Sample records for time domain formulation

  1. The application of the Routh approximation method to turbofan engine models

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    The Routh approximation technique is applied in the frequency domain to a 16th order state variable turbofan engine model. The results obtained motivate the extension of the frequency domain formulation of the Routh method to the time domain to handle the state variable formulation directly. The time domain formulation is derived, and a characterization, which specifies all possible Routh similarity transformations, is given. The characterization is computed by the solution of two eigenvalue eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given.

  2. Recent developments in learning control and system identification for robots and structures

    NASA Technical Reports Server (NTRS)

    Phan, M.; Juang, J.-N.; Longman, R. W.

    1990-01-01

    This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.

  3. Applied Routh approximation

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1978-01-01

    The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.

  4. Broadband Trailing Edge Noise Predictions in the Time Domain. Revised

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Farassat, Fereidoun

    2003-01-01

    A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  5. On the Assessment of Acoustic Scattering and Shielding by Time Domain Boundary Integral Equation Solutions

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.

    2016-01-01

    Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).

  6. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics

    PubMed Central

    Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo

    2013-01-01

    We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems. PMID:23888085

  7. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  8. A New Formulation of Time Domain Boundary Integral Equation for Acoustic Wave Scattering in the Presence of a Uniform Mean Flow

    NASA Technical Reports Server (NTRS)

    Hu, Fang; Pizzo, Michelle E.; Nark, Douglas M.

    2017-01-01

    It has been well-known that under the assumption of a constant uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation, in both the time domain and the frequency domain. Compared with solving partial differential equations, numerical methods based on the boundary integral equation have the advantage of a reduced spatial dimension and, hence, requiring only a surface mesh. However, the constant uniform mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the uniform mean flow. In this paper, we argue that the proper boundary condition for the acoustic wave should not have its normal velocity be zero everywhere on the solid surfaces, as has been applied in the literature. A careful study of the acoustic energy conservation equation is presented that shows such a boundary condition in fact leads to erroneous source or sink points on solid surfaces not aligned with the mean flow. A new solid wall boundary condition is proposed that conserves the acoustic energy and a new time domain boundary integral equation is derived. In addition to conserving the acoustic energy, another significant advantage of the new equation is that it is considerably simpler than previous formulations. In particular, tangential derivatives of the solution on the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical implementation. Furthermore, stabilization of the new integral equation by Burton-Miller type reformulation is presented. The stability of the new formulation is studied theoretically as well as numerically by an eigenvalue analysis. Numerical solutions are also presented that demonstrate the stability of the new formulation.

  9. The unified acoustic and aerodynamic prediction theory of advanced propellers in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    This paper presents some numerical results for the noise of an advanced supersonic propeller based on a formulation published last year. This formulation was derived to overcome some of the practical numerical difficulties associated with other acoustic formulations. The approach is based on the Ffowcs Williams-Hawkings equation and time domain analysis is used. To illustrate the method of solution, a model problem in three dimensions and based on the Laplace equation is solved. A brief sketch of derivation of the acoustic formula is then given. Another model problem is used to verify validity of the acoustic formulation. A recent singular integral equation for aerodynamic applications derived from the acoustic formula is also presented here.

  10. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  11. Trailing Edge Noise Prediction Based on a New Acoustic Formulation

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experiment. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, using both analytical and experimental data on the airfoil surface. The results are compared to analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  12. A comparative study on stress and compliance based structural topology optimization

    NASA Astrophysics Data System (ADS)

    Hailu Shimels, G.; Dereje Engida, W.; Fakhruldin Mohd, H.

    2017-10-01

    Most of structural topology optimization problems have been formulated and solved to either minimize compliance or weight of a structure under volume or stress constraints, respectively. Even if, a lot of researches are conducted on these two formulation techniques separately, there is no clear comparative study between the two approaches. This paper intends to compare these formulation techniques, so that an end user or designer can choose the best one based on the problems they have. Benchmark problems under the same boundary and loading conditions are defined, solved and results are compared based on these formulations. Simulation results shows that the two formulation techniques are dependent on the type of loading and boundary conditions defined. Maximum stress induced in the design domain is higher when the design domains are formulated using compliance based formulations. Optimal layouts from compliance minimization formulation has complex layout than stress based ones which may lead the manufacturing of the optimal layouts to be challenging. Optimal layouts from compliance based formulations are dependent on the material to be distributed. On the other hand, optimal layouts from stress based formulation are dependent on the type of material used to define the design domain. High computational time for stress based topology optimization is still a challenge because of the definition of stress constraints at element level. Results also shows that adjustment of convergence criterions can be an alternative solution to minimize the maximum stress developed in optimal layouts. Therefore, a designer or end user should choose a method of formulation based on the design domain defined and boundary conditions considered.

  13. A New Time Domain Formulation for Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specified from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.

  14. A New Time Domain Formulation for Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Farassat, Fereidoun

    2002-01-01

    A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specied from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.

  15. A moving medium formulation for prediction of propeller noise at incidence

    NASA Astrophysics Data System (ADS)

    Ghorbaniasl, Ghader; Lacor, Chris

    2012-01-01

    This paper presents a time domain formulation for the sound field radiated by moving bodies in a uniform steady flow with arbitrary orientation. The aim is to provide a formulation for prediction of noise from body so that effects of crossflow on a propeller can be modeled in the time domain. An established theory of noise generation by a moving source is combined with the moving medium Green's function for derivation of the formulation. A formula with Doppler factor is developed because it is more easily interpreted and is more helpful in examining the physic of systems. Based on the technique presented, the source of asymmetry of the sound field can be explained in terms of physics of a moving source. It is shown that the derived formulation can be interpreted as an extension of formulation 1 and 1A of Farassat based on the Ffowcs Williams and Hawkings (FW-H) equation for moving medium problems. Computational results for a stationary monopole and dipole point source in moving medium, a rotating point force in crossflow, a model of helicopter blade at incidence and a propeller case with subsonic tips at incidence verify the formulation.

  16. Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2017-04-01

    Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  17. Parallel Finite Element Domain Decomposition for Structural/Acoustic Analysis

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Tungkahotara, Siroj; Watson, Willie R.; Rajan, Subramaniam D.

    2005-01-01

    A domain decomposition (DD) formulation for solving sparse linear systems of equations resulting from finite element analysis is presented. The formulation incorporates mixed direct and iterative equation solving strategics and other novel algorithmic ideas that are optimized to take advantage of sparsity and exploit modern computer architecture, such as memory and parallel computing. The most time consuming part of the formulation is identified and the critical roles of direct sparse and iterative solvers within the framework of the formulation are discussed. Experiments on several computer platforms using several complex test matrices are conducted using software based on the formulation. Small-scale structural examples are used to validate thc steps in the formulation and large-scale (l,000,000+ unknowns) duct acoustic examples are used to evaluate the ORIGIN 2000 processors, and a duster of 6 PCs (running under the Windows environment). Statistics show that the formulation is efficient in both sequential and parallel computing environmental and that the formulation is significantly faster and consumes less memory than that based on one of the best available commercialized parallel sparse solvers.

  18. Broadband Noise Predictions Based on a New Aeroacoustic Formulation

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far-field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is specified analytically from a result that is based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B, and to demonstrate its equivalence to Formulation 1A, of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. The predicted results also agree very well with those of Paterson and Amiet, who used a frequency-domain approach. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.

  19. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  20. Stabilization of time domain acoustic boundary element method for the exterior problem avoiding the nonuniqueness.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2013-03-01

    The time domain boundary element method (TBEM) to calculate the exterior sound field using the Kirchhoff integral has difficulties in non-uniqueness and exponential divergence. In this work, a method to stabilize TBEM calculation for the exterior problem is suggested. The time domain CHIEF (Combined Helmholtz Integral Equation Formulation) method is newly formulated to suppress low order fictitious internal modes. This method constrains the surface Kirchhoff integral by forcing the pressures at the additional interior points to be zero when the shortest retarded time between boundary nodes and an interior point elapses. However, even after using the CHIEF method, the TBEM calculation suffers the exponential divergence due to the remaining unstable high order fictitious modes at frequencies higher than the frequency limit of the boundary element model. For complete stabilization, such troublesome modes are selectively adjusted by projecting the time response onto the eigenspace. In a test example for a transiently pulsating sphere, the final average error norm of the stabilized response compared to the analytic solution is 2.5%.

  1. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  2. Time-dependent response of filamentary composite spherical pressure vessels

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.

    1983-01-01

    A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.

  3. Frequency-domain method for discrete frequency noise prediction of rotors in arbitrary steady motion

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2012-12-01

    A novel frequency-domain formulation for the prediction of the tonal noise emitted by rotors in arbitrary steady motion is presented. It is derived from Farassat's 'Formulation 1A', that is a time-domain boundary integral representation for the solution of the Ffowcs-Williams and Hawkings equation, and represents noise as harmonic response to body kinematics and aerodynamic loads via frequency-response-function matrices. The proposed frequency-domain solver is applicable to rotor configurations for which sound pressure levels of discrete tones are much higher than those of broadband noise. The numerical investigation concerns the analysis of noise produced by an advancing helicopter rotor in blade-vortex interaction conditions, as well as the examination of pressure disturbances radiated by the interaction of a marine propeller with a non-uniform inflow.

  4. Time-domain damping models in structural acoustics using digital filtering

    NASA Astrophysics Data System (ADS)

    Parret-Fréaud, Augustin; Cotté, Benjamin; Chaigne, Antoine

    2016-02-01

    This paper describes a new approach in order to formulate well-posed time-domain damping models able to represent various frequency domain profiles of damping properties. The novelty of this approach is to represent the behavior law of a given material directly in a discrete-time framework as a digital filter, which is synthesized for each material from a discrete set of frequency-domain data such as complex modulus through an optimization process. A key point is the addition of specific constraints to this process in order to guarantee stability, causality and verification of thermodynamics second law when transposing the resulting discrete-time behavior law into the time domain. Thus, this method offers a framework which is particularly suitable for time-domain simulations in structural dynamics and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control and even reduce the distortion effects induced by time-discretization schemes on the frequency response of continuous-time behavior laws.

  5. Integral Equations in Computational Electromagnetics: Formulations, Properties and Isogeometric Analysis

    NASA Astrophysics Data System (ADS)

    Lovell, Amy Elizabeth

    Computational electromagnetics (CEM) provides numerical methods to simulate electromagnetic waves interacting with its environment. Boundary integral equation (BIE) based methods, that solve the Maxwell's equations in the homogeneous or piecewise homogeneous medium, are both efficient and accurate, especially for scattering and radiation problems. Development and analysis electromagnetic BIEs has been a very active topic in CEM research. Indeed, there are still many open problems that need to be addressed or further studied. A short and important list includes (1) closed-form or quasi-analytical solutions to time-domain integral equations, (2) catastrophic cancellations at low frequencies, (3) ill-conditioning due to high mesh density, multi-scale discretization, and growing electrical size, and (4) lack of flexibility due to re-meshing when increasing number of forward numerical simulations are involved in the electromagnetic design process. This dissertation will address those several aspects of boundary integral equations in computational electromagnetics. The first contribution of the dissertation is to construct quasi-analytical solutions to time-dependent boundary integral equations using a direct approach. Direct inverse Fourier transform of the time-harmonic solutions is not stable due to the non-existence of the inverse Fourier transform of spherical Hankel functions. Using new addition theorems for the time-domain Green's function and dyadic Green's functions, time-domain integral equations governing transient scattering problems of spherical objects are solved directly and stably for the first time. Additional, the direct time-dependent solutions, together with the newly proposed time-domain dyadic Green's functions, can enrich the time-domain spherical multipole theory. The second contribution is to create a novel method of moments (MoM) framework to solve electromagnetic boundary integral equation on subdivision surfaces. The aim is to avoid the meshing and re-meshing stages to accelerate the design process when the geometry needs to be updated. Two schemes to construct basis functions on the subdivision surface have been explored. One is to use the div-conforming basis function, and the other one is to create a rigorous iso-geometric approach based on the subdivision basis function with better smoothness properties. This new framework provides us better accuracy, more stability and high flexibility. The third contribution is a new stable integral equation formulation to avoid catastrophic cancellations due to low-frequency breakdown or dense-mesh breakdown. Many of the conventional integral equations and their associated post-processing operations suffer from numerical catastrophic cancellations, which can lead to ill-conditioning of the linear systems or serious accuracy problems. Examples includes low-frequency breakdown and dense mesh breakdown. Another instability may come from nontrivial null spaces of involving integral operators that might be related with spurious resonance or topology breakdown. This dissertation presents several sets of new boundary integral equations and studies their analytical properties. The first proposed formulation leads to the scalar boundary integral equations where only scalar unknowns are involved. Besides the requirements of gaining more stability and better conditioning in the resulting linear systems, multi-physics simulation is another driving force for new formulations. Scalar and vector potentials (rather than electromagnetic field) based formulation have been studied for this purpose. Those new contributions focus on different stages of boundary integral equations in an almost independent manner, e.g. isogeometric analysis framework can be used to solve different boundary integral equations, and the time-dependent solutions to integral equations from different formulations can be achieved through the same methodology proposed.

  6. Analytic, empirical and delta method temperature derivatives of D-D and D-T fusion reactivity formulations, as a means of verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbrunner, James R.; Booker, Jane M.

    We examine the derivatives with respect to temperature, for various deuterium-tritium (DT) and deuterium-deuterium (D-D) fusion-reactivity formulations. Langenbrunner and Makaruk [1] had studied this as a means of understanding the time and temperature domain of reaction history measured in dynamic fusion experiments. Presently, we consider the temperature derivative dependence of fusion reactivity as a means of exercising and verifying the consistency of the various reactivity formulations.

  7. Adaptive mesh refinement for time-domain electromagnetics using vector finite elements :a feasibility study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis

    This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.

  8. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice

    PubMed Central

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  9. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    NASA Technical Reports Server (NTRS)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons with available analytical and numerical results, the stability and high accuracy of these dynamic analysis techniques are established.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escartín, J. M.; CNRS, UMR5152, F-31062 Toulouse Cedex; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT.more » This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.« less

  11. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  12. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    PubMed

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations

    NASA Astrophysics Data System (ADS)

    Bonnasse-Gahot, Marie; Calandra, Henri; Diaz, Julien; Lanteri, Stéphane

    2018-04-01

    Discontinuous Galerkin (DG) methods are nowadays actively studied and increasingly exploited for the simulation of large-scale time-domain (i.e. unsteady) seismic wave propagation problems. Although theoretically applicable to frequency-domain problems as well, their use in this context has been hampered by the potentially large number of coupled unknowns they incur, especially in the 3-D case, as compared to classical continuous finite element methods. In this paper, we address this issue in the framework of the so-called hybridizable discontinuous Galerkin (HDG) formulations. As a first step, we study an HDG method for the resolution of the frequency-domain elastic wave equations in the 2-D case. We describe the weak formulation of the method and provide some implementation details. The proposed HDG method is assessed numerically including a comparison with a classical upwind flux-based DG method, showing better overall computational efficiency as a result of the drastic reduction of the number of globally coupled unknowns in the resulting discrete HDG system.

  14. Incompressibility without tears - How to avoid restrictions of mixed formulation

    NASA Technical Reports Server (NTRS)

    Zienkiewicz, O. C.; Wu, J.

    1991-01-01

    Several time-stepping schemes for incompressibility problems are presented which can be solved directly for steady state or iteratively through the time domain. The difficulty of mixed interpolation is avoided by using these schemes. The schemes are applicable to problems of fluid and solid mechanics.

  15. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  16. The analysis of delays in simulator digital computing systems. Volume 1: Formulation of an analysis approach using a central example simulator model

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Jewell, W. F.; Whitbeck, R. F.; Schulman, T. M.

    1980-01-01

    The effects of spurious delays in real time digital computing systems are examined. Various sources of spurious delays are defined and analyzed using an extant simulator system as an example. A specific analysis procedure is set forth and four cases are viewed in terms of their time and frequency domain characteristics. Numerical solutions are obtained for three single rate one- and two-computer examples, and the analysis problem is formulated for a two-rate, two-computer example.

  17. Aerodynamic Indicial Functions and Their Use in Aeroelastic Formulation of Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    An investigation related to the use of linear indicial functions in the time and frequency domains, enabling one to derive the proper aerodynamic loads as to study the subcritical response and flutter of swept lifting surfaces, respectively, of the open/closed loop aeroelastic system is presented. The expressions of the lift and aerodynamic moment in the frequency domain are given in terms of the Theodorsen's function, while, in the time domain, these are obtained directly with the help of the Wagner's function. Closed form solutions of aerodynamic derivatives are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined.

  18. Plate with decentralised velocity feedback loops: Power absorption and kinetic energy considerations

    NASA Astrophysics Data System (ADS)

    Gardonio, P.; Miani, S.; Blanchini, F.; Casagrande, D.; Elliott, S. J.

    2012-04-01

    This paper is focused on the vibration effects produced by an array of decentralised velocity feedback loops that are evenly distributed over a rectangular thin plate to minimise its flexural response. The velocity feedback loops are formed by collocated ideal velocity sensor and point force actuator pairs, which are unconditionally stable and produce 'sky-hook' damping on the plate. The study compares how the overall flexural vibration of the plate and the local absorption of vibration power by the feedback loops vary with the control gains. The analysis is carried out both considering a typical frequency-domain formulation based on kinetic energy and structural power physical quantities, which is normally used to study vibration and noise problems, and a time-domain formulation also based on kinetic energy and structural power, which is usually implemented to investigate control problems. The time-domain formulation shows to be much more computationally efficient and robust with reference to truncation errors. Thus it has been used to perform a parametric study to assess if, and under which conditions, the minimum of the kinetic energy and the maximum of the absorbed power cost functions match with reference to: (a) the number of feedback control loops, (b) the structural damping in the plate, (c) the mutual distance of a pair of control loops and (d) the mutual gains implemented in a pair of feedback loops.

  19. Time domain viscoelastic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard

    2017-06-01

    Viscous attenuation can have a strong impact on seismic wave propagation, but it is rarely taken into account in full waveform inversion (FWI). When viscoelasticity is considered in time domain FWI, the displacement formulation of the wave equation is usually used instead of the popular velocity-stress formulation. However, inversion schemes rely on the adjoint equations, which are quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we apply the adjoint state method to the isotropic viscoelastic wave equation in the velocity-stress formulation based on the generalized standard linear solid rheology. By applying linear transformations to the wave equation before deriving the adjoint state equations, we obtain two symmetric sets of partial differential equations for the forward and adjoint variables. The resulting sets of equations only differ by a sign change and can be solved by the same numerical implementation. We also investigate the crosstalk between parameter classes (velocity and attenuation) of the viscoelastic equation. More specifically, we show that the attenuation levels can be used to recover the quality factors of P and S waves, but that they are very sensitive to velocity errors. Finally, we present a synthetic example of viscoelastic FWI in the context of monitoring CO2 geological sequestration. We show that FWI based on our formulation can indeed recover P- and S-wave velocities and their attenuation levels when attenuation is high enough. Both changes in velocity and attenuation levels recovered with FWI can be used to track the CO2 plume during and after injection. Further studies are required to evaluate the performance of viscoelastic FWI on real data.

  20. Stabilization of time domain acoustic boundary element method for the interior problem with impedance boundary conditions.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2012-04-01

    The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.

  1. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  2. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  3. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  4. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.

    PubMed

    Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily

    2007-07-15

    Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.

  5. A time-domain Kirchhoff formula for the convective acoustic wave equation

    NASA Astrophysics Data System (ADS)

    Ghorbaniasl, Ghader; Siozos-Rousoulis, Leonidas; Lacor, Chris

    2016-03-01

    Kirchhoff's integral method allows propagated sound to be predicted, based on the pressure and its derivatives in time and space obtained on a data surface located in the linear flow region. Kirchhoff's formula for noise prediction from high-speed rotors and propellers suffers from the limitation of the observer located in uniform flow, thus requiring an extension to arbitrarily moving media. This paper presents a Kirchhoff formulation for moving surfaces in a uniform moving medium of arbitrary configuration. First, the convective wave equation is derived in a moving frame, based on the generalized functions theory. The Kirchhoff formula is then obtained for moving surfaces in the time domain. The formula has a similar form to the Kirchhoff formulation for moving surfaces of Farassat and Myers, with the presence of additional terms owing to the moving medium effect. The equation explicitly accounts for the influence of mean flow and angle of attack on the radiated noise. The formula is verified by analytical cases of a monopole source located in a moving medium.

  6. ADE-FDTD Scattered-Field Formulation for Dispersive Materials

    PubMed Central

    Kong, Soon-Cheol; Simpson, Jamesina J.; Backman, Vadim

    2009-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems. PMID:19844602

  7. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.

    PubMed

    Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim

    2008-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.

  8. Magnetic Photon Splitting: The S-Matrix Formulation in the Landau Representation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    Calculations of reaction rates for the third-order QED process of photon splitting gamma yields gamma.gamma in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner [1] presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant, advances beyond the work of [1] by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper- time formulations is demonstrated.

  9. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    NASA Astrophysics Data System (ADS)

    Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.

    2009-08-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  10. Prediction of non-cavitation propeller noise in time domain

    NASA Astrophysics Data System (ADS)

    Ye, Jin-Ming; Xiong, Ying; Xiao, Chang-Run; Bi, Yi

    2011-09-01

    The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time-dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.

  11. A solid-state NMR method to determine domain sizes in multi-component polymer formulations

    NASA Astrophysics Data System (ADS)

    Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon

    2015-12-01

    Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).

  12. Measurement of the Retention Time of Different Ophthalmic Formulations with Ultrahigh-Resolution Optical Coherence Tomography.

    PubMed

    Gagliano, Caterina; Papa, Vincenzo; Amato, Roberta; Malaguarnera, Giulia; Avitabile, Teresio

    2018-04-01

    Purpose/aim of the study: The purpose of this study was to measure the pre-corneal retention time of two marketed formulations (eye drops and eye gel) of a steroid-antibiotic fixed combination (FC) containing 0.1% dexamethasone and 0.3% netilmicin. Pre-corneal retention time was evaluated in 16 healthy subjects using an ultrahigh-resolution anterior segment spectral domain optical coherence tomography (OCT). All subjects randomly received both formulations of the FC (Netildex, SIFI, Italy). Central tear film thickness (CTFT) was measured before instillation (time 0) and then after 1, 10, 20, 30, 40 50, 60 and 120 min. The pre-corneal retention time was calculated by plotting CTFT as a function of time. Differences between time points and groups were analyzed by Student's t-test. CTFT increased significantly after the instillation of the eye gel formulation (p < 0.001). CTFT reached its maximum value 1 min after instillation and returned to baseline after 60 min. No effect on CTFT was observed after the instillation of eye drops. The difference between the two formulations was statistically significant at time 1 min (p < 0.0001), 10 min (p < 0.001) and 20 min (p < 0.01). The FC formulated as eye gel was retained on the ocular surface longer than the corresponding eye drop solution. Consequently, the use of the eye gel might extend the interval between instillations and decrease the frequency of administration.

  13. A computer program for helicopter rotor noise using Lowson's formula in the time domain

    NASA Technical Reports Server (NTRS)

    Parks, C. L.

    1975-01-01

    A computer program (D3910) was developed to calculate both the far field and near field acoustic pressure signature of a tilted rotor in hover or uniform forward speed. The analysis, carried out in the time domain, is based on Lowson's formulation of the acoustic field of a moving force. The digital computer program is described, including methods used in the calculations, a flow chart, program D3910 source listing, instructions for the user, and two test cases with input and output listings and output plots.

  14. An Application of the Difference Potentials Method to Solving External Problems in CFD

    NASA Technical Reports Server (NTRS)

    Ryaben 'Kii, Victor S.; Tsynkov, Semyon V.

    1997-01-01

    Numerical solution of infinite-domain boundary-value problems requires some special techniques that would make the problem available for treatment on the computer. Indeed, the problem must be discretized in a way that the computer operates with only finite amount of information. Therefore, the original infinite-domain formulation must be altered and/or augmented so that on one hand the solution is not changed (or changed slightly) and on the other hand the finite discrete formulation becomes available. One widely used approach to constructing such discretizations consists of truncating the unbounded original domain and then setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The role of the ABC's is to close the truncated problem and at the same time to ensure that the solution found inside the finite computational domain would be maximally close to (in the ideal case, exactly the same as) the corresponding fragment of the original infinite-domain solution. Let us emphasize that the proper treatment of artificial boundaries may have a profound impact on the overall quality and performance of numerical algorithms. The latter statement is corroborated by the numerous computational experiments and especially concerns the area of CFD, in which external problems present a wide class of practically important formulations. In this paper, we review some work that has been done over the recent years on constructing highly accurate nonlocal ABC's for calculation of compressible external flows. The approach is based on implementation of the generalized potentials and pseudodifferential boundary projection operators analogous to those proposed first by Calderon. The difference potentials method (DPM) by Ryaben'kii is used for the effective computation of the generalized potentials and projections. The resulting ABC's clearly outperform the existing methods from the standpoints of accuracy and robustness, in many cases noticeably speed up the multigrid convergence, and at the same time are quite comparable to other methods from the standpoints of geometric universality and simplicity of implementation.

  15. Delivery of expression constructs of secreted frizzled-related protein 4 and its domains by chitosan-dextran sulfate nanoparticles enhances their expression and anti-cancer effects.

    PubMed

    Perumal, Vanathi; Arfuso, Frank; Chen, Yan; Fox, Simon; Dharmarajan, Arun M

    2018-06-01

    In malignant mesothelioma (MM) cells, secreted frizzled-related protein 4 (SFRP4) expression is downregulated by promoter methylation. In this study, we evaluated the effect of encapsulated chitosan-dextran (CS-DS) nanoparticle formulations of SFRP4 and its cysteine-rich domain (CRD) and netrin-like domain (NLD) as means of SFRP4-GFP protein delivery and their effects in JU77 and ONE58 MM cell lines. CS-DS formulations of SFRP4, CRD, and NLD nanoparticles were prepared by a complex coacervation technique, and particle size ranged from 300 nm for empty particles to 337 nm for particles containing the proteins. Measurement of the zeta potential showed that all preparations were around 25 mV or above, suggesting stable formulation and good affinity for the DNA molecules. The CS-DS nanoparticle formulation maintained high integrity and entrapment efficiency. Gene delivery of SFRP4 and its domains showed enhanced biological effects in both JU77 and ONE58 cell lines when compared to the non-liposomal FUGENE ® HD transfection reagent. In comparison to the CRD nanoparticles, both the SFRP4 and NLD nanoparticles significantly reduced the viability of MM cells, with the NLD showing the greatest effect. The CS-DS nanoparticle effects were observed at an earlier time point and with lower DNA concentrations. Morphological changes in MM cells were characterized by the formation of membrane-associated vesicles and green fluorescent protein expression specific to SFRP4 and the NLD. The findings from our proof-of-concept study provide a stepping stone for further investigations using in vivo models.

