018-01-01

    We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.

  13. A note on windowing for the waveform relaxation

    NASA Technical Reports Server (NTRS)

    Zhang, Hong

    1994-01-01

    The technique of windowing has been often used in the implementation of the waveform relaxations for solving ODE's or time dependent PDE's. Its efficiency depends upon problem stiffness and operator splitting. Using model problems, the estimates for window length and convergence rate are derived. The electiveness of windowing is then investigated for non-stiff and stiff cases respectively. lt concludes that for the former, windowing is highly recommended when a large discrepancy exists between the convergence rate on a time interval and the ones on its subintervals. For the latter, windowing does not provide any computational advantage if machine features are disregarded. The discussion is supported by experimental results.

  14. Problems of sampling and radiation balances: Their problematics

    NASA Technical Reports Server (NTRS)

    Crommelynck, D.

    1980-01-01

    Problems associated with the measurement of the Earth radiation balances are addressed. It is demonstrated that the knowledge of the different radiation budgets with their components is largely dependent on the space time sampling of the radiation field of the Earth atmosphere system. Whichever instrumental approach is adopted (wide angle view of high resolution) it affects the space time integration of the fluxes measured directly or calculated. In this case the necessary knowledge of the reflection pattern depends in addition on the angular sampling of the radiances. A series of questions is considered, the answers of which are a prerequisite to the the organization of a global observation system.

  15. Time-dependent interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    1985-01-01

    Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.

  16. Interferometer using a 3 × 3 coupler and Faraday mirrors

    NASA Astrophysics Data System (ADS)

    Breguet, J.; Gisin, N.

    1995-06-01

    A new interferometric setup using a 3 \\times 3 coupler and two Faraday mirrors is presented. It has the advantages of being built only with passive components, of freedom from the polarization fading problem, and of operation with a LED. It is well suited for sensing time-dependent signals and does not depend on reciprocal or nonreciprocal constant perturbations.

  17. When students can choose easy, medium, or hard homework problems

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca E.; Seaton, Daniel T.; Cardamone, Caroline N.; Rayyan, Saif; Abbott, Jonathan E.; Barrantes, Analia; Pawl, Andrew; Pritchard, David E.

    2012-02-01

    We investigate student-chosen, multi-level homework in our Integrated Learning Environment for Mechanics [1] built using the LON-CAPA [2] open-source learning system. Multi-level refers to problems categorized as easy, medium, and hard. Problem levels were determined a priori based on the knowledge needed to solve them [3]. We analyze these problems using three measures: time-per-problem, LON-CAPA difficulty, and item difficulty measured by item response theory. Our analysis of student behavior in this environment suggests that time-per-problem is strongly dependent on problem category, unlike either score-based measures. We also found trends in student choice of problems, overall effort, and efficiency across the student population. Allowing students choice in problem solving seems to improve their motivation; 70% of students worked additional problems for which no credit was given.

  18. Unifying Temporal and Structural Credit Assignment Problems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2004-01-01

    Single-agent reinforcement learners in time-extended domains and multi-agent systems share a common dilemma known as the credit assignment problem. Multi-agent systems have the structural credit assignment problem of determining the contributions of a particular agent to a common task. Instead, time-extended single-agent systems have the temporal credit assignment problem of determining the contribution of a particular action to the quality of the full sequence of actions. Traditionally these two problems are considered different and are handled in separate ways. In this article we show how these two forms of the credit assignment problem are equivalent. In this unified frame-work, a single-agent Markov decision process can be broken down into a single-time-step multi-agent process. Furthermore we show that Monte-Carlo estimation or Q-learning (depending on whether the values of resulting actions in the episode are known at the time of learning) are equivalent to different agent utility functions in a multi-agent system. This equivalence shows how an often neglected issue in multi-agent systems is equivalent to a well-known deficiency in multi-time-step learning and lays the basis for solving time-extended multi-agent problems, where both credit assignment problems are present.

  19. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.

  20. Optimal birth control of age-dependent competitive species

    NASA Astrophysics Data System (ADS)

    He, Ze-Rong

    2005-05-01

    We study optimal birth policies for two age-dependent populations in a competing system, which is controlled by fertilities. New results on problems with free final time and integral phase constraints are presented, and the approximate controllability of system is discussed.

  1. Nonuniform dependence on initial data for compressible gas dynamics: The periodic Cauchy problem

    NASA Astrophysics Data System (ADS)

    Keyfitz, B. L.; Tığlay, F.

    2017-11-01

    We start with the classic result that the Cauchy problem for ideal compressible gas dynamics is locally well posed in time in the sense of Hadamard; there is a unique solution that depends continuously on initial data in Sobolev space Hs for s > d / 2 + 1 where d is the space dimension. We prove that the data to solution map for periodic data in two dimensions although continuous is not uniformly continuous.

  2. A Longitudinal Study of Childhood ADHD and Substance Dependence Disorders in Early Adulthood

    PubMed Central

    Breyer, Jessie L.; Lee, Susanne; Winters, Ken; August, Gerald; Realmuto, George

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a childhood disorder that is associated with many behavioral and social problems. These problems may continue when an individual continues to meet criteria for ADHD as an adult. In this study, we describe the outcome patterns for three different groups: individuals who had ADHD as children, but no longer meet criteria as adults (Childhood-Limited ADHD, n = 71); individuals who met ADHD criteria as children and continue to meet criteria as young adults (Persistent ADHD n = 79); and a control group of individuals who did not meet ADHD diagnostic criteria in childhood or adulthood (n = 69). Groups were compared to examine differences in change in rates of alcohol, marijuana, and nicotine dependence over three time points in young adulthood (mean ages 18, 20 and 22 years). The method used is notable as this longitudinal study followed participants from childhood into young adulthood instead of relying on retrospective self-reports from adult participants. Results indicated that there were no significant group differences in change in rates of substance dependence over time. However, individuals whose ADHD persisted into adulthood were significantly more likely to meet DSM-IV criteria for alcohol, marijuana, and nicotine dependence across the three time points after controlling for age, sex, childhood stimulant medication use, and childhood conduct problems. Implications of these findings, as well as recommendations for future research, are discussed. PMID:24731117

  3. A Ranking Analysis/An Interlinking Approach of New Triangular Fuzzy Cognitive Maps and Combined Effective Time Dependent Matrix

    NASA Astrophysics Data System (ADS)

    Adiga, Shreemathi; Saraswathi, A.; Praveen Prakash, A.

    2018-04-01

    This paper aims an interlinking approach of new Triangular Fuzzy Cognitive Maps (TrFCM) and Combined Effective Time Dependent (CETD) matrix to find the ranking of the problems of Transgenders. Section one begins with an introduction that briefly describes the scope of Triangular Fuzzy Cognitive Maps (TrFCM) and CETD Matrix. Section two provides the process of causes of problems faced by Transgenders using Fuzzy Triangular Fuzzy Cognitive Maps (TrFCM) method and performs the calculations using the collected data among the Transgender. In Section 3, the reasons for the main causes for the problems of the Transgenders. Section 4 describes the Charles Spearmans coefficients of rank correlation method by interlinking of Triangular Fuzzy Cognitive Maps (TrFCM) Method and CETD Matrix. Section 5 shows the results based on our study.

  4. Recovery of time-dependent volatility in option pricing model

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Hon, Y. C.; Isakov, V.

    2016-11-01

    In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).

  5. Quantum algorithms for Gibbs sampling and hitting-time estimation

    DOE PAGES

    Chowdhury, Anirban Narayan; Somma, Rolando D.

    2017-02-01

    In this paper, we present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in √Nβ/Ζ and polynomial in log(1/ϵ), where N is the Hilbert space dimension, β is the inverse temperature, Ζ is the partition function, and ϵ is the desired precision of the output state. Our quantum algorithm exponentially improves the dependence on 1/ϵ and quadratically improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. Formore » a sparse stochastic matrix Ρ, it runs in time almost linear in 1/(ϵΔ 3/2), where ϵ is the absolute precision in the estimation and Δ is a parameter determined by Ρ, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the dependence on 1/ϵ and 1/Δ of the analog classical algorithm for hitting-time estimation. Finally, both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.« less

  6. Enabling congestion avoidance and reduction in the Michigan-Ohio transportation network to improve supply chain efficiency : freight ATIS.

    DOT National Transportation Integrated Search

    2010-01-01

    We consider dynamic vehicle routing under milk-run tours with time windows in congested : transportation networks for just-in-time (JIT) production. The arc travel times are considered : stochastic and time-dependent. The problem integrates TSP with ...

  7. Element Verification and Comparison in Sierra/Solid Mechanics Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Yuki; Roth, William

    2016-05-01

    The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown formore » each problem in order to facilitate element selection when computer resources are limited.« less

  8. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  9. Fault-tolerant arithmetic via time-shared TMR

    NASA Astrophysics Data System (ADS)

    Swartzlander, Earl E.

    1999-11-01

    Fault tolerance is increasingly important as society has come to depend on computers for more and more aspects of daily life. The current concern about the Y2K problems indicates just how much we depend on accurate computers. This paper describes work on time- shared TMR, a technique which is used to provide arithmetic operations that produce correct results in spite of circuit faults.

  10. Impurity transport in fractal media in the presence of a degrading diffusion barrier

    NASA Astrophysics Data System (ADS)

    Kondratenko, P. S.; Leonov, K. V.

    2017-08-01

    We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time t 0 of emergence of impurity from the barrier and time t * corresponding to the beginning of degradation. For t 0 < t *, degradation processes are immaterial. In the opposite situation, when t 0 > t *, the results on time intervals t < t * can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with t * < t < t 0 depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval t * < t < t 0 is very narrow, and the transport regime occurring over time intervals t < t * passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval t * < t < t 0 occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals t < t 0 has two steps, while for t > t 0, it has only one step. The more remote step for t < t 0 and the single step for t > t 0 coincide with the asymptotic form in the problem without a barrier.

  11. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  12. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  13. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE PAGES

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...

    2017-12-01

    In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  14. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE PAGES

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...

    2017-08-24

    Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  15. The deterioration of Canadian immigrants' oral health: analysis of the Longitudinal Survey of Immigrants to Canada.

    PubMed

    Calvasina, Paola; Muntaner, Carles; Quiñonez, Carlos

    2015-10-01

    To examine the effect of immigration on the self-reported oral health of immigrants to Canada over a 4-year period. The study used Statistics Canada's Longitudinal Survey of Immigrants to Canada (LSIC 2001-2005). The target population comprised 3976 non-refugee immigrants to Canada. The dependent variable was self-reported dental problems. The independent variables were as follows: age, sex, ethnicity, income, education, perceived discrimination, history of social assistance, social support, and official language proficiency. A generalized estimation equation approach was used to assess the association between dependent and independent variables. After 2 years, the proportion of immigrants reporting dental problems more than tripled (32.6%) and remained approximately the same at 4 years after immigrating (33.3%). Over time, immigrants were more likely to report dental problems (OR = 2.77; 95% CI 2.55-3.02). An increase in self-reported dental problems over time was associated with sex, history of social assistance, total household income, and self-perceived discrimination. An increased likelihood of reporting dental problems occurred over time. Immigrants should arguably constitute an important focus of public policy and programmes aimed at improving their oral health and access to dental care in Canada. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Event-Based $H_\\infty $ State Estimation for Time-Varying Stochastic Dynamical Networks With State- and Disturbance-Dependent Noises.

    PubMed

    Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E

    2017-10-01

    In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.

  17. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    NASA Astrophysics Data System (ADS)

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  18. Analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Jain, Ajai

    2014-12-01

    Stochastic dynamic job shop scheduling problem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatching rules in such shop from makespan, mean flow time, maximum flow time, mean tardiness, maximum tardiness, number of tardy jobs, total setups and mean setup time performance measures viewpoint. A discrete event simulation model of a stochastic dynamic job shop manufacturing system is developed for investigation purpose. Nine dispatching rules identified from literature are incorporated in the simulation model. The simulation experiments are conducted under due date tightness factor of 3, shop utilization percentage of 90% and setup times less than processing times. Results indicate that shortest setup time (SIMSET) rule provides the best performance for mean flow time and number of tardy jobs measures. The job with similar setup and modified earliest due date (JMEDD) rule provides the best performance for makespan, maximum flow time, mean tardiness, maximum tardiness, total setups and mean setup time measures.

  19. Optimal control of lift/drag ratios on a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Ou, Yuh-Roung; Burns, John A.

    1992-01-01

    We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.

  20. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  1. Solving time-dependent two-dimensional eddy current problems

    NASA Technical Reports Server (NTRS)

    Lee, Min Eig; Hariharan, S. I.; Ida, Nathan

    1990-01-01

    Transient eddy current calculations are presented for an EM wave-scattering and field-penetrating case in which a two-dimensional transverse magnetic field is incident on a good (i.e., not perfect) and infinitely long conductor. The problem thus posed is of initial boundary-value interface type, where the boundary of the conductor constitutes the interface. A potential function is used for time-domain modeling of the situation, and finite difference-time domain techniques are used to march the potential function explicitly in time. Attention is given to the case of LF radiation conditions.

  2. HEMP 3D: A finite difference program for calculating elastic-plastic flow, appendix B

    NASA Astrophysics Data System (ADS)

    Wilkins, Mark L.

    1993-05-01

    The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations listed below are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time.

  3. Comparison of Statistical Approaches Dealing with Time-dependent Confounding in Drug Effectiveness Studies

    PubMed Central

    Karim, Mohammad Ehsanul; Petkau, John; Gustafson, Paul; Platt, Robert W.; Tremlett, Helen

    2017-01-01

    In longitudinal studies, if the time-dependent covariates are affected by the past treatment, time-dependent confounding may be present. For a time-to-event response, marginal structural Cox models (MSCMs) are frequently used to deal with such confounding. To avoid some of the problems of fitting MSCM, the sequential Cox approach has been suggested as an alternative. Although the estimation mechanisms are different, both approaches claim to estimate the causal effect of treatment by appropriately adjusting for time-dependent confounding. We carry out simulation studies to assess the suitability of the sequential Cox approach for analyzing time-to-event data in the presence of a time-dependent covariate that may or may not be a time-dependent confounder. Results from these simulations revealed that the sequential Cox approach is not as effective as MSCM in addressing the time-dependent confounding. The sequential Cox approach was also found to be inadequate in the presence of a time-dependent covariate. We propose a modified version of the sequential Cox approach that correctly estimates the treatment effect in both of the above scenarios. All approaches are applied to investigate the impact of beta-interferon treatment in delaying disability progression in the British Columbia Multiple Sclerosis cohort (1995 – 2008). PMID:27659168

  4. Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies.

    PubMed

    Karim, Mohammad Ehsanul; Petkau, John; Gustafson, Paul; Platt, Robert W; Tremlett, Helen

    2018-06-01

    In longitudinal studies, if the time-dependent covariates are affected by the past treatment, time-dependent confounding may be present. For a time-to-event response, marginal structural Cox models are frequently used to deal with such confounding. To avoid some of the problems of fitting marginal structural Cox model, the sequential Cox approach has been suggested as an alternative. Although the estimation mechanisms are different, both approaches claim to estimate the causal effect of treatment by appropriately adjusting for time-dependent confounding. We carry out simulation studies to assess the suitability of the sequential Cox approach for analyzing time-to-event data in the presence of a time-dependent covariate that may or may not be a time-dependent confounder. Results from these simulations revealed that the sequential Cox approach is not as effective as marginal structural Cox model in addressing the time-dependent confounding. The sequential Cox approach was also found to be inadequate in the presence of a time-dependent covariate. We propose a modified version of the sequential Cox approach that correctly estimates the treatment effect in both of the above scenarios. All approaches are applied to investigate the impact of beta-interferon treatment in delaying disability progression in the British Columbia Multiple Sclerosis cohort (1995-2008).

  5. On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Wang, C.

    1990-01-01

    The convergence of solutions to the discrete or sampled time linear quadratic regulator problem and associated Riccati equation for infinite dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero (infinity) is established. Both the finite and infinite time horizon problems are studied. In the finite time horizon case, strong continuity of the operators which define the control system and performance index together with a stability and consistency condition on the sampling scheme are required. For the infinite time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary of delay system, and a flexible beam are presented and discussed.

  6. On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter system

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Wang, C.

    1992-01-01

    The convergence of solutions to the discrete- or sampled-time linear quadratic regulator problem and associated Riccati equation for infinite-dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero(infinity) is established. Both the finite-and infinite-time horizon problems are studied. In the finite-time horizon case, strong continuity of the operators that define the control system and performance index, together with a stability and consistency condition on the sampling scheme are required. For the infinite-time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary or delay system, and a flexible beam are presented and discussed.

  7. Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    PubMed Central

    Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing

    2014-01-01

    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933

  8. Computational Issues Associated with Temporally Deforming Geometries Such as Thrust Vectoring Nozzles

    NASA Technical Reports Server (NTRS)

    Boyalakuntla, Kishore; Soni, Bharat K.; Thornburg, Hugh J.; Yu, Robert

    1996-01-01

    During the past decade, computational simulation of fluid flow around complex configurations has progressed significantly and many notable successes have been reported, however, unsteady time-dependent solutions are not easily obtainable. The present effort involves unsteady time dependent simulation of temporally deforming geometries. Grid generation for a complex configuration can be a time consuming process and temporally varying geometries necessitate the regeneration of such grids for every time step. Traditional grid generation techniques have been tried and demonstrated to be inadequate to such simulations. Non-Uniform Rational B-splines (NURBS) based techniques provide a compact and accurate representation of the geometry. This definition can be coupled with a distribution mesh for a user defined spacing. The present method greatly reduces cpu requirements for time dependent remeshing, facilitating the simulation of more complex unsteady problems. A thrust vectoring nozzle has been chosen to demonstrate the capability as it is of current interest in the aerospace industry for better maneuverability of fighter aircraft in close combat and in post stall regimes. This current effort is the first step towards multidisciplinary design optimization which involves coupling the aerodynamic heat transfer and structural analysis techniques. Applications include simulation of temporally deforming bodies and aeroelastic problems.

  9. Exploring Education. Students from Overseas.

    ERIC Educational Resources Information Center

    Yates, Alfred, Ed.

    Students entering college for the first time are often confronted with adjustment problems that seem to them unsurmountable and impossible. There is the transition from living dependently with parents to semi-independent living on the college campus, in addition to the many problems encountered in academic areas. If a student, accustomed to the…

  10. Observer-based robust finite time H∞ sliding mode control for Markovian switching systems with mode-dependent time-varying delay and incomplete transition rate.

    PubMed

    Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan

    2016-03-01

    This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Minimizing the Sum of Completion Times with Resource Dependant Times

    NASA Astrophysics Data System (ADS)

    Yedidsion, Liron; Shabtay, Dvir; Kaspi, Moshe

    2008-10-01

    We extend the classical minimization sum of completion times problem to the case where the processing times are controllable by allocating a nonrenewable resource. The quality of a solution is measured by two different criteria. The first criterion is the sum of completion times and the second is the total weighted resource consumption. We consider four different problem variations for treating the two criteria. We prove that this problem is NP-hard for three of the four variations even if all resource consumption weights are equal. However, somewhat surprisingly, the variation of minimizing the integrated objective function is solvable in polynomial time. Although the sum of completion times is arguably the most important scheduling criteria, the complexity of this problem, up to this paper, was an open question for three of the four variations. The results of this research have various implementations, including efficient battery usage on mobile devices such as mobile computer, phones and GPS devices in order to prolong their battery duration.

  12. J.-L. Lions' problem concerning maximal regularity of equations governed by non-autonomous forms

    NASA Astrophysics Data System (ADS)

    Fackler, Stephan

    2017-05-01

    An old problem due to J.-L. Lions going back to the 1960s asks whether the abstract Cauchy problem associated to non-autonomous forms has maximal regularity if the time dependence is merely assumed to be continuous or even measurable. We give a negative answer to this question and discuss the minimal regularity needed for positive results.

  13. Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation

    NASA Astrophysics Data System (ADS)

    Zhou, Xin

    1990-03-01

    For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.

  14. Chapman Enskog-maximum entropy method on time-dependent neutron transport equation

    NASA Astrophysics Data System (ADS)

    Abdou, M. A.

    2006-09-01

    The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.

  15. Quantum and classical dissipation of charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less

  16. Time Dependent Tomography of the Solar Corona in Three Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Butala, M. D.; Frazin, R. A.; Kamalabadi, F.

    2006-12-01

    The combination of the soon to be launched STEREO mission with SOHO will provide scientists with three simultaneous space-borne views of the Sun. The increase in available measurements will reduce the data acquisition time necessary to obtain 3D coronal electron density (N_e) estimates from coronagraph images using a technique called solar rotational tomography (SRT). However, the data acquisition period will still be long enough for the corona to dynamically evolve, requiring time dependent solar tomography. The Kalman filter (KF) would seem to be an ideal computational method for time dependent SRT. Unfortunately, the KF scales poorly with problem size and is, as a result, inapplicable. A Monte Carlo approximation to the KF called the localized ensemble Kalman filter was developed for massive applications and has the promise of making the time dependent estimation of the 3D coronal N_e possible. We present simulations showing that this method will make time dependent tomography in three spatial dimensions computationally feasible.

  17. Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2017-11-01

    This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.

  18. A minimization principle for the description of modes associated with finite-time instabilities

    PubMed Central

    Babaee, H.

    2016-01-01

    We introduce a minimization formulation for the determination of a finite-dimensional, time-dependent, orthonormal basis that captures directions of the phase space associated with transient instabilities. While these instabilities have finite lifetime, they can play a crucial role either by altering the system dynamics through the activation of other instabilities or by creating sudden nonlinear energy transfers that lead to extreme responses. However, their essentially transient character makes their description a particularly challenging task. We develop a minimization framework that focuses on the optimal approximation of the system dynamics in the neighbourhood of the system state. This minimization formulation results in differential equations that evolve a time-dependent basis so that it optimally approximates the most unstable directions. We demonstrate the capability of the method for two families of problems: (i) linear systems, including the advection–diffusion operator in a strongly non-normal regime as well as the Orr–Sommerfeld/Squire operator, and (ii) nonlinear problems, including a low-dimensional system with transient instabilities and the vertical jet in cross-flow. We demonstrate that the time-dependent subspace captures the strongly transient non-normal energy growth (in the short-time regime), while for longer times the modes capture the expected asymptotic behaviour. PMID:27118900

  19. Dominant takeover regimes for genetic algorithms

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.

  20. An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

    NASA Astrophysics Data System (ADS)

    Mönkölä, Sanna

    2013-06-01

    This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.

  1. Programing techniques for CDC equipment

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Tiffany, S. H.

    1979-01-01

    Five techniques reduce core requirements for fast batch turnaround time and interactive-terminal capability. Same techniques increase program versatility, decrease problem-configuration dependence, and facilitate interprogram communication.

  2. On a two-phase Hele-Shaw problem with a time-dependent gap and distributions of sinks and sources

    NASA Astrophysics Data System (ADS)

    Savina, Tatiana; Akinyemi, Lanre; Savin, Avital

    2018-01-01

    A two-phase Hele-Shaw problem with a time-dependent gap describes the evolution of the interface, which separates two fluids sandwiched between two plates. The fluids have different viscosities. In addition to the change in the gap width of the Hele-Shaw cell, the interface is driven by the presence of some special distributions of sinks and sources located in both the interior and exterior domains. The effect of surface tension is neglected. Using the Schwarz function approach, we give examples of exact solutions when the interface belongs to a certain family of algebraic curves and the curves do not form cusps. The family of curves are defined by the initial shape of the free boundary.

  3. [Discipline styles and co-morbid disorders of adolescents with attention deficit hyperactivity disorder: a longitudinal study].

    PubMed

    Colomer-Diago, Carla; Berenguer-Forner, Carmen; Tárraga-Mínguez, Raúl; Miranda-Casas, Ana

    2014-02-24

    Problems in cognitive functioning, social and educational development of children with attention deficit hyperactivity disorder (ADHD) continue to be present in adolescence and adulthood. Although the literature shows a significant relationship between the use of dysfunctional discipline methods and severity in the course of ADHD, follow-up studies have been rare. To analyze parenting style and ADHD symptomatology assessed in childhood (time 1) to predict the oppositional behavior and cognitive problems in early adolescence (time 2), and to study, depending on the use of dysfunctional parenting style, the course of oppositional behavior and cognitive problems. Forty-five children with ADHD-combined presentation were assessed in two different moments: time 1 (ages: 6-13) and time 2 (ages: 8-16). Oppositionism and cognitive problems in the follow-up were predicted by dysfunctional discipline styles and ADHD severity (assessed in time 1). Oppositional behavior increased between time 1 and time 2 in children with a dysfunctional parenting, whereas a decrease on oppositional symptoms was observed in the functional parenting group (time x discipline interaction effect). Dysfunctional parenting practices in childhood predicted cognitive and behavioral problems associated in adolescence. The findings have implications for the planning of interventions.

  4. Energy efficient sensor scheduling with a mobile sink node for the target tracking application.

    PubMed

    Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin

    2009-01-01

    Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance.

  5. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    PubMed Central

    Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin

    2009-01-01

    Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance PMID:22399934

  6. Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.

    PubMed

    Liu, Xiwei; Chen, Tianping

    2018-01-01

    In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.

  7. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  8. Time Dependent Models of Grain Formation Around Carbon Stars

    NASA Technical Reports Server (NTRS)

    Egan, M. P.; Shipman, R. F.

    1996-01-01

    Carbon-rich Asymptotic Giant Branch stars are sites of dust formation and undergo mass loss at rates ranging from 10(exp -7) to 10(exp -4) solar mass/yr. The state-of-the-art in modeling these processes is time-dependent models which simultaneously solve the grain formation and gas dynamics problem. We present results from such a model, which also includes an exact solution of the radiative transfer within the system.

  9. Conquering common breast-feeding problems.

    PubMed

    Walker, Marsha

    2008-01-01

    Meeting mothers' personal breast-feeding goals depends on a number of factors, including the timely resolution of any problems she encounters. Nurses are often the first providers who interact with the mother during the perinatal period and are positioned to guide mothers through the prevention and solving of breast-feeding problems. Although many problems may be "common," failure to remedy conditions that cause pain, frustration, and anxiety can lead to premature weaning and avoidance of breast-feeding subsequent children. This article describes strategies and interventions to alleviate common problems that breast-feeding mothers frequently encounter.

