Sample records for time dependent variable

  1. Choice of Variables and Preconditioning for Time Dependent Problems

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Vatsa, Verr N.

    2003-01-01

    We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.

  2. A hazard rate analysis of fertility using duration data from Malaysia.

    PubMed

    Chang, C

    1988-01-01

    Data from the Malaysia Fertility and Family Planning Survey (MFLS) of 1974 were used to investigate the effects of biological and socioeconomic variables on fertility based on the hazard rate model. Another study objective was to investigate the robustness of the findings of Trussell et al. (1985) by comparing the findings of this study with theirs. The hazard rate of conception for the jth fecundable spell of the ith woman, hij, is determined by duration dependence, tij, measured by the waiting time to conception; unmeasured heterogeneity (HETi; the time-invariant variables, Yi (race, cohort, education, age at marriage); and time-varying variables, Xij (age, parity, opportunity cost, income, child mortality, child sex composition). In this study, all the time-varying variables were constant over a spell. An asymptotic X2 test for the equality of constant hazard rates across birth orders, allowing time-invariant variables and heterogeneity, showed the importance of time-varying variables and duration dependence. Under the assumption of fixed effects heterogeneity and the Weibull distribution for the duration of waiting time to conception, the empirical results revealed a negative parity effect, a negative impact from male children, and a positive effect from child mortality on the hazard rate of conception. The estimates of step functions for the hazard rate of conception showed parity-dependent fertility control, evidence of heterogeneity, and the possibility of nonmonotonic duration dependence. In a hazard rate model with piecewise-linear-segment duration dependence, the socioeconomic variables such as cohort, child mortality, income, and race had significant effects, after controlling for the length of the preceding birth. The duration dependence was consistant with the common finding, i.e., first increasing and then decreasing at a slow rate. The effects of education and opportunity cost on fertility were insignificant.

  3. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    PubMed

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  4. Integrated Logistics Support Analysis of the International Space Station Alpha, Background and Summary of Mathematical Modeling and Failure Density Distributions Pertaining to Maintenance Time Dependent Parameters

    NASA Technical Reports Server (NTRS)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process of predicting the values of maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability and maintenance support costs. There are two types of parameters in the logistics and maintenance world: a. Fixed; b. Variable Fixed parameters, such as cost per man hour, are relatively easy to predict and forecast. These parameters normally follow a linear path and they do not change randomly. However, the variable parameters subject to the study in this report such as MTBF do not follow a linear path and they normally fall within the distribution curves which are discussed in this publication. The very challenging task then becomes the utilization of statistical techniques to accurately forecast the future non-linear time dependent variable arisings and events with a high confidence level. This, in turn, shall translate in tremendous cost savings and improved availability all around.

  5. Shoulder pain and time dependent structure in wheelchair propulsion variability

    PubMed Central

    Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J.

    2016-01-01

    Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1 m/s for 3 minutes. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ2(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain. PMID:27134151

  6. X-ray variability of Pleiades late-type stars as observed with the ROSAT-PSPC

    NASA Astrophysics Data System (ADS)

    Marino, A.; Micela, G.; Peres, G.; Sciortino, S.

    2003-08-01

    We present a comprehensive analysis of X-ray variability of the late-type (dF7-dM) Pleiades stars, detected in all ROSAT-PSPC observations; X-ray variations on short (hours) and medium (months) time scales have been explored. We have grouped the stars in two samples: 89 observations of 42 distinct dF7-dK2 stars and 108 observations of 61 dK3-dM stars. The Kolmogorov-Smirnov test applied on all X-ray photon time series show that the percentage of cases of significant variability is quite similar on both samples, suggesting that the presence of variability does not depend on mass for the time scales and mass range explored. The comparison between the Time X-ray Amplitude Distribution functions (XAD) of the set of dF7-dK2 and of the dK3-dM show that, on short time scales, dK3-dM stars show larger variations than dF7-dK2. A subsample of eleven dF7-dK2 and eleven dK3-dM Pleiades stars allows the study of variability on longer time scales: we found that variability on medium - long time scales is relatively more common among dF7-dK2 stars than among dK3-dM ones. For both dF7-dK2 Pleiades stars and dF7-dK2 field stars, the variability on short time scales depends on Lx while this dependence has not been observed among dK3-dM stars. It may be that the variability among dK3-dM stars is dominated by flares that have a similar luminosity distribution for stars of different Lx, while flaring distribution in dF7-dK2 stars may depend on X-ray luminosity. The lowest mass stars show significant rapid variability (flares?) and no evidence of rotation modulation or cycles. On the contrary, dF7-dK2 Pleiades stars show both rapid variability and variations on longer time scales, likely associated with rotational modulation or cycles.

  7. Modeling Time-Dependent Association in Longitudinal Data: A Lag as Moderator Approach

    ERIC Educational Resources Information Center

    Selig, James P.; Preacher, Kristopher J.; Little, Todd D.

    2012-01-01

    We describe a straightforward, yet novel, approach to examine time-dependent association between variables. The approach relies on a measurement-lag research design in conjunction with statistical interaction models. We base arguments in favor of this approach on the potential for better understanding the associations between variables by…

  8. Determining Directional Dependency in Causal Associations

    PubMed Central

    Pornprasertmanit, Sunthud; Little, Todd D.

    2014-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of skewness and excessive kurtosis of both variables, discouraging the use of D’Agostino’s K2, and encouraging the use of directional dependency to compare variables only within time points. We offer improved steps for determining directional dependency that fix the problems we note. Next, we discuss how to integrate directional dependency into longitudinal data analysis with two variables. We also examine the accuracy of directional dependency evaluations when several regression assumptions are violated. Directional dependency can suggest the direction of a relation if (a) the regression error in population is normal, (b) an unobserved explanatory variable correlates with any variables equal to or less than .2, (c) a curvilinear relation between both variables is not strong (standardized regression coefficient ≤ .2), (d) there are no bivariate outliers, and (e) both variables are continuous. PMID:24683282

  9. Shoulder pain and time dependent structure in wheelchair propulsion variability.

    PubMed

    Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J

    2016-07-01

    Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Sensitivity study on durability variables of marine concrete structures

    NASA Astrophysics Data System (ADS)

    Zhou, Xin'gang; Li, Kefei

    2013-06-01

    In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.

  11. The turbulent mean-flow, Reynolds-stress, and heat flux equations in mass-averaged dependent variables

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Rose, W. C.

    1973-01-01

    The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.

  12. Dynamic Quantum Allocation and Swap-Time Variability in Time-Sharing Operating Systems.

    ERIC Educational Resources Information Center

    Bhat, U. Narayan; Nance, Richard E.

    The effects of dynamic quantum allocation and swap-time variability on central processing unit (CPU) behavior are investigated using a model that allows both quantum length and swap-time to be state-dependent random variables. Effective CPU utilization is defined to be the proportion of a CPU busy period that is devoted to program processing, i.e.…

  13. Experimental verification of a real-time tuning method of a model-based controller by perturbations to its poles

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Furuya, Keiichiro; Ishizuka, Shinichi

    2018-07-01

    Model-based controllers with adaptive design variables are often used to control an object with time-dependent characteristics. However, the controller's performance is influenced by many factors such as modeling accuracy and fluctuations in the object's characteristics. One method to overcome these negative factors is to tune model-based controllers. Herein we propose an online tuning method to maintain control performance for an object that exhibits time-dependent variations. The proposed method employs the poles of the controller as design variables because the poles significantly impact performance. Specifically, we use the simultaneous perturbation stochastic approximation (SPSA) to optimize a model-based controller with multiple design variables. Moreover, a vibration control experiment of an object with time-dependent characteristics as the temperature is varied demonstrates that the proposed method allows adaptive control and stably maintains the closed-loop characteristics.

  14. Recent progresses in outcome-dependent sampling with failure time data.

    PubMed

    Ding, Jieli; Lu, Tsui-Shan; Cai, Jianwen; Zhou, Haibo

    2017-01-01

    An outcome-dependent sampling (ODS) design is a retrospective sampling scheme where one observes the primary exposure variables with a probability that depends on the observed value of the outcome variable. When the outcome of interest is failure time, the observed data are often censored. By allowing the selection of the supplemental samples depends on whether the event of interest happens or not and oversampling subjects from the most informative regions, ODS design for the time-to-event data can reduce the cost of the study and improve the efficiency. We review recent progresses and advances in research on ODS designs with failure time data. This includes researches on ODS related designs like case-cohort design, generalized case-cohort design, stratified case-cohort design, general failure-time ODS design, length-biased sampling design and interval sampling design.

  15. Recent progresses in outcome-dependent sampling with failure time data

    PubMed Central

    Ding, Jieli; Lu, Tsui-Shan; Cai, Jianwen; Zhou, Haibo

    2016-01-01

    An outcome-dependent sampling (ODS) design is a retrospective sampling scheme where one observes the primary exposure variables with a probability that depends on the observed value of the outcome variable. When the outcome of interest is failure time, the observed data are often censored. By allowing the selection of the supplemental samples depends on whether the event of interest happens or not and oversampling subjects from the most informative regions, ODS design for the time-to-event data can reduce the cost of the study and improve the efficiency. We review recent progresses and advances in research on ODS designs with failure time data. This includes researches on ODS related designs like case–cohort design, generalized case–cohort design, stratified case–cohort design, general failure-time ODS design, length-biased sampling design and interval sampling design. PMID:26759313

  16. Evidence for a Time-Invariant Phase Variable in Human Ankle Control

    PubMed Central

    Gregg, Robert D.; Rouse, Elliott J.; Hargrove, Levi J.; Sensinger, Jonathon W.

    2014-01-01

    Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control. PMID:24558485

  17. Adjoint-Based Methodology for Time-Dependent Optimization

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2008-01-01

    This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.

  18. Estimation of Recurrence of Colorectal Adenomas with Dependent Censoring Using Weighted Logistic Regression

    PubMed Central

    Hsu, Chiu-Hsieh; Li, Yisheng; Long, Qi; Zhao, Qiuhong; Lance, Peter

    2011-01-01

    In colorectal polyp prevention trials, estimation of the rate of recurrence of adenomas at the end of the trial may be complicated by dependent censoring, that is, time to follow-up colonoscopy and dropout may be dependent on time to recurrence. Assuming that the auxiliary variables capture the dependence between recurrence and censoring times, we propose to fit two working models with the auxiliary variables as covariates to define risk groups and then extend an existing weighted logistic regression method for independent censoring to each risk group to accommodate potential dependent censoring. In a simulation study, we show that the proposed method results in both a gain in efficiency and reduction in bias for estimating the recurrence rate. We illustrate the methodology by analyzing a recurrent adenoma dataset from a colorectal polyp prevention trial. PMID:22065985

  19. The nature and use of prediction skills in a biological computer simulation

    NASA Astrophysics Data System (ADS)

    Lavoie, Derrick R.; Good, Ron

    The primary goal of this study was to examine the science process skill of prediction using qualitative research methodology. The think-aloud interview, modeled after Ericsson and Simon (1984), let to the identification of 63 program exploration and prediction behaviors.The performance of seven formal and seven concrete operational high-school biology students were videotaped during a three-phase learning sequence on water pollution. Subjects explored the effects of five independent variables on two dependent variables over time using a computer-simulation program. Predictions were made concerning the effect of the independent variables upon dependent variables through time. Subjects were identified according to initial knowledge of the subject matter and success at solving three selected prediction problems.Successful predictors generally had high initial knowledge of the subject matter and were formal operational. Unsuccessful predictors generally had low initial knowledge and were concrete operational. High initial knowledge seemed to be more important to predictive success than stage of Piagetian cognitive development.Successful prediction behaviors involved systematic manipulation of the independent variables, note taking, identification and use of appropriate independent-dependent variable relationships, high interest and motivation, and in general, higher-level thinking skills. Behaviors characteristic of unsuccessful predictors were nonsystematic manipulation of independent variables, lack of motivation and persistence, misconceptions, and the identification and use of inappropriate independent-dependent variable relationships.

  20. Bayesian Techniques for Comparing Time-dependent GRMHD Simulations to Variable Event Horizon Telescope Observations

    NASA Astrophysics Data System (ADS)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  1. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore themore » robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.« less

  2. Influence of rice straw cooking conditions in the soda-ethanol-water pulping on the mechanical properties of produced paper sheets.

    PubMed

    Navaee-Ardeh, S; Mohammadi-Rovshandeh, J; Pourjoozi, M

    2004-03-01

    A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.

  3. Quadratic time dependent Hamiltonians and separation of variables

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  4. Using the entire history in the analysis of nested case cohort samples.

    PubMed

    Rivera, C L; Lumley, T

    2016-08-15

    Countermatching designs can provide more efficient estimates than simple matching or case-cohort designs in certain situations such as when good surrogate variables for an exposure of interest are available. We extend pseudolikelihood estimation for the Cox model under countermatching designs to models where time-varying covariates are considered. We also implement pseudolikelihood with calibrated weights to improve efficiency in nested case-control designs in the presence of time-varying variables. A simulation study is carried out, which considers four different scenarios including a binary time-dependent variable, a continuous time-dependent variable, and the case including interactions in each. Simulation results show that pseudolikelihood with calibrated weights under countermatching offers large gains in efficiency if compared to case-cohort. Pseudolikelihood with calibrated weights yielded more efficient estimators than pseudolikelihood estimators. Additionally, estimators were more efficient under countermatching than under case-cohort for the situations considered. The methods are illustrated using the Colorado Plateau uranium miners cohort. Furthermore, we present a general method to generate survival times with time-varying covariates. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  6. Serial position effects are sensitive predictors of conversion from MCI to Alzheimer's disease dementia.

    PubMed

    Egli, Simone C; Beck, Irene R; Berres, Manfred; Foldi, Nancy S; Monsch, Andreas U; Sollberger, Marc

    2014-10-01

    It is unclear whether the predictive strength of established cognitive variables for progression to Alzheimer's disease (AD) dementia from mild cognitive impairment (MCI) varies depending on time to conversion. We investigated which cognitive variables were best predictors, and which of these variables remained predictive for patients with longer times to conversion. Seventy-five participants with MCI were assessed on measures of learning, memory, language, and executive function. Relative predictive strengths of these measures were analyzed using Cox regression models. Measures of word-list position-namely, serial position scores-together with Short Delay Free Recall of word-list learning best predicted conversion to AD dementia. However, only serial position scores predicted those participants with longer time to conversion. Results emphasize that the predictive strength of cognitive variables varies depending on time to conversion to dementia. Moreover, finer measures of learning captured by serial position scores were the most sensitive predictors of AD dementia. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  7. Discrete-time BAM neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi

    2007-07-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.

  8. Simple and Double Alfven Waves: Hamiltonian Aspects

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Hu, Q.; le Roux, J. A.; Dasgupta, B.

    2011-12-01

    We discuss the nature of simple and double Alfvén waves. Simple waves depend on a single phase variable \\varphi, but double waves depend on two independent phase variables \\varphi1 and \\varphi2. The phase variables depend on the space and time coordinates x and t. Simple and double Alfvén waves have the same integrals, namely, the entropy, density, magnetic pressure, and group velocity (the sum of the Alfvén and fluid velocities) are constant throughout the flow. We present examples of both simple and double Alfvén waves, and discuss Hamiltonian formulations of the waves.

  9. Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.

    2014-01-01

    High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.

  10. Solution of the Time-Dependent Schrödinger Equation by the Laplace Transform Method

    PubMed Central

    Lin, S. H.; Eyring, H.

    1971-01-01

    The time-dependent Schrödinger equation for two quite general types of perturbation has been solved by introducing the Laplace transforms to eliminate the time variable. The resulting time-independent differential equation can then be solved by the perturbation method, the variation method, the variation-perturbation method, and other methods. PMID:16591898

  11. The Relationship of Field Dependent/Independent Cognitive Styles, Stimuli Variability and Time Factor on Student Achievement.

    ERIC Educational Resources Information Center

    Atang, Christopher I.

    The effects of black and white and color illustrations on student achievement were studied to investigate the relationships between cognitive styles and instructional design. Field dependence (FD) and field independence (FI) were chosen as the cognitive style variables. Subjects were 85 freshman students in the Iowa State University Psychology…

  12. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    van Horssen, Wim T.; Wang, Yandong; Cao, Guohua

    2018-06-01

    In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.

  13. Dependence of vestibular reactions on frequency of action of sign-variable accelerations

    NASA Technical Reports Server (NTRS)

    Lapayev, E. V.; Vorobyev, O. A.; Ivanov, V. V.

    1980-01-01

    It was revealed that during the tests with continuous action of sign variable Coriolis acceleration the development of kinetosis was proportionate to the time of head inclinations in the range of 1 to 4 seconds while illusions of rocking in sagittal plane was more expressed in fast inclinations. The obtained data provided the evidence of sufficient dependence of vestibulovegetative and vestibulosensory reactions on the period of repetition of sign variable Coriolis acceleration.

  14. [Socio-demographic and health factors associated with the institutionalization of dependent people].

    PubMed

    Ayuso Gutiérrez, Mercedes; Pozo Rubio, Raúl Del; Escribano Sotos, Francisco

    2010-01-01

    The analysis of the effect that different variables have in the probability that dependent people are institutionalized is a topic scantily studied in Spain. The aim of the work is to analyze as certain socio-demographic and health factors can influence probability of dependent person living in a residence. A cross-section study has been conducted from a representative sample of the dependent population in Cuenca (Spain) in February, 2009. We have obtained information for people with level II and III of dependence. A binary logit regression model has been estimated to identify those factors related to the institutionalization of dependent people. People with ages between 65-74 years old are six times more likely to be institutionalized than younger people (< 65 years old); this probability increases sixteen times for those individuals with ages equal or higher than 95 years. The probability of institutionalization of people who live in an urban area is three times the probability of people who live in a rural area. People who need pharmacological, psychotherapy or rehabilitation treatments have between two and four times more probability of being institutionalized that those who do not need those. Age, marital status, place of residence, cardiovascular and musculoskeletal diseases and four times of medical treatment are the principal variables associated with the institutionalization of dependent people.

  15. Predator Persistence through Variability of Resource Productivity in Tritrophic Systems.

    PubMed

    Soudijn, Floor H; de Roos, André M

    2017-12-01

    The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population. With increasing variability in productivity and starvation mortality in the juvenile prey, the prey availability increases in the size range preferred by the predator. The positive effect of prey mortality on the trophic transfer efficiency depends on the biologically realistic consideration of body size-dependent and food-dependent functions for growth and reproduction in our model. Our findings show that variability may promote the trophic transfer efficiency, indicating that environmental variability may sustain species at higher trophic levels in natural ecosystems.

  16. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1988-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  17. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  18. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less

  19. Evaluation of the effects of climate and man intervention on ground waters and their dependent ecosystems using time series analysis

    NASA Astrophysics Data System (ADS)

    Gemitzi, Alexandra; Stefanopoulos, Kyriakos

    2011-06-01

    SummaryGroundwaters and their dependent ecosystems are affected both by the meteorological conditions as well as from human interventions, mainly in the form of groundwater abstractions for irrigation needs. This work aims at investigating the quantitative effects of meteorological conditions and man intervention on groundwater resources and their dependent ecosystems. Various seasonal Auto-Regressive Integrated Moving Average (ARIMA) models with external predictor variables were used in order to model the influence of meteorological conditions and man intervention on the groundwater level time series. Initially, a seasonal ARIMA model that simulates the abstraction time series using as external predictor variable temperature ( T) was prepared. Thereafter, seasonal ARIMA models were developed in order to simulate groundwater level time series in 8 monitoring locations, using the appropriate predictor variables determined for each individual case. The spatial component was introduced through the use of Geographical Information Systems (GIS). Application of the proposed methodology took place in the Neon Sidirochorion alluvial aquifer (Northern Greece), for which a 7-year long time series (i.e., 2003-2010) of piezometric and groundwater abstraction data exists. According to the developed ARIMA models, three distinct groups of groundwater level time series exist; the first one proves to be dependent only on the meteorological parameters, the second group demonstrates a mixed dependence both on meteorological conditions and on human intervention, whereas the third group shows a clear influence from man intervention. Moreover, there is evidence that groundwater abstraction has affected an important protected ecosystem.

  20. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  1. Variability at the edge: highly accreting objects in Taurus

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Szabo, Robert

    2017-04-01

    In Kepler K2, Campaign 13, we will obtain 80-days-long optical light curves of seven highly accreting T Tauri stars in the benchmark Taurus star forming region. Here we propose to monitor our sample simultaneously with Kepler and Spitzer, to be able to separate variability patterns related to different physical processes. Monitoring our targets with Spitzer during the final 11 days of the K2 campaign, we will clean the light curves from non-accretion effects (rotating stellar spots, dips due to passing dust structures), and construct, for the first time, a variability curve which reflects the time-dependent accretion only. We will then study and understand how time-dependent mass accretion affects the density and temperature structure of the protoplanetary disk, which sets the initial conditions for planet formation. The proposed work cannot be done without the unparalleled precision of Kepler and Spitzer. This unique and one-time opportunity motivated our DDT proposal.

  2. Discrimination of Variable Schedules Is Controlled by Interresponse Times Proximal to Reinforcement

    ERIC Educational Resources Information Center

    Tanno, Takayuki; Silberberg, Alan; Sakagami, Takayuki

    2012-01-01

    In Experiment 1, food-deprived rats responded to one of two schedules that were, with equal probability, associated with a sample lever. One schedule was always variable ratio, while the other schedule, depending on the trial within a session, was: (a) a variable-interval schedule; (b) a tandem variable-interval,…

  3. Population extinction under bursty reproduction in a time-modulated environment

    NASA Astrophysics Data System (ADS)

    Vilk, Ohad; Assaf, Michael

    2018-06-01

    In recent years nondemographic variability has been shown to greatly affect dynamics of stochastic populations. For example, nondemographic noise in the form of a bursty reproduction process with an a priori unknown burst size, or environmental variability in the form of time-varying reaction rates, have been separately found to dramatically impact the extinction risk of isolated populations. In this work we investigate the extinction risk of an isolated population under the combined influence of these two types of nondemographic variation. Using the so-called momentum-space Wentzel-Kramers-Brillouin (WKB) approach and accounting for the explicit time dependence in the reaction rates, we arrive at a set of time-dependent Hamilton equations. To this end, we evaluate the population's extinction risk by finding the instanton of the time-perturbed Hamiltonian numerically, whereas analytical expressions are presented in particular limits using various perturbation techniques. We focus on two classes of time-varying environments: periodically varying rates corresponding to seasonal effects and a sudden decrease in the birth rate corresponding to a catastrophe. All our theoretical results are tested against numerical Monte Carlo simulations with time-dependent rates and also against a numerical solution of the corresponding time-dependent Hamilton equations.

  4. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  5. Total ozone trend significance from space time variability of daily Dobson data

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.

    1981-01-01

    Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.

  6. A Finite Element Projection Method for the Solution of Particle Transport Problems with Anisotropic Scattering.

    DTIC Science & Technology

    1984-07-01

    piecewise constant energy dependence. This is a seven-dimensional problem with time dependence, three spatial and two angular or directional variables and...in extending the computer implementation of the method to time and energy dependent problems, and to solving and validating this technique on a...problems they have severe limitations. The Monte Carlo method, usually requires the use of many hours of expensive computer time , and for deep

  7. [Gene method for inconsistent hydrological frequency calculation. I: Inheritance, variability and evolution principles of hydrological genes].

    PubMed

    Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie

    2018-04-01

    A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.

  8. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  9. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  11. Detection of regional infrasound signals using array data: Testing, tuning, and physical interpretation

    DOE PAGES

    Park, Junghyun; Stump, Brian W.; Hayward, Chris; ...

    2016-07-14

    This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonablymore » variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. As a result, this suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.« less

  12. Detection of regional infrasound signals using array data: Testing, tuning, and physical interpretation.

    PubMed

    Park, Junghyun; Stump, Brian W; Hayward, Chris; Arrowsmith, Stephen J; Che, Il-Young; Drob, Douglas P

    2016-07-01

    This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonably variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. This suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.

  13. Dependence of Halo Bias and Kinematics on Assembly Variables

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoju; Zheng, Zheng

    2018-06-01

    Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.

  14. Causal Structure Learning over Time: Observations and Interventions

    ERIC Educational Resources Information Center

    Rottman, Benjamin M.; Keil, Frank C.

    2012-01-01

    Seven studies examined how people learn causal relationships in scenarios when the variables are temporally dependent--the states of variables are stable over time. When people intervene on X, and Y subsequently changes state compared to before the intervention, people infer that X influences Y. This strategy allows people to learn causal…

  15. Motherhood and drug-dependency: the attributes of full-time versus part-time responsibility for child care.

    PubMed

    Jackson, M R; Berry, G L

    1994-10-01

    This study examined differences between the maternal characteristics of African-American drug-dependent mothers who have full-time responsibility for child care and those having part-time responsibility. The study revealed that full-time mothers have significantly higher levels of maternal adaptation than part-time mothers. For part-time mothers, the level of maternal adaptation or self-esteem did not fluctuate, regardless of whether she saw the child 4 days a week or once a month. The article identifies variables that may facilitate better maternal behaviors among drug-dependent mothers.

  16. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    ERIC Educational Resources Information Center

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  17. Nonlinear bivariate dependency of price-volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Chen, Shu-Peng

    2011-01-01

    Nonlinear dependency between characteristic financial and commodity market quantities (variables) is crucially important, especially between trading volume and market price. Studies on nonlinear dependency between price and volume can provide practical insights into market trading characteristics, as well as the theoretical understanding of market dynamics. Actually, nonlinear dependency and its underlying dynamical mechanisms between price and volume can help researchers and technical analysts in understanding the market dynamics by integrating the market variables, instead of investigating them in the current literature. Therefore, for investigating nonlinear dependency of price-volume relationships in agricultural commodity futures markets in China and the US, we perform a new statistical test to detect cross-correlations and apply a new methodology called Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), which is an efficient algorithm to analyze two spatially or temporally correlated time series. We discuss theoretically the relationship between the bivariate cross-correlation exponent and the generalized Hurst exponents for time series of respective variables. We also perform an empirical study and find that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the analyzed agricultural commodity futures markets.

  18. Latitude of residence and position in time zone are predictors of cancer incidence, cancer mortality, and life expectancy at birth.

    PubMed

    Borisenkov, Mikhail F

    2011-03-01

    According to the hypothesis of circadian disruption, external factors that disturb the function of the circadian system can raise the risk of malignant neoplasm and reduce life span. Recent work has shown that the functionality of the circadian system is dependent not only on latitude of residence but also on the region's position in the time zone. The purpose of the present research was to examine the influence of latitude and time zone on cancer incidence, cancer mortality, and life expectancy at birth. A stepwise multiple regression analysis was carried out on residents of 59 regions of the European part of the Russian Federation (EPRF) using age-standardized parameters (per 100,000) of cancer incidence (CI), cancer mortality (CM), and life expectancy at birth (LE, yrs) as dependent variables. The geographical coordinates (latitude and position in the time zone) of the regions were used as independent variables, controlling for the level of economic development in the regions. The same analysis was carried out for LE in 31 regions in China. Latitude was the strongest predictor of LE in the EPRF population; it explained 48% and 45% of the variability in LE of women and men, respectively. Position within the time zone accounted for an additional 4% and 3% variability of LE in women and men, respectively. The highest values for LE were observed in the southeast of the EPRF. In China, latitude was not a predictor of LE, whereas position in the time zone explained 15% and 18% of the LE variability in women and men, respectively. The highest values of LE were observed in the eastern regions of China. Both latitude and position within the time zone were predictors for CI and CM of the EPRF population. Latitude was the best predictor of stomach CI and CM; this predictor explained 46% and 50% of the variability, respectively. Position within the time zone was the best predictor of female breast CM; it explained 15% of the variability. In most cases, CI and CM increased with increasing latitude of residence, from the eastern to the western border of the time zone, and with increasing level of economic development within the region. The dependence of CI, CM, and LE on the geographical coordinates of residence is in agreement with the hypothesis of circadian disruption.

  19. Predictive factors in patients with hepatocellular carcinoma receiving sorafenib therapy using time-dependent receiver operating characteristic analysis.

    PubMed

    Nishikawa, Hiroki; Nishijima, Norihiro; Enomoto, Hirayuki; Sakamoto, Azusa; Nasu, Akihiro; Komekado, Hideyuki; Nishimura, Takashi; Kita, Ryuichi; Kimura, Toru; Iijima, Hiroko; Nishiguchi, Shuhei; Osaki, Yukio

    2017-01-01

    To investigate variables before sorafenib therapy on the clinical outcomes in hepatocellular carcinoma (HCC) patients receiving sorafenib and to further assess and compare the predictive performance of continuous parameters using time-dependent receiver operating characteristics (ROC) analysis. A total of 225 HCC patients were analyzed. We retrospectively examined factors related to overall survival (OS) and progression free survival (PFS) using univariate and multivariate analyses. Subsequently, we performed time-dependent ROC analysis of continuous parameters which were significant in the multivariate analysis in terms of OS and PFS. Total sum of area under the ROC in all time points (defined as TAAT score) in each case was calculated. Our cohort included 175 male and 50 female patients (median age, 72 years) and included 158 Child-Pugh A and 67 Child-Pugh B patients. The median OS time was 0.68 years, while the median PFS time was 0.24 years. On multivariate analysis, gender, body mass index (BMI), Child-Pugh classification, extrahepatic metastases, tumor burden, aspartate aminotransferase (AST) and alpha-fetoprotein (AFP) were identified as significant predictors of OS and ECOG-performance status, Child-Pugh classification and extrahepatic metastases were identified as significant predictors of PFS. Among three continuous variables (i.e., BMI, AST and AFP), AFP had the highest TAAT score for the entire cohort. In subgroup analyses, AFP had the highest TAAT score except for Child-Pugh B and female among three continuous variables. In continuous variables, AFP could have higher predictive accuracy for survival in HCC patients undergoing sorafenib therapy.

  20. Social support at work and leisure time and its association with self-rated health and sickness absence.

    PubMed

    Falkenberg, A; Nyfjäll, M; Hellgren, C; Vingård, E

    2012-01-01

    The aim of this longitudinal study is to investigate how different aspects of social support at work and in leisure time are associated with self rated health and sickness absence. The 541 participants in the study were representative for a working population in the public sector in Sweden with a majority being woman. Most of the variables were created from data from a questionnaire in March-April 2005. There were four independent variables and two dependent variables. The dependent were based on data from November 2006. A logistic regression model was used for the analysis of associations. A separate model was adapted for each of the explanatory variables for each outcome, which gave five models per independent variable. The study has given a greater awareness of the importance of employees receiving social support, regardless of type of support or from whom the support is coming. Social support has a strong association with SRH in a longitudinal perspective and no association between social support and sickness absence.

  1. Dark and bright solitons for the two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch system with time-dependent coefficient

    NASA Astrophysics Data System (ADS)

    Shaikhova, G.; Ozat, N.; Yesmakhanova, K.; Bekova, G.

    2018-02-01

    In this work, we present Lax pair for two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch (cmKdV-MB) system with the time-dependent coefficient. Dark and bright soliton solutions for the cmKdV-MB system with variable coefficient are received by Darboux transformation. Moreover, the determinant representation of the one-fold and two-fold Darboux transformation for the cmKdV-MB system with time-dependent coefficient is presented.

  2. A Novel Connectionist Network for Solving Long Time-Lag Prediction Tasks

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; MacNish, Cara

    Traditional Recurrent Neural Networks (RNNs) perform poorly on learning tasks involving long time-lag dependencies. More recent approaches such as LSTM and its variants significantly improve on RNNs ability to learn this type of problem. We present an alternative approach to encoding temporal dependencies that associates temporal features with nodes rather than state values, where the nodes explicitly encode dependencies over variable time delays. We show promising results comparing the network's performance to LSTM variants on an extended Reber grammar task.

  3. The time-domain behavior of power-law noises. [of many geophysical phenomena

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan C.

    1992-01-01

    The power spectra of many geophysical phenomena are well approximated by a power-law dependence on frequency or wavenumber. A simple expression for the root-mean-square variability of a process with such a spectrum over an interval of time or space is derived. The resulting expression yields the powerlaw time dependence characteristic of fractal processes, but can be generalized to give the temporal variability for more general spectral behaviors. The method is applied to spectra of crustal strain (to show what size of strain events can be detected over periods of months to seconds) and of sea level (to show the difficulty of extracting long-term rates from short records).

  4. Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats

    PubMed Central

    Dhingra, R. R.; Jacono, F. J.; Fishman, M.; Loparo, K. A.; Rybak, I. A.

    2011-01-01

    Physiological rhythms, including respiration, exhibit endogenous variability associated with health, and deviations from this are associated with disease. Specific changes in the linear and nonlinear sources of breathing variability have not been investigated. In this study, we used information theory-based techniques, combined with surrogate data testing, to quantify and characterize the vagal-dependent nonlinear pattern variability in urethane-anesthetized, spontaneously breathing adult rats. Surrogate data sets preserved the amplitude distribution and linear correlations of the original data set, but nonlinear correlation structure in the data was removed. Differences in mutual information and sample entropy between original and surrogate data sets indicated the presence of deterministic nonlinear or stochastic non-Gaussian variability. With vagi intact (n = 11), the respiratory cycle exhibited significant nonlinear behavior in templates of points separated by time delays ranging from one sample to one cycle length. After vagotomy (n = 6), even though nonlinear variability was reduced significantly, nonlinear properties were still evident at various time delays. Nonlinear deterministic variability did not change further after subsequent bilateral microinjection of MK-801, an N-methyl-d-aspartate receptor antagonist, in the Kölliker-Fuse nuclei. Reversing the sequence (n = 5), blocking N-methyl-d-aspartate receptors bilaterally in the dorsolateral pons significantly decreased nonlinear variability in the respiratory pattern, even with the vagi intact, and subsequent vagotomy did not change nonlinear variability. Thus both vagal and dorsolateral pontine influences contribute to nonlinear respiratory pattern variability. Furthermore, breathing dynamics of the intact system are mutually dependent on vagal and pontine sources of nonlinear complexity. Understanding the structure and modulation of variability provides insight into disease effects on respiratory patterning. PMID:21527661

  5. Estimating degradation in real time and accelerated stability tests with random lot-to-lot variation: a simulation study.

    PubMed

    Magari, Robert T

    2002-03-01

    The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002

  6. A viscoelastic higher-order beam finite element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Tressler, Alexander

    1996-01-01

    A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.

  7. Formulation and statistical optimization of self-microemulsifying drug delivery system of eprosartan mesylate for improvement of oral bioavailability.

    PubMed

    Dangre, Pankaj; Gilhotra, Ritu; Dhole, Shashikant

    2016-10-01

    The present investigation is aimed to design a statistically optimized self-microemulsifying drug delivery system (SMEDDS) of eprosartan mesylate (EM). Preliminary screening was carried out to find a suitable combination of various excipients for the formulation. A 3(2) full factorial design was employed to determine the effect of various independent variables on dependent (response) variables. The independent variables studied in the present work were concentration of oil (X 1) and the ratio of S mix (X 2), whereas the dependent variables were emulsification time (s), globule size (nm), polydispersity index (pdi), and zeta potential (mV), and the multiple linear regression analysis (MLRA) was employed to understand the influence of independent variables on dependent variables. Furthermore, a numerical optimization technique using the desirability function was used to develop a new optimized formulation with desired values of dependent variables. The optimized SMEDDS formulation of eprosartan mesylate (EMF-O) by the above method exhibited emulsification time, 118.45 ± 1.64 s; globule size, 196.81 ± 1.29 nm; zeta potential, -9.34 ± 1.2 mV, and polydispersity index, 0.354 ± 0.02. For the in vitro dissolution study, the optimized formulation (EMF-O) and pure drug were separately entrapped in the dialysis bag, and the study indicated higher release of the drug from EMF-O. In vivo pharmacokinetic studies in Wistar rats using PK solver software revealed 2.1-fold increment in oral bioavailability of EM from EMF-O, when compared with plain suspension of pure drug.

  8. Time and space variability of spectral estimates of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  9. Smooth time-dependent receiver operating characteristic curve estimators.

    PubMed

    Martínez-Camblor, Pablo; Pardo-Fernández, Juan Carlos

    2018-03-01

    The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.

  10. Average inactivity time model, associated orderings and reliability properties

    NASA Astrophysics Data System (ADS)

    Kayid, M.; Izadkhah, S.; Abouammoh, A. M.

    2018-02-01

    In this paper, we introduce and study a new model called 'average inactivity time model'. This new model is specifically applicable to handle the heterogeneity of the time of the failure of a system in which some inactive items exist. We provide some bounds for the mean average inactivity time of a lifespan unit. In addition, we discuss some dependence structures between the average variable and the mixing variable in the model when original random variable possesses some aging behaviors. Based on the conception of the new model, we introduce and study a new stochastic order. Finally, to illustrate the concept of the model, some interesting reliability problems are reserved.

  11. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  12. Survival curve estimation with dependent left truncated data using Cox's model.

    PubMed

    Mackenzie, Todd

    2012-10-19

    The Kaplan-Meier and closely related Lynden-Bell estimators are used to provide nonparametric estimation of the distribution of a left-truncated random variable. These estimators assume that the left-truncation variable is independent of the time-to-event. This paper proposes a semiparametric method for estimating the marginal distribution of the time-to-event that does not require independence. It models the conditional distribution of the time-to-event given the truncation variable using Cox's model for left truncated data, and uses inverse probability weighting. We report the results of simulations and illustrate the method using a survival study.

  13. Different methods to analyze stepped wedge trial designs revealed different aspects of intervention effects.

    PubMed

    Twisk, J W R; Hoogendijk, E O; Zwijsen, S A; de Boer, M R

    2016-04-01

    Within epidemiology, a stepped wedge trial design (i.e., a one-way crossover trial in which several arms start the intervention at different time points) is increasingly popular as an alternative to a classical cluster randomized controlled trial. Despite this increasing popularity, there is a huge variation in the methods used to analyze data from a stepped wedge trial design. Four linear mixed models were used to analyze data from a stepped wedge trial design on two example data sets. The four methods were chosen because they have been (frequently) used in practice. Method 1 compares all the intervention measurements with the control measurements. Method 2 treats the intervention variable as a time-independent categorical variable comparing the different arms with each other. In method 3, the intervention variable is a time-dependent categorical variable comparing groups with different number of intervention measurements, whereas in method 4, the changes in the outcome variable between subsequent measurements are analyzed. Regarding the results in the first example data set, methods 1 and 3 showed a strong positive intervention effect, which disappeared after adjusting for time. Method 2 showed an inverse intervention effect, whereas method 4 did not show a significant effect at all. In the second example data set, the results were the opposite. Both methods 2 and 4 showed significant intervention effects, whereas the other two methods did not. For method 4, the intervention effect attenuated after adjustment for time. Different methods to analyze data from a stepped wedge trial design reveal different aspects of a possible intervention effect. The choice of a method partly depends on the type of the intervention and the possible time-dependent effect of the intervention. Furthermore, it is advised to combine the results of the different methods to obtain an interpretable overall result. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Increased intra-individual reaction time variability in cocaine-dependent subjects: role of cocaine-related cues.

    PubMed

    Liu, Shijing; Lane, Scott D; Schmitz, Joy M; Green, Charles E; Cunningham, Kathryn A; Moeller, F Gerard

    2012-02-01

    Neuroimaging data suggest that impaired performance on response inhibition and information processing tests in cocaine-dependent subjects is related to prefrontal and frontal cortical dysfunction and that dysfunction in these brain areas may underlie some aspects of cocaine addiction. In subjects with attention-deficit hyperactivity disorder and other psychiatric disorders, the Intra-Individual Reaction Time Variability (IIRTV) has been associated with frontal cortical dysfunction. In the present study, we evaluated IIRTV parameters in cocaine-dependent subjects vs. controls using a cocaine Stroop task. Fifty control and 123 cocaine-dependent subjects compiled from three studies completed a cocaine Stroop task. Standard deviation (SD) and coefficient of variation (CV) for reaction times (RT) were calculated for both trials with neutral and trials with cocaine-related words. The parameters mu, sigma, and tau were calculated using an ex-Gaussian analysis employed to characterize variability in RTs. The ex-Gaussian analysis divides the RTs into normal (mu, sigma) and exponential (tau) components. Using robust regression analysis, cocaine-dependent subjects showed greater SD, CV and Tau on trials with cocaine-related words compared to controls (p<0.05). However, in trials with neutral words, there was no evidence of group differences in any IIRTV parameters (p>0.05). The Wilcoxon matched-pairs signed-rank test showed that for cocaine-dependent subjects, both SD and tau were larger in trials with cocaine-related words than in trials with neutral words (p<0.05). The observation that only cocaine-related words increased IIRTV in cocaine-dependent subjects suggests that cocaine-related stimuli might disrupt information processing subserved by prefrontal and frontal cortical circuits. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Variability of visual responses of superior colliculus neurons depends on stimulus velocity.

    PubMed

    Mochol, Gabriela; Wójcik, Daniel K; Wypych, Marek; Wróbel, Andrzej; Waleszczyk, Wioletta J

    2010-03-03

    Visually responding neurons in the superficial, retinorecipient layers of the cat superior colliculus receive input from two primarily parallel information processing channels, Y and W, which is reflected in their velocity response profiles. We quantified the time-dependent variability of responses of these neurons to stimuli moving with different velocities by Fano factor (FF) calculated in discrete time windows. The FF for cells responding to low-velocity stimuli, thus receiving W inputs, increased with the increase in the firing rate. In contrast, the dynamics of activity of the cells responding to fast moving stimuli, processed by Y pathway, correlated negatively with FF whether the response was excitatory or suppressive. These observations were tested against several types of surrogate data. Whereas Poisson description failed to reproduce the variability of all collicular responses, the inclusion of secondary structure to the generating point process recovered most of the observed features of responses to fast moving stimuli. Neither model could reproduce the variability of low-velocity responses, which suggests that, in this case, more complex time dependencies need to be taken into account. Our results indicate that Y and W channels may differ in reliability of responses to visual stimulation. Apart from previously reported morphological and physiological differences of the cells belonging to Y and W channels, this is a new feature distinguishing these two pathways.

  16. [Modelling the effect of local climatic variability on dengue transmission in Medellin (Colombia) by means of time series analysis].

    PubMed

    Rúa-Uribe, Guillermo L; Suárez-Acosta, Carolina; Chauca, José; Ventosilla, Palmira; Almanza, Rita

    2013-09-01

    Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease. To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease. The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behavior of the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models. The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay. In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.

  17. Impact of Exposure to Childhood Maltreatment on Transitions to Alcohol Dependence in Women and Men.

    PubMed

    Oberleitner, Lindsay M S; Smith, Philip H; Weinberger, Andrea H; Mazure, Carolyn M; McKee, Sherry A

    2015-11-01

    Childhood maltreatment decreases age of first use and speeds the transition from first use to dependence (i.e., telescoping) for alcohol use, however, it is currently unknown whether this influence is the same for men and women. Analyses were conducted with the National Epidemiologic Survey on Alcohol and Related Conditions (n = 34,653). Outcome variables included age of alcohol initiation and time to onset of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition alcohol dependence. Predictor variables included gender and childhood maltreatment. Linear and Poisson regression analyses were conducted. Results demonstrated that in regard to age of drinking initiation, individuals who experienced childhood maltreatment initiated 1 year earlier than those without maltreatment, however, there was no interaction of this relationship with gender. Regarding the time to dependence, it was found that women who experienced childhood maltreatment demonstrated telescoping (shorter time between onset and dependence) compared to women without maltreatment and men (both with and without maltreatment). Women with a history of childhood maltreatment are particularly vulnerable to an accelerated time from initiation of alcohol use until dependence, a pattern indicative of increased negative alcohol-related outcomes. Findings highlight the need for development of gender-specific prevention efforts and behavioral treatments to aid in early intervention of problematic alcohol use in women. © The Author(s) 2015.

  18. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  19. Combining Fourier and lagged k-nearest neighbor imputation for biomedical time series data.