  16. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  17. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  18. Coupled variational formulations of linear elasticity and the DPG methodology

    NASA Astrophysics Data System (ADS)

    Fuentes, Federico; Keith, Brendan; Demkowicz, Leszek; Le Tallec, Patrick

    2017-11-01

    This article presents a general approach akin to domain-decomposition methods to solve a single linear PDE, but where each subdomain of a partitioned domain is associated to a distinct variational formulation coming from a mutually well-posed family of broken variational formulations of the original PDE. It can be exploited to solve challenging problems in a variety of physical scenarios where stability or a particular mode of convergence is desired in a part of the domain. The linear elasticity equations are solved in this work, but the approach can be applied to other equations as well. The broken variational formulations, which are essentially extensions of more standard formulations, are characterized by the presence of mesh-dependent broken test spaces and interface trial variables at the boundaries of the elements of the mesh. This allows necessary information to be naturally transmitted between adjacent subdomains, resulting in coupled variational formulations which are then proved to be globally well-posed. They are solved numerically using the DPG methodology, which is especially crafted to produce stable discretizations of broken formulations. Finally, expected convergence rates are verified in two different and illustrative examples.

  19. Advanced development of BEM for elastic and inelastic dynamic analysis of solids

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahmad, S.; Wang, H. C.

    1989-01-01

    Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.

  20. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2008-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  1. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2010-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  2. A review on the systematic formulation of 3-D multiparameter full waveform inversion in viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean

    2016-10-01

    In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.

  3. Integral equation approach to time-dependent kinematic dynamos in finite domains

    NASA Astrophysics Data System (ADS)

    Xu, Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-11-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples—the α2 dynamo model with radially varying α and the Bullard-Gellman model—illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α2 dynamo in rectangular domains.

  4. Integrated control-system design via generalized LQG (GLQG) theory

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.

    1989-01-01

    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.

  5. A time-domain Kirchhoff formula for the convective acoustic wave equation

    PubMed Central

    Ghorbaniasl, Ghader; Siozos-Rousoulis, Leonidas; Lacor, Chris

    2016-01-01

    Kirchhoff’s integral method allows propagated sound to be predicted, based on the pressure and its derivatives in time and space obtained on a data surface located in the linear flow region. Kirchhoff’s formula for noise prediction from high-speed rotors and propellers suffers from the limitation of the observer located in uniform flow, thus requiring an extension to arbitrarily moving media. This paper presents a Kirchhoff formulation for moving surfaces in a uniform moving medium of arbitrary configuration. First, the convective wave equation is derived in a moving frame, based on the generalized functions theory. The Kirchhoff formula is then obtained for moving surfaces in the time domain. The formula has a similar form to the Kirchhoff formulation for moving surfaces of Farassat and Myers, with the presence of additional terms owing to the moving medium effect. The equation explicitly accounts for the influence of mean flow and angle of attack on the radiated noise. The formula is verified by analytical cases of a monopole source located in a moving medium. PMID:27118912

  6. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Succi, G. P.

    1980-01-01

    A review of propeller noise prediction technology is presented which highlights the developments in the field from the successful attempt of Gutin to the current sophisticated techniques. Two methods for the predictions of the discrete frequency noise from conventional and advanced propellers in forward flight are described. These methods developed at MIT and NASA Langley Research Center are based on different time domain formulations. Brief description of the computer algorithms based on these formulations are given. The output of these two programs, which is the acoustic pressure signature, is Fourier analyzed to get the acoustic pressure spectrum. The main difference between the programs as they are coded now is that the Langley program can handle propellers with supersonic tip speed while the MIT program is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.

  7. Numerical study of time domain analogy applied to noise prediction from rotating blades

    NASA Astrophysics Data System (ADS)

    Fedala, D.; Kouidri, S.; Rey, R.

    2009-04-01

    Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom's and Tam's test cases. A helicopter blade airfoil, as defined by Farassat to investigate Isom's case, is used in this work. According to Isom, the acoustic response of a dipole source with a constant aerodynamic load, ρ0c02, is equal to the thickness noise contribution. Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors, which depend on the temporal resolution, Mach number, source-observer distance, and interpolation algorithm type, are investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then extended to Tam's test case. Tam's test case has the advantage of providing an analytical solution for the first harmonic of the noise produced by a specific force distribution.

  8. PLATSIM: An efficient linear simulation and analysis package for large-order flexible systems

    NASA Technical Reports Server (NTRS)

    Maghami, Periman; Kenny, Sean P.; Giesy, Daniel P.

    1995-01-01

    PLATSIM is a software package designed to provide efficient time and frequency domain analysis of large-order generic space platforms implemented with any linear time-invariant control system. Time domain analysis provides simulations of the overall spacecraft response levels due to either onboard or external disturbances. The time domain results can then be processed by the jitter analysis module to assess the spacecraft's pointing performance in a computationally efficient manner. The resulting jitter analysis algorithms have produced an increase in speed of several orders of magnitude over the brute force approach of sweeping minima and maxima. Frequency domain analysis produces frequency response functions for uncontrolled and controlled platform configurations. The latter represents an enabling technology for large-order flexible systems. PLATSIM uses a sparse matrix formulation for the spacecraft dynamics model which makes both the time and frequency domain operations quite efficient, particularly when a large number of modes are required to capture the true dynamics of the spacecraft. The package is written in MATLAB script language. A graphical user interface (GUI) is included in the PLATSIM software package. This GUI uses MATLAB's Handle graphics to provide a convenient way for setting simulation and analysis parameters.

  9. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    NASA Astrophysics Data System (ADS)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  10. Axially symmetric non-static domain walls in scalar-tensor theories of gravitation

    NASA Astrophysics Data System (ADS)

    Adhav, K. S.; Nimkar, A. S.; Naidu, R. L.

    2007-12-01

    An axially symmetric non-static space-time is considered in the presence of thick domain walls in the scalar-tensor theories formulated by Brans and Dicke (Phys. Rev. 124:925, 1961) and Saez and Ballester (Phys. Lett. A 113:467, 1985). Exact cosmological models, in both the theories, are presented with the help of special law of variation proposed by Berman (Nuovo Cim. B 74:182, 1983), for Hubble’s parameter. Some physical and kinematical properties of the models are discussed.

  11. Modeling Ignition of HMX with the Gibbs Formulation

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott

    2017-06-01

    We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.

  12. Coupling between overall rotational diffusion and domain motions in proteins and its effect on dielectric spectra.

    PubMed

    Ryabov, Yaroslav

    2015-09-01

    In this work, we formulate a closed-form solution of the model of a semirigid molecule for the case of fluctuating and reorienting molecular electric dipole moment. We illustrate with numeric calculations the impact of protein domain motions on dielectric spectra using the example of the 128 kDa protein dimer of Enzyme I. We demonstrate that the most drastic effect occurs for situations when the characteristic time of protein domain dynamics is comparable to the time of overall molecular rotational diffusion. We suggest that protein domain motions could be a possible explanation for the high-frequency contribution that accompanies the major relaxation dispersion peak in the dielectric spectra of protein aqueous solutions. We propose that the presented computational methodology could be used for the simultaneous analysis of dielectric spectroscopy and nuclear magnetic resonance data. Proteins 2015; 83:1571-1581. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. The compressible aerodynamics of rotating blades based on an acoustic formulation

    NASA Technical Reports Server (NTRS)

    Long, L. N.

    1983-01-01

    An acoustic formula derived for the calculation of the noise of moving bodies is applied to aerodynamic problems. The acoustic formulation is a time domain result suitable for slender wings and bodies moving at subsonic speeds. A singular integral equation is derived in terms of the surface pressure which must then be solved numerically for aerodynamic purposes. However, as the 'observer' is moved onto the body surface, the divergent integrals in the acoustic formulation are semiconvergent. The procedure for regularization (or taking principal values of divergent integrals) is explained, and some numerical examples for ellipsoids, wings, and lifting rotors are presented. The numerical results show good agreement with available measured surface pressure data.

  14. Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems

    NASA Astrophysics Data System (ADS)

    Arrarás, A.; Portero, L.; Yotov, I.

    2014-01-01

    We study space and time discretizations for mixed formulations of parabolic problems. The spatial approximation is based on the multipoint flux mixed finite element method, which reduces to an efficient cell-centered pressure system on general grids, including triangles, quadrilaterals, tetrahedra, and hexahedra. The time integration is performed by using a domain decomposition time-splitting technique combined with multiterm fractional step diagonally implicit Runge-Kutta methods. The resulting scheme is unconditionally stable and computationally efficient, as it reduces the global system to a collection of uncoupled subdomain problems that can be solved in parallel without the need for Schwarz-type iteration. Convergence analysis for both the semidiscrete and fully discrete schemes is presented.

  15. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  16. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  17. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  18. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  19. Optimisation algorithms for ECG data compression.

    PubMed

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  20. A framework for simultaneous aerodynamic design optimization in the presence of chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi

    Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less

  1. The prediction of the noise of supersonic propellers in time domain - New theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1983-01-01

    In this paper, a new formula for the prediction of the noise of supersonic propellers is derived in the time domain which is superior to the previous formulations in several respects. The governing equation is based on the Ffowcs Williams-Hawkings (FW-H) equation with the thickness source term replaced by an equivalent loading source term derived by Isom (1975). Using some results of generalized function theory and simple four-dimensional space-time geometry, the formal solution of the governing equation is manipulated to a form requiring only the knowledge of blade surface pressure data and geometry. The final form of the main result of this paper consists of some surface and line integrals. The surface integrals depend on the surface pressure, time rate of change of surface pressure, and surface pressure gradient. These integrals also involve blade surface curvatures. The line integrals which depend on local surface pressure are along the trailing edge, the shock traces on the blade, and the perimeter of the airfoil section at the inner radius of the blade. The new formulation is for the full blade surface and does not involve any numerical observer time differentiation. The method of implementation on a computer for numerical work is also discussed.

  2. High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tafti, D.

    1995-12-01

    The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.

  3. Prediction of helicopter rotor discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation

    NASA Technical Reports Server (NTRS)

    Brentner, K. S.

    1986-01-01

    A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.

  4. A geometric approach to failure detection and identification in linear systems

    NASA Technical Reports Server (NTRS)

    Massoumnia, M. A.

    1986-01-01

    Using concepts of (C,A)-invariant and unobservability (complementary observability) subspaces, a geometric formulation of the failure detection and identification filter problem is stated. Using these geometric concepts, it is shown that it is possible to design a causal linear time-invariant processor that can be used to detect and uniquely identify a component failure in a linear time-invariant system, assuming: (1) The components can fail simultaneously, and (2) The components can fail only one at a time. In addition, a geometric formulation of Beard's failure detection filter problem is stated. This new formulation completely clarifies of output separability and mutual detectability introduced by Beard and also exploits the dual relationship between a restricted version of the failure detection and identification problem and the control decoupling problem. Moreover, the frequency domain interpretation of the results is used to relate the concepts of failure sensitive observers with the generalized parity relations introduced by Chow. This interpretation unifies the various failure detection and identification concepts and design procedures.

  5. Improved ant colony optimization for optimal crop and irrigation water allocation by incorporating domain knowledge

    USDA-ARS?s Scientific Manuscript database

    An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...

  6. Aeroelastic coupling of geometrically nonlinear structures and linear unsteady aerodynamics: Two formulations

    NASA Astrophysics Data System (ADS)

    Demasi, L.; Livne, E.

    2009-07-01

    Two different time domain formulations of integrating commonly used frequency-domain unsteady aerodynamic models based on a modal approach with full order finite element models for structures with geometric nonlinearities are presented. Both approaches are tailored to flight vehicle configurations where geometric stiffness effects are important but where deformations are moderate, flow is attached, and linear unsteady aerodynamic modeling is adequate, such as low aspect ratio wings or joined-wing and strut-braced wings at small to moderate angles of attack. Results obtained using the two approaches are compared using both planar and non-planar wing configurations. Sub-critical and post-flutter speeds are considered. It is demonstrated that the two methods lead to the same steady solution for the sub-critical case after the transients subside. It is also shown that the two methods predict the amplitude and frequency of limit cycle oscillation (when present) with the same accuracy.

  7. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  8. An evolutive real-time source inversion based on a linear inverse formulation

    NASA Astrophysics Data System (ADS)

    Sanchez Reyes, H. S.; Tago, J.; Cruz-Atienza, V. M.; Metivier, L.; Contreras Zazueta, M. A.; Virieux, J.

    2016-12-01

    Finite source inversion is a steppingstone to unveil earthquake rupture. It is used on ground motion predictions and its results shed light on seismic cycle for better tectonic understanding. It is not yet used for quasi-real-time analysis. Nowadays, significant progress has been made on approaches regarding earthquake imaging, thanks to new data acquisition and methodological advances. However, most of these techniques are posterior procedures once seismograms are available. Incorporating source parameters estimation into early warning systems would require to update the source build-up while recording data. In order to go toward this dynamic estimation, we developed a kinematic source inversion formulated in the time-domain, for which seismograms are linearly related to the slip distribution on the fault through convolutions with Green's functions previously estimated and stored (Perton et al., 2016). These convolutions are performed in the time-domain as we progressively increase the time window of records at each station specifically. Selected unknowns are the spatio-temporal slip-rate distribution to keep the linearity of the forward problem with respect to unknowns, as promoted by Fan and Shearer (2014). Through the spatial extension of the expected rupture zone, we progressively build-up the slip-rate when adding new data by assuming rupture causality. This formulation is based on the adjoint-state method for efficiency (Plessix, 2006). The inverse problem is non-unique and, in most cases, underdetermined. While standard regularization terms are used for stabilizing the inversion, we avoid strategies based on parameter reduction leading to an unwanted non-linear relationship between parameters and seismograms for our progressive build-up. Rise time, rupture velocity and other quantities can be extracted later on as attributs from the slip-rate inversion we perform. Satisfactory results are obtained on a synthetic example (FIgure 1) proposed by the Source Inversion Validation project (Mai et al. 2011). A real case application is currently being explored. Our specific formulation, combined with simple prior information, as well as numerical results obtained so far, yields interesting perspectives for a real-time implementation.

  9. Line-source excited impulsive EM field response of thin plasmonic metal films

    NASA Astrophysics Data System (ADS)

    Štumpf, Martin; Vandenbosch, Guy A. E.

    2013-08-01

    In this paper, reflection against and transmission through thin plasmonic metal films, basic building blocks of many plasmonic devices, are analytically investigated directly in the time domain for an impulsive electric and magnetic line-source excitation. The electromagnetic properties of thin metallic films are modeled via the Drude model. The problem is formulated with the help of approximate thin-sheet boundary conditions and the analysis is carried out using the Cagniard-DeHoop technique. Closed-form space-time expressions are found and discussed. The obtained time-domain analytical expressions reveal the existence of the phenomenon of transient oscillatory surface effects along a plasmonic metal thin sheet. Illustrative numerical examples of transmitted/reflected pulsed fields are provided.

  10. Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity

    NASA Astrophysics Data System (ADS)

    Crawford, Ophelia; Al-Attar, David; Tromp, Jeroen; Mitrovica, Jerry X.; Austermann, Jacqueline; Lau, Harriet C. P.

    2018-05-01

    We present a method for calculating the derivatives of measurements of glacial isostatic adjustment (GIA) with respect to the viscosity structure of the Earth and the ice sheet history. These derivatives, or kernels, quantify the linearised sensitivity of measurements to the underlying model parameters. The adjoint method is used to enable efficient calculation of theoretically exact sensitivity kernels within laterally heterogeneous earth models that can have a range of linear or non-linear viscoelastic rheologies. We first present a new approach to calculate GIA in the time domain, which, in contrast to the more usual formulation in the Laplace domain, is well suited to continuously varying earth models and to the use of the adjoint method. Benchmarking results show excellent agreement between our formulation and previous methods. We illustrate the potential applications of the kernels calculated in this way through a range of numerical calculations relative to a spherically symmetric background model. The complex spatial patterns of the sensitivities are not intuitive, and this is the first time that such effects are quantified in an efficient and accurate manner.

  11. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Saumil S.; Fischer, Paul F.; Min, Misun

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  12. Slave finite elements: The temporal element approach to nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1984-01-01

    A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.

  13. An Integrated Approach for the Large-Scale Simulation of Sedimentary Basins to Study Seismic Wave Amplification

    NASA Astrophysics Data System (ADS)

    Poursartip, B.

    2015-12-01

    Seismic hazard assessment to predict the behavior of infrastructures subjected to earthquake relies on ground motion numerical simulation because the analytical solution of seismic waves is limited to only a few simple geometries. Recent advances in numerical methods and computer architectures make it ever more practical to reliably and quickly obtain the near-surface response to seismic events. The key motivation stems from the need to access the performance of sensitive components of the civil infrastructure (nuclear power plants, bridges, lifelines, etc), when subjected to realistic scenarios of seismic events. We discuss an integrated approach that deploys best-practice tools for simulating seismic events in arbitrarily heterogeneous formations, while also accounting for topography. Specifically, we describe an explicit forward wave solver based on a hybrid formulation that couples a single-field formulation for the computational domain with an unsplit mixed-field formulation for Perfectly-Matched-Layers (PMLs and/or M-PMLs) used to limit the computational domain. Due to the material heterogeneity and the contrasting discretization needs it imposes, an adaptive time solver is adopted. We use a Runge-Kutta-Fehlberg time-marching scheme that adjusts optimally the time step such that the local truncation error rests below a predefined tolerance. We use spectral elements for spatial discretization, and the Domain Reduction Method in accordance with double couple method to allow for the efficient prescription of the input seismic motion. Of particular interest to this development is the study of the effects idealized topographic features have on the surface motion when compared against motion results that are based on a flat-surface assumption. We discuss the components of the integrated approach we followed, and report the results of parametric studies in two and three dimensions, for various idealized topographic features, which show motion amplification that depends, as expected, on the relation between the topographic feature's characteristics and the dominant wavelength. Lastly, we report results involving three-dimensional simulations.

  14. A mathematical theorem as the basis for the second law: Thomson's formulation applied to equilibrium

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Nieuwenhuizen, Th. M.

    2002-03-01

    There are several formulations of the second law, and they may, in principle, have different domains of validity. Here a simple mathematical theorem is proven which serves as the most general basis for the second law, namely the Thomson formulation (“cyclic changes cost energy”), applied to equilibrium. This formulation of the second law is a property akin to particle conservation (normalization of the wave function). It has been strictly proven for a canonical ensemble, and made plausible for a micro-canonical ensemble. As the derivation does not assume time-inversion invariance, it is applicable to situations where persistent currents occur. This clear-cut derivation allows to revive the “no perpetuum mobile in equilibrium” formulation of the second law and to criticize some assumptions which are widespread in literature. The result puts recent results devoted to foundations and limitations of the second law in proper perspective, and structurizes this relatively new field of research.

  15. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  16. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    NASA Astrophysics Data System (ADS)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  17. Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    An unified approach for dealing with stability and aeroelastic response to time-dependent pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial function concept in time and frequency domains, enabling one to derive the proper unsteady aerodynamic loads is used. Results regarding stability in the frequency and time domains, and subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form expressions for unsteady aerodynamic derivatives using this unified approach have been derived and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom signatures. In this context, an original representation of the aeroelastic response in the phase space was presented and pertinent conclusions on the implications of some basic parameters have been outlined.

  18. On the Frozen Soil Scheme for High Latitude Regions

    NASA Astrophysics Data System (ADS)

    Ganji, A.; Sushama, L.

    2014-12-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the frozen scheme in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. Interflow is also included in these experiments presented in this study to better explain the steamflows after snow melt season. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations, performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA-Interim), for the 1990-2001 period, over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept, compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS, over most of the study domain. The simulated spring peaks and their timing in this simulation is also in better agreement to those observed.

  19. On improving cold region hydrological processes in the Canadian Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard

    2017-01-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.

  20. a Unified Matrix Polynomial Approach to Modal Identification

    NASA Astrophysics Data System (ADS)

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  1. Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake

    Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less

  2. Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD

    DOE PAGES

    Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake; ...

    2017-03-24

    Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less

  3. An integral formulation for wave propagation on weakly non-uniform potential flows

    NASA Astrophysics Data System (ADS)

    Mancini, Simone; Astley, R. Jeremy; Sinayoko, Samuel; Gabard, Gwénaël; Tournour, Michel

    2016-12-01

    An integral formulation for acoustic radiation in moving flows is presented. It is based on a potential formulation for acoustic radiation on weakly non-uniform subsonic mean flows. This work is motivated by the absence of suitable kernels for wave propagation on non-uniform flow. The integral solution is formulated using a Green's function obtained by combining the Taylor and Lorentz transformations. Although most conventional approaches based on either transform solve the Helmholtz problem in a transformed domain, the current Green's function and associated integral equation are derived in the physical space. A dimensional error analysis is developed to identify the limitations of the current formulation. Numerical applications are performed to assess the accuracy of the integral solution. It is tested as a means of extrapolating a numerical solution available on the outer boundary of a domain to the far field, and as a means of solving scattering problems by rigid surfaces in non-uniform flows. The results show that the error associated with the physical model deteriorates with increasing frequency and mean flow Mach number. However, the error is generated only in the domain where mean flow non-uniformities are significant and is constant in regions where the flow is uniform.

  4. u-w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme

    NASA Astrophysics Data System (ADS)

    Navas, Pedro; Sanavia, Lorenzo; López-Querol, Susana; Yu, Rena C.

    2017-12-01

    Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue. An implicit time integration scheme is herein developed within the framework of the u-w (solid displacement-relative fluid displacement) formulation for the Biot's equations. In particular, liquid water saturated porous media is considered and the linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through the application to an embankment problem subjected to an earthquake.

  5. Detection of faults in rotating machinery using periodic time-frequency sparsity

    NASA Astrophysics Data System (ADS)

    Ding, Yin; He, Wangpeng; Chen, Binqiang; Zi, Yanyang; Selesnick, Ivan W.

    2016-11-01

    This paper addresses the problem of extracting periodic oscillatory features in vibration signals for detecting faults in rotating machinery. To extract the feature, we propose an approach in the short-time Fourier transform (STFT) domain where the periodic oscillatory feature manifests itself as a relatively sparse grid. To estimate the sparse grid, we formulate an optimization problem using customized binary weights in the regularizer, where the weights are formulated to promote periodicity. In order to solve the proposed optimization problem, we develop an algorithm called augmented Lagrangian majorization-minimization algorithm, which combines the split augmented Lagrangian shrinkage algorithm (SALSA) with majorization-minimization (MM), and is guaranteed to converge for both convex and non-convex formulation. As examples, the proposed approach is applied to simulated data, and used as a tool for diagnosing faults in bearings and gearboxes for real data, and compared to some state-of-the-art methods. The results show that the proposed approach can effectively detect and extract the periodical oscillatory features.

  6. On Reformulating Planning as Dynamic Constraint Satisfaction

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari K.; Morris, Paul; Koga, Dennis (Technical Monitor)

    2000-01-01

    In recent years, researchers have reformulated STRIPS planning problems as SAT problems or CSPs. In this paper, we discuss the Constraint-Based Interval Planning (CBIP) paradigm, which can represent planning problems incorporating interval time and resources. We describe how to reformulate mutual exclusion constraints for a CBIP-based system, the Extendible Uniform Remote Operations Planner Architecture (EUROPA). We show that reformulations involving dynamic variable domains restrict the algorithms which can be used to solve the resulting DCSP. We present an alternative formulation which does not employ dynamic domains, and describe the relative merits of the different reformulations.

  7. Evolution of Immiscibly Blended Functionalized Polymers with Respect to Cure Parameters and Formulation

    NASA Astrophysics Data System (ADS)

    Heller, Nicholas Walter Medicus

    Powder coatings are becoming ubiquitous in the coating marketplace due to the absence of solvents in their formulation, but they have yet to see implementation in low-reflectance outdoor applications. This demand could be met by utilizing polymer blends formulated with low loadings of matting agents and pigments. The goal of this research is a thorough characterization of prototype low-reflectance coatings through several analytical techniques. Prototypical thermoset blends consist of functionalized polyurethanes rendered immiscible by differences in polar and hydrogen bonding characteristics, resulting in a surface roughened by droplet domains. Analysis of both pigmented and control clear films was performed. This research project had three primary aims: (1) determine the composition of the resin components of the polymer blend; (2) to monitor the evolution of domains before and during curing of clear polymer blends; (3) to monitor the evolution of these domains when pigments are added to these blends. The clear films enabled unhindered analysis by Fourier transform infrared (FTIR) and Raman spectroscopy on the binder. However, these domains provided no spectroscopic signatures despite their observation by optical microscopy. This necessitated the development of a new procedure for cross-section preparation that leaves no contamination from polishing media, which enabled Raman mapping of the morphology via an introduced marker peak from styrene monomer. The clears were analyzed as a powder and as films that were quenched at various cure-times using FTIR, Raman, transmission electron microscopy (TEM), and thermomechanical methods to construct a model of coating evolution based on cure parameters and polymer dynamics. Domains were observed in the powder, and underwent varying rates of coarsening as the cure progressed. TEM, scanning electron microscopy and thermomechanical methods were also used on pigmented systems at different states of the cure, including in powder form. TEM analysis additionally revealed the encapsulation of pigment particles by the domains, which helped explain the interaction between phase separation and pigment materials. The knowledge gained from fundamental characterization could be used to enable future generations of durable powder coatings with dead matte finishes.

  8. Time-Dependent Parabolic Finite Difference Formulation for Harmonic Sound Propagation in a Two-Dimensional Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Baumeister, Kenneth J.

    1996-01-01

    An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  9. A nonlinear kinematic and dynamic modeling of Macpherson suspension systems with a magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Dutta, Saikat; Choi, Seung-Bok

    2016-03-01

    It is well known that Macpherson strut suspension systems are widely used in light and medium weight vehicles. The performance of these suspension systems can be enriched by incorporating magneto-rheological (MR) dampers and an appropriate dynamic model is required in order to find out the ride comfort and other performances properly in the sense of practical environment conditions. Therefore, in this work the kinematic and dynamic modeling of Macpherson strut suspension system with MR damper is presented and its responses are evaluated. The governing equations are formulated using the kinematic properties of the suspension system and adopting Lagrange’s equation. In the formulation of the model, both the rotation of the wheel assembly and the lateral stiffness of the tire are considered to represent the nonlinear characteristic of Macpherson type suspension system. The formulated mathematical model is then compared with equivalent conventional quarter car suspension model and the different dynamic responses such as the displacement of the sprung mass are compared to emphasize the effectiveness of the proposed model. Additionally, in this work the important kinematic properties of suspension system such as camber angle, king-pin angle and track width alteration, which cannot be obtained from conventional quarter car suspension model, are evaluated in time and frequency domains. Finally, vibration control responses of the proposed suspension system are presented in time and frequency domains which are achieved from the semi-active sky-hook controller.

  10. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.

  11. Advanced turboprop noise prediction based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Padula, S. L.; Dunn, M. H.

    1987-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  12. Acoustic analysis of the propfan

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Succi, G. P.

    1979-01-01

    A review of propeller noise prediction technology is presented. Two methods for the prediction of the noise from conventional and advanced propellers in forward flight are described. These methods are based on different time domain formulations. Brief descriptions of the computer algorithms based on these formulations are given. The output of the programs (the acoustic pressure signature) was Fourier analyzed to get the acoustic pressure spectrum. The main difference between the two programs is that one can handle propellers with supersonic tip speed while the other is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.