  10. Problems of the Randomization Test for AB Designs

    ERIC Educational Resources Information Center

    Manolov, Rumen; Solanas, Antonio

    2009-01-01

    N = 1 designs imply repeated registrations of the behaviour of the same experimental unit and the measurements obtained are often few due to time limitations, while they are also likely to be sequentially dependent. The analytical techniques needed to enhance statistical and clinical decision making have to deal with these problems. Different…

  11. The Development from Effortful to Automatic Processing in Mathematical Cognition.

    ERIC Educational Resources Information Center

    Kaye, Daniel B.; And Others

    This investigation capitalizes upon the information processing models that depend upon measurement of latency of response to a mathematical problem and the decomposition of reaction time (RT). Simple two term addition problems were presented with possible solutions for true-false verification, and accuracy and RT to response were recorded. Total…

  12. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  13. Stability of Solutions to Classes of Traveling Salesman Problems.

    PubMed

    Niendorf, Moritz; Kabamba, Pierre T; Girard, Anouck R

    2016-04-01

    By performing stability analysis on an optimal tour for problems belonging to classes of the traveling salesman problem (TSP), this paper derives margins of optimality for a solution with respect to disturbances in the problem data. Specifically, we consider the asymmetric sequence-dependent TSP, where the sequence dependence is driven by the dynamics of a stack. This is a generalization of the symmetric non sequence-dependent version of the TSP. Furthermore, we also consider the symmetric sequence-dependent variant and the asymmetric non sequence-dependent variant. Amongst others these problems have applications in logistics and unmanned aircraft mission planning. Changing external conditions such as traffic or weather may alter task costs, which can render an initially optimal itinerary suboptimal. Instead of optimizing the itinerary every time task costs change, stability criteria allow for fast evaluation of whether itineraries remain optimal. This paper develops a method to compute stability regions for the best tour in a set of tours for the symmetric TSP and extends the results to the asymmetric problem as well as their sequence-dependent counterparts. As the TSP is NP-hard, heuristic methods are frequently used to solve it. The presented approach is also applicable to analyze stability regions for a tour obtained through application of the k -opt heuristic with respect to the k -neighborhood. A dimensionless criticality metric for edges is proposed, such that a high criticality of an edge indicates that the optimal tour is more susceptible to cost changes in that edge. Multiple examples demonstrate the application of the developed stability computation method as well as the edge criticality measure that facilitates an intuitive assessment of instances of the TSP.

  14. Identification of the Thermal Conductivity Coefficient for Quasi-Stationary Two-Dimensional Heat Conduction Equations

    NASA Astrophysics Data System (ADS)

    Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.

    2017-11-01

    The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.

  15. The stochastic system approach for estimating dynamic treatments effect.

    PubMed

    Commenges, Daniel; Gégout-Petit, Anne

    2015-10-01

    The problem of assessing the effect of a treatment on a marker in observational studies raises the difficulty that attribution of the treatment may depend on the observed marker values. As an example, we focus on the analysis of the effect of a HAART on CD4 counts, where attribution of the treatment may depend on the observed marker values. This problem has been treated using marginal structural models relying on the counterfactual/potential response formalism. Another approach to causality is based on dynamical models, and causal influence has been formalized in the framework of the Doob-Meyer decomposition of stochastic processes. Causal inference however needs assumptions that we detail in this paper and we call this approach to causality the "stochastic system" approach. First we treat this problem in discrete time, then in continuous time. This approach allows incorporating biological knowledge naturally. When working in continuous time, the mechanistic approach involves distinguishing the model for the system and the model for the observations. Indeed, biological systems live in continuous time, and mechanisms can be expressed in the form of a system of differential equations, while observations are taken at discrete times. Inference in mechanistic models is challenging, particularly from a numerical point of view, but these models can yield much richer and reliable results.

  16. Deuteron Coulomb Excitation in Peripheral Collisions with a Heavy Ion

    NASA Astrophysics Data System (ADS)

    Du, Weijie; Yin, Peng; Li, Yang; Chen, Guangyao; Zuo, Wei; Zhao, Xingbo; Vary, James P.

    2017-09-01

    We develop an ab initio time-dependent Basis Function (tBF) method to solve non-perturbative and time-dependent problems in non-relativistic quantum mechanics. As a test problem, we apply this method to the Coulomb excitation of a deuteron by an impinging heavy ion. We employ wave functions for the bound and excited states of the deuterium system based on a realistic nucleon-nucleon interaction and study the evolution of the transition probability, the r.m.s. radius and the r.m.s. momentum of the system during the scattering process. The dependencies of these quantities on the external field strength and the bombarding energy are also analyzed and compared to corresponding results obtained from first-order perturbation theory. The time evolution of both the charge and the momentum distributions is shown. This work was supported in part by the U. S. Department of Energy (DOE) under Grants No. DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371. W. Zuo and P. Yin are supported by the National Natural Science Foundation of China (11435014).

  17. Computational Study for Planar Connected Dominating Set Problem

    NASA Astrophysics Data System (ADS)

    Marzban, Marjan; Gu, Qian-Ping; Jia, Xiaohua

    The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. [ESA2005, LNCS3669,pp95-106] introduce a new technique to generate 2^{O(sqrt{n})} time and fixed-parameter algorithms for a number of non-local hard problems, including the CDS problem in planar graphs. The practical performance of this algorithm is yet to be evaluated. We perform a computational study for such an evaluation. The results show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical result. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space. This suggests that the branch-decomposition based algorithms can be practical for the planar CDS problem.

  18. A time dependent difference theory for sound propagation in ducts with flow. [characteristic of inlet and exhaust ducts of turbofan engines

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.

  19. Neutron star dynamics under time dependent external torques

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Gügercinoğlu, E.

    2017-12-01

    The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).

  20. Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Vogel, W.

    2018-04-01

    In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.

  1. Knee point search using cascading top-k sorting with minimized time complexity.

    PubMed

    Wang, Zheng; Tseng, Shian-Shyong

    2013-01-01

    Anomaly detection systems and many other applications are frequently confronted with the problem of finding the largest knee point in the sorted curve for a set of unsorted points. This paper proposes an efficient knee point search algorithm with minimized time complexity using the cascading top-k sorting when a priori probability distribution of the knee point is known. First, a top-k sort algorithm is proposed based on a quicksort variation. We divide the knee point search problem into multiple steps. And in each step an optimization problem of the selection number k is solved, where the objective function is defined as the expected time cost. Because the expected time cost in one step is dependent on that of the afterwards steps, we simplify the optimization problem by minimizing the maximum expected time cost. The posterior probability of the largest knee point distribution and the other parameters are updated before solving the optimization problem in each step. An example of source detection of DNS DoS flooding attacks is provided to illustrate the applications of the proposed algorithm.

  2. Path integration of the time-dependent forced oscillator with a two-time quadratic action

    NASA Astrophysics Data System (ADS)

    Zhang, Tian Rong; Cheng, Bin Kang

    1986-03-01

    Using the prodistribution theory proposed by DeWitt-Morette [C. DeWitt-Morette, Commun. Math. Phys. 28, 47 (1972); C. DeWitt-Morette, A. Maheshwari, and B. Nelson, Phys. Rep. 50, 257 (1979)], the path integration of a time-dependent forced harmonic oscillator with a two-time quadratic action has been given in terms of the solutions of some integrodifferential equations. We then evaluate explicitly both the classical path and the propagator for the specific kernel introduced by Feynman in the polaron problem. Our results include the previous known results as special cases.

  3. Two-warehouse system for non-instantaneous deterioration products with promotional effort and inflation over a finite time horizon

    NASA Astrophysics Data System (ADS)

    Palanivel, M.; Priyan, S.; Mala, P.

    2017-11-01

    In the current global market, organizations use many promotional tools to increase their sales. One such tool is sales teams' initiatives or promotional policies, i.e., free gifts, discounts, packaging, etc. This phenomenon motivates the retailer/or buyer to order a large inventory lot so as to take full benefit of promotional policies. In view of this the present paper considers a two-warehouse (owned and rented) inventory problem for a non-instantaneous deteriorating item with inflation and time value of money over a finite planning horizon. Here, demand depends on the sales team's initiatives and shortages are partially backlogged at a rate dependent on the duration of waiting time up to the arrival of next lot. We design an algorithm to obtain the optimal replenishment strategies. Numerical analysis is also given to show the applicability of the proposed model in real-world two-warehouse inventory problems.

  4. Instability of multi-layer fluid configurations in the presence of time-dependent accelerations in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.; Roh, Michael

    1991-01-01

    The increasing number of research opportunities in a microgravity environment will benefit not only fundamental studies in fluid dynamics, but also technological applications such as those involving materials processing. In particular, fluid configurations which involve fluid-fluid interfaces would occur in a variety of experimental investigations. This work investigates the stability of a configuration involving fluid-fluid interfaces in the presence of a time-dependent forcing. Both periodic (g-jitter) and nonperiodic accelerations are considered. The fluid configuration is multilayered, and infinite in extent. The analysis is linear and inviscid, and the acceleration vector is oriented perpendicular to each interface. A Floquet analysis is employed in the case of the periodic forcing. In the problem of nonperiodic forcing, the resulting system of equations are integrated in time. Specific nondimensional parameters appear in each problem. The configuration behavior is investigated for a range of parameter values.

  5. Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons

    PubMed Central

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2013-01-01

    Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD) learning of Doya (2000) to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity. PMID:23592970

  6. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.

    PubMed

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2013-04-01

    Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD) learning of Doya (2000) to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity.

  7. Field Dependency and Performance in Mathematics

    ERIC Educational Resources Information Center

    Onwumere, Onyebuchi; Reid, Norman

    2014-01-01

    Mathematics is an important school subject but one which often poses problems for learners. It has been found that learners do not possess the cognitive capacity to handle understanding procedures, representations, concepts, and applications at the same time. while the extent of field dependency may hold the key to one way by which the working…

  8. Quantum Entanglement Growth under Random Unitary Dynamics

    NASA Astrophysics Data System (ADS)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  9. Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation.

    PubMed

    Selvaraj, P; Sakthivel, R; Kwon, O M

    2018-06-07

    This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Stability in the drinking habits of older problem-drinkers recruited from nontreatment settings.

    PubMed

    Walton, M A; Mudd, S A; Blow, F C; Chermack, S T; Gomberg, E S

    2000-03-01

    Few prospective studies have examined older problem-drinkers not currently in treatment to determine the stability in alcohol problems over time. Seventy-eight currently drinking, older adults meeting a diagnosis of alcohol abuse or dependence were recruited via advertising to complete a health interview; 48 were reinterviewed approximately 3 years later. Participants were categorized based on alcohol consumption (risk) and alcohol-related diagnostic symptoms (problem) at baseline and follow-up. At follow-up, few older adults (11.4%) were resolved using both risk and problem criteria. Alcohol risk/problem groups were not significantly stable between baseline and follow-up. Health problems was the most common reason for changing drinking habits. Average and maximum consumption at baseline and follow-up were significant markers of follow-up risk group and follow-up alcohol-related consequences, respectively, with maximum consumption being more robust. The course of alcohol problems among older adults fluctuates over time, and heavy drinking appears to be the best indicator of problem continuation.

  11. Space-time adaptive solution of inverse problems with the discrete adjoint method

    NASA Astrophysics Data System (ADS)

    Alexe, Mihai; Sandu, Adrian

    2014-08-01

    This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.

  12. The Solution of Large Time-Dependent Problems Using Reduced Coordinates.

    DTIC Science & Technology

    1987-06-01

    numerical intergration schemes for dynamic problems, the algorithm known as Newmark’s Method. The behavior of the Newmark scheme, as well as the basic...T’he horizontal displacements at the mid-height and the bottom of the buildin- are shown in f igure 4. 13. The solution history illustrated is for a

  13. First-Order or Second-Order Kinetics? A Monte Carlo Answer

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2005-01-01

    Monte Carlo computational experiments reveal that the ability to discriminate between first- and second-order kinetics from least-squares analysis of time-dependent concentration data is better than implied in earlier discussions of the problem. The problem is rendered as simple as possible by assuming that the order must be either 1 or 2 and that…

  14. Final Technical Report [Scalable methods for electronic excitations and optical responses of nanostructures: mathematics to algorithms to observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Yousef

    2014-03-19

    The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less

  15. Deformation dependence of proton decay rates and angular distributions in a time-dependent approach

    NASA Astrophysics Data System (ADS)

    Carjan, N.; Talou, P.; Strottman, D.

    1998-12-01

    A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.

  16. Preliminary rotor wake measurements with a laser velocimeter

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Rhodes, D. B.; Meyers, J. F.

    1983-01-01

    A laser velocimeter (LV) was used to determine rotor wake characteristics. The effect of various fuselage widths and rotor-fuselage spacings on time averaged and detailed time dependent rotor wake velocity characteristics was defined. Definition of time dependent velocity characteristics was attempted with the LV by associating a rotor azimuth position with each velocity measurement. Results were discouraging in that no apparent time dependent velocity characteristics could be discerned from the LV measurements. Since the LV is a relatively new instrument in the rotor wake measurement field, the cause of this lack of periodicity is as important as the basic research objectives. An attempt was made to identify the problem by simulated acquisition of LV-type data for a predicted rotor wake velocity time history. Power spectral density and autocorrelation function estimation techniques were used to substantiate the conclusion that the primary cause of the lack of time dependent velocity characteristics was the nonstationary flow condition generated by the periodic turbulence level that currently exists in the open throat configuration of the wind tunnel.

  17. Solving time-dependent two-dimensional eddy current problems

    NASA Technical Reports Server (NTRS)

    Lee, Min Eig; Hariharan, S. I.; Ida, Nathan

    1988-01-01

    Results of transient eddy current calculations are reported. For simplicity, a two-dimensional transverse magnetic field which is incident on an infinitely long conductor is considered. The conductor is assumed to be a good but not perfect conductor. The resulting problem is an interface initial boundary value problem with the boundary of the conductor being the interface. A finite difference method is used to march the solution explicitly in time. The method is shown. Treatment of appropriate radiation conditions is given special consideration. Results are validated with approximate analytic solutions. Two stringent test cases of high and low frequency incident waves are considered to validate the results.

  18. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay Derivas, E.

    1975-01-01

    A new iterative scheme for solving boundary value problems is presented. It consists of the introduction of an artificial time dependence into a modified version of the system of equations. Then explicit forward integrations in time are followed by explicit integrations backwards in time. The method converges under much more general conditions than schemes based in forward time integrations (false transient schemes). In particular it can attain a steady state solution of an elliptical system of equations even if the solution is unstable, in which case other iterative schemes fail to converge. The simplicity of its use makes it attractive for solving large systems of nonlinear equations.

  19. On the anisotropic advection-diffusion equation with time dependent coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.

    The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less

  20. On the anisotropic advection-diffusion equation with time dependent coefficients

    DOE PAGES

    Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.

    2017-02-01

    The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less

  1. Quadratic time dependent Hamiltonians and separation of variables

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  2. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  3. Optimization of the time-dependent traveling salesman problem with Monte Carlo methods.

    PubMed

    Bentner, J; Bauer, G; Obermair, G M; Morgenstern, I; Schneider, J

    2001-09-01

    A problem often considered in operations research and computational physics is the traveling salesman problem, in which a traveling salesperson has to find the shortest closed tour between a certain set of cities. This problem has been extended to more realistic scenarios, e.g., the "real" traveling salesperson has to take rush hours into consideration. We will show how this extended problem is treated with physical optimization algorithms. We will present results for a specific instance of Reinelt's library TSPLIB95, in which we define a zone with traffic jams in the afternoon.

  4. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  5. Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation

    NASA Astrophysics Data System (ADS)

    Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.

    2012-09-01

    The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.

  6. Simple and Accurate Method for Central Spin Problems

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Manolopoulos, David E.

    2018-06-01

    We describe a simple quantum mechanical method that can be used to obtain accurate numerical results over long timescales for the spin correlation tensor of an electron spin that is hyperfine coupled to a large number of nuclear spins. This method does not suffer from the statistical errors that accompany a Monte Carlo sampling of the exact eigenstates of the central spin Hamiltonian obtained from the algebraic Bethe ansatz, or from the growth of the truncation error with time in the time-dependent density matrix renormalization group (TDMRG) approach. As a result, it can be applied to larger central spin problems than the algebraic Bethe ansatz, and for longer times than the TDMRG algorithm. It is therefore an ideal method to use to solve central spin problems, and we expect that it will also prove useful for a variety of related problems that arise in a number of different research fields.

  7. Spectral-based propagation schemes for time-dependent quantum systems with application to carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Zuojing; Polizzi, Eric

    2010-11-01

    Effective modeling and numerical spectral-based propagation schemes are proposed for addressing the challenges in time-dependent quantum simulations of systems ranging from atoms, molecules, and nanostructures to emerging nanoelectronic devices. While time-dependent Hamiltonian problems can be formally solved by propagating the solutions along tiny simulation time steps, a direct numerical treatment is often considered too computationally demanding. In this paper, however, we propose to go beyond these limitations by introducing high-performance numerical propagation schemes to compute the solution of the time-ordered evolution operator. In addition to the direct Hamiltonian diagonalizations that can be efficiently performed using the new eigenvalue solver FEAST, we have designed a Gaussian propagation scheme and a basis-transformed propagation scheme (BTPS) which allow to reduce considerably the simulation times needed by time intervals. It is outlined that BTPS offers the best computational efficiency allowing new perspectives in time-dependent simulations. Finally, these numerical schemes are applied to study the ac response of a (5,5) carbon nanotube within a three-dimensional real-space mesh framework.

  8. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  9. Mixing Regimes in a Spatially Confined, Two-Dimensional, Supersonic Shear Layer

    DTIC Science & Technology

    1992-07-31

    MODEL ................................... 3 THE MODEL PROBLEMS .............................................. 6 THE ONE-DIMENSIONAL PROBLEM...the effects of the numerical diffusion on the spectrum. Guirguis et al.ś and Farouk et al."’ have studied spatially evolving mixing layers for equal...approximations. Physical and Numerical Model General Formulation We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a

  10. High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Nishikawa, Hiroaki

    2014-01-01

    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.

  11. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  12. Multitime correlation functions in nonclassical stochastic processes

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Sperling, J.; Vogel, W.

    2016-06-01

    A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.

  13. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  14. Quantum Entanglement Growth under Random Unitary Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement growsmore » linearly in time, while fluctuations grow like (time) 1/3 and are spatially correlated over a distance ∝(time) 2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.« less

  15. Quantum Entanglement Growth under Random Unitary Dynamics

    DOE PAGES

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; ...

    2017-07-24

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement growsmore » linearly in time, while fluctuations grow like (time) 1/3 and are spatially correlated over a distance ∝(time) 2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.« less

  16. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  17. Global exponential stability for switched memristive neural networks with time-varying delays.

    PubMed

    Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia

    2016-08-01

    This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations

    NASA Astrophysics Data System (ADS)

    Merkel, M.; Niyonzima, I.; Schöps, S.

    2017-12-01

    Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into subintervals and computes the solution on each subinterval in parallel. The overall solution is decomposed into a particular solution defined on each subinterval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.

  19. State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities.

    PubMed

    Korayem, M H; Nekoo, S R

    2015-07-01

    This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Adam J., E-mail: adamhoff@umich.edu; Lee, John C., E-mail: jcl@umich.edu

    2016-02-15

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Sourcemore » Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.« less

  1. Reynolds analogy for the Rayleigh problem at various flow modes.

    PubMed

    Abramov, A A; Butkovskii, A V

    2016-07-01

    The Reynolds analogy and the extended Reynolds analogy for the Rayleigh problem are considered. For a viscous incompressible fluid we derive the Reynolds analogy as a function of the Prandtl number and the Eckert number. We show that for any positive Eckert number, the Reynolds analogy as a function of the Prandtl number has a maximum. For a monatomic gas in the transitional flow regime, using the direct simulation Monte Carlo method, we investigate the extended Reynolds analogy, i.e., the relation between the shear stress and the energy flux transferred to the boundary surface, at different velocities and temperatures. We find that the extended Reynolds analogy for a rarefied monatomic gas flow with the temperature of the undisturbed gas equal to the surface temperature depends weakly on time and is close to 0.5. We show that at any fixed dimensionless time the extended Reynolds analogy depends on the plate velocity and temperature and undisturbed gas temperature mainly via the Eckert number. For Eckert numbers of the order of unity or less we generalize an extended Reynolds analogy. The generalized Reynolds analogy depends mainly only on dimensionless time for all considered Eckert numbers of the order of unity or less.

  2. Proposal of Heuristic Algorithm for Scheduling of Print Process in Auto Parts Supplier

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shimpei; Okuhara, Koji; Ueno, Nobuyuki; Ishii, Hiroaki

    We are interested in the print process on the manufacturing processes of auto parts supplier as an actual problem. The purpose of this research is to apply our scheduling technique developed in university to the actual print process in mass customization environment. Rationalization of the print process is depending on the lot sizing. The manufacturing lead time of the print process is long, and in the present method, production is done depending on worker’s experience and intuition. The construction of an efficient production system is urgent problem. Therefore, in this paper, in order to shorten the entire manufacturing lead time and to reduce the stock, we reexamine the usual method of the lot sizing rule based on heuristic technique, and we propose the improvement method which can plan a more efficient schedule.

  3. The two-sample problem with induced dependent censorship.

    PubMed

    Huang, Y

    1999-12-01

    Induced dependent censorship is a general phenomenon in health service evaluation studies in which a measure such as quality-adjusted survival time or lifetime medical cost is of interest. We investigate the two-sample problem and propose two classes of nonparametric tests. Based on consistent estimation of the survival function for each sample, the two classes of test statistics examine the cumulative weighted difference in hazard functions and in survival functions. We derive a unified asymptotic null distribution theory and inference procedure. The tests are applied to trial V of the International Breast Cancer Study Group and show that long duration chemotherapy significantly improves time without symptoms of disease and toxicity of treatment as compared with the short duration treatment. Simulation studies demonstrate that the proposed tests, with a wide range of weight choices, perform well under moderate sample sizes.

  4. Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering

    NASA Astrophysics Data System (ADS)

    Pelinovsky, Dmitry E.; Sulem, Catherine

    A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.

  5. A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands

    NASA Astrophysics Data System (ADS)

    Moslemipour, Ghorbanali

    2018-07-01

    This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algorithm is proposed by combining the simulated annealing and clonal selection algorithms. The proposed model and the hybrid algorithm are verified and validated using design of experiment and benchmark methods. The results show that the hybrid algorithm has an outstanding performance from both solution quality and computational time points of view. Besides, the proposed model can be used in both of the stochastic and deterministic situations.

  6. The advantages and barriers in the implementation of a substance dependence treatment information system (SDTIS).

    PubMed

    Ajami, Sima; Mellat-Karkevandi, Zahra

    2015-11-01

    Addiction is a phenomenon that causes structural changes in different systems of society. Studies show for planning of addiction prevention and treatment, it is necessary to create an information management system. Substance dependence information systems refer to systems which collect, analyse and report data related to substance dependence information. The aim of this study was to identify advantages and barriers to implement Substance Dependence Treatment Information System (SDTIS). This study was a narrative review. Our review divided into three phases: literature collection, assessing, and selection. We employed the following keywords and their combinations in different areas of articles. In this study, 22 of collected articles and reports were selected based on their relevancy. We found many advantages for a substance dependence treatment information system such as recording sufficient, complete and accurate information and easy and timely access to them and monitoring and enhancing the quality of care received by patients. But we may face some concerns for implementing this information system like taking time and funds from client services, being expensive or even problems regarding the quality of data contained in these information systems. There are some important problems in the way of implementing. In order to overcome these issues, we need to raise community awareness.

  7. The advantages and barriers in the implementation of a substance dependence treatment information system (SDTIS)

    PubMed Central

    Ajami, Sima; Mellat-Karkevandi, Zahra

    2015-01-01

    Addiction is a phenomenon that causes structural changes in different systems of society. Studies show for planning of addiction prevention and treatment, it is necessary to create an information management system. Substance dependence information systems refer to systems which collect, analyse and report data related to substance dependence information. The aim of this study was to identify advantages and barriers to implement Substance Dependence Treatment Information System (SDTIS). This study was a narrative review. Our review divided into three phases: literature collection, assessing, and selection. We employed the following keywords and their combinations in different areas of articles. In this study, 22 of collected articles and reports were selected based on their relevancy. We found many advantages for a substance dependence treatment information system such as recording sufficient, complete and accurate information and easy and timely access to them and monitoring and enhancing the quality of care received by patients. But we may face some concerns for implementing this information system like taking time and funds from client services, being expensive or even problems regarding the quality of data contained in these information systems. There are some important problems in the way of implementing. In order to overcome these issues, we need to raise community awareness. PMID:26941816

  8. Problem decomposition by mutual information and force-based clustering

    NASA Astrophysics Data System (ADS)

    Otero, Richard Edward

    The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.

  9. Sign changes as a universal concept in first-passage-time calculations

    NASA Astrophysics Data System (ADS)

    Braun, Wilhelm; Thul, Rüdiger

    2017-01-01

    First-passage-time problems are ubiquitous across many fields of study, including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time distributions for the wide class of nondifferentiable Gaussian processes. We demonstrate that the concept of sign changes naturally generalizes the common practice of counting crossings to determine first-passage events. Our method works across a wide range of time-dependent boundaries and noise strengths, thus alleviating common hurdles in first-passage-time calculations.

  10. Closed-form Static Analysis with Inertia Relief and Displacement-Dependent Loads Using a MSC/NASTRAN DMAP Alter

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1995-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.

  11. Time-dependent generalized Gibbs ensembles in open quantum systems

    NASA Astrophysics Data System (ADS)

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2018-04-01

    Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.

  12. H∞ control problem of linear periodic piecewise time-delay systems

    NASA Astrophysics Data System (ADS)

    Xie, Xiaochen; Lam, James; Li, Panshuo

    2018-04-01

    This paper investigates the H∞ control problem based on exponential stability and weighted L2-gain analyses for a class of continuous-time linear periodic piecewise systems with time delay. A periodic piecewise Lyapunov-Krasovskii functional is developed by integrating a discontinuous time-varying matrix function with two global terms. By applying the improved constraints to the stability and L2-gain analyses, sufficient delay-dependent exponential stability and weighted L2-gain criteria are proposed for the periodic piecewise time-delay system. Based on these analyses, an H∞ control scheme is designed under the considerations of periodic state feedback control input and iterative optimisation. Finally, numerical examples are presented to illustrate the effectiveness of our proposed conditions.

  13. Enhancing PC Cluster-Based Parallel Branch-and-Bound Algorithms for the Graph Coloring Problem

    NASA Astrophysics Data System (ADS)

    Taoka, Satoshi; Takafuji, Daisuke; Watanabe, Toshimasa

    A branch-and-bound algorithm (BB for short) is the most general technique to deal with various combinatorial optimization problems. Even if it is used, computation time is likely to increase exponentially. So we consider its parallelization to reduce it. It has been reported that the computation time of a parallel BB heavily depends upon node-variable selection strategies. And, in case of a parallel BB, it is also necessary to prevent increase in communication time. So, it is important to pay attention to how many and what kind of nodes are to be transferred (called sending-node selection strategy). In this paper, for the graph coloring problem, we propose some sending-node selection strategies for a parallel BB algorithm by adopting MPI for parallelization and experimentally evaluate how these strategies affect computation time of a parallel BB on a PC cluster network.