    PubMed

    Rahman, Shah Atiqur; Huang, Yuxiao; Claassen, Jan; Heintzman, Nathaniel; Kleinberg, Samantha

    2015-12-01

    Most clinical and biomedical data contain missing values. A patient's record may be split across multiple institutions, devices may fail, and sensors may not be worn at all times. While these missing values are often ignored, this can lead to bias and error when the data are mined. Further, the data are not simply missing at random. Instead the measurement of a variable such as blood glucose may depend on its prior values as well as that of other variables. These dependencies exist across time as well, but current methods have yet to incorporate these temporal relationships as well as multiple types of missingness. To address this, we propose an imputation method (FLk-NN) that incorporates time lagged correlations both within and across variables by combining two imputation methods, based on an extension to k-NN and the Fourier transform. This enables imputation of missing values even when all data at a time point is missing and when there are different types of missingness both within and across variables. In comparison to other approaches on three biological datasets (simulated and actual Type 1 diabetes datasets, and multi-modality neurological ICU monitoring) the proposed method has the highest imputation accuracy. This was true for up to half the data being missing and when consecutive missing values are a significant fraction of the overall time series length. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Time dependent analysis of assay comparability: a novel approach to understand intra- and inter-site variability over time

    NASA Astrophysics Data System (ADS)

    Winiwarter, Susanne; Middleton, Brian; Jones, Barry; Courtney, Paul; Lindmark, Bo; Page, Ken M.; Clark, Alan; Landqvist, Claire

    2015-09-01

    We demonstrate here a novel use of statistical tools to study intra- and inter-site assay variability of five early drug metabolism and pharmacokinetics in vitro assays over time. Firstly, a tool for process control is presented. It shows the overall assay variability but allows also the following of changes due to assay adjustments and can additionally highlight other, potentially unexpected variations. Secondly, we define the minimum discriminatory difference/ratio to support projects to understand how experimental values measured at different sites at a given time can be compared. Such discriminatory values are calculated for 3 month periods and followed over time for each assay. Again assay modifications, especially assay harmonization efforts, can be noted. Both the process control tool and the variability estimates are based on the results of control compounds tested every time an assay is run. Variability estimates for a limited set of project compounds were computed as well and found to be comparable. This analysis reinforces the need to consider assay variability in decision making, compound ranking and in silico modeling.

  1. Geometric Implications of Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2015-03-01

    Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.

  2. Scheduling admissions and reducing variability in bed demand.

    PubMed

    Bekker, René; Koeleman, Paulien M

    2011-09-01

    Variability in admissions and lengths of stay inherently leads to variability in bed occupancy. The aim of this paper is to analyse the impact of these sources of variability on the required amount of capacity and to determine admission quota for scheduled admissions to regulate the occupancy pattern. For the impact of variability on the required number of beds, we use a heavy-traffic limit theorem for the G/G/∞ queue yielding an intuitively appealing approximation in case the arrival process is not Poisson. Also, given a structural weekly admission pattern, we apply a time-dependent analysis to determine the mean offered load per day. This time-dependent analysis is combined with a Quadratic Programming model to determine the optimal number of elective admissions per day, such that an average desired daily occupancy is achieved. From the mathematical results, practical scenarios and guidelines are derived that can be used by hospital managers and support the method of quota scheduling. In practice, the results can be implemented by providing admission quota prescribing the target number of admissions for each patient group.

  3. Case-Crossover Analysis of Air Pollution Health Effects: A Systematic Review of Methodology and Application

    PubMed Central

    Carracedo-Martínez, Eduardo; Taracido, Margarita; Tobias, Aurelio; Saez, Marc; Figueiras, Adolfo

    2010-01-01

    Background Case-crossover is one of the most used designs for analyzing the health-related effects of air pollution. Nevertheless, no one has reviewed its application and methodology in this context. Objective We conducted a systematic review of case-crossover (CCO) designs used to study the relationship between air pollution and morbidity and mortality, from the standpoint of methodology and application. Data sources and extraction A search was made of the MEDLINE and EMBASE databases. Reports were classified as methodologic or applied. From the latter, the following information was extracted: author, study location, year, type of population (general or patients), dependent variable(s), independent variable(s), type of CCO design, and whether effect modification was analyzed for variables at the individual level. Data synthesis The review covered 105 reports that fulfilled the inclusion criteria. Of these, 24 addressed methodological aspects, and the remainder involved the design’s application. In the methodological reports, the designs that yielded the best results in simulation were symmetric bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The dependent variables most frequently analyzed were those relating to hospital morbidity; the pollutants most often studied were those linked to particulate matter. Among the CCO-application reports, 13.6% studied effect modification for variables at the individual level. Conclusions The use of CCO designs has undergone considerable growth; the most widely used designs were those that yielded better results in simulation studies: symmetric bidirectional and time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the individual level are put to little use. PMID:20356818

  4. Application of Different Statistical Techniques in Integrated Logistics Support of the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process to predict the values of the maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle cost spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability, and maintenance support costs. It is the objective of this report to identify the magnitude of the expected enhancement in the accuracy of the results for the International Space Station reliability and maintainability data packages by providing examples. These examples partially portray the necessary information hy evaluating the impact of the said enhancements on the life cycle cost and the availability of the International Space Station.

  5. MIMICKING COUNTERFACTUAL OUTCOMES TO ESTIMATE CAUSAL EFFECTS.

    PubMed

    Lok, Judith J

    2017-04-01

    In observational studies, treatment may be adapted to covariates at several times without a fixed protocol, in continuous time. Treatment influences covariates, which influence treatment, which influences covariates, and so on. Then even time-dependent Cox-models cannot be used to estimate the net treatment effect. Structural nested models have been applied in this setting. Structural nested models are based on counterfactuals: the outcome a person would have had had treatment been withheld after a certain time. Previous work on continuous-time structural nested models assumes that counterfactuals depend deterministically on observed data, while conjecturing that this assumption can be relaxed. This article proves that one can mimic counterfactuals by constructing random variables, solutions to a differential equation, that have the same distribution as the counterfactuals, even given past observed data. These "mimicking" variables can be used to estimate the parameters of structural nested models without assuming the treatment effect to be deterministic.

  6. Efficient variable time-stepping scheme for intense field-atom interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Kosloff, R.

    1993-03-01

    The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less

  7. Host-dependent variables: The missing link to personalized medicine.

    PubMed

    Demlova, Regina; Zdrazilova-Dubska, Lenka; Sterba, Jaroslav; Stanta, Giorgio; Valik, Dalibor

    2018-04-26

    Individualized medicine has the potential to tailor anticancer therapy with the best response and highest safety margin to provide better patient care. However, modern targeted therapies are still being tested through clinical trials comparing preselected patient cohorts and assessed upon behaviour of group averages. Clinically manifesting malignant disease requires identification of host- and tumour-dependent variables such as biological characteristics of the tumour and its microenvironment including immune response features, and overall capacity of the host to receive, tolerate and efficiently utilize treatment. Contemporary medical oncology including clinical trial design need to refocus from assessing group averages to individuality taking into consideration time dependent host-associated characteristics and reinventing outliers to be appreciated as naturally occurring variables collectively determining the ultimate outcome of malignant disease. Copyright © 2018. Published by Elsevier Ltd.

  8. Exploring possible relations between optical variability time scales and broad emission line shapes in AGN

    NASA Astrophysics Data System (ADS)

    Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar

    2018-06-01

    Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.

  9. Spatial and temporal variability of interhemispheric transport times

    NASA Astrophysics Data System (ADS)

    Wu, Xiaokang; Yang, Huang; Waugh, Darryn W.; Orbe, Clara; Tilmes, Simone; Lamarque, Jean-Francois

    2018-05-01

    The seasonal and interannual variability of transport times from the northern midlatitude surface into the Southern Hemisphere is examined using simulations of three idealized age tracers: an ideal age tracer that yields the mean transit time from northern midlatitudes and two tracers with uniform 50- and 5-day decay. For all tracers the largest seasonal and interannual variability occurs near the surface within the tropics and is generally closely coupled to movement of the Intertropical Convergence Zone (ITCZ). There are, however, notable differences in variability between the different tracers. The largest seasonal and interannual variability in the mean age is generally confined to latitudes spanning the ITCZ, with very weak variability in the southern extratropics. In contrast, for tracers subject to spatially uniform exponential loss the peak variability tends to be south of the ITCZ, and there is a smaller contrast between tropical and extratropical variability. These differences in variability occur because the distribution of transit times from northern midlatitudes is very broad and tracers with more rapid loss are more sensitive to changes in fast transit times than the mean age tracer. These simulations suggest that the seasonal-interannual variability in the southern extratropics of trace gases with predominantly NH midlatitude sources may differ depending on the gases' chemical lifetimes.

  10. Flow of sand and a variable mass Atwood machine

    NASA Astrophysics Data System (ADS)

    Flores, José; Solovey, Guillermo; Gil, Salvador

    2003-07-01

    We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.

  11. Natural variability of biochemical biomarkers in the macro-zoobenthos: Dependence on life stage and environmental factors.

    PubMed

    Scarduelli, Lucia; Giacchini, Roberto; Parenti, Paolo; Migliorati, Sonia; Di Brisco, Agnese Maria; Vighi, Marco

    2017-11-01

    Biomarkers are widely used in ecotoxicology as indicators of exposure to toxicants. However, their ability to provide ecologically relevant information remains controversial. One of the major problems is understanding whether the measured responses are determined by stress factors or lie within the natural variability range. In a previous work, the natural variability of enzymatic levels in invertebrates sampled in pristine rivers was proven to be relevant across both space and time. In the present study, the experimental design was improved by considering different life stages of the selected taxa and by measuring more environmental parameters. The experimental design considered sampling sites in 2 different rivers, 8 sampling dates covering the whole seasonal cycle, 4 species from 3 different taxonomic groups (Plecoptera, Perla grandis; Ephemeroptera, Baetis alpinus and Epeorus alpicula; Tricoptera, Hydropsyche pellucidula), different life stages for each species, and 4 enzymes (acetylcholinesterase, glutathione S-transferase, alkaline phosphatase, and catalase). Biomarker levels were related to environmental (physicochemical) parameters to verify any kind of dependence. Data were statistically elaborated using hierarchical multilevel Bayesian models. Natural variability was found to be relevant across both space and time. The results of the present study proved that care should be paid when interpreting biomarker results. Further research is needed to better understand the dependence of the natural variability on environmental parameters. Environ Toxicol Chem 2017;36:3158-3167. © 2017 SETAC. © 2017 SETAC.

  12. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The main goals are the development, validation, and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems. A solution method that combines a finite volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  13. Physics in Oceanography.

    ERIC Educational Resources Information Center

    Charnock, H.

    1980-01-01

    Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…

  14. Making Student Online Teams Work

    ERIC Educational Resources Information Center

    Olsen, Joel; Kalinski, Ray

    2017-01-01

    Online professors typically assign teams based on time zones, performance, or alphabet, but are these the best ways to position student virtual teams for success? Personality and task complexity could provide additional direction. Personality and task complexity were used as independent variables related to the depended variable of team…

  15. Low adolescent self-esteem leads to multiple interpersonal problems: a test a social-adaptation theory.

    PubMed

    Kahle, L R; Kulka, R A; Klingel, D M

    1980-09-01

    This article reports the results of a study that annually monitored the self-esteem and interpersonal problems of over 100 boys during their sophomore, junior, and senior years of high school. Cross-lagged panel correlation differences show that low self-esteem leads to interpersonal problems in all three time lags when multiple interpersonal problems constitute the dependent variable but not when single interpersonal problem criteria constitute the dependent variable. These results are interpreted as supporting social-adaptation theory rather than self-perception theory. Implications for the conceptual status of personality variables as causal antecedents and for the assessment of individual differences are discussed.

  16. Computational procedure of optimal inventory model involving controllable backorder rate and variable lead time with defective units

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Chuan; Wu, Jong-Wuu; Tsou, Hsin-Hui; Lei, Chia-Ling

    2012-10-01

    This article considers that the number of defective units in an arrival order is a binominal random variable. We derive a modified mixture inventory model with backorders and lost sales, in which the order quantity and lead time are decision variables. In our studies, we also assume that the backorder rate is dependent on the length of lead time through the amount of shortages and let the backorder rate be a control variable. In addition, we assume that the lead time demand follows a mixture of normal distributions, and then relax the assumption about the form of the mixture of distribution functions of the lead time demand and apply the minimax distribution free procedure to solve the problem. Furthermore, we develop an algorithm procedure to obtain the optimal ordering strategy for each case. Finally, three numerical examples are also given to illustrate the results.

  17. Feasibility of Ecological Momentary Assessment Using Cellular Telephones in Methamphetamine Dependent Subjects

    PubMed Central

    Galloway, Gantt P; Didier, Ryne; Garrison, Kathleen; Mendelson, John

    2008-01-01

    Background Predictors of relapse to methamphetamine use are poorly understood. State variables may play an important role in relapse, but they have been difficult to measure at frequent intervals in outpatients. Methods We conducted a feasibility study of the use of cellular telephones to collect state variable data from outpatients. Six subjects in treatment for methamphetamine dependence were called three times per weekday for approximately seven weeks. Seven questionnaires were administered that assessed craving, stress, affect and current type of location and social environment. Results 395/606 (65%) of calls attempted were completed. The mean time to complete each call was 4.9 (s.d. 1.8) minutes and the mean time to complete each item was 8.4 (s.d. 4.8) seconds. Subjects rated the acceptability of the procedures as good. All six cellular phones and battery chargers were returned undamaged. Conclusion Cellular telephones are a feasible method for collecting state data from methamphetamine dependent outpatients. PMID:19997532

  18. The degenerate parametric oscillator and Ince's equation

    NASA Astrophysics Data System (ADS)

    Cordero-Soto, Ricardo; Suslov, Sergei K.

    2011-01-01

    We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.

  19. [Time-dependent heart rate variability in the head-up tilt test in children with postural orthostatic tachycardia syndrome].

    PubMed

    Ran, Jing; Wang, Cheng; Zou, Run-Mei; Wu, Li-Jia; Lin, Ping; Li, Fang; Xu, Yi

    2015-10-01

    To study the time-dependent heart rate (HR) variability in the head-up tilt test (HUTT) in children with postural orthostatic tachycardia syndrome (POTS) and to explore the HR diagnostic criteria for POTS in children. A retrospective analysis was performed on the clinical data of 105 children diagnosed with POTS with HR≥120 beats per minute (bpm) within the first 10 minutes of HUTT between January 2007 and December 2014. Their HR variability within the first 10 minutes of HUTT was analyzed. The HR of children with POTS increased gradually from the supine position to a 60° head-up tilt position, and the increase in HR was 24±12 bpm at the beginning of HUTT, 30±14 bpm at 3 minutes of HUTT, 32±13 bpm at 5 minutes of HUTT, and 38±12 bpm at 10 minutes of HUTT. The average maximal HR increase within the first 10 minutes of HUTT was 43±10 bpm. In children with POTS, the HR variability gradually increases with time, and therefore, it is suggested that HR increase ≥40 bpm is more suitable for diagnosis of POTS in children.

  20. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  1. Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    PubMed Central

    Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing

    2014-01-01

    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933

  2. Time-of-day effects on voice range profile performance in young, vocally untrained adult females.

    PubMed

    van Mersbergen, M R; Verdolini, K; Titze, I R

    1999-12-01

    Time-of-day effects on voice range profile performance were investigated in 20 vocally healthy untrained women between the ages of 18 and 35 years. Each subject produced two complete voice range profiles: one in the morning and one in the evening, about 36 hours apart. The order of morning and evening trials was counterbalanced across subjects. Dependent variables were (1) average minimum and average maximum intensity, (2) Voice range profile area and (3) center of gravity (median semitone pitch and median intensity). In this study, the results failed to reveal any clear evidence of time-of-day effects on voice range profile performance, for any of the dependent variables. However, a reliable interaction of time-of-day and trial order was obtained for average minimum intensity. Investigation of other subject populations, in particular trained vocalists or those with laryngeal lesions, is required for any generalization of the results.

  3. Value of travel-time reliability : commuters' route-choice behavior in the Twin Cities.

    DOT National Transportation Integrated Search

    2011-10-01

    Travel-time variability is a noteworthy factor in network performance. It measures the temporal uncertainty experienced by users in their : movement between any two nodes in a network. The importance of the time variance depends on the penalties incu...

  4. On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.

    PubMed

    Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H

    2013-07-15

    This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.

  5. Benford's law and continuous dependent random variables

    NASA Astrophysics Data System (ADS)

    Becker, Thealexa; Burt, David; Corcoran, Taylor C.; Greaves-Tunnell, Alec; Iafrate, Joseph R.; Jing, Joy; Miller, Steven J.; Porfilio, Jaclyn D.; Ronan, Ryan; Samranvedhya, Jirapat; Strauch, Frederick W.; Talbut, Blaine

    2018-01-01

    Many mathematical, man-made and natural systems exhibit a leading-digit bias, where a first digit (base 10) of 1 occurs not 11% of the time, as one would expect if all digits were equally likely, but rather 30%. This phenomenon is known as Benford's Law. Analyzing which datasets adhere to Benford's Law and how quickly Benford behavior sets in are the two most important problems in the field. Most previous work studied systems of independent random variables, and relied on the independence in their analyses. Inspired by natural processes such as particle decay, we study the dependent random variables that emerge from models of decomposition of conserved quantities. We prove that in many instances the distribution of lengths of the resulting pieces converges to Benford behavior as the number of divisions grow, and give several conjectures for other fragmentation processes. The main difficulty is that the resulting random variables are dependent. We handle this by using tools from Fourier analysis and irrationality exponents to obtain quantified convergence rates as well as introducing and developing techniques to measure and control the dependencies. The construction of these tools is one of the major motivations of this work, as our approach can be applied to many other dependent systems. As an example, we show that the n ! entries in the determinant expansions of n × n matrices with entries independently drawn from nice random variables converges to Benford's Law.

  6. Travel and the home advantage.

    PubMed

    Pace, A; Carron, A V

    1992-03-01

    The purpose of the present study was to examine the relative contributions of various travel related variables to visiting team success in the National Hockey League. A multiple regression design was used with game outcome as the dependent variable. The independent variables of interest included, as main effects and interactions, number of time zones crossed, direction of travel, distance traveled, preparation/adjustment time, time of season, game number on the road trip, and the home stand. Visiting team success was negatively associated with the interaction of number of time zones crossed and increased preparation time between games, and was positively associated with game number on the road. It was concluded that only a small portion of the variance in the home advantage/visitor disadvantage can be explained by travel related factors.

  7. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  8. Factors affecting medication-order processing time.

    PubMed

    Beaman, M A; Kotzan, J A

    1982-11-01

    The factors affecting medication-order processing time at one hospital were studied. The order processing time was determined by directly observing the time to process randomly selected new drug orders on all three work shifts during two one-week periods. An order could list more than one drug for an individual patient. The observer recorded the nature, location, and cost of the drugs ordered, as well as the time to process the order. The time and type of interruptions also were noted. The time to process a drug order was classified as six dependent variables: (1) total time, (2) work time, (3) check time, (4) waiting time I--time from arrival on the dumbwaiter until work was initiated, (5) waiting time II--time between completion of the work and initiation of checking, and (6) waiting time III--time after the check was completed until the order left on the dumbwaiter. The significant predictors of each of the six dependent variables were determined using stepwise multiple regression. The total time to process a prescription order was 58.33 +/- 48.72 minutes; the urgency status of the order was the only significant determinant of total time. Urgency status also significantly predicted the three waiting-time variables. Interruptions and the number of drugs on the order were significant determinants of work time and check time. Each telephone interruption increased the work time by 1.72 minutes. While the results of this study cannot be generalized to other institutions, pharmacy managers can use the method of determining factors that affect medication-order processing time to identify problem areas in their institutions.

  9. Value of travel-time reliability : commuters' route-choice behavior in the Twin Cities, phase 2.

    DOT National Transportation Integrated Search

    2012-04-01

    Travel-time variability is a noteworthy factor in network performance. It measures the temporal uncertainty : experienced by users in their movement between any two nodes in a network. The importance : of the time variance depends on the penalties in...

  10. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  11. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most affected regions by the implementation of operational management plans).

  12. An efficient and robust algorithm for two dimensional time dependent incompressible Navier-Stokes equations: High Reynolds number flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1991-01-01

    An algorithm is presented for unsteady two-dimensional incompressible Navier-Stokes calculations. This algorithm is based on the fourth order partial differential equation for incompressible fluid flow which uses the streamfunction as the only dependent variable. The algorithm is second order accurate in both time and space. It uses a multigrid solver at each time step. It is extremely efficient with respect to the use of both CPU time and physical memory. It is extremely robust with respect to Reynolds number.

  13. Size, Loading Efficiency, and Cytotoxicity of Albumin-Loaded Chitosan Nanoparticles: An Artificial Neural Networks Study.

    PubMed

    Baharifar, Hadi; Amani, Amir

    2017-01-01

    When designing nanoparticles for drug delivery, many variables such as size, loading efficiency, and cytotoxicity should be considered. Usually, smaller particles are preferred in drug delivery because of longer blood circulation time and their ability to escape from immune system, whereas smaller nanoparticles often show increased toxicity. Determination of parameters which affect size of particles and factors such as loading efficiency and cytotoxicity could be very helpful in designing drug delivery systems. In this work, albumin (as a protein drug model)-loaded chitosan nanoparticles were prepared by polyelectrolyte complexation method. Simultaneously, effects of 4 independent variables including chitosan and albumin concentrations, pH, and reaction time were determined on 3 dependent variables (i.e., size, loading efficiency, and cytotoxicity) by artificial neural networks. Results showed that concentrations of initial materials are the most important factors which may affect the dependent variables. A drop in the concentrations decreases the size directly, but they simultaneously decrease loading efficiency and increase cytotoxicity. Therefore, an optimization of the independent variables is required to obtain the most useful preparation. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Solar array model corrections from Mars Pathfinder lander data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewell, R.C.; Burger, D.R.

    1997-12-31

    The MESUR solar array power model initially assumed values for input variables. After landing early surface variables such as array tilt and azimuth or early environmental variables such as array temperature can be corrected. Correction of later environmental variables such as tau versus time, spectral shift, dust deposition, and UV darkening is dependent upon time, on-board science instruments, and ability to separate effects of variables. Engineering estimates had to be made for additional shadow losses and Voc sensor temperature corrections. Some variations had not been expected such as tau versus time of day, and spectral shift versus time of day.more » Additions needed to the model are thermal mass of lander petal and correction between Voc sensor and temperature sensor. Conclusions are: the model works well; good battery predictions are difficult; inclusion of Isc and Voc sensors was valuable; and the IMP and MAE science experiments greatly assisted the data analysis and model correction.« less

  15. Quantum and classical dissipation of charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less

  16. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore.

    PubMed

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-12-15

    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A quantile regression model for failure-time data with time-dependent covariates

    PubMed Central

    Gorfine, Malka; Goldberg, Yair; Ritov, Ya’acov

    2017-01-01

    Summary Since survival data occur over time, often important covariates that we wish to consider also change over time. Such covariates are referred as time-dependent covariates. Quantile regression offers flexible modeling of survival data by allowing the covariates to vary with quantiles. This article provides a novel quantile regression model accommodating time-dependent covariates, for analyzing survival data subject to right censoring. Our simple estimation technique assumes the existence of instrumental variables. In addition, we present a doubly-robust estimator in the sense of Robins and Rotnitzky (1992, Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell, N. P., Dietz, K. and Farewell, V. T. (editors), AIDS Epidemiology. Boston: Birkhaäuser, pp. 297–331.). The asymptotic properties of the estimators are rigorously studied. Finite-sample properties are demonstrated by a simulation study. The utility of the proposed methodology is demonstrated using the Stanford heart transplant dataset. PMID:27485534

  18. Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Steinsland, Ingelin

    2014-05-01

    This study introduces a methodology for the construction of probabilistic inflow forecasts for multiple catchments and lead times, and investigates criterions for evaluation of multi-variate forecasts. A post-processing approach is used, and a Gaussian model is applied for transformed variables. The post processing model has two main components, the mean model and the dependency model. The mean model is used to estimate the marginal distributions for forecasted inflow for each catchment and lead time, whereas the dependency models was used to estimate the full multivariate distribution of forecasts, i.e. co-variances between catchments and lead times. In operational situations, it is a straightforward task to use the models to sample inflow ensembles which inherit the dependencies between catchments and lead times. The methodology was tested and demonstrated in the river systems linked to the Ulla-Førre hydropower complex in southern Norway, where simultaneous probabilistic forecasts for five catchments and ten lead times were constructed. The methodology exhibits sufficient flexibility to utilize deterministic flow forecasts from a numerical hydrological model as well as statistical forecasts such as persistent forecasts and sliding window climatology forecasts. It also deals with variation in the relative weights of these forecasts with both catchment and lead time. When evaluating predictive performance in original space using cross validation, the case study found that it is important to include the persistent forecast for the initial lead times and the hydrological forecast for medium-term lead times. Sliding window climatology forecasts become more important for the latest lead times. Furthermore, operationally important features in this case study such as heteroscedasticity, lead time varying between lead time dependency and lead time varying between catchment dependency are captured. Two criterions were used for evaluating the added value of the dependency model. The first one was the Energy score (ES) that is a multi-dimensional generalization of continuous rank probability score (CRPS). ES was calculated for all lead-times and catchments together, for each catchment across all lead times and for each lead time across all catchments. The second criterion was to use CRPS for forecasted inflows accumulated over several lead times and catchments. The results showed that ES was not very sensitive to correct covariance structure, whereas CRPS for accumulated flows where more suitable for evaluating the dependency model. This indicates that it is more appropriate to evaluate relevant univariate variables that depends on the dependency structure then to evaluate the multivariate forecast directly.

  19. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  20. Discrete-time bidirectional associative memory neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.

    2005-02-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.

  1. Infilling and quality checking of discharge, precipitation and temperature data using a copula based approach

    NASA Astrophysics Data System (ADS)

    Anwar, Faizan; Bárdossy, András; Seidel, Jochen

    2017-04-01

    Estimating missing values in a time series of a hydrological variable is an everyday task for a hydrologist. Existing methods such as inverse distance weighting, multivariate regression, and kriging, though simple to apply, provide no indication of the quality of the estimated value and depend mainly on the values of neighboring stations at a given step in the time series. Copulas have the advantage of representing the pure dependence structure between two or more variables (given the relationship between them is monotonic). They rid us of questions such as transforming the data before use or calculating functions that model the relationship between the considered variables. A copula-based approach is suggested to infill discharge, precipitation, and temperature data. As a first step the normal copula is used, subsequently, the necessity to use non-normal / non-symmetrical dependence is investigated. Discharge and temperature are treated as regular continuous variables and can be used without processing for infilling and quality checking. Due to the mixed distribution of precipitation values, it has to be treated differently. This is done by assigning a discrete probability to the zeros and treating the rest as a continuous distribution. Building on the work of others, along with infilling, the normal copula is also utilized to identify values in a time series that might be erroneous. This is done by treating the available value as missing, infilling it using the normal copula and checking if it lies within a confidence band (5 to 95% in our case) of the obtained conditional distribution. Hydrological data from two catchments Upper Neckar River (Germany) and Santa River (Peru) are used to demonstrate the application for datasets with different data quality. The Python code used here is also made available on GitHub. The required input is the time series of a given variable at different stations.

  2. A comparison of time dependent Cox regression, pooled logistic regression and cross sectional pooling with simulations and an application to the Framingham Heart Study.

    PubMed

    Ngwa, Julius S; Cabral, Howard J; Cheng, Debbie M; Pencina, Michael J; Gagnon, David R; LaValley, Michael P; Cupples, L Adrienne

    2016-11-03

    Typical survival studies follow individuals to an event and measure explanatory variables for that event, sometimes repeatedly over the course of follow up. The Cox regression model has been used widely in the analyses of time to diagnosis or death from disease. The associations between the survival outcome and time dependent measures may be biased unless they are modeled appropriately. In this paper we explore the Time Dependent Cox Regression Model (TDCM), which quantifies the effect of repeated measures of covariates in the analysis of time to event data. This model is commonly used in biomedical research but sometimes does not explicitly adjust for the times at which time dependent explanatory variables are measured. This approach can yield different estimates of association compared to a model that adjusts for these times. In order to address the question of how different these estimates are from a statistical perspective, we compare the TDCM to Pooled Logistic Regression (PLR) and Cross Sectional Pooling (CSP), considering models that adjust and do not adjust for time in PLR and CSP. In a series of simulations we found that time adjusted CSP provided identical results to the TDCM while the PLR showed larger parameter estimates compared to the time adjusted CSP and the TDCM in scenarios with high event rates. We also observed upwardly biased estimates in the unadjusted CSP and unadjusted PLR methods. The time adjusted PLR had a positive bias in the time dependent Age effect with reduced bias when the event rate is low. The PLR methods showed a negative bias in the Sex effect, a subject level covariate, when compared to the other methods. The Cox models yielded reliable estimates for the Sex effect in all scenarios considered. We conclude that survival analyses that explicitly account in the statistical model for the times at which time dependent covariates are measured provide more reliable estimates compared to unadjusted analyses. We present results from the Framingham Heart Study in which lipid measurements and myocardial infarction data events were collected over a period of 26 years.

  3. Prediction of hourly PM2.5 using a space-time support vector regression model

    NASA Astrophysics Data System (ADS)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  4. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  5. Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2009-01-01

    The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.

  6. Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements.

    PubMed

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2010-11-01

    Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res 188:263-274, 2008). Reach-to-grasp movements were performed by young adults under four different reaching speeds and two different transport distances. The residual error magnitude of fitting the above model to data across different trials and subjects was minimal for the aperture-closure phase, but relatively much greater for the aperture-opening phase, indicating considerable difference in TAC variability between those phases. This study's goal is to identify the main reasons for that difference and obtain insights into the control strategy of reach-to-grasp movements. TAC variability within the aperture-opening phase of a single trial was found minimal, indicating that TAC variability between trials was not due to execution noise, but rather a result of inter-trial and inter-subject variability of motor plan. At the same time, the dependence of the extent of trial-to-trial variability of TAC in that phase on the speed of hand transport was sharply inconsistent with the concept of speed-accuracy trade-off: the lower the speed, the larger the variability. Conversely, the dependence of the extent of TAC variability in the aperture-closure phase on hand transport speed was consistent with that concept. Taking into account recent evidence that the cost of neural information processing is substantial for movement planning, the dependence of TAC variability in the aperture-opening phase on task performance conditions suggests that it is not the movement time that the CNS saves in that phase, but the cost of neuro-computational resources and metabolic energy required for TAC regulation in that phase. Thus, the CNS performs a trade-off between that cost and TAC regulation accuracy. It is further discussed that such trade-off is possible because, due to a special control law that governs optimal switching from aperture opening to aperture closure, the inter-trial variability of the end of aperture opening does not affect the high accuracy of TAC regulation in the subsequent aperture-closure phase.

  7. Groundwater level responses to precipitation variability in Mediterranean insular aquifers

    NASA Astrophysics Data System (ADS)

    Lorenzo-Lacruz, Jorge; Garcia, Celso; Morán-Tejeda, Enrique

    2017-09-01

    Groundwater is one of the largest and most important sources of fresh water on many regions under Mediterranean climate conditions, which are exposed to large precipitation variability that includes frequent meteorological drought episodes, and present high evapotranspiration rates and water demand during the dry season. The dependence on groundwater increases in those areas with predominant permeable lithologies, contributing to aquifer recharge and the abundance of ephemeral streams. The increasing pressure of tourism on water resources in many Mediterranean coastal areas, and uncertainty related to future precipitation and water availability, make it urgent to understand the spatio-temporal response of groundwater bodies to precipitation variability, if sustainable use of the resource is to be achieved. We present an assessment of the response of aquifers to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) at various time scales and the Standardized Groundwater Index (SGI) across a Mediterranean island. We detected three main responses of aquifers to accumulated precipitation anomalies: (i) at short time scales of the SPI (<6 months); (ii) at medium time scales (6-24 months); and at long time scales (>24 months). The differing responses were mainly explained by differences in lithology and the percentage of highly permeable rock strata in the aquifer recharge areas. We also identified differences in the months and seasons when aquifer storages are more dependent on precipitation; these were related to climate seasonality and the degree of aquifer exploitation or underground water extraction. The recharge of some aquifers, especially in mountainous areas, is related to precipitation variability within a limited spatial extent, whereas for aquifers located in the plains, precipitation variability influence much larger areas; the topography and geological structure of the island explain these differences. Results indicate large spatial variability in the response of aquifers to precipitation in a very small area, highlighting the importance of having high spatial resolution hydro-climatic databases available to enable full understanding of the effects of climate variability on scarce water resources.

  8. Natural trophic variability in a large, oligotrophic, near-pristine lake

    USGS Publications Warehouse

    Young, Talia; Jensen, Olaf P.; Weidel, Brian C.; Chandra, Sudeep

    2015-01-01

    Conclusions drawn from stable isotope data can be limited by an incomplete understanding of natural isotopic variability over time and space. We quantified spatial and temporal variability in fish carbon and nitrogen stable isotopes in Lake Hövsgöl, Mongolia, a large, remote, oligotrophic lake with an unusually species-poor fish community. The fish community demonstrated a high degree of trophic level overlap. Variability in δ13C was inversely related to littoral-benthic dependence, with pelagic species demonstrating more δ13C variability than littoral-benthic species. A mixed effects model suggested that space (sampling location) had a greater impact than time (collection year) on both δ13C and δ15N variability. The observed variability in Lake Hövsgöl was generally greater than isotopic variability documented in other large, oligotrophic lakes, similar to isotopic shifts attributed to introduced species, and less than isotopic shifts attributed to anthropogenic chemical changes such as eutrophication. This work complements studies on isotopic variability and changes in other lakes around the world.

  9. Hong-Ou-Mandel effect in terms of the temporal biphoton wave function with two arrival-time variables

    NASA Astrophysics Data System (ADS)

    Fedorov, M. V.; Sysoeva, A. A.; Vintskevich, S. V.; Grigoriev, D. A.

    2018-03-01

    The well-known Hong-Ou-Mandel effect is revisited. Two physical reasons are discussed for the effect to be less pronounced or even to disappear: differing polarizations of photons coming to the beamsplitter and delay time of photons in one of two channels. For the latter we use the concepts of biphoton frequency and temporal wave functions depending, correspondingly, on two frequency continuous variables of photons and on two time variables t 1 and t 2 interpreted as the arrival times of photons to the beamsplitter. Explicit expressions are found for the probability densities and total probabilities for photon pairs to be split between two channels after the beamsplitter and to be unsplit, when two photons appear together in one of two channels.

  10. A FORTRAN program for multivariate survival analysis on the personal computer.

    PubMed

    Mulder, P G

    1988-01-01

    In this paper a FORTRAN program is presented for multivariate survival or life table regression analysis in a competing risks' situation. The relevant failure rate (for example, a particular disease or mortality rate) is modelled as a log-linear function of a vector of (possibly time-dependent) explanatory variables. The explanatory variables may also include the variable time itself, which is useful for parameterizing piecewise exponential time-to-failure distributions in a Gompertz-like or Weibull-like way as a more efficient alternative to Cox's proportional hazards model. Maximum likelihood estimates of the coefficients of the log-linear relationship are obtained from the iterative Newton-Raphson method. The program runs on a personal computer under DOS; running time is quite acceptable, even for large samples.

  11. [Unplanned extubation in ICU, and the relevance of non-dependent patient variables the quality of care].

    PubMed

    González-Castro, A; Peñasco, Y; Blanco, C; González-Fernández, C; Domínguez, M J; Rodríguez-Borregán, J C

    2014-01-01

    To evaluate, for a consecutive year, the magnitude of unplanned extubation, looking for non-dependent patient variables. Prospective, observational study of cases and controls in a mixed intensive care unit within in a tertiary hospital. Patients were considered cases with more than 24 hours who had an episode of unplanned extubation. Prospective collection of variables case as time of unplanned extubation (collection time), identification of the box where the patient was admitted, presence and type of physical restraint, development of ventilator-associated pneumonia (VAP) and death. There were 17 unplanned extubation in 15 patients, 1.21 unplanned extubation per 100 days of MV. The unplanned extubation had an inhomogeneous spatial distribution (number of boxes). The time distribution of cases compared with controls showed significant differences in time distribution (P=.02). The comparative analysis between cases and controls, showed increased mortality, increased length of ICU stay, longer hospital stay and increased risk for VAP when patients suffer an episode of unplanned extubation. Unplanned extubation occurs most frequently in a given time slot of the day, may play a role in the spatial location of the patient; occurs most often in patients who are in the process of weaning from mechanical ventilation, and develop greater VAP. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  12. Why climate change will invariably alter selection pressures on phenology.

    PubMed

    Gienapp, Phillip; Reed, Thomas E; Visser, Marcel E

    2014-10-22

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations

    NASA Astrophysics Data System (ADS)

    Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.

    We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.

  14. Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Morelli, Eugene A.

    2012-01-01

    The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.

  15. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An apparent cooling rate dependence ofJhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. In an idealized cloud parcel model applying variability in ISAs for each droplet, the model predicts enhanced immersion freezing temperatures and greater ice crystal production compared to a case when ISAs are uniform in each droplet. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.

  16. [Educational Inequality in Physical Inactivity in Leisure Time in Spanish Adult Population: differences in Ten Years (2002-2012)].

    PubMed

    Maestre-Miquel, Clara; Regidor, Enrique; Cuthill, Fiona; Martínez, David

    2015-01-01

    Social inequality in health is an increasing phenomenon in the world. The aim was to compare in 2002 and 2012, the magnitude of inequalities in leisure-time physical inactivity by educational level in Spain, but also the trends in health perception, in physically inactive people. A cross-sectional study from the National Health Survey in Spain in 2002 (n=21,650) and 2012 (n=21,007). The population aged from 25 to 64 years. At the first stage, physical inactivity in leisure-time was the dependent variable, and educational level was the independent variable. At the second stage, self-perception of health in last 12 months was the dependent variable. Logistic regression was adjusted using other variables: age, marital status, employment status and social class of the head of the family. Prevalence of leisure time physical inactivity was in 2012, up to 53.9% (men) and 67.5% (women), in the group aged between 25-44 with primary education. It declined in all age and sex groups in 2012, compared to 2002 (down to 18.7 percentage points). More than three times inactive women in between those who have primary or less education: OR 3.27 (2.35-4.55) in 2012. Bad health perceived in women with less educational level comparing with those with higher education. It also has declined over time: OR 1.45 in 2002 to OR 1.91, in 2012 (45-64 aged group). Although the prevalence of physical inactivity has decreased, inequalities in such behavior have increased in 2012 respect 2002.

  17. PREDICTING ADHERENCE TO TREATMENT FOR METHAMPHETAMINE DEPENDENCE FROM NEUROPSYCHOLOGICAL AND DRUG USE VARIABLES*

    PubMed Central

    Dean, Andy C.; London, Edythe D.; Sugar, Catherine A.; Kitchen, Christina M. R.; Swanson, Aimee-Noelle; Heinzerling, Keith G.; Kalechstein, Ari D.; Shoptaw, Steven

    2009-01-01

    Although some individuals who abuse methamphetamine have considerable cognitive deficits, no prior studies have examined whether neurocognitive functioning is associated with outcome of treatment for methamphetamine dependence. In an outpatient clinical trial of bupropion combined with cognitive behavioral therapy and contingency management (Shoptaw et al., 2008), 60 methamphetamine-dependent adults completed three tests of reaction time and working memory at baseline. Other variables that were collected at baseline included measures of drug use, mood/psychiatric functioning, employment, social context, legal status, and medical status. We evaluated the relative predictive value of all baseline measures for treatment outcome using Classification and Regression Trees (CART; Breiman, 1984), a nonparametric statistical technique that produces easily interpretable decision rules for classifying subjects that are particularly useful in clinical settings. Outcome measures were whether or not a participant completed the trial and whether or not most urine tests showed abstinence from methamphetamine abuse. Urine-verified methamphetamine abuse at the beginning of the study was the strongest predictor of treatment outcome; two psychosocial measures (e.g., nicotine dependence and Global Assessment of Functioning) also offered some predictive value. A few reaction time and working memory variables were related to treatment outcome, but these cognitive measures did not significantly aid prediction after adjusting for methamphetamine usage at the beginning of the study. On the basis of these findings, we recommend that research groups seeking to identify new predictors of treatment outcome compare the predictors to methamphetamine usage variables to assure that unique predictive power is attained. PMID:19608354

  18. Thermal maps of Jupiter - Spatial organization and time dependence of stratospheric temperatures, 1980 to 1990

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Baines, Kevin H.; Martin, Terry Z.; West, Robert A.; Caldwell, John; Hammel, Heidi B.; Bergstralh, Jay T.; Malcolm, Michael E.

    1991-01-01

    The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH4 band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing. Distinct bands of high temperature are located at the poles and midlatitudes, while the equator alternates between warm and cold with a period of approximately 4 years. Substantial longitudinal variability is often observed within the warm midlatitude bands, and occasionally elsewhere on the planet. This variability includes small, localized structures, as well as large-scale waves with wavelengths longer than about 30,000 kilometers. The amplitudes of the waves vary on a time scale of about 1 month; structures on a smaller scale may have lifetimes of only days. Waves observed in 1985, 1987, and 1988 propagated with group velocities less than + or - 30 meters/sec.

  19. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.

    PubMed

    De Silva, Anurika Priyanjali; Moreno-Betancur, Margarita; De Livera, Alysha Madhu; Lee, Katherine Jane; Simpson, Julie Anne

    2017-07-25

    Missing data is a common problem in epidemiological studies, and is particularly prominent in longitudinal data, which involve multiple waves of data collection. Traditional multiple imputation (MI) methods (fully conditional specification (FCS) and multivariate normal imputation (MVNI)) treat repeated measurements of the same time-dependent variable as just another 'distinct' variable for imputation and therefore do not make the most of the longitudinal structure of the data. Only a few studies have explored extensions to the standard approaches to account for the temporal structure of longitudinal data. One suggestion is the two-fold fully conditional specification (two-fold FCS) algorithm, which restricts the imputation of a time-dependent variable to time blocks where the imputation model includes measurements taken at the specified and adjacent times. To date, no study has investigated the performance of two-fold FCS and standard MI methods for handling missing data in a time-varying covariate with a non-linear trajectory over time - a commonly encountered scenario in epidemiological studies. We simulated 1000 datasets of 5000 individuals based on the Longitudinal Study of Australian Children (LSAC). Three missing data mechanisms: missing completely at random (MCAR), and a weak and a strong missing at random (MAR) scenarios were used to impose missingness on body mass index (BMI) for age z-scores; a continuous time-varying exposure variable with a non-linear trajectory over time. We evaluated the performance of FCS, MVNI, and two-fold FCS for handling up to 50% of missing data when assessing the association between childhood obesity and sleep problems. The standard two-fold FCS produced slightly more biased and less precise estimates than FCS and MVNI. We observed slight improvements in bias and precision when using a time window width of two for the two-fold FCS algorithm compared to the standard width of one. We recommend the use of FCS or MVNI in a similar longitudinal setting, and when encountering convergence issues due to a large number of time points or variables with missing values, the two-fold FCS with exploration of a suitable time window.

  20. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations andmore » of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.« less

  1. Can Two Psychotherapy Process Measures Be Dependably Rated Simultaneously? A Generalizability Study

    ERIC Educational Resources Information Center

    Ulvenes, Pal G.; Berggraf, Lene; Hoffart, Asle; Levy, Raymon A.; Ablon, J. Stuart; McCullough, Leigh; Wampold, Bruce E.

    2012-01-01

    Observer ratings in psychotherapy are a common way of collecting information in psychotherapy research. However, human observers are imperfect instruments, and their ratings may be subject to variability from several sources. One source of variability can be raters' assessing more than 1 instrument at a time. The purpose of this research is to…

  2. A new variable interval schedule with constant hazard rate and finite time range.

    PubMed

    Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco

    2018-05-27

    We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.

  3. Multi-band implications of external-IC flares

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Spanier, Felix

    2015-02-01

    Very fast variability on scales of minutes is regularly observed in Blazars. The assumption that these flares are emerging from the dominant emission zone of the very high energy (VHE) radiation within the jet challenges current acceleration and radiation models. In this work we use a spatially resolved and time dependent synchrotron-self-Compton (SSC) model that includes the full time dependence of Fermi-I acceleration. We use the (apparent) orphan γ -ray flare of Mrk501 during MJD 54952 and test various flare scenarios against the observed data. We find that a rapidly variable external radiation field can reproduce the high energy lightcurve best. However, the effect of the strong inverse Compton (IC) cooling on other bands and the X-ray observations are constraining the parameters to rather extreme ranges. Then again other scenarios would require parameters even more extreme or stronger physical constraints on the rise and decay of the source of the variability which might be in contradiction with constraints derived from the size of the black hole's ergosphere.