  13. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine, NASA Advanced Air Vehicles Program - Commercial Supersonic Technology Project - AeroServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  14. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    NASA Astrophysics Data System (ADS)

    Liu, Qimao

    2018-02-01

    This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  15. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  16. Correlates of sports practice, occupational and leisure-time physical activity in Brazilian adolescents.

    PubMed

    Silva, Danilo R P; Fernandes, Rômulo A; Ohara, David; Collings, Paul J; Souza, Mariana F; Tomeleri, Crisieli M; Ronque, Enio R V; Sardinha, Luís B; Cyrino, Edilson S

    2016-01-01

    To analyze the relationship between different physical activity (PA) domains and sociodemographic, psychological, behavioral and biological factors in Brazilian adolescents. 1,220 adolescents (55.1% female) aged between 10 and 16 years-old participated in this study. The Baecke questionnaire was used to evaluate different PA domains, namely occupational, sports and leisure-time. Socioeconomic status, number of siblings, friendships satisfaction, mother's and father's PA level and previous experience with sports were self-reported. Cardiorespiratory fitness, waist circumference, and somatic maturity were estimated by objective indicators. Linear regression was used for the main statistical analysis. The variables consistently related to all of the PA domains were gender (boys more active), friendship satisfaction (positive with sports and leisure-time PA and negative with occupational PA) and cardiorespiratory fitness (positive). There were also domain-specific relationships for occupational (number of siblings [β = 0.02] and father's PA [β = 0.13]), sport practice (previous experience with sports [β = 0.33], waist circumference [β = 0.01] and somatic maturity [β = -0.12]) and leisure-time PA (chronological age [β = -0.15], mother's PA [β = 0.47] and previous experience with sports [β = 0.17]). The different domains of PA are related to specific variables in adolescence. This information may be helpful in formulating strategies for physical activity promotion, particularly in adolescents from low-to-middle income countries. © 2015 Wiley Periodicals, Inc.

  17. Fault detection for singular switched linear systems with multiple time-varying delay in finite frequency domain

    NASA Astrophysics Data System (ADS)

    Zhai, Ding; Lu, Anyang; Li, Jinghao; Zhang, Qingling

    2016-10-01

    This paper deals with the problem of the fault detection (FD) for continuous-time singular switched linear systems with multiple time-varying delay. In this paper, the actuator fault is considered. Besides, the systems faults and unknown disturbances are assumed in known frequency domains. Some finite frequency performance indices are initially introduced to design the switched FD filters which ensure that the filtering augmented systems under switching signal with average dwell time are exponentially admissible and guarantee the fault input sensitivity and disturbance robustness. By developing generalised Kalman-Yakubovic-Popov lemma and using Parseval's theorem and Fourier transform, finite frequency delay-dependent sufficient conditions for the existence of such a filter which can guarantee the finite-frequency H- and H∞ performance are derived and formulated in terms of linear matrix inequalities. Four examples are provided to illustrate the effectiveness of the proposed finite frequency method.

  18. 76 FR 8775 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... FR 69459, Formulation Technologies LLC., 11501 Domain Drive, Suite 130, Austin, Texas 78758, made... factors in 21 U.S.C. 823(a) and 952(a) and determined that the registration of Formulation Technologies..., 1971. DEA has investigated Formulation Technologies LLC. to ensure that the company's registration is...

  19. Parallel Domain Decomposition Formulation and Software for Large-Scale Sparse Symmetrical/Unsymmetrical Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Watson, Willie R. (Technical Monitor)

    2005-01-01

    The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.

  20. An unsteady aerodynamic formulation for efficient rotor tonal noise prediction

    NASA Astrophysics Data System (ADS)

    Gennaretti, M.; Testa, C.; Bernardini, G.

    2013-12-01

    An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.

  1. Suspension parameter estimation in the frequency domain using a matrix inversion approach

    NASA Astrophysics Data System (ADS)

    Thite, A. N.; Banvidi, S.; Ibicek, T.; Bennett, L.

    2011-12-01

    The dynamic lumped parameter models used to optimise the ride and handling of a vehicle require base values of the suspension parameters. These parameters are generally experimentally identified. The accuracy of identified parameters can depend on the measurement noise and the validity of the model used. The existing publications on suspension parameter identification are generally based on the time domain and use a limited degree of freedom. Further, the data used are either from a simulated 'experiment' or from a laboratory test on an idealised quarter or a half-car model. In this paper, a method is developed in the frequency domain which effectively accounts for the measurement noise. Additional dynamic constraining equations are incorporated and the proposed formulation results in a matrix inversion approach. The nonlinearities in damping are estimated, however, using a time-domain approach. Full-scale 4-post rig test data of a vehicle are used. The variations in the results are discussed using the modal resonant behaviour. Further, a method is implemented to show how the results can be improved when the matrix inverted is ill-conditioned. The case study shows a good agreement between the estimates based on the proposed frequency-domain approach and measurable physical parameters.

  2. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  3. FDTD scattered field formulation for scatterers in stratified dispersive media.

    PubMed

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  4. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  5. Acoustic activation of water-in-oil microemulsions for controlled salt dissolution.

    PubMed

    Baxamusa, Salmaan; Ehrmann, Paul; Ong, Jemi

    2018-06-18

    The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates. Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH 2 PO 4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field. Dispersed aqueous domains of 2-6 nm radius dissolve a solid block of KDP at 0-10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  7. Finding Mutual Exclusion Invariants in Temporal Planning Domains

    NASA Technical Reports Server (NTRS)

    Bernardini, Sara; Smith, David E.

    2011-01-01

    We present a technique for automatically extracting temporal mutual exclusion invariants from PDDL2.2 planning instances. We first identify a set of invariant candidates by inspecting the domain and then check these candidates against properties that assure invariance. If these properties are violated, we show that it is sometimes possible to refine a candidate by adding additional propositions and turn it into a real invariant. Our technique builds on other approaches to invariant synthesis presented in the literature, but departs from their limited focus on instantaneous discrete actions by addressing temporal and numeric domains. To deal with time, we formulate invariance conditions that account for both the entire structure of the operators (including the conditions, rather than just the effects) and the possible interactions between operators. As a result, we construct a technique that is not only capable of identifying invariants for temporal domains, but is also able to find a broader set of invariants for non-temporal domains than the previous techniques.

  8. Sub-domain methods for collaborative electromagnetic computations

    NASA Astrophysics Data System (ADS)

    Soudais, Paul; Barka, André

    2006-06-01

    In this article, we describe a sub-domain method for electromagnetic computations based on boundary element method. The benefits of the sub-domain method are that the computation can be split between several companies for collaborative studies; also the computation time can be reduced by one or more orders of magnitude especially in the context of parametric studies. The accuracy and efficiency of this technique is assessed by RCS computations on an aircraft air intake with duct and rotating engine mock-up called CHANNEL. Collaborative results, obtained by combining two sets of sub-domains computed by two companies, are compared with measurements on the CHANNEL mock-up. The comparisons are made for several angular positions of the engine to show the benefits of the method for parametric studies. We also discuss the accuracy of two formulations of the sub-domain connecting scheme using edge based or modal field expansion. To cite this article: P. Soudais, A. Barka, C. R. Physique 7 (2006).

  9. Deployable wing model considering structural flexibility and aerodynamic unsteadiness for deployment system design

    NASA Astrophysics Data System (ADS)

    Otsuka, Keisuke; Wang, Yinan; Makihara, Kanjuro

    2017-11-01

    In future, wings will be deployed in the span direction during flight. The deployment system improves flight ability and saves storage space in the airplane. For the safe design of the wing, the deployment motion needs to be simulated. In the simulation, the structural flexibility and aerodynamic unsteadiness should be considered because they may lead to undesirable phenomena such as a residual vibration after the deployment or a flutter during the deployment. In this study, the deployment motion is simulated in the time domain by using a nonlinear folding wing model based on multibody dynamics, absolute nodal coordinate formulation, and two-dimensional aerodynamics with strip theory. We investigate the effect of the structural flexibility and aerodynamic unsteadiness on the time-domain deployment simulation.

  10. Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Roland

    2007-06-15

    We calculate the self-force acting on a particle with scalar charge moving on a generic geodesic around a Schwarzschild black hole. This calculation requires an accurate computation of the retarded scalar field produced by the moving charge; this is done numerically with the help of a fourth-order convergent finite-difference scheme formulated in the time domain. The calculation also requires a regularization procedure, because the retarded field is singular on the particle's world line; this is handled mode-by-mode via the mode-sum regularization scheme first introduced by Barack and Ori. This paper presents the numerical method, various numerical tests, and a samplemore » of results for mildly eccentric orbits as well as ''zoom-whirl'' orbits.« less

  11. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies.

    PubMed

    Stoykov, Nikolay S; Kuiken, Todd A; Lowery, Madeleine M; Taflove, Allen

    2003-09-01

    We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.

  12. Numerical simulation of mushrooms during freezing using the FEM and an enthalpy: Kirchhoff formulation

    NASA Astrophysics Data System (ADS)

    Santos, M. V.; Lespinard, A. R.

    2011-12-01

    The shelf life of mushrooms is very limited since they are susceptible to physical and microbial attack; therefore they are usually blanched and immediately frozen for commercial purposes. The aim of this work was to develop a numerical model using the finite element technique to predict freezing times of mushrooms considering the actual shape of the product. The original heat transfer equation was reformulated using a combined enthalpy-Kirchhoff formulation, therefore an own computational program using Matlab 6.5 (MathWorks, Natick, Massachusetts) was developed, considering the difficulties encountered when simulating this non-linear problem in commercial softwares. Digital images were used to generate the irregular contour and the domain discretization. The numerical predictions agreed with the experimental time-temperature curves during freezing of mushrooms (maximum absolute error <3.2°C) obtaining accurate results and minimum computer processing times. The codes were then applied to determine required processing times for different operating conditions (external fluid temperatures and surface heat transfer coefficients).

  13. Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Padula, S. L.

    1986-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  14. Reduced size first-order subsonic and supersonic aeroelastic modeling

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1990-01-01

    Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.

  15. Heat conductivity in graphene and related materials: A time-domain modal analysis

    NASA Astrophysics Data System (ADS)

    Gill-Comeau, Maxime; Lewis, Laurent J.

    2015-11-01

    We use molecular dynamics (MD) simulations to study heat conductivity in single-layer graphene and graphite. We analyze the MD trajectories through a time-domain modal analysis and show that this is essential for obtaining a reliable representation of the heat flow in graphene and graphite as it permits the proper treatment of collective vibrational excitations, in contrast to a frequency-domain formulation. Our temperature-dependent results are in very good agreement with experiment and, for temperatures in the range 300-1200 K, we find that the ZA branch allows more heat flow than all other branches combined while the contributions of the TA, LA, and ZO branches are comparable at all temperatures. Conductivity mappings reveal strong collective excitations associated with low-frequency ZA modes. We demonstrate that these collective effects are a consequence of the quadratic nature of the ZA branch as they also show up in graphite but are reduced in strained graphene, where the dispersion becomes linear, and are absent in diamond, where acoustic branches are linear. In general, neglecting collective excitations yields errors similar to those from the single-mode relaxation-time approximation.

  16. A Comparison of Ffowcs Williams-Hawkings Solvers for Airframe Noise Applications

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2002-01-01

    This paper presents a comparison between two implementations of the Ffowcs Williams and Hawkings equation for airframe noise applications. Airframe systems are generally moving at constant speed and not rotating, so these conditions are used in the current investigation. Efficient and easily implemented forms of the equations applicable to subsonic, rectilinear motion of all acoustic sources are used. The assumptions allow the derivation of a simple form of the equations in the frequency-domain, and the time-domain method uses the restrictions on the motion to reduce the work required to find the emission time. The comparison between the frequency domain method and the retarded time formulation reveals some of the advantages of the different approaches. Both methods are still capable of predicting the far-field noise from nonlinear near-field flow quantities. Because of the large input data sets and potentially large numbers of observer positions of interest in three-dimensional problems, both codes utilize the message passing interface to divide the problem among different processors. Example problems are used to demonstrate the usefulness and efficiency of the two schemes.

  17. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  18. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-07-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  19. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.

    PubMed

    Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B

    2008-08-01

    We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.

  20. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  1. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    NASA Astrophysics Data System (ADS)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  2. Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels

    NASA Astrophysics Data System (ADS)

    Raghunathan, A. V.; Aluru, N. R.

    2007-07-01

    A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2nm and 3.5nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2ns simulation time K+ ions can permeate through a 1nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.

  3. Explicit finite-volume time-marching calculations of total temperature distributions in turbulent flow

    NASA Technical Reports Server (NTRS)

    Nicholson, Stephen; Moore, Joan G.; Moore, John

    1987-01-01

    A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.

  4. Explicit finite-volume time-marching calculations of total temperature distributions in turbulent flow

    NASA Technical Reports Server (NTRS)

    Nicholson, Stephen; Moore, Joan G.; Moore, John

    1986-01-01

    A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.

  5. Cationic lipids bearing succinic-based, acyclic and macrocyclic hydrophobic domains: Synthetic studies and in vitro gene transfer.

    PubMed

    Jubeli, Emile; Maginty, Amanda B; Khalique, Nada Abdul; Raju, Liji; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2017-01-05

    In this communication we describe the construction of four succinic-based cationic lipids, their formulation with plasmid DNA (pDNA), and an evaluation of their in vitro gene delivery into Chinese hamster ovarian (CHO-K1) cells. The cationic lipids employed in this work possess either a dimethylamine or trimethylamine headgroup, and a macrocyclic or an acyclic hydrophobic domain composed of, or derived from two 16-atom, succinic-based acyl chains. The synthesized lipids and a co-lipid of neutral charge, either cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), were formulated in an overall 3:2 cationic-to-neutral lipid molar ratio, then complexed with plasmid DNA (pDNA). The relative transfection performance was evaluated via a comparison between matched versus mismatched formulations defined by the rigidity relationship between the lipids employed. Gel electrophoresis was used to characterize the binding of the lipid formulations with plasmid DNA and the relative degree of plasmid degradation using a DNase I degradation assay. Small angle X-ray diffraction (SAXD) was employed to characterize the packing morphology of the lipid-DNA complexes. In general, the succinic unit embedded within the hydrophobic domain of the cationic lipids was found to improve lipid hydration. The transfection assays revealed a general trend in which mismatched formulations that employed a rigid lipid combined with a non-rigid (or flexible) lipid, outperformed the matched formulations. The results from this work suggest that the design of the cationic lipid structure and the composition of the lipoplex formulation play key roles in governing the transfection performance of nonviral gene delivery agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    NASA Astrophysics Data System (ADS)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.

  7. Response of space shuttle insulation panels to acoustic noise pressure

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1976-01-01

    The response of reusable space shuttle insulation panels to random acoustic pressure fields are studied. The basic analytical approach in formulating the governing equations of motion uses a Rayleigh-Ritz technique. The input pressure field is modeled as a stationary Gaussian random process for which the cross-spectral density function is known empirically from experimental measurements. The response calculations are performed in both frequency and time domain.

  8. Computational AeroAcoustics for Fan Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Ed; Hixon, Ray; Dyson, Rodger; Huff, Dennis (Technical Monitor)

    2002-01-01

    An overview of the current state-of-the-art in computational aeroacoustics as applied to fan noise prediction at NASA Glenn is presented. Results from recent modeling efforts using three dimensional inviscid formulations in both frequency and time domains are summarized. In particular, the application of a frequency domain method, called LINFLUX, to the computation of rotor-stator interaction tone noise is reviewed and the influence of the background inviscid flow on the acoustic results is analyzed. It has been shown that the noise levels are very sensitive to the gradients of the mean flow near the surface and that the correct computation of these gradients for highly loaded airfoils is especially problematic using an inviscid formulation. The ongoing development of a finite difference time marching code that is based on a sixth order compact scheme is also reviewed. Preliminary results from the nonlinear computation of a gust-airfoil interaction model problem demonstrate the fidelity and accuracy of this approach. Spatial and temporal features of the code as well as its multi-block nature are discussed. Finally, latest results from an ongoing effort in the area of arbitrarily high order methods are reviewed and technical challenges associated with implementing correct high order boundary conditions are discussed and possible strategies for addressing these challenges ore outlined.

  9. Terminal Area Simulation System User's Guide - Version 10.0

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.

    2014-01-01

    The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.

  10. Primal-mixed formulations for reaction-diffusion systems on deforming domains

    NASA Astrophysics Data System (ADS)

    Ruiz-Baier, Ricardo

    2015-10-01

    We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.

  11. Prediction of submarine scattered noise by the acoustic analogy

    NASA Astrophysics Data System (ADS)

    Testa, C.; Greco, L.

    2018-07-01

    The prediction of the noise scattered by a submarine subject to the propeller tonal noise is here addressed through a non-standard frequency-domain formulation that extends the use of the acoustic analogy to scattering problems. A boundary element method yields the scattered pressure upon the hull surface by the solution of a boundary integral equation, whereas the noise radiated in the fluid domain is evaluated by the corresponding boundary integral representation. Propeller-induced incident pressure field on the scatterer is detected by combining an unsteady three-dimensional panel method with the Bernoulli equation. For each frequency of interest, numerical results concern with sound pressure levels upon the hull and in the flowfield. The validity of the results is established by a comparison with a time-marching hydrodynamic panel method that solves propeller and hull jointly. Within the framework of potential-flow hydrodynamics, it is found out that the scattering formulation herein proposed is appropriate to successfully capture noise magnitude and directivity both on the hull surface and in the flowfield, yielding a computationally efficient solution procedure that may be useful in preliminary design/multidisciplinary optimization applications.

  12. A novel tetravalent formulation combining the four aggregated domain III-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys.

    PubMed

    Suzarte, Edith; Gil, Lázaro; Valdés, Iris; Marcos, Ernesto; Lazo, Laura; Izquierdo, Alienys; García, Angélica; López, Lázaro; Álvarez, Maylin; Pérez, Yusleydis; Castro, Jorge; Romero, Yaremis; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2015-08-01

    Our group developed a subunit vaccine candidate against dengue virus based on two different viral regions: the domain III of the envelope protein and the capsid protein. The novel chimeric protein from dengue-2 virus [domain III-capsid (DIIIC-2)], when presented as aggregated incorporating oligodeoxynucleotides, induced anti-viral and neutralizing antibodies, a cellular immune response and conferred significant protection to mice and monkeys. The remaining constructs were already obtained and properly characterized. Based on this evidence, this work was aimed at assessing the immune response in mice of the chimeric proteins DIIIC of each serotype, as monovalent and tetravalent formulations. Here, we demonstrated the immunogenicity of each protein in terms of humoral and cell-mediated immunity, without antigen competition on the mixture forming the formulation tetra DIIIC. Accordingly, significant protection was afforded as measured by the limited viral load in the mouse encephalitis model. The assessment of the tetravalent formulation in non-human primates was also conducted. In this animal model, it was demonstrated that the formulation induced neutralizing antibodies and memory cell-mediated immune response with IFN-γ-secreting and cytotoxic capacity, regardless the route of immunization used. Taken together, we can assert that the tetravalent formulation of DIIIC proteins constitutes a promising vaccine candidate against dengue virus, and propose it for further efficacy experiments in monkeys or in the dengue human infection model, as it has been recently proposed. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Local spectrum analysis of field propagation in an anisotropic medium. Part II. Time-dependent fields.

    PubMed

    Tinkelman, Igor; Melamed, Timor

    2005-06-01

    In Part I of this two-part investigation [J. Opt. Soc. Am. A 22, 1200 (2005)], we presented a theory for phase-space propagation of time-harmonic electromagnetic fields in an anisotropic medium characterized by a generic wave-number profile. In this Part II, these investigations are extended to transient fields, setting a general analytical framework for local analysis and modeling of radiation from time-dependent extended-source distributions. In this formulation the field is expressed as a superposition of pulsed-beam propagators that emanate from all space-time points in the source domain and in all directions. Using time-dependent quadratic-Lorentzian windows, we represent the field by a phase-space spectral distribution in which the propagating elements are pulsed beams, which are formulated by a transient plane-wave spectrum over the extended-source plane. By applying saddle-point asymptotics, we extract the beam phenomenology in the anisotropic environment resulting from short-pulsed processing. Finally, the general results are applied to the special case of uniaxial crystal and compared with a reference solution.

  14. Application of a Three-Dimensional Poroelastic BEM to Modeling the Biphasic Mechanics of Cell-Matrix Interactions in Articular Cartilage (REVISION)

    PubMed Central

    Haider, Mansoor A.; Guilak, Farshid

    2009-01-01

    Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain. PMID:19851478

  15. Application of a Three-Dimensional Poroelastic BEM to Modeling the Biphasic Mechanics of Cell-Matrix Interactions in Articular Cartilage (REVISION).

    PubMed

    Haider, Mansoor A; Guilak, Farshid

    2007-06-15

    Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain.

  16. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  17. Experimental identification of closely spaced modes using NExT-ERA

    NASA Astrophysics Data System (ADS)

    Hosseini Kordkheili, S. A.; Momeni Massouleh, S. H.; Hajirezayi, S.; Bahai, H.

    2018-01-01

    This article presents a study on the capability of the time domain OMA method, NExT-ERA, to identify closely spaced structural dynamic modes. A survey in the literature reveals that few experimental studies have been conducted on the effectiveness of the NExT-ERA methodology in case of closely spaced modes specifically. In this paper we present the formulation for NExT-ERA. This formulation is then implemented in an algorithm and a code, developed in house to identify the modal parameters of different systems using their generated time history data. Some numerical models are firstly investigated to validate the code. Two different case studies involving a plate with closely spaced modes and a pulley ring with greater extent of closeness in repeated modes are presented. Both structures are excited by random impulses under the laboratory condition. The resulting time response acceleration data are then used as input in the developed code to extract modal parameters of the structures. The accuracy of the results is checked against those obtained from experimental tests.

  18. X-ray Raman scattering from molecules and solids in the framework of the Mahan-Nozières-De Dominicis model

    NASA Astrophysics Data System (ADS)

    Privalov, Timofei; Gel'mukhanov, Faris; Ågren, Hans

    2001-10-01

    We have developed a formulation of resonant x-ray Raman scattering of molecules and solids based on the Mahan-Nozières-De Dominicis model. A key step in the formulation is given by a reduction of the Keldysh-Dyson equations for the Green's function to a set of linear algebraic equations. This gave way for a tractable scheme that can be used to analyze the resonant x-ray scattering in the whole time domain. The formalism is used to investigate the role of core-hole relaxation, interference, band filling, detuning, and size of the scattering target. Numerical applications are performed with a one-dimensional tight-binding model.

  19. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  20. Frequency-dependent FDTD methods using Z transforms

    NASA Technical Reports Server (NTRS)

    Sullivan, Dennis M.

    1992-01-01

    While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.

  1. Frequency domain, waveform inversion of laboratory crosswell radar data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  2. Application of the control volume mixed finite element method to a triangular discretization

    USGS Publications Warehouse

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  3. Investigation into process-induced de-aggregation of cohesive micronised API particles.

    PubMed

    Hoffmann, Magnus; Wray, Patrick S; Gamble, John F; Tobyn, Mike

    2015-09-30

    The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal

    NASA Astrophysics Data System (ADS)

    Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert; Oberst, Sebastian

    2018-07-01

    Friction-induced vibrations are of major concern in the design of reliable, efficient and comfortable technical systems. Well-known examples for systems susceptible to self-excitation can be found in fluid structure interaction, disk brake squeal, rotor dynamics, hip implants noise and many more. While damping elements and amplitude reduction are well-understood in linear systems, nonlinear systems and especially self-excited dynamics still constitute a challenge for damping element design. Additionally, complex dynamical systems exhibit deterministic chaotic cores which add severe sensitivity to initial conditions to the system response. Especially the complex friction interface dynamics remain a challenging task for measurements and modeling. Today, mostly simple and regular friction models are investigated in the field of self-excited brake system vibrations. This work aims at investigating the effect of high-frequency irregular interface dynamics on the nonlinear dynamical response of a self-excited structure. Special focus is put on the characterization of the system response time series. A low-dimensional minimal model is studied which features self-excitation, gyroscopic effects and friction-induced damping. Additionally, the employed friction formulation exhibits temperature as inner variable and superposed chaotic fluctuations governed by a Lorenz attractor. The time scale of the irregular fluctuations is chosen one order smaller than the overall system dynamics. The influence of those fluctuations on the structural response is studied in various ways, i.e. in time domain and by means of recurrence analysis. The separate time scales are studied in detail and regimes of dynamic interactions are identified. The results of the irregular friction formulation indicate dynamic interactions on multiple time scales, which trigger larger vibration amplitudes as compared to regular friction formulations conventionally studied in the field of friction-induced vibrations.

  5. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    NASA Astrophysics Data System (ADS)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  6. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

    NASA Astrophysics Data System (ADS)

    El-Zein, Abbas; Carter, John P.; Airey, David W.

    2006-06-01

    A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

  7. Electro-quasistatic analysis of an electrostatic induction micromotor using the cell method.

    PubMed

    Monzón-Verona, José Miguel; Santana-Martín, Francisco Jorge; García-Alonso, Santiago; Montiel-Nelson, Juan Antonio

    2010-01-01

    An electro-quasistatic analysis of an induction micromotor has been realized by using the Cell Method. We employed the direct Finite Formulation (FF) of the electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM) is used for solving the field equations at the entire domain (2D space) of the micromotor. We have reformulated the field laws in a direct FF and analyzed physical quantities to make explicit the relationship between magnitudes and laws. We applied a primal-dual barycentric discretization of the 2D space. The electric potential has been calculated on each node of the primal mesh using CM. For verification purpose, an analytical electric potential equation is introduced as reference. In frequency domain, results demonstrate the error in calculating potential quantity is neglected (<3‰). In time domain, the potential value in transient state tends to the steady state value.

  8. Electro-Quasistatic Analysis of an Electrostatic Induction Micromotor Using the Cell Method

    PubMed Central

    Monzón-Verona, José Miguel; Santana-Martín, Francisco Jorge; García–Alonso, Santiago; Montiel-Nelson, Juan Antonio

    2010-01-01

    An electro-quasistatic analysis of an induction micromotor has been realized by using the Cell Method. We employed the direct Finite Formulation (FF) of the electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM) is used for solving the field equations at the entire domain (2D space) of the micromotor. We have reformulated the field laws in a direct FF and analyzed physical quantities to make explicit the relationship between magnitudes and laws. We applied a primal-dual barycentric discretization of the 2D space. The electric potential has been calculated on each node of the primal mesh using CM. For verification purpose, an analytical electric potential equation is introduced as reference. In frequency domain, results demonstrate the error in calculating potential quantity is neglected (<3‰). In time domain, the potential value in transient state tends to the steady state value. PMID:22163397

  9. Ultrasound mammography

    NASA Astrophysics Data System (ADS)

    Mensah, Serge; Franceschini, Emilie; Pauzin, Marie-Christine

    2007-02-01

    We introduce a near-field formulation of the acoustic field scattered by a soft tissue organ. This derivation is based on the Huygens-Fresnel principle that describes the scattered field as the result of the interferential scheme of all the secondary spherical waves. This leads us to define a new Fourier transform which yields a spectrum whose harmonic components have an elliptical spatial support. Based on these projections, we define an Elliptical Radon transform that enables us to reconstruct either the impedance or the celerity maps of an acoustical model characterized in terms of impedance and celerity fluctuations. The formulation is very similar to that developed in the far-field domain where the Radon transform pair is derived from an harmonic plane wave decomposition. This formulation allows us to introduce the Ductal Tomography, following the example of the Ductal Echography, that provides a systematic inspection of each mammary lobe, in order to reveal breast lesions at an early stage. In order to review the performances obtained with current echographs in view of specific experiment (numerical simulations), we develop a computer phantom that gains in realism. This 2-D anatomical phantom is an axial cut of the ductolobular structure corresponding to a daisy-like internal arrangement with petals (lobes) radiating around the nipple, for healthy and pathological situations. The different constitutive tissues and ducts are characterized in terms of density and celerity parameters whose spatial distributions are defined with specific random density laws. The use of a velocity-pressure formulation permits us to model time domain acoustic wave propagation. Broadband US pulses are transmitted and measured in diffraction around the breast with a ring antenna, the images are reconstructed using the elliptical back-projection-based procedure mentioned above.