  14. Category 3: Sound Generation by Interacting with a Gust

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2004-01-01

    The cascade-gust interaction problem is solved employing a time-domain approach. The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.Nonlinear time dependent Euler equations are solved using higher order spatial differencing and time marching techniques. The solutions indicate the generation and propagation of expected mode orders for the given configuration and flow conditions. The blade passing frequency (BPF) is cut off for this cascade while higher harmonic, 2BPF and 3BPF, modes are cut on.

  15. Centralisation of Assessment: Meeting the Challenges of Multi-Year Team Projects in Information Systems Education

    ERIC Educational Resources Information Center

    Cooper, Grahame; Heinze, Aleksej

    2007-01-01

    This paper focuses on the difficulties of assessing multi-year team projects, in which a team of students drawn from all three years of a full-time degree course works on a problem with and for a real-life organization. Although potential solutions to the problem of assessing team projects may be context-dependent, we believe that discussing these…

  16. The acidity problem -- an outline of concepts

    Treesearch

    Svante Od& #233; n; Svante n

    1976-01-01

    The changing acidity of air and precipitation over most of Europe and part of U. S. is only part of a larger problem--changes of the chemical climate caused by a variety of emissions into the atmosphere (13, 36). These emissions may create a local, a regional or a global situation depending only on the life-time of the pollutants in the atmosphere. The atmospheric...

  17. Analytic descriptions of stochastic bistable systems under force ramp

    DOE PAGES

    Friddle, Raymond W.

    2016-05-13

    Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. We show an accurate approximation to this problem by considering the system in the control parameter regime. Moreover, the results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.

  18. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    Treesearch

    Pablo A. Garcia-Chevesich; Sergio Alvarado; Daniel G. Neary; Rodrigo Valdes; Juan Valdes; Juan Jose Aguirre; Marcelo Mena; Roberto Pizarro; Paolo Jofre; Mauricio Vera; Claudio Olivares

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of...

  19. Emotional intelligence and problem solving strategy: comparative study basedon "tower of hanoi" test.

    PubMed

    Arefnasab, Zahra; Zare, Hosein; Babamahmoodi, Abdolreza

    2012-01-01

    The aim of this study was to compare problem solving strategies between peoples with high and low emotional intelligence (EI). This study is a cross sectional descriptive study.The sample groups include senior BS& BA between 20-30 years old into two with high and low emotional intelligence, each group had 30 subjects.Data was analyzed with non-parametric chi square test for main dependent variable (problem solving strategies) and accessory dependent variables(manner of starting and fulfillmentof the test).The Independent two group T-test was used for analyzing other accessory dependent variables(Number of errors and total time used for fulfillment of the test). There was a significant difference between two groups in "number of errors" (t=-3.67,p=0) and "total time used for fulfillment of the test"(-6.17,p=0) and there was significant relation between EI and "problem solving strategies" (χ2=25.71, p<0.01) and (Cramer's v = 0.65, p<0.01) .Also there was significant relation between EI and "fulfillment of test" (χ2=20.31, p<0.01) and (φ=0.58, p<0.01). But the relation between EI and "manner of starting the test" was not significant (χ2=1.11, p=0.29). Subjects with high EI used more "insightful" strategy and subjects with low EI used more "trial- error" strategy. The first group completed the test more rapidlyand with fewer errors, compared with the second group. In addition the first group was more successful in performing the test than the second one. People with high EI significantly solve problems better than people with lowEI.

  20. Running into Trouble with the Time-Dependent Propagation of a Wavepacket

    ERIC Educational Resources Information Center

    Garriz, Abel E.; Sztrajman, Alejandro; Mitnik, Dario

    2010-01-01

    The propagation in time of a wavepacket is a conceptually rich problem suitable to be studied in any introductory quantum mechanics course. This subject is covered analytically in most of the standard textbooks. Computer simulations have become a widespread pedagogical tool, easily implemented in computer labs and in classroom demonstrations.…

  1. Decision making in noisy bistable systems with time-dependent asymmetry

    NASA Astrophysics Data System (ADS)

    Nené, Nuno R.; Zaikin, Alexey

    2013-01-01

    Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.

  2. Compact normalisations in the elliptic restricted three body problem

    NASA Astrophysics Data System (ADS)

    Palacián, Jesús F.; Vanegas, Jasson; Yanguas, Patricia

    2017-11-01

    This paper considers the spatial elliptic restricted three body problem in the case that the particle with negligible mass is revolving around one of the primaries. The system is modelled in an inertial frame through a Hamiltonian function representing a non-autonomous dynamical system with three degrees of freedom that depends periodically on time. Three Lie transformations are applied at first order to eliminate successively the mean anomaly of the infinitesimal particle's motion, the time dependence of the system and the argument of the node of the particle with negligible mass. All the transformations are implemented in a compact way, that is, carrying out the computations by means of infinite series. This approach can be very useful to deal with certain artificial satellite problems or, in general, with systems such that the ratio between the distance of the infinitesimal particle to the body around it orbits and the distance between the two primaries is smaller than one but close to it. In this case the Legendre expansion of the potential converges slowly and many terms of the series must be taken into consideration.

  3. A new finite element formulation for computational fluid dynamics. IX - Fourier analysis of space-time Galerkin/least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Shakib, Farzin; Hughes, Thomas J. R.

    1991-01-01

    A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.

  4. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  5. Network Inference via the Time-Varying Graphical Lasso

    PubMed Central

    Hallac, David; Park, Youngsuk; Boyd, Stephen; Leskovec, Jure

    2018-01-01

    Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability. PMID:29770256

  6. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.

    PubMed

    Major, G

    1993-07-01

    Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.

  7. Optimal Routing and Control of Multiple Agents Moving in a Transportation Network and Subject to an Arrival Schedule and Separation Constraints

    NASA Technical Reports Server (NTRS)

    Sadovsky, A. V.; Davis, D.; Isaacson, D. R.

    2012-01-01

    We address the problem of navigating a set of moving agents, e.g. automated guided vehicles, through a transportation network so as to bring each agent to its destination at a specified time. Each pair of agents is required to be separated by a minimal distance, generally agent-dependent, at all times. The speed range, initial position, required destination, and required time of arrival at destination for each agent are assumed provided. The movement of each agent is governed by a controlled differential equation (state equation). The problem consists in choosing for each agent a path and a control strategy so as to meet the constraints and reach the destination at the required time. This problem arises in various fields of transportation, including Air Traffic Management and train coordination, and in robotics. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver.

  8. INM Integrated Noise Model Version 2. Programmer’s Guide

    DTIC Science & Technology

    1979-09-01

    cost, turnaround time, and system-dependent limitations. 3.2 CONVERSION PROBLEMS Item Item Item No. Desciption Category 1 BLOCK DATA Initialization IBM ...Restricted 2 Boolean Operations Differences Call Statement Parameters Extensions 4 Data Initialization IBM Restricted 5 ENTRY Differences 6 EQUIVALENCE...Machine Dependent 7 Format: A CDC Extension 8 Hollerith Strings IBM Restricted 9 Hollerith Variables IBM Restricted 10 Identifier Names CDC Extension

  9. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    DOT National Transportation Integrated Search

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  10. Practical Bayesian tomography

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Combes, Joshua; Cory, D. G.

    2016-03-01

    In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.

  11. Existence of evolutionary variational solutions via the calculus of variations

    NASA Astrophysics Data System (ADS)

    Bögelein, Verena; Duzaar, Frank; Marcellini, Paolo

    In this paper we introduce a purely variational approach to time dependent problems, yielding the existence of global parabolic minimizers, that is ∫0T ∫Ω [uṡ∂tφ+f(x,Du)] dx dt⩽∫0T ∫Ω f(x,Du+Dφ) dx dt, whenever T>0 and φ∈C0∞(Ω×(0,T),RN). For the integrand f:Ω×R→[0,∞] we merely assume convexity with respect to the gradient variable and coercivity. These evolutionary variational solutions are obtained as limits of maps depending on space and time minimizing certain convex variational functionals. In the simplest situation, with some growth conditions on f, the method provides the existence of global weak solutions to Cauchy-Dirichlet problems of parabolic systems of the type ∂tu-divDξf(x,Du)=0 in Ω×(0,∞).

  12. A quantum retrograde canon: complete population inversion in n 2-state systems

    NASA Astrophysics Data System (ADS)

    Padan, Alon; Suchowski, Haim

    2018-04-01

    We present a novel approach for analytically reducing a family of time-dependent multi-state quantum control problems to two-state systems. The presented method translates between {SU}(2)× {SU}(2) related n 2-state systems and two-state systems, such that the former undergo complete population inversion (CPI) if and only if the latter reach specific states. For even n, the method translates any two-state CPI scheme to a family of CPI schemes in n 2-state systems. In particular, facilitating CPI in a four-state system via real time-dependent nearest-neighbors couplings is reduced to facilitating CPI in a two-level system. Furthermore, we show that the method can be used for operator control, and provide conditions for producing several universal gates for quantum computation as an example. In addition, we indicate a basis for utilizing the method in optimal control problems.

  13. Generalization bounds of ERM-based learning processes for continuous-time Markov chains.

    PubMed

    Zhang, Chao; Tao, Dacheng

    2012-12-01

    Many existing results on statistical learning theory are based on the assumption that samples are independently and identically distributed (i.i.d.). However, the assumption of i.i.d. samples is not suitable for practical application to problems in which samples are time dependent. In this paper, we are mainly concerned with the empirical risk minimization (ERM) based learning process for time-dependent samples drawn from a continuous-time Markov chain. This learning process covers many kinds of practical applications, e.g., the prediction for a time series and the estimation of channel state information. Thus, it is significant to study its theoretical properties including the generalization bound, the asymptotic convergence, and the rate of convergence. It is noteworthy that, since samples are time dependent in this learning process, the concerns of this paper cannot (at least straightforwardly) be addressed by existing methods developed under the sample i.i.d. assumption. We first develop a deviation inequality for a sequence of time-dependent samples drawn from a continuous-time Markov chain and present a symmetrization inequality for such a sequence. By using the resultant deviation inequality and symmetrization inequality, we then obtain the generalization bounds of the ERM-based learning process for time-dependent samples drawn from a continuous-time Markov chain. Finally, based on the resultant generalization bounds, we analyze the asymptotic convergence and the rate of convergence of the learning process.

  14. Scenarios for Russian Agricultural Development to 2021

    DTIC Science & Technology

    2011-12-01

    dependence on government intervention in both good times and bad, and an unwieldy, inefficient bureaucracy strained to effectively carry out the myriad...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and...issue analysis. Emerging issue analysis begins with the premise that problems develop gradually over time , and are often ignored until they reach

  15. Portable inference engine: An extended CLIPS for real-time production systems

    NASA Technical Reports Server (NTRS)

    Le, Thach; Homeier, Peter

    1988-01-01

    The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.

  16. Pricing by timing: innovating broadband data plans

    NASA Astrophysics Data System (ADS)

    Ha, Sangtae; Joe-Wong, Carlee; Sen, Soumya; Chiang, Mung

    2012-01-01

    Wireless Internet usage is doubling every year. Users are using more of high bandwidth data applications, and the heavy usage concentrates on several peak hours in a day, forcing ISPs to overprovision their networks accordingly. In order to remain profitable, ISPs have been using pricing as a congestion management tool. We review many of such pricing schemes in practice today and argue that they do not solve ISPs' problem of growing data traffic. We believe that dynamic, time-dependent usage pricing, which charges users based on when they access the Internet, can incentivize users to spread out their bandwidth consumption more evenly across different times of the day, thus helping ISPs to overcome the problem of peak congestion. Congestion pricing is not a new idea in itself, but the time for its implementation in data networks has finally arrived. Our key contribution lies in developing new analysis and a fully integrated system architecture, called TUBE (Time-dependent Usage-based Broadband price Engineering) that enables ISPs to implement the proposed TDP plan. The theory, simulation, and system implementation of TUBE system is further complemented with consumer surveys conducted in India and the US, along with preparations for a field trial that is currently underway.

  17. Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods.

    PubMed

    Keogh, Ruth H; Daniel, Rhian M; VanderWeele, Tyler J; Vansteelandt, Stijn

    2018-05-01

    Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of marginal structural models have been developed to address this problem. However, in this paper we show how standard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models (SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how including propensity score adjustment is advantageous. We compare the causal effects being estimated using SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable more precise inferences, with greater robustness against model misspecification via propensity score adjustment, and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on a subsequent outcome is described.

  18. Prediction of Sea Surface Temperature Using Long Short-Term Memory

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wang, Hui; Dong, Junyu; Zhong, Guoqiang; Sun, Xin

    2017-10-01

    This letter adopts long short-term memory(LSTM) to predict sea surface temperature(SST), which is the first attempt, to our knowledge, to use recurrent neural network to solve the problem of SST prediction, and to make one week and one month daily prediction. We formulate the SST prediction problem as a time series regression problem. LSTM is a special kind of recurrent neural network, which introduces gate mechanism into vanilla RNN to prevent the vanished or exploding gradient problem. It has strong ability to model the temporal relationship of time series data and can handle the long-term dependency problem well. The proposed network architecture is composed of two kinds of layers: LSTM layer and full-connected dense layer. LSTM layer is utilized to model the time series relationship. Full-connected layer is utilized to map the output of LSTM layer to a final prediction. We explore the optimal setting of this architecture by experiments and report the accuracy of coastal seas of China to confirm the effectiveness of the proposed method. In addition, we also show its online updated characteristics.

  19. New Quantum Diffusion Monte Carlo Method for strong field time dependent problems

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2017-04-01

    We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.

  20. Accelerating universe with time variation of G and Λ

    NASA Astrophysics Data System (ADS)

    Darabi, F.

    2012-03-01

    We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach's cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach's cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρ˜ a -4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.

  1. A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Carrillo, José A.; Shu, Chi-Wang

    2018-01-01

    We consider a class of time-dependent second order partial differential equations governed by a decaying entropy. The solution usually corresponds to a density distribution, hence positivity (non-negativity) is expected. This class of problems covers important cases such as Fokker-Planck type equations and aggregation models, which have been studied intensively in the past decades. In this paper, we design a high order discontinuous Galerkin method for such problems. If the interaction potential is not involved, or the interaction is defined by a smooth kernel, our semi-discrete scheme admits an entropy inequality on the discrete level. Furthermore, by applying the positivity-preserving limiter, our fully discretized scheme produces non-negative solutions for all cases under a time step constraint. Our method also applies to two dimensional problems on Cartesian meshes. Numerical examples are given to confirm the high order accuracy for smooth test cases and to demonstrate the effectiveness for preserving long time asymptotics.

  2. POWERING AIRPOWER: IS THE AIR FORCES ENERGY SECURE

    DTIC Science & Technology

    2016-02-01

    needs. More on-site renewable energy generation increases AF readiness in crisis times by minimizing the AF’s dependency on fossil fuels. Financing...reducing the need for traditional fossil fuels, and the high investment cost of onsite renewable energy sources is still a serious roadblock in this...help installations better plan holistically. This research will take the form of problem/solution framework. With any complex problem, rarely does a

  3. Development of the Canadian Marginalization Index: a new tool for the study of inequality.

    PubMed

    Matheson, Flora I; Dunn, James R; Smith, Katherine L W; Moineddin, Rahim; Glazier, Richard H

    2012-04-30

    Area-based measures of socio-economic status are increasingly used in population health research. Based on previous research and theory, the Canadian Marginalization Index (CAN-Marg) was created to reflect four dimensions of marginalization: residential instability, material deprivation, dependency and ethnic concentration. The objective of this paper was threefold: to describe CAN-Marg; to illustrate its stability across geographic area and time; and to describe its association with health and behavioural problems. CAN-Marg was created at the dissemination area (DA) and census tract level for census years 2001 and 2006, using factor analysis. Descriptions of 18 health and behavioural problems were selected using individual-level data from the Canadian Community Health Survey (CCHS) 3.1 and 2007/08. CAN-Marg quintiles created at the DA level (2006) were assigned to individual CCHS records. Multilevel logistic regression modeling was conducted to examine associations between marginalization and CCHS health and behavioural problems. The index demonstrated marked stability across time and geographic area. Each of the four dimensions showed strong and significant associations with the selected health and behavioural problems, and these associations differed depending on which of the dimensions of marginalization was examined. CAN-Marg is a census-based, empirically derived and theoretically informed tool designed to reflect a broader conceptualization of Canadian marginalization.

  4. Escape problem under stochastic volatility: The Heston model

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Perelló, Josep

    2008-11-01

    We solve the escape problem for the Heston random diffusion model from a finite interval of span L . We obtain exact expressions for the survival probability (which amounts to solving the complete escape problem) as well as for the mean exit time. We also average the volatility in order to work out the problem for the return alone regardless of volatility. We consider these results in terms of the dimensionless normal level of volatility—a ratio of the three parameters that appear in the Heston model—and analyze their form in several asymptotic limits. Thus, for instance, we show that the mean exit time grows quadratically with large spans while for small spans the growth is systematically slower, depending on the value of the normal level. We compare our results with those of the Wiener process and show that the assumption of stochastic volatility, in an apparently paradoxical way, increases survival and prolongs the escape time. We finally observe that the model is able to describe the main exit-time statistics of the Dow-Jones daily index.

  5. Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr

    2015-12-31

    The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problemmore » are presented.« less

  6. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  7. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  8. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    PubMed

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  9. Selfsimilar time dependent shock structures

    NASA Astrophysics Data System (ADS)

    Beck, R.; Drury, L. O.

    1985-08-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  10. Selfsimilar time dependent shock structures

    NASA Technical Reports Server (NTRS)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  11. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  12. An iterated local search algorithm for the team orienteering problem with variable profits

    NASA Astrophysics Data System (ADS)

    Gunawan, Aldy; Ng, Kien Ming; Kendall, Graham; Lai, Junhan

    2018-07-01

    The orienteering problem (OP) is a routing problem that has numerous applications in various domains such as logistics and tourism. The objective is to determine a subset of vertices to visit for a vehicle so that the total collected score is maximized and a given time budget is not exceeded. The extensive application of the OP has led to many different variants, including the team orienteering problem (TOP) and the team orienteering problem with time windows. The TOP extends the OP by considering multiple vehicles. In this article, the team orienteering problem with variable profits (TOPVP) is studied. The main characteristic of the TOPVP is that the amount of score collected from a visited vertex depends on the duration of stay on that vertex. A mathematical programming model for the TOPVP is first presented and an algorithm based on iterated local search (ILS) that is able to solve modified benchmark instances is then proposed. It is concluded that ILS produces solutions which are comparable to those obtained by the commercial solver CPLEX for smaller instances. For the larger instances, ILS obtains good-quality solutions that have significantly better objective value than those found by CPLEX under reasonable computational times.

  13. On parametric Gevrey asymptotics for some nonlinear initial value Cauchy problems

    NASA Astrophysics Data System (ADS)

    Lastra, A.; Malek, S.

    2015-11-01

    We study a nonlinear initial value Cauchy problem depending upon a complex perturbation parameter ɛ with vanishing initial data at complex time t = 0 and whose coefficients depend analytically on (ɛ, t) near the origin in C2 and are bounded holomorphic on some horizontal strip in C w.r.t. the space variable. This problem is assumed to be non-Kowalevskian in time t, therefore analytic solutions at t = 0 cannot be expected in general. Nevertheless, we are able to construct a family of actual holomorphic solutions defined on a common bounded open sector with vertex at 0 in time and on the given strip above in space, when the complex parameter ɛ belongs to a suitably chosen set of open bounded sectors whose union form a covering of some neighborhood Ω of 0 in C*. These solutions are achieved by means of Laplace and Fourier inverse transforms of some common ɛ-depending function on C × R, analytic near the origin and with exponential growth on some unbounded sectors with appropriate bisecting directions in the first variable and exponential decay in the second, when the perturbation parameter belongs to Ω. Moreover, these solutions satisfy the remarkable property that the difference between any two of them is exponentially flat for some integer order w.r.t. ɛ. With the help of the classical Ramis-Sibuya theorem, we obtain the existence of a formal series (generally divergent) in ɛ which is the common Gevrey asymptotic expansion of the built up actual solutions considered above.

  14. A unified framework for approximation in inverse problems for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1988-01-01

    A theoretical framework is presented that can be used to treat approximation techniques for very general classes of parameter estimation problems involving distributed systems that are either first or second order in time. Using the approach developed, one can obtain both convergence and stability (continuous dependence of parameter estimates with respect to the observations) under very weak regularity and compactness assumptions on the set of admissible parameters. This unified theory can be used for many problems found in the recent literature and in many cases offers significant improvements to existing results.

  15. On the computational aspects of comminution in discrete element method

    NASA Astrophysics Data System (ADS)

    Chaudry, Mohsin Ali; Wriggers, Peter

    2018-04-01

    In this paper, computational aspects of crushing/comminution of granular materials are addressed. For crushing, maximum tensile stress-based criterion is used. Crushing model in discrete element method (DEM) is prone to problems of mass conservation and reduction in critical time step. The first problem is addressed by using an iterative scheme which, depending on geometric voids, recovers mass of a particle. In addition, a global-local framework for DEM problem is proposed which tends to alleviate the local unstable motion of particles and increases the computational efficiency.

  16. Single machine scheduling with slack due dates assignment

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Hu, Xiangpei; Wang, Xuyin

    2017-04-01

    This paper considers a single machine scheduling problem in which each job is assigned an individual due date based on a common flow allowance (i.e. all jobs have slack due date). The goal is to find a sequence for jobs, together with a due date assignment, that minimizes a non-regular criterion comprising the total weighted absolute lateness value and common flow allowance cost, where the weight is a position-dependent weight. In order to solve this problem, an ? time algorithm is proposed. Some extensions of the problem are also shown.

  17. Time Dependent Studies of Reactive Shocks in the Gas Phase

    DTIC Science & Technology

    1978-11-16

    which takes advantsge of time-stop splitting. The fluid dynamics time integration is performed by an explicit two step predictor - corrector technique...Nava Reearh l~oraoryARIA A WORK UNIT NUMBERS NasahRaington MC, raor 2037 NR Problem (1101-16Washngto, !) C , 2i176ONR Project RR024.02.41 Office of... self -consistently on their own characteristic time-scaies using the flux-corrected transport and selected asymptotic meothods, respectively. Results are

  18. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less

  19. On the parallel solution of parabolic equations

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.

  20. Determining the Intensity of a Point-Like Source Observed on the Background of AN Extended Source

    NASA Astrophysics Data System (ADS)

    Kornienko, Y. V.; Skuratovskiy, S. I.

    2014-12-01

    The problem of determining the time dependence of intensity of a point-like source in case of atmospheric blur is formulated and solved by using the Bayesian statistical approach. A pointlike source is supposed to be observed on the background of an extended source with constant in time though unknown brightness. The equation system for optimal statistical estimation of the sequence of intensity values in observation moments is obtained. The problem is particularly relevant for studying gravitational mirages which appear while observing a quasar through the gravitational field of a far galaxy.

  1. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  2. Randomized trial of intensive motivational interviewing for methamphetamine dependence.

    PubMed

    Polcin, Douglas L; Bond, Jason; Korcha, Rachael; Nayak, Madhabika B; Galloway, Gantt P; Evans, Kristy

    2014-01-01

    An intensive, 9-session motivational interviewing (IMI) intervention was assessed using a randomized clinical trial of 217 methamphetamine (MA) dependent individuals. Intensive motivational interviewing (IMI) was compared with a single standard session of MI (SMI) combined with eight nutrition education sessions. Interventions were delivered weekly over 2 months. All study participants also received standard outpatient group treatment three times per week. Both study groups showed significant decreases in MA use and Addiction Severity Index drug scores, but there were no significant differences between the two groups. However, reductions in Addiction Severity Index psychiatric severity scores and days of psychiatric problems during the past 30 days were found for clients in the IMI group but not the SMI group. SMI may be equally beneficial to IMI in reducing MA use and problem severity, but IMI may help alleviate co-occurring psychiatric problems that are unaffected by shorter MI interventions. Additional studies are needed to assess the problems, populations, and contexts for which IMI is effective.

  3. Deliberate Learning in Health Care: The Effect of Importing Best Practices and Creative Problem Solving on Hospital Performance Improvement

    PubMed Central

    Nembhard, Ingrid M.; Cherian, Praseetha; Bradley, Elizabeth H.

    2015-01-01

    This article examines the effect on quality improvement of two common but distinct approaches to organizational learning: importing best practices (an externally oriented approach rooted in learning by imitating others’ best practices) and internal creative problem solving (an internally oriented approach rooted in learning by experimenting with self-generated solutions). We propose that independent and interaction effects of these approaches depend on where organizations are in their improvement journey – initial push or later phase. We examine this contingency in hospitals focused on improving treatment time for patients with heart attacks. Our results show that importing best practices helps hospitals achieve initial phase but not later phase improvement. Once hospitals enter the later phase of their efforts, however, significant improvement requires creative problem solving as well. Together, our results suggest that importing best practices delivers greater short-term improvement, but continued improvement depends on creative problem solving. PMID:24876100

  4. A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.

    2014-04-01

    Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

  5. Childhood and Adolescent Predictors of Alcohol Abuse and Dependence in Young Adulthood*

    PubMed Central

    Guo, Jie; Hawkins, J. David; Hill, Karl G.; Abbott, Robert D

    2007-01-01

    Objective To provide a comprehensive examination of childhood and adolescent predictors of alcohol abuse and dependence at age 21, theoretically guided by the social development model. Method Data were taken from an ethnically diverse urban sample of 808 students [51% male), surveyed at age 10 and followed prospectively to age 21 in 1996. Potential predictors of alcohol abuse and dependence at age 21 were measured at ages 10, 14 and 16. Relationships between these predictors and alcohol abuse and dependence were examined at each age, to assess changes in their patterns of prediction over time. Results Strong bonding to school, close parental monitoring of children and clearly defined family rules for behavior, appropriate parental rewards for good behaviors, high level of refusal skills and strong belief in the moral order predicted a lower risk for alcohol abuse and dependence at age 21. Of these, strong bonding to school consistently predicted lower alcohol abuse and dependence from all three ages (10, 14 and 16). By contrast, youths who had a higher risk of alcohol abuse and dependence at age 21 engaged in more problem behaviors, had more opportunities to be involved with antisocial individuals and spent more time with and were more bonded to those individuals, viewed fewer negative consequences from antisocial behaviors and held more favorable views on alcohol use. Of these, prior problem behaviors and antisocial opportunities and involvements at ages 10, 14 and 16 consistently predicted alcohol abuse and dependence at age 21. Conclusions These important malleable predictors, identifiable as early as age 10, provide potential intervention targets for the prevention of alcohol abuse and dependence in early adulthood. PMID:11838912

  6. Crustal permeability

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Gleeson, Tom

    2017-01-01

    Permeability is the dominant parameter in most hydrogeologic studies. There is abundant evidence for dynamic variations in permeability in time as well as space, and throughout the crust. Whether this dynamic behavior should be included in quantitative models depends on the problem at hand.