  4. A robust variable sampling time BLDC motor control design based upon μ-synthesis.

    PubMed

    Hung, Chung-Wen; Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.

  5. A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis

    PubMed Central

    Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804

  6. Increasing Self-Regulation and Classroom Participation of a Child Who Is Deafblind.

    PubMed

    Nelson, Catherine; Hyte, Holly A; Greenfield, Robin

    2016-01-01

    Self-regulation has been identified as essential to school success. However, for a variety of reasons, its development may be compromised in children and youth who are deafblind. A single-case multiple-baseline study of a child who was deafblind examined the effects of three groups of evidence-based interventions on variables thought to be associated with self-regulation. The dependent variables were (a) frequency and duration of behaviors thought to indicate dysregulation, (b) active participation in school activities, and (c) time from onset of behaviors indicating dysregulation until achievement of a calm, regulated state. The interventions, which included provision of meaningful, enjoyable, and interactive activities, anticipatory strategies, and calming strategies, significantly influenced the dependent variables and are described in detail.

  7. One-Year Efficacy Testing of Enabling Mothers to Prevent Pediatric Obesity Through Web-Based Education and Reciprocal Determinism (EMPOWER) Randomized Control Trial.

    PubMed

    Knowlden, Adam; Sharma, Manoj

    2016-02-01

    The purpose of this study was to evaluate the efficacy of the Enabling Mothers to Prevent Pediatric Obesity through Web-Based Education and Reciprocal Determinism (EMPOWER) intervention at 1-year, postintervention follow-up. A mixed between-within subjects design was used to evaluate the trial. Independent variables included a two-level, group assignment: EMPOWER (experimental intervention) based on social cognitive theory (SCT) as well as a knowledge-based intervention Healthy Lifestyles (active control intervention). Dependent variables were evaluated across four levels of time: baseline (Week 0), posttest (Week 4), 1-month follow-up (Week 8), and 1-year follow-up (Week 60). Dependent variables included five maternal-facilitated SCT constructs (environment, emotional coping, expectations, self-control, and self-efficacy) as well as four child behaviors (minutes of child physical activity, cups of fruits and vegetables consumed, 8-ounce glasses of sugar-sweetened beverages consumed, and minutes of screen time). Null hypotheses implied no significant group-by-time interactions for the dependent variables under investigation. A significant group-by-time interaction for child fruit and vegetable consumption was found in the experimental group (p = .012) relative to the control group. At 1 year, results suggested an overall increase of 1.847 cups of fruits and vegetables (95% confidence interval = 1.207-2.498) in the experimental group (p < .001). Analysis suggested changes in the maternal-facilitated home environment accounted for 13.3% of the variance in the change in child fruit and vegetable consumption. Improvements in child physical activity, sugar-free beverage intake, and screen time first detected at 1-month follow-up in both groups were no longer significant at 1-year follow-up. An online family-and-home-based intervention was efficacious for improving child fruit and vegetable consumption. Follow-up booster sessions may assist in maintaining treatment effects. © 2015 Society for Public Health Education.

  8. Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability

    ERIC Educational Resources Information Center

    von Oertzen, Timo; Boker, Steven M.

    2010-01-01

    This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that "time delay embedding," i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard…

  9. Neutron star dynamics under time dependent external torques

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Gügercinoğlu, E.

    2017-12-01

    The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).

  10. A non-stationary cost-benefit based bivariate extreme flood estimation approach

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Liu, Junguo

    2018-02-01

    Cost-benefit analysis and flood frequency analysis have been integrated into a comprehensive framework to estimate cost effective design values. However, previous cost-benefit based extreme flood estimation is based on stationary assumptions and analyze dependent flood variables separately. A Non-Stationary Cost-Benefit based bivariate design flood estimation (NSCOBE) approach is developed in this study to investigate influence of non-stationarities in both the dependence of flood variables and the marginal distributions on extreme flood estimation. The dependence is modeled utilizing copula functions. Previous design flood selection criteria are not suitable for NSCOBE since they ignore time changing dependence of flood variables. Therefore, a risk calculation approach is proposed based on non-stationarities in both marginal probability distributions and copula functions. A case study with 54-year observed data is utilized to illustrate the application of NSCOBE. Results show NSCOBE can effectively integrate non-stationarities in both copula functions and marginal distributions into cost-benefit based design flood estimation. It is also found that there is a trade-off between maximum probability of exceedance calculated from copula functions and marginal distributions. This study for the first time provides a new approach towards a better understanding of influence of non-stationarities in both copula functions and marginal distributions on extreme flood estimation, and could be beneficial to cost-benefit based non-stationary bivariate design flood estimation across the world.

  11. Immortal time bias in observational studies of time-to-event outcomes.

    PubMed

    Jones, Mark; Fowler, Robert

    2016-12-01

    The purpose of the study is to show, through simulation and example, the magnitude and direction of immortal time bias when an inappropriate analysis is used. We compare 4 methods of analysis for observational studies of time-to-event outcomes: logistic regression, standard Cox model, landmark analysis, and time-dependent Cox model using an example data set of patients critically ill with influenza and a simulation study. For the example data set, logistic regression, standard Cox model, and landmark analysis all showed some evidence that treatment with oseltamivir provides protection from mortality in patients critically ill with influenza. However, when the time-dependent nature of treatment exposure is taken account of using a time-dependent Cox model, there is no longer evidence of a protective effect of treatment. The simulation study showed that, under various scenarios, the time-dependent Cox model consistently provides unbiased treatment effect estimates, whereas standard Cox model leads to bias in favor of treatment. Logistic regression and landmark analysis may also lead to bias. To minimize the risk of immortal time bias in observational studies of survival outcomes, we strongly suggest time-dependent exposures be included as time-dependent variables in hazard-based analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Re-construction of action awareness depends on an internal model of action-outcome timing.

    PubMed

    Stenner, Max-Philipp; Bauer, Markus; Machts, Judith; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J

    2014-04-01

    The subjective time of an instrumental action is shifted towards its outcome. This temporal binding effect is partially retrospective, i.e., occurs upon outcome perception. Retrospective binding is thought to reflect post-hoc inference on agency based on sensory evidence of the action - outcome association. However, many previous binding paradigms cannot exclude the possibility that retrospective binding results from bottom-up interference of sensory outcome processing with action awareness and is functionally unrelated to the processing of the action - outcome association. Here, we keep bottom-up interference constant and use a contextual manipulation instead. We demonstrate a shift of subjective action time by its outcome in a context of variable outcome timing. Crucially, this shift is absent when there is no such variability. Thus, retrospective action binding reflects a context-dependent, model-based phenomenon. Such top-down re-construction of action awareness seems to bias agency attribution when outcome predictability is low. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Re-construction of action awareness depends on an internal model of action-outcome timing

    PubMed Central

    Stenner, Max-Philipp; Bauer, Markus; Machts, Judith; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.

    2014-01-01

    The subjective time of an instrumental action is shifted towards its outcome. This temporal binding effect is partially retrospective, i.e., occurs upon outcome perception. Retrospective binding is thought to reflect post-hoc inference on agency based on sensory evidence of the action – outcome association. However, many previous binding paradigms cannot exclude the possibility that retrospective binding results from bottom-up interference of sensory outcome processing with action awareness and is functionally unrelated to the processing of the action – outcome association. Here, we keep bottom-up interference constant and use a contextual manipulation instead. We demonstrate a shift of subjective action time by its outcome in a context of variable outcome timing. Crucially, this shift is absent when there is no such variability. Thus, retrospective action binding reflects a context-dependent, model-based phenomenon. Such top-down re-construction of action awareness seems to bias agency attribution when outcome predictability is low. PMID:24555983

  14. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  15. Re/Os constraint on the time variability of the fine-structure constant.

    PubMed

    Fujii, Yasunori; Iwamoto, Akira

    2003-12-31

    We argue that the accuracy by which the isochron parameters of the decay 187Re-->187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant alpha, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.

  16. Rapidly variable relatvistic absorption

    NASA Astrophysics Data System (ADS)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  17. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    NASA Astrophysics Data System (ADS)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  18. Long-Term Variability of AGN at Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Soldi, S.; Beckmann, V.; Baumgartner W. H.; Ponti, G.; Shrader, C. R.; Lubinski, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2013-01-01

    Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods. Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work on the first 9 months of BAT data, we study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80 of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10 larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).

  19. Development of a time-dependent incompressible Navier-Stokes solver based on a fractional-step method

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe

    1990-01-01

    The development, validation and application of a fractional step solution method of the time-dependent incompressible Navier-Stokes equations in generalized coordinate systems are discussed. A solution method that combines a finite-volume discretization with a novel choice of the dependent variables and a fractional step splitting to obtain accurate solutions in arbitrary geometries was previously developed for fixed-grids. In the present research effort, this solution method is extended to include more general situations, including cases with moving grids. The numerical techniques are enhanced to gain efficiency and generality.

  20. The finite element method scheme for a solution of an evolution variational inequality with a nonlocal space operator

    NASA Astrophysics Data System (ADS)

    Glazyrina, O. V.; Pavlova, M. F.

    2016-11-01

    We consider the parabolic inequality with monotone with respect to a gradient space operator, which is depended on integral with respect to space variables solution characteristic. We construct a two-layer differential scheme for this problem with use of penalty method, semidiscretization with respect to time variable method and the finite element method (FEM) with respect to space variables. We proved a convergence of constructed mothod.

  1. Complex analyses on clinical information systems using restricted natural language querying to resolve time-event dependencies.

    PubMed

    Safari, Leila; Patrick, Jon D

    2018-06-01

    This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Multiplicative Forests for Continuous-Time Processes

    PubMed Central

    Weiss, Jeremy C.; Natarajan, Sriraam; Page, David

    2013-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability. PMID:25284967

  3. Multiplicative Forests for Continuous-Time Processes.

    PubMed

    Weiss, Jeremy C; Natarajan, Sriraam; Page, David

    2012-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability.

  4. Sequential Modular Position and Momentum Measurements of a Trapped Ion Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Flühmann, C.; Negnevitsky, V.; Marinelli, M.; Home, J. P.

    2018-04-01

    The noncommutativity of position and momentum observables is a hallmark feature of quantum physics. However, this incompatibility does not extend to observables that are periodic in these base variables. Such modular-variable observables have been suggested as tools for fault-tolerant quantum computing and enhanced quantum sensing. Here, we implement sequential measurements of modular variables in the oscillatory motion of a single trapped ion, using state-dependent displacements and a heralded nondestructive readout. We investigate the commutative nature of modular variable observables by demonstrating no-signaling in time between successive measurements, using a variety of input states. Employing a different periodicity, we observe signaling in time. This also requires wave-packet overlap, resulting in quantum interference that we enhance using squeezed input states. The sequential measurements allow us to extract two-time correlators for modular variables, which we use to violate a Leggett-Garg inequality. Signaling in time and Leggett-Garg inequalities serve as efficient quantum witnesses, which we probe here with a mechanical oscillator, a system that has a natural crossover from the quantum to the classical regime.

  5. The Reliability of Pharyngeal High Resolution Manometry with Impedance for Derivation of Measures of Swallowing Function in Healthy Volunteers

    PubMed Central

    Omari, Taher I.; Savilampi, Johanna; Kokkinn, Karmen; Schar, Mistyka; Lamvik, Kristin; Doeltgen, Sebastian; Cock, Charles

    2016-01-01

    Purpose. We evaluated the intra- and interrater agreement and test-retest reliability of analyst derivation of swallow function variables based on repeated high resolution manometry with impedance measurements. Methods. Five subjects swallowed 10 × 10 mL saline on two occasions one week apart producing a database of 100 swallows. Swallows were repeat-analysed by six observers using software. Swallow variables were indicative of contractility, intrabolus pressure, and flow timing. Results. The average intraclass correlation coefficients (ICC) for intra- and interrater comparisons of all variable means showed substantial to excellent agreement (intrarater ICC 0.85–1.00; mean interrater ICC 0.77–1.00). Test-retest results were less reliable. ICC for test-retest comparisons ranged from slight to excellent depending on the class of variable. Contractility variables differed most in terms of test-retest reliability. Amongst contractility variables, UES basal pressure showed excellent test-retest agreement (mean ICC 0.94), measures of UES postrelaxation contractile pressure showed moderate to substantial test-retest agreement (mean Interrater ICC 0.47–0.67), and test-retest agreement of pharyngeal contractile pressure ranged from slight to substantial (mean Interrater ICC 0.15–0.61). Conclusions. Test-retest reliability of HRIM measures depends on the class of variable. Measures of bolus distension pressure and flow timing appear to be more test-retest reliable than measures of contractility. PMID:27190520

  6. Combining Reaction Time and Accuracy: The Relationship Between Working Memory Capacity and Task Switching as a Case Example.

    PubMed

    Draheim, Christopher; Hicks, Kenny L; Engle, Randall W

    2016-01-01

    It is generally agreed upon that the mechanisms underlying task switching heavily depend on working memory, yet numerous studies have failed to show a strong relationship between working memory capacity (WMC) and task-switching ability. We argue that this relationship does indeed exist but that the dependent variable used to measure task switching is problematic. To support our claim, we reanalyzed data from two studies with a new scoring procedure that combines reaction time (RT) and accuracy into a single score. The reanalysis revealed a strong relationship between task switching and WMC that was not present when RT-based switch costs were used as the dependent variable. We discuss the theoretical implications of this finding along with the potential uses and limitations of the scoring procedure we used. More broadly, we emphasize the importance of using measures that incorporate speed and accuracy in other areas of research, particularly in comparisons of subjects differing in cognitive and developmental levels. © The Author(s) 2015.

  7. Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction

    NASA Astrophysics Data System (ADS)

    Vrac, Mathieu

    2018-06-01

    Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell × number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure - making it possible to deal with a high number of statistical dimensions - that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071-2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.

  8. Crossing safety barriers: influence of children's morphological and functional variables.

    PubMed

    Cordovil, Rita; Vieira, Filomena; Barreiros, João

    2012-05-01

    Thirty-three children between 3 and 6 years of age were asked to climb four different types of safety barriers. Morphological and functional variables of the children, which were expected to influence climbing or passing through skills, were collected. The influence of those variables on children's success rate and time to cross was tested. No barrier offered a total restraining efficacy. The horizontal bars barrier was crossed by 97% of the children. In the group of children that succeeded in crossing the four barriers, mean time to cross the most difficult barrier was 15 s. Age was the best predictor for success in crossing most barriers but morphology and strength were important predictors of time to cross. The influence of anthropometric variables in time to cross was dependent upon the characteristics of the barrier. A good design of safety barriers should consider children's age, morphology and strength. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    PubMed

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  10. Log-normal distribution of the trace element data results from a mixture of stocahstic input and deterministic internal dynamics.

    PubMed

    Usuda, Kan; Kono, Koichi; Dote, Tomotaro; Shimizu, Hiroyasu; Tominaga, Mika; Koizumi, Chisato; Nakase, Emiko; Toshina, Yumi; Iwai, Junko; Kawasaki, Takashi; Akashi, Mitsuya

    2002-04-01

    In previous article, we showed a log-normal distribution of boron and lithium in human urine. This type of distribution is common in both biological and nonbiological applications. It can be observed when the effects of many independent variables are combined, each of which having any underlying distribution. Although elemental excretion depends on many variables, the one-compartment open model following a first-order process can be used to explain the elimination of elements. The rate of excretion is proportional to the amount present of any given element; that is, the same percentage of an existing element is eliminated per unit time, and the element concentration is represented by a deterministic negative power function of time in the elimination time-course. Sampling is of a stochastic nature, so the dataset of time variables in the elimination phase when the sample was obtained is expected to show Normal distribution. The time variable appears as an exponent of the power function, so a concentration histogram is that of an exponential transformation of Normally distributed time. This is the reason why the element concentration shows a log-normal distribution. The distribution is determined not by the element concentration itself, but by the time variable that defines the pharmacokinetic equation.

  11. [Optimization of process of icraiin be hydrolyzed to Baohuoside I by cellulase based on Plackett-Burman design combined with CCD response surface methodology].

    PubMed

    Song, Chuan-xia; Chen, Hong-mei; Dai, Yu; Kang, Min; Hu, Jia; Deng, Yun

    2014-11-01

    To optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase by Plackett-Burman design combined with Central Composite Design (CCD) response surface methodology. To select the main influencing factors by Plackett-Burman design, using CCD response surface methodology to optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase. Taking substrate concentration, the pH of buffer and reaction time as independent variables, with conversion rate of icariin as dependent variable,using regression fitting of completely quadratic response surface between independent variable and dependent variable,the optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase was intuitively analyzed by 3D surface chart, and taking verification tests and predictive analysis. The best enzymatic hydrolytic process was as following: substrate concentration 8. 23 mg/mL, pH 5. 12 of buffer,reaction time 35. 34 h. The optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase is determined by Plackett-Burman design combined with CCD response surface methodology. The optimized enzymatic hydrolytic process is simple, convenient, accurate, reproducible and predictable.

  12. Physiological and pathological clinical conditions and light scattering in brain

    NASA Astrophysics Data System (ADS)

    Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke

    2016-08-01

    MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3- at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3- at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth.

  13. X-Ray Spectral Variability Signatures of Flares in BL Lac Objects

    NASA Technical Reports Server (NTRS)

    Boettcher, Markus; Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We are presenting a detailed parameter study of the time-dependent electron injection and kinematics and the self-consistent radiation transport in jets of intermediate and low-frequency peaked BL Lac objects. Using a time-dependent, combined synchrotron-self-Compton and external-Compton jet model, we study the influence of variations of several essential model parameters, such as the electron injection compactness, the relative contribution of synchrotron to external soft photons to the soft photon compactness, the electron- injection spectral index, and the details of the time profiles of the electron injection episodes giving rise to flaring activity. In the analysis of our results, we focus on the expected X-ray spectral variability signatures in a region of parameter space particularly well suited to reproduce the broadband spectral energy distributions of intermediate and low-frequency peaked BL Lac objects. We demonstrate that SSC- and external-Compton dominated models for the gamma-ray emission from blazars are producing significantly different signatures in the X-ray variability, in particular in the soft X-ray light curves and the spectral hysteresis at soft X-ray energies, which can be used as a powerful diagnostic to unveil the nature of the high-energy emission from BL Lac objects.

  14. Generalized semiparametric varying-coefficient models for longitudinal data

    NASA Astrophysics Data System (ADS)

    Qi, Li

    In this dissertation, we investigate the generalized semiparametric varying-coefficient models for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects, i.e., the covariate effects that depend on other possibly time-dependent exposure variables. First, we consider the model that assumes the time-varying effects are unspecified functions of time while the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedures are developed using multivariate local linear smoothing and generalized weighted least squares estimation techniques. The asymptotic properties of the proposed estimators are established. The simulation studies show that the proposed methods have satisfactory finite sample performance. ACTG 244 clinical trial of HIV infected patients are applied to examine the effects of antiretroviral treatment switching before and after HIV developing the 215-mutation. Our analysis shows benefit of treatment switching before developing the 215-mutation. The proposed methods are also applied to the STEP study with MITT cases showing that they have broad applications in medical research.

  15. Mothers' Time Choices: Caregiving, Leisure, Home Production, and Paid Work

    ERIC Educational Resources Information Center

    Kimmel, Jean; Connelly, Rachel

    2007-01-01

    Using data from the 2003 and 2004 American Time Use Survey, we study the role that socioeconomic factors play in mothers' time choices. We estimate a four-equation system in which the dependent variables are the minutes used in home production, active leisure, market work, and child caregiving. Our results show that mothers' caregiving time…

  16. Measuring determinants of career satisfaction of anesthesiologists: validation of a survey instrument.

    PubMed

    Afonso, Anoushka M; Diaz, James H; Scher, Corey S; Beyl, Robbie A; Nair, Singh R; Kaye, Alan David

    2013-06-01

    To measure the parameter of job satisfaction among anesthesiologists. Survey instrument. Academic anesthesiology departments in the United States. 320 anesthesiologists who attended the annual meeting of the ASA in 2009 (95% response rate). The anonymous 50-item survey collected information on 26 independent demographic variables and 24 dependent ranked variables of career satisfaction among practicing anesthesiologists. Mean survey scores were calculated for each demographic variable and tested for statistically significant differences by analysis of variance. Questions within each domain that were internally consistent with each other within domains were identified by Cronbach's alpha ≥ 0.7. P-values ≤ 0.05 were considered statistically significant. Cronbach's alpha analysis showed strong internal consistency for 10 dependent outcome questions in the practice factor-related domain (α = 0.72), 6 dependent outcome questions in the peer factor-related domain (α = 0.71), and 8 dependent outcome questions in the personal factor-related domain (α = 0.81). Although age was not a variable, full-time status, early satisfaction within the first 5 years of practice, working with respected peers, and personal choice factors were all significantly associated with anesthesiologist job satisfaction. Improvements in factors related to job satisfaction among anesthesiologists may lead to higher early and current career satisfaction. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Numerical solution of the two-dimensional time-dependent incompressible Euler equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Taylor, Lafayette K.

    1994-01-01

    A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.

  18. Micro-Macro Duality and Space-Time Emergence

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    2011-03-01

    The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).

  19. Understanding Short-Term Nonmigrating Tidal Variability in the Ionospheric Dynamo Region from SABER Using Information Theory and Bayesian Statistics

    NASA Astrophysics Data System (ADS)

    Kumari, K.; Oberheide, J.

    2017-12-01

    Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.

  20. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  1. Influence of hydroxypropyl methylcellulose on drug release pattern of a gastroretentive floating drug delivery system using a 3(2) full factorial design.

    PubMed

    Swain, Kalpana; Pattnaik, Satyanarayan; Mallick, Subrata; Chowdary, Korla Appana

    2009-01-01

    In the present investigation, controlled release gastroretentive floating drug delivery system of theophylline was developed employing response surface methodology. A 3(2) randomized full factorial design was developed to study the effect of formulation variables like various viscosity grades and contents of hydroxypropyl methylcellulose (HPMC) and their interactions on response variables. The floating lag time for all nine experimental trial batches were less than 2 min and floatation time of more than 12 h. Theophylline release from the polymeric matrix system followed non-Fickian anomalous transport. Multiple regression analysis revealed that both viscosity and content of HPMC had statistically significant influence on all dependent variables but the effect of these variables found to be nonlinear above certain threshold values.

  2. The SYSGEN user package

    NASA Technical Reports Server (NTRS)

    Carlson, C. R.

    1981-01-01

    The user documentation of the SYSGEN model and its links with other simulations is described. The SYSGEN is a production costing and reliability model of electric utility systems. Hydroelectric, storage, and time dependent generating units are modeled in addition to conventional generating plants. Input variables, modeling options, output variables, and reports formats are explained. SYSGEN also can be run interactively by using a program called FEPS (Front End Program for SYSGEN). A format for SYSGEN input variables which is designed for use with FEPS is presented.

  3. The roles of time and displacement in velocity-dependent volumetric strain of fault zones

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.

    1997-01-01

    The relationship between measured friction??A and volumetric strain during frictional sliding was determined using a rate and state variable dependent friction constitutive equation, a common work balance relating friction and volume change, and two types of experimental faults: initially bare surfaces of Westerly granite and rock surfaces separated by a 1 mm layer of < 90 ??m Westerly granite gouge. The constitutive equation is the sum of a constant term representing the nominal resistance to sliding and two smaller terms: a rate dependent term representing the shear viscosity of the fault surface (direct effect), and a term which represents variations in the area of contact (evolution effect). The work balance relationship requires that ??A differs from the frictional resistance that leads to shear heating by the derivative of fault normal displacement with respect shear displacement, d??n ld??s. An implication of this relationship is that the rate dependence of d??n ld??s contributes to the rate dependence of ??A. Experiments show changes in sliding velocity lead to changes in both fault strength and volume. Analysis of data with the rate and state equations combined with the work balance relationship preclude the conventional interpretation of the direct effect in the rate and state variable constitutive equations. Consideration of a model bare surface fault consisting of an undeformable indentor sliding on a deformable surface reveals a serious flaw in the work balance relationship if volume change is time-dependent. For the model, at zero slip rate indentation creep under the normal load leads to time-dependent strengthening of the fault surface but, according to the work balance relationship, no work is done because compaction or dilatancy can only be induced by shearing. Additional tests on initially bare surfaces and gouges show that fault normal strain in experiments is time-dependent, consistent with the model. This time-dependent fault normal strain, which is not accounted for in the work balance relationship, explains the inconsistency between the constitutive equations and the work balance. For initially bare surface faults, all rate dependence of volume change is due to time dependence. Similar results are found for gouge. We conclude that ??A reflects the frictional resistance that results in shear heating, and no correction needs to be made for the volume changes. The result that time-dependent volume changes do not contribute to ??A is a general result and extends beyond these experiments, the simple indentor model and particular constitutive equations used to illustrate the principle.

  4. Quantifying the Seasonal and Interannual Variability of North American Isoprene Emissions Using Satellite Observations of the Formaldehyde Column

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Abbot, Dorian S.; Fu, Tzung-May; Jacob, Daniel J.; Chance, Kelly; Kurosu, Thomas P.; Guenther, Alex; Wiedinmyer, Christine; Stanton, Jenny C.; Pilling, Michael J.; hide

    2006-01-01

    Quantifying isoprene emissions using satellite observations of the formaldehyde (HCHO) columns is subject to errors involving the column retrieval and the assumed relationship between HCHO columns and isoprene emissions, taken here from the GEOS-CHEM chemical transport model. Here we use a 6-year (1996-2001) HCHO column data set from the Global Ozone Monitoring Experiment (GOME) satellite instrument to (1) quantify these errors, (2) evaluate GOME-derived isoprene emissions with in situ flux measurements and a process-based emission inventory (Model of Emissions of Gases and Aerosols from Nature, MEGAN), and (3) investigate the factors driving the seasonal and interannual variability of North American isoprene emissions. The error in the GOME HCHO column retrieval is estimated to be 40%. We use the Master Chemical Mechanism (MCM) to quantify the time-dependent HCHO production from isoprene, alpha- and beta-pinenes, and methylbutenol and show that only emissions of isoprene are detectable by GOME. The time-dependent HCHO yield from isoprene oxidation calculated by MCM is 20-30% larger than in GEOS-CHEM. GOME-derived isoprene fluxes track the observed seasonal variation of in situ measurements at a Michigan forest site with a -30% bias. The seasonal variation of North American isoprene emissions during 2001 inferred from GOME is similar to MEGAN, with GOME emissions typically 25% higher (lower) at the beginning (end) of the growing season. GOME and MEGAN both show a maximum over the southeastern United States, but they differ in the precise location. The observed interannual variability of this maximum is 20-30%, depending on month. The MEGAN isoprene emission dependence on surface air temperature explains 75% of the month-to-month variability in GOME-derived isoprene emissions over the southeastern United States during May-September 1996-2001.

  5. A data assimilation technique to account for the nonlinear dependence of scattering microwave observations of precipitation

    NASA Astrophysics Data System (ADS)

    Haddad, Z. S.; Steward, J. L.; Tseng, H.-C.; Vukicevic, T.; Chen, S.-H.; Hristova-Veleva, S.

    2015-06-01

    Satellite microwave observations of rain, whether from radar or passive radiometers, depend in a very crucial way on the vertical distribution of the condensed water mass and on the types and sizes of the hydrometeors in the volume resolved by the instrument. This crucial dependence is nonlinear, with different types and orders of nonlinearity that are due to differences in the absorption/emission and scattering signatures at the different instrument frequencies. Because it is not monotone as a function of the underlying condensed water mass, the nonlinearity requires great care in its representation in the observation operator, as the inevitable uncertainties in the numerous precipitation variables are not directly convertible into an additive white uncertainty in the forward calculated observations. In particular, when attempting to assimilate such data into a cloud-permitting model, special care needs to be applied to describe and quantify the expected uncertainty in the observations operator in order not to turn the implicit white additive uncertainty on the input values into complicated biases in the calculated radiances. One approach would be to calculate the means and covariances of the nonlinearly calculated radiances given an a priori joint distribution for the input variables. This would be a very resource-intensive proposal if performed in real time. We propose a representation of the observation operator based on performing this moment calculation off line, with a dimensionality reduction step to allow for the effective calculation of the observation operator and the associated covariance in real time during the assimilation. The approach is applicable to other remotely sensed observations that depend nonlinearly on model variables, including wind vector fields. The approach has been successfully applied to the case of tropical cyclones, where the organization of the system helps in identifying the dimensionality-reducing variables.

  6. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  7. Using directed information for influence discovery in interconnected dynamical systems

    NASA Astrophysics Data System (ADS)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  8. TRUMP; transient and steady state temperature distribution. [IBM360,370; CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, andmore » among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.IBM360,370;CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC); OS/360 (IBM360), OS/370 (IBM370), SCOPE 2.1.5 (CDC7600); As dimensioned, the program requires 400K bytes of storage on an IBM370 and 145,100 (octal) words on a CDC7600.« less

  9. Combined risk assessment of nonstationary monthly water quality based on Markov chain and time-varying copula.

    PubMed

    Shi, Wei; Xia, Jun

    2017-02-01

    Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH 3 -N) and permanganate index (COD Mn ) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH 3 -N and COD Mn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class V w , Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH 3 -N and COD Mn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH 3 -N and COD Mn is inferior to class V and class IV water quality standards, respectively.

  10. Timing at peak force may be the hidden target controlled in continuation and synchronization tapping.

    PubMed

    Du, Yue; Clark, Jane E; Whitall, Jill

    2017-05-01

    Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.

  11. Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate

    NASA Astrophysics Data System (ADS)

    Ram, Paras; Joshi, Vimal Kumar; Sharma, Kushal; Walia, Mittu; Yadav, Nisha

    2016-01-01

    An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1]) and turbine rotor systems (Owen and Rogers [2]).

  12. U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheltukhin, A. A.; Fysikum, AlbaNova, Stockholm University, 106 91 Stockholm; NORDITA, Roslagstullsbacken 23, 106 91 Stockholm

    The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent, then the dynamics is described by the pendulum equation.

  13. Here Be Dragons: Effective (X-ray) Timing with the Cospectrum

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Bachetti, Matteo

    2018-01-01

    In recent years, the cross spectrum has received considerable attention as a means of characterising the variability of astronomical sources as a function of wavelength. While much has been written about the statistics of time and phase lags, the cospectrum—the real part of the cross spectrum—has only recently been understood as means of mitigating instrumental effects dependent on temporal frequency in astronomical detectors, as well as a method of characterizing the coherent variability in two wavelength ranges on different time scales. In this talk, I will present recent advances made in understanding the statistical properties of cospectra, leading to much improved inferences for periodic and quasi-periodic signals. I will also present a new method to reliably mitigate instrumental effects such as dead time in X-ray detectors, and show how we can use the cospectrum to model highly variable sources such as X-ray binaries or Active Galactic Nuclei.

  14. Using collective variables to drive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme

    2013-12-01

    A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.

  15. Exploring variable patterns of density-dependent larval settlement among corals with distinct and shared functional traits

    NASA Astrophysics Data System (ADS)

    Doropoulos, Christopher; Gómez-Lemos, Luis A.; Babcock, Russell C.

    2018-03-01

    Coral settlement is a key process for the recovery and maintenance of coral reefs, yet interspecific variations in density-dependent settlement are unknown. Settlement of the submassive Goniastrea retiformis and corymbose Acropora digitifera and A. millepora was quantified at densities ranging from 1 to 50 larvae per 20 mL from 110 to 216 h following spawning. Settlement patterns were distinct for each species. Goniastrea settlement was rapid and increased linearly with time, whereas both Acropora spp. hardly settled until crustose coralline algae was provided. Both Goniastrea and A. digitifera showed positive density-dependent settlement, but the relationship was exponential for Goniastrea but linear for A. digitifera. Settlement was highest but density independent in A. millepora. Our results suggest that larval density can have significant effects on settler replenishment, and highlight variability in density-dependent settlement among corals with distinct functional traits as well as those with similar functional forms.

  16. Microprocessor-based long term cardiorespirography. II. Status evaluation in term and premature newborns.

    PubMed

    Hörnchen, H; Betz, R; Kotlarek, F; Roebruck, P

    1983-01-01

    In 1965 URBACH et al. and RUDOLPH et al. [35, 39] described a loss of heart rate variability in severely ill neonates. In this study we investigated the correlation between instantaneous heart rate patterns and status diagnosis. We used a microprocessor-based cardiorespirography system. Seventy five newborn infants (51 prematures and 24 term neonates) were studied for about 12 hours each. Twenty nine patients had a second record after the first investigation. Parameters were: Type of frequency and oscillation, long time variability (LTV), short time variability (STV) and the newly introduced P-value (maximal difference between two successive R-peaks in five minutes). We found clear differences between the study groups. With increasing severity of illness mean values ("group mean values") of long time variability, short time variability and P-value decreased. Fixed heart rate became predominant. The most pronounced loss of heart rate variability was seen in infants with severe intracranial bleeding, thus offering a tentative diagnosis. For statistical analysis long time variability and the silent oscillation type have been proved as best parameters for this diagnosis. Severely decreased heart rate variations also have been seen in infants with acute renal failure--possibly because of brain edema--, after application of muscle relaxants, repeated doses of sedatives, and after prolonged anesthesia. Otherwise, the heart rate variability was probably dependent on age and gestational age in prematures and newborn infants without intracranial bleeding. It is possible to use microprocessor-based long time cardiorespirography as a simple screening method for the diagnosis of neonatal intracerebral bleeding. In future experiences transcutaneous measurements of oxygen tension should be included.

  17. Multivariable analysis of anesthetic factors associated with time to extubation in dogs.

    PubMed

    Kleine, Stephanie; Hofmeister, Erik; Egan, Katrina

    2014-12-01

    The purpose of this study was to identify factors that prolong the time to extubation in dogs. Anesthetic records of 900 dogs at a university teaching hospital were searched. Multiple linear regression was used to compare independent predictors (patient demographics, anesthetic and intraoperative variables) with the dependent variable (time to extubation). Induction with propofol (P < 0.025) was associated with a shorter time to extubation, while premedication with acepromazine (P = 0.000) was associated with a longer time to extubation. Time to extubation was increased by 0.311 minutes for every kilogram increase in body weight (P = 0.000), 5.924 minutes for every 1 °C loss in body temperature (P = 0.0000), and by 0.096 minutes for every 1 minute increase in anesthetic duration (P = 0.000). Anesthetic variables, which can be manipulated by the anesthetist, include choice of premedication and induction drugs, hypothermia, and duration of anesthesia. Published by Elsevier Ltd.

  18. Flippin' Fluid Mechanics - Quasi-experimental Pre-test and Post-test Comparison Using Two Groups

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Majerich, D. M.; Luo, J.

    2014-11-01

    A flipped classroom approach has been implemented in an undergraduate fluid mechanics course. Students watch short on-line videos before class, participate in active in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. In-class activities are designed to achieve a trifecta of: 1. developing problem solving skills, 2. learning subject content, and 3. developing inquiry skills. The instructor and assistants provide critical ``just-in-time tutoring'' during the in-class problem solving sessions. Comparisons are made with a simultaneous section offered in a traditional mode by a different instructor. Regression analysis was used to control for differences among students and to quantify the effect of the flipped fluid mechanics course. The dependent variable was the students' combined final examination and post-concept inventory scores and the independent variables were pre-concept inventory score, gender, major, course section, and (incoming) GPA. The R-square equaled 0.45 indicating that the included variables explain 45% of the variation in the dependent variable. The regression results indicated that if the student took the flipped fluid mechanics course, the dependent variable (i.e., combined final exam and post-concept inventory scores) was raised by 7.25 points. Interestingly, the comparison group reported significantly more often that their course emphasized memorization than did the flipped classroom group.

  19. Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables

    NASA Astrophysics Data System (ADS)

    Goodwell, Allison E.; Kumar, Praveen

    2017-07-01

    Information theoretic measures can be used to identify nonlinear interactions between source and target variables through reductions in uncertainty. In information partitioning, multivariate mutual information is decomposed into synergistic, unique, and redundant components. Synergy is information shared only when sources influence a target together, uniqueness is information only provided by one source, and redundancy is overlapping shared information from multiple sources. While this partitioning has been applied to provide insights into complex dependencies, several proposed partitioning methods overestimate redundant information and omit a component of unique information because they do not account for source dependencies. Additionally, information partitioning has only been applied to time-series data in a limited context, using basic pdf estimation techniques or a Gaussian assumption. We develop a Rescaled Redundancy measure (Rs) to solve the source dependency issue, and present Gaussian, autoregressive, and chaotic test cases to demonstrate its advantages over existing techniques in the presence of noise, various source correlations, and different types of interactions. This study constitutes the first rigorous application of information partitioning to environmental time-series data, and addresses how noise, pdf estimation technique, or source dependencies can influence detected measures. We illustrate how our techniques can unravel the complex nature of forcing and feedback within an ecohydrologic system with an application to 1 min environmental signals of air temperature, relative humidity, and windspeed. The methods presented here are applicable to the study of a broad range of complex systems composed of interacting variables.

  20. Phase-dependent Photometric and Spectroscopic Characterization of the MASTER-Net Optical Transient J212444.87+321738.3: An Oxygen-rich Mira

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Mondal, Soumen; Das, Ramkrishna; Banerjee, D. P. K.; Ashok, N. M.; Hambsch, Franz-Josef; Dutta, Somnath

    2018-05-01

    We describe the time-dependent properties of a new spectroscopically confirmed Mira variable, which was discovered in 2013 as MASTER-Net Optical Transient J212444.87+321738.3 toward the Cygnus constellation. We have performed long-term optical/near-infrared (NIR) photometric and spectroscopic observations to characterize the object. From the optical/NIR light curves, we estimate a variability period of 465 ± 30 days. The wavelength-dependent amplitudes of the observed light curves range from ΔI ∼ 4 mag to ΔK ∼ 1.5 mag. The (J ‑ K) color index varies from 1.78 to 2.62 mag over phases. Interestingly, a phase lag of ∼60 days between optical and NIR light curves is also seen, as in other Miras. Our optical/NIR spectra show molecular features of TiO, VO, CO, and strong water bands that are a typical signature of oxygen-rich Mira. We rule out S- or C-type as ZrO bands at 1.03 and 1.06 μm and C2 band at 1.77 μm are absent. We estimate the effective temperature of the object from the Spectral Energy Distribution, and distance and luminosity from standard Period–Luminosity relations. The optical/NIR spectra display time-dependent atomic and molecular features (e.g., TiO, Na I, Ca I, H2O, CO), as commonly observed in Miras. Such spectroscopic observations are useful for studying pulsation variability in Miras.

  1. Instrumental Variable Estimates of the Labor Market Spillover Effects of Welfare Reform. Upjohn Institute Staff Working Paper.

    ERIC Educational Resources Information Center

    Bartik, Timothy J.

    The labor market spillover effects of welfare reform were estimated by using models that pool time-series and cross-section data from the Current Population Survey on the state-year cell means of wages, employment, and other labor market outcomes for various demographic groups. The labor market outcomes in question are dependent variables that are…

  2. Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets.

    PubMed

    Jiménez, L; Pérez, I; López, F; Ariza, J; Rodríguez, A

    2002-06-01

    The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined, ethanol pulping is the process of choice.

  3. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    PubMed

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  4. Seismicity in a model governed by competing frictional weakening and healing mechanisms

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Carlson, J. M.; Archuleta, R. J.

    2009-09-01

    Observations from laboratory, field and numerical work spanning a wide range of space and time scales suggest a strain dependent progressive evolution of material properties that control the stability of earthquake faults. The associated weakening mechanisms are counterbalanced by a variety of restrengthening mechanisms. The efficiency of the healing processes depends on local material properties and on rheologic, temperature, and hydraulic conditions. We investigate the relative effects of these competing non-linear feedbacks on seismogenesis in the context of evolving frictional properties, using a mechanical earthquake model that is governed by slip weakening friction. Weakening and strengthening mechanisms are parametrized by the evolution of the frictional control variable-the slip weakening rate R-using empirical relationships obtained from laboratory experiments. In our model, weakening depends on the slip of an earthquake and tends to increase R, following the behaviour of real and simulated frictional interfaces. Healing causes R to decrease and depends on the time passed since the last slip. Results from models with these competing feedbacks are compared with simulations using non-evolving friction. Compared to fixed R conditions, evolving properties result in a significantly increased variability in the system dynamics. We find that for a given set of weakening parameters the resulting seismicity patterns are sensitive to details of the restrengthening process, such as the healing rate b and a lower cutoff time, tc, up to which no significant change in the friction parameter is observed. For relatively large and small cutoff times, the statistics are typical of fixed large and small R values, respectively. However, a wide range of intermediate values leads to significant fluctuations in the internal energy levels. The frequency-size statistics of earthquake occurrence show corresponding non-stationary characteristics on time scales over which negligible fluctuations are observed in the fixed-R case. The progressive evolution implies that-except for extreme weakening and healing rates-faults and fault networks possibly are not well characterized by steady states on typical catalogue time scales, thus highlighting the essential role of memory and history dependence in seismogenesis. The results suggest that an extrapolation to future seismicity occurrence based on temporally limited data may be misleading due to variability in seismicity patterns associated with competing mechanisms that affect fault stability.

  5. Longitudinal associations between stressors and work ability in hospital workers.

    PubMed

    Carmen Martinez, Maria; da Silva Alexandre, Tiago; Dias de Oliveira Latorre, Maria do Rosario; Marina Fischer, Frida

    This study sought to assess associations between work stressors and work ability in a cohort (2009-2012) of 498 hospital workers. Time-dependent variables associated with the Work Ability Index (WAI) were evaluated using general linear mixed models. Analyses included effects of individual and work characteristics. Except for work demands, the work stressors (job control, social support, effort-reward imbalance, overcommitment and work-related activities that cause pain/injury) were associated with WAI (p < 0.050) at intercept and in the time interaction. Daytime work and morning shift work were associated with decreased WAI (p < 0.010). Work stressors negatively affected work ability over time independently of other variables.

  6. Structure of weakly 2-dependent siphons

    NASA Astrophysics Data System (ADS)

    Chao, Daniel Yuh; Chen, Jiun-Ting

    2013-09-01

    Deadlocks arising from insufficiently marked siphons in flexible manufacturing systems can be controlled by adding monitors to each siphon - too many for large systems. Li and Zhou add monitors to elementary siphons only while controlling the rest of (called dependent) siphons by adjusting control depth variables of elementary siphons. Only a linear number of monitors are required. The control of weakly dependent siphons (WDSs) is rather conservative since only positive terms were considered. The structure for strongly dependent siphons (SDSs) has been studied earlier. Based on this structure, the optimal sequence of adding monitors has been discovered earlier. Better controllability has been discovered to achieve faster and more permissive control. The results have been extended earlier to S3PGR2 (systems of simple sequential processes with general resource requirements). This paper explores the structures for WDSs, which, as found in this paper, involve elementary resource circuits interconnecting at more than (for SDSs, exactly) one resource place. This saves the time to compute compound siphons, their complementary sets and T-characteristic vectors. Also it allows us (1) to improve the controllability of WDSs and control siphons and (2) to avoid the time to find independent vectors for elementary siphons. We propose a sufficient and necessary test for adjusting control depth variables in S3PR (systems of simple sequential processes with resources) to avoid the sufficient-only time-consuming linear integer programming test (LIP) (Nondeterministic Polynomial (NP) time complete problem) required previously for some cases.

  7. Complete convergence of randomly weighted END sequences and its application.

    PubMed

    Li, Penghua; Li, Xiaoqin; Wu, Kehan

    2017-01-01

    We investigate the complete convergence of partial sums of randomly weighted extended negatively dependent (END) random variables. Some results of complete moment convergence, complete convergence and the strong law of large numbers for this dependent structure are obtained. As an application, we study the convergence of the state observers of linear-time-invariant systems. Our results extend the corresponding earlier ones.

  8. Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship

    NASA Astrophysics Data System (ADS)

    Viswanathan, M. N.

    1984-02-01

    The determination of recharge levels of unconfined aquifers, recharged entirely by rainfall, is done by developing a model for the aquifer that estimates the water-table levels from the history of rainfall observations and past water-table levels. In the present analysis, the model parameters that influence the recharge were not only assumed to be time dependent but also to have varying dependence rates for various parameters. Such a model is solved by the use of a recursive least-squares method. The variable-rate parameter variation is incorporated using a random walk model. From the field tests conducted at Tomago Sandbeds, Newcastle, Australia, it was observed that the assumption of variable rates of time dependency of recharge parameters produced better estimates of water-table levels compared to that with constant-recharge parameters. It was observed that considerable recharge due to rainfall occurred on the very same day of rainfall. The increase in water-table level was insignificant for subsequent days of rainfall. The level of recharge very much depends upon the intensity and history of rainfall. Isolated rainfalls, even of the order of 25 mm day -1, had no significant effect on the water-table levels.