  10. Aeroacoustic analysis of an airfoil with Gurney flap based on time-resolved particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqing; Sciacchitano, Andrea; Pröbsting, Stefan

    2018-05-01

    Particle image velocimetry for the experimental assessment of trailing edge noise sources has become focus of research in recent years. The present study investigates the feasibility of the noise prediction for high-lift devices based on time-resolved particle image velocimetry (PIV). The model under investigation is a NACA 0015 airfoil with a Gurney flap with a height of 6% of the chord length. The velocity fields around and downstream of the Gurney flap were measured by PIV and used to compute the corresponding pressure fields by solving the Poisson equation for incompressible flows. The reconstructed pressure fluctuations on the airfoil surface constitute the source term for Curle's aeroacoustic analogy, which was employed in both the distributed and compact formulation to estimate the noise emission from PIV. The results of the two formulations are compared with the simultaneous far-field microphone measurements in the temporal and spectral domains. Both formulations of Curle's analogy yield acoustic sound pressure levels in good agreement with the simultaneous microphone measurements for the tonal component. The estimated far-field sound power spectra (SPL) from the PIV measurements reproduce the peak at the vortex shedding frequency, which also agrees well with the acoustic measurements.

  11. Thermal elastoplastic structural analysis of non-metallic thermal protection systems

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yagawa, G.

    1972-01-01

    An incremental theory and numerical procedure to analyze a three-dimensional thermoelastoplastic structure subjected to high temperature, surface heat flux, and volume heat supply as well as mechanical loadings are presented. Heat conduction equations and equilibrium equations are derived by assuming a specific form of incremental free energy, entropy, stresses and heat flux together with the first and second laws of thermodynamics, von Mises yield criteria and Prandtl-Reuss flow rule. The finite element discretization using the linear isotropic three-dimensional element for the space domain and a difference operator corresponding to a linear variation of temperature within a small time increment for the time domain lead to systematic solutions of temperature distribution and displacement and stress fields. Various boundary conditions such as insulated surfaces and convection through uninsulated surface can be easily treated. To demonstrate effectiveness of the present formulation a number of example problems are presented.

  12. The terminal area simulation system. Volume 1: Theoretical formulation

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.

  13. The aerodynamics of propellers and rotors using an acoustic formulation in the time domain

    NASA Technical Reports Server (NTRS)

    Long, L. N.

    1983-01-01

    The aerodynamics of propellers and rotors is especially complicated because of the highly three-dimensional and compressible nature of the flow field. However, in linearized theory the problem is governed by the wave equation, and a numerically-efficient integral formulation can be derived. This reduces the problem from one in space to one over a surface. Many such formulations exist in the aeroacoustics literature, but these become singular integral equations if one naively tries to use them to predict surface pressures, i.e., for aerodynamics. The present paper illustrates how one must interpret these equations in order to obtain nonambiguous results. After the regularized form of the integral equation is derived, a method for solving it numerically is described. This preliminary computer code uses Legendre-Gaussian quadrature to solve the equation. Numerical results are compared to experimental results for ellipsoids, wings, and rotors, including effects due to lift. Compressibility and the farfield boundary conditions are satisfied automatically using this method.

  14. Robust Control Design for Systems With Probabilistic Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a reliability- and robustness-based formulation for robust control synthesis for systems with probabilistic uncertainty. In a reliability-based formulation, the probability of violating design requirements prescribed by inequality constraints is minimized. In a robustness-based formulation, a metric which measures the tendency of a random variable/process to cluster close to a target scalar/function is minimized. A multi-objective optimization procedure, which combines stability and performance requirements in time and frequency domains, is used to search for robustly optimal compensators. Some of the fundamental differences between the proposed strategy and conventional robust control methods are: (i) unnecessary conservatism is eliminated since there is not need for convex supports, (ii) the most likely plants are favored during synthesis allowing for probabilistic robust optimality, (iii) the tradeoff between robust stability and robust performance can be explored numerically, (iv) the uncertainty set is closely related to parameters with clear physical meaning, and (v) compensators with improved robust characteristics for a given control structure can be synthesized.

  15. Numerical Simulation of Interaction of Human Vocal Folds and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Kosík, A.; Feistauer, M.; Horáček, J.; Sváček, P.

    Our goal is to simulate airflow in human vocal folds and their flow-induced vibrations. We consider two-dimensional viscous incompressible flow in a time-dependent domain. The fluid flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation. The flow problem is coupled with the elastic behaviour of the solid bodies. The developed solution of the coupled problem based on the finite element method is demonstrated by numerical experiments.

  16. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.

    PubMed

    Zhao, Shan

    2011-08-15

    This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America

  17. A universal constraint-based formulation for freely moving immersed bodies in fluids

    NASA Astrophysics Data System (ADS)

    Patankar, Neelesh A.

    2012-11-01

    Numerical simulation of moving immersed bodies in fluids is now practiced routinely. A variety of variants of these approaches have been published, most of which rely on using a background mesh for the fluid equations and tracking the body using Lagrangian points. In this talk, generalized constraint-based governing equations will be presented that provide a unified framework for various immersed body techniques. The key idea that is common to these methods is to assume that the entire fluid-body domain is a ``fluid'' and then to constrain the body domain to move in accordance with its governing equations. The immersed body can be rigid or deforming. The governing equations are developed so that they are independent of the nature of temporal or spatial discretization schemes. Specific choices of time stepping and spatial discretization then lead to techniques developed in prior literature ranging from freely moving rigid to elastic self-propelling bodies. To simulate Brownian systems, thermal fluctuations can be included in the fluid equations via additional random stress terms. Solving the fluctuating hydrodynamic equations coupled with the immersed body results in the Brownian motion of that body. The constraint-based formulation leads to fractional time stepping algorithms a la Chorin-type schemes that are suitable for fast computations of rigid or self-propelling bodies whose deformation kinematics are known. Support from NSF is gratefully acknowledged.

  18. Correlation of AH-1G airframe flight vibration data with a coupled rotor-fuselage analysis

    NASA Technical Reports Server (NTRS)

    Sangha, K.; Shamie, J.

    1990-01-01

    The formulation and features of the Rotor-Airframe Comprehensive Analysis Program (RACAP) is described. The analysis employs a frequency domain, transfer matrix approach for the blade structural model, a time domain wake or momentum theory aerodynamic model, and impedance matching for rotor-fuselage coupling. The analysis is applied to the AH-1G helicopter, and a correlation study is conducted on fuselage vibration predictions. The purpose of the study is to evaluate the state-of-the-art in helicopter fuselage vibration prediction technology. The fuselage vibration predicted using RACAP are fairly good in the vertical direction and somewhat deficient in the lateral/longitudinal directions. Some of these deficiencies are traced to the fuselage finite element model.

  19. A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2011-01-01

    A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.

  20. A framework for qualitative reasoning about solid objects

    NASA Technical Reports Server (NTRS)

    Davis, E.

    1987-01-01

    Predicting the behavior of a qualitatively described system of solid objects requires a combination of geometrical, temporal, and physical reasoning. Methods based upon formulating and solving differential equations are not adequate for robust prediction, since the behavior of a system over extended time may be much simpler than its behavior over local time. A first-order logic, in which one can state simple physical problems and derive their solution deductively, without recourse to solving the differential equations, is discussed. This logic is substantially more expressive and powerful than any previous AI representational system in this domain.

  1. On some stochastic formulations and related statistical moments of pharmacokinetic models.

    PubMed

    Matis, J H; Wehrly, T E; Metzler, C M

    1983-02-01

    This paper presents the deterministic and stochastic model for a linear compartment system with constant coefficients, and it develops expressions for the mean residence times (MRT) and the variances of the residence times (VRT) for the stochastic model. The expressions are relatively simple computationally, involving primarily matrix inversion, and they are elegant mathematically, in avoiding eigenvalue analysis and the complex domain. The MRT and VRT provide a set of new meaningful response measures for pharmacokinetic analysis and they give added insight into the system kinetics. The new analysis is illustrated with an example involving the cholesterol turnover in rats.

  2. Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.

    2015-04-02

    A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loadsmore » is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.« less

  3. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    PubMed

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Modeling of Atmospheric Turbulence as Disturbances for Control Design and Evaluation of High Speed Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.

  5. A nodally condensed SUPG formulation for free-surface computation of steady-state flows constrained by unilateral contact - Application to rolling

    NASA Astrophysics Data System (ADS)

    Arora, Shitij; Fourment, Lionel

    2018-05-01

    In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.

  6. Predicting vertically-nonsequential wetting patterns with a source-responsive model

    USGS Publications Warehouse

    Nimmo, John R.; Mitchell, Lara

    2013-01-01

    Water infiltrating into soil of natural structure often causes wetting patterns that do not develop in an orderly sequence. Because traditional unsaturated flow models represent a water advance that proceeds sequentially, they fail to predict irregular development of water distribution. In the source-responsive model, a diffuse domain (D) represents flow within soil matrix material following traditional formulations, and a source-responsive domain (S), characterized in terms of the capacity for preferential flow and its degree of activation, represents preferential flow as it responds to changing water-source conditions. In this paper we assume water undergoing rapid source-responsive transport at any particular time is of negligibly small volume; it becomes sensible at the time and depth where domain transfer occurs. A first-order transfer term represents abstraction from the S to the D domain which renders the water sensible. In tests with lab and field data, for some cases the model shows good quantitative agreement, and in all cases it captures the characteristic patterns of wetting that proceed nonsequentially in the vertical direction. In these tests we determined the values of the essential characterizing functions by inverse modeling. These functions relate directly to observable soil characteristics, rendering them amenable to evaluation and improvement through hydropedologic development.

  7. A coupled aero-structural model of a HAWT blade for dynamic load and response prediction in time-domain for health monitoring applications

    NASA Astrophysics Data System (ADS)

    Sauder, Heather Scot

    To reach the high standards set for renewable energy production in the US and around the globe, wind turbines with taller towers and longer blades are being designed for onshore and offshore wind developments to capture more energy from higher winds aloft and a larger rotor diameter. However, amongst all the wind turbine components wind turbine blades are still the most prone to damage. Given that wind turbine blades experience dynamic loads from multiple sources, there is a need to be able to predict the real-time load, stress distribution and response of the blade in a given wind environment for damage, flutter and fatigue life predictions. Current methods of wind-induced response analysis for wind turbine blades use approximations that are not suitable for wind turbine blade airfoils which are thick, and therefore lead to inaccurate life predictions. Additionally, a time-domain formulation can prove to be especially advantageous for predicting aerodynamic loads on wind turbine blades since they operate in a turbulent atmospheric boundary layer. This will help to analyze the blades on wind turbines that operate individually or in a farm setting where they experience high turbulence in the wake of another wind turbine. A time-domain formulation is also useful for examining the effects of gusty winds that are transient in nature like in gust fronts, thunderstorms or extreme events such as hurricanes, microbursts, and tornadoes. Time-domain methods present the opportunity for real-time health monitoring strategies that can easily be used with finite element methods for prediction of fatigue life or onset of flutter instability. The purpose of the proposed work is to develop a robust computational model to predict the loads, stresses and response of a wind turbine blade in operating and extreme wind conditions. The model can be used to inform health monitoring strategies for preventative maintenance and provide a realistic number of stress cycles that the blade will experience for fatigue life prediction procedures. To fill in the gaps in the existing knowledge and meet the overall goal of the proposed research, the following objectives were accomplished: (a) improve the existing aeroelastic (motion- and turbulence-induced) load models to predict the response of wind turbine blade airfoils to understand its behavior in turbulent wind, (b) understand, model and predict the response of wind turbine blades in transient or gusty wind, boundary-layer wind and incoherent wind over the span of the blade, (c) understand the effects of aero-structural coupling between the along-wind, cross-wind and torsional vibrations, and finally (d) develop a computational tool using the improved time-domain load model to predict the real-time load, stress distribution and response of a given wind turbine blade during operating and parked conditions subject to a specific wind environment both in a short and long term for damage, flutter and fatigue life predictions.

  8. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications☆

    PubMed Central

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-01-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517

  9. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    PubMed

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  10. Axial U(1) current in Grabowska and Kaplan's formulation

    NASA Astrophysics Data System (ADS)

    Hamada, Yu; Kawai, Hikaru

    2017-06-01

    Recently, Grabowska and Kaplan [Phys. Rev. Lett. 116, 211602 (2016); Phys. Rev. D 94, 114504 (2016)] suggested a nonperturbative formulation of a chiral gauge theory, which consists of the conventional domain-wall fermion and a gauge field that evolves by gradient flow from one domain wall to the other. We introduce two sets of domain-wall fermions belonging to complex conjugate representations so that the effective theory is a 4D vector-like gauge theory. Then, as a natural definition of the axial-vector current, we consider a current that generates simultaneous phase transformations for the massless modes in 4 dimensions. However, this current is exactly conserved and does not reproduce the correct anomaly. In order to investigate this point precisely, we consider the mechanism of the conservation. We find that this current includes not only the axial current on the domain wall but also a contribution from the bulk, which is nonlocal in the sense of 4D fields. Therefore, the local current is obtained by subtracting the bulk contribution from it.

  11. Double absorbing boundaries for finite-difference time-domain electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  12. An efficient solution procedure for the thermoelastic analysis of truss space structures

    NASA Technical Reports Server (NTRS)

    Givoli, D.; Rand, O.

    1992-01-01

    A solution procedure is proposed for the thermal and thermoelastic analysis of truss space structures in periodic motion. In this method, the spatial domain is first descretized using a consistent finite element formulation. Then the resulting semi-discrete equations in time are solved analytically by using Fourier decomposition. Geometrical symmetry is taken advantage of completely. An algorithm is presented for the calculation of heat flux distribution. The method is demonstrated via a numerical example of a cylindrically shaped space structure.

  13. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    NASA Astrophysics Data System (ADS)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  14. Efficient Computation of Closed-loop Frequency Response for Large Order Flexible Systems

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Giesy, Daniel P.

    1997-01-01

    An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, full-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open and closed loop loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, a speed-up of almost two orders of magnitude was observed while accuracy improved by up to 5 decimal places.

  15. Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas

    2017-04-01

    We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.

  16. Approaches to assessment in time-limited Mentalization-Based Therapy for Children (MBT-C)

    PubMed Central

    Muller, Nicole; Midgley, Nick

    2015-01-01

    In this article we describe our clinical approach to assessment, formulation and the identification of a therapeutic focus in the context of time-limited Mentalization-Based Treatment for Children (MBT-C) aged between 6 and 12. Rather than seeing the capacity to mentalize as a global construct, we set out an approach to assessing the developmental ‘building blocks’ of the capacity to mentalize the self and others, including the capacity for attention regulation, emotion regulation, and explicit mentalization. Assessing the child’s strengths and vulnerabilities in each of these domains provides a more nuanced picture of the child’s mentalizing capacities and difficulties, and can provide a useful approach to case formulation. The article sets out an approach to assessment that includes a consideration of mentalizing strengths and difficulties in both the child and the parents, and shows how this can be used to help develop a mutually agreed treatment focus. A clinical vignette illustrates the approach taken to assessment and connects it to routine clinical practice. PMID:26283994

  17. Unified tensor model for space-frequency spreading-multiplexing (SFSM) MIMO communication systems

    NASA Astrophysics Data System (ADS)

    de Almeida, André LF; Favier, Gérard

    2013-12-01

    This paper presents a unified tensor model for space-frequency spreading-multiplexing (SFSM) multiple-input multiple-output (MIMO) wireless communication systems that combine space- and frequency-domain spreadings, followed by a space-frequency multiplexing. Spreading across space (transmit antennas) and frequency (subcarriers) adds resilience against deep channel fades and provides space and frequency diversities, while orthogonal space-frequency multiplexing enables multi-stream transmission. We adopt a tensor-based formulation for the proposed SFSM MIMO system that incorporates space, frequency, time, and code dimensions by means of the parallel factor model. The developed SFSM tensor model unifies the tensorial formulation of some existing multiple-access/multicarrier MIMO signaling schemes as special cases, while revealing interesting tradeoffs due to combined space, frequency, and time diversities which are of practical relevance for joint symbol-channel-code estimation. The performance of the proposed SFSM MIMO system using either a zero forcing receiver or a semi-blind tensor-based receiver is illustrated by means of computer simulation results under realistic channel and system parameters.

  18. B-domain deleted recombinant factor VIII formulation and stability.

    PubMed

    Osterberg, T; Fatouros, A; Neidhardt, E; Warne, N; Mikaelsson, M

    2001-04-01

    B-domain deleted recombinant factor VIII (BDDrFVIII) is a deletion form of human coagulation factor VIII. A lyophilized formulation of highly purified BDDrFVIII has been developed that does not require the use of blood-derived products such as human serum albumin (HSA). By avoiding the use of blood-derived products, the BDDrFVIII formulation minimizes the risk of transmitting blood-borne pathogens that may be present in plasma-derived factor VIII or in other recombinant factor VIII products that contain HSA in their formulation. Upon reconstitution with saline (4 mL), the composition of the reconstituted product (62.5 to 250 IU/mL BDDrFVIII) is 18 mg/mL sodium chloride, 3.0 mg/mL sucrose, 1.5 mg/mL L-histidine, 0.25 mg/mL calcium chloride dihydrate, and 0.1 mg/mL polysorbate 80. The optimal combination of these excipients in the lyophilized BDDrFVIII formulation provides long-term stability, as measured by a variety of analytical methods. The formulation preserves factor VIII activity of lyophilized BDDrFVIII during storage for at least 24 months at 8 degrees C, and for up to 6 months at room temperature (25 degrees C). The reconstituted product retains its factor VIII potency for at least 100 hours at 25 degrees C, which would allow it to be continuously administered via an infusion pump, assuming the product is handled under aseptic conditions.

  19. Multitrace/singletrace formulations and Domain Decomposition Methods for the solution of Helmholtz transmission problems for bounded composite scatterers

    NASA Astrophysics Data System (ADS)

    Jerez-Hanckes, Carlos; Pérez-Arancibia, Carlos; Turc, Catalin

    2017-12-01

    We present Nyström discretizations of multitrace/singletrace formulations and non-overlapping Domain Decomposition Methods (DDM) for the solution of Helmholtz transmission problems for bounded composite scatterers with piecewise constant material properties. We investigate the performance of DDM with both classical Robin and optimized transmission boundary conditions. The optimized transmission boundary conditions incorporate square root Fourier multiplier approximations of Dirichlet to Neumann operators. While the multitrace/singletrace formulations as well as the DDM that use classical Robin transmission conditions are not particularly well suited for Krylov subspace iterative solutions of high-contrast high-frequency Helmholtz transmission problems, we provide ample numerical evidence that DDM with optimized transmission conditions constitute efficient computational alternatives for these type of applications. In the case of large numbers of subdomains with different material properties, we show that the associated DDM linear system can be efficiently solved via hierarchical Schur complements elimination.

  20. Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method.

    PubMed

    Usvyat, Denis

    2013-11-21

    Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.

  1. Comparison of Fatigue Life Estimation Using Equivalent Linearization and Time Domain Simulation Methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Dhainaut, Jean-Michel

    2000-01-01

    The Monte Carlo simulation method in conjunction with the finite element large deflection modal formulation are used to estimate fatigue life of aircraft panels subjected to stationary Gaussian band-limited white-noise excitations. Ten loading cases varying from 106 dB to 160 dB OASPL with bandwidth 1024 Hz are considered. For each load case, response statistics are obtained from an ensemble of 10 response time histories. The finite element nonlinear modal procedure yields time histories, probability density functions (PDF), power spectral densities and higher statistical moments of the maximum deflection and stress/strain. The method of moments of PSD with Dirlik's approach is employed to estimate the panel fatigue life.

  2. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  3. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjunath, Naren; Samajdar, Rhine; Jain, Sudhir R., E-mail: srjain@barc.gov.in

    Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.

  5. Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments

    NASA Astrophysics Data System (ADS)

    Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud

    2018-07-01

    This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.

  6. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the isotropic turbulent flow decay, at a relatively high turbulent Mach number, show a nicely behaved spectral decay rate for medium to high wave numbers. The high-order CESE schemes offer very robust solutions even with the presence of strong shocks or widespread shocklets. The explicit formulation in conjunction with a close to unity theoretical upper Courant number bound has the potential to offer an efficient numerical framework for general compressible turbulent flow simulations with unstructured meshes.

  7. Resolution enhancement of robust Bayesian pre-stack inversion in the frequency domain

    NASA Astrophysics Data System (ADS)

    Yin, Xingyao; Li, Kun; Zong, Zhaoyun

    2016-10-01

    AVO/AVA (amplitude variation with an offset or angle) inversion is one of the most practical and useful approaches to estimating model parameters. So far, publications on AVO inversion in the Fourier domain have been quite limited in view of its poor stability and sensitivity to noise compared with time-domain inversion. For the resolution and stability of AVO inversion in the Fourier domain, a novel robust Bayesian pre-stack AVO inversion based on the mixed domain formulation of stationary convolution is proposed which could solve the instability and achieve superior resolution. The Fourier operator will be integrated into the objective equation and it avoids the Fourier inverse transform in our inversion process. Furthermore, the background constraints of model parameters are taken into consideration to improve the stability and reliability of inversion which could compensate for the low-frequency components of seismic signals. Besides, the different frequency components of seismic signals can realize decoupling automatically. This will help us to solve the inverse problem by means of multi-component successive iterations and the convergence precision of the inverse problem could be improved. So, superior resolution compared with the conventional time-domain pre-stack inversion could be achieved easily. Synthetic tests illustrate that the proposed method could achieve high-resolution results with a high degree of agreement with the theoretical model and verify the quality of anti-noise. Finally, applications on a field data case demonstrate that the proposed method could obtain stable inversion results of elastic parameters from pre-stack seismic data in conformity with the real logging data.

  8. Hyper-resolution hydrological modeling: Completeness of Formulation, Appropriateness of Descritization, and Physical LImits of Predictability

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.

    2017-12-01

    HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.

  9. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less

  10. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano

    NASA Astrophysics Data System (ADS)

    Falaize, Antoine; Hélie, Thomas

    2017-03-01

    This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.

  11. Analytical formulation of 2-D aeroelastic model in weak ground effect

    NASA Astrophysics Data System (ADS)

    Dessi, Daniele; Mastroddi, Franco; Mancini, Simone

    2013-10-01

    This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently and robustly accounting for the presence of the ground when unsteady analysis of elastic lifting surfaces in weak ground effect is required.

  12. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.

    PubMed

    Nakata, Hiroya; Fedorov, Dmitri G; Nagata, Takeshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2015-07-14

    The fully analytic first and second derivatives of the energy in the frozen domain formulation of the fragment molecular orbital (FMO) were developed and applied to locate transition states and determine vibrational contributions to free energies. The development is focused on the frozen domain with dimers (FDD) model. The intrinsic reaction coordinate method was interfaced with FMO. Simulations of IR and Raman spectra were enabled using FMO/FDD by developing the calculation of intensities. The accuracy is evaluated for S(N)2 reactions in explicit solvent, and for the free binding energies of a protein-ligand complex of the Trp cage protein (PDB: 1L2Y ). FMO/FDD is applied to study the keto-enol tautomeric reaction of phosphoglycolohydroxamic acid and the triosephosphate isomerase (PDB: 7TIM ), and the role of amino acid residue fragments in the reaction is discussed.

  13. Mating Disruption of the Navel Orangeworm (Lepidoptera: Pyralidae) Using Widely Spaced, Aerosol Dispensers: Is the Pheromone Blend the Most Efficacious Disruptant?

    PubMed

    Higbee, Bradley S; Burks, Charles S; Cardé, Ring T

    2017-10-01

    The navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is a key pest of almonds and pistachios and is sometimes controlled using mating disruption as part of a program of integrated management. The formulation used has a single, nonattractive compound [(11Z,13Z)-hexadecadienal] as the active ingredient that is emitted from timed aerosol dispensers. This study compared this nonattractive, single-compound formulation with two aerosol formulations also containing two additional compounds [(11Z,13Z)-hexadecadien-1-ol and (3Z,6Z,9Z,12Z,15Z)-tricosapentaene] that are found in the pheromone glands, and that in combination with the aldehyde are attractive in wind-tunnel and field-attraction trials. An experiment in pistachios found 97% to 99% suppression of males captured in female-baited traps and 82-93% suppression of mating in sentinel females. Both assays revealed a trend to greater suppression by the more complete pheromone formulations. In almonds, where the abundance of navel orangeworm was lower, all three formulations suppressed males captured in traps and mating in sentinel females by >99%. Each of the formulations significantly reduced damage to Nonpareil almonds. In almonds, there were no significant differences among the formulations in disruption of sexual communication or in damage. These findings suggest that it may be possible to make mating disruption more cost-effective and to achieve higher levels of mating disruption by using attractive aerosol formulations to reduce the number of dispenser per ha. Such a formulation, however, would be more expensive to register in the United States than pheromones meeting the definition of straight-chain lepidopteran pheromone, including the currently used aldehyde-only formulation. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Constitutive Modelling of Resins in the Compliance Domain

    NASA Astrophysics Data System (ADS)

    Klasztorny, M.

    2004-07-01

    A rheological HWKK/H model for resins is developed taking into consideration the up-to-date analyses of experimental results. Constitutive compliance equations of linear are formulated for this model in the shear/bulk form, which describes, among other things, the first-rank reversible isothermal creep. The shear (distorsional) deformations are simulated with three independent stress history functions of fractional and normal exponential types. The volume deformations are simulated as perfectly elastic. The model is described by two elastic and six viscoelastic constants, namely three long-term creep coefficients and three retardation times. The constitutive compliance equations of viscoealsticity for resins are also formulated in the coupled form. Formulae for converting the constants of shear/bulk (uncoupled) viscoelasticity into the constants of coupled viscoelasticity are given too. An algorithm for identifying the material constants, based on the creep of uniaxially tensioned bar samples, is formulated in a way that gives unique results. The material constants are fiund for Epidian 53 epoxy and Polimal 109 polyester resins. The creep processes, simulated based on the experimental data, are presented graphically for both the resins examined.

  15. An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

    NASA Astrophysics Data System (ADS)

    Mönkölä, Sanna

    2013-06-01

    This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.