  7. Optimal steering for kinematic vehicles with applications to spatially distributed agents

    NASA Astrophysics Data System (ADS)

    Brown, Scott; Praeger, Cheryl E.; Giudici, Michael

    While there is no universal method to address control problems involving networks of autonomous vehicles, there exist a few promising schemes that apply to different specific classes of problems, which have attracted the attention of many researchers from different fields. In particular, one way to extend techniques that address problems involving a single autonomous vehicle to those involving teams of autonomous vehicles is to use the concept of Voronoi diagram. The Voronoi diagram provides a spatial partition of the environment the team of vehicles operate in, where each element of this partition is associated with a unique vehicle from the team. The partition induces a graph abstraction of the operating space that is in an one-to-one correspondence with the network abstraction of the team of autonomous vehicles; a fact that can provide both conceptual and analytical advantages during mission planning and execution. In this dissertation, we propose the use of a new class of Voronoi-like partitioning schemes with respect to state-dependent proximity (pseudo-) metrics rather than the Euclidean distance or other generalized distance functions, which are typically used in the literature. An important nuance here is that, in contrast to the Euclidean distance, state-dependent metrics can succinctly capture system theoretic features of each vehicle from the team (e.g., vehicle kinematics), as well as the environment-vehicle interactions, which are induced, for example, by local winds/currents. We subsequently illustrate how the proposed concept of state-dependent Voronoi-like partition can induce local control schemes for problems involving networks of spatially distributed autonomous vehicles by examining a sequential pursuit problem of a maneuvering target by a group of pursuers distributed in the plane. The construction of generalized Voronoi diagrams with respect to state-dependent metrics poses some significant challenges. First, the generalized distance metric may be a function of the direction of motion of the vehicle (anisotropic pseudo-distance function) and/or may not be expressible in closed form. Second, such problems fall under the general class of partitioning problems for which the vehicles' dynamics must be taken into account. The topology of the vehicle's configuration space may be non-Euclidean, for example, it may be a manifold embedded in a Euclidean space. In other words, these problems may not be reducible to generalized Voronoi diagram problems for which efficient construction schemes, analytical and/or computational, exist in the literature. This research effort pursues three main objectives. First, we present the complete solution of different steering problems involving a single vehicle in the presence of motion constraints imposed by the maneuverability envelope of the vehicle and/or the presence of a drift field induced by winds/currents in its vicinity. The analysis of each steering problem involving a single vehicle provides us with a state-dependent generalized metric, such as the minimum time-to-go/come. We subsequently use these state-dependent generalized distance functions as the proximity metrics in the formulation of generalized Voronoi-like partitioning problems. The characterization of the solutions of these state-dependent Voronoi-like partitioning problems using either analytical or computational techniques constitutes the second main objective of this dissertation. The third objective of this research effort is to illustrate the use of the proposed concept of state-dependent Voronoi-like partition as a means for passing from control techniques that apply to problems involving a single vehicle to problems involving networks of spatially distributed autonomous vehicles. To this aim, we formulate the problem of sequential/relay pursuit of a maneuvering target by a group of spatially distributed pursuers and subsequently propose a distributed group pursuit strategy that directly derives from the solution of a state-dependent Voronoi-like partitioning problem. (Abstract shortened by UMI.)

  8. Analytical results for a stochastic model of gene expression with arbitrary partitioning of proteins

    NASA Astrophysics Data System (ADS)

    Tschirhart, Hugo; Platini, Thierry

    2018-05-01

    In biophysics, the search for analytical solutions of stochastic models of cellular processes is often a challenging task. In recent work on models of gene expression, it was shown that a mapping based on partitioning of Poisson arrivals (PPA-mapping) can lead to exact solutions for previously unsolved problems. While the approach can be used in general when the model involves Poisson processes corresponding to creation or degradation, current applications of the method and new results derived using it have been limited to date. In this paper, we present the exact solution of a variation of the two-stage model of gene expression (with time dependent transition rates) describing the arbitrary partitioning of proteins. The methodology proposed makes full use of the PPA-mapping by transforming the original problem into a new process describing the evolution of three biological switches. Based on a succession of transformations, the method leads to a hierarchy of reduced models. We give an integral expression of the time dependent generating function as well as explicit results for the mean, variance, and correlation function. Finally, we discuss how results for time dependent parameters can be extended to the three-stage model and used to make inferences about models with parameter fluctuations induced by hidden stochastic variables.

  9. Shiftwork in the Norwegian petroleum industry: overcoming difficulties with family and social life – a cross sectional study

    PubMed Central

    Ljoså, Cathrine Haugene; Lau, Bjørn

    2009-01-01

    Background Continuous shift schedules are required in the petroleum industry because of its dependency on uninterrupted production. Although shiftwork affects health, less is known about its effects on social and domestic life. Methods Consequently, we studied these relationships in a sample of 1697 (response rate 55.9%) petroleum workers who worked onshore and offshore for a Norwegian oil and gas company. We also examined the roles of coping strategies and locus of control for handling self-reported problems with social and domestic life. A questionnaire containing scales from the Standard Shiftwork Index and Shiftwork Locus of Control was answered electronically. Results In general, only a few participants reported that their shift schedule affected their social and domestic/family life, and several participants had enough time to spend by themselves and with their partner, close family, friends, and children. Despite this general positive trend, differences were found for shift type and individual factors such as locus of control and coping strategies. Internal locus of control was associated positively with all the dependent variables. However, engaging problem-focused coping strategies were associated only slightly with the dependent variables, while disengaging emotion-focused coping strategies were negatively associated with the dependent variables. Conclusion Since most participants reported few problems with social and domestic/family life, the availability of more leisure time may be a positive feature of shiftwork in the Norwegian petroleum industry. Locus of control and the use of coping strategies were important for shiftworkers' social and domestic/family life. PMID:19650903

  10. Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.

    PubMed

    Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing

    2017-08-01

    The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.

  11. Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.

    NASA Astrophysics Data System (ADS)

    Gavazza, Sergio

    Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods are presented. The value of the methods is also discussed. It has been demonstrated that TAM and GAM can be used to enhance the understanding of the space- and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates related to radioactivated fluids flowing through pipes.

  12. Evaluation of family intervention through unobtrusive audio recordings: experiences in "bugging" children.

    PubMed

    Johnson, S M; Christensen, A; Bellamy, G T

    1976-01-01

    Five children referred to a child-family intervention program wore a radio transmitter in the home during pre-intervention and termination assessments. The transmitter broadcast to a receiver-recording apparatus in the home (either activated by an interval timer at predetermined "random" times or by parents at predetermined "picked" times). "Picked" times were parent-selected situations during which problems typically occurred (e.g., bedtime). Parents activated the recorder regularly whether or not problems occurred. Child-deviant, parent-negative, and parent-commanding behaviors were significantly higher at the picked times during pretest than at random times. At posttest, behaviors in all three classes were substantially reduced at picked times, but not at random times. For individual subject data, reductions occurred in at least two of the three dependent variables for three of the five cases during random time assessments. In general, the behavioral outcome data corresponded to parent-attitude reports and parent-collected observation data.

  13. Asymptotic behaviour of Stokes flow in a thin domain with a moving rough boundary

    PubMed Central

    Fabricius, J.; Koroleva, Y. O.; Tsandzana, A.; Wall, P.

    2014-01-01

    We consider a problem that models fluid flow in a thin domain bounded by two surfaces. One of the surfaces is rough and moving, whereas the other is flat and stationary. The problem involves two small parameters ϵ and μ that describe film thickness and roughness wavelength, respectively. Depending on the ratio λ=ϵ/μ, three different flow regimes are obtained in the limit as both of them tend to zero. Time-dependent equations of Reynolds type are obtained in all three cases (Stokes roughness, Reynolds roughness and high-frequency roughness regime). The derivations of the limiting equations are based on formal expansions in the parameters ϵ and μ. PMID:25002820

  14. A simple method to calculate first-passage time densities with arbitrary initial conditions

    NASA Astrophysics Data System (ADS)

    Nyberg, Markus; Ambjörnsson, Tobias; Lizana, Ludvig

    2016-06-01

    Numerous applications all the way from biology and physics to economics depend on the density of first crossings over a boundary. Motivated by the lack of general purpose analytical tools for computing first-passage time densities (FPTDs) for complex problems, we propose a new simple method based on the independent interval approximation (IIA). We generalise previous formulations of the IIA to include arbitrary initial conditions as well as to deal with discrete time and non-smooth continuous time processes. We derive a closed form expression for the FPTD in z and Laplace-transform space to a boundary in one dimension. Two classes of problems are analysed in detail: discrete time symmetric random walks (Markovian) and continuous time Gaussian stationary processes (Markovian and non-Markovian). Our results are in good agreement with Langevin dynamics simulations.

  15. NP-hardness of the cluster minimization problem revisited

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2005-10-01

    The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.

  16. Impact of hydrothermal alteration on time-dependent tunnel deformation in Neogene volcanic rock sequence in Japan: Petrology, Geochemistry and Geophysical investigation

    NASA Astrophysics Data System (ADS)

    Yamazaki, S.; Okazaki, K.; Niwa, H.; Arai, T.; Murayama, H.; Kurahashi, T.; Ito, Y.

    2017-12-01

    Time-dependent tunnel deformation is one of remaining geological problems for mountain tunneling. As a case study of time-dependent tunnel deformation, we investigated petrographical, mineral and chemical compositions of boring core samples and seismic exploration along a tunnel that constructed into Neogene volcanic rock sequence of andesite to dacite pyroclastic rocks and massive lavas with mafic enclaves. The tunnel has two zones of floor heaving that deformed time-dependently about 2 month after the tunnel excavation. The core samples around the deformed zones are characterized secondary mineral assemblages of smectite, cristobalite, tridymite, sulfides (pyrite and marcasite) and partially or completely reacted carbonates (calcite and siderite), which were formed by hydrothermal alteration under neutral to acidic condition below about 100 °C. The core samples also showed localized deterioration, such as crack formation and expansion, which occurred from few days to months after the drilling. The deterioration could be explained as a result of the cyclic physical and chemical weathering process with the oxidation of sulfide minerals, dissolution of carbonate mineral cementation and volumetric expantion of smectite. This weathering process is considered as a key factor for time-dependent tunnel deformation in the hydrothermally altered volcanic rocks. The zones of time-dependent deformation along a tunnel route can be predicted by the variations of whole-rock chemical compositions such as Na, Ca, Sr, Ba and S.

  17. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reactionmore » rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.« less

  18. Dependence and withdrawal reactions to benzodiazepines and selective serotonin reuptake inhibitors. How did the health authorities react?

    PubMed

    Nielsen, Margrethe; Hansen, Ebba Holme; Gøtzsche, Peter C

    2013-01-01

    Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time. Documentary study. We searched the web-sites of the European Medicines Agency and the drug agencies in USA, UK, and Denmark for documents mentioning benzodiazepines or SSRIs. We supplemented with other relevant literature that could contribute to our study. The searches were performed in 2009 in PubMed, Google, BMJ and JAMA. It took many years before the drug regulators acknowledged benzodiazepine dependence and SSRI withdrawal reactions and before the prescribers and the public were informed. Drug regulators relied mainly on the definitions of dependence and withdrawal reactions from the diagnostic psychiatric manuals, which contributed to the idea that SSRIs do not cause dependence, although it is difficult for many patients to stop treatment. In the perspective of a precautionary principle, drug agencies have failed to acknowledge that SSRIs can cause dependence and have minimised the problem with regard to its frequency and severity. In the perspective of a risk management principle, the drug agencies have reacted in concordance with the slowly growing knowledge of adverse drug reactions and have sharpened the information to the prescribers and the public over time. However, solely relying on spontaneous reporting of adverse effects leads to underestimation and delayed information about the problems. Given the experience with the benzodiazepines, we believe the regulatory bodies should have required studies from the manufacturers that could have elucidated the dependence potential of the SSRIs before marketing authorization was granted.

  19. Mathematical visualization process of junior high school students in solving a contextual problem based on cognitive style

    NASA Astrophysics Data System (ADS)

    Utomo, Edy Setiyo; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    The aim of this research was to describe the mathematical visualization process of Junior High School students in solving contextual problems based on cognitive style. Mathematical visualization process in this research was seen from aspects of image generation, image inspection, image scanning, and image transformation. The research subject was the students in the eighth grade based on GEFT test (Group Embedded Figures Test) adopted from Within to determining the category of cognitive style owned by the students namely field independent or field dependent and communicative. The data collection was through visualization test in contextual problem and interview. The validity was seen through time triangulation. The data analysis referred to the aspect of mathematical visualization through steps of categorization, reduction, discussion, and conclusion. The results showed that field-independent and field-dependent subjects were difference in responding to contextual problems. The field-independent subject presented in the form of 2D and 3D, while the field-dependent subject presented in the form of 3D. Both of the subjects had different perception to see the swimming pool. The field-independent subject saw from the top, while the field-dependent subject from the side. The field-independent subject chose to use partition-object strategy, while the field-dependent subject chose to use general-object strategy. Both the subjects did transformation in an object rotation to get the solution. This research is reference to mathematical curriculum developers of Junior High School in Indonesia. Besides, teacher could develop the students' mathematical visualization by using technology media or software, such as geogebra, portable cabri in learning.

  20. Time-dependent neo-deterministic seismic hazard scenarios for the 2016 Central Italy earthquakes sequence

    NASA Astrophysics Data System (ADS)

    Peresan, Antonella; Kossobokov, Vladimir; Romashkova, Leontina; Panza, Giuliano F.

    2017-04-01

    Predicting earthquakes and related ground shaking is widely recognized among the most challenging scientific problems, both for societal relevance and intrinsic complexity of the problem. The development of reliable forecasting tools requires their rigorous formalization and testing, first in retrospect, and then in an experimental real-time mode, which imply a careful application of statistics to data sets of limited size and different accuracy. Accordingly, the operational issues of prospective validation and use of time-dependent neo-deterministic seismic hazard scenarios are discussed, reviewing the results in their application in Italy and surroundings. Long-term practice and results obtained for the Italian territory in about two decades of rigorous prospective testing, support the feasibility of earthquake forecasting based on the analysis of seismicity patterns at the intermediate-term middle-range scale. Italy is the only country worldwide where two independent, globally tested, algorithms are simultaneously applied, namely CN and M8S, which permit to deal with multiple sets of seismic precursors to allow for a diagnosis of the intervals of time when a strong event is likely to occur inside a given region. Based on routinely updated space-time information provided by CN and M8S forecasts, an integrated procedure has been developed that allows for the definition of time-dependent seismic hazard scenarios, through the realistic modeling of ground motion by the neo-deterministic approach (NDSHA). This scenario-based methodology permits to construct, both at regional and local scale, scenarios of ground motion for the time interval when a strong event is likely to occur within the alerted areas. CN and M8S predictions, as well as the related time-dependent ground motion scenarios associated with the alarmed areas, are routinely updated since 2006. The issues and results from real-time testing of the integrated NDSHA scenarios are illustrated, with special emphasis on the sequence of destructive earthquakes that struck Central Italy starting on August 2016. The results obtained so far evidence the validity of the proposed methodology in anticipating ground shaking from approaching strong earthquakes and prove that the information provided by time-dependent NDSHA can be useful in assigning priorities for timely and effective mitigation actions.

  1. Comparative analysis of techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Hitt, E. F.; Bridgman, M. S.; Robinson, A. C.

    1981-01-01

    Performability analysis is a technique developed for evaluating the effectiveness of fault-tolerant computing systems in multiphase missions. Performability was evaluated for its accuracy, practical usefulness, and relative cost. The evaluation was performed by applying performability and the fault tree method to a set of sample problems ranging from simple to moderately complex. The problems involved as many as five outcomes, two to five mission phases, permanent faults, and some functional dependencies. Transient faults and software errors were not considered. A different analyst was responsible for each technique. Significantly more time and effort were required to learn performability analysis than the fault tree method. Performability is inherently as accurate as fault tree analysis. For the sample problems, fault trees were more practical and less time consuming to apply, while performability required less ingenuity and was more checkable. Performability offers some advantages for evaluating very complex problems.

  2. The Ozone Problem | Ground-level Ozone | New England | US ...

    EPA Pesticide Factsheets

    2017-04-10

    Many factors impact ground-level ozone development, including temperature, wind speed and direction, time of day, and driving patterns. Due to its dependence on weather conditions, ozone is typically a summertime pollutant and a chief component of summertime smog.

  3. Random walk in degree space and the time-dependent Watts-Strogatz model

    NASA Astrophysics Data System (ADS)

    Casa Grande, H. L.; Cotacallapa, M.; Hase, M. O.

    2017-01-01

    In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which is asymptotically exact for some regimes.

  4. Random walk in degree space and the time-dependent Watts-Strogatz model.

    PubMed

    Casa Grande, H L; Cotacallapa, M; Hase, M O

    2017-01-01

    In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which is asymptotically exact for some regimes.

  5. Generalized contact and improved frictional heating in the material point method

    NASA Astrophysics Data System (ADS)

    Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.

    2017-09-01

    The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.

  6. Generalized contact and improved frictional heating in the material point method

    NASA Astrophysics Data System (ADS)

    Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.

    2018-07-01

    The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.

  7. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.

    PubMed

    Neilson, Peter D; Neilson, Megan D

    2005-09-01

    Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.

  8. The influence of initial conditions on dispersion and reactions

    NASA Astrophysics Data System (ADS)

    Wood, B. D.

    2016-12-01

    In various generalizations of the reaction-dispersion problem, researchers have developed frameworks in which the apparent dispersion coefficient can be negative. Such dispersion coefficients raise several difficult questions. Most importantly, the presence of a negative dispersion coefficient at the macroscale leads to a macroscale representation that illustrates an apparent decrease in entropy with increasing time; this, then, appears to be in violation of basic thermodynamic principles. In addition, the proposition of a negative dispersion coefficient leads to an inherently ill-posed mathematical transport equation. The ill-posedness of the problem arises because there is no unique initial condition that corresponds to a later-time concentration distribution (assuming that if discontinuous initial conditions are allowed). In this presentation, we explain how the phenomena of negative dispersion coefficients actually arise because the governing differential equation for early times should, when derived correctly, incorporate a term that depends upon the initial and boundary conditions. The process of reactions introduces a similar phenomena, where the structure of the initial and boundary condition influences the form of the macroscopic balance equations. When upscaling is done properly, new equations are developed that include source terms that are not present in the classical (late-time) reaction-dispersion equation. These source terms depend upon the structure of the initial condition of the reacting species, and they decrease exponentially in time (thus, they converge to the conventional equations at asymptotic times). With this formulation, the resulting dispersion tensor is always positive-semi-definite, and the reaction terms directly incorporate information about the state of mixedness of the system. This formulation avoids many of the problems that would be engendered by defining negative-definite dispersion tensors, and properly represents the effective rate of reaction at early times.

  9. Longitudinal experiences of children remaining at home after a first-time investigation for suspected maltreatment

    PubMed Central

    Campbell, Kristine A.; Thomas, Andrea M.; Cook, Lawrence J.; Keenan, Heather T.

    2012-01-01

    Objective To describe longitudinal change in risk for children remaining at home following a first-time investigation for suspected maltreatment. Study design A retrospective cohort study of children remaining at home following first-time investigation for maltreatment using a nationally representative sample of households involved with Child Protective Services (CPS). Outcomes include poverty, social support, caregiver depression, intimate partner violence (IPV), drug/alcohol dependence, corporal punishment, and child behavior problems at baseline, 18, and 36 months following first-time CPS investigation. We present longitudinal models to 1) estimate prevalence of risk factors at each timepoint and 2) examine associations between risk-specific service referrals and longitudinal change in risk factor prevalence. Results Our sample represented 1,057,056 U.S. children remaining at home following first-time investigation for maltreatment. Almost 100,000 (9.2%) children experienced out-of-home placement within 36 months. The prevalence of poverty (44.3%), poor social support (36.3%), caregiver depression (24.4%), IPV (22.1%), and internalizing (30.0%) and externalizing (35.8%) child behavior problems was above general population prevalence at baseline and remained high over the next 36 months. Referral to risk-specific services occurred in a minority of cases, but was associated with significant longitudinal reductions in IPV, drug/alcohol dependence, and externalizing child behavior problems. Conclusions Children remaining at home following a first-time investigation for maltreatment live with persistent risk factors for repeat maltreatment. Appropriate service referrals are uncommon, but may be associated with meaningful reduction in risk over time. Pediatricians and policy makers may be able to improve outcomes in these families with appropriate service provision and referrals. PMID:22480699

  10. Lower bound on the time complexity of local adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenghao; Koh, Pang Wei; Zhao, Yan

    2006-11-01

    The adiabatic theorem of quantum physics has been, in recent times, utilized in the design of local search quantum algorithms, and has been proven to be equivalent to standard quantum computation, that is, the use of unitary operators [D. Aharonov in Proceedings of the 45th Annual Symposium on the Foundations of Computer Science, 2004, Rome, Italy (IEEE Computer Society Press, New York, 2004), pp. 42-51]. Hence, the study of the time complexity of adiabatic evolution algorithms gives insight into the computational power of quantum algorithms. In this paper, we present two different approaches of evaluating the time complexity for local adiabatic evolution using time-independent parameters, thus providing effective tests (not requiring the evaluation of the entire time-dependent gap function) for the time complexity of newly developed algorithms. We further illustrate our tests by displaying results from the numerical simulation of some problems, viz. specially modified instances of the Hamming weight problem.

  11. Parental Divorce, Maternal-Paternal Alcohol Problems, and Adult Offspring Lifetime Alcohol Dependence.

    PubMed

    Thompson, Ronald G; Alonzo, Dana; Hasin, Deborah S

    2013-01-01

    This study examined the influences of parental divorce and maternal-paternal histories of alcohol problems on adult offspring lifetime alcohol dependence using data from the 2001-2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC). Parental divorce and maternal-paternal alcohol problems interacted to differentially influence the likelihood of offspring lifetime alcohol dependence. Experiencing parental divorce and either maternal or paternal alcohol problems doubled the likelihood of alcohol dependence. Divorce and history of alcohol problems for both parents tripled the likelihood. Offspring of parental divorce may be more vulnerable to developing alcohol dependence, particularly when one or both parents have alcohol problems.

  12. Parental Divorce, Maternal-Paternal Alcohol Problems, and Adult Offspring Lifetime Alcohol Dependence

    PubMed Central

    THOMPSON, RONALD G.; ALONZO, DANA; HASIN, DEBORAH S.

    2014-01-01

    This study examined the influences of parental divorce and maternal-paternal histories of alcohol problems on adult offspring lifetime alcohol dependence using data from the 2001–2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC). Parental divorce and maternal-paternal alcohol problems interacted to differentially influence the likelihood of offspring lifetime alcohol dependence. Experiencing parental divorce and either maternal or paternal alcohol problems doubled the likelihood of alcohol dependence. Divorce and history of alcohol problems for both parents tripled the likelihood. Offspring of parental divorce may be more vulnerable to developing alcohol dependence, particularly when one or both parents have alcohol problems. PMID:24678271

  13. Advanced Monte Carlo methods for thermal radiation transport

    NASA Astrophysics Data System (ADS)

    Wollaber, Allan B.

    During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more accurate. Overall, the work presented represents first steps along several paths that can be taken to improve the Monte Carlo simulations of TRT problems.

  14. The Profile of Creativity and Proposing Statistical Problem Quality Level Reviewed From Cognitive Style

    NASA Astrophysics Data System (ADS)

    Awi; Ahmar, A. S.; Rahman, A.; Minggi, I.; Mulbar, U.; Asdar; Ruslan; Upu, H.; Alimuddin; Hamda; Rosidah; Sutamrin; Tiro, M. A.; Rusli

    2018-01-01

    This research aims to reveal the profile about the level of creativity and the ability to propose statistical problem of students at Mathematics Education 2014 Batch in the State University of Makassar in terms of their cognitive style. This research uses explorative qualitative method by giving meta-cognitive scaffolding at the time of research. The hypothesis of research is that students who have field independent (FI) cognitive style in statistics problem posing from the provided information already able to propose the statistical problem that can be solved and create new data and the problem is already been included as a high quality statistical problem, while students who have dependent cognitive field (FD) commonly are still limited in statistics problem posing that can be finished and do not load new data and the problem is included as medium quality statistical problem.

  15. Sampled-data H∞ filtering for Markovian jump singularly perturbed systems with time-varying delay and missing measurements

    NASA Astrophysics Data System (ADS)

    Yan, Yifang; Yang, Chunyu; Ma, Xiaoping; Zhou, Linna

    2018-02-01

    In this paper, sampled-data H∞ filtering problem is considered for Markovian jump singularly perturbed systems with time-varying delay and missing measurements. The sampled-data system is represented by a time-delay system, and the missing measurement phenomenon is described by an independent Bernoulli random process. By constructing an ɛ-dependent stochastic Lyapunov-Krasovskii functional, delay-dependent sufficient conditions are derived such that the filter error system satisfies the prescribed H∞ performance for all possible missing measurements. Then, an H∞ filter design method is proposed in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the feasibility and advantages of the obtained results.

  16. Fault detection for discrete-time LPV systems using interval observers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  17. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  18. Parametric modulation of thermomagnetic convection in magnetic fluids.

    PubMed

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  19. Surveying unsteady flows by means of movie sequences - A case study

    NASA Astrophysics Data System (ADS)

    Freymuth, P.; Bank, W.; Finaish, F.

    Photographic surveying techniques and their results are presented for vortical pattern development in unsteady two-dimensional flows, which depends on a multitude of parameters that have heretofore hampered broad investigation, in order to delineate the more important parametric dependencies. Samples are given from 100 films representing over 2000 sequences consisting of 400,000 photographic frames. Attention is given to the problems posed by resolution of time and lateral dimensions, spanwise vortical structure, and the dependence of angle of attack on Reynolds number and flow geometry.

  20. [Nationwide survey of alcohol drinking and alcoholism among Japanese adults].