  9. Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy

    PubMed Central

    2015-01-01

    By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 eV) and finite difference time domain simulations. Furthermore, temperature-dependent photoluminescence spectroscopy shows that the observed emission corresponds to radiative recombination of unthermalized (hot) carriers as opposed to a resonant Raman process. PMID:25120156

  10. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  11. Personal Best Time, Percent Body Fat, and Training Are Differently Associated with Race Time for Male and Female Ironman Triathletes

    ERIC Educational Resources Information Center

    Knechtle, Beat; Wirth, Andrea; Baumann, Barbara; Knechtle, Patrizia; Rosemann, Thomas

    2010-01-01

    We studied male and female nonprofessional Ironman triathletes to determine whether percent body fat, training, and/or previous race experience were associated with race performance. We used simple linear regression analysis, with total race time as the dependent variable, to investigate the relationship among athletes' percent body fat, average…

  12. Factors influencing crime rates: an econometric analysis approach

    NASA Astrophysics Data System (ADS)

    Bothos, John M. A.; Thomopoulos, Stelios C. A.

    2016-05-01

    The scope of the present study is to research the dynamics that determine the commission of crimes in the US society. Our study is part of a model we are developing to understand urban crime dynamics and to enhance citizens' "perception of security" in large urban environments. The main targets of our research are to highlight dependence of crime rates on certain social and economic factors and basic elements of state anticrime policies. In conducting our research, we use as guides previous relevant studies on crime dependence, that have been performed with similar quantitative analyses in mind, regarding the dependence of crime on certain social and economic factors using statistics and econometric modelling. Our first approach consists of conceptual state space dynamic cross-sectional econometric models that incorporate a feedback loop that describes crime as a feedback process. In order to define dynamically the model variables, we use statistical analysis on crime records and on records about social and economic conditions and policing characteristics (like police force and policing results - crime arrests), to determine their influence as independent variables on crime, as the dependent variable of our model. The econometric models we apply in this first approach are an exponential log linear model and a logit model. In a second approach, we try to study the evolvement of violent crime through time in the US, independently as an autonomous social phenomenon, using autoregressive and moving average time-series econometric models. Our findings show that there are certain social and economic characteristics that affect the formation of crime rates in the US, either positively or negatively. Furthermore, the results of our time-series econometric modelling show that violent crime, viewed solely and independently as a social phenomenon, correlates with previous years crime rates and depends on the social and economic environment's conditions during previous years.

  13. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of Jhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.

  14. Shallow-water sloshing in a moving vessel with variable cross-section and wetting-drying using an extension of George's well-balanced finite volume solver

    NASA Astrophysics Data System (ADS)

    Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.

    2016-06-01

    A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.

  15. The Modelling of Axially Translating Flexible Beams

    NASA Astrophysics Data System (ADS)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  16. Legibility difference between e-books and paper books by using an eye tracker.

    PubMed

    Kim, Jung-Yong; Min, Seung-Nam; Subramaniyam, Murali; Cho, Young-Jin

    2014-01-01

    The aim of the study was to evaluate the difference in legibility between e-books and paper books by using an eye tracker. Eight male and eight female subjects free of eye disease participated in the experiment. The experiment was conducted using a 2 × 3 within-subject design. The book type (e-book, paper book) and font size (8 pt, 10 pt, 12 pt) were independent variables, and fixation duration time, saccade length, blink rate and subjective discomfort were dependent variables. In the results, all dependent variables showed that reading paper books provided a better experience than reading e-books did. These results indicate that the legibility of e-books needs further improvement, considering fixation duration time, saccade movement, eye fatigue, device and so on. This study evaluated the legibility difference between e-books and paper books from the viewpoint of readability, eye fatigue and subjective discomfort by using an eye tracker. The results showed that paper books provided a better experience than e-books. This indicates that the readability of e-books needs further improvement in relation to paper books.

  17. Compensation for Lithography Induced Process Variations during Physical Design

    NASA Astrophysics Data System (ADS)

    Chin, Eric Yiow-Bing

    This dissertation addresses the challenge of designing robust integrated circuits in the deep sub micron regime in the presence of lithography process variability. By extending and combining existing process and circuit analysis techniques, flexible software frameworks are developed to provide detailed studies of circuit performance in the presence of lithography variations such as focus and exposure. Applications of these software frameworks to select circuits demonstrate the electrical impact of these variations and provide insight into variability aware compact models that capture the process dependent circuit behavior. These variability aware timing models abstract lithography variability from the process level to the circuit level and are used to estimate path level circuit performance with high accuracy with very little overhead in runtime. The Interconnect Variability Characterization (IVC) framework maps lithography induced geometrical variations at the interconnect level to electrical delay variations. This framework is applied to one dimensional repeater circuits patterned with both 90nm single patterning and 32nm double patterning technologies, under the presence of focus, exposure, and overlay variability. Studies indicate that single and double patterning layouts generally exhibit small variations in delay (between 1--3%) due to self compensating RC effects associated with dense layouts and overlay errors for layouts without self-compensating RC effects. The delay response of each double patterned interconnect structure is fit with a second order polynomial model with focus, exposure, and misalignment parameters with 12 coefficients and residuals of less than 0.1ps. The IVC framework is also applied to a repeater circuit with cascaded interconnect structures to emulate more complex layout scenarios, and it is observed that the variations on each segment average out to reduce the overall delay variation. The Standard Cell Variability Characterization (SCVC) framework advances existing layout-level lithography aware circuit analysis by extending it to cell-level applications utilizing a physically accurate approach that integrates process simulation, compact transistor models, and circuit simulation to characterize electrical cell behavior. This framework is applied to combinational and sequential cells in the Nangate 45nm Open Cell Library, and the timing response of these cells to lithography focus and exposure variations demonstrate Bossung like behavior. This behavior permits the process parameter dependent response to be captured in a nine term variability aware compact model based on Bossung fitting equations. For a two input NAND gate, the variability aware compact model captures the simulated response to an accuracy of 0.3%. The SCVC framework is also applied to investigate advanced process effects including misalignment and layout proximity. The abstraction of process variability from the layout level to the cell level opens up an entire new realm of circuit analysis and optimization and provides a foundation for path level variability analysis without the computationally expensive costs associated with joint process and circuit simulation. The SCVC framework is used with slight modification to illustrate the speedup and accuracy tradeoffs of using compact models. With variability aware compact models, the process dependent performance of a three stage logic circuit can be estimated to an accuracy of 0.7% with a speedup of over 50,000. Path level variability analysis also provides an accurate estimate (within 1%) of ring oscillator period in well under a second. Another significant advantage of variability aware compact models is that they can be easily incorporated into existing design methodologies for design optimization. This is demonstrated by applying cell swapping on a logic circuit to reduce the overall delay variability along a circuit path. By including these variability aware compact models in cell characterization libraries, design metrics such as circuit timing, power, area, and delay variability can be quickly assessed to optimize for the correct balance of all design metrics, including delay variability. Deterministic lithography variations can be easily captured using the variability aware compact models described in this dissertation. However, another prominent source of variability is random dopant fluctuations, which affect transistor threshold voltage and in turn circuit performance. The SCVC framework is utilized to investigate the interactions between deterministic lithography variations and random dopant fluctuations. Monte Carlo studies show that the output delay distribution in the presence of random dopant fluctuations is dependent on lithography focus and exposure conditions, with a 3.6 ps change in standard deviation across the focus exposure process window. This indicates that the electrical impact of random variations is dependent on systematic lithography variations, and this dependency should be included for precise analysis.

  18. Arab Americans' acculturation and tobacco smoking.

    PubMed

    Al-Omari, Hasan; Scheibmeir, Monica

    2009-04-01

    Limited information is available about Arab Americans' smoking behaviors. The aim of this study was to describe Arab Americans' smoking behaviors and any relationship between tobacco dependence and acculturation. This was a cross-sectional study. Arab American smokers and ex-smokers (N = 96) participated in the study. Nicotine dependence, acculturation, and tobacco use questionnaires were used to measure the major variables. Analyses revealed a significant positive correlation between acculturation and tobacco dependence and between tobacco exposure and tobacco dependence. Arab Americans who behaved most like their ethnic peers and spent more time with Arab Americans were more dependent on nicotine.

  19. Spatiotemporal correlation structure of the Earth's surface temperature

    NASA Astrophysics Data System (ADS)

    Fredriksen, Hege-Beate; Rypdal, Kristoffer; Rypdal, Martin

    2015-04-01

    We investigate the spatiotemporal temperature variability for several gridded instrumental and climate model data sets. The temporal variability is analysed by estimating the power spectral density and studying the differences between local and global temperatures, land and sea, and among local temperature records at different locations. The spatiotemporal correlation structure is analysed through cross-spectra that allow us to compute frequency-dependent spatial autocorrelation functions (ACFs). Our results are then compared to theoretical spectra and frequency-dependent spatial ACFs derived from a fractional stochastic-diffusive energy balance model (FEBM). From the FEBM we expect both local and global temperatures to have a long-range persistent temporal behaviour, and the spectral exponent (β) is expected to increase by a factor of two when going from local to global scales. Our comparison of the average local spectrum and the global spectrum shows good agreement with this model, although the FEBM has so far only been studied for a pure land planet and a pure ocean planet, respectively, with no seasonal forcing. Hence it cannot capture the substantial variability among the local spectra, in particular between the spectra for land and sea, and for equatorial and non-equatorial temperatures. Both models and observation data show that land temperatures in general have a low persistence, while sea surface temperatures show a higher, and also more variable degree of persistence. Near the equator the spectra deviate from the power-law shape expected from the FEBM. Instead we observe large variability at time scales of a few years due to ENSO, and a flat spectrum at longer time scales, making the spectrum more reminiscent of that of a red noise process. From the frequency-dependent spatial ACFs we observe that the spatial correlation length increases with increasing time scale, which is also consistent with the FEBM. One consequence of this is that longer-lasting structures must also be wider in space. The spatial correlation length is also observed to be longer for land than for sea. The climate model simulations studied are mainly CMIP5 control runs of length 500-1000 yr. On time scales up to several centuries we do not observe that the difference between the local and global spectral exponents vanish. This also follows from the FEBM and shows that the dynamics is spatiotemporal (not just temporal) even on these time scales.

  20. Time Evolution of the Dynamical Variables of a Stochastic System.

    ERIC Educational Resources Information Center

    de la Pena, L.

    1980-01-01

    By using the method of moments, it is shown that several important and apparently unrelated theorems describing average properties of stochastic systems are in fact particular cases of a general law; this method is applied to generalize the virial theorem and the fluctuation-dissipation theorem to the time-dependent case. (Author/SK)

  1. Suppressive and Facilitative Effects of Shock Intensity and Interresponse Times Followed by Shock

    ERIC Educational Resources Information Center

    Everly, Jessica B.; Perone, Michael

    2012-01-01

    Although response-dependent shock often suppresses responding, response facilitation can occur. In two experiments, we examined the suppressive and facilitative effects of shock by manipulating shock intensity and the interresponse times that produced shock. Rats' lever presses were reinforced on a variable-interval 40-s schedule of food…

  2. Is Solar Variability Reflected in the Nile River?

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Yung, Yuk L.

    2006-01-01

    We investigate the possibility that solar variability influences North African climate by using annual records of the water level of the Nile collected in 622-1470 A.D. The time series of these records are nonstationary, in that the amplitudes and frequencies of the quasi-periodic variations are time-dependent. We apply the Empirical Mode Decomposition technique especially designed to deal with such time series. We identify two characteristic timescales in the records that may be linked to solar variability: a period of about 88 years and one exceeding 200 years. We show that these timescales are present in the number of auroras reported per decade in the Northern Hemisphere at the same time. The 11-year cycle is seen in the Nile's high-water level variations, but it is damped in the low-water anomalies. We suggest a possible physical link between solar variability and the low-frequency variations of the Nile water level. This link involves the influence of solar variability on the atmospheric Northern Annual Mode and on its North Atlantic Ocean and Indian Ocean patterns that affect the rainfall over the sources of the Nile in eastern equatorial Africa.

  3. A Longitudinal Study of Financial Difficulties and Mental Health in a National Sample of British Undergraduate Students.

    PubMed

    Richardson, Thomas; Elliott, Peter; Roberts, Ron; Jansen, Megan

    2017-04-01

    Previous research has shown a relationship between financial difficulties and poor mental health in students, but most research is cross-sectional. To examine longitudinal relationships over time between financial variables and mental health in students. A national sample of 454 first year British undergraduate students completed measures of mental health and financial variables at up to four time points across a year. Cross-sectional relationships were found between poorer mental health and female gender, having a disability and non-white ethnicity. Greater financial difficulties predicted greater depression and stress cross-sectionally, and also predicted poorer anxiety, global mental health and alcohol dependence over time. Depression worsened over time for those who had considered abandoning studies or not coming to university for financial reasons, and there were effects for how students viewed their student loan. Anxiety and alcohol dependence also predicted worsening financial situation suggesting a bi-directional relationship. Financial difficulties appear to lead to poor mental health in students with the possibility of a vicious cycle occurring.

  4. Documentation of a numerical code for the simulation of variable density ground-water flow in three dimensions

    USGS Publications Warehouse

    Kuiper, L.K.

    1985-01-01

    A numerical code is documented for the simulation of variable density time dependent groundwater flow in three dimensions. The groundwater density, although variable with distance, is assumed to be constant in time. The Integrated Finite Difference grid elements in the code follow the geologic strata in the modeled area. If appropriate, the determination of hydraulic head in confining beds can be deleted to decrease computation time. The strongly implicit procedure (SIP), successive over-relaxation (SOR), and eight different preconditioned conjugate gradient (PCG) methods are used to solve the approximating equations. The use of the computer program that performs the calculations in the numerical code is emphasized. Detailed instructions are given for using the computer program, including input data formats. An example simulation and the Fortran listing of the program are included. (USGS)

  5. Symptom variability, affect and physical activity in ambulatory persons with multiple sclerosis: Understanding patterns and time-bound relationships.

    PubMed

    Kasser, Susan L; Goldstein, Amanda; Wood, Phillip K; Sibold, Jeremy

    2017-04-01

    Individuals with multiple sclerosis (MS) experience a clinical course that is highly variable with daily fluctuations in symptoms significantly affecting functional ability and quality of life. Yet, understanding how MS symptoms co-vary and associate with physical and psychological health is unclear. The purpose of the study was to explore variability patterns and time-bound relationships across symptoms, affect, and physical activity in individuals with MS. The study employed a multivariate, replicated, single-subject repeated-measures (MRSRM) design and involved four individuals with MS. Mood, fatigue, pain, balance confidence, and losses of balance were measured daily over 28 days by self-report. Physical activity was also measured daily over this same time period via accelerometry. Dynamic factor analysis (DFA) was used to determine the dimensionality and lagged relationships across the variables. Person-specific models revealed considerable time-dependent co-variation patterns as well as pattern variation across subjects. Results also offered insight into distinct variability structures at varying levels of disability. Modeling person-level variability may be beneficial for addressing the heterogeneity of experiences in individuals with MS and for understanding temporal and dynamic interrelationships among perceived symptoms, affect, and health outcomes in this group. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neutron star dynamics under time-dependent external torques

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, M. Ali

    2017-11-01

    The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.

  7. Central nervous system drug consumption depending on the time between symptom onset and the diagnosis of Alzheimer's disease: an analysis by the Registry of Dementias of Girona.

    PubMed

    Calvó-Perxas, Laia; López-Pousa, Secundino; Vilalta-Franch, Joan; Turró-Garriga, Oriol; Blankenburg, Michael; Febrer, Laia; Flaqué, Margarida; Vallmajó, Natàlia; Aguirregomozcorta, Maria; Genís, David; Casas, Isabel; Perkal, Héctor; Coromina, Joan; Garre-Olmo, Josep

    2012-01-01

    To describe central nervous system (CNS) drug consumption patterns depending on the time to diagnosis of Alzheimer's disease (AD), and to check whether the cases diagnosed later are associated with greater severity and consuming more CNS drugs. Cross-sectional study using 952 cases of the Registry of Dementias of Girona. A binary logistic regression was used to detect variables associated with the use of CNS drugs depending on the time to diagnosis. CNS drugs were consumed by 95.8% of the AD patients. Only antipsychotics presented a statistically significant increase in the frequency of prescription to patients with longer time elapsed from symptom onset to AD diagnosis. Longer time elapsed from the onset of symptoms to the diagnosis resulted in increased probability of antipsychotic consumption. Copyright © 2012 S. Karger AG, Basel.

  8. The influence of time dependent flight and maneuver velocities and elastic or viscoelastic flexibilities on aerodynamic and stability derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.

    2014-12-10

    The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject tomore » loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. This paper reports on analytical analyses and simulations of the effects of flexibility and time dependent material properties (viscoelasticity) on aerodynamic derivatives and on lateral, longitudinal, directional and spin stability derivatives. Cases of both constant and variable flight and maneuver velocities are considered. Analytical results for maneuvers involving constant and time dependent rolling velocities are analyzed, discussed and evaluated. The relationships between rolling velocity p and aileron angular displacement β as well as control effectiveness are analyzed and discussed in detail for elastic and viscoelastic wings. Such analyses establish the roll effectiveness derivatives (∂[p(t)])/(V{sub ∞}∂β(t)) . Similar studies involving other stability and aerodynamic derivatives are also undertaken. The influence of the twin effects of viscoelastic and elastic materials and of variable flight, rolling, pitching and yawing velocities on longitudinal, lateral and directional are also investigated. Variable flight velocities, encountered during maneuvers, render the usually linear problem at constant velocities into a nonlinear one.« less

  9. [The role of informal care in individualized care plan delivery: a conditional choice for dependent people].

    PubMed

    Del Pozo Rubio, Raúl; Escribano Sotos, Francisco; Moya Martínez, Pablo

    2011-12-01

    To analyze the relationship between sociodemographic and health variables (including informal care) and the healthcare service delivery assigned in the individualized care plan. An observational cross-sectional study was conducted in a representative sample of the dependent population in Cuenca (Spain) in February, 2009. Information was obtained on people with level II and III dependency. Four different logistic regression models were used to identify the factors associated with the care service delivery assigned in the individualized care plan. Independent variables consisted of age, gender, marital status, annual income, place of residence, health conditions, medical treatment, and perception of informal care. A total of 83.7% of the sample was assigned economic benefits and 15.3% were assigned services. Eighty percent of the sample received informal care in addition to dependency benefits. People who received informal care were 3239 times more likely to be assigned economic benefits than persons not receiving informal care. For the period analyzed (the first phase of the implementation of the Dependency Act), the variables associated with receiving economic benefits (versus services) were being married, having a high annual income, the place of residence (rural areas versus urban area), and receiving hygiene-dietary treatment and informal care. Copyright © 2011 SESPAS. Published by Elsevier Espana. All rights reserved.

  10. Effects of task and age on the magnitude and structure of force fluctuations: insights into underlying neuro-behavioral processes.

    PubMed

    Vieluf, Solveig; Temprado, Jean-Jacques; Berton, Eric; Jirsa, Viktor K; Sleimen-Malkoun, Rita

    2015-03-13

    The present study aimed at characterizing the effects of increasing (relative) force level and aging on isometric force control. To achieve this objective and to infer changes in the underlying control mechanisms, measures of information transmission, as well as magnitude and time-frequency structure of behavioral variability were applied to force-time-series. Older adults were found to be weaker, more variable, and less efficient than young participants. As a function of force level, efficiency followed an inverted-U shape in both groups, suggesting a similar organization of the force control system. The time-frequency structure of force output fluctuations was only significantly affected by task conditions. Specifically, a narrower spectral distribution with more long-range correlations and an inverted-U pattern of complexity changes were observed with increasing force level. Although not significant older participants displayed on average a less complex behavior for low and intermediate force levels. The changes in force signal's regularity presented a strong dependence on time-scales, which significantly interacted with age and condition. An inverted-U profile was only observed for the time-scale relevant to the sensorimotor control process. However, in both groups the peak was not aligned with the optimum of efficiency. Our results support the view that behavioral variability, in terms of magnitude and structure, has a functional meaning and affords non-invasive markers of the adaptations of the sensorimotor control system to various constraints. The measures of efficiency and variability ought to be considered as complementary since they convey specific information on the organization of control processes. The reported weak age effect on variability and complexity measures suggests that the behavioral expression of the loss of complexity hypothesis is not as straightforward as conventionally admitted. However, group differences did not completely vanish, which suggests that age differences can be more or less apparent depending on task properties and whether difficulty is scaled in relative or absolute terms.

  11. A computing method for sound propagation through a nonuniform jet stream

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Liu, C. H.

    1974-01-01

    The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.

  12. Statistical analyses of soil properties on a quaternary terrace sequence in the upper sava river valley, Slovenia, Yugoslavia

    USGS Publications Warehouse

    Vidic, N.; Pavich, M.; Lobnik, F.

    1991-01-01

    Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.

  13. A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall

    NASA Astrophysics Data System (ADS)

    Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.

    2017-06-01

    Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.

  14. Semiparametric regression analysis of failure time data with dependent interval censoring.

    PubMed

    Chen, Chyong-Mei; Shen, Pao-Sheng

    2017-09-20

    Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Dissociable effects of practice variability on learning motor and timing skills.

    PubMed

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.

  16. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables

    NASA Astrophysics Data System (ADS)

    Cannon, Alex J.

    2018-01-01

    Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.

  17. Single-diffractive production of dijets within the kt-factorization approach

    NASA Astrophysics Data System (ADS)

    Łuszczak, Marta; Maciuła, Rafał; Szczurek, Antoni; Babiarz, Izabela

    2017-09-01

    We discuss single-diffractive production of dijets. The cross section is calculated within the resolved Pomeron picture, for the first time in the kt-factorization approach, neglecting transverse momentum of the Pomeron. We use Kimber-Martin-Ryskin unintegrated parton (gluon, quark, antiquark) distributions in both the proton as well as in the Pomeron or subleading Reggeon. The unintegrated parton distributions are calculated based on conventional mmht2014nlo parton distribution functions in the proton and H1 Collaboration diffractive parton distribution functions used previously in the analysis of diffractive structure function and dijets at HERA. For comparison, we present results of calculations performed within the collinear-factorization approach. Our results remain those obtained in the next-to-leading-order approach. The calculation is (must be) supplemented by the so-called gap survival factor, which may, in general, depend on kinematical variables. We try to describe the existing data from Tevatron and make detailed predictions for possible LHC measurements. Several differential distributions are calculated. The E¯T, η ¯ and xp ¯ distributions are compared with the Tevatron data. A reasonable agreement is obtained for the first two distributions. The last one requires introducing a gap survival factor which depends on kinematical variables. We discuss how the phenomenological dependence on one kinematical variable may influence dependence on other variables such as E¯T and η ¯. Several distributions for the LHC are shown.

  18. Predicting camber, deflection, and prestress losses in prestressed concrete members.

    DOT National Transportation Integrated Search

    2011-07-01

    Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...

  19. A Diagnostic Test for Determining the Location of the GeV Emission in Powerful Blazars

    NASA Technical Reports Server (NTRS)

    Dotson, Amanda; Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric

    2011-01-01

    An issue currently under debate in the literature is how far from the black hole is the Fermi-observed GeV emission of powerful blazars emitted. Here we present a clear diagnostic tool for testing whether the Ge V emission site is located within the sub-pc broad emission line (BLR) region or further out in the few pc scale molecular torus (MT) environment. Within the BLR the scatteri takes place at the onset of the Klein-Nishina regime, causing the electron cooling time to become almost energy independent and as a result, the variation of high-energy emission is expected to be achromatic. Contrarily, if the emission site is located outside the BLR, the expected GeY variability is energy-dependent and with amplitude increasing with energy. We demonstrate this using time-dependent numerical simulations of blazar variability.

  20. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  1. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Sachin; Rajaram, Harihar

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  2. A dependence modelling study of extreme rainfall in Madeira Island

    NASA Astrophysics Data System (ADS)

    Gouveia-Reis, Délia; Guerreiro Lopes, Luiz; Mendonça, Sandra

    2016-08-01

    The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.

  3. Timing in quantum measurements of position and momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busshardt, Michael; Freyberger, Matthias

    2010-10-15

    The prototype for a simultaneous measurement of two conjugate variables was originally introduced by Arthurs and Kelly in 1965. It relies on coupling the quantum particle to be probed to two additional systems, which serve as measurement pointers. In this contribution we investigate an extended scheme to measure position and momentum of a massive particle. By considering an explictly time-dependent coupling we can quantify the timing of the measurement. We investigate how the noise resulting from such a measurement process depends on the interaction strength and the size of the pointers. In particular, we focus on the question of whichmore » measurement timing minimizes the corresponding uncertainty product.« less

  4. Vigilance behaviour of the year-round territorial vicuña (Vicugna vicugna) outside the breeding season: influence of group size, social factors and distance to a water source.

    PubMed

    Torres, M Eugenia Mosca; Puig, Silvia; Novillo, Agustina; Ovejero, Ramiro

    2015-04-01

    We conducted focal observations of vicuña, a year-around territorial mammal, to compare vigilance behaviour between territorial and bachelor males outside the reproductive season. We hypothesized that the time spent vigilant would depend on male social status, considering the potential effects of several variables: sampling year, group size, distances to the nearest neighbour and to a vega (mountain wetland). We fit GLM models to assess how these variables, and their interactions, affected time allocation of territorial and bachelor males. We found non significant differences between territorial and bachelor males in the time devoted to vigilance behaviour. Vigilance of territorial males was influenced by the sampling year and the distance to the vega. In turn, vigilance in bachelor males was influenced mainly by the sampling year, the group size and the distance to the vega. Our results suggest that sampling year and distance to the vega are more important than social factors in conditioning the behaviour of male vicuñas, during the non-reproductive season. Future studies of behaviour in water-dependant ungulates, should consider the influence of water and forage availabilities, and the interactions between group size and other variables. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The deterioration of Canadian immigrants' oral health: analysis of the Longitudinal Survey of Immigrants to Canada.

    PubMed

    Calvasina, Paola; Muntaner, Carles; Quiñonez, Carlos

    2015-10-01

    To examine the effect of immigration on the self-reported oral health of immigrants to Canada over a 4-year period. The study used Statistics Canada's Longitudinal Survey of Immigrants to Canada (LSIC 2001-2005). The target population comprised 3976 non-refugee immigrants to Canada. The dependent variable was self-reported dental problems. The independent variables were as follows: age, sex, ethnicity, income, education, perceived discrimination, history of social assistance, social support, and official language proficiency. A generalized estimation equation approach was used to assess the association between dependent and independent variables. After 2 years, the proportion of immigrants reporting dental problems more than tripled (32.6%) and remained approximately the same at 4 years after immigrating (33.3%). Over time, immigrants were more likely to report dental problems (OR = 2.77; 95% CI 2.55-3.02). An increase in self-reported dental problems over time was associated with sex, history of social assistance, total household income, and self-perceived discrimination. An increased likelihood of reporting dental problems occurred over time. Immigrants should arguably constitute an important focus of public policy and programmes aimed at improving their oral health and access to dental care in Canada. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. INM Integrated Noise Model Version 2. Programmer’s Guide

    DTIC Science & Technology

    1979-09-01

    cost, turnaround time, and system-dependent limitations. 3.2 CONVERSION PROBLEMS Item Item Item No. Desciption Category 1 BLOCK DATA Initialization IBM ...Restricted 2 Boolean Operations Differences Call Statement Parameters Extensions 4 Data Initialization IBM Restricted 5 ENTRY Differences 6 EQUIVALENCE...Machine Dependent 7 Format: A CDC Extension 8 Hollerith Strings IBM Restricted 9 Hollerith Variables IBM Restricted 10 Identifier Names CDC Extension

  7. Shifts in plant functional types have time-dependent and regionally variable impacts on dryland ecosystem water balance

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Burke, Ingrid C.

    2014-01-01

    5. Synthesis. This study provides a novel, regional-scale assessment of how plant functional type transitions may impact ecosystem water balance in sagebrush-dominated ecosystems of North America. Results illustrate that the ecohydrological consequences of changing vegetation depend strongly on climate and suggest that decreasing woody plant abundance may have only limited impact on evapotranspiration and water yield.

  8. Methods for measuring, enhancing, and accounting for medication adherence in clinical trials.

    PubMed

    Vrijens, B; Urquhart, J

    2014-06-01

    Adherence to rationally prescribed medications is essential for effective pharmacotherapy. However, widely variable adherence to protocol-specified dosing regimens is prevalent among participants in ambulatory drug trials, mostly manifested in the form of underdosing. Drug actions are inherently dose and time dependent, and as a result, variable underdosing diminishes the actions of trial medications by various degrees. The ensuing combination of increased variability and decreased magnitude of trial drug actions reduces statistical power to discern between-group differences in drug actions. Variable underdosing has many adverse consequences, some of which can be mitigated by the combination of reliable measurements of ambulatory patients' adherence to trial and nontrial medications, measurement-guided management of adherence, statistically and pharmacometrically sound analyses, and modifications in trial design. Although nonadherence is prevalent across all therapeutic areas in which the patients are responsible for treatment administration, the significance of the adverse consequences depends on the characteristics of both the disease and the medications.

  9. X-Ray and UV Orbital Phase Dependence in LMC X-3

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Boyd, P. T.; Smale, A. P.

    2001-01-01

    The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigated X-ray and ultraviolet variability in the system as a function of the 1.7 d binary orbit using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) in 1998 December. An abrupt 14 % flux decrease lasting nearly an entire orbit was followed by a return to previous flux levels. This behavior occurred twice at nearly the same binary phase, but is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7 % is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X-3 during a high flux state in 1996 December show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer (HSP) on the Hubble Space Telescope (HST) shows a phase dependent variability consistent with that observed in the visible, ascribed to the ellipsoidal variation of the visible star. The X-ray spectrum of LMC X-3 is acceptably represented by a phenomenological disk black-body plus a power law. Changes in the spectrum of LMX X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are closely correlated with the disk geometry spectral model parameter.

  10. Long-term variability of T Tauri stars using WASP

    NASA Astrophysics Data System (ADS)

    Rigon, Laura; Scholz, Alexander; Anderson, David; West, Richard

    2017-03-01

    We present a reference study of the long-term optical variability of young stars using data from the WASP project. Our primary sample is a group of well-studied classical T Tauri stars (CTTSs), mostly in Taurus-Auriga. WASP light curves cover time-scales of up to 7 yr and typically contain 10 000-30 000 data points. We quantify the variability as a function of time-scale using the time-dependent standard deviation 'pooled sigma'. We find that the overwhelming majority of CTTSs have a low-level variability with σ < 0.3 mag dominated by time-scales of a few weeks, consistent with rotational modulation. Thus, for most young stars, monitoring over a month is sufficient to constrain the total amount of variability over time-scales of up to a decade. The fraction of stars with a strong optical variability (σ > 0.3 mag) is 21 per cent in our sample and 21 per cent in an unbiased control sample. An even smaller fraction (13 per cent in our sample, 6 per cent in the control) show evidence for an increase in variability amplitude as a function of time-scale from weeks to months or years. The presence of long-term variability correlates with the spectral slope at 3-5 μm, which is an indicator of inner disc geometry, and with the U-B band slope, which is an accretion diagnostics. This shows that the long-term variations in CTTSs are predominantly driven by processes in the inner disc and in the accretion zone. Four of the stars with long-term variations show periods of 20-60 d, significantly longer than the rotation periods and stable over months to years. One possible explanation is cyclic changes in the interaction between the disc and the stellar magnetic field.

  11. Thermalization and confinement in strongly coupled gauge theories

    NASA Astrophysics Data System (ADS)

    Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher

    2016-11-01

    Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.

  12. A New Method for Determining the Equation of State of Aluminized Explosive

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Qing; Nie, Jian-Xin; Guo, Xue-Yong; Wang, Qiu-Shi; Ou, Zhuo-Cheng; Jiao, Qing-Jie

    2015-01-01

    The time-dependent Jones—Wilkins—Lee equation of state (JWL-EOS) is applied to describe detonation state products for aluminized explosives. To obtain the time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydrocode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, David; Gourgouliatos, Konstantinos N., E-mail: dtsang@physics.mcgill.ca, E-mail: kostasg@physics.mcgill.ca

    We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of the timing noise ({sigma}{sub TN}) with strong magnetic field dependence ({sigma}{sub TN}{approx}B{sub o}{sup 2}{Omega}T{sup 3/2}) above B{sub o} {approx} 10{sup 12.5} G. The dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size. We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may be due to variationmore » of this moment of inertia, and could be evidence of rapid global magnetospheric variability.« less

  14. Dialyzer Reuse with Peracetic Acid Does Not Impact Patient Mortality

    PubMed Central

    Bond, T. Christopher; Krishnan, Mahesh; Wilson, Steven M.; Mayne, Tracy

    2011-01-01

    Summary Background and objectives Numerous studies have shown the overall benefits of dialysis filter reuse, including superior biocompatibility and decreased nonbiodegradable medical waste generation, without increased risk of mortality. A recent study reported that dialyzer reprocessing was associated with decreased patient survival; however, it did not control for sources of potential confounding. We sought to determine the effect of dialyzer reprocessing with peracetic acid on patient mortality using contemporary outcomes data and rigorous analytical techniques. Design, setting, participants, & measurements We conducted a series of analyses of hemodialysis patients examining the effects of reuse on mortality using three techniques to control for potential confounding: instrumental variables, propensity-score matching, and time-dependent survival analysis. Results In the instrumental variables analysis, patients at high reuse centers had 16.2 versus 15.9 deaths/100 patient-years in nonreuse centers. In the propensity-score matched analysis, patients with reuse had a lower death rate per 100 patient-years than those without reuse (15.2 versus 15.5). The risk ratios for the time-dependent survival analyses were 0.993 (per percent of sessions with reuse) and 0.995 (per unit of last reuse), respectively. Over the study period, 13.8 million dialyzers were saved, representing 10,000 metric tons of medical waste. Conclusions Despite the large sample size, powered to detect miniscule effects, neither the instrumental variables nor propensity-matched analyses were statistically significant. The time-dependent survival analysis showed a protective effect of reuse. These data are consistent with the preponderance of evidence showing reuse limits medical waste generation without negatively affecting clinical outcomes. PMID:21566107

  15. Effects of lifetime tobacco, alcohol and drug use on psychological and behavioral problems among 10th grade students in Istanbul.

    PubMed

    Evren, Cuneyt; Evren, Bilge; Bozkurt, Muge; Ciftci-Demirci, Arzu

    2015-11-01

    The aim of this study was to determine the effects of life-time tobacco, alcohol, and substance use on psychological and behavioral variables among 10th grade students in Istanbul/Turkey. This study employed a cross-sectional online self-report survey conducted in 45 schools from the 15 districts in Istanbul. The questionnaire featured a section about use of substances, including tobacco, alcohol, and drugs. The depression, anxiety, anger, assertiveness, sensation seeking and impulsiveness subscales of the Psychological Screening Test for Adolescents (PSTA) were used. The analyses were conducted based on 4957 subjects. Logistic regression analyses were conducted with each school with the related and behavioral variables as the dependent variables. Gender, tobacco, alcohol, and drug use being the independent variables. All four independent variables predicted the dependent variables. Lifetime tobacco and drug use had significant effects on all the subscale score, whereas lifetime alcohol use had significant effects on all the subscale scores other than lack of assertiveness, and male gender was a significant covariant for all the subscale scores. Drug use showed the highest effect on dependent variables. Interaction was found between effects of tobacco and alcohol on anxiety, whereas interactions were found between effects of tobacco and drugs on lack of assertiveness and impulsiveness. The findings suggested that male students with lifetime tobacco, alcohol or drug use have particularly high risk of psychological and behavioral problems. The unique effects of substance clusters on these problems may be useful in developing secondary preventive practices for substance use and abuse problems in Istanbul.

  16. Autonomous manipulation on a robot: Summary of manipulator software functions

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.

    1974-01-01

    A six degree-of-freedom computer-controlled manipulator is examined, and the relationships between the arm's joint variables and 3-space are derived. Arm trajectories using sequences of third-degree polynomials to describe the time history of each joint variable are presented and two approaches to the avoidance of obstacles are given. The equations of motion for the arm are derived and then decomposed into time-dependent factors and time-independent coefficients. Several new and simplifying relationships among the coefficients are proven. Two sample trajectories are analyzed in detail for purposes of determining the most important contributions to total force in order that relatively simple approximations to the equations of motion can be used.

  17. A Longitudinal Study of Mass Media Development in Less-Developed Countries.

    ERIC Educational Resources Information Center

    Shah, Hemant

    A study was conducted to examine the causal predictors of mass media development in 105 underdeveloped countries for various lengths of time to determine if there were consistent relationships among the dependent and independent variables regardless of the time lag. The study also sought to determine how mass media developed during the 29-year…

  18. Effects of sampling time, cultivar, and methodology on water- and ethanol-soluble carbohydrate profiles of three cool-season grasses in Central Kentucky

    USDA-ARS?s Scientific Manuscript database

    Cool-season grasses (CSG) accumulate variable amounts of water-soluble carbohydrates (WSC, mono- and disaccharides and fructans), depending on climate, time of day and year, and genotype. Fructan concentrations in CSG are sometimes estimated as the difference between concentrations of WSC and ethano...

  19. What Are the Shapes of Response Time Distributions in Visual Search?

    ERIC Educational Resources Information Center

    Palmer, Evan M.; Horowitz, Todd S.; Torralba, Antonio; Wolfe, Jeremy M.

    2011-01-01

    Many visual search experiments measure response time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays…

  20. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  1. Shiftwork in the Norwegian petroleum industry: overcoming difficulties with family and social life – a cross sectional study

    PubMed Central

    Ljoså, Cathrine Haugene; Lau, Bjørn

    2009-01-01

    Background Continuous shift schedules are required in the petroleum industry because of its dependency on uninterrupted production. Although shiftwork affects health, less is known about its effects on social and domestic life. Methods Consequently, we studied these relationships in a sample of 1697 (response rate 55.9%) petroleum workers who worked onshore and offshore for a Norwegian oil and gas company. We also examined the roles of coping strategies and locus of control for handling self-reported problems with social and domestic life. A questionnaire containing scales from the Standard Shiftwork Index and Shiftwork Locus of Control was answered electronically. Results In general, only a few participants reported that their shift schedule affected their social and domestic/family life, and several participants had enough time to spend by themselves and with their partner, close family, friends, and children. Despite this general positive trend, differences were found for shift type and individual factors such as locus of control and coping strategies. Internal locus of control was associated positively with all the dependent variables. However, engaging problem-focused coping strategies were associated only slightly with the dependent variables, while disengaging emotion-focused coping strategies were negatively associated with the dependent variables. Conclusion Since most participants reported few problems with social and domestic/family life, the availability of more leisure time may be a positive feature of shiftwork in the Norwegian petroleum industry. Locus of control and the use of coping strategies were important for shiftworkers' social and domestic/family life. PMID:19650903

  2. Read margin analysis of crossbar arrays using the cell-variability-aware simulation method

    NASA Astrophysics Data System (ADS)

    Sun, Wookyung; Choi, Sujin; Shin, Hyungsoon

    2018-02-01

    This paper proposes a new concept of read margin analysis of crossbar arrays using cell-variability-aware simulation. The size of the crossbar array should be considered to predict the read margin characteristic of the crossbar array because the read margin depends on the number of word lines and bit lines. However, an excessively high-CPU time is required to simulate large arrays using a commercial circuit simulator. A variability-aware MATLAB simulator that considers independent variability sources is developed to analyze the characteristics of the read margin according to the array size. The developed MATLAB simulator provides an effective method for reducing the simulation time while maintaining the accuracy of the read margin estimation in the crossbar array. The simulation is also highly efficient in analyzing the characteristic of the crossbar memory array considering the statistical variations in the cell characteristics.

  3. Real-time plasma control in a dual-frequency, confined plasma etcher

    NASA Astrophysics Data System (ADS)

    Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.

    2008-04-01

    The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.

  4. Expanding space-time and variable vacuum energy

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2017-08-01

    The paper describes a cosmological model which contemplates the presence of a vacuum energy varying, very slightly (now), with time. The constant part of the vacuum energy generated, some 6 Gyr ago, a deceleration/acceleration transition of the metric expansion; so now, in an aged Universe, the expansion is inexorably accelerating. The vacuum energy varying part is instead assumed to be eventually responsible of an acceleration/deceleration transition, which occurred about 14 Gyr ago; this transition has a dynamic origin: it is a consequence of the general relativistic Einstein-Friedmann equations. Moreover, the vacuum energy (constant and variable) is here related to the zero-point energy of some quantum fields (scalar, vector, or spinor); these fields are necessarily described in a general relativistic way: their structure depends on the space-time metric, typically non-flat. More precisely, the commutators of the (quantum field) creation/annihilation operators are here assumed to depend on the local value of the space-time metric tensor (and eventually of its curvature); furthermore, these commutators rapidly decrease for high momentum values and they reduce to the standard ones for a flat metric. In this way, the theory is ”gravitationally” regularized; in particular, the zero-point (vacuum) energy density has a well defined value and, for a non static metric, depends on the (cosmic) time. Note that this varying vacuum energy can be negative (Fermi fields) and that a change of its sign typically leads to a minimum for the metric expansion factor (a ”bounce”).

  5. A model of partial differential equations for HIV propagation in lymph nodes

    NASA Astrophysics Data System (ADS)

    Marinho, E. B. S.; Bacelar, F. S.; Andrade, R. F. S.

    2012-01-01

    A system of partial differential equations is used to model the dissemination of the Human Immunodeficiency Virus (HIV) in CD4+T cells within lymph nodes. Besides diffusion terms, the model also includes a time-delay dependence to describe the time lag required by the immunologic system to provide defenses to new virus strains. The resulting dynamics strongly depends on the properties of the invariant sets of the model, consisting of three fixed points related to the time independent and spatial homogeneous tissue configurations in healthy and infected states. A region in the parameter space is considered, for which the time dependence of the space averaged model variables follows the clinical pattern reported for infected patients: a short scale primary infection, followed by a long latency period of almost complete recovery and third phase characterized by damped oscillations around a value with large HIV counting. Depending on the value of the diffusion coefficient, the latency time increases with respect to that one obtained for the space homogeneous version of the model. It is found that same initial conditions lead to quite different spatial patterns, which depend strongly on the latency interval.

  6. Estimating the price elasticity of beer: meta-analysis of data with heterogeneity, dependence, and publication bias.

    PubMed

    Nelson, Jon P

    2014-01-01

    Precise estimates of price elasticities are important for alcohol tax policy. Using meta-analysis, this paper corrects average beer elasticities for heterogeneity, dependence, and publication selection bias. A sample of 191 estimates is obtained from 114 primary studies. Simple and weighted means are reported. Dependence is addressed by restricting number of estimates per study, author-restricted samples, and author-specific variables. Publication bias is addressed using funnel graph, trim-and-fill, and Egger's intercept model. Heterogeneity and selection bias are examined jointly in meta-regressions containing moderator variables for econometric methodology, primary data, and precision of estimates. Results for fixed- and random-effects regressions are reported. Country-specific effects and sample time periods are unimportant, but several methodology variables help explain the dispersion of estimates. In models that correct for selection bias and heterogeneity, the average beer price elasticity is about -0.20, which is less elastic by 50% compared to values commonly used in alcohol tax policy simulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Large deviation probabilities for correlated Gaussian stochastic processes and daily temperature anomalies

    NASA Astrophysics Data System (ADS)

    Massah, Mozhdeh; Kantz, Holger

    2016-04-01

    As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).

  8. Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time.