  16. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    NASA Astrophysics Data System (ADS)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model that is also based on the presented contact formulation.

  17. Planning with Continuous Resources in Stochastic Domains

    NASA Technical Reports Server (NTRS)

    Mausam, Mausau; Benazera, Emmanuel; Brafman, Roneu; Hansen, Eric

    2005-01-01

    We consider the problem of optimal planning in stochastic domains with metric resource constraints. Our goal is to generate a policy whose expected sum of rewards is maximized for a given initial state. We consider a general formulation motivated by our application domain--planetary exploration--in which the choice of an action at each step may depend on the current resource levels. We adapt the forward search algorithm AO* to handle our continuous state space efficiently.

  18. Six-dimensional regularization of chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo

    2017-03-01

    We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.

  19. Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmeijer, R.

    1994-11-01

    A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less

  20. Element free Galerkin formulation of composite beam with longitudinal slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after beenmore » verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.« less

  1. Analytic Simulation of the Elastic Waves Propagation in the Neighborhood of Fluid Filled Wells with Monopole Sources

    NASA Astrophysics Data System (ADS)

    Ávila-Carrera, R.; Sánchez-Sesma, F. J.; Spurlin, James H.; Valle-Molina, C.; Rodríguez-Castellanos, A.

    2014-09-01

    An analytic formulation to understand the scattering, diffraction and attenuation of elastic waves at the neighborhood of fluid filled wells is presented. An important, and not widely exploited, technique to carefully investigate the wave propagation in exploration wells is the logging of sonic waveforms. Fundamental decisions and production planning in petroleum reservoirs are made by interpretation of such recordings. Nowadays, geophysicists and engineers face problems related to the acquisition and interpretation under complex conditions associated with conducting open-hole measurements. A crucial problem that directly affects the response of sonic logs is the eccentricity of the measuring tool with respect to the center of the borehole. Even with the employment of centralizers, this simple variation, dramatically changes the physical conditions on the wave propagation around the well. Recent works in the numerical field reported advanced studies in modeling and simulation of acoustic wave propagation around wells, including complex heterogeneities and anisotropy. However, no analytical efforts have been made to formally understand the wireline sonic logging measurements acquired with borehole-eccentered tools. In this paper, the Graf's addition theorem was used to describe monopole sources in terms of solutions of the wave equation. The formulation was developed from the three-dimensional discrete wave-number method in the frequency domain. The cylindrical Bessel functions of the third kind and order zero were re-derived to obtain a simplified set of equations projected into a bi-dimensional plane-space for displacements and stresses. This new and condensed analytic formulation allows the straightforward calculation of all converted modes and their visualization in the time domain via Fourier synthesis. The main aim was to obtain spectral surfaces of transfer functions and synthetic seismograms that might be useful to understand the wave motion produced by the eccentricity of the source and explain in detail the new arising borehole propagation modes. Finally, time histories and amplitude spectra for relevant examples are presented and the validation of time traces using the spectral element method is reported.

  2. Radiation Boundary Conditions for Maxwell’s Equations: A Review of Accurate Time-Domain Formulations

    DTIC Science & Technology

    2007-01-01

    conditions have only been constructed for the case ne = 0. Lastly we note that exact reflection formulas have recently been derived by Diaz and Joly [20, 21...SIAM J. Numer. Anal. 41 (2003), 287–305. 6. E. Bécache and P. Joly , On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations...Computational Wave Propagation (M. Ainsworth, P. Davies, D. Duncan, P. Martin , and B. Rynne, eds.), Springer-Verlag, 2003, pp. 43–82. 13. O. Bruno and D. Hoch

  3. Longitudinal measurement of chromatic dispersion along an optical fiber transmission system with a new correction factor

    NASA Astrophysics Data System (ADS)

    Abbasi, Madiha; Imran Baig, Mirza; Shafique Shaikh, Muhammad

    2013-12-01

    At present existence OTDR based techniques have become a standard practice for measuring chromatic dispersion distribution along an optical fiber transmission link. A constructive measurement technique has been offered in this paper, in which a four wavelength bidirectional optical time domain reflectometer (OTDR) has been used to compute the chromatic dispersion allocation beside an optical fiber transmission system. To improve the correction factor a novel formulation has been developed, which leads to an enhanced and defined measurement. The investigational outcomes obtained are in good harmony.

  4. Forced pitch motion of wind turbines

    NASA Astrophysics Data System (ADS)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  5. Unconditionally stable WLP-FDTD method for the modeling of electromagnetic wave propagation in gyrotropic materials.

    PubMed

    Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan

    2015-12-14

    The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method.

  6. Quality improvement of melt extruded laminar systems using mixture design.

    PubMed

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D

    2015-07-30

    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.

    PubMed

    Markl, Daniel; Bawuah, Prince; Ridgway, Cathy; van den Ban, Sander; Goodwin, Daniel J; Ketolainen, Jarkko; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, J Axel

    2018-02-15

    Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, S a , to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The S a parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The S a parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics

    NASA Astrophysics Data System (ADS)

    Böhringer, Klaus; Hess, Ortwin

    The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.

  9. The Application of Deterministic Spectral Domain Method to the Analysis of Planar Circuit Discontinuities on Open Substrates

    DTIC Science & Technology

    1990-08-01

    the spectral domain is extended to include the effects of two-dimensional, two-component current flow in planar transmission line discontinuities 6n...PROFESSOR: Tatsuo Itoh A deterministic formulation of the method of moments carried out in the spectral domain is extended to include the effects of...two-dimensional, two- component current flow in planar transmission line discontinuities on open substrates. The method includes the effects of space

  10. Generalized vector calculus on convex domain

    NASA Astrophysics Data System (ADS)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  11. Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Curry, Timothy J.; Batterson, James G. (Technical Monitor)

    2000-01-01

    Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

  12. The development of a volume element model for energy systems engineering and integrative thermodynamic optimization

    NASA Astrophysics Data System (ADS)

    Yang, Sam

    The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in both transient and steady-state operations.

  13. ReVeaLD: a user-driven domain-specific interactive search platform for biomedical research.

    PubMed

    Kamdar, Maulik R; Zeginis, Dimitris; Hasnain, Ali; Decker, Stefan; Deus, Helena F

    2014-02-01

    Bioinformatics research relies heavily on the ability to discover and correlate data from various sources. The specialization of life sciences over the past decade, coupled with an increasing number of biomedical datasets available through standardized interfaces, has created opportunities towards new methods in biomedical discovery. Despite the popularity of semantic web technologies in tackling the integrative bioinformatics challenge, there are many obstacles towards its usage by non-technical research audiences. In particular, the ability to fully exploit integrated information needs using improved interactive methods intuitive to the biomedical experts. In this report we present ReVeaLD (a Real-time Visual Explorer and Aggregator of Linked Data), a user-centered visual analytics platform devised to increase intuitive interaction with data from distributed sources. ReVeaLD facilitates query formulation using a domain-specific language (DSL) identified by biomedical experts and mapped to a self-updated catalogue of elements from external sources. ReVeaLD was implemented in a cancer research setting; queries included retrieving data from in silico experiments, protein modeling and gene expression. ReVeaLD was developed using Scalable Vector Graphics and JavaScript and a demo with explanatory video is available at http://www.srvgal78.deri.ie:8080/explorer. A set of user-defined graphic rules controls the display of information through media-rich user interfaces. Evaluation of ReVeaLD was carried out as a game: biomedical researchers were asked to assemble a set of 5 challenge questions and time and interactions with the platform were recorded. Preliminary results indicate that complex queries could be formulated under less than two minutes by unskilled researchers. The results also indicate that supporting the identification of the elements of a DSL significantly increased intuitiveness of the platform and usability of semantic web technologies by domain users. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Control of an ER haptic master in a virtual slave environment for minimally invasive surgery applications

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Choi, Seung-Bok

    2008-12-01

    This paper presents the control performance of an electrorheological (ER) fluid-based haptic master device connected to a virtual slave environment that can be used for minimally invasive surgery (MIS). An already developed haptic joint featuring controllable ER fluid and a spherical joint mechanism is adopted for the master system. Medical forceps and an angular position measuring device are devised and integrated with the joint to establish the MIS master system. In order to embody a human organ in virtual space, a volumetric deformable object is used. The virtual object is then mathematically formulated by a shape-retaining chain-linked (S-chain) model. After evaluating the reflection force, computation time and compatibility with real-time control, the haptic architecture for MIS is established by incorporating the virtual slave with the master device so that the reflection force for the object of the virtual slave and the desired position for the master operator are transferred to each other. In order to achieve the desired force trajectories, a sliding mode controller is formulated and then experimentally realized. Tracking control performances for various force trajectories are evaluated and presented in the time domain.

  15. Neuromorphic log-domain silicon synapse circuits obey bernoulli dynamics: a unifying tutorial analysis

    PubMed Central

    Papadimitriou, Konstantinos I.; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M.

    2014-01-01

    The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4th) order topology. PMID:25653579

  16. Neuromorphic log-domain silicon synapse circuits obey bernoulli dynamics: a unifying tutorial analysis.

    PubMed

    Papadimitriou, Konstantinos I; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M

    2014-01-01

    The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4(th)) order topology.

  17. Domain identification in impedance computed tomography by spline collocation method

    NASA Technical Reports Server (NTRS)

    Kojima, Fumio

    1990-01-01

    A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.

  18. Time Domain Version of the Uniform Geometrical Theory of Diffraction

    NASA Astrophysics Data System (ADS)

    Rousseau, Paul R.

    1995-01-01

    A time domain (TD) version of the uniform geometrical theory of diffraction which is referred to as the TD-UTD is developed to analyze the transient electromagnetic scattering from perfectly conducting objects that are large in terms of pulse width. In particular, the scattering from a perfectly conducting arbitrary curved wedge and an arbitrary smooth convex surface are treated in detail. Note that the canonical geometries of a circular cylinder and a sphere are special cases of the arbitrary smooth convex surface. These TD -UTD solutions are obtained in the form of relatively simple analytical expressions valid for early to intermediate times. The geometries treated here can be used to build up a transient solution to more complex radiating objects via space-time localization, in exactly the same way as is done by invoking spatial localization properties in the frequency domain UTD. The TD-UTD provides the response due to an excitation of a general astigmatic impulsive wavefront with any polarization. This generalized impulse response may then be convolved with other excitation time pulses, to find even more general solutions due to other excitation pulses. Since the TD-UTD uses the same rays as the frequency domain UTD, it provides a simple picture for transient radiation or scattering and is therefore just as physically appealing as the frequency domain UTD. The formulation of an analytic time transform (ATT), which produces an analytic time signal given a frequency response function, is given here. This ATT is used because it provides a very efficient method of inverting the asymptotic high frequency UTD representations to obtain the corresponding TD-UTD expressions even when there are special UTD transition functions which may not be well behaved at the low frequencies; also, using the ATT avoids the difficulties associated with the inversion of UTD ray fields that traverse line or smooth caustics. Another useful aspect of the ATT is the ability to perform an efficient convolution with a broad class of excitation pulse functions, where the frequency response of the excitation function must be expressed as a summation of complex exponential functions.

  19. Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases

    PubMed Central

    Santana, Filipe; Schober, Daniel; Medeiros, Zulma; Freitas, Fred; Schulz, Stefan

    2011-01-01

    Motivation: Ontology-like domain knowledge is frequently published in a tabular format embedded in scientific publications. We explore the re-use of such tabular content in the process of building NTDO, an ontology of neglected tropical diseases (NTDs), where the representation of the interdependencies between hosts, pathogens and vectors plays a crucial role. Results: As a proof of concept we analyzed a tabular compilation of knowledge about pathogens, vectors and geographic locations involved in the transmission of NTDs. After a thorough ontological analysis of the domain of interest, we formulated a comprehensive design pattern, rooted in the biomedical domain upper level ontology BioTop. This pattern was implemented in a VBA script which takes cell contents of an Excel spreadsheet and transforms them into OWL-DL. After minor manual post-processing, the correctness and completeness of the ontology was tested using pre-formulated competence questions as description logics (DL) queries. The expected results could be reproduced by the ontology. The proposed approach is recommended for optimizing the acquisition of ontological domain knowledge from tabular representations. Availability and implementation: Domain examples, source code and ontology are freely available on the web at http://www.cin.ufpe.br/~ntdo. Contact: fss3@cin.ufpe.br PMID:21685092

  20. Coupled BE/FE/BE approach for scattering from fluid-filled structures

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.

    1990-01-01

    NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.

  1. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  2. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  3. Parallel-In-Time For Moving Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falgout, R. D.; Manteuffel, T. A.; Southworth, B.

    2016-02-04

    With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is appliedmore » to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.« less

  4. Towards self-learning based hypotheses generation in biomedical text domain.

    PubMed

    Gopalakrishnan, Vishrawas; Jha, Kishlay; Xun, Guangxu; Ngo, Hung Q; Zhang, Aidong

    2018-06-15

    The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy. We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to perform both open and closed discovery. We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention. The relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2. Supplementary data are available at Bioinformatics online.

  5. Algorithms for Efficient Computation of Transfer Functions for Large Order Flexible Systems

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Giesy, Daniel P.

    1998-01-01

    An efficient and robust computational scheme is given for the calculation of the frequency response function of a large order, flexible system implemented with a linear, time invariant control system. Advantage is taken of the highly structured sparsity of the system matrix of the plant based on a model of the structure using normal mode coordinates. The computational time per frequency point of the new computational scheme is a linear function of system size, a significant improvement over traditional, still-matrix techniques whose computational times per frequency point range from quadratic to cubic functions of system size. This permits the practical frequency domain analysis of systems of much larger order than by traditional, full-matrix techniques. Formulations are given for both open- and closed-loop systems. Numerical examples are presented showing the advantages of the present formulation over traditional approaches, both in speed and in accuracy. Using a model with 703 structural modes, the present method was up to two orders of magnitude faster than a traditional method. The present method generally showed good to excellent accuracy throughout the range of test frequencies, while traditional methods gave adequate accuracy for lower frequencies, but generally deteriorated in performance at higher frequencies with worst case errors being many orders of magnitude times the correct values.

  6. A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions

    NASA Astrophysics Data System (ADS)

    Guerrero, José Luis Morales; Vidal, Manuel Cánovas; Nicolás, José Andrés Moreno; López, Francisco Alhama

    2018-05-01

    New additional conditions required for the uniqueness of the 2D elastostatic problems formulated in terms of potential functions for the derived Papkovich-Neuber representations, are studied. Two cases are considered, each of them formulated by the scalar potential function plus one of the rectangular non-zero components of the vector potential function. For these formulations, in addition to the original (physical) boundary conditions, two new additional conditions are required. In addition, for the complete Papkovich-Neuber formulation, expressed by the scalar potential plus two components of the vector potential, the additional conditions established previously for the three-dimensional case in z-convex domain can be applied. To show the usefulness of these new conditions in a numerical scheme two applications are numerically solved by the network method for the three cases of potential formulations.

  7. A Framework for Supporting Survivability, Network Planning and Cross-Layer Optimization in Future Multi-Domain Terabit Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldin, Ilya; Huang, Shu; Gopidi, Rajesh

    This final project report describes the accomplishments, products and publications from the award. It includes the overview of the project goals to devise a framework for managing resources in multi-domain, multi-layer networks, as well the details of the mathematical problem formulation and the description of the prototype built to prove the concept.

  8. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  9. Ferrotoroidial propertiesof Non-Crystallographic Pointgroups

    NASA Astrophysics Data System (ADS)

    Sireesha, G.; Devi, S. Uma; Yamini Sankar, CH.

    2017-08-01

    Primary ferroic crystals are the crystals with domain states that are distinguished by properties like spontaneous magnetization, strain, or polarisation. Secondary ferroic crystals are the crystals with domain states that are distinguished by piezoelectric tensor and they are named as Ferromagnetotoroidic (eV2), Ferromagnetoelastic (aeV [V2]) crystals respectively. Here “e” denotes zero rank tensor that changes under spatial inversion, “a” denotes zero rank tensor that changes under time inversion, and “V” denotes a polar vector. Recent observations (Van Aken et al., 2007) identified the fourth type of primary ferroic crystals, a ferrotoroidic crystal with domains distinguished by a toroidial moment. The number of independent constants of quasi crystals is theoretically derived by Wenge Yang et al., (1995). He also formulated the number of independent components of any physical property tensor of quasi crystals using group representation theory. This paper accounts the effect of symmetry on some ferrotoroidial properties of quasi Crystals with 5-fold, 8-fold, 10-fold and 12-fold symmetries using group theoretical methods. Also the number of independent constants is calculated and tabulated that helps in describing the ferrotoroidial properties.

  10. Mapping the maze of terms and definitions in dementia-related wandering.

    PubMed

    Algase, D L; Moore, D Helen; Vandeweerd, C; Gavin-Dreschnack, D J

    2007-11-01

    An operational definition of dementia-related wandering is proposed to aid in clinical recognition, to promote research precision and validity, and to provide a pathway toward standardization of language in wandering science. (1) One-hundred-and-eighty-three journal articles from multiple databases (Medline, OVID, CSA Journals, OCLC First Search, Google Scholar, PubMed, EBSCO) were reviewed to extract alternative terms and definitions for wandering or wandering-related behaviours; (2) terms and definitions were ordered alphabetically into a glossary; (3) a consensus approach was used to group glossary terms with related meanings into possible domains of wandering; (4) four domains (locomotion, drive, space and time) were found sufficient to encompass all wandering definitions; (5) wandering terms were placed into a conceptual map bounded by the four domain concepts and (6) a new provisional definition of wandering was formulated. An empirically-based, operational definition improves clinical and research approaches to wandering and explicates historical inattention to certain beneficial aspects of the behaviour. Adoption of the proposed operational definition of wandering behaviour provides a platform upon which dementia care may be improved and standardized language may evolve in wandering science.

  11. The study of direct-to-consumer advertising for prescription drugs.

    PubMed

    Schommer, Jon C; Hansen, Richard A

    2005-06-01

    The objectives of this article are to (1) identify key methodological issues related to investigating the effects of direct-to-consumer advertising (DTCA) for prescription drugs, (2) highlight opportunities and challenges that these issues pose, and (3) provide suggestions to address these challenges and opportunities from a social and administrative pharmacy perspective. Through a review of existing literature and consultation with research colleagues, we identified 3 broad issues regarding the study of DTCA for prescription drugs: (1) the importance of problem formulation, (2) the role of health behavior and decision-making perspectives, and (3) data collection and data analysis challenges and opportunities. Based upon our findings, we developed recommendations for future research in this area. Clear problem formulation will be instructive for prioritizing research needs and for determining the role that health behavior and decision-making perspectives can serve in DTCA research. In addition, it appears that cluster bias, nonlinear relationships, mediating/moderating effects, time effects, acquiescent response, and case mix are particularly salient challenges for the DTCA research domain. We suggest that problem formulation, selection of sound theories upon which to base research, and data collection and data analysis challenges are key methodological issues related to investigating the effects of DTCA for prescription drugs.

  12. n-body simulations using message passing parallel computers.

    NASA Astrophysics Data System (ADS)

    Grama, A. Y.; Kumar, V.; Sameh, A.

    The authors present new parallel formulations of the Barnes-Hut method for n-body simulations on message passing computers. These parallel formulations partition the domain efficiently incurring minimal communication overhead. This is in contrast to existing schemes that are based on sorting a large number of keys or on the use of global data structures. The new formulations are augmented by alternate communication strategies which serve to minimize communication overhead. The impact of these communication strategies is experimentally studied. The authors report on experimental results obtained from an astrophysical simulation on an nCUBE2 parallel computer.

  13. Integrated Multi-Aperture Sensor and Navigation Fusion

    DTIC Science & Technology

    2010-02-01

    Visio, Springer-Verlag Inc., New York, 2004. [3] R. G. Brown and P. Y. C. Hwang , Introduction to Random Signals and Applied Kalman Filtering, Third...formulate Kalman filter vision/inertial measurement observables for other images without the need to know (or measure) their feature ranges. As compared...Internal Data Fusion Multi-aperture/INS data fusion is formulated in the feature domain using the complementary Kalman filter methodology [3]. In this

  14. Conceptual search in electronic patient record.

    PubMed

    Baud, R H; Lovis, C; Ruch, P; Rassinoux, A M

    2001-01-01

    Search by content in a large corpus of free texts in the medical domain is, today, only partially solved. The so-called GREP approach (Get Regular Expression and Print), based on highly efficient string matching techniques, is subject to inherent limitations, especially its inability to recognize domain specific knowledge. Such methods oblige the user to formulate his or her query in a logical Boolean style; if this constraint is not fulfilled, the results are poor. The authors present an enhancement to string matching search by the addition of a light conceptual model behind the word lexicon. The new system accepts any sentence as a query and radically improves the quality of results. Efficiency regarding execution time is obtained at the expense of implementing advanced indexing algorithms in a pre-processing phase. The method is described and commented and a brief account of the results illustrates this paper.

  15. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  16. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-09-08

    Dual variable domain immunoglobulin proteins (DVD-Ig proteins) are large molecules (MW ∼ 200 kDa) with increased asymmetry because of their extended Y-like shape, which results in increased formulation challenges. Liquid-liquid phase separation (LLPS) of protein solutions into protein-rich and protein-poor phases reduces solution stability at intermediate concentrations and lower temperatures, and is a serious concern in formulation development as therapeutic proteins are generally stored at refrigerated conditions. In the current work, LLPS was studied for a DVD-Ig protein molecule as a function of solution conditions by measuring solution opalescence. LLPS of the protein was confirmed by equilibrium studies and by visually observing under microscope. The protein does not undergo any structural change after phase separation. Protein-protein interactions were measured by light scattering (kD) and Tcloud (temperature that marks the onset of phase separation). There is a good agreement between kD measured in dilute solution with Tcloud measured in the critical concentration range. Results indicate that the increased complexity of the molecule (with respect to size, shape, and charge distribution on the molecule) increases contribution of specific and nonspecific interactions in solution, which are affected by formulation factors, resulting in LLPS for DVD-Ig protein.

  17. Spectrally formulated user-defined element in conventional finite element environment for wave motion analysis in 2-D composite structures

    NASA Astrophysics Data System (ADS)

    Khalili, Ashkan; Jha, Ratneshwar; Samaratunga, Dulip

    2016-11-01

    Wave propagation analysis in 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first-order shear deformation theory which yields accurate results for wave motion at high frequencies. The 2-D WSFE model is highly efficient computationally and provides a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus (commercial finite element software) for wave propagation analysis in 2-D composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Five numerical examples are presented in this article, namely undamaged plate, impacted plate, plate with ply drop, folded plate and plate with stiffener. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features.

  18. Computational prediction of virus-human protein-protein interactions using embedding kernelized heterogeneous data.

    PubMed

    Nourani, Esmaeil; Khunjush, Farshad; Durmuş, Saliha

    2016-05-24

    Pathogenic microorganisms exploit host cellular mechanisms and evade host defense mechanisms through molecular pathogen-host interactions (PHIs). Therefore, comprehensive analysis of these PHI networks should be an initial step for developing effective therapeutics against infectious diseases. Computational prediction of PHI data is gaining increasing demand because of scarcity of experimental data. Prediction of protein-protein interactions (PPIs) within PHI systems can be formulated as a classification problem, which requires the knowledge of non-interacting protein pairs. This is a restricting requirement since we lack datasets that report non-interacting protein pairs. In this study, we formulated the "computational prediction of PHI data" problem using kernel embedding of heterogeneous data. This eliminates the abovementioned requirement and enables us to predict new interactions without randomly labeling protein pairs as non-interacting. Domain-domain associations are used to filter the predicted results leading to 175 novel PHIs between 170 human proteins and 105 viral proteins. To compare our results with the state-of-the-art studies that use a binary classification formulation, we modified our settings to consider the same formulation. Detailed evaluations are conducted and our results provide more than 10 percent improvements for accuracy and AUC (area under the receiving operating curve) results in comparison with state-of-the-art methods.

  19. The StarView intelligent query mechanism

    NASA Technical Reports Server (NTRS)

    Semmel, R. D.; Silberberg, D. P.

    1993-01-01

    The StarView interface is being developed to facilitate the retrieval of scientific and engineering data produced by the Hubble Space Telescope. While predefined screens in the interface can be used to specify many common requests, ad hoc requests require a dynamic query formulation capability. Unfortunately, logical level knowledge is too sparse to support this capability. In particular, essential formulation knowledge is lost when the domain of interest is mapped to a set of database relation schemas. Thus, a system known as QUICK has been developed that uses conceptual design knowledge to facilitate query formulation. By heuristically determining strongly associated objects at the conceptual level, QUICK is able to formulate semantically reasonable queries in response to high-level requests that specify only attributes of interest. Moreover, by exploiting constraint knowledge in the conceptual design, QUICK assures that queries are formulated quickly and will execute efficiently.

  20. [Sense and nonsense of extemporaneous formulations].

    PubMed

    Staubach, P

    2014-03-01

    The subject of Dermatology has changed significantly in light of the fast development of new therapeutic strategies. Potent systemic agents are no longer confined to the oncological. Nevertheless, topical therapy including extemporaneous formulations remains the domain of dermatologists. Due to the wide range of proprietary medicinal products in this era of evidence-based medicine, the relevance of classic dermatological prescriptions for local therapy is often up for discussion. In 2012, almost 18 million preparations were compounded according to a physician's prescription, which amounts to 2.7 % of all prescribed medications. 10 million of these extemporaneous formulations were used for systemic therapy such as chemotherapy or substitutional therapy, 8 millions were prescribed for topical therapy. This paper addresses the following questions: When is an extemporaneous formulation being called for, which requirements should it meet and which formulations are controversial or even unacceptable?

  1. 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, S. A.

    2011-01-01

    We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.

  2. A multi-harmonic generalized energy balance method for studying autonomous oscillations of nonlinear conservative systems

    NASA Astrophysics Data System (ADS)

    Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.

    2018-05-01

    The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.

  3. Fixed order dynamic compensation for multivariable linear systems

    NASA Technical Reports Server (NTRS)

    Kramer, F. S.; Calise, A. J.

    1986-01-01

    This paper considers the design of fixed order dynamic compensators for multivariable time invariant linear systems, minimizing a linear quadratic performance cost functional. Attention is given to robustness issues in terms of multivariable frequency domain specifications. An output feedback formulation is adopted by suitably augmenting the system description to include the compensator states. Either a controller or observer canonical form is imposed on the compensator description to reduce the number of free parameters to its minimal number. The internal structure of the compensator is prespecified by assigning a set of ascending feedback invariant indices, thus forming a Brunovsky structure for the nominal compensator.

  4. Electro-impulse de-icing electrodynamic solution by discrete elements

    NASA Technical Reports Server (NTRS)

    Bernhart, W. D.; Schrag, R. L.

    1988-01-01

    This paper describes a technique for analyzing the electrodynamic phenomena associated with electro-impulse deicing. The analysis is done in the time domain and utilizes a discrete element formulation concept expressed in state variable form. Calculated results include coil current, eddy currents in the target (aircraft leading edge skin), pressure distribution on the target, and total force and impulse on the target. Typical results are presented and described. Some comparisons are made between calculated and experimental results, and also between calculated values from other theoretical approaches. Application to the problem of a nonrigid target is treated briefly.