    PubMed

    Osaki, Yoneatsu; Matsushita, Sachio; Shirasaka, Tomonobu; Hiro, Hisanori; Higuchi, Susumu

    2005-10-01

    To investigate the characteristics of alcohol use among Japanese adults and prevalence of alcohol dependence in Japan, we conducted a nationwide survey on alcohol drinking behavior and alcohol dependence among Japanese adults using a representative sampling method. We sampled 3500 adults from throughout the entire country using a stratified random sampling method with two-step stratification, and carried out a home visit interview survey. A total of 2547 people (72.8%) responded to the survey. The survey period was June, 2003. The questionnaire contained questions about the frequency and quantity of alcohol use, 'hazardous use of alcohol' and 'alcohol dependence' according to the ICD-10 definition, several screening scales on problem use of alcohol (CAGE, KAST, AUDIT), life-time prevalence of 24 alcohol related diseases, smoking status, dysgryphia, and nightcap drinking. The number of respondents was, 1184 males, and 1363 females. Lifetime alcohol drinking, and weekly drinking, and daily drinking rates were 95.1%, 64.4%, and 36.2% for males, 79.0%, 27.5%, and 7.5% for females, respectively. Average daily alcohol consumption was 3.7 units for males, and 2.0 units for females (1 unit = 10 g pure alcohol). The proportion of drinkers who drank alcohol 4 units or more daily was 28.9% for males, and 7.6% for females, and that for 6 units or more was 12.7% for males, and 3.4% for females. The proportion of flasher was 41.2% for males, and 35.0% for females. Among screening questions, problem drinking was most frequently identified using AUDIT (score 12 points or more, 150 persons), followed by KAST (2 points or more, 100 persons) and CAGE (2 points or more, 98 persons). The number of subjects who met the ICD-10 criteria for alcohol dependence was 24, while the number who engaged in hazardous alcohol use was 64. This study revealed that problem drinking and alcohol dependence are a serious problem in Japanese general population. The problem of females drinking may be growing. The government should emphasize the prevention of alcohol drinking problems in adults and continue the conduct of nationwide prevalence surveys to monitor the problem.

  1. The Relationship between the Amount of Learning and Time (The Example of Equations)

    ERIC Educational Resources Information Center

    Kesan, Cenk; Kaya, Deniz; Ok, Gokce; Erkus, Yusuf

    2016-01-01

    The main purpose of this study is to determine the amount of time-dependent learning of "solving problems that require establishing of single variable equations of the first order" of the seventh grade students. The study, adopting the screening model, consisted of a total of 84 students, including 42 female and 42 male students at the…

  2. Second-order numerical solution of time-dependent, first-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Shah, Patricia L.; Hardin, Jay

    1995-01-01

    A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.

  3. Discontinuous Galerkin method for coupled problems of compressible flow and elastic structures

    NASA Astrophysics Data System (ADS)

    Kosík, A.; Feistauer, M.; Hadrava, M.; Horáček, J.

    2013-10-01

    This paper is concerned with the numerical simulation of the interaction of 2D compressible viscous flow and an elastic structure. We consider the model of dynamical linear elasticity. Each individual problem is discretized in space by the discontinuous Galerkin method (DGM). For the time discretization we can use either the BDF (backward difference formula) method or also the DGM. The time dependence of the domain occupied by the fluid is given by the deformation of the elastic structure adjacent to the flow domain. It is treated with the aid of the Arbitrary Lagrangian-Eulerian (ALE) method. The fluid-structure interaction, given by transient conditions, is realized by an iterative process. The developed method is applied to the simulation of the biomechanical problem containing the onset of the voice production.

  4. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file, a discussion of radar cross section computations, a discussion of some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  5. Family Dysfunction Differentially Affects Alcohol and Methamphetamine Dependence: A View from the Addiction Severity Index in Japan

    PubMed Central

    Sugaya, Nagisa; Haraguchi, Ayako; Ogai, Yasukazu; Senoo, Eiichi; Higuchi, Susumu; Umeno, Mitsuru; Aikawa, Yuzo; Ikeda, Kazutaka

    2011-01-01

    We investigated the differential influence of family dysfunction on alcohol and methamphetamine dependence in Japan using the Addiction Severity Index (ASI), a useful instrument that multilaterally measures the severity of substance dependence. The participants in this study were 321 male patients with alcohol dependence and 68 male patients with methamphetamine dependence. We conducted semi-structured interviews with each patient using the ASI, which is designed to assess problem severity in seven functional domains: Medical, Employment/Support, Alcohol use, Drug use, Legal, Family/Social relationships, and Psychiatric. In patients with alcohol dependence, bad relationships with parents, brothers and sisters, and friends in their lives were related to current severe psychiatric problems. Bad relationships with brothers and sisters and partners in their lives were related to current severe employment/support problems, and bad relationships with partners in their lives were related to current severe family/social problems. The current severity of psychiatric problems was related to the current severity of drug use and family/social problems in patients with alcohol dependence. Patients with methamphetamine dependence had difficulty developing good relationships with their father. Furthermore, the current severity of psychiatric problems was related to the current severity of medical, employment/support, and family/social problems in patients with methamphetamine dependence. The results of this study suggest that family dysfunction differentially affects alcohol and methamphetamine dependence. Additionally, family relationships may be particularly related to psychiatric problems in these patients, although the ASI was developed to independently evaluate each of seven problem areas. PMID:22073020

  6. Family dysfunction differentially affects alcohol and methamphetamine dependence: a view from the Addiction Severity Index in Japan.

    PubMed

    Sugaya, Nagisa; Haraguchi, Ayako; Ogai, Yasukazu; Senoo, Eiichi; Higuchi, Susumu; Umeno, Mitsuru; Aikawa, Yuzo; Ikeda, Kazutaka

    2011-10-01

    We investigated the differential influence of family dysfunction on alcohol and methamphetamine dependence in Japan using the Addiction Severity Index (ASI), a useful instrument that multilaterally measures the severity of substance dependence. The participants in this study were 321 male patients with alcohol dependence and 68 male patients with methamphetamine dependence. We conducted semi-structured interviews with each patient using the ASI, which is designed to assess problem severity in seven functional domains: Medical, Employment/Support, Alcohol use, Drug use, Legal, Family/Social relationships, and Psychiatric. In patients with alcohol dependence, bad relationships with parents, brothers and sisters, and friends in their lives were related to current severe psychiatric problems. Bad relationships with brothers and sisters and partners in their lives were related to current severe employment/support problems, and bad relationships with partners in their lives were related to current severe family/social problems. The current severity of psychiatric problems was related to the current severity of drug use and family/social problems in patients with alcohol dependence. Patients with methamphetamine dependence had difficulty developing good relationships with their father. Furthermore, the current severity of psychiatric problems was related to the current severity of medical, employment/support, and family/social problems in patients with methamphetamine dependence. The results of this study suggest that family dysfunction differentially affects alcohol and methamphetamine dependence. Additionally, family relationships may be particularly related to psychiatric problems in these patients, although the ASI was developed to independently evaluate each of seven problem areas.

  7. Pre-divorce problems in 3-year-olds: a prospective study in boys and girls.

    PubMed

    Robbers, Sylvana C C; Bartels, Meike; van Beijsterveldt, C E M Toos; Verhulst, Frank C; Huizink, Anja C; Boomsma, Dorret I

    2011-04-01

    We examined to what extent internalizing and externalizing problems at age 3 preceded and predicted parental divorce, and if divorce and the time lapse since divorce were related to internalizing and externalizing problems at age 12. Parental ratings of internalizing and externalizing problems were collected with the Child Behavior Checklist (CBCL) in a large sample (N = 6,426) of 3-year-old children. All these children were followed through the age of 12 years, at which parents completed the CBCL again, while teachers completed the Teacher's Report Form. Children whose parents divorced between age 3 and age 12 were compared with children whose families remained intact. Girls whose parents divorced between ages 3 and 12 already showed more externalizing problems at age 3 than girls whose parents stayed married. Higher levels of externalizing problems in girls at age 3 predicted later parental divorce. Parental reports indicated that 12-year-olds with divorced parents showed more internalizing and externalizing problems than children with married parents. Levels of teacher-reported problems were not different between children with married versus divorced parents. However, children whose parents divorced between ages 3 and 12 showed more teacher-rated internalizing problems at age 12 when the divorce was more recent than when the divorce was less recent. Parental ratings of both internalizing and externalizing problems at age 12 were not associated with the time lapse since divorce. Externalizing problems in girls precede and predict later parental divorce. Post-divorce problems in children vary by raters, and may depend on the time lapse since divorce.

  8. Control of discrete time systems based on recurrent Super-Twisting-like algorithm.

    PubMed

    Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L

    2016-09-01

    Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Relationship of corporal punishment and antisocial behavior by neighborhood.

    PubMed

    Grogan-Kaylor, Andrew

    2005-10-01

    To examine the relationship of corporal punishment with children's behavior problems while accounting for neighborhood context and while using stronger statistical methods than previous literature in this area, and to examine whether different levels of corporal punishment have different effects in different neighborhood contexts. Longitudinal cohort study. General community. 1943 mother-child pairs from the National Longitudinal Survey of Youth. Internalizing and externalizing behavior problem scales of the Behavior Problems Index. Parental use of corporal punishment was associated with a 0.71 increase (P<.05) in children's externalizing behavior problems even when several parenting behaviors, neighborhood quality, and all time-invariant variables were accounted for. The association of corporal punishment and children's externalizing behavior problems was not dependent on neighborhood context. The research found no discernible relationship between corporal punishment and internalizing behavior problems.

  10. Implementation of Tree and Butterfly Barriers with Optimistic Time Management Algorithms for Discrete Event Simulation

    NASA Astrophysics Data System (ADS)

    Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia

    The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.

  11. CSM solutions of rotating blade dynamics using integrating matrices

    NASA Technical Reports Server (NTRS)

    Lakin, William D.

    1992-01-01

    The dynamic behavior of flexible rotating beams continues to receive considerable research attention as it constitutes a fundamental problem in applied mechanics. Further, beams comprise parts of many rotating structures of engineering significance. A topic of particular interest at the present time involves the development of techniques for obtaining the behavior in both space and time of a rotor acted upon by a simple airload loading. Most current work on problems of this type use solution techniques based on normal modes. It is certainly true that normal modes cannot be disregarded, as knowledge of natural blade frequencies is always important. However, the present work has considered a computational structural mechanics (CSM) approach to rotor blade dynamics problems in which the physical properties of the rotor blade provide input for a direct numerical solution of the relevant boundary-and-initial-value problem. Analysis of the dynamics of a given rotor system may require solution of the governing equations over a long time interval corresponding to many revolutions of the loaded flexible blade. For this reason, most of the common techniques in computational mechanics, which treat the space-time behavior concurrently, cannot be applied to the rotor dynamics problem without a large expenditure of computational resources. By contrast, the integrating matrix technique of computational mechanics has the ability to consistently incorporate boundary conditions and 'remove' dependence on a space variable. For problems involving both space and time, this feature of the integrating matrix approach thus can generate a 'splitting' which forms the basis of an efficient CSM method for numerical solution of rotor dynamics problems.

  12. An Item Response Theory Analysis of DSM-IV Cannabis Abuse and Dependence Criteria in Adolescents

    PubMed Central

    Hartman, Christie A.; Gelhorn, Heather; Crowley, Thomas J.; Sakai, Joseph T.; Stallings, Michael; Young, Susan E.; Rhee, Soo Hyun; Corley, Robin; Hewitt, John K.; Hopfer, Christian J.

    2008-01-01

    Objective To examine three aspects of adolescent cannabis problems: 1) do DSM-IV cannabis abuse and dependence criteria represent two different levels of severity of substance involvement, 2) to what degree do each of the 11 abuse and dependence criteria assess adolescent cannabis problems, and 3) do the DSM-IV items function similarly across different adolescent populations? Method We examined 5587 adolescents aged 11–19, including 615 youth in treatment for substance use disorders, 179 adjudicated youth, and 4793 youth from the community. All subjects were assessed with a structured diagnostic interview. Item response theory was utilized to analyze symptom endorsement patterns. Results Abuse and dependence criteria were not found to represent different levels of severity of problem cannabis use in any of the samples. Among the 11 abuse and dependence criteria, Problems cutting down and Legal problems were the least informative for distinguishing problem users. Two dependence criteria and three of the four abuse criteria indicated different severities of cannabis problems across samples. Conclusions We found little evidence to support the idea that abuse and dependence are separate constructs for adolescent cannabis problems. Furthermore, certain abuse criteria may indicate severe substance problems while specific dependence items may indicate less severe problems. The abuse items in particular need further study. These results have implications for the refinement of the current substance use disorder criteria for DSM-V. PMID:18176333

  13. QPROP: A Schrödinger-solver for intense laser atom interaction

    NASA Astrophysics Data System (ADS)

    Bauer, Dieter; Koval, Peter

    2006-03-01

    The QPROP package is presented. QPROP has been developed to study laser-atom interaction in the nonperturbative regime where nonlinear phenomena such as above-threshold ionization, high order harmonic generation, and dynamic stabilization are known to occur. In the nonrelativistic regime and within the single active electron approximation, these phenomena can be studied with QPROP in the most rigorous way by solving the time-dependent Schrödinger equation in three spatial dimensions. Because QPROP is optimized for the study of quantum systems that are spherically symmetric in their initial, unperturbed configuration, all wavefunctions are expanded in spherical harmonics. Time-propagation of the wavefunctions is performed using a split-operator approach. Photoelectron spectra are calculated employing a window-operator technique. Besides the solution of the time-dependent Schrödinger equation in single active electron approximation, QPROP allows to study many-electron systems via the solution of the time-dependent Kohn-Sham equations. Program summaryProgram title:QPROP Catalogue number:ADXB Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXB Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer on which program has been tested:PC Pentium IV, Athlon Operating system:Linux Program language used:C++ Memory required to execute with typical data:Memory requirements depend on the number of propagated orbitals and on the size of the orbitals. For instance, time-propagation of a hydrogenic wavefunction in the perturbative regime requires about 64 KB RAM (4 radial orbitals with 1000 grid points). Propagation in the strongly nonperturbative regime providing energy spectra up to high energies may need 60 radial orbitals, each with 30000 grid points, i.e. about 30 MB. Examples are given in the article. No. of bits in a word:Real and complex valued numbers of double precision are used No. of lines in distributed program, including test data, etc.:69 995 No. of bytes in distributed program, including test data, etc.: 2 927 567 Peripheral used:Disk for input-output, terminal for interaction with the user CPU time required to execute test data:Execution time depends on the size of the propagated orbitals and the number of time-steps Distribution format:tar.gz Nature of the physical problem:Atoms put into the strong field of modern lasers display a wealth of novel phenomena that are not accessible to conventional perturbation theory where the external field is considered small as compared to inneratomic forces. Hence, the full ab initio solution of the time-dependent Schrödinger equation is desirable but in full dimensionality only feasible for no more than two (active) electrons. If many-electron effects come into play or effective ground state potentials are needed, (time-dependent) density functional theory may be employed. QPROP aims at providing tools for (i) the time-propagation of the wavefunction according to the time-dependent Schrödinger equation, (ii) the time-propagation of Kohn-Sham orbitals according to the time-dependent Kohn-Sham equations, and (iii) the energy-analysis of the final one-electron wavefunction (or the Kohn-Sham orbitals). Method of solution:An expansion of the wavefunction in spherical harmonics leads to a coupled set of equations for the radial wavefunctions. These radial wavefunctions are propagated using a split-operator technique and the Crank-Nicolson approximation for the short-time propagator. The initial ground state is obtained via imaginary time-propagation for spherically symmetric (but otherwise arbitrary) effective potentials. Excited states can be obtained through the combination of imaginary time-propagation and orthogonalization. For the Kohn-Sham scheme a multipole expansion of the effective potential is employed. Wavefunctions can be analyzed using the window-operator technique, facilitating the calculation of electron spectra, either angular-resolved or integrated Restrictions onto the complexity of the problem:The coupling of the atom to the external field is treated in dipole approximation. The time-dependent Schrödinger solver is restricted to the treatment of a single active electron. As concerns the time-dependent density functional mode of QPROP, the Hartree-potential (accounting for the classical electron-electron repulsion) is expanded up to the quadrupole. Only the monopole term of the Krieger-Li-Iafrate exchange potential is currently implemented. As in any nontrivial optimization problem, convergence to the optimal many-electron state (i.e. the ground state) is not automatically guaranteed External routines/libraries used:The program uses the well established libraries BLAS, LAPACK, and F2C

  14. Numerical study of signal propagation in corrugated coaxial cables

    DOE PAGES

    Li, Jichun; Machorro, Eric A.; Shields, Sidney

    2017-01-01

    Our article focuses on high-fidelity modeling of signal propagation in corrugated coaxial cables. Taking advantage of the axisymmetry, the authors reduce the 3-D problem to a 2-D problem by solving time-dependent Maxwell's equations in cylindrical coordinates.They then develop a nodal discontinuous Galerkin method for solving their model equations. We prove stability and error analysis for the semi-discrete scheme. We we present our numerical results, we demonstrate that our algorithm not only converges as our theoretical analysis predicts, but it is also very effective in solving a variety of signal propagation problems in practical corrugated coaxial cables.

  15. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin

    2012-08-01

    SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.

  16. Cyclic phase change in a cylindrical thermal energy storage capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, M.; Mujumdar, A.S.; Weber, M.E.

    1983-12-01

    This paper is concerned with a practical melting/freezing problem in conjunction with the more realistic case of a cyclic phase change thermal energy storage device. In this model the phase change medium is encapsulated in long cylindrical tubes, the surface temperature of which is allowed to vary sinusoidally with time about the discrete freezing temperature. Initial temperature of the medium is assumed to be constant at a temperature above or below the freezing/melting temperature. Natural convection in the melt is assumed to be negligible and the variations in the depth of freezing and/or melting in each half cycle is ignored.more » Depending on the half-cycle parameters the problem is simplified to either freezing or melting. The governing one-dimensional heat diffusion equations for both phases are solved by the Finite Integral Transform techniques. The kernels for the transformation are the time-dependent eigen functions separately defined for each phases. This extended transform method can accomodate any time-dependent surface temperature variation. The application of the transform generated a series of coupled, nonlinear first order differential equations, which are solved by Runge Kutta-Verner fifth and sixth order method. Dimensionless solutions of temperature variations in both phases, fusion front position and the fraction solidified (or melted) are displayed graphically to aid in practical calculations. For the special case of a constant surface temperature, comparisons are made between the present results and the existing integral and purely numerical results. The results are found to compare favourably. Results for fractional solidification (or melting and interface position are also compared with the simple Conduction Shape Factor method, after allowing for the time-dependent boundary conditions. Once again the results agree reasonably well.« less

  17. Harmonic oscillators and resonance series generated by a periodic unstable classical orbit

    NASA Technical Reports Server (NTRS)

    Kazansky, A. K.; Ostrovsky, Valentin N.

    1995-01-01

    The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.

  18. Advances in numerical and applied mathematics

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)

    1986-01-01

    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.

  19. Directive sources in acoustic discrete-time domain simulations based on directivity diagrams.

    PubMed

    Escolano, José; López, José J; Pueo, Basilio

    2007-06-01

    Discrete-time domain methods provide a simple and flexible way to solve initial boundary value problems. With regard to the sources in such methods, only monopoles or dipoles can be considered. However, in many problems such as room acoustics, the radiation of realistic sources is directional-dependent and their directivity patterns have a clear influence on the total sound field. In this letter, a method to synthesize the directivity of sources is proposed, especially in cases where the knowledge is only based on discrete values of the directivity diagram. Some examples have been carried out in order to show the behavior and accuracy of the proposed method.

  20. A comparison of mixed-integer linear programming models for workforce scheduling with position-dependent processing times

    NASA Astrophysics Data System (ADS)

    Moreno-Camacho, Carlos A.; Montoya-Torres, Jairo R.; Vélez-Gallego, Mario C.

    2018-06-01

    Only a few studies in the available scientific literature address the problem of having a group of workers that do not share identical levels of productivity during the planning horizon. This study considers a workforce scheduling problem in which the actual processing time is a function of the scheduling sequence to represent the decline in workers' performance, evaluating two classical performance measures separately: makespan and maximum tardiness. Several mathematical models are compared with each other to highlight the advantages of each approach. The mathematical models are tested with randomly generated instances available from a public e-library.

  1. Numerical Simulation of Interaction of Human Vocal Folds and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Kosík, A.; Feistauer, M.; Horáček, J.; Sváček, P.

    Our goal is to simulate airflow in human vocal folds and their flow-induced vibrations. We consider two-dimensional viscous incompressible flow in a time-dependent domain. The fluid flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation. The flow problem is coupled with the elastic behaviour of the solid bodies. The developed solution of the coupled problem based on the finite element method is demonstrated by numerical experiments.

  2. An at-site flood estimation method in the context of nonstationarity I. A simulation study

    NASA Astrophysics Data System (ADS)

    Gado, Tamer A.; Nguyen, Van-Thanh-Van

    2016-04-01

    The stationarity of annual flood peak records is the traditional assumption of flood frequency analysis. In some cases, however, as a result of land-use and/or climate change, this assumption is no longer valid. Therefore, new statistical models are needed to capture dynamically the change of probability density functions over time, in order to obtain reliable flood estimation. In this study, an innovative method for nonstationary flood frequency analysis was presented. Here, the new method is based on detrending the flood series and applying the L-moments along with the GEV distribution to the transformed ;stationary; series (hereafter, this is called the LM-NS). The LM-NS method was assessed through a comparative study with the maximum likelihood (ML) method for the nonstationary GEV model, as well as with the stationary (S) GEV model. The comparative study, based on Monte Carlo simulations, was carried out for three nonstationary GEV models: a linear dependence of the mean on time (GEV1), a quadratic dependence of the mean on time (GEV2), and linear dependence in both the mean and log standard deviation on time (GEV11). The simulation results indicated that the LM-NS method performs better than the ML method for most of the cases studied, whereas the stationary method provides the least accurate results. An additional advantage of the LM-NS method is to avoid the numerical problems (e.g., convergence problems) that may occur with the ML method when estimating parameters for small data samples.

  3. The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun

    1993-01-01

    The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.

  4. Mathematical characterization of mechanical behavior of porous frictional granular media

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Lee, J. K.

    1972-01-01

    A new definition of loading and unloading along the yield surface of Roscoe and Burland is introduced. This is achieved by noting that the strain-hardening parameter in the plastic potential function is deduced from the yield locus equation of Roscoe and Burland. The analytical results are compared with the experimental results for plate-bearing and cone-penetrometer problems and close agreements are demonstrated. The wheel-soil interaction is studied under dynamic loading. The rate-dependent plasticity or viscoelastoplastic behavior is considered. This is accomplished by the internal (hidden) variables associated with time-dependent viscous properties directly superimposed with inelastic behavior governed by the yield criteria of Roscoe and Burland. Effects of inertia and energy dissipation are properly accounted for. Example problems are presented.

  5. Nonequilibrium Steady State Generated by a Moving Defect: The Supersonic Threshold

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; De Luca, Andrea

    2018-02-01

    We consider the dynamics of a system of free fermions on a 1D lattice in the presence of a defect moving at constant velocity. The defect has the form of a localized time-dependent variation of the chemical potential and induces at long times a nonequilibrium steady state (NESS), which spreads around the defect. We present a general formulation that allows recasting the time-dependent protocol in a scattering problem on a static potential. We obtain a complete characterization of the NESS. In particular, we show a strong dependence on the defect velocity and the existence of a sharp threshold when such velocity exceeds the speed of sound. Beyond this value, the NESS is not produced and, remarkably, the defect travels without significantly perturbing the system. We present an exact solution for a δ -like defect traveling with an arbitrary velocity and we develop a semiclassical approximation that provides accurate results for smooth defects.

  6. Indispensable finite time corrections for Fokker-Planck equations from time series data.

    PubMed

    Ragwitz, M; Kantz, H

    2001-12-17

    The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from finite sampling rates. We show that previously published results are degraded considerably by such effects. We present correction terms which yield a robust estimation of the diffusion terms, together with a novel method for one-dimensional problems. We apply these methods to time series data of local surface wind velocities, where the dependence of the diffusion constant on the state variable shows a different behavior than previously suggested.

  7. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended timemore » integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.« less

  8. Quenching rate for a nonlocal problem arising in the micro-electro mechanical system

    NASA Astrophysics Data System (ADS)

    Guo, Jong-Shenq; Hu, Bei

    2018-03-01

    In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except the constant limit depends on the solution itself.

  9. Connectivity as an alternative to boundary integral equations: Construction of bases

    PubMed Central

    Herrera, Ismael; Sabina, Federico J.

    1978-01-01

    In previous papers Herrera developed a theory of connectivity that is applicable to the problem of connecting solutions defined in different regions, which occurs when solving partial differential equations and many problems of mechanics. In this paper we explain how complete connectivity conditions can be used to replace boundary integral equations in many situations. We show that completeness is satisfied not only in steady-state problems such as potential, reduced wave equation and static and quasi-static elasticity, but also in time-dependent problems such as heat and wave equations and dynamical elasticity. A method to obtain bases of connectivity conditions, which are independent of the regions considered, is also presented. PMID:16592522

  10. MODFLOW-2000 Ground-Water Model?User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package

    USGS Publications Warehouse

    Hoffmann, Jörn; Leake, S.A.; Galloway, D.L.; Wilson, Alicia M.

    2003-01-01

    This report documents a computer program, the Subsidence and Aquifer-System Compaction (SUB) Package, to simulate aquifer-system compaction and land subsidence using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. The SUB Package simulates elastic (recoverable) compaction and expansion, and inelastic (permanent) compaction of compressible fine-grained beds (interbeds) within the aquifers. The deformation of the interbeds is caused by head or pore-pressure changes, and thus by changes in effective stress, within the interbeds. If the stress is less than the preconsolidation stress of the sediments, the deformation is elastic; if the stress is greater than the preconsolidation stress, the deformation is inelastic. The propagation of head changes within the interbeds is defined by a transient, one-dimensional (vertical) diffusion equation. This equation accounts for delayed release of water from storage or uptake of water into storage in the interbeds. Properties that control the timing of the storage changes are vertical hydraulic diffusivity and interbed thickness. The SUB Package supersedes the Interbed Storage Package (IBS1) for MODFLOW, which assumes that water is released from or taken into storage with changes in head in the aquifer within a single model time step and, therefore, can be reasonably used to simulate only thin interbeds. The SUB Package relaxes this assumption and can be used to simulate time-dependent drainage and compaction of thick interbeds and confining units. The time-dependent drainage can be turned off, in which case the SUB Package gives results identical to those from IBS1. Three sample problems illustrate the usefulness of the SUB Package. One sample problem verifies that the package works correctly. This sample problem simulates the drainage of a thick interbed in response to a step change in head in the adjacent aquifer and closely matches the analytical solution. A second sample problem illustrates the effects of seasonally varying discharge and recharge to an aquifer system with a thick interbed. A third sample problem simulates a multilayered regional ground-water basin. Model input files for the third sample problem are included in the appendix.