    PubMed

    Djouahri, Abderrahmane; Saka, Boualem; Boudarene, Lynda; Baaliouamer, Aoumeur

    2016-12-01

    In the present work, the hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD) kinetics of essential oil (EO) extracted from Tetraclinis articulata (Vahl) Mast. wood was conducted, in order to assess the impact of extraction time and technique on chemical composition and biological activities. Gas chromatography (GC) and GC/mass spectrometry analyses showed significant differences between the extracted EOs, where each family class or component presents a specific kinetic according to extraction time, technique and especially for the major components: camphene, linalool, cedrol, carvacrol and α-acorenol. Furthermore, our findings showed a high variability for both antioxidant and anti-inflammatory activities, where each activity has a specific effect according to extraction time and technique. The highlighted variability reflects the high impact of extraction time and technique on chemical composition and biological activities, which led to conclude that we should select EOs to be investigated carefully depending on extraction time and technique, in order to isolate the bioactive components or to have the best quality of EO in terms of biological activities and preventive effects in food. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  9. Analysis of Biomass Feedstock Availability and Variability for the Peace River Region of Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.

    2009-11-01

    Biorefineries or other biomass-dependent facilities require a predictable, dependable feedstock supplied over many years to justify capital investments. Determining inter-year variability in biomass availability is essential to quantifying the feedstock supply risk. Using a geographic information system (GIS) and historic crop yield data, average production was estimated for 10 sites in the Peace River region of Alberta, Canada. Four high-yielding potential sites were investigated for variability over a 20 year time-frame (1980 2000). The range of availability was large, from double the average in maximum years to nothing in minimum years. Biomass availability is a function of grain yield, themore » biomass to grain ratio, the cropping frequency, and residue retention rate to ensure future crop productivity. Storage strategies must be implemented and alternate feedstock sources identified to supply biomass processing facilities in low-yield years.« less

  10. An Entropy-Based Measure of Dependence between Two Groups of Random Variables. Research Report. ETS RR-07-20

    ERIC Educational Resources Information Center

    Kong, Nan

    2007-01-01

    In multivariate statistics, the linear relationship among random variables has been fully explored in the past. This paper looks into the dependence of one group of random variables on another group of random variables using (conditional) entropy. A new measure, called the K-dependence coefficient or dependence coefficient, is defined using…

  11. Changes of spontaneous miniature excitatory postsynaptic currents in rat hippocampal pyramidal cells induced by aniracetam.

    PubMed

    Ghamari-Langroudi, M; Glavinovíc, M I

    1998-01-01

    Spontaneous miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal pyramidal neurones in slices (CA1 region) were recorded at 35-37 degrees C using the whole-cell patch-clamp technique before and after addition of aniracetam (1 mM) to determine how a partial blockade of desensitization alters the relationship between the amplitude (A) and kinetics of mEPSCs, and to evaluate the factors that determine their variability. The rise time (taur) and the time constant of decay of mEPSCs (taud) are essentially amplitude independent in control conditions, but become clearly amplitude dependent in the presence of aniracetam. The slopes of the best fitting lines to taud:A and taur:A data pairs were (+/- SD; ms/pA; n = 5): (1) (control) 0.07 +/- 0.02 and 0.008 +/- 0.003; (2) (aniracetam) 0.40 +/- 0.19 and 0.22 +/- 0.22. The amplitude-dependent prolongation of taud is explained by the concentration dependence of two related processes, the buffering of glutamate molecules by AMPA receptor channels, and the occupancy of the double-bound activatable states. A slower deactivation makes an amplitude-independent contribution. Desensitization reduces the amplitude dependence of taud by minimizing repeated openings of alpha-amino-3-hydroxy-methyl-isoxazole (AMPA) receptor channels. A greater amplitude dependence of taur probably involves both pre- and postsynaptic factors. The variability of A and taud values did not change significantly, but the factors underlying the variability of taud values were much affected. The greater amplitude dependence and the greater scatter about the best fitting lines to taud:A data pairs are approximately balanced by the greater mean values. The greater scatter of taud about the best fitting lines probably occurs because the saturation of AMPA receptors is not the same at different synapses with different numbers of AMPA receptors.

  12. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids

    PubMed Central

    Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229

  13. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids.

    PubMed

    Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.

  14. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  15. A variational conformational dynamics approach to the selection of collective variables in metadynamics.

    PubMed

    McCarty, James; Parrinello, Michele

    2017-11-28

    In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.

  16. A variational conformational dynamics approach to the selection of collective variables in metadynamics

    NASA Astrophysics Data System (ADS)

    McCarty, James; Parrinello, Michele

    2017-11-01

    In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.

  17. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  18. Modeling Earth's Disk-Integrated, Time-Dependent Spectrum: Applications to Directly Imaged Habitable Planets

    NASA Astrophysics Data System (ADS)

    Lustig-Yaeger, Jacob; Schwieterman, Edward; Meadows, Victoria; Fujii, Yuka; NAI Virtual Planetary Laboratory, ISSI 'The Exo-Cartography Inverse Problem'

    2016-10-01

    Earth is our only example of a habitable world and is a critical reference point for potentially habitable exoplanets. While disk-averaged views of Earth that mimic exoplanet data can be obtained by interplanetary spacecraft, these datasets are often restricted in wavelength range, and are limited to the Earth phases and viewing geometries that the spacecraft can feasibly access. We can overcome these observational limitations using a sophisticated UV-MIR spectral model of Earth that has been validated against spacecraft observations in wavelength-dependent brightness and phase (Robinson et al., 2011; 2014). This model can be used to understand the information content - and the optimal means for extraction of that information - for multi-wavelength, time-dependent, disk-averaged observations of the Earth. In this work, we explore key telescope parameters and observing strategies that offer the greatest insight into the wavelength-, phase-, and rotationally-dependent variability of Earth as if it were an exoplanet. Using a generalized coronagraph instrument simulator (Robinson et al., 2016), we synthesize multi-band, time-series observations of the Earth that are consistent with large space-based telescope mission concepts, such as the Large UV/Optical/IR (LUVOIR) Surveyor. We present fits to this dataset that leverage the rotationally-induced variability to infer the number of large-scale planetary surface types, as well as their respective longitudinal distributions and broadband albedo spectra. Finally, we discuss the feasibility of using such methods to identify and map terrestrial exoplanets surfaces with the next generation of space-based telescopes.

  19. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  20. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    PubMed

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  1. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    NASA Astrophysics Data System (ADS)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be studied through the copula theory. As to the parameter estimation, the maximum likelihood estimation (MLE) will be applied. To illustrate the method, the univariate time series model and the dependence structure will be determined and tested using the monthly discharge time series of Cuyahoga River Basin.

  2. Population and prehistory III: food-dependent demography in variable environments.

    PubMed

    Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad

    2009-11-01

    The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.

  3. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, Peter A.; Knopf, Daniel A.

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of J het is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. Finally, the model simulations allow for a quantitative experimental uncertainty analysis for parameters N tot, T, RH, and the ISA variability. We discuss the implications of our results for experimental analysis and interpretation of the immersion freezing process.« less

  4. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE PAGES

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-24

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, N tot, and the heterogeneous ice nucleation rate coefficient, J het( T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous-flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time-dependent isothermal frozen fractions exhibiting non-exponential behavior can be readily explained by this model considering varying ISA. An apparent cooling-rate dependence of J het is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling-rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. Finally, the model simulations allow for a quantitative experimental uncertainty analysis for parameters N tot, T, RH, and the ISA variability. We discuss the implications of our results for experimental analysis and interpretation of the immersion freezing process.« less

  5. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.

    PubMed

    Butera, Robert J; McCarthy, Maeve L

    2004-12-01

    Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.

  6. Mid-Infrared Lifetime Imaging for Viability Evaluation of Lettuce Seeds Based on Time-Dependent Thermal Decay Characterization

    PubMed Central

    Kim, Ghiseok; Kim, Geon Hee; Ahn, Chi-Kook; Yoo, Yoonkyu; Cho, Byoung-Kwan

    2013-01-01

    An infrared lifetime thermal imaging technique for the measurement of lettuce seed viability was evaluated. Thermal emission signals from mid-infrared images of healthy seeds and seeds aged for 24, 48, and 72 h were obtained and reconstructed using regression analysis. The emission signals were fitted with a two-term exponential model that had two amplitudes and two time variables as lifetime parameters. The lifetime thermal decay parameters were significantly different for seeds with different aging times. Single-seed viability was visualized using thermal lifetime images constructed from the calculated lifetime parameter values. The time-dependent thermal signal decay characteristics, along with the decay amplitude and delay time images, can be used to distinguish aged lettuce seeds from normal seeds. PMID:23529120

  7. Validity of a Residualized Dependent Variable after Pretest Covariance Adjustments: Still the Same Variable?

    ERIC Educational Resources Information Center

    Nimon, Kim; Henson, Robin K.

    2015-01-01

    The authors empirically examined whether the validity of a residualized dependent variable after covariance adjustment is comparable to that of the original variable of interest. When variance of a dependent variable is removed as a result of one or more covariates, the residual variance may not reflect the same meaning. Using the pretest-posttest…

  8. Recurrence measure of conditional dependence and applications.

    PubMed

    Ramos, Antônio M T; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E N; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  9. Recurrence measure of conditional dependence and applications

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E. N.; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  10. A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis

    NASA Astrophysics Data System (ADS)

    Rodó, Xavier; Rodríguez-Arias, Miquel-Àngel

    2006-10-01

    The study of transitory signals and local variability structures in both/either time and space and their role as sources of climatic memory, is an important but often neglected topic in climate research despite its obvious importance and extensive coverage in the literature. Transitory signals arise either from non-linearities, in the climate system, transitory atmosphere-ocean couplings, and other processes in the climate system evolving after a critical threshold is crossed. These temporary interactions that, though intense, may not last long, can be responsible for a large amount of unexplained variability but are normally considered of limited relevance and often, discarded. With most of the current techniques at hand these typology of signatures are difficult to isolate because the low signal-to-noise ratio in midlatitudes, the limited recurrence of the transitory signals during a customary interval of data considered. Also, there is often a serious problem arising from the smoothing of local or transitory processes if statistical techniques are applied, that consider all the length of data available, rather than taking into account the size of the specific variability structure under investigation. Scale-dependent correlation (SDC) analysis is a new statistical method capable of highlighting the presence of transitory processes, these former being understood as temporary significant lag-dependent autocovariance in a single series, or covariance structures between two series. This approach, therefore, complements other approaches such as those resulting from the families of wavelet analysis, singular-spectrum analysis and recurrence plots. A main feature of SDC is its high-performance for short time series, its ability to characterize phase-relationships and thresholds in the bivariate domain. Ultimately, SDC helps tracking short-lagged relationships among processes that locally or temporarily couple and uncouple. The use of SDC is illustrated in the present paper by means of some synthetic time-series examples of increasing complexity, and it is compared with wavelet analysis in order to provide a well-known reference of its capabilities. A comparison between SDC and companion techniques is also addressed and results are exemplified for the specific case of some relevant El Niño-Southern Oscillation teleconnections.

  11. Timed and Untimed Grammaticality Judgments Measure Distinct Types of Knowledge: Evidence from Eye-Movement Patterns

    ERIC Educational Resources Information Center

    Godfroid, Aline; Loewen, Shawn; Jung, Sehoon; Park, Ji-Hyun; Gass, Susan; Ellis, Rod

    2015-01-01

    Grammaticality judgment tests (GJTs) have been used to elicit data reflecting second language (L2) speakers' knowledge of L2 grammar. However, the exact constructs measured by GJTs, whether primarily implicit or explicit knowledge, are disputed and have been argued to differ depending on test-related variables (i.e., time pressure and item…

  12. The Relationship between the Amount of Learning and Time (The Example of Equations)

    ERIC Educational Resources Information Center

    Kesan, Cenk; Kaya, Deniz; Ok, Gokce; Erkus, Yusuf

    2016-01-01

    The main purpose of this study is to determine the amount of time-dependent learning of "solving problems that require establishing of single variable equations of the first order" of the seventh grade students. The study, adopting the screening model, consisted of a total of 84 students, including 42 female and 42 male students at the…

  13. Computational implications of activity-dependent neuronal processes

    NASA Astrophysics Data System (ADS)

    Goldman, Mark Steven

    Synapses, the connections between neurons, often fail to transmit a large percentage of the action potentials that they receive. I describe several models of synaptic transmission at a single stochastic synapse with an activity-dependent probability of transmission and demonstrate how synaptic transmission failures may increase the efficiency with which a synapse transmits information. Spike trains in the visual cortex of freely viewing monkeys have positive auto correlations that are indicative of a redundant representation of the information they contain. I show how a synapse with activity-dependent transmission failures modeled after those occurring in visual cortical synapses can remove this redundancy by transmitting a decorrelated subset of the spike trains it receives. I suggest that redundancy reduction at individual synapses saves synaptic resources while increasing the sensitivity of the postsynaptic neuron to information arriving along many inputs. For a neuron receiving input from many decorrelating synapses, my analysis leads to a prediction of the number of visual inputs to a neuron and the cross-correlations between these inputs and suggests that the time scale of synaptic dynamics observed in sensory areas corresponds to a fundamental time scale for processing sensory information. Systems with activity-dependent changes in their parameters, or plasticity, often display a wide variability in their individual components that belies the stability of their function, Motivated by experiments demonstrating that identified neurons with stereotyped function can have a large variability in the densities of their ion channels, or ionic conductances, I build a conductance-based model of a single neuron. The neuron's firing activity is relatively insensitive to changes in certain combinations of conductances, but markedly sensitive to changes in other combinations. Using a combined modeling and experimental approach, I show that neuromodulators and regulatory processes target sensitive combinations of conductances. I suggest that the variability observed in conductance measurements occurs along insensitive combinations of conductances and could result from homeostatic processes that allow the neuron's conductances to drift without triggering activity- dependent feedback mechanisms. These results together suggest that plastic systems may have a high degree of flexibility and variability in their components without a loss of robustness in their response properties.

  14. Scale size-dependent characteristics of the nightside aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.

    2017-02-01

    We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.

  15. Integrating models that depend on variable data

    NASA Astrophysics Data System (ADS)

    Banks, A. T.; Hill, M. C.

    2016-12-01

    Models of human-Earth systems are often developed with the goal of predicting the behavior of one or more dependent variables from multiple independent variables, processes, and parameters. Often dependent variable values range over many orders of magnitude, which complicates evaluation of the fit of the dependent variable values to observations. Many metrics and optimization methods have been proposed to address dependent variable variability, with little consensus being achieved. In this work, we evaluate two such methods: log transformation (based on the dependent variable being log-normally distributed with a constant variance) and error-based weighting (based on a multi-normal distribution with variances that tend to increase as the dependent variable value increases). Error-based weighting has the advantage of encouraging model users to carefully consider data errors, such as measurement and epistemic errors, while log-transformations can be a black box for typical users. Placing the log-transformation into the statistical perspective of error-based weighting has not formerly been considered, to the best of our knowledge. To make the evaluation as clear and reproducible as possible, we use multiple linear regression (MLR). Simulations are conducted with MatLab. The example represents stream transport of nitrogen with up to eight independent variables. The single dependent variable in our example has values that range over 4 orders of magnitude. Results are applicable to any problem for which individual or multiple data types produce a large range of dependent variable values. For this problem, the log transformation produced good model fit, while some formulations of error-based weighting worked poorly. Results support previous suggestions fthat error-based weighting derived from a constant coefficient of variation overemphasizes low values and degrades model fit to high values. Applying larger weights to the high values is inconsistent with the log-transformation. Greater consistency is obtained by imposing smaller (by up to a factor of 1/35) weights on the smaller dependent-variable values. From an error-based perspective, the small weights are consistent with large standard deviations. This work considers the consequences of these two common ways of addressing variable data.

  16. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. I. Description and validation of the model

    NASA Astrophysics Data System (ADS)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2017-10-01

    Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling offers new insight into the nature of pulsating stars.

  17. Delay-slope-dependent stability results of recurrent neural networks.

    PubMed

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  18. [Travel time and participation in breast cancer screening in a region with high population dispersion].

    PubMed

    Borda, Alfredo; Sanz, Belén; Otero, Laura; Blasco, Teresa; García-Gómez, Francisco J; de Andrés, Fuencisla

    2011-01-01

    To analyze the association between travel time and participation in a breast cancer screening program adjusted for contextual variables in the province of Segovia (Spain). We performed an ecological study using the following data sources: the Breast Cancer Early Detection Program of the Primary Care Management of Segovia, the Population and Housing Census for 2001 and the municipal register for 2006-2007. The study period comprised January 2006 to December 2007. Dependent variables consisted of the municipal participation rate and the desired level of municipal participation (greater than or equal to 70%). The key independent variable was travel time from the municipality to the mammography unit. Covariables consisted of the municipalities' demographic and socioeconomic factors. We performed univariate and multivariate Poisson regression analyses of the participation rate, and logistic regression of the desired participation level. The sample was composed of 178 municipalities. The mean participation rate was 75.2%. The desired level of participation (≥ 70%) was achieved in 119 municipalities (67%). In the multivariate Poisson and logistic regression analyses, longer travel time was associated with a lower participation rate and with lower participation after adjustment was made for geographic density, age, socioeconomic status and dependency ratio, with a relative risk index of 0.88 (95% CI: 0.81-0.96) and an odds ratio of 0.22 (95% CI: 0.1-0.47), respectively. Travel time to the mammography unit may help to explain participation in breast cancer screening programs. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  19. A meta-analysis of the effects of texting on driving.

    PubMed

    Caird, Jeff K; Johnston, Kate A; Willness, Chelsea R; Asbridge, Mark; Steel, Piers

    2014-10-01

    Text messaging while driving is considered dangerous and known to produce injuries and fatalities. However, the effects of text messaging on driving performance have not been synthesized or summarily estimated. All available experimental studies that measured the effects of text messaging on driving were identified through database searches using variants of "driving" and "texting" without restriction on year of publication through March 2014. Of the 1476 abstracts reviewed, 82 met general inclusion criteria. Of these, 28 studies were found to sufficiently compare reading or typing text messages while driving with a control or baseline condition. Independent variables (text-messaging tasks) were coded as typing, reading, or a combination of both. Dependent variables included eye movements, stimulus detection, reaction time, collisions, lane positioning, speed and headway. Statistics were extracted from studies to compute effect sizes (rc). A total sample of 977 participants from 28 experimental studies yielded 234 effect size estimates of the relationships among independent and dependent variables. Typing and reading text messages while driving adversely affected eye movements, stimulus detection, reaction time, collisions, lane positioning, speed and headway. Typing text messages alone produced similar decrements as typing and reading, whereas reading alone had smaller decrements over fewer dependent variables. Typing and reading text messages affects drivers' capability to adequately direct attention to the roadway, respond to important traffic events, control a vehicle within a lane and maintain speed and headway. This meta-analysis provides convergent evidence that texting compromises the safety of the driver, passengers and other road users. Combined efforts, including legislation, enforcement, blocking technologies, parent modeling, social media, social norms and education, will be required to prevent continued deaths and injuries from texting and driving. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Is nighttime laparoscopic general surgery under general anesthesia safe?

    PubMed

    Koltka, Ahmet Kemalettin; İlhan, Mehmet; Ali, Achmet; Gök, Ali Fuat Kaan; Sivrikoz, Nükhet; Yanar, Teoman Hakan; Günay, Mustafa Kayıhan; Ertekin, Cemalettin

    2018-01-01

    Fatigue and sleep deprivation can affect rational decision-making and motor skills, which can decrease medical performance and quality of patient care. The aim of the present study was to investigate the association between times of the day when laparoscopic general surgery under general anesthesia was performed and their adverse outcomes. All laparoscopic cholecystectomies and appendectomies performed at the emergency surgery department of a tertiary university hospital from 01. 01. 2016 to 12. 31. 2016 were included. Operation times were divided into three groups: 08.01-17.00 (G1: daytime), 17.01-23.00 (G2: early after-hours), and 23.01-08.00 (G3: nighttime). The files of the included patients were evaluated for intraoperative and postoperative surgery and anesthesia-related complications. We used multiple regression analyses of variance with the occurrence of intraoperative complications as a dependent variable and comorbidities, age, gender, body mass index (BMI), ASA score, and operation time group as independent variables. This revealed that nighttime operation (p<0.001; OR, 6.7; CI, 2.6-16.9) and older age (p=0.004; OR, 1.04; CI, 1.01-1.08) were the risk factor for intraoperative complications. The same analysis was performed for determining a risk factor for postoperative complications, and none of the dependent variables were found to be associated with the occurrence of postoperative complications. Nighttime surgery and older patient age increased the risk of intraoperative complications without serious morbidity or mortality, but no association was observed between the independent variables and the occurrence of postoperative complications.

  1. Variable gain for a wind turbine pitch control

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.; Birchenough, A. G.

    1981-01-01

    The gain variation is made in the software logic of the pitch angle controller. The gain level is changed depending upon the level of power error. The control uses low gain for low pitch activity the majority of the time. If the power exceeds ten percent offset above rated, the gain is increased to a higher gain to more effectively limit power. A variable gain control functioned well in tests on the Mod-0 wind turbine.

  2. Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients.

    PubMed

    Kedziora, D J; Ankiewicz, A; Chowdury, A; Akhmediev, N

    2015-10-01

    We present an infinite nonlinear Schrödinger equation hierarchy of integrable equations, together with the recurrence relations defining it. To demonstrate integrability, we present the Lax pairs for the whole hierarchy, specify its Darboux transformations and provide several examples of solutions. These resulting wavefunctions are given in exact analytical form. We then show that the Lax pair and Darboux transformation formalisms still apply in this scheme when the coefficients in the hierarchy depend on the propagation variable (e.g., time). This extension thus allows for the construction of complicated solutions within a greatly diversified domain of generalised nonlinear systems.

  3. Advanced Welding Torch

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In order to more easily join the huge sections of the Space Shuttle external tank, Marshall Space Flight Center initiated development of the existing concept of Variable Polarity Plasma Arc (VPPA) welding. VPPA welding employs a variable current waveform that allows the system to operate for preset time increments in either of two polarity modes for effective joining of light alloys. Marshall awarded the torch contract to B & B Precision Machine, which produced a torch for the Shuttle, then automated the system, and eventually delivered a small torch used by companies such as Whirlpool for sheet metal welding of appliance parts and other applications. The dependability of the torch offers cost and time advantages.

  4. Stereotype activation is unintentional: Behavioural and event-related potenials evidence.

    PubMed

    Wang, Pei; Yang, Ya-Ping; Tan, Chen-Hao; Zhao, Xiang-Xia; Liu, Yong-He; Lin, Chong-De

    2016-04-01

    In this study, a priming Stroop paradigm was used to determine whether stereotype activation is unintentional. Priming conditions (priming/no-priming) and the relationship between priming and target (consistent/inconsistent/no-relation) were the independent variables; accuracy, reaction time and N400 amplitude were used as dependent variables. The reaction time revealed that stereotype activation is, to some extent, unintentional. Furthermore, the event-related potenial (ERP) results showed that N400 amplitude was larger for inconsistent conditions than for consistent conditions. This result supported the notion that stereotype activation is an unintentional and automatic process. © 2015 International Union of Psychological Science.

  5. Mechanism by which BMI influences leisure-time physical activity behavior.

    PubMed

    Godin, Gaston; Bélanger-Gravel, Ariane; Nolin, Bertrand

    2008-06-01

    The objective of this prospective study was to clarify the mechanism by which BMI influences leisure-time physical activity. This was achieved in accordance with the assumptions underlying the Theory of Planned Behavior (TPB), considered as one of the most useful theories to predict behavior adoption. At baseline, a sample of 1,530 respondents completed a short questionnaire to measure intention and perceived behavioral control (PBC), the two proximal determinants of behavior of TPB. Past behavior, sociodemographic variables, and weight and height were also assessed. The dependent variable, leisure-time physical activity was assessed 3 months later. Hierarchical multiple regression analyses revealed that BMI is a direct predictor of future leisure-time physical activity, not mediated by the variables of TPB. Additional hierarchical analyses indicated that BMI was not a moderator of the intention-behavior and PBC-behavior relationships. The results of this study suggest that high BMI is a significant negative determinant of leisure-time physical activity. This observation reinforces the importance of preventing weight gain as a health promotion strategy for avoiding a sedentary lifestyle.

  6. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    PubMed

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  7. Equity in specialist waiting times by socioeconomic groups: evidence from Spain.

    PubMed

    Abásolo, Ignacio; Negrín-Hernández, Miguel A; Pinilla, Jaime

    2014-04-01

    In countries with publicly financed health care systems, waiting time--rather than price--is the rationing mechanism for access to health care services. The normative statement underlying such a rationing device is that patients should wait according to need and irrespective of socioeconomic status or other non-need characteristics. The aim of this paper is to test empirically that waiting times for publicly funded specialist care do not depend on patients' socioeconomic status. Waiting times for specialist care can vary according to the type of medical specialty, type of consultation (review or diagnosis) and the region where patients' reside. In order to take into account such variability, we use Bayesian random parameter models to explain waiting times for specialist care in terms of need and non-need variables. We find that individuals with lower education and income levels wait significantly more time than their counterparts.

  8. A double hit model for the distribution of time to AIDS onset

    NASA Astrophysics Data System (ADS)

    Chillale, Nagaraja Rao

    2013-09-01

    Incubation time is a key epidemiologic descriptor of an infectious disease. In the case of HIV infection this is a random variable and is probably the longest one. The probability distribution of incubation time is the major determinant of the relation between the incidences of HIV infection and its manifestation to Aids. This is also one of the key factors used for accurate estimation of AIDS incidence in a region. The present article i) briefly reviews the work done, points out uncertainties in estimation of AIDS onset time and stresses the need for its precise estimation, ii) highlights some of the modelling features of onset distribution including immune failure mechanism, and iii) proposes a 'Double Hit' model for the distribution of time to AIDS onset in the cases of (a) independent and (b) dependent time variables of the two markers and examined the applicability of a few standard probability models.

  9. White dwarf variability with gPhoton: pulsators

    NASA Astrophysics Data System (ADS)

    Tucker, Michael A.; Fleming, Scott W.; Pelisoli, Ingrid; Romero, Alejandra; Bell, Keaton J.; Kepler, S. O.; Caton, Daniel B.; Debes, John; Montgomery, Michael H.; Thompson, Susan E.; Koester, Detlev; Million, Chase; Shiao, Bernie

    2018-04-01

    We present results from a search for short time-scale white dwarf variability using gPhoton, a time-tagged data base of GALEX photon events and associated software package. We conducted a survey of 320 white dwarf stars in the McCook-Sion catalogue, inspecting each for photometric variability with particular emphasis on variability over time-scales less than ˜30 min. From that survey, we present the discovery of a new pulsating white dwarf: WD 2246-069. A Ca II K line is found in archival ESO spectra and an IR excess is seen in WISE W1 and W2 bands. Its independent modes are identified in follow-up optical photometry and used to model its interior structure. Additionally, we detect UV pulsations in four previously known pulsating ZZ Ceti-type (DAVs). Included in this group is the simultaneous fitting of the pulsations of WD 1401-147 in optical, near-ultraviolet and far-ultraviolet bands using nearly concurrent Whole Earth Telescope and GALEX data, providing observational insight into the wavelength dependence of white dwarf pulsation amplitudes.

  10. Retest reliability of force-time variables of neck muscles under isometric conditions.

    PubMed

    Almosnino, Sivan; Pelland, Lucie; Stevenson, Joan M

    2010-01-01

    Proper conditioning of the neck muscles may play a role in reducing the risk of neck injury and, possibly, concussions in contact sports. However, the ability to reliably measure the force-time-based variables that might be relevant for this purpose has not been addressed. To assess the between-days reliability of discrete force-time-based variables of neck muscles during maximal voluntary isometric contractions in 5 directions. Cohort study. University research center. Twenty-six highly physically active men (age  =  21.6 ± 2.1 years, height  =  1.85 ± 0.09 m, mass  =  81.6 ± 9.9 kg, head circumference  =  0.58 ± 0.01 m, neck circumference  =  0.39 ± 0.02 m). We used a custom-built testing apparatus to measure maximal voluntary isometric contractions of the neck muscles in 5 directions (extension, flexion, protraction, left lateral bending, and right lateral bending) on 2 separate occasions separated by 7 to 8 days. Variables measured were peak force (PF), rate of force development (RFD), and time to 50% of PF (T(50)PF). Reliability indices calculated for each variable comprised the difference in scores between the testing sessions, with corresponding 95% confidence intervals, the coefficient of variation of the typical error of measurement (CV(TE)), and intraclass correlation coefficients (ICC [3,3]). No evidence of systematic bias was detected for the dependent measures across any movement direction; retest differences in measurements were between 1.8% and 2.7%, with corresponding 95% confidence interval ranges of less than 10% and overlapping zero. The CV(TE) was lowest for PF (range, 2.4%-6.3%) across all testing directions, followed by RFD (range, 4.8%-9.0%) and T(50)PF (range, 7.1%-9.3%). The ICC score range for all dependent measures was 0.90 to 0.99. Discrete variables representative of the force-generating capacity of neck muscles under isometric conditions can be measured with an acceptable degree of reliability. This finding has possible applications for investigating the role of neck muscle strength-training programs in reducing the risk of injuries in sport settings.

  11. Multi-time-scale X-ray reverberation mapping of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  12. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  13. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    NASA Astrophysics Data System (ADS)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  14. Random walk in nonhomogeneous environments: A possible approach to human and animal mobility

    NASA Astrophysics Data System (ADS)

    Srokowski, Tomasz

    2017-03-01

    The random walk process in a nonhomogeneous medium, characterized by a Lévy stable distribution of jump length, is discussed. The width depends on a position: either before the jump or after that. In the latter case, the density slope is affected by the variable width and the variance may be finite; then all kinds of the anomalous diffusion are predicted. In the former case, only the time characteristics are sensitive to the variable width. The corresponding Langevin equation with different interpretations of the multiplicative noise is discussed. The dependence of the distribution width on position after jump is interpreted in terms of cognitive abilities and related to such problems as migration in a human population and foraging habits of animals.

  15. Multi-state model for studying an intermediate event using time-dependent covariates: application to breast cancer.

    PubMed

    Meier-Hirmer, Carolina; Schumacher, Martin

    2013-06-20

    The aim of this article is to propose several methods that allow to investigate how and whether the shape of the hazard ratio after an intermediate event depends on the waiting time to occurrence of this event and/or the sojourn time in this state. A simple multi-state model, the illness-death model, is used as a framework to investigate the occurrence of this intermediate event. Several approaches are shown and their advantages and disadvantages are discussed. All these approaches are based on Cox regression. As different time-scales are used, these models go beyond Markov models. Different estimation methods for the transition hazards are presented. Additionally, time-varying covariates are included into the model using an approach based on fractional polynomials. The different methods of this article are then applied to a dataset consisting of four studies conducted by the German Breast Cancer Study Group (GBSG). The occurrence of the first isolated locoregional recurrence (ILRR) is studied. The results contribute to the debate on the role of the ILRR with respect to the course of the breast cancer disease and the resulting prognosis. We have investigated different modelling strategies for the transition hazard after ILRR or in general after an intermediate event. Including time-dependent structures altered the resulting hazard functions considerably and it was shown that this time-dependent structure has to be taken into account in the case of our breast cancer dataset. The results indicate that an early recurrence increases the risk of death. A late ILRR increases the hazard function much less and after the successful removal of the second tumour the risk of death is almost the same as before the recurrence. With respect to distant disease, the appearance of the ILRR only slightly increases the risk of death if the recurrence was treated successfully. It is important to realize that there are several modelling strategies for the intermediate event and that each of these strategies has restrictions and may lead to different results. Especially in the medical literature considering breast cancer development, the time-dependency is often neglected in the statistical analyses. We show that the time-varying variables cannot be neglected in the case of ILRR and that fractional polynomials are a useful tool for finding the functional form of these time-varying variables.

  16. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less

  17. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    NASA Astrophysics Data System (ADS)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam

    2015-10-01

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.

  18. Lower limb kinematics during treadmill walking after space flight: implications for gaze stabilization

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Basdogan, C.; Bloomberg, J. J.; Layne, C. S.

    1996-01-01

    We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.

  19. Lower limb kinematics during treadmill walking after space flight: implications for gaze stabilization.

    PubMed

    McDonald, P V; Basdogan, C; Bloomberg, J J; Layne, C S

    1996-11-01

    We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.

  20. Species interactions may help explain the erratic periodicity of whooping cough dynamics.

    PubMed

    Bhattacharyya, Samit; Ferrari, Matthew J; Bjørnstad, Ottar N

    2017-12-14

    Incidence of whooping cough exhibits variable dynamics across time and space. The periodicity of this disease varies from annual to five years in different geographic regions in both developing and developed countries. Many hypotheses have been put forward to explain this variability such as nonlinearity and seasonality, stochasticity, variable recruitment of susceptible individuals via birth, immunization, and immune boosting. We propose an alternative hypothesis to describe the variability in periodicity - the intricate dynamical variability of whooping cough may arise from interactions between its dominant etiological agents of Bordetella pertussis and Bordetella parapertussis. We develop a two-species age-structured model, where two pathogens are allowed to interact by age-dependent convalescence of individuals with severe illness from infections. With moderate strength of interactions, the model exhibits multi-annual coexisting attractors that depend on the R 0 of the two pathogens. We also examine how perturbation from case importation and noise in transmission may push the system from one dynamical regime to another. The coexistence of multi-annual cycles and the behavior of switching between attractors suggest that variable dynamics of whopping cough could be an emergent property of its multi-agent etiology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Old groundwater influence on stream hydrochemistry and catchment response times in a small Sierra Nevada catchment: Sagehen Creek, California

    USGS Publications Warehouse

    Rademacher, Laura K.; Clark, Jordan F.; Clow, David W.; Bryant, Hudson G.

    2005-01-01

    The relationship between the chemical and isotopic composition of groundwater and residence times was used to understand the temporal variability in stream hydrochemistry in Sagehen basin, California. On the basis of the relationship between groundwater age and [Ca2+], the mean residence time of groundwater feeding Sagehen Creek during base flow is approximately 28 years. [Cl−]:[Ca2+] ratios in Sagehen Creek can be used to distinguish between two important processes: changes in the apparent age of groundwater discharging into the creek and dilution with snowmelt. The mean residence time of groundwater discharging into the creek is approximately 15 years during snowmelt periods. The results from this study have implications for hydrograph separation studies as groundwater is not a single, well‐mixed chemical component but rather is a variable parameter that predictably depends on groundwater residence time. Most current models of catchment hydrochemistry do not account for chemical and isotopic variability found within the groundwater reservoir. In addition, this study provides valuable insight into the long‐term hydrochemical response of a catchment to perturbations as catchment‐flushing times are related to the mean residence time of water in a basin.

  2. Correlation between use time of machine and decline curve for emerging enterprise information systems

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Chung; Lai, Chin-Feng; Chuang, Chi-Cheng; Hou, Cheng-Yu

    2018-04-01

    With the progress of science and technology, more and more machines are adpot to help human life better and more convenient. When the machines have been used for a longer period of time so that the machine components are getting old, the amount of power comsumption will increase and easily cause the machine to overheat. This also causes a waste of invisible resources. If the Internet of Everything (IoE) technologies are able to be applied into the enterprise information systems for monitoring the machines use time, it can not only make energy can be effectively used, but aslo create a safer living environment. To solve the above problem, the correlation predict model is established to collect the data of power consumption converted into power eigenvalues. This study takes the power eigenvalue as the independent variable and use time as the dependent variable in order to establish the decline curve. Ultimately, the scoring and estimation modules are employed to seek the best power eigenvalue as the independent variable. To predict use time, the correlation is discussed between the use time and the decline curve to improve the entire behavioural analysis of the facilitate recognition of the use time of machines.

  3. Predictors of early person reference development: maternal language input, attachment and neurodevelopmental markers.

    PubMed

    Lemche, Erwin; Joraschky, Peter; Klann-Delius, Gisela

    2013-12-01

    In a longitudinal natural language development study in Germany, the acquisition of verbal symbols for present persons, absent persons, inanimate things and the mother-toddler dyad was investigated. Following the notion that verbal referent use is more developed in ostensive contexts, symbolic play situations were coded for verbal person reference by means of noun and pronoun use. Depending on attachment classifications at twelve months of age, effects of attachment classification and maternal language input were studied up to 36 months in four time points. Hierarchical regression analyses revealed that, except for mother absence, maternal verbal referent input rates at 17 and 36 months were stronger predictors for all referent types than any of the attachment organizations, or any other social or biological predictor variable. Attachment effects accounted for up to 9.8% of unique variance proportions in the person reference variables. Perinatal and familial measures predicted person references dependent on reference type. The results of this investigation indicate that mother-reference, self-reference and thing-reference develop in similar quantities measured from the 17-month time point, but are dependent of attachment quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Prediction of half-marathon race time in recreational female and male runners.

    PubMed

    Knechtle, Beat; Barandun, Ursula; Knechtle, Patrizia; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A

    2014-01-01

    Half-marathon running is of high popularity. Recent studies tried to find predictor variables for half-marathon race time for recreational female and male runners and to present equations to predict race time. The actual equations included running speed during training for both women and men as training variable but midaxillary skinfold for women and body mass index for men as anthropometric variable. An actual study found that percent body fat and running speed during training sessions were the best predictor variables for half-marathon race times in both women and men. The aim of the present study was to improve the existing equations to predict half-marathon race time in a larger sample of male and female half-marathoners by using percent body fat and running speed during training sessions as predictor variables. In a sample of 147 men and 83 women, multiple linear regression analysis including percent body fat and running speed during training units as independent variables and race time as dependent variable were performed and an equation was evolved to predict half-marathon race time. For men, half-marathon race time might be predicted by the equation (r(2) = 0.42, adjusted r(2) = 0.41, SE = 13.3) half-marathon race time (min) = 142.7 + 1.158 × percent body fat (%) - 5.223 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.71, p < 0.0001) to the achieved race time. For women, half-marathon race time might be predicted by the equation (r(2) = 0.68, adjusted r(2) = 0.68, SE = 9.8) race time (min) = 168.7 + 1.077 × percent body fat (%) - 7.556 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.89, p < 0.0001) to the achieved race time. The coefficients of determination of the models were slightly higher than for the existing equations. Future studies might include physiological variables to increase the coefficients of determination of the models.

  5. Aging in freely evolving granular gas with impact velocity dependent coefficient of restitution

    NASA Astrophysics Data System (ADS)

    Kumari, Shikha; Ahmad, Syed Rashid

    2018-05-01

    The evolution of granular system is governed by the concept of coefficient of restitution that gives a relationship between normal component of relative velocities before and after collision. Most of the studies consider a simplified collision model where particles interact through coefficient of restitution which is a constant while in reality, the coefficient of restitution must be a variable that depends on the impact velocity of colliding particles. In this work, we have considered the aging in the velocity autocorrelation function, A(τw, τ) for a granular gas of realistic particles interacting through coefficient of restitution that is depending on impact velocity. Molecular dynamics simulation is used to study granular gas that is evolving freely in absence of any external force. From the simulation results, we observe that A(τw, τ) depends explicitly on waiting time τw and collision time τ. Initially, the function decays exponentially but as the waiting time increases the decay of function becomes slow due to correlations that emerge in velocity field.

  6. Comparison of algorithms to generate event times conditional on time-dependent covariates.

    PubMed

    Sylvestre, Marie-Pierre; Abrahamowicz, Michal

    2008-06-30

    The Cox proportional hazards model with time-dependent covariates (TDC) is now a part of the standard statistical analysis toolbox in medical research. As new methods involving more complex modeling of time-dependent variables are developed, simulations could often be used to systematically assess the performance of these models. Yet, generating event times conditional on TDC requires well-designed and efficient algorithms. We compare two classes of such algorithms: permutational algorithms (PAs) and algorithms based on a binomial model. We also propose a modification of the PA to incorporate a rejection sampler. We performed a simulation study to assess the accuracy, stability, and speed of these algorithms in several scenarios. Both classes of algorithms generated data sets that, once analyzed, provided virtually unbiased estimates with comparable variances. In terms of computational efficiency, the PA with the rejection sampler reduced the time necessary to generate data by more than 50 per cent relative to alternative methods. The PAs also allowed more flexibility in the specification of the marginal distributions of event times and required less calibration.

  7. Concussion symptoms and neurocognitive performance of high school and college athletes who incur multiple concussions.

    PubMed

    Covassin, Tracey; Moran, Ryan; Wilhelm, Kristyn

    2013-12-01

    Multiple concussions have been associated with prolonged symptoms, recovery time, and risk for future concussions. However, very few studies have examined the effect of multiple concussions on neurocognitive performance and the recently revised symptom clusters using a large database. To examine concussed athletes with a history of 0, 1, 2, or ≥3 concussions on neurocognitive performance and the recently revised symptom clusters. Cohort study (prognosis); Level of evidence, 2. The independent variables were concussion group (0, 1, 2, and ≥3 concussions) and time (baseline, 3 days, and 8 days). The dependent variables were neurocognitive test scores as measured by the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) neurocognitive test battery (verbal and visual memory, processing speed, and reaction time) and 4 concussion symptom clusters (migraine-cognitive-fatigue, affective, somatic, and sleep). All concussed athletes (n = 596) were administered the ImPACT test at a mean 2.67 ± 1.98 and 7.95 ± 4.46 days after injury. A series of 4 (concussion group) × 3 (time) repeated-measures analyses of covariance (age = covariate) were performed on ImPACT composite scores and symptom clusters. Concussed athletes with ≥3 concussions were still impaired 8 days after a concussion compared with baseline scores on verbal memory (P < .001), reaction time (P < .001), and migraine-cognitive-fatigue symptoms (P < .001). There were no significant findings on the remaining dependent variables. Concussed athletes with a history of ≥3 concussions take longer to recover than athletes with 1 or no previous concussion. Future research should concentrate on validating the new symptom clusters on multiple concussed athletes, examining longer recovery times (ie, >8 days) among athletes with multiple concussions.

  8. Highly Parallel Alternating Directions Algorithm for Time Dependent Problems

    NASA Astrophysics Data System (ADS)

    Ganzha, M.; Georgiev, K.; Lirkov, I.; Margenov, S.; Paprzycki, M.

    2011-11-01

    In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm induced by the direction splitting. The scheme used in the algorithm is composed of two parts: (i) velocity prediction, and (ii) pressure correction. This is a Crank-Nicolson-type two-stage time integration scheme for two and three dimensional parabolic problems in which the second-order derivative, with respect to each space variable, is treated implicitly while the other variable is made explicit at each time sub-step. In order to achieve a good parallel performance the solution of the Poison problem for the pressure correction is replaced by solving a sequence of one-dimensional second order elliptic boundary value problems in each spatial direction. The parallel code is implemented using the standard MPI functions and tested on two modern parallel computer systems. The performed numerical tests demonstrate good level of parallel efficiency and scalability of the studied direction-splitting-based algorithm.

  9. Prevalence and predictors of healthcare utilization among older people (60+): focusing on ADL dependency and risk of depression.

    PubMed

    Sandberg, Magnus; Kristensson, Jimmie; Midlöv, Patrik; Fagerström, Cecilia; Jakobsson, Ulf

    2012-01-01

    The aim of this study was to investigate healthcare utilization patterns over a six-year period among older people (60+), classified as dependent/independent in Activities of Daily Living (ADL) and/or at/not at risk of depression and to identify healthcare utilization predictors. A sample (n=1402) comprising ten age cohorts aged between 60 and 96 years was drawn from the Swedish National study on Aging and Care (SNAC). Baseline data were collected between 2001 and 2003. Number and length of hospital stays were collected for six years after baseline year. Group differences and mean changes over time were investigated. Healthcare utilization predictors were explored using multiple linear regression analysis. The results revealed that 21-24% had at least one hospital stay in the six years after baseline, 29-37% among ADL dependent subjects and 24-33% among those at risk of depression. There was a significant increase of hospital stays in all groups over time. ADL-dependent subjects and those at risk of depression had significant more hospital stays, except for those at/not at risk of depression in years 2, 4 and 5. The healthcare utilization predictors 5-6 years after baseline were mainly age, previous healthcare utilization and various symptoms and, in 1-2 and 3-4 years after baseline, age, various diagnostic groups and various physical variables. Thus healthcare utilization patterns seem to be similar for the different groups, but it is difficult to find universal predictors. This suggests that different variables should be considered, including both ADL and psychosocial variables, when trying to identify future healthcare users. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Value of Construction Company and its Dependence on Significant Variables

    NASA Astrophysics Data System (ADS)

    Vítková, E.; Hromádka, V.; Ondrušková, E.