  5. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubos, A.K.; Caseiras, C.P.; Buchlin, J.M.

    The transient two-phase flow and phase change heat transfer processes in porous media are investigated. Based on an enthalpic approach, a one-domain formulation of the problem is developed, avoiding explicit internal boundary tracking between single- and two-phase regions. An efficient numerical scheme is applied to obtain the solution on a fixed two-dimensional grid. The transient response of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of the computed response to fast power transients is attempted. Comparisons with experimental data are made regarding themore » average void fraction and the limiting dryout heat flux. The numerical approach is extended, keeping the one-domain formulation, to include the surrounding wall structure in the calculation.« less

  7. Complementary and conventional medicine: a concept map

    PubMed Central

    Baldwin, Carol M; Kroesen, Kendall; Trochim, William M; Bell, Iris R

    2004-01-01

    Background Despite the substantive literature from survey research that has accumulated on complementary and alternative medicine (CAM) in the United States and elsewhere, very little research has been done to assess conceptual domains that CAM and conventional providers would emphasize in CAM survey studies. The objective of this study is to describe and interpret the results of concept mapping with conventional and CAM practitioners from a variety of backgrounds on the topic of CAM. Methods Concept mapping, including free sorts, ratings, and multidimensional scaling was used to organize conceptual domains relevant to CAM into a visual "cluster map." The panel consisted of CAM providers, conventional providers, and university faculty, and was convened to help formulate conceptual domains to guide the development of a CAM survey for use with United States military veterans. Results Eight conceptual clusters were identified: 1) Self-assessment, Self-care, and Quality of Life; 2) Health Status, Health Behaviors; 3) Self-assessment of Health; 4) Practical/Economic/ Environmental Concerns; 5) Needs Assessment; 6) CAM vs. Conventional Medicine; 7) Knowledge of CAM; and 8) Experience with CAM. The clusters suggest panelists saw interactions between CAM and conventional medicine as a critical component of the current medical landscape. Conclusions Concept mapping provided insight into how CAM and conventional providers view the domain of health care, and was shown to be a useful tool in the formulation of CAM-related conceptual domains. PMID:15018623

  8. Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area

    NASA Astrophysics Data System (ADS)

    Ramirez, N.; Afshari, Afshin; Norford, L.

    2018-07-01

    A steady-state Reynolds-averaged Navier-Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349-1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald's empirical formulations (Boundary-Layer Meteorol 97:25-45, 2000), Coceal and Belcher's mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131-151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.

  9. Transient thermal stresses of work roll by coupled thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  10. On a nonlinear model for tumour growth with drug application

    NASA Astrophysics Data System (ADS)

    Donatelli, Donatella; Trivisa, Konstantina

    2015-05-01

    We investigate the dynamics of a nonlinear system modelling tumour growth with drug application. The tumour is viewed as a mixture consisting of proliferating, quiescent and dead cells as well as a nutrient in the presence of a drug. The system is given by a multi-phase flow model: the densities of the different cells are governed by a set of transport equations, the density of the nutrient and the density of the drug are governed by rather general diffusion equations, while the velocity of the tumour is given by Brinkman's equation. The domain occupied by the tumour in this setting is a growing continuum Ω with boundary ∂Ω both of which evolve in time. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behaviour, diffusion and viscosity in the weak formulation. Both the solutions and the domain are rather general, no symmetry assumption is required and the result holds for large initial data. This article is part of a research programme whose aim is the investigation of the effect of drug application in tumour growth.

  11. Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water.

    PubMed

    Torii, Hajime

    2006-08-03

    The polarized Raman spectrum and the time dependence of the transient infrared (TRIR) absorption anisotropy are calculated for the OH stretching mode of liquid water (neat liquid H2O) by using time-domain formulations, which include the effects of both the diagonal frequency modulations (of individual oscillators) induced by the interactions between the dipole derivatives and the intermolecular electric field, and the off-diagonal (intermolecular) vibrational coupling described by the transition dipole coupling (TDC) mechanism. The IR spectrum of neat liquid H2O and the TRIR anisotropy of a liquid mixture of H2O/HDO/D2O are also calculated. It is shown that the calculated features of these optical signals, including the temperature dependence of the polarized Raman and IR spectra, are in reasonable agreement with the experimental results, indicating that the frequency separation between the isotropic and anisotropic components of the polarized Raman spectrum and the rapid decay (approximately 0.1 ps) of the TRIR anisotropy of the OH stretching mode of neat liquid H2O are mainly controlled by the resonant intermolecular vibrational coupling described by the TDC mechanism. Comparing with the time evolution of vibrational excitations, it is suggested that the TRIR anisotropy decays in the time needed for the initially localized vibrational excitations to delocalize over a few oscillators. It is also shown that the enhancement of the dipole derivatives by the interactions with surrounding molecules is an important factor in generating the spectral profiles of the OH stretching Raman band. The time-domain behavior of the molecular motions that affect the spectroscopic features is discussed.

  12. Numerical Technology for Large-Scale Computational Electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R; Champagne, N; White, D

    The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems aremore » solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.« less

  13. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less

  14. Heat transfer characteristics within an array of impinging jets. Effects of crossflow temperature relative to jet temperature

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Su, C. C.

    1985-01-01

    Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described.

  15. A novel stimuli-synchronized alloy-treated matrix for space-defined gastrointestinal delivery of mesalamine in the Large White pig model.

    PubMed

    Bawa, Priya; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Ndesendo, Valence M K; Meyer, Leith C R; Pillay, Viness

    2013-03-28

    The study focussed on designing a Stimuli-Synchronized Matrix (SSM) for space-defined colonic delivery of the anti-inflammatory drug mesalamine. The configured matrix provided time-independent delivery and stimuli targeting. Formulations were optimized according to a Box-Behnken experimental design that constituted mesalamine-loaded BaSO4-crosslinked chitosan dispersed within a pectin, carboxymethylcellulose and xanthan gum complex. The complex was compressed into matrices and subsequently alloy-treated with pectin and ethylcellulose. In vitro drug release was determined in the presence and absence of colonic enzymes and the mean dissolution time was used for formulation optimization. To mechanistically elucidate the synchronous catalytic action of the enzymes pectinase and glucosidase on the matrix, computer-aided 3D modelling of active fractions of the enzyme-substrate complexes was generated to predict the orientation of residues affecting the substrate domain. Drug release profiles revealed distinct colonic enzyme responsiveness with fractions of 0.402 and 0.152 of mesalamine released in the presence and absence of enzymes, respectively after 24h. The commercial comparator product showed irreproducible release profiles over the same period (SD=0.550) compared to the SSM formulation (SD=0.037). FTIR spectra of alloy-treated matrices showed no peaks from 1589 to 1512cm(-1) after colonic enzyme exposure. With increasing enzyme exposure there were also no peaks between 1646 and 1132cm(-1). This indicated polymeric enzyme cleavage for controlled and space-defined release of mesalamine. Plasma concentration profiles in the Large White pig model produced a Cmax of 3.77±1.375μg/mL compared to 10.604±2.846μg/mL for the comparator formulation. The SSM formulation proved superior over the comparator product by providing superiorly controlled enzyme-responsive colonic drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Analyse de l'effet des courants induits sur l'impédance d'un système électromagnétique alimenté en tension BF ou HF. Utilisation de la méthode des circuits couplés

    NASA Astrophysics Data System (ADS)

    Maouche, B.; Feliachi, M.

    1997-10-01

    In this paper, a study of the interaction between the inductor and the load of an axisymmetrical induction device is proposed. This interaction concerns the effect of the eddy current on both the excitation current and on the system impedance. A half analytical model, based on a numerical discretization of the electromagnetic solution domain, is used. In each cell of the numerical discretization, an analytical calculation using the Moment Method (MM) is considered. In the case of strong skin effect (High Frequency: HF), the formulation makes use of the Impedance Boundary Condition (IBC); in the contrary case (Low Frequency: LF), the interior domain is discretized. Dans cet article nous proposons l'étude de l'influence d'une charge (induit) conductrice sur la répartition du courant inducteur ainsi que sur l'impédance du système. L'inducteur est à géométrie axisymétrique de forme solénoïdale ou pancake destiné au chauffage par induction. Une méthode semi-analytique, basée sur une discrétisation du domaine en mailles élémentaires auxquelles s'applique une formulation intégrale (Méthode des Circuits Couplés : MCC) des grandeurs électromagnétiques, est utilisée. Dans le cas où l'effet de peau est important (Haute Fréquence:HF), la formulation associe la Condition d'Impédance de Surface; dans le cas contraire (Basse Fréquence : BF), un maillage du domaine interne est pratiqué.

  17. Minimum-domain impulse theory for unsteady aerodynamic force

    NASA Astrophysics Data System (ADS)

    Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.

    2018-01-01

    We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.

  18. Leading-edge effects on boundary-layer receptivity

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Kerschen, Edward J.

    1990-01-01

    Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.

  19. Sensitivities of Summertime Mesoscale Circulations in the Coastal Carolinas to Modifications of the Kain-Fritsch Cumulus Parameterization.

    PubMed

    Sims, Aaron P; Alapaty, Kiran; Raman, Sethu

    2017-01-01

    Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain-Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.

  20. Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part I, second-order FVTD schemes

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Taflove, Allen; Garain, Sudip; Montecinos, Gino

    2017-11-01

    While classic finite-difference time-domain (FDTD) solutions of Maxwell's equations have served the computational electrodynamics (CED) community very well, formulations based on Godunov methodology have begun to show advantages. We argue that the formulations presented so far are such that FDTD schemes and Godunov-based schemes each have their own unique advantages. However, there is currently not a single formulation that systematically integrates the strengths of both these major strains of development. While an early glimpse of such a formulation was offered in Balsara et al. [16], that paper focused on electrodynamics in plasma. Here, we present a synthesis that integrates the strengths of both FDTD and Godunov-based schemes into a robust single formulation for CED in material media. Three advances make this synthesis possible. First, from the FDTD method, we retain (but somewhat modify) a spatial staggering strategy for the primal variables. This provides a beneficial constraint preservation for the electric displacement and magnetic induction vector fields via reconstruction methods that were initially developed in some of the first author's papers for numerical magnetohydrodynamics (MHD). Second, from the Godunov method, we retain the idea of upwinding, except that this idea, too, has to be significantly modified to use the multi-dimensionally upwinded Riemann solvers developed by the first author. Third, we draw upon recent advances in arbitrary derivatives in space and time (ADER) time-stepping by the first author and his colleagues. We use the ADER predictor step to endow our method with sub-cell resolving capabilities so that the method can be stiffly stable and resolve significant sub-cell variation in the material properties within a zone. Overall, in this paper, we report a new scheme for numerically solving Maxwell's equations in material media, with special attention paid to a second-order-accurate formulation. Several numerical examples are presented to show that the proposed technique works. Because of its sub-cell resolving ability, the new method retains second-order accuracy even when material permeability and permittivity vary by an order-of-magnitude over just one or two zones. Furthermore, because the new method is also unconditionally stable in the presence of stiff source terms (i.e., in problems involving giant conductivity variations), it can handle several orders-of-magnitude variation in material conductivity over just one or two zones without any reduction of the time-step. Consequently, the CFL depends only on the propagation speed of light in the medium being studied.

  1. A transformed path integral approach for solution of the Fokker-Planck equation

    NASA Astrophysics Data System (ADS)

    Subramaniam, Gnana M.; Vedula, Prakash

    2017-10-01

    A novel path integral (PI) based method for solution of the Fokker-Planck equation is presented. The proposed method, termed the transformed path integral (TPI) method, utilizes a new formulation for the underlying short-time propagator to perform the evolution of the probability density function (PDF) in a transformed computational domain where a more accurate representation of the PDF can be ensured. The new formulation, based on a dynamic transformation of the original state space with the statistics of the PDF as parameters, preserves the non-negativity of the PDF and incorporates short-time properties of the underlying stochastic process. New update equations for the state PDF in a transformed space and the parameters of the transformation (including mean and covariance) that better accommodate nonlinearities in drift and non-Gaussian behavior in distributions are proposed (based on properties of the SDE). Owing to the choice of transformation considered, the proposed method maps a fixed grid in transformed space to a dynamically adaptive grid in the original state space. The TPI method, in contrast to conventional methods such as Monte Carlo simulations and fixed grid approaches, is able to better represent the distributions (especially the tail information) and better address challenges in processes with large diffusion, large drift and large concentration of PDF. Additionally, in the proposed TPI method, error bounds on the probability in the computational domain can be obtained using the Chebyshev's inequality. The benefits of the TPI method over conventional methods are illustrated through simulations of linear and nonlinear drift processes in one-dimensional and multidimensional state spaces. The effects of spatial and temporal grid resolutions as well as that of the diffusion coefficient on the error in the PDF are also characterized.

  2. Evolution of Flexible Multibody Dynamics for Simulation Applications Supporting Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Huynh, An; Brain, Thomas A.; MacLean, John R.; Quiocho, Leslie J.

    2016-01-01

    During the course of transition from the Space Shuttle and International Space Station programs to the Orion and Journey to Mars exploration programs, a generic flexible multibody dynamics formulation and associated software implementation has evolved to meet an ever changing set of requirements at the NASA Johnson Space Center (JSC). Challenging problems related to large transitional topologies and robotic free-flyer vehicle capture/ release, contact dynamics, and exploration missions concept evaluation through simulation (e.g., asteroid surface operations) have driven this continued development. Coupled with this need is the requirement to oftentimes support human spaceflight operations in real-time. Moreover, it has been desirable to allow even more rapid prototyping of on-orbit manipulator and spacecraft systems, to support less complex infrastructure software for massively integrated simulations, to yield further computational efficiencies, and to take advantage of recent advances and availability of multi-core computing platforms. Since engineering analysis, procedures development, and crew familiarity/training for human spaceflight is fundamental to JSC's charter, there is also a strong desire to share and reuse models in both the non-realtime and real-time domains, with the goal of retaining as much multibody dynamics fidelity as possible. Three specific enhancements are reviewed here: (1) linked list organization to address large transitional topologies, (2) body level model order reduction, and (3) parallel formulation/implementation. This paper provides a detailed overview of these primary updates to JSC's flexible multibody dynamics algorithms as well as a comparison of numerical results to previous formulations and associated software.

  3. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1983-01-01

    Two main results are presented. The first deals with a simple method that determines the minority-carrier lifetime and the effective surface recombination velocity of the quasi-neutral base of silicon solar cells. The method requires the observation of only a single transient, and is amenable to automation for in-process monitoring in manufacturing. This method, which is called short-circuit current decay, avoids distortion in the observed transient and consequent inacccuracies that arise from the presence of mobile holes and electrons stored in the p/n junction spacecharge region at the initial instant of the transient. The second main result consists in a formulation of the relevant boundary-value problems that resembles that used in linear two-port network theory. This formulation enables comparisons to be made among various contending methods for measuring material parameters of p/n junction devices, and enables the option of putting the description in the time domain of the transient studies in the form of an infinite series, although closed-form solutions are also possible.

  4. Distributed support modelling for vertical track dynamic analysis

    NASA Astrophysics Data System (ADS)

    Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.

    2018-04-01

    The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.

  5. Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2017-04-01

    A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.

  6. The philosophical "mind-body problem" and its relevance for the relationship between psychiatry and the neurosciences.

    PubMed

    Van Oudenhove, Lukas; Cuypers, Stefaan E

    2010-01-01

    Parallel to psychiatry, "philosophy of mind" investigates the relationship between mind (mental domain) and body/brain (physical domain). Unlike older forms of philosophy of mind, contemporary analytical philosophy is not exclusively based on introspection and conceptual analysis, but also draws upon the empirical methods and findings of the sciences. This article outlines the conceptual framework of the "mind-body problem" as formulated in contemporary analytical philosophy and argues that this philosophical debate has potentially far-reaching implications for psychiatry as a clinical-scientific discipline, especially for its own autonomy and its relationship to neurology/neuroscience. This point is illustrated by a conceptual analysis of the five principles formulated in Kandel's 1998 article "A New Intellectual Framework for Psychiatry." Kandel's position in the philosophical mind-body debate is ambiguous, ranging from reductive physicalism (psychophysical identity theory) to non-reductive physicalism (in which the mental "supervenes" on the physical) to epiphenomenalist dualism or even emergent dualism. We illustrate how these diverging interpretations result in radically different views on the identity of psychiatry and its relationship with the rapidly expanding domain of neurology/neuroscience.

  7. Free vibration analysis of elastic structures submerged in an infinite or semi-infinite fluid domain by means of a coupled FE-BE solver

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo

    2018-04-01

    The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.

  8. Artificial Boundary Conditions for Computation of Oscillating External Flows

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    1996-01-01

    In this paper, we propose a new technique for the numerical treatment of external flow problems with oscillatory behavior of the solution in time. Specifically, we consider the case of unbounded compressible viscous plane flow past a finite body (airfoil). Oscillations of the flow in time may be caused by the time-periodic injection of fluid into the boundary layer, which in accordance with experimental data, may essentially increase the performance of the airfoil. To conduct the actual computations, we have to somehow restrict the original unbounded domain, that is, to introduce an artificial (external) boundary and to further consider only a finite computational domain. Consequently, we will need to formulate some artificial boundary conditions (ABC's) at the introduced external boundary. The ABC's we are aiming to obtain must meet a fundamental requirement. One should be able to uniquely complement the solution calculated inside the finite computational domain to its infinite exterior so that the original problem is solved within the desired accuracy. Our construction of such ABC's for oscillating flows is based on an essential assumption: the Navier-Stokes equations can be linearized in the far field against the free-stream back- ground. To actually compute the ABC's, we represent the far-field solution as a Fourier series in time and then apply the Difference Potentials Method (DPM) of V. S. Ryaben'kii. This paper contains a general theoretical description of the algorithm for setting the DPM-based ABC's for time-periodic external flows. Based on our experience in implementing analogous ABC's for steady-state problems (a simpler case), we expect that these boundary conditions will become an effective tool for constructing robust numerical methods to calculate oscillatory flows.

  9. The role of modern control theory in the design of controls for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    The development, applications, and current research in modern control theory (MCT) are reviewed, noting the importance for fuel-efficient operation of turbines with variable inlet guide vanes, compressor stators, and exhaust nozzle area. The evolution of multivariable propulsion control design is examined, noting a basis in a matrix formulation of the differential equations defining the process, leading to state space formulations. Reports and papers which appeared from 1970-1982 which dealt with problems in MCT applications to turbine engine control design are outlined, including works on linear quadratic regulator methods, frequency domain methods, identification, estimation, and model reduction, detection, isolation, and accommodation, and state space control, adaptive control, and optimization approaches. Finally, NASA programs in frequency domain design, sensor failure detection, computer-aided control design, and plant modeling are explored

  10. Wavelet-like bases for thin-wire integral equations in electromagnetics

    NASA Astrophysics Data System (ADS)

    Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F.

    2005-03-01

    In this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis transform is used to sparsify the moment matrix. In particular, dyadic and M-band wavelet transforms have been adopted, so generating different sparse matrix structures. This leads to an efficient solution in solving the resulting sparse matrix equation. Moreover, a wavelet preconditioner is used to accelerate the convergence rate of the iterative solver employed. These numerical features are used in analyzing the transient behavior of a lightning protection system. In particular, the transient performance of the earth termination system of a lightning protection system or of the earth electrode of an electric power substation, during its operation is focused. The numerical results, obtained by running a complex structure, are discussed and the features of the used method are underlined.

  11. Estimation of Magnetic Field Growth and Construction of Adaptive Mesh in Corner Domain for the Magnetostatic Problem in Three-Dimensional Space

    NASA Astrophysics Data System (ADS)

    Perepelkin, Eugene; Tarelkin, Aleksandr

    2018-02-01

    A magnetostatics problem arises when searching for the distribution of the magnetic field generated by magnet systems of many physics research facilities, e.g., accelerators. The domain in which the boundary-value problem is solved often has a piecewise smooth boundary. In this case, numerical calculations of the problem require consideration of the solution behavior in the corner domain. In this work we obtained an upper estimation of the magnetic field growth using integral formulation of the magnetostatic problem and propose a method for condensing the differential mesh near the corner domain of the vacuum in the three-dimensional space based on this estimation.

  12. Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase

    NASA Astrophysics Data System (ADS)

    Kiryushkin, A. E.; Minkov, L. L.

    2017-10-01

    Solid rocket motor (SRM) internal ballistics problems are related to the problems with moving boundaries. The algorithm able to solve similar problems in axisymmetric formulation on Cartesian mesh with an arbitrary order of accuracy is considered in this paper. The base of this algorithm is the ghost point extrapolation using inverse Lax-Wendroff procedure. Level set method is used as an implicit representation of the domain boundary. As an example, the internal ballistics problem for SRM with umbrella type grain was solved during the main firing phase. In addition, flow parameters distribution in the combustion chamber was obtained for different time moments.

  13. On the importance of collective excitations for thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill-Comeau, Maxime; Lewis, Laurent J., E-mail: Laurent.Lewis@UMontreal.CA

    2015-05-11

    We use equilibrium molecular dynamics (MD) simulations to study heat transport in bulk single-layer graphene. Through a modal analysis of the MD trajectories employing a time-domain formulation, we find that collective excitations involving flexural acoustic (ZA) phonons, which have been neglected in the previous MD studies, actually dominate the heat flow, generating as much as 78% of the flux. These collective excitations are, however, much less significant if the atomic displacements are constrained in the lattice plane. Although relaxation is slow, we find graphene to be a regular (non-anomalous) heat conductor for sample sizes of order 40 μm and more.

  14. Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains

    NASA Astrophysics Data System (ADS)

    Angstmann, C. N.; Henry, B. I.; McGann, A. V.

    2017-10-01

    The ubiquity of subdiffusive transport in physical and biological systems has led to intensive efforts to provide robust theoretical models for this phenomena. These models often involve fractional derivatives. The important physical extension of this work to processes occurring in growing materials has proven highly nontrivial. Here we derive evolution equations for modeling subdiffusive transport in a growing medium. The derivation is based on a continuous-time random walk. The concise formulation of these evolution equations requires the introduction of a new, comoving, fractional derivative. The implementation of the evolution equation is illustrated with a simple model of subdiffusing proteins in a growing membrane.

  15. Adjoint sensitivity analysis of plasmonic structures using the FDTD method.

    PubMed

    Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H

    2014-05-15

    We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.

  16. Single realization stochastic FDTD for weak scattering waves in biological random media.

    PubMed

    Tan, Tengmeng; Taflove, Allen; Backman, Vadim

    2013-02-01

    This paper introduces an iterative scheme to overcome the unresolved issues presented in S-FDTD (stochastic finite-difference time-domain) for obtaining ensemble average field values recently reported by Smith and Furse in an attempt to replace the brute force multiple-realization also known as Monte-Carlo approach with a single-realization scheme. Our formulation is particularly useful for studying light interactions with biological cells and tissues having sub-wavelength scale features. Numerical results demonstrate that such a small scale variation can be effectively modeled with a random medium problem which when simulated with the proposed S-FDTD indeed produces a very accurate result.

  17. Single realization stochastic FDTD for weak scattering waves in biological random media

    PubMed Central

    Tan, Tengmeng; Taflove, Allen; Backman, Vadim

    2015-01-01

    This paper introduces an iterative scheme to overcome the unresolved issues presented in S-FDTD (stochastic finite-difference time-domain) for obtaining ensemble average field values recently reported by Smith and Furse in an attempt to replace the brute force multiple-realization also known as Monte-Carlo approach with a single-realization scheme. Our formulation is particularly useful for studying light interactions with biological cells and tissues having sub-wavelength scale features. Numerical results demonstrate that such a small scale variation can be effectively modeled with a random medium problem which when simulated with the proposed S-FDTD indeed produces a very accurate result. PMID:27158153

  18. Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD.

    PubMed

    Willis, Keely J; Schneider, John B; Hagness, Susan C

    2008-02-04

    The explanation of wave behavior upon total internal reflection from a gainy medium has defied consensus for 40 years. We examine this question using both the finite-difference time-domain (FDTD) method and theoretical analyses. FDTD simulations of a localized wave impinging on a gainy half space are based directly on Maxwell's equations and make no underlying assumptions. They reveal that amplification occurs upon total internal reflection from a gainy medium; conversely, amplification does not occur for incidence below the critical angle. Excellent agreement is obtained between the FDTD results and an analytical formulation that employs a new branch cut in the complex "propagation-constant" plane.

  19. An improved temporal formulation of pupal transpiration in Glossina.

    PubMed

    Childs, S J

    2015-04-01

    The temporal aspect of a model of pupal dehydration is improved upon. The observed dependence of pupal transpiration on time is attributed to an alternation between two, essential modes, for which the deposition of a thin, pupal skin inside the puparium and its subsequent demise are thought to be responsible. For each mode of transpiration, the results of the Bursell investigation into pupal dehydration are used as a rudimentary data set. These data are generalised to all temperatures and humidities by invoking the property of multiplicative separability. The problem, then, is that as the temperature varies with time, so does the metabolism and the developmental stages to which the model data pertain, must necessarily warp. The puparial-duration formula of Phelps and Burrows and Hargrove is exploited to facilitate a mapping between the constant-temperature time domain of the data and that of some, more general case at hand. The resulting, Glossina morsitans model is extrapolated to other species using their relative surface areas, their relative protected and unprotected transpiration rates and their different fourth instar excretions (drawing, to a lesser extent, from the data of Buxton and Lewis). In this way the problem of pupal dehydration is formulated as a series of integrals and the consequent survival can be predicted. The discovery of a distinct definition for hygrophilic species, within the formulation, prompts the investigation of the hypothetical effect of a two-day heat wave on pupae. This leads to the conclusion that the classification of species as hygrophilic, mesophilic and xerophilic is largely true only in so much as their third and fourth instars are and, possibly, the hours shortly before eclosion. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Acoustic reciprocity: An extension to spherical harmonics domain.

    PubMed

    Samarasinghe, Prasanga; Abhayapala, Thushara D; Kellermann, Walter

    2017-10-01

    Acoustic reciprocity is a fundamental property of acoustic wavefields that is commonly used to simplify the measurement process of many practical applications. Traditionally, the reciprocity theorem is defined between a monopole point source and a point receiver. Intuitively, it must apply to more complex transducers than monopoles. In this paper, the authors formulate the acoustic reciprocity theory in the spherical harmonics domain for directional sources and directional receivers with higher order directivity patterns.

  1. 3-D Voxel FEM Simulation of Seismic Wave Propagation in a Land-Sea Structure with Topography

    NASA Astrophysics Data System (ADS)

    Ikegami, Y.; Koketsu, K.