  11. Time dependent neural network models for detecting changes of state in complex processes: applications in earth sciences and astronomy.

    PubMed

    Valdés, Julio J; Bonham-Carter, Graeme

    2006-03-01

    A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.

  12. Treatments of Precipitation Inputs to Hydrologic Models

    USDA-ARS?s Scientific Manuscript database

    Hydrological models are used to assess many water resources problems from agricultural use and water quality to engineering issues. The success of these models are dependent on correct parameterization; the most sensitive being the rainfall input time series. These records can come from land-based ...

  13. Association of screen time with self-perceived attention problems and hyperactivity levels in French students: a cross-sectional study

    PubMed Central

    Guichard, Elie; Kurth, Tobias

    2016-01-01

    Objective To investigate whether high levels of screen time exposure are associated with self-perceived levels of attention problems and hyperactivity in higher education students. Design Cross-sectional study among participants of the i-Share cohort. Setting French-speaking students of universities and higher education institutions. Participants 4816 graduate students who were at least 18 years old. Exposure Screen time was assessed by self-report of the average time spent on five different screen activities on smartphone, television, computer and tablet and categorised into quartiles. Main outcome measure We used the Attention Deficit Hyperactivity Disorder Self-Report Scale (ASRS-v1.1) concerning students’ behaviour over the past 6 months to measure self-perceived levels of attention problems and hyperactivity. Responses were summarised into a global score as well as scores for attention problems and hyperactivity. Results The 4816 participants of this study had a mean age of 20.8 years and 75.5% were female. Multivariable ordinary regression models showed significant associations of screen time exposure with quintiles of the total score of self-perceived attention problems and hyperactivity levels as well as the individual domains. Compared to the lowest screen time exposure category, the ORs (95% CI) were 1.58 (1.37 to 1.82) for each increasing level of quintiles of the global score, 1.57 (1.36 to 1.81) for increasing quintiles of attention levels and 1.25 (1.09 to 1.44) for increasing quartiles of hyperactivity. Conclusions Results of this large cross-sectional study among French university and higher education students show dose-dependent associations between screen time and self-perceived levels of attention problems and hyperactivity. Further studies are warranted to evaluate whether interventions could positively influence these associations. PMID:26920440

  14. Should Parents Allow Their Adolescent Children to Drink at Home? Family Factors as Predictors of Alcohol Involvement Trajectories Over 15 Years.

    PubMed

    Levitt, Ash; Cooper, M Lynne

    2015-09-01

    The present study examined familial risk and protective factors as moderators of parents allowing their adolescent children to drink at home on longitudinal alcohol involvement trajectories. A total of 772 community adolescents and their parents provided data beginning in 1989 and at four subsequent time points over 15 years; Black adolescents were intentionally oversampled (50% at baseline). Outcomes related to allowing adolescents to drink at home depended on family structure: Adolescents from intact families who were allowed to drink at home showed the lowest levels of alcohol use and problems over time, whereas those from nonintact families who were allowed to drink at home showed the highest levels of involvement. These results controlled for family history of alcohol problems, consistent parenting styles, and demographic characteristics. Results suggest that allowing adolescents to drink at home is neither inherently protective nor risky but depends on the family context. Implications for the development of adolescent alcohol involvement are discussed.

  15. Communication: Overcoming the root search problem in complex quantum trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamstein, Noa; Tannor, David J.

    2014-01-28

    Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassicalmore » coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches.« less

  16. Imprints from the global cosmological expansion to the local spacetime dynamics.

    PubMed

    Fahr, Hans J; Siewert, Mark

    2008-05-01

    We study the general relativistic spacetime metrics surrounding massive cosmological objects, such as suns, stars, galaxies or galaxy clusters. The question addressed here is the transition of local, object-related spacetime metrics into the global, cosmological Robertson-Walker metrics. We demonstrate that the answer often quoted for this problem from the literature, the so-called Einstein-Straus vacuole, which connects a static outer Schwarzschild solution with the time-dependent Robertson-Walker universe, is inadequate to describe the local spacetime of a gravitationally bound system. Thus, we derive here an alternative model describing such bound systems by a metrics more closely tied to the fundamental problem of structure formation in the early universe and obtain a multitude of solutions characterising the time-dependence of a local scale parameter. As we can show, a specific solution out of this multitude is able to, as a by-product, surprisingly enough, explain the presently much discussed phenomenon of the PIONEER anomaly.

  17. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects.

    PubMed

    Sidorenko, Pavel; Kfir, Ofer; Shechtman, Yoav; Fleischer, Avner; Eldar, Yonina C; Segev, Mordechai; Cohen, Oren

    2015-09-08

    Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa.

  18. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy.

    PubMed

    Fayer, M D

    2009-01-01

    A wide variety of molecular systems undergo fast structural changes under thermal equilibrium conditions. Such transformations are involved in a vast array of chemical problems. Experimentally measuring equilibrium dynamics is a challenging problem that is at the forefront of chemical research. This review describes ultrafast 2D IR vibrational echo chemical exchange experiments and applies them to several types of molecular systems. The formation and dissociation of organic solute-solvent complexes are directly observed. The dissociation times of 13 complexes, ranging from 4 ps to 140 ps, are shown to obey a relationship that depends on the complex's formation enthalpy. The rate of rotational gauche-trans isomerization around a carbon-carbon single bond is determined for a substituted ethane at room temperature in a low viscosity solvent. The results are used to obtain an approximate isomerization rate for ethane. Finally, the time dependence of a well-defined single structural transformation of a protein is measured.

  19. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry

    1989-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  20. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry

    1990-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  1. Artificial neuron-glia networks learning approach based on cooperative coevolution.

    PubMed

    Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B

    2015-06-01

    Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.

  2. Processing multiple non-adjacent dependencies: evidence from sequence learning

    PubMed Central

    de Vries, Meinou H.; Petersson, Karl Magnus; Geukes, Sebastian; Zwitserlood, Pienie; Christiansen, Morten H.

    2012-01-01

    Processing non-adjacent dependencies is considered to be one of the hallmarks of human language. Assuming that sequence-learning tasks provide a useful way to tap natural-language-processing mechanisms, we cross-modally combined serial reaction time and artificial-grammar learning paradigms to investigate the processing of multiple nested (A1A2A3B3B2B1) and crossed dependencies (A1A2A3B1B2B3), containing either three or two dependencies. Both reaction times and prediction errors highlighted problems with processing the middle dependency in nested structures (A1A2A3B3_B1), reminiscent of the ‘missing-verb effect’ observed in English and French, but not with crossed structures (A1A2A3B1_B3). Prior linguistic experience did not play a major role: native speakers of German and Dutch—which permit nested and crossed dependencies, respectively—showed a similar pattern of results for sequences with three dependencies. As for sequences with two dependencies, reaction times and prediction errors were similar for both nested and crossed dependencies. The results suggest that constraints on the processing of multiple non-adjacent dependencies are determined by the specific ordering of the non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved (i.e. two or three). Furthermore, these constraints may not be specific to language but instead derive from limitations on structured sequence learning. PMID:22688641

  3. Iterated greedy algorithms to minimize the total family flow time for job-shop scheduling with job families and sequence-dependent set-ups

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Su; Park, Jung-Hyeon; Lee, Dong-Ho

    2017-10-01

    This study addresses a variant of job-shop scheduling in which jobs are grouped into job families, but they are processed individually. The problem can be found in various industrial systems, especially in reprocessing shops of remanufacturing systems. If the reprocessing shop is a job-shop type and has the component-matching requirements, it can be regarded as a job shop with job families since the components of a product constitute a job family. In particular, sequence-dependent set-ups in which set-up time depends on the job just completed and the next job to be processed are also considered. The objective is to minimize the total family flow time, i.e. the maximum among the completion times of the jobs within a job family. A mixed-integer programming model is developed and two iterated greedy algorithms with different local search methods are proposed. Computational experiments were conducted on modified benchmark instances and the results are reported.

  4. Smooth time-dependent receiver operating characteristic curve estimators.

    PubMed

    Martínez-Camblor, Pablo; Pardo-Fernández, Juan Carlos

    2018-03-01

    The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.

  5. Rigorous approaches to tether dynamics in deployment and retrieval

    NASA Technical Reports Server (NTRS)

    Antona, Ettore

    1987-01-01

    Dynamics of tethers in a linearized analysis can be considered as the superposition of propagating waves. This approach permits a new way for the analysis of tether behavior during deployment and retrieval, where a tether is composed by a part at rest and a part subjected to propagation phenomena, with the separating section depending on time. The dependence on time of the separating section requires the analysis of the reflection of the waves travelling toward the part at rest. Such a reflection generates a reflected wave, whose characteristics are determined. The propagation phenomena of major interest in a tether are transverse waves and longitudinal waves, all mathematically modelled by the vibrating chord equations, if the tension is considered constant along the tether. An interesting problem also considered is concerned with the dependence of the tether tension from the longitudinal position, due to microgravity, and the influence of this dependence on the propagation waves.

  6. Dynamics of vapor bubbles growth at boiling resulting from enthalpy excess of the surrounding superheated liquid and sound pulses generated by bubbles

    NASA Astrophysics Data System (ADS)

    Dorofeev, B. M.; Volkova, V. I.

    2016-01-01

    The results of experiments investigating the exponential dependence of the vapor bubble radius on time at saturated boiling are generalized. Three different methods to obtain this dependence are suggested: (1) by the application of the transient heat conduction equation, (2) by using the correlations of energy conservation, and (3) by solving a similar electrodynamic problem. Based on the known experimental data, the accuracy of the dependence up to one percent and a few percent accuracy of its description based on the sound pressure generated by a vapor bubble have been determined. A significant divergence of the power dependence of the vapor bubble radius on time (with an exponent of 1/2) with the experimental results and its inadequacy for the description of the sound pulse generated by the bubble have been demonstrated.

  7. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of solutions of continuous time wavelet numerical methods for the nonlinear aerosol dynamics are proved by using Schauder's fixed point theorem and the variational technique. Optimal error estimates are derived for both continuous and discrete time wavelet Galerkin schemes. We further derive reliable and efficient a posteriori error estimate which is based on stable multiresolution wavelet bases and an adaptive space-time algorithm for efficient solution of linear parabolic differential equations. The adaptive space refinement strategies based on the locality of corresponding multiresolution processes are proved to converge. At last, we develop efficient numerical methods by combining the wavelet methods proposed in previous parts and the splitting technique to solve the spatial aerosol dynamic equations. Wavelet methods along the particle size direction and the upstream finite difference method along the spatial direction are alternately used in each time interval. Numerical experiments are taken to show the effectiveness of our developed methods.

  8. [Clinical Practice Guide for Early Detection, Diagnosis and Treatment of the Acute Intoxication Phase in Patients with Alcohol Abuse or Dependence: Part I: Screening, Early Detection and Risk Factors in Patients with Alcohol Abuse or Dependence].

    PubMed

    de la Espriella Guerrero, Ricardo; de la Hoz Bradford, Ana María; Gómez-Restrepo, Carlos; Zárate, Alina Uribe-Holguín; Menéndez, Miguel Cote; Barré, Michelle Cortés; Rentería, Ana María Cano; Hernández, Delia Cristina

    2012-12-01

    Worldwide, alcohol is the second most-used psychotropic substance and the third risk factor for early death and disability. Its noxious use is a world public health problem given its personal, labor, family, economic and social impact. 70 % of people under risk of having alcohol problems go undetected in medical practice, a fact that underlines the need for specific screening measures allowing early detection leading to timely treatment. This article presents evidence gathered by alcohol abuse and dependence screening as well as by risk factor identification and screening. It also presents evidence concerning withdrawal symptoms, delirium tremens and Wernicke's encephalopathy in order to promote early detection and timely treatment. Systematic revision of the evidence available together with an evaluation of pertinent guidelines found in literature so as to decide whether to adopt or adapt the existing recommendation for each question or to develop de novo recommendations. For de novo recommendations as well as those adapted, it was carried out an evidence synthesis, together with evidence tables and formulation of recommendations based on the evidence. Evidence was found and recommendations were made for the pertinent screening and search of risk factors, in order to perform a diagnosis and carry out a timely management of alcohol abuse, dependence and ensuing complications: withdrawal syndrome, delirium tremens and Wernicke's encephalopathy. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  9. Development of constitutive model for composites exhibiting time dependent properties

    NASA Astrophysics Data System (ADS)

    Pupure, L.; Joffe, R.; Varna, J.; Nyström, B.

    2013-12-01

    Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model.

  10. Scalar and vector Keldysh models in the time domain

    NASA Astrophysics Data System (ADS)

    Kiselev, M. N.; Kikoin, K. A.

    2009-04-01

    The exactly solvable Keldysh model of disordered electron system in a random scattering field with extremely long correlation length is converted to the time-dependent model with extremely long relaxation. The dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating well depths having the discrete Z 2 symmetry. It is shown also that the symmetric TLS with fluctuating barrier transparency may be described in terms of the vector Keldysh model with dime-dependent random planar rotations in xy plane having continuous SO(2) symmetry. Application of this model to description of dynamic fluctuations in quantum dots and optical lattices is discussed.

  11. A Theoretical Study of some Rheological Properties of the Aggregation of the Molecules Deoxy- Hemoglobin S

    NASA Astrophysics Data System (ADS)

    Mensah, Francis; Grant, Julius; Thorpe, Arthur

    2010-02-01

    Sickle cell disease is a serious public health problem that affects many people worldwide. In this paper, the Langevin equation is used for hemoglobin's aggregation in sickle cell anemia. Several parameters are explored such as the time-dependent deformation of the aggregates whose plot gives a sigmoid, the time-dependent expressions obtained for the coefficient of viscosity and the elastic modulus which characterize the aggregation of the sickle hemoglobin. Other properties such as the viscoelastic and the elasto-thixotropic properties of the sickle hemoglobin polymer are also described. An attempt is made to approach the polymerization process in terms of a dynamical system. )

  12. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  13. Bivariate spline solution of time dependent nonlinear PDE for a population density over irregular domains.

    PubMed

    Gutierrez, Juan B; Lai, Ming-Jun; Slavov, George

    2015-12-01

    We study a time dependent partial differential equation (PDE) which arises from classic models in ecology involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence analysis of the algorithm is presented. We present some simulations of population development over some irregular domains. Finally, we discuss applications in epidemiology and other ecological problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. General linear methods and friends: Toward efficient solutions of multiphysics problems

    NASA Astrophysics Data System (ADS)

    Sandu, Adrian

    2017-07-01

    Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..

  15. Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte

    1992-01-01

    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.

  16. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  17. The Theory of Quantized Fields. III

    DOE R&D Accomplishments Database

    Schwinger, J.

    1953-05-01

    In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.

  18. Problem-solving ability and comorbid personality disorders in depressed outpatients.

    PubMed

    Harley, Rebecca; Petersen, Timothy; Scalia, Margaret; Papakostas, George I; Farabaugh, Amy; Fava, Maurizio

    2006-01-01

    Major depressive disorder (MDD) is associated with poor problem-solving abilities. In addition, certain personality disorders (PDs) that are common among patients with MDD are also associated with limited problem-solving skills. Attempts to understand the relationship between PDs and problem solving can be complicated by the presence of acute MDD. Our objective in this study was to investigate the relationships between PDs, problem-solving skills, and response to treatment among outpatients with MDD. We enrolled 312 outpatients with MDD in an open, fixed-dose, 8-week fluoxetine trial. PD diagnoses were ascertained via structured clinical interview before and after fluoxetine treatment. Subjects completed the Problem-Solving Inventory (PSI) at both time points. We used analyses of covariance (ANCOVAs) to assess relationships between PD diagnoses and PSI scores prior to treatment. Subjects were divided into three groups: those with PD diagnoses that remained stable after fluoxetine treatment (N=91), those who no longer met PD criteria after fluoxetine treatment (N=119), and those who did not meet criteria for a PD at any time point in the study (N=95). We used multiple chi(2) analyses to compare rates of MDD response and remission between the three PD groups. ANCOVA was also used to compare posttreatment PSI scores between PD groups. Prior to fluoxetine treatment, patients with avoidant, dependent, narcissistic, and borderline PDs reported significantly worse problem-solving ability than did patients without any PDs. Only subjects with dependent PD remained associated with poorer baseline problem-solving reports after the effects of baseline depression severity were controlled. Patients with stable PD diagnoses had significantly lower rates of MDD remission. Across PD groups, problem solving improved as MDD improved. No significant differences in posttreatment problem-solving were found between PD groups after controlling for baseline depression severity, baseline PSI score, and response to treatment. Treatment with fluoxetine is less likely to lead to remission of MDD in patients with stable PDs. More study is needed to investigate causal links between PDs, problem solving, and MDD treatment response. Published 2006 Wiley-Liss, Inc.

  19. Optimal heliocentric trajectories for solar sail with minimum area

    NASA Astrophysics Data System (ADS)

    Petukhov, Vyacheslav G.

    2018-05-01

    The fixed-time heliocentric trajectory optimization problem is considered for planar solar sail with minimum area. Necessary optimality conditions are derived, a numerical method for solving the problem is developed, and numerical examples of optimal trajectories to Mars, Venus and Mercury are presented. The dependences of the minimum area of the solar sail from the date of departure from the Earth, the time of flight and the departing hyperbolic excess of velocity are analyzed. In particular, for the rendezvous problem (approaching a target planet with zero relative velocity) with zero departing hyperbolic excess of velocity for a flight duration of 1200 days it was found that the minimum area-to-mass ratio should be about 12 m2/kg for trajectory to Venus, 23.5 m2/kg for the trajectory to Mercury and 25 m2/kg for trajectory to Mars.

  20. Resolvent estimates in homogenisation of periodic problems of fractional elasticity

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill; Waurick, Marcus

    2018-03-01

    We provide operator-norm convergence estimates for solutions to a time-dependent equation of fractional elasticity in one spatial dimension, with rapidly oscillating coefficients that represent the material properties of a viscoelastic composite medium. Assuming periodicity in the coefficients, we prove operator-norm convergence estimates for an operator fibre decomposition obtained by applying to the original fractional elasticity problem the Fourier-Laplace transform in time and Gelfand transform in space. We obtain estimates on each fibre that are uniform in the quasimomentum of the decomposition and in the period of oscillations of the coefficients as well as quadratic with respect to the spectral variable. On the basis of these uniform estimates we derive operator-norm-type convergence estimates for the original fractional elasticity problem, for a class of sufficiently smooth densities of applied forces.

  1. User's manual for three dimensional FDTD version D code for scattering from frequency-dependent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version D is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version D code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMOND.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  2. User's manual for three dimensional FDTD version B code for scattering from frequency-dependent dielectric materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONB.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.

  3. Analysis of Partitioned Methods for the Biot System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukac, Martina; Layton, William; Moraiti, Marina

    2015-02-18

    In this work, we present a comprehensive study of several partitioned methods for the coupling of flow and mechanics. We derive energy estimates for each method for the fully-discrete problem. We write the obtained stability conditions in terms of a key control parameter defined as a ratio of the coupling strength and the speed of propagation. Depending on the parameters in the problem, give the choice of the partitioned method which allows the largest time step. (C) 2015 Wiley Periodicals, Inc.

  4. TEMPEST/N33.5. Computational Fluid Dynamics Package For Incompressible, 3D, Time Dependent Pro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, Dr.D.S.; Eyler, Dr.L.L.

    TEMPESTN33.5 provides numerical solutions to general incompressible flow problems with coupled heat transfer in fluids and solids. Turbulence is created with a k-e model and gas, liquid or solid constituents may be included with the bulk flow. Problems may be modeled in Cartesian or cylindrical coordinates. Limitations include incompressible flow, Boussinesq approximation, and passive constituents. No direct steady state solution is available; steady state is obtained as the limit of a transient.

  5. Multi-level adaptive finite element methods. 1: Variation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1979-01-01

    A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.

  6. Non-steady state modelling of wheel-rail contact problem

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.

    2013-01-01

    Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.

  7. Optimization of the interplanetary trajectories of spacecraft with a solar electric propulsion power plant of minimal power

    NASA Astrophysics Data System (ADS)

    Ivanyukhin, A. V.; Petukhov, V. G.

    2016-12-01

    The problem of optimizing the interplanetary trajectories of a spacecraft (SC) with a solar electric propulsion system (SEPS) is examined. The problem of investigating the permissible power minimum of the solar electric propulsion power plant required for a successful flight is studied. Permissible ranges of thrust and exhaust velocity are analyzed for the given range of flight time and final mass of the spacecraft. The optimization is performed according to Portnyagin's maximum principle, and the continuation method is used for reducing the boundary problem of maximal principle to the Cauchy problem and to study the solution/ parameters dependence. Such a combination results in the robust algorithm that reduces the problem of trajectory optimization to the numerical integration of differential equations by the continuation method.

  8. The One-Dimensional Damped Forced Harmonic Oscillator Revisited

    ERIC Educational Resources Information Center

    Flores-Hidalgo, G.; Barone, F. A.

    2011-01-01

    In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.

  9. Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming

    PubMed Central

    Schmid, Verena

    2012-01-01

    Emergency service providers are supposed to locate ambulances such that in case of emergency patients can be reached in a time-efficient manner. Two fundamental decisions and choices need to be made real-time. First of all immediately after a request emerges an appropriate vehicle needs to be dispatched and send to the requests’ site. After having served a request the vehicle needs to be relocated to its next waiting location. We are going to propose a model and solve the underlying optimization problem using approximate dynamic programming (ADP), an emerging and powerful tool for solving stochastic and dynamic problems typically arising in the field of operations research. Empirical tests based on real data from the city of Vienna indicate that by deviating from the classical dispatching rules the average response time can be decreased from 4.60 to 4.01 minutes, which corresponds to an improvement of 12.89%. Furthermore we are going to show that it is essential to consider time-dependent information such as travel times and changes with respect to the request volume explicitly. Ignoring the current time and its consequences thereafter during the stage of modeling and optimization leads to suboptimal decisions. PMID:25540476

  10. An information driven strategy to support multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rangan, Ravi M.; Fulton, Robert E.

    1990-01-01

    The design of complex engineering systems such as aircraft, automobiles, and computers is primarily a cooperative multidisciplinary design process involving interactions between several design agents. The common thread underlying this multidisciplinary design activity is the information exchange between the various groups and disciplines. The integrating component in such environments is the common data and the dependencies that exist between such data. This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct design parameters. For example, they may be expressed as mathematically coupled relationships between aerodynamic and structural interactions in aircraft structures, between thermal and structural interactions in nuclear plants, and between control considerations and structural interactions in flexible robots. These relationships provide analytical based frameworks leading to optimization problem formulations. However, in multidisciplinary design problems, information based interactions become more critical. Many times, the relationships between different design parameters are not amenable to analytical characterization. Under such circumstances, information based interactions will provide the best integration paradigm, i.e., there is a need to model the data entities and their dependencies between design parameters originating from different design agents. The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.

  11. Mapping of uncertainty relations between continuous and discrete time

    NASA Astrophysics Data System (ADS)

    Chiuchiú, Davide; Pigolotti, Simone

    2018-03-01

    Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.

  12. Mapping of uncertainty relations between continuous and discrete time.

    PubMed

    Chiuchiù, Davide; Pigolotti, Simone

    2018-03-01

    Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.

  13. Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Anirban; Hunt, Katharine L. C.

    In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gaugemore » dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term H{sub m} and a field term H{sub f}, and show that both H{sub m} and H{sub f} have gauge-independent expectation values. Any gauge may be chosen for the calculations; but following our partitioning, the expectation values of the molecular Hamiltonian are identical to those obtained directly in the Coulomb gauge. As a corollary of this result, the power absorbed by a molecule from a time-dependent, applied electromagnetic field is equal to the time derivative of the non-adiabatic term in the molecular energy, in any gauge.« less

  14. [Pharmacist as gatekeeper: combating medication abuse and dependence].

    PubMed

    Shimane, Takuya

    2013-01-01

      The nonmedical use of medications, including psychotropic drugs, is a growing health problem in Japan. According to a nationwide survey of mental hospitals, the proportion of patients with sedative (mainly benzodiazepine)-related disorders has more than doubled over the last decade. An association between psychotropic drug overdose and suicide risk has also been reported. Furthermore, over-the-counter drug abuse is still a serious problem in Japan. In recent years, pharmacists have been expected to act as gatekeepers, making timely identifications of suicide risk or substance abuse and directing these individuals to appropriate medical care facilities. In August 2012, the revised Comprehensive Suicide Measures Act identified pharmacists as one professional group that should act as gatekeepers. This article begins by reviewing the fundamental terms involved in understanding the nonmedical use of medications, including abuse, dependence, and intoxication. The current situation of substance abuse and dependence is then introduced through a summary of several epidemiological surveys conducted in Japan. Finally, the role of pharmacists as gatekeepers in preventing substance abuse and dependence on medications is discussed.

  15. User's manual for three dimensional FDTD version D code for scattering from frequency-dependent dielectric and magnetic materials

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The Penn State Finite Difference Time Domain Electromagnetic Scattering Code version D is a 3-D numerical electromagnetic scattering code based upon the finite difference time domain technique (FDTD). The manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction; description of the FDTD method; operation; resource requirements; version D code capabilities; a brief description of the default scattering geometry; a brief description of each subroutine; a description of the include file; a section briefly discussing Radar Cross Section computations; a section discussing some scattering results; a sample problem setup section; a new problem checklist; references and figure titles. The FDTD technique models transient electromagnetic scattering and interactions with objects of arbitrary shape and/or material composition. In the FDTD method, Maxwell's curl equations are discretized in time-space and all derivatives (temporal and spatial) are approximated by central differences.

  16. Computationally efficient approach for solving time dependent diffusion equation with discrete temporal convolution applied to granular particles of battery electrodes

    NASA Astrophysics Data System (ADS)

    Senegačnik, Jure; Tavčar, Gregor; Katrašnik, Tomaž

    2015-03-01

    The paper presents a computationally efficient method for solving the time dependent diffusion equation in a granule of the Li-ion battery's granular solid electrode. The method, called Discrete Temporal Convolution method (DTC), is based on a discrete temporal convolution of the analytical solution of the step function boundary value problem. This approach enables modelling concentration distribution in the granular particles for arbitrary time dependent exchange fluxes that do not need to be known a priori. It is demonstrated in the paper that the proposed method features faster computational times than finite volume/difference methods and Padé approximation at the same accuracy of the results. It is also demonstrated that all three addressed methods feature higher accuracy compared to the quasi-steady polynomial approaches when applied to simulate the current densities variations typical for mobile/automotive applications. The proposed approach can thus be considered as one of the key innovative methods enabling real-time capability of the multi particle electrochemical battery models featuring spatial and temporal resolved particle concentration profiles.