    2017-10-01

    The paper deals with the value of the construction company assessment respecting usable approaches and determinable variables. The reasons of the value of the construction company assessment are different, but the most important reasons are the sale or the purchase of the company, the liquidation of the company, the fusion of the company with another subject or the others. According the reason of the value assessment it is possible to determine theoretically different approaches for valuation, mainly it concerns about the yield method of valuation and the proprietary method of valuation. Both approaches are dependant of detailed input variables, which quality will influence the final assessment of the company´s value. The main objective of the paper is to suggest, according to the analysis, possible ways of input variables, mainly in the form of expected cash-flows or the profit, determination. The paper is focused mainly on methods of time series analysis, regression analysis and mathematical simulation utilization. As the output, the results of the analysis on the case study will be demonstrated.

  11. Radio-loud AGN Variability from Propagating Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Schuh, Terance; Wiita, Paul J.

    2018-06-01

    The great majority of variable emission in radio-loud AGNs is understood to arise from the relativistic flows of plasma along two oppositely directed jets. We study this process using the Athena hydrodynamics code to simulate propagating three-dimensional relativistic jets for a wide range of input jet velocities and jet-to-ambient matter density ratios. We then focus on those simulations that remain essentially stable for extended distances (60-120 times the jet radius). Adopting results for the densities, pressures and velocities from these propagating simulations we estimate emissivities from each cell. The observed emissivity from each cell is strongly dependent upon its variable Doppler boosting factor, which depends upon the changing bulk velocities in those zones with respect to our viewing angle to the jet. We then sum the approximations to the fluxes from a large number of zones upstream of the primary reconfinement shock. The light curves so produced are similar to those of blazars, although turbulence on sub-grid scales is likely to be important for the variability on the shortest timescales.

  12. Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies

    PubMed Central

    Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373

  13. High resolution simulations of a variable HH jet

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.

    2007-04-01

    Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.

  14. Have the temperature time series a structural change after 1998?

    NASA Astrophysics Data System (ADS)

    Werner, Rolf; Valev, Dimitare; Danov, Dimitar

    2012-07-01

    The global and hemisphere temperature GISS and Hadcrut3 time series were analysed for structural changes. We postulate the continuity of the preceding temperature function depending from the time. The slopes are calculated for a sequence of segments limited by time thresholds. We used a standard method, the restricted linear regression with dummy variables. We performed the calculations and tests for different number of thresholds. The thresholds are searched continuously in determined time intervals. The F-statistic is used to obtain the time points of the structural changes.

  15. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation lengthmore » $$\\xi $$ that falls at least as fast as $${{\\tau }^{-1}}$$ . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.« less

  16. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation length ξ that falls at least as fast as {{τ }-1} . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.

  17. Indispensable finite time corrections for Fokker-Planck equations from time series data.

    PubMed

    Ragwitz, M; Kantz, H

    2001-12-17

    The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from finite sampling rates. We show that previously published results are degraded considerably by such effects. We present correction terms which yield a robust estimation of the diffusion terms, together with a novel method for one-dimensional problems. We apply these methods to time series data of local surface wind velocities, where the dependence of the diffusion constant on the state variable shows a different behavior than previously suggested.

  18. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  19. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1985

    1985-01-01

    Discusses: (1) use of matrix techniques to write secret codes (includes ready-to-duplicate worksheets); (2) a method of multiplication and division of polynomials in one variable that is not tedius, time-consuming, or dependent on guesswork; and (3) adding and subtracting rational expressions and solving rational equations. (JN)

  20. Simulation of daily pesticide concentrations from watershed characteristics and monthly climatic data

    USGS Publications Warehouse

    Vecchia, Aldo V.; Crawford, Charles G.

    2006-01-01

    A time-series model was developed to simulate daily pesticide concentrations for streams in the coterminous United States. The model was based on readily available information on pesticide use, climatic variability, and watershed charac-teristics and was used to simulate concentrations for four herbicides [atrazine, ethyldipropylthiocarbamate (EPTC), metolachlor, and trifluralin] and three insecticides (carbofuran, ethoprop, and fonofos) that represent a range of physical and chemical properties, application methods, national application amounts, and areas of use in the United States. The time-series model approximates the probability distributions, seasonal variability, and serial correlation characteristics in daily pesticide concentration data from a national network of monitoring stations. The probability distribution of concentrations for a particular pesticide and station was estimated using the Watershed Regressions for Pesticides (WARP) model. The WARP model, which was developed in previous studies to estimate the probability distribution, was based on selected nationally available watershed-characteristics data, such as pesticide use and soil characteristics. Normality transformations were used to ensure that the annual percentiles for the simulated concentrations agree closely with the percentiles estimated from the WARP model. Seasonal variability in the transformed concentrations was maintained by relating the transformed concentration to precipitation and temperature data from the United States Historical Climatology Network. The monthly precipitation and temperature values were estimated for the centroids of each watershed. Highly significant relations existed between the transformed concentrations, concurrent monthly precipitation, and concurrent and lagged monthly temperature. The relations were consistent among the different pesticides and indicated the transformed concentrations generally increased as precipitation increased but the rate of increase depended on a temperature-dependent growing-season effect. Residual variability of the transformed concentrations, after removal of the effects of precipitation and temperature, was partitioned into a signal (systematic variability that is related from one day to the next) and noise (random variability that is not related from one day to the next). Variograms were used to evaluate measurement error, seasonal variability, and serial correlation of the historical data. The variogram analysis indicated substantial noise resulted, at least in part, from measurement errors (the differences between the actual concen-trations and the laboratory concentrations). The variogram analysis also indicated the presence of a strongly correlated signal, with an exponentially decaying serial correlation function and a correlation time scale (the time required for the correlation to decay to e-1 equals 0.37) that ranged from about 18 to 66 days, depending on the pesticide type. Simulated daily pesticide concentrations from the time-series model indicated the simulated concentrations for the stations located in the northeastern quadrant of the United States where most of the monitoring stations are located generally were in good agreement with the data. The model neither consistently overestimated or underestimated concentrations for streams that are located in this quadrant and the magnitude and timing of high or low concentrations generally coincided reasonably well with the data. However, further data collection and model development may be necessary to determine whether the model should be used for areas for which few historical data are available.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nottale, Laurent; Célérier, Marie-Noëlle

    One of the main results of scale relativity as regards the foundation of quantum mechanics is its explanation of the origin of the complex nature of the wave function. The scale relativity theory introduces an explicit dependence of physical quantities on scale variables, founding itself on the theorem according to which a continuous and non-differentiable space-time is fractal (i.e., scale-divergent). In the present paper, the nature of the scale variables and their relations to resolutions and differential elements are specified in the non-relativistic case (fractal space). We show that, owing to the scale-dependence which it induces, non-differentiability involves a fundamentalmore » two-valuedness of the mean derivatives. Since, in the scale relativity framework, the wave function is a manifestation of the velocity field of fractal space-time geodesics, the two-valuedness of velocities leads to write them in terms of complex numbers, and yields therefore the complex nature of the wave function, from which the usual expression of the Schrödinger equation can be derived.« less

  2. Alternative descriptions of wave and particle aspects of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Schuch, Dieter

    1993-01-01

    The dynamical properties of the wave and particle aspects of the harmonic oscillator can be studied with the help of the time-dependent Schroedinger equation (SE). Especially the time-dependence of maximum and width of Gaussian wave packet solutions allow to show the evolution and connections of those two complementary aspects. The investigation of the relations between the equations describing wave and particle aspects leads to an alternative description of the considered systems. This can be achieved by means of a Newtonian equation for a complex variable in connection with a conservation law for a nonclassical angular momentum-type quantity. With the help of this complex variable, it is also possible to develop a Hamiltonian formalism for the wave aspect contained in the SE, which allows to describe the dynamics of the position and momentum uncertainties. In this case the Hamiltonian function is equivalent to the difference between the mean value of the Hamiltonian operator and the classical Hamiltonian function.

  3. Indicator organisms in meat and poultry slaughter operations: their potential use in process control and the role of emerging technologies.

    PubMed

    Saini, Parmesh K; Marks, Harry M; Dreyfuss, Moshe S; Evans, Peter; Cook, L Victor; Dessai, Uday

    2011-08-01

    Measuring commonly occurring, nonpathogenic organisms on poultry products may be used for designing statistical process control systems that could result in reductions of pathogen levels. The extent of pathogen level reduction that could be obtained from actions resulting from monitoring these measurements over time depends upon the degree of understanding cause-effect relationships between processing variables, selected output variables, and pathogens. For such measurements to be effective for controlling or improving processing to some capability level within the statistical process control context, sufficiently frequent measurements would be needed to help identify processing deficiencies. Ultimately the correct balance of sampling and resources is determined by those characteristics of deficient processing that are important to identify. We recommend strategies that emphasize flexibility, depending upon sampling objectives. Coupling the measurement of levels of indicator organisms with practical emerging technologies and suitable on-site platforms that decrease the time between sample collections and interpreting results would enhance monitoring process control.

  4. Partial dust obscuration in active galactic nuclei as a cause of broad-line profile and lag variability, and apparent accretion disc inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin; Harrington, Peter Z.

    2018-04-01

    The profiles of the broad emission lines of active galactic nuclei (AGNs) and the time delays in their response to changes in the ionizing continuum ("lags") give information about the structure and kinematics of the inner regions of AGNs. Line profiles are also our main way of estimating the masses of the supermassive black holes (SMBHs). However, the profiles often show ill-understood, asymmetric structure and velocity-dependent lags vary with time. Here we show that partial obscuration of the broad-line region (BLR) by outflowing, compact, dusty clumps produces asymmetries and velocity-dependent lags similar to those observed. Our model explains previously inexplicable changes in the ratios of the hydrogen lines with time and velocity, the lack of correlation of changes in line profiles with variability of the central engine, the velocity dependence of lags, and the change of lags with time. We propose that changes on timescales longer than the light-crossing time do not come from dynamical changes in the BLR, but are a natural result of the effect of outflowing dusty clumps driven by radiation pressure acting on the dust. The motion of these clumps offers an explanation of long-term changes in polarization. The effects of the dust complicate the study of the structure and kinematics of the BLR and the search for sub-parsec SMBH binaries. Partial obscuration of the accretion disc can also provide the local fluctuations in luminosity that can explain sizes deduced from microlensing.

  5. Reducing Time-dependent Bias in Estimates of the Attributable Cost of Health Care-associated Methicillin-resistant Staphylococcus aureus Infections: A Comparison of Three Estimation Strategies.

    PubMed

    Nelson, Richard E; Samore, Matthew H; Jones, Makoto; Greene, Tom; Stevens, Vanessa W; Liu, Chuan-Fen; Graves, Nicholas; Evans, Martin F; Rubin, Michael A

    2015-09-01

    Previous estimates of the excess costs due to health care-associated infection (HAI) have scarcely addressed the issue of time-dependent bias. We examined time-dependent bias by estimating the health care costs attributable to an HAI due to methicillin-resistant Staphylococcus aureus (MRSA) using a unique dataset in the Department of Veterans Affairs (VA) that makes it possible to distinguish between costs that occurred before and after an HAI. In addition, we compare our results to those from 2 other estimation strategies. Using a historical cohort study design to estimate the excess predischarge costs attributable to MRSA HAIs, we conducted 3 analyses: (1) conventional, in which costs for the entire inpatient stay were compared between patients with and without MRSA HAIs; (2) post-HAI, which included only costs that occurred after an infection; and (3) matched, in which costs for the entire inpatient stay were compared between patients with an MRSA HAI and subset of patients without an MRSA HAI who were matched based on the time to infection. In our post-HAI analysis, estimates of the increase in inpatient costs due to MRSA HAI were $12,559 (P<0.0001) and $24,015 (P<0.0001) for variable and total costs, respectively. The excess variable and total cost estimates were 33.7% and 31.5% higher, respectively, when using the conventional methods and 14.6% and 11.8% higher, respectively, when using matched methods. This is the first study to account for time-dependent bias in the estimation of incremental per-patient health care costs attributable to HAI using a unique dataset in the VA. We found that failure to account for this bias can lead to overestimation of these costs. Matching on the timing of infection can reduce this bias substantially.

  6. Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using Taguchi method

    NASA Astrophysics Data System (ADS)

    Musabbikhah, Saptoadi, H.; Subarmono, Wibisono, M. A.

    2016-03-01

    Fossil fuel still dominates the needs of energy in Indonesia for the past few years. The increasing scarcity of oil and gas from non-renewable materials results in an energy crisis. This condition turns to be a serious problem for society which demands immediate solution. One effort which can be taken to overcome this problem is the utilization and processing of biomass as renewable energy by means of carbonization. Thus, it can be used as qualified raw material for production of briquette. In this research, coconut shell is used as carbonized waste. The research aims at improving the quality of coconut shell as the material for making briquettes as cheap and eco-friendly renewable energy. At the end, it is expected to decrease dependence on oil and gas. The research variables are drying temperature and time, carbonization time and temperature. The dependent variable is calorific value of the coconut shell. The method used in this research is Taguchi Method. The result of the research shows thus variables, have a significant contribution on the increase of coconut shell's calorific value. It is proven that the higher thus variables are higher calorific value. Before carbonization, the average calorific value of coconut shell reaches 4,667 call/g, and a significant increase is notable after the carbonization. The optimization is parameter setting of A2B3C3D3, which means that the drying temperature is 105 °C, the drying time is 24 hours, the carbonization temperature is 650 °C and carbonization time is 120 minutes. The average calorific value is approximately 7,744 cal/g. Therefore, the increase of the coconut shell's calorific value after the carbonization is 3,077 cal/g or approximately 60 %. The charcoal of carbonized coconut shell has met the requirement of SNI, thus it can be used as raw material in making briquette which can eventually be used as cheap and environmental friendly fuel.

  7. Dependence for food-related activities in the elderly.

    PubMed

    Bierhals, Isabel Oliveira; Meller, Fernanda de Oliveira; Assunção, Maria Cecília Formoso

    2016-04-01

    The objective of this study was to describe dependence for the activities of food shopping, preparing meals and eating in elderly residents from the city of Pelotas, Rio Grande do Sul. Bivariate analysis and ordinal logistic regression were employed to assess the three dependencies and exposure variables studied. Of the 1,451 older adults assessed, 21.1% required assistance for some activities where this care was given predominantly by son/daughter and partners. The highest prevalence of dependence was for food shopping (20.7%), followed by preparing meals (11.5%) and eating (2.0%). Elderly aged 80 years or older were more likely to be in a greater dependence category than individuals aged 60-69 years, with odds ratios of 5.0 for men and 7.1 for women. The odds ratio in individuals who self-rated their health as regular, poor or very poor was approximately 2.3 times greater, proving similar for both genders. Women with no partner had a 1.7 times greater chance of dependence whilst individuals with greater educational level exhibited 70.0% protection for their reference category; men with lower socioeconomic level had a 5.3 times greater chance of dependence than individuals with higher socioeconomic level. These results highlight the most vulnerable subgroups for dependencies and the importance of a family caregiver.

  8. Development and Testing of Data Mining Algorithms for Earth Observation

    NASA Technical Reports Server (NTRS)

    Glymour, Clark

    2005-01-01

    The new algorithms developed under this project included a principled procedure for classification of objects, events or circumstances according to a target variable when a very large number of potential predictor variables is available but the number of cases that can be used for training a classifier is relatively small. These "high dimensional" problems require finding a minimal set of variables -called the Markov Blanket-- sufficient for predicting the value of the target variable. An algorithm, the Markov Blanket Fan Search, was developed, implemented and tested on both simulated and real data in conjunction with a graphical model classifier, which was also implemented. Another algorithm developed and implemented in TETRAD IV for time series elaborated on work by C. Granger and N. Swanson, which in turn exploited some of our earlier work. The algorithms in question learn a linear time series model from data. Given such a time series, the simultaneous residual covariances, after factoring out time dependencies, may provide information about causal processes that occur more rapidly than the time series representation allow, so called simultaneous or contemporaneous causal processes. Working with A. Monetta, a graduate student from Italy, we produced the correct statistics for estimating the contemporaneous causal structure from time series data using the TETRAD IV suite of algorithms. Two economists, David Bessler and Kevin Hoover, have independently published applications using TETRAD style algorithms to the same purpose. These implementations and algorithmic developments were separately used in two kinds of studies of climate data: Short time series of geographically proximate climate variables predicting agricultural effects in California, and longer duration climate measurements of temperature teleconnections.

  9. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics.

    PubMed

    Chorin, Alexandre J; Lu, Fei

    2015-08-11

    Many physical systems are described by nonlinear differential equations that are too complicated to solve in full. A natural way to proceed is to divide the variables into those that are of direct interest and those that are not, formulate solvable approximate equations for the variables of greater interest, and use data and statistical methods to account for the impact of the other variables. In the present paper we consider time-dependent problems and introduce a fully discrete solution method, which simplifies both the analysis of the data and the numerical algorithms. The resulting time series are identified by a NARMAX (nonlinear autoregression moving average with exogenous input) representation familiar from engineering practice. The connections with the Mori-Zwanzig formalism of statistical physics are discussed, as well as an application to the Lorenz 96 system.

  10. Effects of self-esteem on state and trait components of interpersonal dependency and depression in the workplace.

    PubMed

    Takagishi, Yukihiro; Sakata, Masatsugu; Kitamura, Toshinori

    2011-09-01

    This longitudinal study was undertaken to clarify the relationships among self-esteem, interpersonal dependency, and depression, focusing on a trait and state component of interpersonal dependency and depression. In a sample of 466 working people, self-esteem, interpersonal dependency, job stressor, and depression were assessed at 2 points of time. A structural equation model (SEM) was created to differentiate the trait component of interpersonal dependency, depression and the state component of interpersonal dependency, depression. The model revealed that self-esteem influenced trait interpersonal dependency and trait depression but not state interpersonal dependency or depression. Setting a latent variable as a trait component to differentiate trait and state in interpersonal dependency and depression in SEM was found to be effective both statistically and clinically. © 2011 Wiley Periodicals, Inc.

  11. Changing Demographics and the Impact on Air Force Officer Retention

    DTIC Science & Technology

    2000-04-01

    arrangements such as part-time, telecommuting , job-shares, and variable work schedules. Hewlett-Packard also provides a variety of dependent care...100 Best” companies. These companies understand the power of flexibility by offering flextime and other alternatives such as telecommuting and job...them over $7 million in reduced absenteeism and turnover. CIGNA, another insurance giant, reported its new lactation program reduced the time away from

  12. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.

    PubMed

    Frémaux, Nicolas; Gerstner, Wulfram

    2015-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.

  13. The influence of oxidation time on the properties of oxidized zinc films

    NASA Astrophysics Data System (ADS)

    Rambu, A. P.

    2012-09-01

    The effect of oxidation time on the structural characteristics and electronic transport mechanism of zinc oxide thin films prepared by thermal oxidation, have been investigated. Zinc metallic films were deposited by thermal evaporation under vacuum, the subsequent oxidation of Zn films being carried out in open atmosphere. XRD and AFM analysis indicate that obtained films posses a polycrystalline structure, the crystallites having a preferential orientation. Structural analysis reveals that microstructure of the films (crystallite size, surface roughness, internal stress) is depending on the oxidation time of metallic films. The electrical behavior of ZnO films was investigated, during a heat treatment (two heating/cooling cycles). It was observed that after the first heating, the temperature dependences of electrical conductivity become reversible. Mott variable range hopping model was proposed to analyze the temperature dependence of the electrical conductivity, in low temperature ranges. Values of some characteristic parameters were calculated.

  14. Exploring external time-dependent sources of H2O into Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Lara, Luisa-Maria; Lellouch, Emmanuel; González, Marta; Moreno, Raphael; Rengel, Miriam

    2014-05-01

    Recent observations (Cottini et al., 2012, and Moreno et al., 2012) and steady-state photochemical modelling (Moreno et al., 2012; Dobrijevic et al., 2014) indicate that the amounts of CO2 and H2O in Titan's stratosphere imply relatively inconsistent values of the OH/H2O input flux. Moreno et al. (2012) proposed that the oxygen source is time-variable, whereas Dobrijevic et al. (2014) arrived to the same conclusion of Moreno et al. (2012) that the HSO (Herschel Space Observatory) measured H2O profile is'inconsistent" with the CO2 abundance. Furthermore, Dobrijevic et al. (2014) also found that reconciliation was possible if abundances reported by Cottini et al. (2012) are correct instead, though in this situation and for an Enceladus source, their model tended to overpredict the thermospheric abundance of H2O , compared to the upper limit by Cui et al. (2009). We attempt to reconcile the H2O and CO2 observed profiles in Titan's atmosphere by considering several time-dependent scenarios for the infux/evolution of oxygen species. To explore this, we use a time-dependent photochemical model of Titan's atmosphere to calculate effective lifetimes and the response of Titan's oxygen compounds to changes in the oxygen input flux. We consider a time-variable Enceladus source, as well as the evolution of material delivered by a cometary impact. We will show results on effective H2O and CO2 effective lifetimes, on the feasibility of time-variable Enceladus source, and on an additional H2O loss-to-the-haze. Regarding CO2, we will analyse its production following a cometary impact. A summary on viable scenarios to explain the H2O / CO2 puzzle will be given. References Moreno, R., Lellouch, E., Lara, L. M., et al. 2012, Icarus, 221, 753. Cottini, V., Nixon, C. A., Jennings, D. E., et al. 2012, Icarus, 220, 855. Cui, J., Yelle, R. V., Vuitton, V., et al. 2009, Icarus, 200, 581. Dobrijevic, M., Hébrard, E., Loison, J., and Hickson, K. 2014, Icarus, 228, 324.

  15. Nonparametric methods in actigraphy: An update

    PubMed Central

    Gonçalves, Bruno S.B.; Cavalcanti, Paula R.A.; Tavares, Gracilene R.; Campos, Tania F.; Araujo, John F.

    2014-01-01

    Circadian rhythmicity in humans has been well studied using actigraphy, a method of measuring gross motor movement. As actigraphic technology continues to evolve, it is important for data analysis to keep pace with new variables and features. Our objective is to study the behavior of two variables, interdaily stability and intradaily variability, to describe rest activity rhythm. Simulated data and actigraphy data of humans, rats, and marmosets were used in this study. We modified the method of calculation for IV and IS by modifying the time intervals of analysis. For each variable, we calculated the average value (IVm and ISm) results for each time interval. Simulated data showed that (1) synchronization analysis depends on sample size, and (2) fragmentation is independent of the amplitude of the generated noise. We were able to obtain a significant difference in the fragmentation patterns of stroke patients using an IVm variable, while the variable IV60 was not identified. Rhythmic synchronization of activity and rest was significantly higher in young than adults with Parkinson׳s when using the ISM variable; however, this difference was not seen using IS60. We propose an updated format to calculate rhythmic fragmentation, including two additional optional variables. These alternative methods of nonparametric analysis aim to more precisely detect sleep–wake cycle fragmentation and synchronization. PMID:26483921

  16. Simultaneous Optimization of Multiple Response Variables for the Gelatin-chitosan Microcapsules Containing Angelica Essential Oil.

    PubMed

    Li, Qiang; Sun, Li-Jian; Gong, Xian-Feng; Wang, Yang; Zhao, Xue-Ling

    2017-01-01

    Angelica essential oil (AO), a major pharmacologically active component of Angelica sinensis (Oliv.) Diels, possesses hemogenesis, analgesic activities, and sedative effect. The application of AO in pharmaceutical systems had been limited because of its low oxidative stability. The AO-loaded gelatin-chitosan microcapsules with prevention from oxidation were developed and optimized using response surface methodology. The effects of formulation variables (pH at complex coacervation, gelatin concentration, and core/wall ratio) on multiple response variables (yield, encapsulation efficiency, antioxidation rate, percent of drug released in 1 h, and time to 85% drug release) were systemically investigated. A desirability function that combined these five response variables was constructed. All response variables investigated were found to be highly dependent on the formulation variables, with strong interactions observed between the formulation variables. It was found that optimum overall desirability of AO microcapsules could be obtained at pH 6.20, gelatin concentration 25.00%, and core/wall ratio 40.40%. The experimental values of the response variables highly agreed with the predicted values. The antioxidation rate of optimum formulation was approximately 8 times higher than that of AO. The in-vitro drug release from microcapsules was followed Higuchi model with super case-II transport mechanism.

  17. Modelling of subsonic COIL with an arbitrary magnetic modulation

    NASA Astrophysics Data System (ADS)

    Beránek, Jaroslav; Rohlena, Karel

    2007-05-01

    The concept of 1D subsonic COIL model with a mixing length was generalized to include the influence of a variable magnetic field on the stimulated emission cross-section. Equations describing the chemical kinetics were solved taking into account together with the gas temperature also a simplified mixing model of oxygen and iodine molecules. With the external time variable magnetic field the model is no longer stationary. A transformation in the system moving with the mixture reduces partial differential equations to ordinary equations in time with initial conditions given either by the stationary flow at the moment when the magnetic field is switched on combined with the boundary conditions at the injector. Advantage of this procedure is a possibility to consider an arbitrary temporal dependence of the imposed magnetic field and to calculate directly the response of the laser output. The method was applied to model the experimental data measured with the subsonic version of the COIL device in the Institute of Physics, Prague, where the applied magnetic field had a saw-tooth dependence. We found that various values characterizing the laser performance, such as the power density distribution over the active zone cross-section, may have a fairly complicated structure given by combined effects of the delayed reaction to the magnetic switching and the flow velocity. This is necessarily translated in a time dependent spatial inhomogeneity of output beam intensity profile.

  18. Transverse Motion of a Particle with an Oscillating Charge and Variable Mass in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Ragimkhanov, G. B.

    2018-03-01

    The problem of motion of a particle with an oscillating electric charge and variable mass in an uniform magnetic field has been solved. Three laws of mass variation have been considered: linear growth, oscillations, and stepwise growth. Analytical expressions for the particle velocity at different time dependences of the particle mass are obtained. It is established that simultaneous consideration of changes in the mass and charge leads to a significant change in the particle trajectory.

  19. Towards a novel look on low-frequency climate reconstructions

    NASA Astrophysics Data System (ADS)

    Kamenik, Christian; Goslar, Tomasz; Hicks, Sheila; Barnekow, Lena; Huusko, Antti

    2010-05-01

    Information on low-frequency (millennial to sub-centennial) climate change is often derived from sedimentary archives, such as peat profiles or lake sediments. Usually, these archives have non-annual and varying time resolution. Their dating is mainly based on radionuclides, which provide probabilistic age-depth relationships with complex error structures. Dating uncertainties impede the interpretation of sediment-based climate reconstructions. They complicate the calculation of time-dependent rates. In most cases, they make any calibration in time impossible. Sediment-based climate proxies are therefore often presented as a single, best-guess time series without proper calibration and error estimation. Errors along time and dating errors that propagate into the calculation of time-dependent rates are neglected. Our objective is to overcome the aforementioned limitations by using a 'swarm' or 'ensemble' of reconstructions instead of a single best-guess. The novelty of our approach is to take into account age-depth uncertainties by permuting through a large number of potential age-depth relationships of the archive of interest. For each individual permutation we can then calculate rates, calibrate proxies in time, and reconstruct the climate-state variable of interest. From the resulting swarm of reconstructions, we can derive realistic estimates of even complex error structures. The likelihood of reconstructions is visualized by a grid of two-dimensional kernels that take into account probabilities along time and the climate-state variable of interest simultaneously. For comparison and regional synthesis, likelihoods can be scored against other independent climate time series.

  20. The role of internal climate variability for interpreting climate change scenarios

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-04-01

    When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with a recently published study on the TOE for mean and heavy precipitation trends in Europe. In some regions trends emerge only late in the 21st century or even later, suggesting that in these regions adaptation to internal variability rather than to climate change is required. Yet in other regions the climate change signal is strong, urging for timely adaptation. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.

  1. Effect of conjugal bereavement on mortality of the bereaved spouse in participants of the Renfrew/Paisley Study

    PubMed Central

    Hart, Carole L; Hole, David J; Lawlor, Debbie A; Smith, George Davey; Lever, Tony F

    2007-01-01

    Objectives To investigate how loss of a spouse affects mortality risk in the bereaved partner. Design and setting Prospective cohort study in Renfrew and Paisley in Scotland. Participants 4395 married couples aged 45–64 years when the study was carried out between 1972 and 1976. Methods The date of bereavement for the bereaved spouse was the date of death of his or her spouse. Bereavement could occur at any time during the follow‐up period, so it was considered as a time‐dependent exposure variable and the Cox proportional hazards model for time‐dependent variables was used. The relative rate (RR) of mortality was calculated for bereaved versus non‐bereaved spouses and adjusted for confounding variables. Main outcome measures Causes of death to 31 March 2004. Results Bereaved participants were at higher risk than non‐bereaved participants of dying from any cause (RR 1.27; 95% CI 1.2 to 1.35). These risks remained but were attenuated after adjustment for confounding variables. There were raised RRs for bereaved participants dying of cardiovascular disease, coronary heart disease, stroke, all cancer, lung cancer, smoking‐related cancer, and accidents or violence. After adjustment for confounding variables, RRs remained higher for bereaved participants for all these causes except for mortality from lung cancer. There was no strong statistical evidence that the increased risks of death associated with bereavement changed with time after bereavement. Conclusions Conjugal bereavement, in addition to existing risk factors, is related to mortality risk for major causes of death. PMID:17435215

  2. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    NASA Astrophysics Data System (ADS)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  3. FDTD modelling of induced polarization phenomena in transient electromagnetics

    NASA Astrophysics Data System (ADS)

    Commer, Michael; Petrov, Peter V.; Newman, Gregory A.

    2017-04-01

    The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  4. An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times

    NASA Astrophysics Data System (ADS)

    Xiao, Long; Liu, Xinggao; Ma, Liang; Zhang, Zeyin

    2018-03-01

    Dynamic optimisation problem with characteristic times, widely existing in many areas, is one of the frontiers and hotspots of dynamic optimisation researches. This paper considers a class of dynamic optimisation problems with constraints that depend on the interior points either fixed or variable, where a novel direct pseudospectral method using Legendre-Gauss (LG) collocation points for solving these problems is presented. The formula for the state at the terminal time of each subdomain is derived, which results in a linear combination of the state at the LG points in the subdomains so as to avoid the complex nonlinear integral. The sensitivities of the state at the collocation points with respect to the variable characteristic times are derived to improve the efficiency of the method. Three well-known characteristic time dynamic optimisation problems are solved and compared in detail among the reported literature methods. The research results show the effectiveness of the proposed method.

  5. Evolution of cardiorespiratory interactions with age

    PubMed Central

    Iatsenko, D.; Bernjak, A.; Stankovski, T.; Shiogai, Y.; Owen-Lynch, P. J.; Clarkson, P. B. M.; McClintock, P. V. E.; Stefanovska, A.

    2013-01-01

    We describe an analysis of cardiac and respiratory time series recorded from 189 subjects of both genders aged 16–90. By application of the synchrosqueezed wavelet transform, we extract the respiratory and cardiac frequencies and phases with better time resolution than is possible with the marked events procedure. By treating the heart and respiration as coupled oscillators, we then apply a method based on Bayesian inference to find the underlying coupling parameters and their time dependence, deriving from them measures such as synchronization, coupling directionality and the relative contributions of different mechanisms. We report a detailed analysis of the reconstructed cardiorespiratory coupling function, its time evolution and age dependence. We show that the direct and indirect respiratory modulations of the heart rate both decrease with age, and that the cardiorespiratory coupling becomes less stable and more time-variable. PMID:23858485

  6. Evolution of cardiorespiratory interactions with age.

    PubMed

    Iatsenko, D; Bernjak, A; Stankovski, T; Shiogai, Y; Owen-Lynch, P J; Clarkson, P B M; McClintock, P V E; Stefanovska, A

    2013-08-28

    We describe an analysis of cardiac and respiratory time series recorded from 189 subjects of both genders aged 16-90. By application of the synchrosqueezed wavelet transform, we extract the respiratory and cardiac frequencies and phases with better time resolution than is possible with the marked events procedure. By treating the heart and respiration as coupled oscillators, we then apply a method based on Bayesian inference to find the underlying coupling parameters and their time dependence, deriving from them measures such as synchronization, coupling directionality and the relative contributions of different mechanisms. We report a detailed analysis of the reconstructed cardiorespiratory coupling function, its time evolution and age dependence. We show that the direct and indirect respiratory modulations of the heart rate both decrease with age, and that the cardiorespiratory coupling becomes less stable and more time-variable.

  7. Eisenhart lifts and symmetries of time-dependent systems

    NASA Astrophysics Data System (ADS)

    Cariglia, M.; Duval, C.; Gibbons, G. W.; Horváthy, P. A.

    2016-10-01

    Certain dissipative systems, such as Caldirola and Kannai's damped simple harmonic oscillator, may be modelled by time-dependent Lagrangian and hence time dependent Hamiltonian systems with n degrees of freedom. In this paper we treat these systems, their projective and conformal symmetries as well as their quantisation from the point of view of the Eisenhart lift to a Bargmann spacetime in n + 2 dimensions, equipped with its covariantly constant null Killing vector field. Reparametrisation of the time variable corresponds to conformal rescalings of the Bargmann metric. We show how the Arnold map lifts to Bargmann spacetime. We contrast the greater generality of the Caldirola-Kannai approach with that of Arnold and Bateman. At the level of quantum mechanics, we are able to show how the relevant Schrödinger equation emerges naturally using the techniques of quantum field theory in curved spacetimes, since a covariantly constant null Killing vector field gives rise to well defined one particle Hilbert space. Time-dependent Lagrangians arise naturally also in cosmology and give rise to the phenomenon of Hubble friction. We provide an account of this for Friedmann-Lemaître and Bianchi cosmologies and how it fits in with our previous discussion in the non-relativistic limit.

  8. FDR doesn't Tell the Whole Story: Joint Influence of Effect Size and Covariance Structure on the Distribution of the False Discovery Proportions

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Ploutz-Snyder, Robert; Fiedler, James

    2011-01-01

    As part of a 2009 Annals of Statistics paper, Gavrilov, Benjamini, and Sarkar report results of simulations that estimated the false discovery rate (FDR) for equally correlated test statistics using a well-known multiple-test procedure. In our study we estimate the distribution of the false discovery proportion (FDP) for the same procedure under a variety of correlation structures among multiple dependent variables in a MANOVA context. Specifically, we study the mean (the FDR), skewness, kurtosis, and percentiles of the FDP distribution in the case of multiple comparisons that give rise to correlated non-central t-statistics when results at several time periods are being compared to baseline. Even if the FDR achieves its nominal value, other aspects of the distribution of the FDP depend on the interaction between signed effect sizes and correlations among variables, proportion of true nulls, and number of dependent variables. We show examples where the mean FDP (the FDR) is 10% as designed, yet there is a surprising probability of having 30% or more false discoveries. Thus, in a real experiment, the proportion of false discoveries could be quite different from the stipulated FDR.

  9. Pharmacokinetic Variability of Drugs Used for Prophylactic Treatment of Migraine.

    PubMed

    Tfelt-Hansen, Peer; Ågesen, Frederik Nybye; Pavbro, Agniezka; Tfelt-Hansen, Jacob

    2017-05-01

    In this review, we evaluate the variability in the pharmacokinetics of 11 drugs with established prophylactic effects in migraine to facilitate 'personalized medicine' with these drugs. PubMed was searched for 'single-dose' and 'steady-state' pharmacokinetic studies of these 11 drugs. The maximum plasma concentration was reported in 248 single-dose and 115 steady-state pharmacokinetic studies, and the area under the plasma concentration-time curve was reported in 299 single-dose studies and 112 steady-state pharmacokinetic studies. For each study, the coefficient of variation was calculated for maximum plasma concentration and area under the plasma concentration-time curve, and we divided the drug variability into two categories; high variability, coefficient of variation >40%, or low or moderate variability, coefficient of variation <40%. Based on the area under the plasma concentration-time curve in steady-state studies, the following drugs have high pharmacokinetic variability: propranolol in 92% (33/36), metoprolol in 85% (33/39), and amitriptyline in 60% (3/5) of studies. The following drugs have low or moderate variability: atenolol in 100% (2/2), valproate in 100% (15/15), topiramate in 88% (7/8), and naproxen and candesartan in 100% (2/2) of studies. For drugs with low or moderate pharmacokinetic variability, treatment can start without initial titration of doses, whereas titration is used to possibly enhance tolerability of topiramate and amitriptyline. The very high pharmacokinetic variability of metoprolol and propranolol can result in very high plasma concentrations in a small minority of patients, and those drugs should therefore be titrated up from a low initial dose, depending mainly on the occurrence of adverse events.

  10. Manual choice reaction times in the rate-domain

    PubMed Central

    Harris, Christopher M.; Waddington, Jonathan; Biscione, Valerio; Manzi, Sean

    2014-01-01

    Over the last 150 years, human manual reaction times (RTs) have been recorded countless times. Yet, our understanding of them remains remarkably poor. RTs are highly variable with positively skewed frequency distributions, often modeled as an inverse Gaussian distribution reflecting a stochastic rise to threshold (diffusion process). However, latency distributions of saccades are very close to the reciprocal Normal, suggesting that “rate” (reciprocal RT) may be the more fundamental variable. We explored whether this phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs. difficult discrimination) and two instruction sets (urgent vs. accurate). We found that rate distributions were, indeed, very close to Normal, shifting to lower rates with increasing difficulty and accuracy, and for some blocks they appeared to become left-truncated, but still close to Normal. Using autoregressive techniques, we found temporal sequential dependencies for lags of at least 3. We identified a transient and steady-state component in each block. Because rates were Normal, we were able to estimate autoregressive weights using the Box-Jenkins technique, and convert to a moving average model using z-transforms to show explicit dependence on stimulus input. We also found a spatial sequential dependence for the previous 3 lags depending on whether the laterality of previous trials was repeated or alternated. This was partially dissociated from temporal dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice manual RT distributions are close to reciprocal Normal and not the inverse Gaussian. This is not consistent with stochastic rise to threshold models, and we propose a simple optimality model in which reward is maximized to yield to an optimal rate, and hence an optimal time to respond. We discuss how it might be implemented. PMID:24959134

  11. Are your covariates under control? How normalization can re-introduce covariate effects.

    PubMed

    Pain, Oliver; Dudbridge, Frank; Ronald, Angelica

    2018-04-30

    Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.

  12. Adult Demography and Larval Processes in Coastal Benthic Populations: Intertidal Barnacles in Southern California and Baja California

    DTIC Science & Technology

    2005-09-01

    mechanism for near-shore concentration and estuarine recruitment of post-larval Penaeus plebejus Hess ( Decapoda , Penaeidae). Estuarine, Coastal and...the physical The dynamics of coastal populations is highly processes that are likely to affect the distribution dependent on the mechanisms and...help. I was lucky to land on a lab where, depending on the lunar phase, time of year, and who knows what other environmental variables, I would find a

  13. Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations.

    PubMed

    Beiran, Manuel; Kruscha, Alexandra; Benda, Jan; Lindner, Benjamin

    2018-04-01

    We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

  14. Variable Order and Distributed Order Fractional Operators

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2002-01-01

    Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. This paper develops the concept of variable and distributed order fractional operators. Definitions based on the Riemann-Liouville definitions are introduced and behavior of the operators is studied. Several time domain definitions that assign different arguments to the order q in the Riemann-Liouville definition are introduced. For each of these definitions various characteristics are determined. These include: time invariance of the operator, operator initialization, physical realization, linearity, operational transforms. and memory characteristics of the defining kernels. A measure (m2) for memory retentiveness of the order history is introduced. A generalized linear argument for the order q allows the concept of "tailored" variable order fractional operators whose a, memory may be chosen for a particular application. Memory retentiveness (m2) and order dynamic behavior are investigated and applications are shown. The concept of distributed order operators where the order of the time based operator depends on an additional independent (spatial) variable is also forwarded. Several definitions and their Laplace transforms are developed, analysis methods with these operators are demonstrated, and examples shown. Finally operators of multivariable and distributed order are defined in their various applications are outlined.

  15. Time Delays of Blazar Flares Observed at Different Wavebands

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.

    2000-01-01

    Correlated variability at different frequencies can probe the structure and physics of the jet of a blazar on size scales much smaller than can be resolved by telescopes and interferometers. I discuss some observations of frequency dependent time lags and how these place constraints on models for the nonthermal emission in blazars. The time lags can be either positive (high frequency variations leading those at lower frequencies) or negative, while simultaneous flares are also possible.

  16. Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations.

    PubMed

    Irrmischer, Mona; van der Wal, C Natalie; Mansvelder, Huibert D; Linkenkaer-Hansen, Klaus

    2018-01-01

    There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability.

  17. Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations

    PubMed Central

    van der Wal, C. Natalie; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus

    2018-01-01

    There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability. PMID:29746529

  18. Visitor Behavior at Melbourne Zoo.

    ERIC Educational Resources Information Center

    Churchman, David

    The potential educational impact of the Melbourne Zoo (Australia) for recreational visitors was examined in this study using time as the major dependent variable. Specific goals included: (1) assessment of the potential cognitive and affective educational impact of zoos on recreational visitors; (2) determination of the temporal and spatial…

  19. Response-reinforcer dependency and resistance to change.

    PubMed

    Cançado, Carlos R X; Abreu-Rodrigues, Josele; Aló, Raquel Moreira; Hauck, Flávia; Doughty, Adam H

    2018-01-01

    The effects of the response-reinforcer dependency on resistance to change were studied in three experiments with rats. In Experiment 1, lever pressing produced reinforcers at similar rates after variable interreinforcer intervals in each component of a two-component multiple schedule. Across conditions, in the fixed component, all reinforcers were response-dependent; in the alternative component, the percentage of response-dependent reinforcers was 100, 50 (i.e., 50% response-dependent and 50% response-independent) or 10% (i.e., 10% response-dependent and 90% response-independent). Resistance to extinction was greater in the alternative than in the fixed component when the dependency in the former was 10%, but was similar between components when this dependency was 100 or 50%. In Experiment 2, a three-component multiple schedule was used. The dependency was 100% in one component and 10% in the other two. The 10% components differed on how reinforcers were programmed. In one component, as in Experiment 1, a reinforcer had to be collected before the scheduling of other response-dependent or independent reinforcers. In the other component, response-dependent and -independent reinforcers were programmed by superimposing a variable-time schedule on an independent variable-interval schedule. Regardless of the procedure used to program the dependency, resistance to extinction was greater in the 10% components than in the 100% component. These results were replicated in Experiment 3 in which, instead of extinction, VT schedules replaced the baseline schedules in each multiple-schedule component during the test. We argue that the relative change in dependency from Baseline to Test, which is greater when baseline dependencies are high rather than low, could account for the differential resistance to change in the present experiments. The inconsistencies in results across the present and previous experiments suggest that the effects of dependency on resistance to change are not well understood. Additional systematic analyses are important to further understand the effects of the response-reinforcer relation on resistance to change and to the development of a more comprehensive theory of behavioral persistence. © 2017 Society for the Experimental Analysis of Behavior.

  20. Comparison and covalidation of ozone anomalies and variability observed in SBUV(/2) and Umkehr northern midlatitude ozone profile estimates

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I.; Ahn, Changwoo; Bhartia, P. K.; Flynn, L. E.

    2005-03-01

    This analysis presents comparisons of upper-stratosphere ozone information observed by two independent systems: the Solar Backscatter UltraViolet (SBUV and SBUV/2) satellite instruments, and ground-based Dobson spectrophotometers. Both the new SBUV Version 8 and the new UMK04 profile retrieval algorithms are optimized for studying long-term variability and trends in ozone. Trend analyses of the ozone time series from the SBUV(/2) data set are complex because of the multiple instruments involved, changes in the instruments' geo-location, and short periods of overlaps for inter-calibrations among different instruments. Three northern middle latitudes Dobson ground stations (Arosa, Boulder, and Tateno) are used in this analysis to validate the trend quality of the combined 25-year SBUV/2 time series, 1979 to 2003. Generally, differences between the satellite and ground-based data do not suggest any significant time-dependent shifts or trends. The shared features confirm the value of these data sets for studies of ozone variability.

  1. A formal method for identifying distinct states of variability in time-varying sources: SGR A* as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Witzel, G.; Ghez, A. M.

    2014-08-10

    Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works withmore » conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.« less

  2. Solar Variability in the Context of Other Climate Forcing Mechanisms

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1999-01-01

    I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.