    2003-12-01

    We have already developed the voxel FEM (finite element method) code to simulate seismic wave propagation in a land structure with surface topography (Koketsu, Fujiwara and Ikegami, 2003). Although the conventional FEM often requires much larger memory, longer computation time and farther complicated mesh generation than the Finite Difference Method (FDM), this code consumes a similar amount of memory to FDM and spends only 1.4 times longer computation time thanks to the simplicity of voxels (hexahedron elements). The voxel FEM was successfully applied to inland earthquakes, but most earthquakes in a subduction zone occur beneath a sea, so that a simulation in a land-sea structure should be essential for waveform modeling and strong motion prediction there. We now introduce a domain of fluid elements into the model and formulate displacements in the elements using the Lagrange method. Sea-bottom motions are simulated for the simple land-sea models of Okamoto and Takenaka (1999). The simulation results agree well with their reflectivity and FDM seismograms. In order to enhance numerical stability, not only a variable mesh but also an adaptive time step is introduced. We can now choose the optimal time steps everywhere in the model based the Courant condition. This doubly variable formulation may result in inefficient parallel computing. The wave velocity in a shallow part is lower than that in a deeper part. Therefore, if the model is divided into horizontal slices and they are assigned to CPUs, a shallow slice will consist of only small elements. This can cause unbalanced loads on the CPUs. Accordingly, the model is divided into vertical slices in this study. They also reduce inter-processor communication, because a vertical cross section is usually smaller than a horizontal one. In addition, we will consider higher-order FEM formulation compatible to the fourth-order FDM. We will also present numerical examples to demonstrate the effects of a sea and surface topography on seismic waves and ground motions.

  2. Culture and Psychiatric Evaluation: Operationalizing Cultural Formulation for DSM-5

    PubMed Central

    Lewis-Fernández, Roberto; Aggarwal, Neil Krishan; Bäärnhielm, Sofie; Rohlof, Hans; Kirmayer, Laurence J.; Weiss, Mitchell G.; Jadhav, Sushrut; Hinton, Ladson; Alarcón, Renato D.; Bhugra, Dinesh; Groen, Simon; van Dijk, Rob; Qureshi, Adil; Collazos, Francisco; Rousseau, Cécile; Caballero, Luis; Ramos, Mar; Lu, Francis

    2015-01-01

    The Outline for Cultural Formulation (OCF) introduced with DSM-IV provided a framework for clinicians to organize cultural information relevant to diagnostic assessment and treatment planning. However, use of the OCF has been inconsistent, raising questions about the need for guidance on implementation, training, and application in diverse settings. To address this need, DSM-5 introduced a cultural formulation interview (CFI) that operationalizes the process of data collection for the OCF. The CFI includes patient and informant versions and 12 supplementary modules addressing specific domains of the OCF. This article summarizes the literature reviews and analyses of experience with the OCF conducted by the DSM-5 Cross-Cultural Issues Subgroup (DCCIS) that informed the development of the CFI. We review the history and contents of the DSM-IV OCF, its use in training programs, and previous attempts to render it operational through questionnaires, protocols, and semi-structured interview formats. Results of research based on the OCF are discussed. For each domain of the OCF, we summarize findings from the DCCIS that led to content revision and operationalization in the CFI. The conclusion discusses training and implementation issues essential to service delivery. PMID:24865197

  3. Effects of oral versus transdermal menopausal hormone treatments on self-reported sleep domains and their association with vasomotor symptoms in recently menopausal women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS).

    PubMed

    Cintron, Dahima; Lahr, Brian D; Bailey, Kent R; Santoro, Nanette; Lloyd, Robin; Manson, JoAnn E; Neal-Perry, Genevieve; Pal, Lubna; Taylor, Hugh S; Wharton, Whitney; Naftolin, Fredrick; Harman, S Mitchell; Miller, Virginia M

    2018-02-01

    This study determined whether two different formulations of hormone therapy (HT): oral conjugated equine estrogens (o-CEE; 0.45 mg/d, n = 209), transdermal 17β-estradiol (t-E2; 50 μg/d, n = 201) plus cyclic progesterone (Prometrium, 200 mg) or placebo (PBO, n = 243) affected sleep domains in participants of the Kronos Early Estrogen Prevention Study. Participants completed the Pittsburgh Sleep Quality Index at baseline and during the intervention at 6, 18, 36, and 48 months. Global sleep quality and individual sleep domain scores were compared between treatments using analysis of covariance, and correlated with vasomotor symptom (VMS) scores using Spearman correlation coefficients. Global Pittsburgh Sleep Quality Index scores (mean 6.3; 24% with score >8) were similar across groups at baseline and were reduced (improved sleep quality) by both HT (average change -1.27 [o-CEE] and -1.32 [t-E2]) when compared with PBO (-0.60; P = 0.001 [o-CEE vs PBO] and P = 0.002 [t-E2 vs PBO]). Domain scores for sleep satisfaction and latency improved with both HT. The domain score for sleep disturbances improved more with t-E2 than o-CEE or PBO. Global sleep scores significantly correlated with VMS severity (rs = 0.170, P < 0.001 for hot flashes; rs = 0.177, P < 0.001 for night sweats). Change in scores for all domains except sleep latency and sleep efficiency correlated with change in severity of VMS. Poor sleep quality is common in recently menopausal women. Sleep quality improved with both HT formulations. The relationship of VMS with domains of sleep suggests that assessing severity of symptoms and domains of sleep may help direct therapy to improve sleep for postmenopausal women.

  4. Effects of oral versus transdermal menopausal hormone treatments on self-reported sleep domains and their association with vasomotor symptoms in recently menopausal women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS)

    PubMed Central

    Cintron, Dahima; Lahr, Brian D.; Bailey, Kent R.; Santoro, Nanette; Lloyd, Robin; Manson, JoAnn E.; Neal-Perry, Genevieve; Pal, Lubna; Taylor, Hugh S.; Wharton, Whitney; Naftolin, Fredrick; Harman, S. Mitchell; Miller, Virginia M.

    2018-01-01

    Abstract Objective: This study determined whether two different formulations of hormone therapy (HT): oral conjugated equine estrogens (o-CEE; 0.45 mg/d, n = 209), transdermal 17β-estradiol (t-E2; 50 μg/d, n = 201) plus cyclic progesterone (Prometrium, 200 mg) or placebo (PBO, n = 243) affected sleep domains in participants of the Kronos Early Estrogen Prevention Study. Methods: Participants completed the Pittsburgh Sleep Quality Index at baseline and during the intervention at 6, 18, 36, and 48 months. Global sleep quality and individual sleep domain scores were compared between treatments using analysis of covariance, and correlated with vasomotor symptom (VMS) scores using Spearman correlation coefficients. Results: Global Pittsburgh Sleep Quality Index scores (mean 6.3; 24% with score >8) were similar across groups at baseline and were reduced (improved sleep quality) by both HT (average change −1.27 [o-CEE] and −1.32 [t-E2]) when compared with PBO (−0.60; P = 0.001 [o-CEE vs PBO] and P = 0.002 [t-E2 vs PBO]). Domain scores for sleep satisfaction and latency improved with both HT. The domain score for sleep disturbances improved more with t-E2 than o-CEE or PBO. Global sleep scores significantly correlated with VMS severity (rs = 0.170, P < 0.001 for hot flashes; rs = 0.177, P < 0.001 for night sweats). Change in scores for all domains except sleep latency and sleep efficiency correlated with change in severity of VMS. Conclusions: Poor sleep quality is common in recently menopausal women. Sleep quality improved with both HT formulations. The relationship of VMS with domains of sleep suggests that assessing severity of symptoms and domains of sleep may help direct therapy to improve sleep for postmenopausal women. PMID:28832429

  5. Fractional Talbot field and of finite gratings: compact analytical formulation.

    PubMed

    Arrizón, V; Rojo-Velázquez, G

    2001-06-01

    We present a compact analytical formulation for the fractional Talbot effect at the paraxial domain of a finite grating. Our results show that laterally shifted distorted images of the grating basic cell form the Fresnel field at a fractional Talbot plane of the grating. Our formulas give the positions of those images and show that they are given by the convolution of the nondistorted cells (modulated by a quadratic phase factor) with the Fourier transform of the finite-grating pupil.

  6. Numerical simulation of steady three-dimensional flows in axial turbomachinery bladerows

    NASA Astrophysics Data System (ADS)

    Basson, Anton Herman

    The formulation for and application of a numerical model for low Mach number steady three-dimensional flows in axial turbomachinery blade rows is presented. The formulation considered here includes an efficient grid generation scheme (particularly suited to computational grids for the analysis of turbulent turbomachinery flows) and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, applicable to viscous and inviscid flows. The grid generation technique uses a combination of algebraic and elliptic methods, in conjunction with the Minimal Residual Method, to economically generate smooth structured grids. For typical H-grids in turbomachinery bladerows, when compared to a purely elliptic grid generation scheme, the presented grid generation scheme produces grids with much improved smoothness near the leading and trailing edges, allows the use of small near wall grid spacing required by low Reynolds number turbulence models, and maintains orthogonality of the grid near the solid boundaries even for high flow angle cascades. A specialized embedded H-grid for application particularly to tip clearance flows is presented. This topology smoothly discretizes the domain without modifying the tip shape, while requiring only minor modifications to H-grid flow solvers. Better quantitative modeling of the tip clearance vortex structure than that obtained with a pinched tip approximation is demonstrated. The formulation of artificial dissipation terms for a semi-implicit, pressure-based (SIMPLE type) flow solver, is presented. It is applied to both the Euler and the Navier-Stokes equations, expressed in generalized coordinates using a non-staggered grid. This formulation is compared to some SIMPLE and time marching formulations, revealing the artificial dissipation inherent in some commonly used semi-implicit formulations. The effect of the amount of dissipation on the accuracy of the solution and the convergence rate is quantitatively demonstrated for a number of flow cases. The ability of the formulation to model complex steady turbomachinery flows is demonstrated, e.g. for pressure driven secondary flows, turbine nozzle wakes, turbulent boundary layers. The formulation's modeling of blade surface heat transfer is assessed. The numerical model is used to investigate the structure of phenomena associated with tip clearance flows in a turbine nozzle.

  7. Formulation for a novel inhaled peptide therapeutic for idiopathic pulmonary fibrosis.

    PubMed

    Hengsawas Surasarang, Soraya; Florova, Galina; Komissarov, Andrey A; Shetty, Sreerama; Idell, Steven; Williams, Robert O

    2018-02-01

    A caveolin-1 scaffolding domain, CSP7, is a newly developed peptide for the treatment of idiopathic pulmonary fibrosis. To develop a CSP7 formulation for further use we have obtained, characterized and compared a number of lyophilized formulations of CSP7 trifluoroacetate with DPBS and in combination with excipients (mannitol and lactose at molar ratios 1:5, 70 and 140). CSP7 trifluoroacetate was stable (>95%) in solution at 5 and 25 °C for up to 48 h and tolerated at least 5 freeze/thaw cycles. Lyophilized cakes of CSP7 trifluoroacetate with excipients were stable (>96%) for up to 4 weeks at room temperature (RT), and retained more than 98% of the CSP7 trifluoroacetate in the solution at 8 h after reconstitution at RT. The lyophilized CSP7 formulations were stable for up to 10 months at 5 °C protected from moisture. Exposure of the lyophilized cakes of CSP7 to 75% relative humidity (RH) resulted in an increase in the absorbed moisture, promoted crystallization of the excipients and induced reversible formation of CSP7 aggregates. Increased molar ratio of mannitol slightly affected formation of the aggregates. In contrast, lactose significantly decreased (up to 20 times) aggregate formation with apparent saturation at the molar ratio of 1:70. The possible mechanisms of stabilization of CSP7 trifluoroacetate in solid state by lactose include physical state of the bulking agent and the interactions between lactose and CSP7 trifluoroacetate (e.g. formation of a Schiff base with the N-terminal amino group of CSP7). Finally, CSP7 trifluoroacetate exhibited excellent stability during nebulization of formulations containing mannitol or lactose.

  8. A new aerodynamic integral equation based on an acoustic formula in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.

  9. Fem Formulation for Heat and Mass Transfer in Porous Medium

    NASA Astrophysics Data System (ADS)

    Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan

    2017-08-01

    Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.

  10. TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER

    PubMed Central

    Fricks, John; Yao, Lingxing; Elston, Timothy C.; Gregory Forest, And M.

    2015-01-01

    Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent loss and storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles in viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16, 22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process governing microbead paths measured by particle tracking. For the inverse problem (recovery of the memory kernel from experimental data) we apply time series analysis (maximum likelihood estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on mean-squared displacement statistics in frequency space. For direct modeling, we present statistically exact GLE algorithms for individual particle paths as well as statistical correlations for displacement and velocity. Our time-domain methods rest upon a generalization of well-known results for a single-mode exponential kernel [1, 7, 22, 23] to an arbitrary M-mode exponential series, for which the GLE is transformed to a vector Ornstein-Uhlenbeck process. PMID:26412904

  11. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Moorthy, Jayashree

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  12. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.

  13. Meshless analysis of shear deformable shells: the linear model

    NASA Astrophysics Data System (ADS)

    Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.

    2013-10-01

    This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.

  14. A Review of Depth and Normal Fusion Algorithms

    PubMed Central

    Štolc, Svorad; Pock, Thomas

    2018-01-01

    Geometric surface information such as depth maps and surface normals can be acquired by various methods such as stereo light fields, shape from shading and photometric stereo techniques. We compare several algorithms which deal with the combination of depth with surface normal information in order to reconstruct a refined depth map. The reasons for performance differences are examined from the perspective of alternative formulations of surface normals for depth reconstruction. We review and analyze methods in a systematic way. Based on our findings, we introduce a new generalized fusion method, which is formulated as a least squares problem and outperforms previous methods in the depth error domain by introducing a novel normal weighting that performs closer to the geodesic distance measure. Furthermore, a novel method is introduced based on Total Generalized Variation (TGV) which further outperforms previous approaches in terms of the geodesic normal distance error and maintains comparable quality in the depth error domain. PMID:29389903

  15. CVD-MPFA full pressure support, coupled unstructured discrete fracture-matrix Darcy-flux approximations

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2017-11-01

    Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and anisotropic fractured media which illustrate the benefits of the respective methods.

  16. Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation.

    PubMed

    Jubeli, Emile; Maginty, Amanda B; Abdul Khalique, Nada; Raju, Liji; Abdulhai, Mohamad; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2015-10-01

    Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those formulated with DOPE. A number of the lipid formulations with cholesterol as co-lipid performed as well as, or better than Lipofectamine 2000™ and EPC, the two positive controls employed in these studies. These results suggest that our novel cyclic and acyclic cationic lipid vectors are effective nonviral gene transfer agents that warrant further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Prototyping a Sensor Enabled 3d Citymodel on Geospatial Managed Objects

    NASA Astrophysics Data System (ADS)

    Kjems, E.; Kolář, J.

    2013-09-01

    One of the major development efforts within the GI Science domain are pointing at sensor based information and the usage of real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D models with consistent object definitions give us the possibility to avoid troublesome abstractions of reality, and design even complex urban systems fusing information from various sources of data. These systems are difficult to design with the traditional software development approach based on major software packages and traditional data exchange. The data stream is varying from urban domain to urban domain and from system to system why it is almost impossible to design a complete system taking care of all thinkable instances now and in the future within one constraint software design complex. On several occasions we have been advocating for a new end advanced formulation of real world features using the concept of Geospatial Managed Objects (GMO). This paper presents the outcome of the InfraWorld project, a 4 million Euro project financed primarily by the Norwegian Research Council where the concept of GMO's have been applied in various situations on various running platforms of an urban system. The paper will be focusing on user experiences and interfaces rather then core technical and developmental issues. The project was primarily focusing on prototyping rather than realistic implementations although the results concerning applicability are quite clear.

  18. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced-density-matrix formulation. It will become apparent that the full atomic data needs for the precise modeling of extreme non-equilibrium plasma environments extend beyond the conventional radiative-transition-probability and collisional-cross-section data sets.

  19. The CPAT 2.0.2 Domain Model - How CPAT 2.0.2 "Thinks" From an Analyst Perspective.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Lucas; Muldoon, Frank; Melander, Darryl J.

    To help effectively plan the management and modernization of their large and diverse fleets of vehicles, the Program Executive Office Ground Combat Systems (PEO GCS) and the Program Executive Office Combat Support and Combat Service Support (PEO CS &CSS) commissioned the development of a large - scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This reportmore » contains a description of the organizational fleet structure and a thorough explanation of the business rules that the CPAT formulation follows involving performance, scheduling, production, and budgets. This report, which is an update to the original CPAT domain model published in 2015 (SAND2015 - 4009), covers important new CPAT features. This page intentionally left blank« less

  20. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    PubMed

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  1. A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

    NASA Astrophysics Data System (ADS)

    Cusimano, N.; Gerardo-Giorda, L.

    2018-06-01

    Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.

  2. Numerical modeling of guided ultrasonic waves generated and received by piezoelectric wafer in a Delaminated composite beam

    NASA Astrophysics Data System (ADS)

    Xu, G. D.; Xu, B. Q.; Xu, C. G.; Luo, Y.

    2017-05-01

    A spectral finite element method (SFEM) is developed to analyze guided ultrasonic waves in a delaminated composite beam excited and received by a pair of surface-bonded piezoelectric wafers. The displacements of the composite beam and the piezoelectric wafer are represented by Timoshenko beam and Euler Bernoulli theory respectively. The linear piezoelectricity is used to model the electrical-mechanical coupling between the piezoelectric wafer and the beam. The coupled governing equations and the boundary conditions in time domain are obtained by using the Hamilton's principle, and then the SFEM are formulated by transforming the coupled governing equations into frequency domain via the discrete Fourier transform. The guided waves are analyzed while the interaction of waves with delamination is also discussed. The elements needed in SFEM is far fewer than those for finite element method (FEM), which result in a much faster solution speed in this study. The high accuracy of the present SFEM is verified by comparing with the finite element results.

  3. Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains

    DOE PAGES

    Bunting, Gregory; Prakash, Arun; Walsh, Timothy; ...

    2018-01-26

    Exterior acoustic problems occur in a wide range of applications, making the finite element analysis of such problems a common practice in the engineering community. Various methods for truncating infinite exterior domains have been developed, including absorbing boundary conditions, infinite elements, and more recently, perfectly matched layers (PML). PML are gaining popularity due to their generality, ease of implementation, and effectiveness as an absorbing boundary condition. PML formulations have been developed in Cartesian, cylindrical, and spherical geometries, but not ellipsoidal. In addition, the parallel solution of PML formulations with iterative solvers for the solution of the Helmholtz equation, and howmore » this compares with more traditional strategies such as infinite elements, has not been adequately investigated. In this study, we present a parallel, ellipsoidal PML formulation for acoustic Helmholtz problems. To faciliate the meshing process, the ellipsoidal PML layer is generated with an on-the-fly mesh extrusion. Though the complex stretching is defined along ellipsoidal contours, we modify the Jacobian to include an additional mapping back to Cartesian coordinates in the weak formulation of the finite element equations. This allows the equations to be solved in Cartesian coordinates, which is more compatible with existing finite element software, but without the necessity of dealing with corners in the PML formulation. Herein we also compare the conditioning and performance of the PML Helmholtz problem with infinite element approach that is based on high order basis functions. On a set of representative exterior acoustic examples, we show that high order infinite element basis functions lead to an increasing number of Helmholtz solver iterations, whereas for PML the number of iterations remains constant for the same level of accuracy. Finally, this provides an additional advantage of PML over the infinite element approach.« less

  4. Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunting, Gregory; Prakash, Arun; Walsh, Timothy

    Exterior acoustic problems occur in a wide range of applications, making the finite element analysis of such problems a common practice in the engineering community. Various methods for truncating infinite exterior domains have been developed, including absorbing boundary conditions, infinite elements, and more recently, perfectly matched layers (PML). PML are gaining popularity due to their generality, ease of implementation, and effectiveness as an absorbing boundary condition. PML formulations have been developed in Cartesian, cylindrical, and spherical geometries, but not ellipsoidal. In addition, the parallel solution of PML formulations with iterative solvers for the solution of the Helmholtz equation, and howmore » this compares with more traditional strategies such as infinite elements, has not been adequately investigated. In this study, we present a parallel, ellipsoidal PML formulation for acoustic Helmholtz problems. To faciliate the meshing process, the ellipsoidal PML layer is generated with an on-the-fly mesh extrusion. Though the complex stretching is defined along ellipsoidal contours, we modify the Jacobian to include an additional mapping back to Cartesian coordinates in the weak formulation of the finite element equations. This allows the equations to be solved in Cartesian coordinates, which is more compatible with existing finite element software, but without the necessity of dealing with corners in the PML formulation. Herein we also compare the conditioning and performance of the PML Helmholtz problem with infinite element approach that is based on high order basis functions. On a set of representative exterior acoustic examples, we show that high order infinite element basis functions lead to an increasing number of Helmholtz solver iterations, whereas for PML the number of iterations remains constant for the same level of accuracy. Finally, this provides an additional advantage of PML over the infinite element approach.« less

  5. Time-domain finite elements in optimal control with application to launch-vehicle guidance. PhD. Thesis

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.

    1991-01-01

    A time-domain finite element method is developed for optimal control problems. The theory derived is general enough to handle a large class of problems including optimal control problems that are continuous in the states and controls, problems with discontinuities in the states and/or system equations, problems with control inequality constraints, problems with state inequality constraints, or problems involving any combination of the above. The theory is developed in such a way that no numerical quadrature is necessary regardless of the degree of nonlinearity in the equations. Also, the same shape functions may be employed for every problem because all strong boundary conditions are transformed into natural or weak boundary conditions. In addition, the resulting nonlinear algebraic equations are very sparse. Use of sparse matrix solvers allows for the rapid and accurate solution of very difficult optimization problems. The formulation is applied to launch-vehicle trajectory optimization problems, and results show that real-time optimal guidance is realizable with this method. Finally, a general problem solving environment is created for solving a large class of optimal control problems. The algorithm uses both FORTRAN and a symbolic computation program to solve problems with a minimum of user interaction. The use of symbolic computation eliminates the need for user-written subroutines which greatly reduces the setup time for solving problems.

  6. Developing core outcome measurement sets for clinical trials: OMERACT filter 2.0.

    PubMed

    Boers, Maarten; Kirwan, John R; Wells, George; Beaton, Dorcas; Gossec, Laure; d'Agostino, Maria-Antonietta; Conaghan, Philip G; Bingham, Clifton O; Brooks, Peter; Landewé, Robert; March, Lyn; Simon, Lee S; Singh, Jasvinder A; Strand, Vibeke; Tugwell, Peter

    2014-07-01

    Lack of standardization of outcome measures limits the usefulness of clinical trial evidence to inform health care decisions. This can be addressed by agreeing on a minimum core set of outcome measures per health condition, containing measures relevant to patients and decision makers. Since 1992, the Outcome Measures in Rheumatology (OMERACT) consensus initiative has successfully developed core sets for many rheumatologic conditions, actively involving patients since 2002. Its expanding scope required an explicit formulation of its underlying conceptual framework and process. Literature searches and iterative consensus process (surveys and group meetings) of stakeholders including patients, health professionals, and methodologists within and outside rheumatology. To comprehensively sample patient-centered and intervention-specific outcomes, a framework emerged that comprises three core "Areas," namely Death, Life Impact, and Pathophysiological Manifestations; and one strongly recommended Resource Use. Through literature review and consensus process, core set development for any specific health condition starts by identifying at least one core "Domain" within each of the Areas to formulate the "Core Domain Set." Next, at least one applicable measurement instrument for each core Domain is identified to formulate a "Core Outcome Measurement Set." Each instrument must prove to be truthful (valid), discriminative, and feasible. In 2012, 96% of the voting participants (n=125) at the OMERACT 11 consensus conference endorsed this model and process. The OMERACT Filter 2.0 explicitly describes a comprehensive conceptual framework and a recommended process to develop core outcome measurement sets for rheumatology likely to be useful as a template in other areas of health care. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Real-time fuzzy inference based robot path planning

    NASA Technical Reports Server (NTRS)

    Pacini, Peter J.; Teichrow, Jon S.

    1990-01-01

    This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.

  8. Eulerian formulation of the interacting particle representation model of homogeneous turbulence

    DOE PAGES

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2016-10-21

    The Interacting Particle Representation Model (IPRM) of homogeneous turbulence incorporates information about the morphology of turbulent structures within the con nes of a one-point model. In the original formulation [Kassinos & Reynolds, Center for Turbulence Research: Annual Research Briefs, 31{51, (1996)], the IPRM was developed in a Lagrangian setting by evolving second moments of velocity conditional on a given gradient vector. In the present work, the IPRM is re-formulated in an Eulerian framework and evolution equations are developed for the marginal PDFs. Eulerian methods avoid the issues associated with statistical estimators used by Lagrangian approaches, such as slow convergence. Amore » specific emphasis of this work is to use the IPRM to examine the long time evolution of homogeneous turbulence. We first describe the derivation of the marginal PDF in spherical coordinates, which reduces the number of independent variables and the cost associated with Eulerian simulations of PDF models. Next, a numerical method based on radial basis functions over a spherical domain is adapted to the IPRM. Finally, results obtained with the new Eulerian solution method are thoroughly analyzed. The sensitivity of the Eulerian simulations to parameters of the numerical scheme, such as the size of the time step and the shape parameter of the radial basis functions, is examined. A comparison between Eulerian and Lagrangian simulations is performed to discern the capabilities of each of the methods. Finally, a linear stability analysis based on the eigenvalues of the discrete differential operators is carried out for both the new Eulerian solution method and the original Lagrangian approach.« less

  9. Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Qin, Panke; Wu, Jingru; Li, Xudong; Tang, Yongli

    2018-01-01

    In multi-point to multi-point (MP2MP) routing and wavelength assignment (RWA) problems, researchers usually assume the optical networks to be a single domain. However, the optical networks develop toward to multi-domain and larger scale in practice. In this context, multi-core shared tree (MST)-based MP2MP RWA are introduced problems including optimal multicast domain sequence selection, core nodes belonging in which domains and so on. In this letter, we focus on MST-based MP2MP RWA problems in multi-domain optical networks, mixed integer linear programming (MILP) formulations to optimally construct MP2MP multicast trees is presented. A heuristic algorithm base on network virtualization and weighted clustering algorithm (NV-WCA) is proposed. Simulation results show that, under different traffic patterns, the proposed algorithm achieves significant improvement on network resources occupation and multicast trees setup latency in contrast with the conventional algorithms which were proposed base on a single domain network environment.

  10. Mean-field methods in evolutionary duplication-innovation-loss models for the genome-level repertoire of protein domains.

    PubMed

    Angelini, A; Amato, A; Bianconi, G; Bassetti, B; Cosentino Lagomarsino, M

    2010-02-01

    We present a combined mean-field and simulation approach to different models describing the dynamics of classes formed by elements that can appear, disappear, or copy themselves. These models, related to a paradigm duplication-innovation model known as Chinese restaurant process, are devised to reproduce the scaling behavior observed in the genome-wide repertoire of protein domains of all known species. In view of these data, we discuss the qualitative and quantitative differences of the alternative model formulations, focusing in particular on the roles of element loss and of the specificity of empirical domain classes.

  11. Mean-field methods in evolutionary duplication-innovation-loss models for the genome-level repertoire of protein domains

    NASA Astrophysics Data System (ADS)

    Angelini, A.; Amato, A.; Bianconi, G.; Bassetti, B.; Cosentino Lagomarsino, M.

    2010-02-01

    We present a combined mean-field and simulation approach to different models describing the dynamics of classes formed by elements that can appear, disappear, or copy themselves. These models, related to a paradigm duplication-innovation model known as Chinese restaurant process, are devised to reproduce the scaling behavior observed in the genome-wide repertoire of protein domains of all known species. In view of these data, we discuss the qualitative and quantitative differences of the alternative model formulations, focusing in particular on the roles of element loss and of the specificity of empirical domain classes.