  17. [Effects of satisfaction with leisure time in family carers of elderly dependents].

    PubMed

    Del-Pino-Casado, Rafael; Ordóñez-Urbano, Carmen

    2016-05-01

    To analyse the relationship between satisfaction with leisure time and subjective burden, depression and anxiety in caregivers of dependent elderly relatives. Cross-sectional study. Primary health care (Andalusia, Spain). A probabilistic sample of 200 primary caregivers of dependent elderly relatives. Satisfaction with leisure time, subjective burden, anxiety, depression, and objective burden (functional ability, cognitive impairment and behavioural problems of the care recipient, and dedication to caring of the caregiver). Most of the caregivers were women, daughters of the care recipients, and shared home with them. An inverse statistical association was found between satisfaction with leisure time and subjective burden (r=-0.55, 95%CI: -0.45 to -0.64), anxiety (r=-0.30, 95%CI: -0.17 to -0.41) and depression (r=-0.25, 95%CI: -0.11 to -0.37). These associations remained after controlling for objective burden. Satisfaction with leisure time may have a protective effect on subjective burden, anxiety and depression, regardless of objective burden. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  18. Rating knowledge sharing in cross-domain collaborative filtering.

    PubMed

    Li, Bin; Zhu, Xingquan; Li, Ruijiang; Zhang, Chengqi

    2015-05-01

    Cross-domain collaborative filtering (CF) aims to share common rating knowledge across multiple related CF domains to boost the CF performance. In this paper, we view CF domains as a 2-D site-time coordinate system, on which multiple related domains, such as similar recommender sites or successive time-slices, can share group-level rating patterns. We propose a unified framework for cross-domain CF over the site-time coordinate system by sharing group-level rating patterns and imposing user/item dependence across domains. A generative model, say ratings over site-time (ROST), which can generate and predict ratings for multiple related CF domains, is developed as the basic model for the framework. We further introduce cross-domain user/item dependence into ROST and extend it to two real-world cross-domain CF scenarios: 1) ROST (sites) for alleviating rating sparsity in the target domain, where multiple similar sites are viewed as related CF domains and some items in the target domain depend on their correspondences in the related ones; and 2) ROST (time) for modeling user-interest drift over time, where a series of time-slices are viewed as related CF domains and a user at current time-slice depends on herself in the previous time-slice. All these ROST models are instances of the proposed unified framework. The experimental results show that ROST (sites) can effectively alleviate the sparsity problem to improve rating prediction performance and ROST (time) can clearly track and visualize user-interest drift over time.

  19. Resonances and vibrations in an elevator cable system due to boundary sway

    NASA Astrophysics Data System (ADS)

    Gaiko, Nick V.; van Horssen, Wim T.

    2018-06-01

    In this paper, an analytical method is presented to study an initial-boundary value problem describing the transverse displacements of a vertically moving beam under boundary excitation. The length of the beam is linearly varying in time, i.e., the axial, vertical velocity of the beam is assumed to be constant. The bending stiffness of the beam is assumed to be small. This problem may be regarded as a model describing the lateral vibrations of an elevator cable excited at its boundaries by the wind-induced building sway. Slow variation of the cable length leads to a singular perturbation problem which is expressed in slowly changing, time-dependent coefficients in the governing differential equation. By providing an interior layer analysis, infinitely many resonance manifolds are detected. Further, the initial-boundary value problem is studied in detail using a three-timescales perturbation method. The constructed formal approximations of the solutions are in agreement with the numerical results.

  20. Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

    NASA Astrophysics Data System (ADS)

    Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.

    2018-05-01

    In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.

  1. Flux-vector splitting algorithm for chain-rule conservation-law form

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.

    1991-01-01

    A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.

  2. Worldwide Survey of Alcohol and Nonmedical Drug Use Among Military Personnel: 1985

    DTIC Science & Technology

    1986-06-01

    medical /physical, mental health/emotional, family/ friends, legal, job/education, and financial problems as well as dependence, addiction, and...from lung cancer , 22,000 deaths from other cancers , 225,000 deaths from cardiovascular disease, and 19,000 deaths from chronic pulmonary disease...risk of death from lung cancer among smokers is 10 times greater than among nonsmokers, a fatal heart attack two times greater, and chronic obstructive

  3. Nonlinear stability of the 1D Boltzmann equation in a periodic box

    NASA Astrophysics Data System (ADS)

    Wu, Kung-Chien

    2018-05-01

    We study the nonlinear stability of the Boltzmann equation in the 1D periodic box with size , where is the Knudsen number. The convergence rate is for small time region and exponential for large time region. Moreover, the exponential rate depends on the size of the domain (Knudsen number). This problem is highly nonlinear and hence we need more careful analysis to control the nonlinear term.

  4. Designing optimal stimuli to control neuronal spike timing

    PubMed Central

    Packer, Adam M.; Yuste, Rafael; Paninski, Liam

    2011-01-01

    Recent advances in experimental stimulation methods have raised the following important computational question: how can we choose a stimulus that will drive a neuron to output a target spike train with optimal precision, given physiological constraints? Here we adopt an approach based on models that describe how a stimulating agent (such as an injected electrical current or a laser light interacting with caged neurotransmitters or photosensitive ion channels) affects the spiking activity of neurons. Based on these models, we solve the reverse problem of finding the best time-dependent modulation of the input, subject to hardware limitations as well as physiologically inspired safety measures, that causes the neuron to emit a spike train that with highest probability will be close to a target spike train. We adopt fast convex constrained optimization methods to solve this problem. Our methods can potentially be implemented in real time and may also be generalized to the case of many cells, suitable for neural prosthesis applications. With the use of biologically sensible parameters and constraints, our method finds stimulation patterns that generate very precise spike trains in simulated experiments. We also tested the intracellular current injection method on pyramidal cells in mouse cortical slices, quantifying the dependence of spiking reliability and timing precision on constraints imposed on the applied currents. PMID:21511704

  5. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  6. Parallelization of the Flow Field Dependent Variation Scheme for Solving the Triple Shock/Boundary Layer Interaction Problem

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Chung, T. J.

    2001-01-01

    A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.

  7. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  8. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    PubMed

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.

  9. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  10. Enzyme Kinetics and the Michaelis-Menten Equation

    ERIC Educational Resources Information Center

    Biaglow, Andrew; Erickson, Keith; McMurran, Shawnee

    2010-01-01

    The concepts presented in this article represent the cornerstone of classical mathematical biology. The central problem of the article relates to enzyme kinetics, which is a biochemical system. However, the theoretical underpinnings that lead to the formation of systems of time-dependent ordinary differential equations have been applied widely to…

  11. Traffic routing for multicomputer networks with virtual cut-through capability

    NASA Technical Reports Server (NTRS)

    Kandlur, Dilip D.; Shin, Kang G.

    1992-01-01

    Consideration is given to the problem of selecting routes for interprocess communication in a network with virtual cut-through capability, while balancing the network load and minimizing the number of times that a message gets buffered. An approach is proposed that formulates the route selection problem as a minimization problem with a link cost function that depends upon the traffic through the link. The form of this cost function is derived using the probability of establishing a virtual cut-through route. The route selection problem is shown to be NP-hard, and an algorithm is developed to incrementally reduce the cost by rerouting the traffic. The performance of this algorithm is exemplified by two network topologies: the hypercube and the C-wrapped hexagonal mesh.

  12. Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy

    NASA Astrophysics Data System (ADS)

    Magen, Avner; Moharrami, Mohammad

    This work provides a Linear Programming-based Polynomial Time Approximation Scheme (PTAS) for two classical NP-hard problems on graphs when the input graph is guaranteed to be planar, or more generally Minor Free. The algorithm applies a sufficiently large number (some function of when approximation is required) of rounds of the so-called Sherali-Adams Lift-and-Project system. needed to obtain a -approximation, where f is some function that depends only on the graph that should be avoided as a minor. The problem we discuss are the well-studied problems, the and problems. An curious fact we expose is that in the world of minor-free graph, the is harder in some sense than the.

  13. Four decades of implicit Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan B.

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  14. Four decades of implicit Monte Carlo

    DOE PAGES

    Wollaber, Allan B.

    2016-02-23

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  15. Cost minimizing of cutting process for CNC thermal and water-jet machines

    NASA Astrophysics Data System (ADS)

    Tavaeva, Anastasia; Kurennov, Dmitry

    2015-11-01

    This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.

  16. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  17. Optimization of parameters of special asynchronous electric drives

    NASA Astrophysics Data System (ADS)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.

  18. Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach.

    PubMed

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng

    2016-03-01

    This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.

  19. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  20. Soliton solutions, stability analysis and conservation laws for the brusselator reaction diffusion model with time- and constant-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Isa Aliyu, Aliyu; Hashemi, M. S.

    2018-05-01

    This paper studies the brusselator reaction diffusion model (BRDM) with time- and constant-dependent coefficients. The soliton solutions for BRDM with time-dependent coefficients are obtained via first integral (FIM), ansatz, and sine-Gordon expansion (SGEM) methods. Moreover, it is well known that stability analysis (SA), symmetry analysis and conservation laws (CLs) give several information for modelling a system of differential equations (SDE). This is because they can be used for investigating the internal properties, existence, uniqueness and integrability of different SDE. For this reason, we investigate the SA via linear stability technique, symmetry analysis and CLs for BRDM with constant-dependent coefficients in order to extract more physics and information on the governing equation. The constraint conditions for the existence of the solutions are also examined. The new solutions obtained in this paper can be useful for describing the concentrations of diffusion problems of the BRDM. It is shown that the examined dependent coefficients are some of the factors that are affecting the diffusion rate. So, the present paper provides much motivational information in comparison to the existing results in the literature.

  1. Finance issue brief: health care claims payment: prompt payment: year end report-2003.

    PubMed

    MacEachern, Lillian

    2003-12-31

    Since the mid 1990's state legislators and regulators have worked to resolve the complex issue of timely payment of health care claims. They have been challenged with bridging the communication gap between provider and payor and forced to address such base problems as what determines a correctly billed service. As time has progressed it is ever apparent that the completion of payment for services is dependent on many variables, not just simply timely processing of a claim.

  2. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  3. Solving Integer Programs from Dependence and Synchronization Problems

    DTIC Science & Technology

    1993-03-01

    DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving

  4. PRODUCTION OF SOUND BY UNSTEADY THROTTLING OF FLOW INTO A RESONANT CAVITY, WITH APPLICATION TO VOICED SPEECH

    PubMed Central

    Howe, M. S.; McGowan, R. S.

    2011-01-01

    An analysis is made of the sound generated by the time-dependent throttling of a nominally steady stream of air through a small orifice into a flow-through resonant cavity. This is exemplified by the production of voiced speech, where air from the lungs enters the vocal tract through the glottis at a time variable volume flow rate Q(t) controlled by oscillations of the glottis cross-section. Voicing theory has hitherto determined Q from a heuristic, reduced complexity ‘Fant’ differential equation (G. Fant, Acoustic Theory of Speech Production, 1960). A new self-consistent, integro-differential form of this equation is derived in this paper using the theory of aerodynamic sound, with full account taken of the back-reaction of the resonant tract on the glottal flux Q. The theory involves an aeroacoustic Green’s function (G) for flow-surface interactions in a time-dependent glottis, so making the problem non-self-adjoint. In complex problems of this type it is not usually possible to obtain G in an explicit analytic form. The principal objective of the paper is to show how the Fant equation can still be derived in such cases from a consideration of the equation of aerodynamic sound and from the adjoint of the equation governing G in the neighbourhood of the ‘throttle’. The theory is illustrated by application to the canonical problem of throttled flow into a Helmholtz resonator. PMID:21666824

  5. Enhancing outpatient clinics management software by reducing patients' waiting time.

    PubMed

    Almomani, Iman; AlSarheed, Ahlam

    The Kingdom of Saudi Arabia (KSA) gives great attention to improving the quality of services provided by health care sectors including outpatient clinics. One of the main drawbacks in outpatient clinics is long waiting time for patients-which affects the level of patient satisfaction and the quality of services. This article addresses this problem by studying the Outpatient Management Software (OMS) and proposing solutions to reduce waiting times. Many hospitals around the world apply solutions to overcome the problem of long waiting times in outpatient clinics such as hospitals in the USA, China, Sri Lanka, and Taiwan. These clinics have succeeded in reducing wait times by 15%, 78%, 60% and 50%, respectively. Such solutions depend mainly on adding more human resources or changing some business or management policies. The solutions presented in this article reduce waiting times by enhancing the software used to manage outpatient clinics services. Both quantitative and qualitative methods have been used to understand current OMS and examine level of patient's satisfaction. Five main problems that may cause high or unmeasured waiting time have been identified: appointment type, ticket numbering, doctor late arrival, early arriving patient and patients' distribution list. These problems have been mapped to the corresponding OMS components. Solutions to the above problems have been introduced and evaluated analytically or by simulation experiments. Evaluation of the results shows a reduction in patient waiting time. When late doctor arrival issues are solved, this can reduce the clinic service time by up to 20%. However, solutions for early arriving patients reduces 53.3% of vital time, 20% of the clinic time and overall 30.3% of the total waiting time. Finally, well patient-distribution lists make improvements by 54.2%. Improvements introduced to the patients' waiting time will consequently affect patients' satisfaction and improve the quality of health care services. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  6. A nodally condensed SUPG formulation for free-surface computation of steady-state flows constrained by unilateral contact - Application to rolling

    NASA Astrophysics Data System (ADS)

    Arora, Shitij; Fourment, Lionel

    2018-05-01

    In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.

  7. On Takens’ last problem: tangencies and time averages near heteroclinic networks

    NASA Astrophysics Data System (ADS)

    Labouriau, Isabel S.; Rodrigues, Alexandre A. P.

    2017-05-01

    We obtain a structurally stable family of smooth ordinary differential equations exhibiting heteroclinic tangencies for a dense subset of parameters. We use this to find vector fields C 2-close to an element of the family exhibiting a tangency, for which the set of solutions with historic behaviour contains an open set. This provides an affirmative answer to Takens’ last problem (Takens 2008 Nonlinearity 21 T33-6). A limited solution with historic behaviour is one for which the time averages do not converge as time goes to infinity. Takens’ problem asks for dynamical systems where historic behaviour occurs persistently for initial conditions in a set with positive Lebesgue measure. The family appears in the unfolding of a degenerate differential equation whose flow has an asymptotically stable heteroclinic cycle involving two-dimensional connections of non-trivial periodic solutions. We show that the degenerate problem also has historic behaviour, since for an open set of initial conditions starting near the cycle, the time averages approach the boundary of a polygon whose vertices depend on the centres of gravity of the periodic solutions and their Floquet multipliers. We illustrate our results with an explicit example where historic behaviour arises C 2-close of a \\mathbf{SO}(2) -equivariant vector field.

  8. Visualization of Unsteady Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1997-01-01

    The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient problems require dealing with time.

  9. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments

    NASA Astrophysics Data System (ADS)

    Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh

    2018-03-01

    Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.

  10. Single-agent parallel window search

    NASA Technical Reports Server (NTRS)

    Powley, Curt; Korf, Richard E.

    1991-01-01

    Parallel window search is applied to single-agent problems by having different processes simultaneously perform iterations of Iterative-Deepening-A(asterisk) (IDA-asterisk) on the same problem but with different cost thresholds. This approach is limited by the time to perform the goal iteration. To overcome this disadvantage, the authors consider node ordering. They discuss how global node ordering by minimum h among nodes with equal f = g + h values can reduce the time complexity of serial IDA-asterisk by reducing the time to perform the iterations prior to the goal iteration. Finally, the two ideas of parallel window search and node ordering are combined to eliminate the weaknesses of each approach while retaining the strengths. The resulting approach, called simply parallel window search, can be used to find a near-optimal solution quickly, improve the solution until it is optimal, and then finally guarantee optimality, depending on the amount of time available.

  11. Finite element computation of a viscous compressible free shear flow governed by the time dependent Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.; Blanchard, D. K.

    1975-01-01

    A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.

  12. Using directed information for influence discovery in interconnected dynamical systems

    NASA Astrophysics Data System (ADS)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  13. Consistency and convergence for numerical radiation conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    The problem of imposing radiation conditions at artificial boundaries for the numerical simulation of wave propagation is considered. Emphasis is on the behavior and analysis of the error which results from the restriction of the domain. The theory of error estimation is briefly outlined for boundary conditions. Use is made of the asymptotic analysis of propagating wave groups to derive and analyze boundary operators. For dissipative problems this leads to local, accurate conditions, but falls short in the hyperbolic case. A numerical experiment on the solution of the wave equation with cylindrical symmetry is described. A unified presentation of a number of conditions which have been proposed in the literature is given and the time dependence of the error which results from their use is displayed. The results are in qualitative agreement with theoretical considerations. It was found, however, that for this model problem it is particularly difficult to force the error to decay rapidly in time.

  14. Childhood or adolescent parental divorce/separation, parental history of alcohol problems, and offspring lifetime alcohol dependence.

    PubMed

    Thompson, Ronald G; Lizardi, Dana; Keyes, Katherine M; Hasin, Deborah S

    2008-12-01

    This study examined whether the experiences of childhood or adolescent parental divorce/separation and parental alcohol problems affected the likelihood of offspring DSM-IV lifetime alcohol dependence, controlling for parental history of drug, depression, and antisocial behavior problems. Data were drawn from the 2001-2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a nationally representative United States survey of 43,093 civilian non-institutionalized participants aged 18 and older, interviewed in person. Logistic regression models were used to calculate the main and interaction effects of childhood or adolescent parental divorce/separation and parental history of alcohol problems on offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Childhood or adolescent parental divorce/separation and parental history of alcohol problems were significantly related to offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Experiencing parental divorce/separation during childhood, even in the absence of parental history of alcohol problems, remained a significant predictor of lifetime alcohol dependence. Experiencing both childhood or adolescent parental divorce/separation and parental alcohol problems had a significantly stronger impact on the risk for DSM-IV alcohol dependence than the risk incurred by either parental risk factor alone. Further research is needed to better identify the factors that increase the risk for lifetime alcohol dependence among those who experience childhood or adolescent parental divorce/separation.

  15. Childhood or Adolescent Parental Divorce/Separation, Parental History of Alcohol Problems, and Offspring Lifetime Alcohol Dependence

    PubMed Central

    Thompson, Ronald G.; Lizardi, Dana; Keyes, Katherine M.; Hasin, Deborah S.

    2013-01-01

    Background This study examined whether the experiences of childhood or adolescent parental divorce/separation and parental alcohol problems affected the likelihood of offspring DSM-IV lifetime alcohol dependence, controlling for parental history of drug, depression, and antisocial behavior problems. Method Data were drawn from the 2001–2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a nationally representative United States survey of 43,093 civilian non-institutionalized participants aged 18 and older, interviewed in person. Logistic regression models were used to calculate the main and interaction effects of childhood or adolescent parental divorce/separation and parental history of alcohol problems on offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Results Childhood or adolescent parental divorce/separation and parental history of alcohol problems were significantly related to offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Experiencing parental divorce/separation during childhood, even in the absence of parental history of alcohol problems, remained a significant predictor of lifetime alcohol dependence. Experiencing both childhood or adolescent parental divorce/separation and parental alcohol problems had a significantly stronger impact on the risk for DSM-IV alcohol dependence than the risk incurred by either parental risk factor alone. Conclusions Further research is needed to better identify the factors that increase the risk for lifetime alcohol dependence among those who experience childhood or adolescent parental divorce/separation. PMID:18757141

  16. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.

    PubMed

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-08-18

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.

  17. Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks

    PubMed Central

    Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il

    2015-01-01

    Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238

  18. Towards efficient backward-in-time adjoint computations using data compression techniques

    DOE PAGES

    Cyr, E. C.; Shadid, J. N.; Wildey, T.

    2014-12-16

    In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches, we found, is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. Our study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for themore » difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Lastly, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion–reaction equation and on the Navier–Stokes equations. These results demonstrate memory compression ratios up to 450×450× while maintaining reasonable accuracy in the error-estimates.« less

  19. Time-dependent spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cole, Justin T.; Musslimani, Ziad H.

    2017-11-01

    The spectral renormalization method was introduced by Ablowitz and Musslimani (2005) as an effective way to numerically compute (time-independent) bound states for certain nonlinear boundary value problems. In this paper, we extend those ideas to the time domain and introduce a time-dependent spectral renormalization method as a numerical means to simulate linear and nonlinear evolution equations. The essence of the method is to convert the underlying evolution equation from its partial or ordinary differential form (using Duhamel's principle) into an integral equation. The solution sought is then viewed as a fixed point in both space and time. The resulting integral equation is then numerically solved using a simple renormalized fixed-point iteration method. Convergence is achieved by introducing a time-dependent renormalization factor which is numerically computed from the physical properties of the governing evolution equation. The proposed method has the ability to incorporate physics into the simulations in the form of conservation laws or dissipation rates. This novel scheme is implemented on benchmark evolution equations: the classical nonlinear Schrödinger (NLS), integrable PT symmetric nonlocal NLS and the viscous Burgers' equations, each of which being a prototypical example of a conservative and dissipative dynamical system. Numerical implementation and algorithm performance are also discussed.

  20. Real-time characterization of partially observed epidemics using surrogate models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Ray, Jaideep; Lefantzi, Sophia

    We present a statistical method, predicated on the use of surrogate models, for the 'real-time' characterization of partially observed epidemics. Observations consist of counts of symptomatic patients, diagnosed with the disease, that may be available in the early epoch of an ongoing outbreak. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information on the dynamics of the etiologic agent in the affected population e.g., the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and epidemiologicalmore » parameters are estimated as distributions using a Markov chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. In some cases, the inverse problem can be computationally expensive, primarily due to the epidemic simulator used inside the inversion algorithm. We present a method, based on replacing the epidemiological model with computationally inexpensive surrogates, that can reduce the computational time to minutes, without a significant loss of accuracy. The surrogates are created by projecting the output of an epidemiological model on a set of polynomial chaos bases; thereafter, computations involving the surrogate model reduce to evaluations of a polynomial. We find that the epidemic characterizations obtained with the surrogate models is very close to that obtained with the original model. We also find that the number of projections required to construct a surrogate model is O(10)-O(10{sup 2}) less than the number of samples required by the MCMC to construct a stationary posterior distribution; thus, depending upon the epidemiological models in question, it may be possible to omit the offline creation and caching of surrogate models, prior to their use in an inverse problem. The technique is demonstrated on synthetic data as well as observations from the 1918 influenza pandemic collected at Camp Custer, Michigan.« less

  1. Problem solving of student with visual impairment related to mathematical literacy problem

    NASA Astrophysics Data System (ADS)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  2. Line Transport in Turbulent Atmospheres

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.

    2017-07-01

    The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  3. Unimolecular diffusion-mediated reactions with a nonrandom time-modulated absorbing barrier

    NASA Technical Reports Server (NTRS)

    Bashford, D.; Weaver, D. L.

    1986-01-01

    A diffusion-reaction model with time-dependent reactivity is formulated and applied to unimolecular reactions. The model is solved exactly numerically and approximately analytically for the unreacted fraction as a function of time. It is shown that the approximate analytical solution is valid even when the system is far from equilibrium, and when the reactivity probability is more complicated than a square-wave function of time. A discussion is also given of an approach to problems of this type using a stochastically fluctuating reactivity, and the first-passage time for a particular example is derived.

  4. Improved result on stability analysis of discrete stochastic neural networks with time delay

    NASA Astrophysics Data System (ADS)

    Wu, Zhengguang; Su, Hongye; Chu, Jian; Zhou, Wuneng

    2009-04-01

    This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.

  5. Time Dependent Solution for the He I Line Ratio Electron Temperature and Density Diagnostic in TEXTOR and DIII-D

    NASA Astrophysics Data System (ADS)

    Munoz Burgos, J. M.; Schmitz, O.; Unterberg, E. A.; Loch, S. D.; Balance, C. P.

    2010-11-01

    We developed a time dependent solution for the He I line ratio diagnostic. Stationary solution is applied for L-mode at TEXTOR. The radial range is typically limited to a region near the separatrix due to metastable effects, and the atomic data used. We overcome this problem by applying a time dependent solution and thus avoid unphysical results. We use a new R-Matrix with Pseudostates and Convergence Cross-Coupling electron impact excitation and ionization atomic data set into the Collisional Radiative Model (CRM). We include contributions from higher Rydberg states into the CRM by means of the projection matrix. By applying this solution (to the region near the wall) and the stationary solution (near the separatrix), we triple the radial range of the current diagnostic. We explore the possibility of extending this approach to H-mode plasmas in DIII-D by estimating line emission profiles from electron temperature and density Thomson scattering data.

  6. Time-Dependent ATR-FTIR Spectroscopic Studies on Fatty Acid Diffusion and the Formation of Metal Soaps in Oil Paint Model Systems.

    PubMed

    Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet

    2018-06-18

    The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Online Chat Dependency: The Influence of Social Anxiety

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Chien; Chang, Shu-Chen

    Recent developments in information technology have made it easy for people to “chat” online with others in real time, and many do so regularly. “Virtual” relationships can be attractive, especially for people with social interaction problems in the “real world”. This study examines the influence on online chat dependency of three dimensions of social anxiety: general social situation fear, negative evaluation fear, and novel social situation fear. Participants of this study were 454 college students. The survey results show that negative evaluation fear and general social situation fear are relative to online chat dependency, while novel social situation fear does not seem to be a relevant factor.

  8. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory via numerical simulations.

  9. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  10. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  11. Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model.

    PubMed

    Heisig, M; Lieckfeldt, R; Wittum, G; Mazurkevich, G; Lee, G

    1996-03-01

    The diffusion equation should be solved for the non-steady-state problem of drug diffusion within a two-dimensional, biphasic stratum corneum membrane having homogeneous lipid and corneocyte phases. A numerical method was developed for a brick-and-mortar SC-geometry, enabling an explicit solution for time-dependent drug concentration within both phases. The lag time and permeability were calculated. It is shown how the barrier property of this model membrane depends on relative phase permeability, corneocyte alignment, and corneocyte-lipid partition coefficient. Additionally, the time-dependent drug concentration profiles within the membrane can be observed during the lag and steady-state phases. The model SC-membrane predicts, from purely morphological principles, lag times and permeabilities that are in good agreement with experimental values. The long lag times and very small permeabilities reported for human SC can only be predicted for a highly-staggered corneocyte geometry and corneocytes that are 1000 times less permeable than the lipid phase. Although the former conclusion is reasonable, the latter is questionable. The elongated, flattened corneocyte shape renders lag time and permeability insensitive to large changes in their alignment within the SC. Corneocyte/lipid partitioning is found to be fundamentally different to SC/donor partitioning, since increasing drug lipophilicity always reduces both lag time and permeability.