  3. Finite element modeling of diffusion and partitioning in biological systems: the infinite composite medium problem.

    PubMed

    Missel, P J

    2000-01-01

    Four methods are proposed for modeling diffusion in heterogeneous media where diffusion and partition coefficients take on differing values in each subregion. The exercise was conducted to validate finite element modeling (FEM) procedures in anticipation of modeling drug diffusion with regional partitioning into ocular tissue, though the approach can be useful for other organs, or for modeling diffusion in laminate devices. Partitioning creates a discontinuous value in the dependent variable (concentration) at an intertissue boundary that is not easily handled by available general-purpose FEM codes, which allow for only one value at each node. The discontinuity is handled using a transformation on the dependent variable based upon the region-specific partition coefficient. Methods were evaluated by their ability to reproduce a known exact result, for the problem of the infinite composite medium (Crank, J. The Mathematics of Diffusion, 2nd ed. New York: Oxford University Press, 1975, pp. 38-39.). The most physically intuitive method is based upon the concept of chemical potential, which is continuous across an interphase boundary (method III). This method makes the equation of the dependent variable highly nonlinear. This can be linearized easily by a change of variables (method IV). Results are also given for a one-dimensional problem simulating bolus injection into the vitreous, predicting time disposition of drug in vitreous and retina.

  4. Evidence for history-dependence of influenza pandemic emergence

    NASA Astrophysics Data System (ADS)

    Hill, Edward M.; Tildesley, Michael J.; House, Thomas

    2017-03-01

    Influenza A viruses have caused a number of global pandemics, with considerable mortality in humans. Here, we analyse the time periods between influenza pandemics since 1700 under different assumptions to determine whether the emergence of new pandemic strains is a memoryless or history-dependent process. Bayesian model selection between exponential and gamma distributions for these time periods gives support to the hypothesis of history-dependence under eight out of nine sets of modelling assumptions. Using the fitted parameters to make predictions shows a high level of variability in the modelled number of pandemics from 2010-2110. The approach we take here relies on limited data, so is uncertain, but it provides cheap, safe and direct evidence relating to pandemic emergence, a field where indirect measurements are often made at great risk and cost.

  5. Navier-Stokes solution on the CYBER-203 by a pseudospectral technique

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J.; Hussaini, M. Y.; Bokhari, S.; Orszag, S. A.

    1983-01-01

    A three-level, time-split, mixed spectral/finite difference method for the numerical solution of the three-dimensional, compressible Navier-Stokes equations has been developed and implemented on the Control Data Corporation (CDC) CYBER-203. This method uses a spectral representation for the flow variables in the streamwise and spanwise coordinates, and central differences in the normal direction. The five dependent variables are interleaved one horizontal plane at a time and the array of their values at the grid points of each horizontal plane is a typical vector in the computation. The code is organized so as to require, per time step, a single forward-backward pass through the entire data base. The one-and two-dimensional Fast Fourier Transforms are performed using software especially developed for the CYBER-203.

  6. An investigation of the influence of process and formulation variables on mechanical properties of high shear granules using design of experiment.

    PubMed

    Mangwandi, Chirangano; Adams, Michael J; Hounslow, Michael J; Salman, Agba D

    2012-05-10

    Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. About the relationships among variables observed in the real world

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.

    2018-06-01

    Since a stationary chaotic system is determined by nonlinear equations connecting its components, the appurtenance of two variables to such a system has been considered a sign of nontrivial relationships between them including also other quantities. These relationships could remain hidden for the approach usually employed in the research analyses, which is based on the extent of the correlation that characterises the dependence of one variable on the other. The appurtenance to the same system can be hypothesized if the topological features of the attractors reconstructed from two time series representing the evolution of the corresponding variables are close to each other. However, the possibility that both attractors represent different systems with similar behaviour cannot be excluded. For that reason, an approach allowing the reconstruction of the attractor by using jointly two time series was proposed and the conclusion about the common origin of the variables under study can be made if this attractor is topologically similar to those built separately from the two time series. In the present study, the features of the attractors were presented by the correlation dimension and the largest Lyapunov exponent and the proposed algorithm has been tested on numerically generated sequences obtained from various maps. It is believed that this approach could be used to reveal connections among the variables observed in experiments or field measurements.

  8. A time to search: finding the meaning of variable activation energy.

    PubMed

    Vyazovkin, Sergey

    2016-07-28

    This review deals with the phenomenon of variable activation energy frequently observed when studying the kinetics in the liquid or solid phase. This phenomenon commonly manifests itself through nonlinear Arrhenius plots or dependencies of the activation energy on conversion computed by isoconversional methods. Variable activation energy signifies a multi-step process and has a meaning of a collective parameter linked to the activation energies of individual steps. It is demonstrated that by using appropriate models of the processes, the link can be established in algebraic form. This allows one to analyze experimentally observed dependencies of the activation energy in a quantitative fashion and, as a result, to obtain activation energies of individual steps, to evaluate and predict other important parameters of the process, and generally to gain deeper kinetic and mechanistic insights. This review provides multiple examples of such analysis as applied to the processes of crosslinking polymerization, crystallization and melting of polymers, gelation, and solid-solid morphological and glass transitions. The use of appropriate computational techniques is discussed as well.

  9. Effectiveness Trial of Community-Based I Choose Life-Africa Human Immunodeficiency Virus Prevention Program in Kenya

    PubMed Central

    Adam, Mary B.

    2014-01-01

    We measured the effectiveness of a human immunodeficiency virus (HIV) prevention program developed in Kenya and carried out among university students. A total of 182 student volunteers were randomized into an intervention group who received a 32-hour training course as HIV prevention peer educators and a control group who received no training. Repeated measures assessed HIV-related attitudes, intentions, knowledge, and behaviors four times over six months. Data were analyzed by using linear mixed models to compare the rate of change on 13 dependent variables that examined sexual risk behavior. Based on multi-level models, the slope coefficients for four variables showed reliable change in the hoped for direction: abstinence from oral, vaginal, or anal sex in the last two months, condom attitudes, HIV testing, and refusal skill. The intervention demonstrated evidence of non-zero slope coefficients in the hoped for direction on 12 of 13 dependent variables. The intervention reduced sexual risk behavior. PMID:24957544

  10. Effectiveness trial of community-based I Choose Life-Africa human immunodeficiency virus prevention program in Kenya.

    PubMed

    Adam, Mary B

    2014-09-01

    We measured the effectiveness of a human immunodeficiency virus (HIV) prevention program developed in Kenya and carried out among university students. A total of 182 student volunteers were randomized into an intervention group who received a 32-hour training course as HIV prevention peer educators and a control group who received no training. Repeated measures assessed HIV-related attitudes, intentions, knowledge, and behaviors four times over six months. Data were analyzed by using linear mixed models to compare the rate of change on 13 dependent variables that examined sexual risk behavior. Based on multi-level models, the slope coefficients for four variables showed reliable change in the hoped for direction: abstinence from oral, vaginal, or anal sex in the last two months, condom attitudes, HIV testing, and refusal skill. The intervention demonstrated evidence of non-zero slope coefficients in the hoped for direction on 12 of 13 dependent variables. The intervention reduced sexual risk behavior. © The American Society of Tropical Medicine and Hygiene.

  11. Metadynamics convergence law in a multidimensional system

    NASA Astrophysics Data System (ADS)

    Crespo, Yanier; Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro

    2010-05-01

    Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to reconstruct the free-energy surface as a function of the relevant collective variables s . In Bussi [Phys. Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased estimate of the free energy F(s) . We here study the convergence properties of this approach in a multidimensional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo metadynamics simulation of an Ising model the time average of the history-dependent potential converge to F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows recovering an accurate estimate of F(s) . These results have been obtained introducing a functional form of the history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy landscape.

  12. Metadynamics convergence law in a multidimensional system.

    PubMed

    Crespo, Yanier; Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro

    2010-05-01

    Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to reconstruct the free-energy surface as a function of the relevant collective variables s . In Bussi [Phys. Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased estimate of the free energy F(s) . We here study the convergence properties of this approach in a multidimensional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo metadynamics simulation of an Ising model the time average of the history-dependent potential converge to F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows recovering an accurate estimate of F(s) . These results have been obtained introducing a functional form of the history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy landscape.

  13. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  14. Derivation of Hodgkin-Huxley equations for a Na+ channel from a master equation for coupled activation and inactivation

    NASA Astrophysics Data System (ADS)

    Vaccaro, S. R.

    2016-11-01

    The Na+ current in nerve and muscle membranes may be described in terms of the activation variable m (t ) and the inactivation variable h (t ) , which are dependent on the transitions of S4 sensors of each of the Na+ channel domains DI to DIV. The time-dependence of the Na+ current and the rate equations satisfied by m (t ) and h (t ) may be derived from the solution to a master equation that describes the coupling between two or three activation sensors regulating the Na+ channel conductance and a two-stage inactivation process. If the inactivation rate from the closed or open states increases as the S4 sensors activate, a more general form of the Hodgkin-Huxley expression for the open-state probability may be derived where m (t ) is dependent on both activation and inactivation processes. The voltage dependence of the rate functions for inactivation and recovery from inactivation are consistent with the empirically determined expressions and exhibit saturation for both depolarized and hyperpolarized clamp potentials.

  15. Effect of Methamphetamine Dependence on Heart Rate Variability

    PubMed Central

    Henry, Brook L.; Minassian, Arpi; Perry, William

    2010-01-01

    Background Methamphetamine (METH) is an increasing popular and highly addictive stimulant associated with autonomic nervous system (ANS) dysfunction, cardiovascular pathology, and neurotoxicity. Heart rate variability (HRV) has been used to assess autonomic function and predict mortality in cardiac disorders and drug intoxication, but has not been characterized in METH use. We recorded HRV in a sample of currently abstinent individuals with a history of METH dependence compared to age- and gender-matched drug-free comparison subjects. Method HRV was assessed using time domain, frequency domain, and nonlinear entropic analyses in 17 previously METH-dependent and 21 drug-free comparison individuals during a 5 minute rest period. Results The METH-dependent group demonstrated significant reduction in HRV, reduced parasympathetic activity, and diminished heartbeat complexity relative to comparison participants. More recent METH use was associated with increased sympathetic tone. Conclusion Chronic METH exposure may be associated with decreased HRV, impaired vagal function, and reduction in heart rate complexity as assessed by multiple methods of analysis. We discuss and review evidence that impaired HRV may be related to the cardiotoxic or neurotoxic effects of prolonged METH use. PMID:21182570

  16. Optimization of a GO2/GH2 Swirl Coaxial Injector Element

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    1999-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) swirl coaxial injector element. The element is optimized in terms of design variables such as fuel pressure drop, DELTA P(sub f), oxidizer pressure drop, DELTA P(sub 0) combustor length, L(sub comb), and full cone swirl angle, theta, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w) injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 180 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Two examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio.

  17. Large-eddy simulation of a turbulent mixing layer

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Ferziger, J. H.; Reynolds, W. C.

    1978-01-01

    The three dimensional, time dependent (incompressible) vorticity equations were used to simulate numerically the decay of isotropic box turbulence and time developing mixing layers. The vorticity equations were spatially filtered to define the large scale turbulence field, and the subgrid scale turbulence was modeled. A general method was developed to show numerical conservation of momentum, vorticity, and energy. The terms that arise from filtering the equations were treated (for both periodic boundary conditions and no stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.

  18. Hierarchical Hopping through Localized States in a Random Potential

    NASA Astrophysics Data System (ADS)

    Rajan, Harihar; Srivastava, Vipin

    2003-03-01

    Generalisation of Mott's idea on (low - temperature, large-time), Variable-range-hopping is considered to include hopping at some what higher temperature(that do not kill localization). These transitions complement the variable- range-hopping in that they do not conserve energy and occur at relatively lower time scales. The hopper picks the next state in a hierarchical fashion in accordance with certain conditions. The results are found to tie up nicely with an interesting property pertaining to the energy dependence of localized states. Acknowlwdgements: One of us(VS) would like to thank Association of Commonwealth Universities and Leverhulme Trust for financial help and to Sir Sam Edwards for hospitality at Cavendish Laboratory,Cambridge CB3 0HE.

  19. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest.

    PubMed

    Delpierre, Nicolas; Berveiller, Daniel; Granda, Elena; Dufrêne, Eric

    2016-04-01

    Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Using XMM-Newton to study the energy-dependent variability of H 1743-322 during its 2014 outburst

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2016-08-01

    Black hole transients evolve during bright outbursts, showing distinct changes in their spectral and variability properties. These changes are interpreted as evidence for changes in the accretion flow and in the X-ray-emitting regions. We obtained an anticipated XMM-Newton Target of Opportunity observation of H 1743-322 during its outburst in 2014 September. Based on data from eight outbursts observed in the last 10 yr, we expected to catch the start of the hard-to-soft state transition. The fact that neither the general shape of the observed power density spectrum nor the characteristic frequency shows an energy dependence implies that the source remained in the low-hard state at the time of our observation near outburst peak. The spectral properties agree with the source being in the low-hard state, and a Swift/XRT monitoring of the outburst revealed that H 1743-322 stayed in the low-hard state during the entire outburst (known as a `failed outburst'). Here we derive the averaged QPO waveform and obtain phase-resolved spectra. A comparison of the phase-resolved spectra with the phase-averaged energy spectrum reveals spectral pivoting. We compare variability on long and short time-scales using covariance spectra and find that the covariance ratio does not show an increase towards lower energies. In other binaries an increase has been found. There are two possible explanations: either the absence of additional disc variability on longer time-scales is related to the high inclination of H 1743-322 compared with other black hole X-ray binaries, or it is the reason why we observe H 1743-322 during a failed outburst. More data on failed outbursts and on high-inclination sources will be needed in order to investigate these two possibilities further.

  1. Process connectivity reveals ecohydrologic sensitivity to drought and rainfall pulses

    NASA Astrophysics Data System (ADS)

    Goodwell, A. E.; Kumar, P.

    2017-12-01

    Ecohydrologic fluxes within atmosphere, canopy and soil systems exhibit complex and joint variability. This complexity arises from direct and indirect forcing and feedback interactions that can cause fluctuations to propagate between water, energy, and nutrient fluxes at various time scales. When an ecosystem is perturbed in the form of a single storm event, an accumulating drought, or changes in climate and land cover, this aspect of joint variability may dictate responsiveness and resilience of the entire system. A characterization of the time-dependent and multivariate connectivity between processes, fluxes, and states is necessary to identify and understand these aspects of ecohydrologic systems. We construct Temporal Information Partitioning Networks (TIPNets), based on information theory measures, to identify time-dependencies between variables measured at flux towers along elevation and climate gradients in relation to their responses to moisture-related perturbations. Along a flux tower transect in the Reynolds Creek Critical Zone Observatory (CZO) in Idaho, we detect a significant network response to a large 2015 dry season rainfall event that enhances microbial respiration and latent heat fluxes. At a transect in the Southern Sierra CZO in California, we explore network properties in relation to drought responses from 2011 to 2015. We find that both high and low elevation sites exhibit decreased connectivity between atmospheric and soil variables and latent heat fluxes, but the higher elevation site is less sensitive to this altered connectivity in terms of average monthly heat fluxes. Through a novel approach to gage the responsiveness of ecosystem fluxes to shifts in connectivity, this study aids our understanding of ecohydrologic sensitivity to short-term rainfall events and longer term droughts. This study is relevant to ecosystem resilience under a changing climate, and can lead to a greater understanding of shifting behaviors in many types of complex systems.

  2. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    PubMed

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  3. Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling.

    PubMed

    Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian

    2012-09-01

    This paper investigates the problem of master-slave synchronization for neural networks with discrete and distributed delays under variable sampling with a known upper bound on the sampling intervals. An improved method is proposed, which captures the characteristic of sampled-data systems. Some delay-dependent criteria are derived to ensure the exponential stability of the error systems, and thus the master systems synchronize with the slave systems. The desired sampled-data controller can be achieved by solving a set of linear matrix inequalitys, which depend upon the maximum sampling interval and the decay rate. The obtained conditions not only have less conservatism but also have less decision variables than existing results. Simulation results are given to show the effectiveness and benefits of the proposed methods.

  4. Perceived Discrimination and Binge Eating Disorder; Gender Difference in African Americans.

    PubMed

    Assari, Shervin

    2018-04-24

    Environmental stressors, such as perceived discrimination (PD), are linked to Binge Eating Disorder (BED). The current study investigated the association between PD and BED among African Americans, and the variation in such an association based on gender. Data of the National Survey of American Life (NSAL), 2001⁻2003, with a nationally-representative sample of African American adults, were used ( n = 3516). The independent variable in the study was PD. The dependent variable was BED, measured using the Composite International Diagnostic Interview (CIDI). Socio-demographics (age, education, employment, and marital status) were covariates, and gender was the moderator variable. Survey logistic regressions with and without gender × PD interaction terms were used for data analysis. In the pooled sample, PD was associated with higher odds of BED, net of socio-demographic factors. Models also showed a significant gender × PD interaction term suggesting a stronger association between PD and BED for women, compared to men. Gender specific models showed an association between PD and BED among female, but not male, African Americans. Although a link may exist between PD and BED among African Americans, the magnitude of this association depends on gender, with a stronger association among females than males. This finding is in line with the literature that has shown gender-specific consequences of environmental stress for African Americans.

  5. Ubiquitous time variability of integrated stellar populations.

    PubMed

    Conroy, Charlie; van Dokkum, Pieter G; Choi, Jieun

    2015-11-26

    Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected 'pixel shimmer' in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.

  6. Effect of infiltration modeling approach on operational solutions for furrow irrigation

    USDA-ARS?s Scientific Manuscript database

    Infiltration in irrigated furrows depends on the variation of depth of flow and, thus, wetted perimeter along the field and in time. However, the magnitude of the wetted perimeter effect has not been clearly established due to soil variability, erosion and deposition, macropore flow, and other proc...

  7. Model accuracy impact through rescaled observations in hydrological data assimilation studies

    USDA-ARS?s Scientific Manuscript database

    Signal and noise time-series variability of soil moisture datasets (e.g. satellite-, model-, station-based) vary greatly. Optimality of the analysis obtained after observations are assimilated into the model depends on the degree that the differences between the signal variances of model and observa...

  8. Emotion-Work Performance among Dual-Earner Couples: Testing Four Theoretical Perspectives

    ERIC Educational Resources Information Center

    Minnotte, Krista Lynn; Stevens, Daphne Pedersen; Minnotte, Michael C.; Kiger, Gary

    2007-01-01

    This study compares four theories of domestic labor in their ability to predict relative emotion-work performance among dual-earner couples. Specifically, the authors investigate the effects of gender ideology, time availability, relative resources, and crossover factors on the dependent variable of relative emotion-work performance using…

  9. Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note

    PubMed Central

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Kujach, Sylwester; Kato, Morimasa; Soya, Hideaki

    2014-01-01

    [Purpose] Functional near-infrared spectroscopy (fNIRS) provides functional imaging of cortical activations by measuring regional oxy- and deoxy-hemoglobin (Hb) changes in the forehead during a cognitive task. There are, however, potential problems regarding NIRS signal contamination by non-cortical hemodynamic (NCH) variables such as skin blood flow, middle cerebral artery blood flow, and heart rate (HR), which are further complicated during acute exercise. It is thus necessary to determine the appropriate post-exercise timing that allows for valid NIRS assessment during a task without any increase in NCH variables. Here, we monitored post-exercise changes in NCH parameters with different intensities of exercise. [Methods] Fourteen healthy young participants cycled 30, 50 and 70% of their peak oxygen uptake (Vo2peak) for 10 min per intensity, each on different days. Changes in skin blood flow velocity (SBFv), middle cerebral artery mean blood velocity (MCA Vmean) and HR were monitored before, during, and after the exercise. [Results] Post-exercise levels of both SBFv and HR in contrast to MCA Vmean remained high compared to basal levels and the times taken to return to baseline levels for both parameters were delayed (2-8 min after exercise), depending upon exercise intensity. [Conclusion] These results indicate that the delayed clearance of NCH variables of up to 8 min into the post-exercise phase may contaminate NIRS measurements, and could be a limitation of NIRS-based neuroimaging studies. PMID:25671198

  10. Ultrafast demagnetization at high temperatures

    NASA Astrophysics Data System (ADS)

    Hoveyda, F.; Hohenstein, E.; Judge, R.; Smadici, S.

    2018-05-01

    Time-resolved pump-probe measurements were made at variable heat accumulation in Co/Pd superlattices. Heat accumulation increases the baseline temperature and decreases the equilibrium magnetization. Transient ultrafast demagnetization first develops with higher fluence in parallel with strong equilibrium thermal spin fluctuations. The ultrafast demagnetization is then gradually removed as the equilibrium temperature approaches the Curie temperature. The transient magnetization time-dependence is well fit with the spin-flip scattering model.

  11. Further Results on Finite-Time Partial Stability and Stabilization. Applications to Nonlinear Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammazi, Chaker

    2009-03-05

    The paper gives Lyapunov type sufficient conditions for partial finite-time and asymptotic stability in which some state variables converge to zero while the rest converge to constant values that possibly depend on the initial conditions. The paper then presents partially asymptotically stabilizing controllers for many nonlinear control systems for which continuous asymptotically stabilizing (in the usual sense) controllers are known not to exist.

  12. Internal Wave Impact on the Performance of a Hypothetical Mine Hunting Sonar

    DTIC Science & Technology

    2014-10-01

    time steps) to simulate the propagation of the internal wave field through the mine field. Again the transmission loss and acoustic signal strength...dependent internal wave perturbed sound speed profile was evaluated by calculating the temporal variability of the signal excess (SE) of acoustic...internal wave perturbation of the sound speed profile, was calculated for a limited sound speed field time section. Acoustic signals were projected

  13. A Search for Giant Planet Companions to T Tauri Stars

    DTIC Science & Technology

    2012-12-20

    yielded a spectral resolving power of R ≡ (λ/Δλ) ≈ 60,000. Integration times were typically 1800 s (depending on conditions) and typical seeing was∼2...wavelength regions. This suggests different physical mechanisms underlying the optical and the K-band variability. Key words: planets and satellites ...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  14. Two-phase strategy of neural control for planar reaching movements: I. XY coordination variability and its relation to end-point variability.

    PubMed

    Rand, Miya K; Shimansky, Yury P

    2013-03-01

    A quantitative model of optimal transport-aperture coordination (TAC) during reach-to-grasp movements has been developed in our previous studies. The utilization of that model for data analysis allowed, for the first time, to examine the phase dependence of the precision demand specified by the CNS for neurocomputational information processing during an ongoing movement. It was shown that the CNS utilizes a two-phase strategy for movement control. That strategy consists of reducing the precision demand for neural computations during the initial phase, which decreases the cost of information processing at the expense of lower extent of control optimality. To successfully grasp the target object, the CNS increases precision demand during the final phase, resulting in higher extent of control optimality. In the present study, we generalized the model of optimal TAC to a model of optimal coordination between X and Y components of point-to-point planar movements (XYC). We investigated whether the CNS uses the two-phase control strategy for controlling those movements, and how the strategy parameters depend on the prescribed movement speed, movement amplitude and the size of the target area. The results indeed revealed a substantial similarity between the CNS's regulation of TAC and XYC. First, the variability of XYC within individual trials was minimal, meaning that execution noise during the movement was insignificant. Second, the inter-trial variability of XYC was considerable during the majority of the movement time, meaning that the precision demand for information processing was lowered, which is characteristic for the initial phase. That variability significantly decreased, indicating higher extent of control optimality, during the shorter final movement phase. The final phase was the longest (shortest) under the most (least) challenging combination of speed and accuracy requirements, fully consistent with the concept of the two-phase control strategy. This paper further discussed the relationship between motor variability and XYC variability.

  15. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.

  16. Control of end-tidal PCO2 reduces middle cerebral artery blood velocity variability: implications for physiological neuroimaging.

    PubMed

    Harris, Ashley D; Ide, Kojiro; Poulin, Marc J; Frayne, Richard

    2006-02-15

    Breath-by-breath variability of the end-tidal partial pressure of CO2 (Pet(CO2)) has been shown to be associated with cerebral blood flow (CBF) fluctuations. These fluctuations can impact neuroimaging techniques that depend on cerebrovascular blood flow. We hypothesized that controlling Pet(CO2) would reduce CBF variability. Dynamic end-tidal forcing was used to control Pet(CO2) at 1.5 mm Hg above the resting level and to hold the end-tidal partial pressure of oxygen (Pet(O2)) at the resting level. Peak blood velocity in the middle cerebral artery (MCA) was measured by transcranial Doppler ultrasound (TCD) as an index of CBF. Blood velocity parameters and timing features were determined on each waveform and the variance of these parameters was compared between Normal (air breathing) and Forcing (end-tidal gas control) sessions. The variability of all velocity parameters was significantly reduced in the Forcing session. In particular, the variability of the average velocity over the cardiac cycle was decreased by 18.2% (P < 0.001). For the most part, the variability of the timing parameters was unchanged. Thus, we conclude that controlling Pet(CO2) is effective in reducing CBF variability, which would have important implications for physiologic neuroimaging.

  17. Polarization swings reveal magnetic energy dissipation in blazars

    DOE PAGES

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; ...

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less

  18. Cortisol and somatization.

    PubMed

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  19. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.

  20. State-variable theories for nonelastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.Y.

    The various concepts of mechanical equation of state for nonelastic deformation in crystalline solids, originally proposed for plastic deformation, have been recently extended to describe additional phenomena such as anelastic and microplastic deformation including the Bauschinger effect. It has been demonstrated that it is possible to predict, based on current state variables in a unified way, the mechanical response of a material under an arbitrary loading. Thus, if the evolution laws of the state variables are known, one can describe the behavior of a material for a thermal-mechanical path of interest, for example, during constant load (or stress) creep withoutmore » relying on specialized theories. Some of the existing theories of mechanical equation of state for nonelastic deformation are reviewed. The establishment of useful forms of mechanical equation of state has to depend on extensive experimentation in the same way as that involved in the development, for example, the ideal gas law. Recent experimental efforts are also reviewed. It has been possible to develop state-variable deformation models based on experimental findings and apply them to creep, cyclic deformation, and other time-dependent deformation. Attempts are being made to correlate the material parameters of the state-variable models with the microstructure of a material. 24 figures.« less

  1. The application of vacuum redistillation of patchouli oil to improve patchouli alcohol compound

    NASA Astrophysics Data System (ADS)

    Asnawi, T. M.; Alam, P. N.; Husin, H.; Zaki, M.

    2018-04-01

    Patchouli oil produced by traditional distillation of patchouli leaves and stems by farmers in Aceh still has low patchouli alcohol compound. In order to increase patchouli alcohol concentration, vacuum redistillation process using packed column was introduced. This research was conducted to fractionate terpene (alpha-copinene) from oxygenated hydrocarbon (patchouli alcohol) compound. The operation condition was conducted at two variables that was dependent variable and independent variable. The dependent variable was the 30 cm height distillation packed column, by using raschig ring with 8 mm x 8 mm dimension. And the independent variable was operating temperature 130 °C and 140 °C., vacuum pressure 143,61 mbar, 121,60 mbar and 88,59 mbar and operation time 2 hours, 3 hours and 5 hours. Total of treatments applied in this works were 3 x 3 x 3 or equal to 27 treatments. Patchouli oil used in this research was obtained from Desa Teladan-Lembah Seulawah, Aceh Province. The initial patchouli alcohol compound which analyzed with GC-MS contained 16,02% before treatment applied. After vacuum redistillation process treatment applied patchouli oil concentration increase up to 34,67%. Physico-chemical test of patchouli oil after vacuum redistillation is in accordance with SNI 06-23852006 standard.

  2. Soliton and periodic solutions for time-dependent coefficient non-linear equation

    NASA Astrophysics Data System (ADS)

    Guner, Ozkan

    2016-01-01

    In this article, we establish exact solutions for the generalized (3+1)-dimensional variable coefficient Kadomtsev-Petviashvili (GVCKP) equation. Using solitary wave ansatz in terms of ? functions and the modified sine-cosine method, we find exact analytical bright soliton solutions and exact periodic solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The effectiveness and reliability of the method are shown by its application to the GVCKP equation.

  3. Effects of climate change and variability on population dynamics in a long-lived shorebird.

    PubMed

    van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J; Oosterbeek, Kees; Tinbergen, Joost M

    2010-04-01

    Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the effect of changes in mean and variance of winter temperature on different vital rates across the life cycle. Subsequently, we quantify, using stochastic stage-structured models, how changes in the mean and variance of this environmental variable affect important characteristics of the future population dynamics, such as the time to extinction. Local mean winter temperature is predicted to strongly increase, and we show that this is likely to increase the population's persistence time via its positive effects on adult survival that outweigh the negative effects that higher temperatures have on fecundity. Interannual variation in winter temperature is predicted to decrease, which is also likely to increase persistence time via its positive effects on adult survival that outweigh the negative effects that lower temperature variability has on fecundity. Overall, a 0.1 degrees C change in mean temperature is predicted to alter median time to extinction by 1.5 times as many years as would a 0.1 degrees C change in the standard deviation in temperature, suggesting that the dynamics of oystercatchers are more sensitive to changes in the mean than in the interannual variability of this climatic variable. Moreover, as climate models predict larger changes in the mean than in the standard deviation of local winter temperature, the effects of future climatic variability on this population's time to extinction are expected to be overwhelmed by the effects of changes in climatic means. We discuss the mechanisms by which climatic variability can either increase or decrease population viability and how this might depend both on species' life histories and on the vital rates affected. This study illustrates that, for making reliable inferences about population consequences in species in which life history changes with age or stage, it is crucial to investigate the impact of climate change on vital rates across the entire life cycle. Disturbingly, such data are unavailable for most species of conservation concern.

  4. Finance issue brief: health care claims payment: prompt payment: year end report-2003.

    PubMed

    MacEachern, Lillian

    2003-12-31

    Since the mid 1990's state legislators and regulators have worked to resolve the complex issue of timely payment of health care claims. They have been challenged with bridging the communication gap between provider and payor and forced to address such base problems as what determines a correctly billed service. As time has progressed it is ever apparent that the completion of payment for services is dependent on many variables, not just simply timely processing of a claim.

  5. Quantifying variability in delta experiments

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Berg, S. R.; McElroy, B. J.

    2017-12-01

    Large populations of people and wildlife make their homes on river deltas, therefore it is important to be able to make useful and accurate predictions of how these landforms will change over time. However, making predictions can be a challenge due to inherent variability of the natural system. Furthermore, when we extrapolate results from the laboratory to the field setting, we bring with it random and systematic errors of the experiment. We seek to understand both the intrinsic and experimental variability of river delta systems to help better inform predictions of how these landforms will evolve. We run exact replicates of experiments with steady sediment and water discharge and record delta evolution with overhead time lapse imaging. We measure aspects of topset progradation and channel dynamics and compare these metrics of delta morphology between the 6 replicated experimental runs. We also use data from all experimental runs collectively to build a large dataset to extract statistics of the system properties. We find that although natural variability exists, the processes in the experiments must have outcomes that no longer depend on their initial conditions after some time. Applying these results to the field scale will aid in our ability to make forecasts of how these landforms will progress.

  6. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy.

    PubMed

    Jacobs, Julia; Hawco, Colin; Kobayashi, Eliane; Boor, Rainer; LeVan, Pierre; Stephani, Ulrich; Siniatchkin, Michael; Gotman, Jean

    2008-04-01

    EEG-fMRI is a non-invasive tool to investigate epileptogenic networks in patients with epilepsy. Different patterns of BOLD responses have been observed in children as compared to adults. A high intra- and intersubject variability of the hemodynamic response function (HRF) to epileptic discharges has been observed in adults. The actual HRF to epileptic discharges in children and its dependence on age are unknown. We analyzed 64 EEG-fMRI event types in 37 children (3 months to 18 years), 92% showing a significant BOLD response. HRFs were calculated for each BOLD cluster using a Fourier basis set. After excluding HRFs with a low signal-to-noise ratio, 126 positive and 98 negative HRFs were analyzed. We evaluated age-dependent changes as well as the effect of increasing numbers of spikes. Peak time, amplitude and signal-to-noise ratio of the HRF and the t-statistic score of the cluster were used as dependent variables. We observed significantly longer peak times of the HRF in the youngest children (0 to 2 years), suggesting that the use of multiple HRFs might be important in this group. A different coupling between neuronal activity and metabolism or blood flow in young children may cause this phenomenon. Even if the t-value increased with frequent spikes, the amplitude of the HRF decreased significantly with spike frequency. This reflects a violation of the assumptions of the General Linear Model and therefore the use of alternative analysis techniques may be more appropriate with high spiking rates, a common situation in children.

  7. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy

    PubMed Central

    Jacobs, Julia; Hawco, Colin; Kobayashi, Eliane; Boor, Rainer; LeVan, Pierre; Stephani, Ulrich; Siniatchkin, Michael; Gotman, Jean

    2013-01-01

    EEG-fMRI is a non-invasive tool to investigate epileptogenic networks in patients with epilepsy. Different patterns of BOLD responses have been observed in children as compared to adults. A high intra- and intersubject variability of the hemodynamic response function (HRF) to epileptic discharges has been observed in adults. The actual HRF to epileptic discharges in children and its dependence on age are unknown. We analyzed 64 EEG-fMRI event types in 37 children (3 months to 18 years), 92% showing a significant BOLD response. HRFs were calculated for each BOLD cluster using a Fourier basis set. After excluding HRFs with a low signal-to-noise ratio, 126 positive and 98 negative HRFs were analyzed. We evaluated age-dependent changes as well as the effect of increasing numbers of spikes. Peak time, amplitude and signal-to-noise ratio of the HRF and the t-statistic score of the cluster were used as dependent variables. We observed significantly longer peak times of the HRF in the youngest children (0 to 2 years), suggesting that the use of multiple HRFs might be important in this group. A different coupling between neuronal activity and metabolism or blood flow in young children may cause this phenomenon. Even if the t-value increased with frequent spikes, the amplitude of the HRF decreased significantly with spike frequency. This reflects a violation of the assumptions of the General Linear Model and therefore the use of alternative analysis techniques may be more appropriate with high spiking rates, a common situation in children. PMID:18221891

  8. Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances.

    PubMed

    Chekroun, Mickaël David; Neelin, J David; Kondrashov, Dmitri; McWilliams, James C; Ghil, Michael

    2014-02-04

    Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them--as filtered through an observable of the system--is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap--defined as the distance between the subdominant RP resonance and the unit circle--plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño-Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.

  9. Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances

    PubMed Central

    Chekroun, Mickaël David; Neelin, J. David; Kondrashov, Dmitri; McWilliams, James C.; Ghil, Michael

    2014-01-01

    Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them—as filtered through an observable of the system—is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap—defined as the distance between the subdominant RP resonance and the unit circle—plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño–Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally. PMID:24443553

  10. Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series

    NASA Astrophysics Data System (ADS)

    Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.

    2017-12-01

    Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016). Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101.

  11. Collocation mismatch uncertainties in satellite aerosol retrieval validation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2018-02-01

    Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the retrieval errors to the total uncertainty estimates including the CMU in the validation. We find that accounting for CMU increases the fraction of consistent observations.

  12. A first-order global model of Late Cenozoic climatic change: Orbital forcing as a pacemaker of the ice ages

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1992-01-01

    The development of a theory of the evolution of the climate of the earth over millions of years can be subdivided into three fundamental, nested, problems: (1) to establish by equilibrium climate models (e.g., general circulation models) the diagnostic relations, valid at any time, between the fast-response climate variables (i.e., the 'weather statistics') and both the prescribed external radiative forcing and the prescribed distribution of the slow response variables (e.g., the ice sheets and shelves, the deep ocean state, and the atmospheric CO2 concentration); (2) to construct, by an essentially inductive process, a model of the time-dependent evolution of the slow-response climatic variables over time scales longer than the damping times of these variables but shorter than the time scale of tectonic changes in the boundary conditions (e.g., altered geography and elevation of the continents, slow outgassing, and weathering) and ultra-slow astronomical changes such as in the solar radiative output; and (3) to determine the nature of these ultra-slow processes and their effects on the evolution of the equilibrium state of the climatic system about which the above time-dependent variations occur. All three problems are discussed in the context of the theory of the Quaternary climate, which will be incomplete unless it is embedded in a more general theory for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. We construct a simple mathematical model for the Late Cenozoic climatic changes based on the hypothesis that forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2), coupled with changes in the deep ocean state and ice mass, under the additional 'pacemaking' influence of earth-orbital forcing, are primary determinants of the climate state over this period. Our goal is to illustrate how a single model governing both very long term variations and higher frequency oscillatory variations in the Pleistocene can be formulated with relatively few adjustable parameters.

  13. The relationship between the nicotine metabolite ratio and three self-report measures of nicotine dependence across sex and race.

    PubMed

    Schnoll, Robert A; George, Tony P; Hawk, Larry; Cinciripini, Paul; Wileyto, Paul; Tyndale, Rachel F

    2014-06-01

    Variability in the rate of nicotine metabolism, measured by the nicotine metabolite ratio (NMR), is associated with smoking behavior. However, data linking the NMR with nicotine dependence measured by the Fagerström test for nicotine dependence (FTND) are mixed. Few past studies have examined alternative measures of nicotine dependence and how this relationship may vary by sex and race. Using data from smokers undergoing eligibility evaluation for a smoking cessation clinical trial (n = 833), this study examined variability in the relationship between NMR and nicotine dependence across sex and race and using three measures of nicotine dependence: FTND, time-to-first-cigarette (TTFC), and the heaviness of smoking index (HSI). Controlling for sex and race, nicotine metabolism was associated with nicotine dependence only when using the HSI (p < 0.05). Male normal metabolizers of nicotine were more likely to have high nicotine dependence based on the FTND and HSI (p < 0.05), but NMR was not related to measures of nicotine dependence in women. For African Americans, the NMR was associated with nicotine dependence only for the TTFC (p < 0.05), but NMR was not associated with nicotine dependence among Caucasians. Post hoc analyses indicated that the NMR was associated with cigarettes per day, overall, and among men and Caucasians (p < 0.05). While there was some variation in the relationship between nicotine metabolism and nicotine dependence across measures and sex and race, the results indicate that this relationship may be more attributable to the association between NMR and cigarettes per day.

  14. Effects of Variable Inflationary Conditions on AN Inventory Model with Inflation-Proportional Demand Rate

    NASA Astrophysics Data System (ADS)

    Mirzazadeh, Abolfazl

    2009-08-01

    The inflation rate in the most of the previous researches has been considered constant and well-known over the time horizon, although the future rate of inflation is inherently uncertain and unstable, and is difficult to predict it accurately. Therefore, A time varying inventory model for deteriorating items with allowable shortages is developed in this paper. The inflation rates (internal and external) are time-dependent and demand rate is inflation-proportional. The inventory level is described by differential equations over the time horizon and present value method is used. The numerical example is given to explain the results. Some particular cases, which follow the main problem, will discuss and the results will compare with the main model by using the numerical examples. It has been achieved which shortages increases considerably in comparison with the case of without variable inflationary conditions.

  15. Time variability of viscosity parameter in differentially rotating discs

    NASA Astrophysics Data System (ADS)

    Rajesh, S. R.; Singh, Nishant K.

    2014-07-01

    We propose a mechanism to produce fluctuations in the viscosity parameter (α) in differentially rotating discs. We carried out a nonlinear analysis of a general accretion flow, where any perturbation on the background α was treated as a passive/slave variable in the sense of dynamical system theory. We demonstrate a complete physical picture of growth, saturation and final degradation of the perturbation as a result of the nonlinear nature of coupled system of equations. The strong dependence of this fluctuation on the radial location in the accretion disc and the base angular momentum distribution is demonstrated. The growth of fluctuations is shown to have a time scale comparable to the radial drift time and hence the physical significance is discussed. The fluctuation is found to be a power law in time in the growing phase and we briefly discuss its statistical significance.

  16. On two diffusion neuronal models with multiplicative noise: The mean first-passage time properties

    NASA Astrophysics Data System (ADS)

    D'Onofrio, G.; Lansky, P.; Pirozzi, E.

    2018-04-01

    Two diffusion processes with multiplicative noise, able to model the changes in the neuronal membrane depolarization between two consecutive spikes of a single neuron, are considered and compared. The processes have the same deterministic part but different stochastic components. The differences in the state-dependent variabilities, their asymptotic distributions, and the properties of the first-passage time across a constant threshold are investigated. Closed form expressions for the mean of the first-passage time of both processes are derived and applied to determine the role played by the parameters involved in the model. It is shown that for some values of the input parameters, the higher variability, given by the second moment, does not imply shorter mean first-passage time. The reason for that can be found in the complete shape of the stationary distribution of the two processes. Applications outside neuroscience are also mentioned.

  17. Continuous-Time Random Walk with multi-step memory: an application to market dynamics

    NASA Astrophysics Data System (ADS)

    Gubiec, Tomasz; Kutner, Ryszard

    2017-11-01

    An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  18. Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach.

    PubMed

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng

    2016-03-01

    This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.

  19. Electrical, structural and morphological properties of chemically sprayed F-doped ZnO films: effect of the ageing-time of the starting solution, solvent and substrate temperature

    NASA Astrophysics Data System (ADS)

    Guillén-Santiago, A.; Olvera, M. De La L.; Maldonado, A.; Asomoza, R.; Acosta, D. R.

    2004-04-01

    Conductive and highly transparent fluorine-doped zinc oxide (ZnO:F) thin films were deposited onto glass substrates by the chemical spray technique, using zinc acetate and hydrofluoric acid as precursors. Electrical, structural, morphological and optical characteristics were analyzed as a function of the ageing-time of the starting solution, alcoholic solvent type (methanol or ethanol) and the substrate temperature. The results show that these variables play a crucial role on the physical properties measured. The growth rates obtained were of 3 nm/s, showing that the chemical species involved are adequate for the film growth. The effect of the solution ageing-time on the electrical properties was monitored along three weeks. A gradual resistivity decrease with the ageing-time was observed, until a minimum value is reached, at 7 or 9 days depending on the alcohol employed. Films deposited after this time have resistivity values slightly higher. All the films were polycrystalline, with a hexagonal wurtzite structure whose preferential growth is strongly dependent on the deposition variables. Under optimal deposition conditions, ZnO:F films with a high transmittance in the visible spectrum (>85%), resistivity as low as 7 × 10-3 cm and maximum electronic mobility around of 4 cm2/(V-s) were obtained.

  20. Outcome-Dependent Sampling with Interval-Censored Failure Time Data

    PubMed Central

    Zhou, Qingning; Cai, Jianwen; Zhou, Haibo

    2017-01-01

    Summary Epidemiologic studies and disease prevention trials often seek to relate an exposure variable to a failure time that suffers from interval-censoring. When the failure rate is low and the time intervals are wide, a large cohort is often required so as to yield reliable precision on the exposure-failure-time relationship. However, large cohort studies with simple random sampling could be prohibitive for investigators with a limited budget, especially when the exposure variables are expensive to obtain. Alternative cost-effective sampling designs and inference procedures are therefore desirable. We propose an outcome-dependent sampling (ODS) design with interval-censored failure time data, where we enrich the observed sample by selectively including certain more informative failure subjects. We develop a novel sieve semiparametric maximum empirical likelihood approach for fitting the proportional hazards model to data from the proposed interval-censoring ODS design. This approach employs the empirical likelihood and sieve methods to deal with the infinite-dimensional nuisance parameters, which greatly reduces the dimensionality of the estimation problem and eases the computation difficulty. The consistency and asymptotic normality of the resulting regression parameter estimator are established. The results from our extensive simulation study show that the proposed design and method works well for practical situations and is more efficient than the alternative designs and competing approaches. An example from the Atherosclerosis Risk in Communities (ARIC) study is provided for illustration. PMID:28771664

  1. Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation.

    PubMed

    Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha

    2008-09-01

    Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.

  2. Effect of Temperature on Heart Rate Variability in Neonatal ICU Patients With Hypoxic-Ischemic Encephalopathy.

    PubMed

    Massaro, An N; Campbell, Heather E; Metzler, Marina; Al-Shargabi, Tareq; Wang, Yunfei; du Plessis, Adre; Govindan, Rathinaswamy B

    2017-04-01

    To determine whether measures of heart rate variability are related to changes in temperature during rewarming after therapeutic hypothermia for hypoxic-ischemic encephalopathy. Prospective observational study. Level 4 neonatal ICU in a free-standing academic children's hospital. Forty-four infants with moderate to severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. Continuous electrocardiogram data from 2 hours prior to rewarming through 2 hours after completion of rewarming (up to 10 hr) were analyzed. Median beat-to-beat interval and measures of heart rate variability were quantified including beat-to-beat interval SD, low and high frequency relative spectral power, detrended fluctuation analysis short and long α exponents (αS and αL), and root mean square short and long time scales. The relationships between heart rate variability measures and esophageal/axillary temperatures were evaluated. Heart rate variability measures low frequency, αS, and root mean square short and long time scales were negatively associated, whereas αL was positively associated, with temperature (p < 0.01). These findings signify an overall decrease in heart rate variability as temperature increased toward normothermia. Measures of heart rate variability are temperature dependent in the range of therapeutic hypothermia to normothermia. Core body temperature needs to be considered when evaluating heart rate variability metrics as potential physiologic biomarkers of illness severity in hypoxic-ischemic encephalopathy infants undergoing therapeutic hypothermia.