  12. A new scheme of the time-domain fluorescence tomography for a semi-infinite turbid medium

    NASA Astrophysics Data System (ADS)

    Prieto, Kernel; Nishimura, Goro

    2017-04-01

    A new scheme for reconstruction of a fluorophore target embedded in a semi-infinite medium was proposed and evaluated. In this scheme, we neglected the presence of the fluorophore target for the excitation light and used an analytical solution of the time-dependent radiative transfer equation (RTE) for the excitation light in a homogeneous semi-infinite media instead of solving the RTE numerically in the forward calculation. The inverse problem for imaging the fluorophore target was solved using the Landweber-Kaczmarz method with the concept of the adjoint fields. Numerical experiments show that the proposed scheme provides acceptable results of the reconstructed shape and location of the target. The computation times of the solution of the forward problem and the whole reconstruction process were reduced by about 40 and 15%, respectively.

  13. Inverse source problems in elastodynamics

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao

    2018-04-01

    We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.

  14. To the theory of non-local non-isothermal filtration in porous medium

    NASA Astrophysics Data System (ADS)

    Meilanov, R. R.; Akhmedov, E. N.; Beybalaev, V. D.; Magomedov, R. A.; Ragimkhanov, G. B.; Aliverdiev, A. A.

    2018-01-01

    A new approach to the theory of non-local and non-isothermal filtration based on the mathematical apparatus of fractional order derivatives is developing. A solution of the Cauchy problem for the system of equations of non-local non-isothermal filtration in fractional calculus is obtained. Some applications of the solutions obtained to the problems of underground hydrodynamics (fracturing and explosion) are considered. A computational experiment was carried out to analyze the solutions obtained. Graphs of pressure and temperature dependences are plotted against time.

  15. The application of interactive graphics to large time-dependent hydrodynamics problems

    NASA Technical Reports Server (NTRS)

    Gama-Lobo, F.; Maas, L. D.

    1975-01-01

    A written companion of a movie entitled "Interactive Graphics at Los Alamos Scientific Laboratory" was presented. While the movie presents the actual graphics terminal and the functions performed on it, the paper attempts to put in perspective the complexity of the application code and the complexity of the interaction that is possible.

  16. Testing Theoretical Models of Magnetic Damping Using an Air Track

    ERIC Educational Resources Information Center

    Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.

    2008-01-01

    Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…

  17. Quality Internships for School Leaders: Meeting the Challenge

    ERIC Educational Resources Information Center

    Gaudreau, Patricia A.; Kufel, Andrew P.; Parks, David J.

    2006-01-01

    An internship is essential for the development of competency-based leadership. Variation in the quality of time spent in clinical settings depends on the use of approaches that provide interns with opportunities to observe, participate in, and reflect on the problems of leadership and management found in schools. In essence, the internship is an…

  18. Modeling Physical Systems Using Vensim PLE Systems Dynamics Software

    ERIC Educational Resources Information Center

    Widmark, Stephen

    2012-01-01

    Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address…

  19. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    USDA-ARS?s Scientific Manuscript database

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  20. TEMPEST: A three-dimensional time-dependence computer program for hydrothermal analysis: Volume 1, Numerical methods and input instructions: Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.

    TEMPEST offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instructions. These capabilities are summarized by categories as follows: modeling capabilities; program control; and I/O control. 10 refs., 22 figs., 2 tabs. (LSP)

  1. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

    NASA Technical Reports Server (NTRS)

    Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.

    Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adaptingmore » Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.« less

  3. Effects of ALDH2*2 on Alcohol Problem Trajectories of Asian American College Students

    PubMed Central

    Luczak, Susan E.; Yarnell, Lisa M.; Prescott, Carol A.; Myers, Mark G.; Liang, Tiebing; Wall, Tamara L.

    2014-01-01

    The variant aldehyde dehydrogenase allele, ALDH2*2, consistently has been associated with protection against alcohol dependence, but the mechanism underlying this process is not known. This study examined growth trajectories of alcohol consumption (frequency, average quantity, binge drinking, maximum drinks) and problems over the college years and then tested whether the ALDH2 genotype mediated or moderated the relationship between alcohol consumption and problems. Asian American college students (N = 433) reported on their drinking behavior in their first year of college and then annually for 3 consecutive years. Alcohol consumption and problems increased over the college years for both those with and without ALDH2*2, but having an ALDH2*2 allele was associated with less of an increase in problems over time. A mediation model was supported, with ALDH2*2 group differences in problems fully accounted for by differences in frequency of binge drinking. Findings also supported a moderation hypothesis: All four alcohol consumption variables were significant predictors of subsequent alcohol problems, but these relationships were not as strong in those with ALDH2*2 as in those without ALDH2*2. Our findings suggest that the interplay between ALDH2*2 and drinking-related problems is complex, involving both mediation and moderation processes that reduce the likelihood of developing problems via reduction of heavy drinking as well as by altering the relationship between alcohol consumption and problems. Results of this longitudinal study provide evidence that what seems like a relatively straightforward effect of a diminished ability to metabolize alcohol on drinking behavior is actually dependent on behavior and developmental stage. PMID:24661165

  4. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    NASA Astrophysics Data System (ADS)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  5. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.

    PubMed

    Kretchmer, Joshua S; Chan, Garnet Kin-Lic

    2018-02-07

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  6. A comparison of the Method of Lines to finite difference techniques in solving time-dependent partial differential equations. [with applications to Burger equation and stream function-vorticity problem

    NASA Technical Reports Server (NTRS)

    Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.

    1978-01-01

    Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.

  7. Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Lane, David

    1995-01-01

    An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.

  8. [Habits and problems of sleep in adolescent students].

    PubMed

    Lazaratou, E; Dikeos, D; Anagnostopoulos, D; Soldatos, C

    2008-07-01

    The evaluation of sleep habits and sleep related problems in high school adolescent students in the Athens area and the assessment of these problems' relation to demographic and other variables was investigated by the Athens Insomnia Scale - 5 item version (AIS-5), which was administered to 713 adolescent Senior High School students in the Greater Athens Area. Data such as age, sex, school records, and time spent per week in school-related and extracurricular activities were collected. The sample's mean sleep duration was 7,5 hours, mean bedtime 12:20 am and wake-up time 7:15 am. Total sleep time was not affected by gender, but was influenced by time spent in various activities. Sleep complaints were related to delayed sleep, onset latency and insufficient total duration of sleep. Girls complained more than boys, while correlations showed that students with lower academic per formance and those in second grade were more likely to have higher AIS-5 scores. The results show that sleep time of high school students is dependent on practical matters such as school schedule and other activities, while sleep complaints are related to female gender, bad school performance as well as to the second grade. The difference between actual sleep time and sleep complaints should be considered when studying the sleep of adolescents.

  9. The Root Cause of the Overheating Problem

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2017-01-01

    Previously we identified the receding flow, where two fluid streams recede from each other, as an open numerical problem, because all well-known numerical fluxes give an anomalous temperature rise, thus called the overheating problem. This phenomenon, although presented in several textbooks, and many previous publications, has scarcely been satisfactorily addressed and the root cause of the overheating problem not well understood. We found that this temperature rise was solely connected to entropy rise and proposed to use the method of characteristics to eradicate the problem. However, the root cause of the entropy production was still unclear. In the present study, we identify the cause of this problem: the entropy rise is rooted in the pressure flux in a finite volume formulation and is implanted at the first time step. It is found theoretically inevitable for all existing numerical flux schemes used in the finite volume setting, as confirmed by numerical tests. This difficulty cannot be eliminated by manipulating time step, grid size, spatial accuracy, etc, although the rate of overheating depends on the flux scheme used. Finally, we incorporate the entropy transport equation, in place of the energy equation, to ensure preservation of entropy, thus correcting this temperature anomaly. Its applicability is demonstrated for some relevant 1D and 2D problems. Thus, the present study validates that the entropy generated ab initio is the genesis of the overheating problem.

  10. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  11. A centralized audio presentation manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, A.L. III; Blattner, M.M.

    1994-05-16

    The centralized audio presentation manager addresses the problems which occur when multiple programs running simultaneously attempt to use the audio output of a computer system. Time dependence of sound means that certain auditory messages must be scheduled simultaneously, which can lead to perceptual problems due to psychoacoustic phenomena. Furthermore, the combination of speech and nonspeech audio is examined; each presents its own problems of perceptibility in an acoustic environment composed of multiple auditory streams. The centralized audio presentation manager receives abstract parameterized message requests from the currently running programs, and attempts to create and present a sonic representation in themore » most perceptible manner through the use of a theoretically and empirically designed rule set.« less

  12. Optimization method for an evolutional type inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Yu, Jian-Ning; Yang, Liu

    2008-01-01

    This paper deals with the determination of a pair (q, u) in the heat conduction equation u_t-u_{xx}+q(x,t)u=0, with initial and boundary conditions u(x,0)=u_0(x),\\qquad u_x|_{x=0}=u_x|_{x=1}=0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced.

  13. GPU-accelerated computation of electron transfer.

    PubMed

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  14. Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems.

    PubMed

    Yuste, S Bravo; Borrego, R; Abad, E

    2010-02-01

    We consider various anomalous d -dimensional diffusion problems in the presence of an absorbing boundary with radial symmetry. The motion of particles is described by a fractional diffusion equation. Their mean-square displacement is given by r(2) proportional, variant t(gamma)(00 , the emergence of such series in the long-time domain is a specific feature of subdiffusion problems. We present a method to regularize such series, and, in some cases, validate the procedure by using alternative techniques (Laplace transform method and numerical simulations). In the normal diffusion case, we find that the signature of the initial condition on the approach to the steady state rapidly fades away and the solution approaches a single (the main) decay mode in the long-time regime. In remarkable contrast, long-time memory of the initial condition is present in the subdiffusive case as the spatial part Psi1(r) describing the long-time decay of the solution to the steady state is determined by a weighted superposition of all spatial modes characteristic of the normal diffusion problem, the weight being dependent on the initial condition. Interestingly, Psi1(r) turns out to be independent of the anomalous diffusion exponent gamma .

  15. A new class of accelerated kinetic Monte Carlo algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulatov, V V; Oppelstrup, T; Athenes, M

    2011-11-30

    Kinetic (aka dynamic) Monte Carlo (KMC) is a powerful method for numerical simulations of time dependent evolution applied in a wide range of contexts including biology, chemistry, physics, nuclear sciences, financial engineering, etc. Generally, in a KMC the time evolution takes place one event at a time, where the sequence of events and the time intervals between them are selected (or sampled) using random numbers. While details of the method implementation vary depending on the model and context, there exist certain common issues that limit KMC applicability in almost all applications. Among such is the notorious 'flicker problem' where themore » same states of the systems are repeatedly visited but otherwise no essential evolution is observed. In its simplest form the flicker problem arises when two states are connected to each other by transitions whose rates far exceed the rates of all other transitions out of the same two states. In such cases, the model will endlessly hop between the two states otherwise producing no meaningful evolution. In most situation of practical interest, the trapping cluster includes more than two states making the flicker somewhat more difficult to detect and to deal with. Several methods have been proposed to overcome or mitigate the flicker problem, exactly [1-3] or approximately [4,5]. Of the exact methods, the one proposed by Novotny [1] is perhaps most relevant to our research. Novotny formulates the problem of escaping from a trapping cluster as a Markov system with absorbing states. Given an initial state inside the cluster, it is in principle possible to solve the Master Equation for the time dependent probabilities to find the walker in a given state (transient or absorbing) of the cluster at any time in the future. Novotny then proceeds to demonstrate implementation of his general method to trapping clusters containing the initial state plus one or two transient states and all of their absorbing states. Similar methods have been subsequently proposed in [refs] but applied in a different context. The most serious deficiency of the earlier methods is that size of the trapping cluster size is fixed and often too small to bring substantial simulation speedup. Furthermore, the overhead associated with solving for the probability distribution on the trapping cluster sometimes makes such simulations less efficient than the standard KMC. Here we report on a general and exact accelerated kinetic Monte Carlo algorithm generally applicable to arbitrary Markov models1. Two different implementations are attempted both based on incremental expansion of trapping sub-set of Markov states: (1) numerical solution of the Master Equation with absorbing states and (2) incremental graph reduction followed by randomization. Of the two implementations, the 2nd one performs better allowing, for the first time, to overcome trapping basins spanning several million Markov states. The new method is used for simulations of anomalous diffusion on a 2D substrate and of the kinetics of diffusive 1st order phase transformations in binary alloys. Depending on temperature and (alloy) super-saturation conditions, speedups of 3 to 7 orders of magnitude are demonstrated, with no compromise of simulation accuracy.« less

  16. Analysis of composite ablators using massively parallel computation

    NASA Technical Reports Server (NTRS)

    Shia, David

    1995-01-01

    In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.

  17. Flippin' Fluid Mechanics - Quasi-experimental Pre-test and Post-test Comparison Using Two Groups

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Majerich, D. M.; Luo, J.

    2014-11-01

    A flipped classroom approach has been implemented in an undergraduate fluid mechanics course. Students watch short on-line videos before class, participate in active in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. In-class activities are designed to achieve a trifecta of: 1. developing problem solving skills, 2. learning subject content, and 3. developing inquiry skills. The instructor and assistants provide critical ``just-in-time tutoring'' during the in-class problem solving sessions. Comparisons are made with a simultaneous section offered in a traditional mode by a different instructor. Regression analysis was used to control for differences among students and to quantify the effect of the flipped fluid mechanics course. The dependent variable was the students' combined final examination and post-concept inventory scores and the independent variables were pre-concept inventory score, gender, major, course section, and (incoming) GPA. The R-square equaled 0.45 indicating that the included variables explain 45% of the variation in the dependent variable. The regression results indicated that if the student took the flipped fluid mechanics course, the dependent variable (i.e., combined final exam and post-concept inventory scores) was raised by 7.25 points. Interestingly, the comparison group reported significantly more often that their course emphasized memorization than did the flipped classroom group.

  18. Does the Hall Effect Solve the Flux Pileup Saturation Problem?

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    It is well known that magnetic flux pileup can significantly speed up the rate of magnetic reconnection in high Lundquist number resistive MHD,allowing reconnection to proceed at a rate which is insensitive to the plasma resistivity over a wide range of Lundquist number. Hence, pileup is a possible solution to the Sweet-Parker time scale problem. Unfortunately, pileup tends to saturate above a critical value of the Lundquist number, S_c, where the value ofS_c depends on initial and boundary conditions, with Sweet-Parker scaling returning above S_c. It has been argued (see Dorelli and Bim [2003] and Dorelli [2003]) that the Hall effect can allow flux pileup to saturate (when the scale of the current sheet approaches ion inertial scale, di) before the reconnection rate begins to stall. However, the resulting saturated reconnection rate, while insensitive to the plasma resistivity, was found to depend strongly on the di. In this presentation, we revisit the problem of magnetic island coalescence (which is a well known example of flux pileup reconnection), addressing the dependence of the maximum coalescence rate on the ratio of di in the "large island" limit in which the following inequality is always satisfied: l_eta di lambda, where I_eta is the resistive diffusion length and lambda is the island wavelength.

  19. Transformation of nonlinear discrete-time system into the extended observer form

    NASA Astrophysics Data System (ADS)

    Kaparin, V.; Kotta, Ü.

    2018-04-01

    The paper addresses the problem of transforming discrete-time single-input single-output nonlinear state equations into the extended observer form, which, besides the input and output, also depends on a finite number of their past values. Necessary and sufficient conditions for the existence of both the extended coordinate and output transformations, solving the problem, are formulated in terms of differential one-forms, associated with the input-output equation, corresponding to the state equations. An algorithm for transformation of state equations into the extended observer form is proposed and illustrated by an example. Moreover, the considered approach is compared with the method of dynamic observer error linearisation, which likewise is intended to enlarge the class of systems transformable into an observer form.

  20. A dependency-based modelling mechanism for problem solving

    NASA Technical Reports Server (NTRS)

    London, P.

    1978-01-01

    The paper develops a technique of dependency net modeling which relies on an explicit representation of justifications for beliefs held by the problem solver. Using these justifications, the modeling mechanism is able to determine the relevant lines of inference to pursue during problem solving. Three particular problem-solving difficulties which may be handled by the dependency-based technique are discussed: (1) subgoal violation detection, (2) description binding, and (3) maintaining a consistent world model.

  1. Steps Toward Optimal Competitive Scheduling

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen

    2006-01-01

    This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum of users preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum ofsers preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a committee is usually in charge of deciding the priority of each mission competing for access to the DSN within a time period while scheduling. Instead, we can assume that the committee assigns a budget to each mission.

  2. Is self-generated thought a means of social problem solving?

    PubMed Central

    Ruby, Florence J. M.; Smallwood, Jonathan; Sackur, Jerome; Singer, Tania

    2013-01-01

    Appropriate social problem solving constitutes a critical skill for individuals and may rely on processes important for self-generated thought (SGT). The aim of the current study was to investigate the link between SGT and social problem solving. Using the Means-End Problem Solving task (MEPS), we assessed participants' abilities to resolve daily social problems in terms of overall efficiency and number of relevant means they provided to reach the given solution. Participants also performed a non-demanding choice reaction time task (CRT) and a moderately-demanding working memory task (WM) as a context in which to measure their SGT (assessed via thought sampling). We found that although overall SGT was associated with lower MEPS efficiency, it was also associated with higher relevant means, perhaps because both depend on the capacity to generate cognition that is independent from the hear and now. The specific content of SGT did not differentially predict individual differences in social problem solving, suggesting that the relationship may depend on SGT regardless of its content. In addition, we also found that performance at the WM but not the CRT was linked to overall better MEPS performance, suggesting that individuals good at social processing are also distinguished by their capacity to constrain attention to an external task. Our results provide novel evidence that the capacity for SGT is implicated in the process by which solutions to social problems are generated, although optimal problem solving may be achieved by individuals who display a suitable balance between SGT and cognition derived from perceptual input. PMID:24391621

  3. Correlates of interpersonal dependency and detachment in an adolescent inpatient sample.

    PubMed

    Haggerty, Greg; Siefert, Caleb J; Bornstein, Robert F; Sinclair, Samuel Justin; Blais, Mark A; Zodan, Jennifer; Rao, Nyapati

    2015-01-01

    Interpersonal dependency has been linked to psychological distress, depression, help seeking, treatment compliance, and sensitivity to interpersonal cues in adult samples. However, there is a dearth of research focusing on dependency in child and adolescent samples. The current study examined the construct validity of a measure of interpersonal dependency. The authors investigated how interpersonal dependency and detachment relate to behavioral problems, subjective well-being, interpersonal problems, and global symptom severity in adolescent inpatients. Destructive overdependence (DO) and dysfunctional detachment (DD) were positively related to interpersonal distress, behavioral problems, and symptom severity and negatively related to psychological health and well-being. Healthy dependency (HD) was associated with fewer behavioral problems and less symptom severity and positively related to subjective well-being. The clinical implications of these findings are discussed.

  4. An improved random walk algorithm for the implicit Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keady, Kendra P., E-mail: keadyk@lanl.gov; Cleveland, Mathew A.

    In this work, we introduce a modified Implicit Monte Carlo (IMC) Random Walk (RW) algorithm, which increases simulation efficiency for multigroup radiative transfer problems with strongly frequency-dependent opacities. To date, the RW method has only been implemented in “fully-gray” form; that is, the multigroup IMC opacities are group-collapsed over the full frequency domain of the problem to obtain a gray diffusion problem for RW. This formulation works well for problems with large spatial cells and/or opacities that are weakly dependent on frequency; however, the efficiency of the RW method degrades when the spatial cells are thin or the opacities aremore » a strong function of frequency. To address this inefficiency, we introduce a RW frequency group cutoff in each spatial cell, which divides the frequency domain into optically thick and optically thin components. In the modified algorithm, opacities for the RW diffusion problem are obtained by group-collapsing IMC opacities below the frequency group cutoff. Particles with frequencies above the cutoff are transported via standard IMC, while particles below the cutoff are eligible for RW. This greatly increases the total number of RW steps taken per IMC time-step, which in turn improves the efficiency of the simulation. We refer to this new method as Partially-Gray Random Walk (PGRW). We present numerical results for several multigroup radiative transfer problems, which show that the PGRW method is significantly more efficient than standard RW for several problems of interest. In general, PGRW decreases runtimes by a factor of ∼2–4 compared to standard RW, and a factor of ∼3–6 compared to standard IMC. While PGRW is slower than frequency-dependent Discrete Diffusion Monte Carlo (DDMC), it is also easier to adapt to unstructured meshes and can be used in spatial cells where DDMC is not applicable. This suggests that it may be optimal to employ both DDMC and PGRW in a single simulation.« less

  5. On the nonlinear stability of viscous modes within the Rayleigh problem on an infinite flat plate

    NASA Technical Reports Server (NTRS)

    Webb, J. C.; Otto, S. R.; Lilley, G. M.

    1994-01-01

    The stability has been investigated of the unsteady flow past an infinite flat plate when it is moved impulsively from rest, in its own plane. For small times the instantaneous stability of the flow depends on the linearized equations of motion which reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for certain values of Reynolds number, frequency and wave number is unstable to Tollmien-Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate. With increase in time, the unstable waves only undergo growth for a finite time interval, and this growth rate is itself a function of time. The influence of finite amplitude effects is studied by solving the full Navier-Stokes equations. It is found that the stability characteristics are markedly changed both by the consideration of the time evolution of the flow, and by the introduction of finite amplitude effects.

  6. From h to p efficiently: optimal implementation strategies for explicit time-dependent problems using the spectral/hp element method

    PubMed Central

    Bolis, A; Cantwell, C D; Kirby, R M; Sherwin, S J

    2014-01-01

    We investigate the relative performance of a second-order Adams–Bashforth scheme and second-order and fourth-order Runge–Kutta schemes when time stepping a 2D linear advection problem discretised using a spectral/hp element technique for a range of different mesh sizes and polynomial orders. Numerical experiments explore the effects of short (two wavelengths) and long (32 wavelengths) time integration for sets of uniform and non-uniform meshes. The choice of time-integration scheme and discretisation together fixes a CFL limit that imposes a restriction on the maximum time step, which can be taken to ensure numerical stability. The number of steps, together with the order of the scheme, affects not only the runtime but also the accuracy of the solution. Through numerical experiments, we systematically highlight the relative effects of spatial resolution and choice of time integration on performance and provide general guidelines on how best to achieve the minimal execution time in order to obtain a prescribed solution accuracy. The significant role played by higher polynomial orders in reducing CPU time while preserving accuracy becomes more evident, especially for uniform meshes, compared with what has been typically considered when studying this type of problem.© 2014. The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons, Ltd. PMID:25892840

  7. Electron Dynamics in Finite Quantum Systems

    NASA Astrophysics Data System (ADS)

    McDonald, Christopher R.

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.

  8. Relative motion of orbiting satellites

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1972-01-01

    The relative motion problem is analyzed, as a linearized case, and as a numerically determined solution to provide a time history of the geometries representing the motion state. The displacement history and the hodographs for families of solutions are provided, analytically and graphically, to serve as an aid to understanding this problem area. Linearized solutions to relative motion problems of orbiting particles are presented for the impulsive and fixed thrust cases. Second order solutions are described to enhance the accuracy of prediction. A method was developed to obtain accurate, numerical solutions to the intercept and rendezvous problem; and, special situations are examined. A particular problem related to relative motions, where the motion traces develop a cusp, is examined in detail. This phenomenon is found to be dependent on a particular relationship between orbital eccentricity and the inclination between orbital planes. These conditions are determined, and, example situations are presented and discussed.

  9. Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, L.T.; Hertel, E.; Schwalbe, L.

    1998-02-01

    The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less

  10. Distributed optimisation problem with communication delay and external disturbance

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc-Tu; Xiao, Jiang-Wen; Wang, Yan-Wu; Yang, Wu

    2017-12-01

    This paper investigates the distributed optimisation problem for the multi-agent systems (MASs) with the simultaneous presence of external disturbance and the communication delay. To solve this problem, a two-step design scheme is introduced. In the first step, based on the internal model principle, the internal model term is constructed to compensate the disturbance asymptotically. In the second step, a distributed optimisation algorithm is designed to solve the distributed optimisation problem based on the MASs with the simultaneous presence of disturbance and communication delay. Moreover, in the proposed algorithm, each agent interacts with its neighbours through the connected topology and the delay occurs during the information exchange. By utilising Lyapunov-Krasovskii functional, the delay-dependent conditions are derived for both slowly and fast time-varying delay, respectively, to ensure the convergence of the algorithm to the optimal solution of the optimisation problem. Several numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.

  11. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator

    PubMed Central

    Mohamd Shoukry, Alaa; Gani, Showkat

    2017-01-01

    Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364

  12. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.

    PubMed

    Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat

    2017-01-01

    Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.

  13. Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black-Scholes model with transaction costs

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Tian

    2011-05-01

    This paper deals with the problem of discrete time option pricing using the fractional Black-Scholes model with transaction costs. Through the ‘anchoring and adjustment’ argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price of an option under transaction costs is obtained. In addition, the relation between scaling and implied volatility smiles is discussed.

  14. Double-slit interferometry with a Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L.A.; Berman, G.P.; Bishop, A.R.

    2005-03-01

    A Bose-Einstein 'double-slit' interferometer has been recently realized experimentally by Y. Shin et al., Phys. Rev. Lett. 92 050405 (2004). We analyze the interferometric steps by solving numerically the time-dependent Gross-Pitaevskii equation in three-dimensional space. We focus on the adiabaticity time scales of the problem and on the creation of spurious collective excitations as a possible source of the strong degradation of the interference pattern observed experimentally. The role of quantum fluctuations is discussed.

  15. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  16. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  17. Alternative formulations of the Laplace transform boundary element (LTBE) numerical method for the solution of diffusion-type equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, G.

    1992-03-01

    The Laplace Transform Boundary Element (LTBE) method is a recently introduced numerical method, and has been used for the solution of diffusion-type PDEs. It completely eliminates the time dependency of the problem and the need for time discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE solutions are obtained in the Laplace spare, and are then inverted numerically to yield the solution in time. The Stehfest and the DeHoog formulations of LTBE, based on two different inversion algorithms, are investigated. Both formulations produce comparable, extremely accurate solutions.

  18. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  19. Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations

    NASA Astrophysics Data System (ADS)

    Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.

    2018-01-01

    Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.

  20. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    NASA Astrophysics Data System (ADS)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

Top