  3. HIV-1 subtype A gag variability and epitope evolution.

    PubMed

    Abidi, Syed Hani; Kalish, Marcia L; Abbas, Farhat; Rowland-Jones, Sarah; Ali, Syed

    2014-01-01

    The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes. We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G → A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined. The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956 ± 1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2-3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005-2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005-2010. It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.

  4. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    PubMed

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sole larval supply to coastal nurseries: Interannual variability and connectivity at interregional and interpopulation scales

    NASA Astrophysics Data System (ADS)

    Savina, M.; Lunghi, M.; Archambault, B.; Baulier, L.; Huret, M.; Le Pape, O.

    2016-05-01

    Simulating fish larval drift helps assess the sensitivity of recruitment variability to early life history. An individual-based model (IBM) coupled to a hydrodynamic model was used to simulate common sole larval supply from spawning areas to coastal and estuarine nursery grounds at the meta-population scale (4 assessed stocks), from the southern North Sea to the Bay of Biscay (Western Europe) on a 26-yr time series, from 1982 to 2007. The IBM allowed each particle released to be transported by currents, to grow depending on temperature, to migrate vertically depending on development stage, to die along pelagic stages or to settle on a nursery, representing the life history from spawning to metamorphosis. The model outputs were analysed to explore interannual patterns in the amounts of settled sole larvae at the population scale; they suggested: (i) a low connectivity between populations at the larval stage, (ii) a moderate influence of interannual variation in the spawning biomass, (iii) dramatic consequences of life history on the abundance of settling larvae and (iv) the effects of climate variability on the interannual variability of the larvae settlement success.

  6. An Analysis on the Unemployment Rate in the Philippines: A Time Series Data Approach

    NASA Astrophysics Data System (ADS)

    Urrutia, J. D.; Tampis, R. L.; E Atienza, JB

    2017-03-01

    This study aims to formulate a mathematical model for forecasting and estimating unemployment rate in the Philippines. Also, factors which can predict the unemployment is to be determined among the considered variables namely Labor Force Rate, Population, Inflation Rate, Gross Domestic Product, and Gross National Income. Granger-causal relationship and integration among the dependent and independent variables are also examined using Pairwise Granger-causality test and Johansen Cointegration Test. The data used were acquired from the Philippine Statistics Authority, National Statistics Office, and Bangko Sentral ng Pilipinas. Following the Box-Jenkins method, the formulated model for forecasting the unemployment rate is SARIMA (6, 1, 5) × (0, 1, 1)4 with a coefficient of determination of 0.79. The actual values are 99 percent identical to the predicted values obtained through the model, and are 72 percent closely relative to the forecasted ones. According to the results of the regression analysis, Labor Force Rate and Population are the significant factors of unemployment rate. Among the independent variables, Population, GDP, and GNI showed to have a granger-causal relationship with unemployment. It is also found that there are at least four cointegrating relations between the dependent and independent variables.

  7. Optimization of a GO2/GH2 Impinging Injector Element

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar

    2001-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) impinging injector element. The unlike impinging element, a fuel-oxidizer- fuel (F-O-F) triplet, is optimized in terms of design variables such as fuel pressure drop, (Delta)P(sub f), oxidizer pressure drop, (Delta)P(sub o), combustor length, L(sub comb), and impingement half-angle, alpha, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 163 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface which includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, specific variable weights are further increased to illustrate the high marginal cost of realizing the last increment of injector performance and thruster weight.

  8. Regression Methods for Categorical Dependent Variables: Effects on a Model of Student College Choice

    ERIC Educational Resources Information Center

    Rapp, Kelly E.

    2012-01-01

    The use of categorical dependent variables with the classical linear regression model (CLRM) violates many of the model's assumptions and may result in biased estimates (Long, 1997; O'Connell, Goldstein, Rogers, & Peng, 2008). Many dependent variables of interest to educational researchers (e.g., professorial rank, educational attainment) are…

  9. Overcoming multicollinearity in multiple regression using correlation coefficient

    NASA Astrophysics Data System (ADS)

    Zainodin, H. J.; Yap, S. J.

    2013-09-01

    Multicollinearity happens when there are high correlations among independent variables. In this case, it would be difficult to distinguish between the contributions of these independent variables to that of the dependent variable as they may compete to explain much of the similar variance. Besides, the problem of multicollinearity also violates the assumption of multiple regression: that there is no collinearity among the possible independent variables. Thus, an alternative approach is introduced in overcoming the multicollinearity problem in achieving a well represented model eventually. This approach is accomplished by removing the multicollinearity source variables on the basis of the correlation coefficient values based on full correlation matrix. Using the full correlation matrix can facilitate the implementation of Excel function in removing the multicollinearity source variables. It is found that this procedure is easier and time-saving especially when dealing with greater number of independent variables in a model and a large number of all possible models. Hence, in this paper detailed insight of the procedure is shown, compared and implemented.

  10. Statins and Risk of Lower Limb Revision Surgery: The Influence of Differences in Study Design Using Electronic Health Records From the United Kingdom and Denmark

    PubMed Central

    Lalmohamed, Arief; van Staa, Tjeerd P.; Vestergaard, Peter; Leufkens, Hubertus G. M.; de Boer, Anthonius; Emans, Pieter; Cooper, Cyrus; de Vries, Frank

    2016-01-01

    Abstract Previous observational studies on statins have shown variable results based on the methodology used. Our objective was to study the association between statins and orthopedic implant failure and to explore the influence of methodological differences in study design. Our study base consisted of patients with a primary total joint replacement in Denmark and the United Kingdom (n = 189,286; 1987–2012). We used 4 study designs: 1) case-control (each patient with revision surgery matched to 4 controls), 2) time-dependent cohort (postoperative statin use as a time-varying exposure variable), 3) immortal time cohort (misclassifying the time postoperatively before statin use), and 4) time-exclusion cohort (excluding the time postoperatively before statin use). Cox proportional hazards models and logistic regression were used to estimate incidence rate ratios. In the time-dependent cohort design, statin use was associated with a decreased risk of revision surgery (adjusted incidence rate ratio (IRR) = 0.90, 95% confidence interval (CI): 0.85, 0.96), which was similar to our case-control results (IRR = 0.87, 95% CI: 0.81, 0.93). In contrast, both time-fixed cohort designs yielded substantially lower risk estimates (IRR = 0.36 (95% CI: 0.34, 0.38) and IRR = 0.65 (95% CI: 0.63, 0.68), respectively). We discourage the use of time-fixed cohort studies, which may falsely suggest protective effects. The simple choice of how to classify exposure can substantially change results from biologically plausible to implausible. PMID:27317693

  11. Hydrological Dynamics of Central America: Time-of-Emergence of the Global Warming Signal

    NASA Astrophysics Data System (ADS)

    Imbach, P. A.; Georgiou, S.; Calderer, L.; Coto, A.; Nakaegawa, T.; Chou, S. C.; Lyra, A. A.; Hidalgo, H. G.; Ciais, P.

    2016-12-01

    Central America is among the world's most vulnerable regions to climate variability and change. Country economies are highly dependent on the agricultural sector and over 40 million people's rural livelihoods directly depend on the use of natural resources. Future climate scenarios show a drier outlook (higher temperatures and lower precipitation) over a region where rural livelihoods are already compromised by water availability and climate variability. Previous efforts to validate modelling of the regional hydrology have been based on high resolution (1 km2) equilibrium models (Imbach et al., 2010) or using dynamic models (Variable Infiltration Capacity) with coarse climate forcing (0.5°) (Hidalgo et al., 2013; Maurer et al., 2009). We present here: (i) validation of the hydrological outputs from high-resolution simulations (10 km2) of a dynamic vegetation model (Orchidee), using 7 different sets of model input forcing data, with monthly runoff observations from 182 catchments across Central America; (ii) the first assessments of the region's hydrological variability using the historical simulations (iii) an estimation of the time of emergence of the climate change signal (under the SRES emission scenarios) on the water balance. We found model performance to be comparable with that from studies in other world regions (Yang et al. 2016) when forced with high resolution precipitation data (monthly values at 5 km2, Funk et al. (2015)) and the Climate Research Unit (CRU 3.2, Harris et al. (2014)) dataset of meteorological parameters. Validation results showed a Pearson correlation coefficient ≈ 0.6, general underestimation of runoff of ≈ 60% and variability close to observed values (ratio of standard deviations of ≈ 0.7). Maps of historical runoff are presented to show areas where high runoff variability follows high mean annual runoff, with opposite trends over the Caribbean. Future scenarios show large areas where future maximum water availability will always fall below minus-one standard deviation of the historical values by mid-century. Additionally, our results highlight the time horizon left to develop adaptation strategies to cope with future reductions in water availability.

  12. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetzel, KD; Aldrich, LL; Trimboli, MS

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables.more » (C) 2014 Elsevier B.V. All rights reserved.« less

  13. Reliability, resilience and vulnerability criteria for the evaluation of time-dependent health risks: A hypothetical case study of wellhead protection

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; Silliman, S. E.; Bolster, D.

    2012-12-01

    A hypothetical case study of groundwater contaminant protection was carried out using time-dependent health risk calculations. The case study focuses on a hypothetical zoning project for parcels of land around a well field in northern Indiana, where the control of cancer risk relative to a mandated cancer risk threshold is of concern in the management strategy. Within our analysis, we include both uncertainty in the subsurface transport and variability in population behavior in the calculation of time-dependent health risks. From these results we introduce risk maps, a visual representation of the probability of an unacceptable health risk as a function of population behavior and the time at which exposure to the contaminant begins. We also evaluate the time-dependent risks with three criteria from water resource literature: reliability, resilience, and vulnerability (RRV). With respect to health risk from a groundwater well, the three criteria determine: the probability that a well produces safe water (reliability), the probability that a contaminated well returns to an uncontaminated state within a specified time interval (resilience), and the overall severity in terms of health impact of the contamination at a well head (vulnerability). The results demonstrate that the distributions of RRV values for each parcel of land are linked to the time-dependent concentration profile of the contaminant at the well, and the toxicological characteristics of the contaminant. The proposed time-dependent risk calculation expands on current techniques to include a continuous exposure start time, capable of reproducing the maximum risk while providing information on the severity and duration of health risks. Overall this study suggests that, especially in light of the inherent complexity of health-groundwater systems, RRV are viable criteria for relatively simple and effective evaluation of time-dependent health risk. It is argued that the RRV approach, as applied to consideration of potential health impact, allows for more informed, health-based decisions regarding zoning for wellhead protection.

  14. Incorporating Duration Information in Activity Recognition

    NASA Astrophysics Data System (ADS)

    Chaurasia, Priyanka; Scotney, Bryan; McClean, Sally; Zhang, Shuai; Nugent, Chris

    Activity recognition has become a key issue in smart home environments. The problem involves learning high level activities from low level sensor data. Activity recognition can depend on several variables; one such variable is duration of engagement with sensorised items or duration of intervals between sensor activations that can provide useful information about personal behaviour. In this paper a probabilistic learning algorithm is proposed that incorporates episode, time and duration information to determine inhabitant identity and the activity being undertaken from low level sensor data. Our results verify that incorporating duration information consistently improves the accuracy.

  15. Dynamic characteristics of a variable-mass flexible missile

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1970-01-01

    The general motion of a variable mass flexible missile with internal flow and aerodynamic forces is considered. The resulting formulation comprises six ordinary differential equations for rigid body motion and three partial differential equations for elastic motion. The simultaneous differential equations are nonlinear and possess time-dependent coefficients. The differential equations are solved by a semi-analytical method leading to a set of purely ordinary differential equations which are then solved numerically. A computer program was developed for the numerical solution and results are presented for a given set of initial conditions.

  16. Two-D results on human operator perception

    NASA Technical Reports Server (NTRS)

    Siapkara, A. A.; Sheridan, T. B.

    1981-01-01

    The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.

  17. Quantifying the residence time and flushing characteristics of a shallow, back-barrier estuary: Application of hydrodynamic and particle tracking models

    USGS Publications Warehouse

    Defne, Zafer; Ganju, Neil K.

    2015-01-01

    Estuarine residence time is a major driver of eutrophication and water quality. Barnegat Bay-Little Egg Harbor (BB-LEH), New Jersey, is a lagoonal back-barrier estuary that is subject to anthropogenic pressures including nutrient loading, eutrophication, and subsequent declines in water quality. A combination of hydrodynamic and particle tracking modeling was used to identify the mechanisms controlling flushing, residence time, and spatial variability of particle retention. The models demonstrated a pronounced northward subtidal flow from Little Egg Inlet in the south to Pt. Pleasant Canal in the north due to frictional effects in the inlets, leading to better flushing of the southern half of the estuary and particle retention in the northern estuary. Mean residence time for BB-LEH was 13 days but spatial variability was between ∼0 and 30 days depending on the initial particle location. Mean residence time with tidal forcing alone was 24 days (spatial variability between ∼0 and 50 days); the tides were relatively inefficient in flushing the northern end of the Bay. Scenarios with successive exclusion of physical processes from the models revealed that meteorological and remote offshore forcing were stronger drivers of exchange than riverine inflow. Investigations of water quality and eutrophication should take into account spatial variability in hydrodynamics and residence time in order to better quantify the roles of nutrient loading, production, and flushing.

  18. A fully Sinc-Galerkin method for Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Lund, J.

    1990-01-01

    A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.

  19. Times of Maximum Light: The Passband Dependence

    NASA Astrophysics Data System (ADS)

    Joner, M. D.; Laney, C. D.

    2004-05-01

    We present UBVRIJHK light curves for the dwarf Cepheid variable star AD Canis Minoris. These data are part of a larger project to determine absolute magnitudes for this class of stars. Our figures clearly show changes in the times of maximum light, the amplitude, and the light curve morphology that are dependent on the passband used in the observation. Note that when data from a variety of passbands are used in studies that require a period analysis or that search for small changes in the pulsational period, it is easy to introduce significant systematic errors into the results. We thank the Brigham Young University Department of Physics and Astronmy for continued support of our research. We also acknowledge the South African Astronomical Observatory for time granted to this project.

  20. Practice makes perfect in memory recall

    PubMed Central

    Romani, Sandro; Katkov, Mikhail

    2016-01-01

    A large variability in performance is observed when participants recall briefly presented lists of words. The sources of such variability are not known. Our analysis of a large data set of free recall revealed a small fraction of participants that reached an extremely high performance, including many trials with the recall of complete lists. Moreover, some of them developed a number of consistent input-position-dependent recall strategies, in particular recalling words consecutively (“chaining”) or in groups of consecutively presented words (“chunking”). The time course of acquisition and particular choice of positional grouping were variable among participants. Our results show that acquiring positional strategies plays a crucial role in improvement of recall performance. PMID:26980785

  1. The intrinsic dependence structure of peak, volume, duration, and average intensity of hyetographs and hydrographs

    NASA Astrophysics Data System (ADS)

    Serinaldi, Francesco; Kilsby, Chris G.

    2013-06-01

    The information contained in hyetographs and hydrographs is often synthesized by using key properties such as the peak or maximum value Xp, volume V, duration D, and average intensity I. These variables play a fundamental role in hydrologic engineering as they are used, for instance, to define design hyetographs and hydrographs as well as to model and simulate the rainfall and streamflow processes. Given their inherent variability and the empirical evidence of the presence of a significant degree of association, such quantities have been studied as correlated random variables suitable to be modeled by multivariate joint distribution functions. The advent of copulas in geosciences simplified the inference procedures allowing for splitting the analysis of the marginal distributions and the study of the so-called dependence structure or copula. However, the attention paid to the modeling task has overlooked a more thorough study of the true nature and origin of the relationships that link Xp,V,D, and I. In this study, we apply a set of ad hoc bootstrap algorithms to investigate these aspects by analyzing the hyetographs and hydrographs extracted from 282 daily rainfall series from central eastern Europe, three 5 min rainfall series from central Italy, 80 daily streamflow series from the continental United States, and two sets of 200 simulated universal multifractal time series. Our results show that all the pairwise dependence structures between Xp,V,D, and I exhibit some key properties that can be reproduced by simple bootstrap algorithms that rely on a standard univariate resampling without resort to multivariate techniques. Therefore, the strong similarities between the observed dependence structures and the agreement between the observed and bootstrap samples suggest the existence of a numerical generating mechanism based on the superposition of the effects of sampling data at finite time steps and the process of summing realizations of independent random variables over random durations. We also show that the pairwise dependence structures are weakly dependent on the internal patterns of the hyetographs and hydrographs, meaning that the temporal evolution of the rainfall and runoff events marginally influences the mutual relationships of Xp,V,D, and I. Finally, our findings point out that subtle and often overlooked deterministic relationships between the properties of the event hyetographs and hydrographs exist. Confusing these relationships with genuine stochastic relationships can lead to an incorrect application of multivariate distributions and copulas and to misleading results.

  2. Ocean Surface Wave Optical Roughness: Analysis of Innovative Measurements

    DTIC Science & Technology

    2013-12-16

    relationship of MSS to wind speed, and at times has shown a reversal of the Cox-Munk linear relationship. Furthermore, we observe measurable changes in...1985]. The variable speed allocation method has the effect of aliasing (cb) to slower waves, thereby increasing the exponent –m. Our analysis based ...RaDyO) program. The primary research goals of the program are to (1) examine time -dependent oceanic radiance distribution in relation to dynamic

  3. Improved result on stability analysis of discrete stochastic neural networks with time delay

    NASA Astrophysics Data System (ADS)

    Wu, Zhengguang; Su, Hongye; Chu, Jian; Zhou, Wuneng

    2009-04-01

    This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.

  4. Estimation of gloss from rough surface parameters

    NASA Astrophysics Data System (ADS)

    Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin

    2005-12-01

    Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.

  5. Instantaneous and dynamical decoherence

    NASA Astrophysics Data System (ADS)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  6. The Role of Fractality in Perceptual Learning: Exploration in Dynamic Touch

    ERIC Educational Resources Information Center

    Stephen, Damian G.; Arzamarski, Ryan; Michaels, Claire F.

    2010-01-01

    Perceptual systems must learn to explore and to use the resulting information to hone performance. Optimal performance depends on using information available at many time scales, from the near instantaneous values of variables underlying perception (i.e., detection), to longer term information about appropriate scaling (i.e., calibration), to yet…

  7. A DST Model of Multilingualism and the Role of Metalinguistic Awareness

    ERIC Educational Resources Information Center

    Jessner, Ulrike

    2008-01-01

    This paper suggests that a dynamic systems theory (DST) provides an adequate conceptual metaphor for discussing multilingual development. Multilingual acquisition is a nonlinear and complex dynamic process depending on a number of interacting factors. Variability plays a crucial role in the multilingual system as it changes over time (Herdina &…

  8. Variability of furrow infiltration and irrigation performance in a macroporous soil

    USDA-ARS?s Scientific Manuscript database

    The study of spatial and temporal variations of infiltration in furrows is essential for the design and management of surface irrigation. A key difficulty in quantifying the process is that infiltration is dependent on the depth of flow, which varies along a furrow and with time. An additional diffi...

  9. Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution

    ERIC Educational Resources Information Center

    Verkuilen, Jay; Smithson, Michael

    2012-01-01

    Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…

  10. Influence of Image Interactivity on Approach Responses towards an Online Retailer.

    ERIC Educational Resources Information Center

    Fiore, Ann Marie; Jin, Hyun-Jeong

    2003-01-01

    Measured the effect of exposure to an image interactivity function from an apparel retailer's Web site on approach responses towards the retailer. Dependent variables included attitude towards the online store, willingness to purchase, probability of spending more time than planned shopping, and likelihood of patronizing the online retailer's…

  11. Effects of a Rational-Emotive Mental Health Program on Poorly Achieving, Disruptive High School Students

    ERIC Educational Resources Information Center

    Block, Joel

    1978-01-01

    Failure- and misconduct-prone black and Hispanic high school students were given five weekly sessions of rational-emotive education. Comparisons were made with alternate treatment and on-treatment controls. The rational-emotive groups showed greatest improvement on all dependent variables over an extended period of time. (Author/MFD)

  12. Grouped comparisons of sleep quality for new and personal bedding systems.

    PubMed

    Jacobson, Bert H; Wallace, Tia J; Smith, Doug B; Kolb, Tanner

    2008-03-01

    The purpose of this study was to compare sleep comfort and quality between personal and new bedding systems. A convenience sample (women, n=33; men, n=29) with no clinical history of disturbed sleep participated in the study. Subjects recorded back and shoulder pain, sleep quality, comfort, and efficiency for 28 days each in their personal beds (pre) and in new medium-firm bedding systems (post). Repeated measures ANOVAs revealed significant improvement between pre- and post-test means for all dependent variables. Furthermore, reduction of pain and stiffness and improvement of sleep comfort and quality became more prominent over time. No significant differences were found for the groupings of age, weight, height, or body mass index. It was found that for the cheapest category of beds, lower back pain was significantly (p<0.01) more prominent than for the medium and higher priced beds. Average bed age was 9.5yrs. It was concluded that new bedding systems can significantly improve selected sleep variables and that continuous sleep quality may be dependent on timely replacement of bedding systems.

  13. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    NASA Astrophysics Data System (ADS)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  14. Probabilistic population aging

    PubMed Central

    2017-01-01

    We merge two methodologies, prospective measures of population aging and probabilistic population forecasts. We compare the speed of change and variability in forecasts of the old age dependency ratio and the prospective old age dependency ratio as well as the same comparison for the median age and the prospective median age. While conventional measures of population aging are computed on the basis of the number of years people have already lived, prospective measures are computed also taking account of the expected number of years they have left to live. Those remaining life expectancies change over time and differ from place to place. We compare the probabilistic distributions of the conventional and prospective measures using examples from China, Germany, Iran, and the United States. The changes over time and the variability of the prospective indicators are smaller than those that are observed in the conventional ones. A wide variety of new results emerge from the combination of methodologies. For example, for Germany, Iran, and the United States the likelihood that the prospective median age of the population in 2098 will be lower than it is today is close to 100 percent. PMID:28636675

  15. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil.

    PubMed

    de Sousa, Ricardo Silva; Santos, Vilma Maria; de Melo, Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; van den Brink, Paul J; Araújo, Ademir Sérgio Ferreira

    2017-12-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the time-dependent effect of CTS on the chemical and microbial properties of soil. CTS was applied at 0, 2.5, 5, 10, and 20 Mg ha -1 and the soil chemical and microbial properties were evaluated at 0, 45, 75, 150, and 180 days. Increased CTS rates increased the levels of Ca, Cr, and Mg. While Soil pH, organic C, and P increased with the CTS rates initially, this effect decreased over time. Soil microbial biomass, respiration, metabolic quotient, and dehydrogenase increased with the application of CTS, but decreased over time. Analysis of the Principal Response Curve showed a significant effect of CTS rate on the chemical and microbial properties of the soil over time. The weight of each variable indicated that all soil properties, except β-glucosidase, dehydrogenase and microbial quotient, increased due to the CTS application. However, the highest weights were found for Cr, pH, Ca, P, phosphatase and total organic C. The application of CTS in the soil changed the chemical and microbial properties over time, indicating Cr, pH, Ca, phosphatase, and soil respiration as the more responsive chemical and microbial variables by CTS application.

  16. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics.

    PubMed

    Koons, David N; Colchero, Fernando; Hersey, Kent; Gimenez, Olivier

    2015-06-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semiarid environments experiencing climate change. To address these issues for bison in southern Utah, USA, we applied a Bayesian state-space model to a 72-yr time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited a strong potential to grow from low density (β0 = 0.26; Bayesian credible interval based on 95% of the highest posterior density [BCI] = 0.19-0.33), and weak but statistically significant density dependence (β1 = -0.02, BCI = -0.04 to -0.004). Early spring temperatures also had strong positive effects on population growth (Pfat1 = 0.09, BCI = 0.04-0.14), much more so than precipitation and other temperature-related variables (model weight > three times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early spring temperature could have a greater relative effect on equilibrium abundance than either harvest or. the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife management policies and planning.

  17. Earthquake stress drop and laboratory-inferred interseismic strength recovery

    USGS Publications Warehouse

    Beeler, N.M.; Hickman, S.H.; Wong, T.-F.

    2001-01-01

    We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory-measured fault strength. We assume that repeating earthquakes can be simulated by stick-slip sliding using a spring and slider block model. Simulations with static/kinetic strength, time-dependent strength, and rate- and state-variable-dependent strength indicate that the relationship between loading velocity and recurrence interval can be adequately described by the power law VL ??? trn, where n=-1. Deviations from n=-1 arise from second order effects on strength, with n>-1 corresponding to apparent time-dependent strengthening and n<-1 corresponding to weakening. Simulations with rate and state-variable equations show that dynamic shear stress drop ????d scales with recurrence as d????d/dlntr ??? ??e(b-a), where ??e is the effective normal stress, ??=??/??e, and (a-b)=d??ss/dlnV is the steady-state slip rate dependence of strength. In addition, accounting for seismic energy radiation, we suggest that the static shear stress drop ????s scales as d????s/dlntr ??? ??e(1+??)(b-a), where ?? is the fractional overshoot. The variation of ????s with lntr for earthquake stress drops is somewhat larger than implied by room temperature laboratory values of ?? and b-a. However, the uncertainty associated with the seismic data is large and the discrepancy between the seismic observations and the rate of strengthening predicted by room temperature experiments is less than an order of magnitude. Copyright 2001 by the American Geophysical Union.

  18. Mars dust storms - Interannual variability and chaos

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.; Lyons, James R.

    1993-01-01

    The hypothesis is that the global climate system, consisting of atmospheric dust interacting with the circulation, produces its own interannual variability when forced at the annual frequency. The model has two time-dependent variables representing the amount of atmospheric dust in the northern and southern hemispheres, respectively. Absorption of sunlight by the dust drives a cross-equatorial Hadley cell that brings more dust into the heated hemisphere. The circulation decays when the dust storm covers the globe. Interannual variability manifests itself either as a periodic solution in which the period is a multiple of the Martian year, or as an aperiodic (chaotic) solution that never repeats. Both kinds of solution are found in the model, lending support to the idea that interannual variability is an intrinsic property of the global climate system. The next step is to develop a hierarchy of dust-circulation models capable of being integrated for many years.

  19. Partitioning neuronal variability

    PubMed Central

    Goris, Robbe L.T.; Movshon, J. Anthony; Simoncelli, Eero P.

    2014-01-01

    Responses of sensory neurons differ across repeated measurements. This variability is usually treated as stochasticity arising within neurons or neural circuits. However, some portion of the variability arises from fluctuations in excitability due to factors that are not purely sensory, such as arousal, attention, and adaptation. To isolate these fluctuations, we developed a model in which spikes are generated by a Poisson process whose rate is the product of a drive that is sensory in origin, and a gain summarizing stimulus-independent modulatory influences on excitability. This model provides an accurate account of response distributions of visual neurons in macaque LGN, V1, V2, and MT, revealing that variability originates in large part from excitability fluctuations which are correlated over time and between neurons, and which increase in strength along the visual pathway. The model provides a parsimonious explanation for observed systematic dependencies of response variability and covariability on firing rate. PMID:24777419

  20. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    NASA Astrophysics Data System (ADS)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  1. Estimation of regression laws for ground motion parameters using as case of study the Amatrice earthquake

    NASA Astrophysics Data System (ADS)

    Tiberi, Lara; Costa, Giovanni

    2017-04-01

    The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.

  2. Using state variables to model the response of tumour cells to radiation and heat: a novel multi-hit-repair approach.

    PubMed

    Scheidegger, Stephan; Fuchs, Hans U; Zaugg, Kathrin; Bodis, Stephan; Füchslin, Rudolf M

    2013-01-01

    In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.

  3. Chemical Variability and Biological Activities of Brassica rapa var. rapifera Parts Essential Oils Depending on Geographic Variation and Extraction Technique.

    PubMed

    Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Terfi, Souhila; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda

    2017-06-01

    In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas-chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave-assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  4. Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2014-01-01

    To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species—a result of density-dependence—is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change. PMID:25100702

  5. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes results from both SST and SM anomalies. As with T, SM anomalies affect NEP at a much longer lag time than SST anomalies. These results highlight the role of land-atmosphere coupling in driving climate variability within the Amazon, and suggest that land atmospheric coupling may amplify and delay carbon cycle responses to ocean-atmosphere teleconnections.

  6. Using New Theory and Experimental Methods to Understand the Relative Controls of Storage, Antecedent Conditions and Precipitation Intensity on Transit Time Distributions through a Sloping Soil Lysimeter

    NASA Astrophysics Data System (ADS)

    Kim, M.; Pangle, L. A.; Cardoso, C.; Lora, M.; Wang, Y.; Harman, C. J.; Troch, P. A. A.

    2014-12-01

    Transit time distributions (TTD) are an efficient way of characterizing transport through the complex flow dynamics of a hydrologic system, and can serve as a basis for spatially-integrated solute transport modeling. Recently there has been progress in the development of a theory of time-variable TTDs that captures the effect of temporal variability in the timing of fluxes as well as changes in flow pathways. Furthermore, a new formulation of this theory allows the essential transport properties of a system to be parameterized by a physically meaningful time-variable probability distribution, the Ω function. This distribution determines how the age distribution of water in storage is sampled by the outflow. The form of the Ω function varies if the flow pathways change, but is not determined by the timing of fluxes (unlike the TTD). In this study, we use this theory to characterize transport by transient flows through a homogeneously packed 1 m3 sloping soil lysimeter. The transit time distribution associated with each of four irrigation periods (repeated daily for 24 days) are compared to examine the significance of changes in the Ω function due to variations in total storage, antecedent conditions, and precipitation intensity. We observe both the time-variable TTD and the Ω function experimentally by applying the PERTH method (Harman and Kim, 2014, GRL, 41, 1567-1575). The method allows us to observe multiple overlapping time-variable TTD in controlled experiments using only two conservative tracers. We hypothesize that both the TTD and the Ω function will vary in time, even in this small scale, because water will take different flow pathways depending on the initial state of the lysimeter and irrigation intensity. However, based on primarily modeling, we conjecture that major variability in the Ω function will be limited to a period during and immediately after each irrigation. We anticipate the Ω function is almost time-invariant (or scales simply with total storage) during the recession period because flow pathways are stable during this period. This is one of the first experimental studies of this type, and the results offer insights into solute transport in transient, variably-saturated systems.

  7. The Model for Final Stage of Gravitational Collapse Massless Scalar Field

    NASA Astrophysics Data System (ADS)

    Gladush, V. D.; Mironin, D. V.

    It is known that in General relativity, for some spherically symmetric initial conditions, the massless scalar field (SF) experience the gravitational collapse (Choptuik, 1989), and arise a black hole (BH). According Bekenstein, a BH has no "hair scalar", so the SF is completely under the horizon. Thus, the study of the final stage for the gravitational collapse of a SF is reduced to the construction of a solution of Einstein's equations describing the evolution of a SF inside the BH. In this work, we build the Lagrangian for scalar and gravitationalfields in the spherically symmetric case, when the metric coefficients and SF depends only on the time. In this case, it is convenient to use the methods of classical mechanics. Since the metric allows an arbitrary transformation of time, then the corresponding field variable (g00) is included in the Lagrangian without time derivative. It is a non-dynamic variable, and is included in the Lagrangian as a Lagrange multiplier. A variation of the action on this variable gives the constraint. It turns out that Hamiltonian is proportional to the constraint, and so it is zero. The corresponding Hamilton-Jacobi equation easily integrated. Hence, we find the relation between the SF and the metric. To restore of time dependence we using an equation dL / dq' = dS / dq After using a gauge condition, it allows us to find solution. Thus, we find the evolution of the SF inside the BH, which describes the final stage of the gravitational collapse of a SF. It turns out that the mass BH associated with a scalar charge G of the corresponding SF inside the BH ratio M = G/(2√ κ).

  8. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    PubMed

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  9. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules

    PubMed Central

    Frémaux, Nicolas; Gerstner, Wulfram

    2016-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide “when” to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators. PMID:26834568

  10. Breaking Down the Coercive Cycle: How Parent and Child Risk Factors Influence Real-Time Variability in Parental Responses to Child Misbehavior

    PubMed Central

    Lunkenheimer, Erika; Lichtwarck-Aschoff, Anna; Hollenstein, Tom; Kemp, Christine J.; Granic, Isabela

    2016-01-01

    Objective Parent-child coercive cycles have been associated with both rigidity and inconsistency in parenting behavior. To explain these mixed findings, we examined real-time variability in maternal responses to children's off-task behavior to determine whether this common trigger of the coercive cycle (responding to child misbehavior) is associated with rigidity or inconsistency in parenting. We also examined the effects of risk factors for coercion (maternal hostility, maternal depressive symptoms, child externalizing problems, and dyadic negativity) on patterns of parenting. Design Mother-child dyads (N = 96; M child age = 41 months) completed a difficult puzzle task, and observations were coded continuously for parent (e.g., directive, teaching) and child behavior (e.g., on-task, off-task). Results Multilevel continuous-time survival analyses revealed that parenting behavior is less variable when children are off-task. However, when risk factors are higher, a different profile emerges. Combined maternal and child risk is associated with markedly lower variability in parenting behavior overall (i.e., rigidity) paired with shifts towards higher variability specifically when children are off-task (i.e., inconsistency). Dyadic negativity (i.e., episodes when children are off-task and parents engage in negative behavior) are also associated with higher parenting variability. Conclusions Risk factors confer rigidity in parenting overall, but in moments when higher-risk parents must respond to child misbehavior, their parenting becomes more variable, suggesting inconsistency and ineffectiveness. This context-dependent shift in parenting behavior may help explain prior mixed findings and offer new directions for family interventions designed to reduce coercive processes. PMID:28190978

  11. Variability and predictors of negative mood intensity in patients with borderline personality disorder and recurrent suicidal behavior: multilevel analyses applied to experience sampling methodology.

    PubMed

    Nisenbaum, Rosane; Links, Paul S; Eynan, Rahel; Heisel, Marnin J

    2010-05-01

    Variability in mood swings is a characteristic of borderline personality disorder (BPD) and is associated with suicidal behavior. This study investigated patterns of mood variability and whether such patterns could be predicted from demographic and suicide-related psychological risk factors. Eighty-two adults with BPD and histories of recurrent suicidal behavior were recruited from 3 outpatient psychiatric programs in Canada. Experience sampling methodology (ESM) was used to assess negative mood intensity ratings on a visual analogue scale, 6 random times daily, for 21 days. Three-level models estimated variability between times (52.8%), days (22.2%), and patients (25.1%) and supported a quadratic pattern of daily mood variability. Depression scores predicted variability between patients' initial rating of the day. Average daily mood patterns depended on levels of hopelessness, suicide ideation, and sexual abuse history. Patients reporting moderate to severe sexual abuse and elevated suicide ideation were characterized by worsening moods from early morning up through evening, with little or no relief; patients reporting mild sexual abuse and low suicide ideation reported improved mood throughout the day. These patterns, if replicated in larger ESM studies, may potentially assist the clinician in determining which patients require close monitoring.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho

    Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with amore » smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.« less

  13. Analysis of the labor productivity of enterprises via quantile regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2017-07-01

    In this study, we have analyzed the factors that affect the performance of Turkey's Top 500 Industrial Enterprises using quantile regression. The variable about labor productivity of enterprises is considered as dependent variable, the variableabout assets is considered as independent variable. The distribution of labor productivity of enterprises is right-skewed. If the dependent distribution is skewed, linear regression could not catch important aspects of the relationships between the dependent variable and its predictors due to modeling only the conditional mean. Hence, the quantile regression, which allows modelingany quantilesof the dependent distribution, including the median,appears to be useful. It examines whether relationships between dependent and independent variables are different for low, medium, and high percentiles. As a result of analyzing data, the effect of total assets is relatively constant over the entire distribution, except the upper tail. It hasa moderately stronger effect in the upper tail.

  14. Systems effects on family planning innovativeness.

    PubMed

    Lee, S B

    1983-12-01

    Data from Korea were used to explore the importance of community level variables in explaining family planning adoption at the individual level. An open system concept was applied, assuming that individual family planning behavior is influenced by both environmental and individual factors. The environmental factors were measured at the village level and designated as community characteristics. The dimension of communication network variables was introduced. Each individual was characterized in terms of the degree of her involvement in family planning communication with others in her village. It was assumed that the nature of the communication network linking individuals with each other effects family planning adoption at the individual level. Specific objectives were to determine 1) the relative importance of the specific independent variables in explaining family planning adoption and 2) the relative importance of the community level variables in comparison with the individual level variables in explaining family planning adoption at the individual level. The data were originally gathered in a 1973 research project on Korea's mothers' clubs. 1047 respondents were interviewed, comprising all married women in 25 sample villages having mothers' clubs. The dependent variable was family planning adoption behavior, defined as current use of any of the modern methods of family planning. The independent variables were defined at 3 levels: individual, community, and at a level intermediate between them involving communication links between individuals. More of the individual level independent variables were significantly correlated with the dependent variables than the community level variables. Among those variables with statistically significant correlations, the correlation coefficients were consistently higher for the individual level than for the community level variables. More of the variance in the dependent variable was explained by individual level than by community level variables. Community level variables accounted for only about 2.5% of the total variance in the dependent variable, in marked contrast to the result showing individual level variables accounting for as much as 19% of the total variance. When both individual and community level variables were entered into a multiple correlation analysis, a multiple correlation coefficient of .4714 was obtained together they explained about 20% of the total variance. The 2 communication network variables--connectedness and integrativeness--were correlated with the dependent variable at much higher levels than most of the individual or community level variables. Connectedness accounted for the greatest amount of the total variance. The communication network variables as a group explained as much of the total variance in the dependent variable as the individual level variables and greatly more that the community level variables.

  15. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal.

    PubMed

    Rao, Ravella Sreenivas; Kumar, C Ganesh; Prakasham, R Shetty; Hobbs, Phil J

    2008-04-01

    Success in experiments and/or technology mainly depends on a properly designed process or product. The traditional method of process optimization involves the study of one variable at a time, which requires a number of combinations of experiments that are time, cost and labor intensive. The Taguchi method of design of experiments is a simple statistical tool involving a system of tabulated designs (arrays) that allows a maximum number of main effects to be estimated in an unbiased (orthogonal) fashion with a minimum number of experimental runs. It has been applied to predict the significant contribution of the design variable(s) and the optimum combination of each variable by conducting experiments on a real-time basis. The modeling that is performed essentially relates signal-to-noise ratio to the control variables in a 'main effect only' approach. This approach enables both multiple response and dynamic problems to be studied by handling noise factors. Taguchi principles and concepts have made extensive contributions to industry by bringing focused awareness to robustness, noise and quality. This methodology has been widely applied in many industrial sectors; however, its application in biological sciences has been limited. In the present review, the application and comparison of the Taguchi methodology has been emphasized with specific case studies in the field of biotechnology, particularly in diverse areas like fermentation, food processing, molecular biology, wastewater treatment and bioremediation.

  16. Influence of seasonal cycles in Martian atmosphere on entry, descent and landing sequence

    NASA Astrophysics Data System (ADS)

    Marčeta, Dušan; Šegan, Stevo; Rašuo, Boško

    2014-05-01

    The phenomena like high eccentricity of Martian orbit, obliquity of the orbital plane and close alignment of the winter solstice and the orbital perihelion, separately or together can significantly alter not only the level of some Martian atmospheric parameters but also the characteristics of its diurnal and seasonal cycle. Considering that entry, descent and landing (EDL) sequence is mainly driven by the density profile of the atmosphere and aerodynamic characteristic of the entry vehicle. We have performed the analysis of the influence of the seasonal cycles of the atmospheric parameters on EDL profiles by using Mars Global Reference Atmospheric Model (Mars-GRAM). Since the height of the deployment of the parachute and the time passed from the deployment to propulsion firing (descent time) are of crucial importance for safe landing and the achievable landing site elevation we paid special attention to the influence of the areocentric longitude of the Sun (Ls) on these variables. We have found that these variables have periodic variability with respect to Ls and can be very well approximated with a sine wave function whose mean value depends only on the landing site elevation while the amplitudes and phases depend only on the landing site latitude. The amplitudes exhibit behavior which is symmetric with respect to the latitude but the symmetry is shifted from the equator to the northern mid-tropics. We have also noticed that the strong temperature inversions which are usual for middle and higher northern latitudes while Mars is around its orbital perihelion significantly alter the descent time without influencing the height of the parachute deployment. At last, we applied our model to determine the dependence of the accessible landing region on Ls and found that this region reaches maximum when Mars is around the orbital perihelion and can vary 50° in latitude throughout the Martian year.

  17. Task-Driven Evaluation of Aggregation in Time Series Visualization

    PubMed Central

    Albers, Danielle; Correll, Michael; Gleicher, Michael

    2014-01-01

    Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks. PMID:25343147

  18. Social vulnerability and climate variability in southern Brazil: a TerraPop case study

    NASA Astrophysics Data System (ADS)

    Adamo, S. B.; Fitch, C. A.; Kugler, T.; Doxsey-Whitfield, E.

    2014-12-01

    Climate variability is an inherent characteristic of the Earth's climate, including but not limited to climate change. It affects and impacts human society in different ways, depending on the underlying socioeconomic vulnerability of specific places, social groups, households and individuals. This differential vulnerability presents spatial and temporal variations, and is rooted in historical patterns of development and relations between human and ecological systems. This study aims to assess the impact of climate variability on livelihoods and well-being, as well as their changes over time and across space, and for rural and urban populations. The geographic focus is Southern Brazil-the states of Parana, Santa Catarina and Rio Grande do Sul-- and the objectives include (a) to identify and map critical areas or hotspots of exposure to climate variability (temperature and precipitation), and (b) to identify internal variation or differential vulnerability within these areas and its evolution over time (1980-2010), using newly available integrated data from the Terra Populus project. These data include geo-referenced climate and agricultural data, and data describing demographic and socioeconomic characteristics of individuals, households and places.

  19. Segmented Poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy.

    PubMed

    Voss, A; Fischer, C; Schroeder, R; Figulla, H R; Goernig, M

    2010-01-01

    The prognostic value of heart rate variability in patients with dilated cardiomyopathy (DCM) is limited and does not contribute to risk stratification although the dynamics of ventricular repolarization differs considerably between DCM patients and healthy subjects. Neither linear nor nonlinear methods of heart rate variability analysis could discriminate between patients at high and low risk for sudden cardiac death. The aim of this study was to analyze the suitability of the new developed segmented Poincaré plot analysis (SPPA) to enhance risk stratification in DCM. In contrast to the usual applied Poincaré plot analysis the SPPA retains nonlinear features from investigated beat-to-beat interval time series. Main features of SPPA are the rotation of cloud of points and their succeeded variability depended segmentation. Significant row and column probabilities were calculated from the segments and led to discrimination (up to p<0.005) between low and high risk in DCM patients. For the first time an index from Poincaré plot analysis of heart rate variability was able to contribute to risk stratification in patients suffering from DCM.

  20. [A study on the thermographic diagnosis of vibration disease of tie-tamper operators in the Japanese National Railways].

    PubMed

    Hirahata, H

    1984-01-01

    There have been many studies of thermographic diagnosis of vibration disease, but few of them seem to have discussed tie-tamping machines as a cause. This study focuses on thermographic diagnosis of vibration disease in tie-tamper operators of the Japanese National Railways. In the diagnosis the subject's both hands were immersed in water at 10 degrees C for 3 minutes before being examined. Variables such as season, age, type of vibration tool used and total operating time were considered. These were selected as outside variables and thermographic results as dependent variables, in Quantification Method II. Season and confirmation of vibration disease were found to have a relationship to thermographic scaling, but no such relationship was found for age, type of vibration tool used, or total operating time. A cross-analysis of variables confirmed the relationship with season, and revealed that there were fewer confirmed cases of vibration disease in spring and summer than in fall and winter. It was finally concluded that thermographic analysis is more reliable in colder weather.

Top