  12. Effect of the initial domain on the dispersion dynamics of a diffusing substance

    NASA Astrophysics Data System (ADS)

    Bestuzheva, A. N.; Smirnov, A. L.

    2018-05-01

    The formulation and analysis of ecological problems involves the mathematical modeling, when some assumptions concerning the nature of the processes are introduced. These assumptions must be justified. In the present paper the effect of the form of the initial domain occupied with a diffusing substance on the process of diffusion is studied. It's shown that the form of the initial domain plays unimportant role and it may be modeled as semi-sphere, for which the problem has analytical solution. That solution may serves as the zeroth approximation in modeling of actual ecological problem taking into account the relief of the bottom and the bottom currents.

  13. A new multi-domain method based on an analytical control surface for linear and second-order mean drift wave loads on floating bodies

    NASA Astrophysics Data System (ADS)

    Liang, Hui; Chen, Xiaobo

    2017-10-01

    A novel multi-domain method based on an analytical control surface is proposed by combining the use of free-surface Green function and Rankine source function. A cylindrical control surface is introduced to subdivide the fluid domain into external and internal domains. Unlike the traditional domain decomposition strategy or multi-block method, the control surface here is not panelized, on which the velocity potential and normal velocity components are analytically expressed as a series of base functions composed of Laguerre function in vertical coordinate and Fourier series in the circumference. Free-surface Green function is applied in the external domain, and the boundary integral equation is constructed on the control surface in the sense of Galerkin collocation via integrating test functions orthogonal to base functions over the control surface. The external solution gives rise to the so-called Dirichlet-to-Neumann [DN2] and Neumann-to-Dirichlet [ND2] relations on the control surface. Irregular frequencies, which are only dependent on the radius of the control surface, are present in the external solution, and they are removed by extending the boundary integral equation to the interior free surface (circular disc) on which the null normal derivative of potential is imposed, and the dipole distribution is expressed as Fourier-Bessel expansion on the disc. In the internal domain, where the Rankine source function is adopted, new boundary integral equations are formulated. The point collocation is imposed over the body surface and free surface, while the collocation of the Galerkin type is applied on the control surface. The present method is valid in the computation of both linear and second-order mean drift wave loads. Furthermore, the second-order mean drift force based on the middle-field formulation can be calculated analytically by using the coefficients of the Fourier-Laguerre expansion.

  14. Original opinion: the use of Bloom's Taxonomy to teach and assess the skill of the psychiatric formulation during vocational training.

    PubMed

    de Beer, Wayne A

    2017-10-01

    This paper proposes the use of the cognitive domain of Bloom's Taxonomy, an educational classification system, to guide the critical thinking required for the composition of the psychiatric formulation during the various stages of specialist training. Bloom's Taxonomy offers a hierarchical, structured approach to clinical reasoning. Use of this method can assist supervisors and trainees to understand better the concepts of and offer a developmental approach to critical reasoning. Application of the Taxonomy, using cognitive 'action words' (verbs) within each of the levels, can promote increasing sophistication in the construction of the psychiatric formulation. Examples of how the Taxonomy can be adapted to design educational resources are suggested in the article.

  15. Markov Modeling of Component Fault Growth over a Derived Domain of Feasible Output Control Effort Modifications

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of prognostics-based control adaptation. A metric representing the relative deviation between the nominal output of a system and the net output that is actually enacted by an implemented prognostics-based control routine, will be used to define the action space of the formulated Markov process. The state space of the Markov process will be defined in terms of an abstracted metric representing the relative health remaining in each of the system s components. The proposed formulation of component fault dynamics will conveniently relate feasible system output performance modifications to predictions of future component health deterioration.

  16. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    NASA Astrophysics Data System (ADS)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  17. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  18. Numerical and experimental study of curved and planar frequency selective surfaces with arbitrary illumination. M.S. Thesis - Maryland Univ., 1989

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen

    1991-01-01

    A frequency selective surface (FSS) composed of apertures in a metallic sheet is known as the inductive FSS. The infinite inductive FSS theory is derived and the aperture fields are solved by a spectral domain formulation with method of moments solution. Both full domain and subsectional basis functions are studied. A locally planar technique (LPT) is used to determine the forward scattered field from a generally shaped inductive FSS with arbitrary illumination.

  19. Eddy current modeling in linear and nonlinear multifilamentary composite materials

    NASA Astrophysics Data System (ADS)

    Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean

    2018-04-01

    In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.

  20. A probabilistic Hu-Washizu variational principle

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Besterfield, G. H.

    1987-01-01

    A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.

  1. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2002-01-01

    Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.

  2. Theoretical analysis of linearized acoustics and aerodynamics of advanced supersonic propellers

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1985-01-01

    The derivation of a formula for prediction of the noise of supersonic propellers using time domain analysis is presented. This formula is a solution of the Ffowcs Williams-Hawkings equation and does not have the Doppler singularity of some other formulations. The result presented involves some surface integrals over the blade and line integrals over the leading and trailing edges. The blade geometry, motion and surface pressure are needed for noise calculation. To obtain the blade surface pressure, the observer is moved onto the blade surface and a linear singular integral equation is derived which can be solved numerically. Two examples of acoustic calculations using a computer program are currently under development.

  3. Flow Cytometry with Gold Nanoparticles and their Clusters as scattering Contrast Agents: FDTD Simulation of Light-Cell Interaction

    PubMed Central

    Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V.; Zharov, Vladimir P.

    2010-01-01

    The formulation of the Finite-Difference Time-Domain (FDTD) approach is presented in the framework of its potential applications to in vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. PMID:19670359

  4. Higher-order fluctuation-dissipation relations in plasma physics: Binary Coulomb systems

    NASA Astrophysics Data System (ADS)

    Golden, Kenneth I.

    2018-05-01

    A recent approach that led to compact frequency domain formulations of the cubic and quartic fluctuation-dissipation theorems (FDTs) for the classical one-component plasma (OCP) [Golden and Heath, J. Stat. Phys. 162, 199 (2016), 10.1007/s10955-015-1395-6] is generalized to accommodate binary ionic mixtures. Paralleling the procedure followed for the OCP, the basic premise underlying the present approach is that a (k ,ω ) 4-vector rotational symmetry, known to be a pivotal feature in the frequency domain architectures of the linear and quadratic fluctuation-dissipation relations for a variety of Coulomb plasmas [Golden et al., J. Stat. Phys. 6, 87 (1972), 10.1007/BF01023681; J. Stat. Phys. 29, 281 (1982), 10.1007/BF01020787; Golden, Phys. Rev. E 59, 228 (1999), 10.1103/PhysRevE.59.228], is expected to be a pivotal feature of the frequency domain architectures of the higher-order members of the FDT hierarchy. On this premise, each member, in its most tractable form, connects a single (p +1 )-point dynamical structure function to a linear combination of (p +1 )-order p density response functions; by definition, such a combination must also remain invariant under rotation of their (k1,ω1) ,(k2,ω2) ,...,(kp,ωp) , (k1+k2+⋯+kp,ω1+ω2+⋯+ωp) 4-vector arguments. Assigned to each 4-vector is a species index that corotates in lock step. Consistency is assured by matching the static limits of the resulting frequency domain cubic and quartic FDTs to their exact static counterparts independently derived in the present work via a conventional time-independent perturbation expansion of the Liouville distribution function in its macrocanonical form. The proposed procedure entirely circumvents the daunting issues of entangled Liouville space paths and nested Poisson brackets that one would encounter if one attempted to use the conventional time-dependent perturbation-theoretic Kubo approach to establish the frequency domain FDTs beyond quadratic order.

  5. Prediction of nonlinear soil effects

    USGS Publications Warehouse

    Hartzell, S.; Bonilla, L.F.; Williams, R.A.

    2004-01-01

    Mathematical models of soil nonlinearity in common use and recently developed nonlinear codes compared to investigate the range of their predictions. We consider equivalent linear formulations with and without frequency-dependent moduli and damping ratios and nonlinear formulations for total and effective stress. Average velocity profiles to 150 m depth with midrange National Earthquake Hazards Reduction Program site classifications (B, BC, C, D, and E) in the top 30 m are used to compare the response of a wide range of site conditions from rock to soft soil. Nonlinear soil models are compared using the amplification spectrum, calculated as the ratio of surface ground motion to the input motion at the base of the velocity profile. Peak input motions from 0.1g to 0.9g are considered. For site class B, no significant differences exist between the models considered in this article. For site classes BC and C, differences are small at low input motions (0.1g to 0.2g), but become significant at higher input levels. For site classes D and E the overdamping of frequencies above about 4 Hz by the equivalent linear solution with frequency-independent parameters is apparent for the entire range of input motions considered. The equivalent linear formulation with frequency-dependent moduli and damping ratios under damps relative to the nonlinear models considered for site class C with larger input motions and most input levels for site classes D and E. At larger input motions the underdamping for site classes D and E is not as severe as the overdamping with the frequency-independent formulation, but there are still significant differences in the time domain. A nonlinear formulation is recommended for site classes D and E and for site classes BC and C with input motions greater than a few tenths of the acceleration of gravity. The type of nonlinear formulation to use is driven by considerations of the importance of water content and the availability of laboratory soils data. Our average amplification curves from a nonlinear effective stress formulation compare favorably with observed spectral amplification at class D and E sites in the Seattle area for the 2001 Nisqually earthquake.

  6. Intelligent control of a planning system for astronaut training.

    PubMed

    Ortiz, J; Chen, G

    1999-07-01

    This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.

  7. Non-invasive Photoacoustic and Fluorescence Sentinel Lymph Node Identification using Dye-loaded Perfluorocarbon Nanoparticles

    PubMed Central

    Akers, Walter J.; Kim, Chulhong; Berezin, Mikhail; Guo, Kevin; Fuhrhop, Ralph; Lanza, Gregory M.; Fischer, Georg M.; Daltrozzo, Ewald; Zumbusch, Andreas; Cai, Xin; Wang, Lihong V.; Achilefu, Samuel

    2010-01-01

    The contrast mechanisms used for photoacoustic tomography (PAT) and fluorescence imaging differ in subtle but significant ways. Design of contrast agents for each or both modalities requires an understanding of the spectral characteristics as well as intra- and intermolecular interactions that occur during formulation. We found that fluorescence quenching that occurs in the formulation of near infrared (NIR) fluorescent dyes in nanoparticles results in enhanced contrast for PAT. The ability of the new PAT method to utilize strongly absorbing chromophores for signal generation allowed us to convert a highly fluorescent dye into an exceptionally high PA contrast material. Spectroscopic characterization of the developed NIR dye-loaded perfluorocarbon-based nanoparticles for combined fluorescence and PA imaging revealed distinct dye-dependent photophysical behavior. We demonstrate that the enhanced contrast allows detection of regional lymph nodes of rats in vivo with time-domain optical and photoacoustic imaging methods. The results further show that the use of fluorescence lifetime (FLT) imaging, which is less dependent on fluorescence intensity, provides a strategic approach to bridge the disparate contrast reporting mechanisms of fluorescence and PA imaging methods. PMID:21171567

  8. A special protection scheme utilizing trajectory sensitivity analysis in power transmission

    NASA Astrophysics Data System (ADS)

    Suriyamongkol, Dan

    In recent years, new measurement techniques have provided opportunities to improve the North American Power System observability, control and protection. This dissertation discusses the formulation and design of a special protection scheme based on a novel utilization of trajectory sensitivity techniques with inputs consisting of system state variables and parameters. Trajectory sensitivity analysis (TSA) has been used in previous publications as a method for power system security and stability assessment, and the mathematical formulation of TSA lends itself well to some of the time domain power system simulation techniques. Existing special protection schemes often have limited sets of goals and control actions. The proposed scheme aims to maintain stability while using as many control actions as possible. The approach here will use the TSA in a novel way by using the sensitivities of system state variables with respect to state parameter variations to determine the state parameter controls required to achieve the desired state variable movements. The initial application will operate based on the assumption that the modeled power system has full system observability, and practical considerations will be discussed.

  9. FAST TRACK COMMUNICATION Critical exponents of domain walls in the two-dimensional Potts model

    NASA Astrophysics Data System (ADS)

    Dubail, Jérôme; Lykke Jacobsen, Jesper; Saleur, Hubert

    2010-12-01

    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e. connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{\\ell _1-\\ell _2,2\\ell _1}, valid for 0 <= Q <= 4, that describe the insertion of ell1 thin and ell2 thick domain walls.

  10. Prediction of protein-protein interaction network using a multi-objective optimization approach.

    PubMed

    Chowdhury, Archana; Rakshit, Pratyusha; Konar, Amit

    2016-06-01

    Protein-Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score.

  11. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.

    1991-08-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  12. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.

    1991-01-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  13. A Dancing Black Hole

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  14. Spectrally formulated user-defined element in Abaqus for wave motion analysis and health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Khalili, Ashkan

    Wave propagation analysis in 1-D and 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first order shear deformation theory which yields accurate results for wave motion at high frequencies. The wave equations are reduced to ordinary differential equations using Daubechies compactly supported, orthonormal, wavelet scaling functions for approximations in time and one spatial dimension. The 1-D and 2-D WSFE models are highly efficient computationally and provide a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus for wave propagation analysis in composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Several numerical examples are presented here for 1-D and 2-D composite waveguides. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations using shear flexible elements. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features. An enhanced cross-correlation method (ECCM) is developed in order to accurately predict damage location in plates. Three major modifications are proposed to the widely used cross-correlation method (CCM) to improve damage localization capabilities, namely actuator-sensor configuration, signal pre-processing method, and signal post-processing method. The ECCM is investigated numerically (FEM simulation) and experimentally. Experimental investigations for damage detection employ a PZT transducer as actuator and laser Doppler vibrometer as sensor. Both numerical and experimental results show that the developed method is capable of damage localization with high precision. Further, ECCM is used to detect and localize debonding in a composite material skin-stiffener joint. The UEL is used to represent the healthy case whereas the damaged case is simulated using Abaqus. It is shown that the ECCM successfully detects the location of the debond in the skin-stiffener joint.

  15. A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics

    NASA Astrophysics Data System (ADS)

    Brovont, Aaron D.

    The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.

  16. An extension of the finite cell method using boolean operations

    NASA Astrophysics Data System (ADS)

    Abedian, Alireza; Düster, Alexander

    2017-05-01

    In the finite cell method, the fictitious domain approach is combined with high-order finite elements. The geometry of the problem is taken into account by integrating the finite cell formulation over the physical domain to obtain the corresponding stiffness matrix and load vector. In this contribution, an extension of the FCM is presented wherein both the physical and fictitious domain of an element are simultaneously evaluated during the integration. In the proposed extension of the finite cell method, the contribution of the stiffness matrix over the fictitious domain is subtracted from the cell, resulting in the desired stiffness matrix which reflects the contribution of the physical domain only. This method results in an exponential rate of convergence for porous domain problems with a smooth solution and accurate integration. In addition, it reduces the computational cost, especially when applying adaptive integration schemes based on the quadtree/octree. Based on 2D and 3D problems of linear elastostatics, numerical examples serve to demonstrate the efficiency and accuracy of the proposed method.

  17. Direct comparison of two different mesalamine formulations for the maintenance of remission in patients with ulcerative colitis: a double-blind, randomized study.

    PubMed

    Ito, Hiroaki; Iida, Mitsuo; Matsumoto, Takayuki; Suzuki, Yasuo; Aida, Yoshiyuki; Yoshida, Toyomitsu; Takano, Yuichi; Hibi, Toshifumi

    2010-09-01

    Mesalamine has been used as the first-line medication for the treatment of ulcerative colitis (UC). We directly compared the efficacy and safety of two different mesalamine formulations in the maintenance of remission in patients with UC. In a multicenter, double-blind, randomized study, 131 patients with quiescent UC were assigned to two groups: 65 to receive a pH-dependent release formulation of mesalamine at 2.4 g/day (pH-2.4 g) and 66 to receive a time-dependent release formulation of mesalamine at 2.25 g/day (Time-2.25 g). Both formulations were administered three times daily for 48 weeks. The primary endpoint was the proportion of patients without bloody stools. In the full analysis set (n = 130), the proportion of patients without bloody stools was 76.9% in the pH-2.4 g and 69.2% in the Time-2.25 g, demonstrating the noninferiority of pH-2.4 g to Time-2.25 g. No statistically significant difference in time to bloody stools was found between the two formulations (P = 0.27, log-rank test), but the time to bloody stools tended to be longer in pH-2.4 g compared to Time-2.25 g, and a similar trend was observed with regard to the time to relapse. No differences were observed between the safety profiles of the two formulations. The pH- and time-dependent release of mesalamine formulations were similarly safe and effective. Interestingly, the remission phase tended to be longer in the group that received the pH-dependent formulation compared to the group that received the time-dependent formulation (UMIN Clinical Trials Registry, no. C000000289).

  18. Towards human-computer synergetic analysis of large-scale biological data.

    PubMed

    Singh, Rahul; Yang, Hui; Dalziel, Ben; Asarnow, Daniel; Murad, William; Foote, David; Gormley, Matthew; Stillman, Jonathan; Fisher, Susan

    2013-01-01

    Advances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology. The volume and complexity of such data leads to significant challenges in terms of its analysis, especially when one seeks to generate hypotheses or explore the underlying biological processes. At the state-of-the-art, the application of automated algorithms followed by perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological data. This paradigm works well in many problem domains. However, it also is limiting, since domain experts are forced to apply their instincts and expertise such as contextual reasoning, hypothesis formulation, and exploratory analysis after the algorithm has produced its results. In many areas where the organization and interaction of the biological processes is poorly understood and exploratory analysis is crucial, what is needed is to integrate domain expertise during the data analysis process and use it to drive the analysis itself. In context of the aforementioned background, the results presented in this paper describe advancements along two methodological directions. First, given the context of biological data, we utilize and extend a design approach called experiential computing from multimedia information system design. This paradigm combines information visualization and human-computer interaction with algorithms for exploratory analysis of large-scale and complex data. In the proposed approach, emphasis is laid on: (1) allowing users to directly visualize, interact, experience, and explore the data through interoperable visualization-based and algorithmic components, (2) supporting unified query and presentation spaces to facilitate experimentation and exploration, (3) providing external contextual information by assimilating relevant supplementary data, and (4) encouraging user-directed information visualization, data exploration, and hypotheses formulation. Second, to illustrate the proposed design paradigm and measure its efficacy, we describe two prototype web applications. The first, called XMAS (Experiential Microarray Analysis System) is designed for analysis of time-series transcriptional data. The second system, called PSPACE (Protein Space Explorer) is designed for holistic analysis of structural and structure-function relationships using interactive low-dimensional maps of the protein structure space. Both these systems promote and facilitate human-computer synergy, where cognitive elements such as domain knowledge, contextual reasoning, and purpose-driven exploration, are integrated with a host of powerful algorithmic operations that support large-scale data analysis, multifaceted data visualization, and multi-source information integration. The proposed design philosophy, combines visualization, algorithmic components and cognitive expertise into a seamless processing-analysis-exploration framework that facilitates sense-making, exploration, and discovery. Using XMAS, we present case studies that analyze transcriptional data from two highly complex domains: gene expression in the placenta during human pregnancy and reaction of marine organisms to heat stress. With PSPACE, we demonstrate how complex structure-function relationships can be explored. These results demonstrate the novelty, advantages, and distinctions of the proposed paradigm. Furthermore, the results also highlight how domain insights can be combined with algorithms to discover meaningful knowledge and formulate evidence-based hypotheses during the data analysis process. Finally, user studies against comparable systems indicate that both XMAS and PSPACE deliver results with better interpretability while placing lower cognitive loads on the users. XMAS is available at: http://tintin.sfsu.edu:8080/xmas. PSPACE is available at: http://pspace.info/.

  19. Towards human-computer synergetic analysis of large-scale biological data

    PubMed Central

    2013-01-01

    Background Advances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology. The volume and complexity of such data leads to significant challenges in terms of its analysis, especially when one seeks to generate hypotheses or explore the underlying biological processes. At the state-of-the-art, the application of automated algorithms followed by perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological data. This paradigm works well in many problem domains. However, it also is limiting, since domain experts are forced to apply their instincts and expertise such as contextual reasoning, hypothesis formulation, and exploratory analysis after the algorithm has produced its results. In many areas where the organization and interaction of the biological processes is poorly understood and exploratory analysis is crucial, what is needed is to integrate domain expertise during the data analysis process and use it to drive the analysis itself. Results In context of the aforementioned background, the results presented in this paper describe advancements along two methodological directions. First, given the context of biological data, we utilize and extend a design approach called experiential computing from multimedia information system design. This paradigm combines information visualization and human-computer interaction with algorithms for exploratory analysis of large-scale and complex data. In the proposed approach, emphasis is laid on: (1) allowing users to directly visualize, interact, experience, and explore the data through interoperable visualization-based and algorithmic components, (2) supporting unified query and presentation spaces to facilitate experimentation and exploration, (3) providing external contextual information by assimilating relevant supplementary data, and (4) encouraging user-directed information visualization, data exploration, and hypotheses formulation. Second, to illustrate the proposed design paradigm and measure its efficacy, we describe two prototype web applications. The first, called XMAS (Experiential Microarray Analysis System) is designed for analysis of time-series transcriptional data. The second system, called PSPACE (Protein Space Explorer) is designed for holistic analysis of structural and structure-function relationships using interactive low-dimensional maps of the protein structure space. Both these systems promote and facilitate human-computer synergy, where cognitive elements such as domain knowledge, contextual reasoning, and purpose-driven exploration, are integrated with a host of powerful algorithmic operations that support large-scale data analysis, multifaceted data visualization, and multi-source information integration. Conclusions The proposed design philosophy, combines visualization, algorithmic components and cognitive expertise into a seamless processing-analysis-exploration framework that facilitates sense-making, exploration, and discovery. Using XMAS, we present case studies that analyze transcriptional data from two highly complex domains: gene expression in the placenta during human pregnancy and reaction of marine organisms to heat stress. With PSPACE, we demonstrate how complex structure-function relationships can be explored. These results demonstrate the novelty, advantages, and distinctions of the proposed paradigm. Furthermore, the results also highlight how domain insights can be combined with algorithms to discover meaningful knowledge and formulate evidence-based hypotheses during the data analysis process. Finally, user studies against comparable systems indicate that both XMAS and PSPACE deliver results with better interpretability while placing lower cognitive loads on the users. XMAS is available at: http://tintin.sfsu.edu:8080/xmas. PSPACE is available at: http://pspace.info/. PMID:24267485

  20. Three is much more than two in coarsening dynamics of cyclic competitions

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Gunnarson, Ivar; Pedersen, Buster Niels; Rosiek, Christian Anker; Sneppen, Kim

    2016-04-01

    The classical game of rock-paper-scissors has inspired experiments and spatial model systems that address the robustness of biological diversity. In particular, the game nicely illustrates that cyclic interactions allow multiple strategies to coexist for long-time intervals. When formulated in terms of a one-dimensional cellular automata, the spatial distribution of strategies exhibits coarsening with algebraically growing domain size over time, while the two-dimensional version allows domains to break and thereby opens the possibility for long-time coexistence. We consider a quasi-one-dimensional implementation of the cyclic competition, and study the long-term dynamics as a function of rare invasions between parallel linear ecosystems. We find that increasing the complexity from two to three parallel subsystems allows a transition from complete coarsening to an active steady state where the domain size stays finite. We further find that this transition happens irrespective of whether the update is done in parallel for all sites simultaneously or done randomly in sequential order. In both cases, the active state is characterized by localized bursts of dislocations, followed by longer periods of coarsening. In the case of the parallel dynamics, we find that there is another phase transition between the active steady state and the coarsening state within the three-line system when the invasion rate between the subsystems is varied. We identify the critical parameter for this transition and show that the density of active boundaries has critical exponents that are consistent with the directed percolation universality class. On the other hand, numerical simulations with the random sequential dynamics suggest that the system may exhibit an active steady state as long as the invasion rate is finite.

  1. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.

    PubMed

    Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice

    2018-08-01

    We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A square wave is the most efficient and reliable waveform for resonant actuation of micro switches

    NASA Astrophysics Data System (ADS)

    Ben Sassi, S.; Khater, M. E.; Najar, F.; Abdel-Rahman, E. M.

    2018-05-01

    This paper investigates efficient actuation methods of shunt MEMS switches and other parallel-plate actuators. We start by formulating a multi-physics model of the micro switch, coupling the nonlinear Euler-Bernoulli beam theory with the nonlinear Reynolds equation to describe the structural and fluidic domains, respectively. The model takes into account fringing field effects as well as mid-plane stretching and squeeze film damping nonlinearities. Static analysis is undertaken using the differential quadrature method (DQM) to obtain the pull-in voltage, which is verified by means of the finite element model and validated experimentally. We develop a reduced order model employing the Galerkin method for the structural domain and DQM for the fluidic domain. The proposed waveforms are intended to be more suitable for integrated circuit standards. The dynamic response of the micro switch to harmonic, square and triangular waveforms are evaluated and compared experimentally and analytically. Low voltage actuation is obtained using dynamic pull-in with the proposed waveforms. In addition, global stability analysis carried out for the three signals shows advantages of employing the square signal as the actuation method in enhancing the performance of the micro switch in terms of actuation voltage, switching time, and sensitivity to initial conditions.

  3. Entropy gives rise to topologically associating domains

    PubMed Central

    Vasquez, Paula A.; Hult, Caitlin; Adalsteinsson, David; Lawrimore, Josh; Forest, Mark G.; Bloom, Kerry

    2016-01-01

    We investigate chromosome organization within the nucleus using polymer models whose formulation is closely guided by experiments in live yeast cells. We employ bead-spring chromosome models together with loop formation within the chains and the presence of nuclear bodies to quantify the extent to which these mechanisms shape the topological landscape in the interphase nucleus. By investigating the genome as a dynamical system, we show that domains of high chromosomal interactions can arise solely from the polymeric nature of the chromosome arms due to entropic interactions and nuclear confinement. In this view, the role of bio-chemical related processes is to modulate and extend the duration of the interacting domains. PMID:27257057

  4. A Lagging Model for Describing Drawdown Induced by a Constant-Rate Pumping in a Leaky Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Lin, Ye-Chen; Yeh, Hund-Der

    2017-10-01

    This study proposes a generalized Darcy's law with considering phase lags in both the water flux and drawdown gradient to develop a lagging flow model for describing drawdown induced by constant-rate pumping (CRP) in a leaky confined aquifer. The present model has a mathematical formulation similar to the dual-porosity model. The Laplace-domain solution of the model with the effect of wellbore storage is derived by the Laplace transform method. The time-domain solution for the case of neglecting the wellbore storage and well radius is developed by the use of Laplace transform and Weber transform. The results of sensitivity analysis based on the solution indicate that the drawdown is very sensitive to the change in each of the transmissivity and storativity. Also, a study for the lagging effect on the drawdown indicates that its influence is significant associated with the lag times. The present solution is also employed to analyze a data set taken from a CRP test conducted in a fractured aquifer in South Dakota, USA. The results show the prediction of this new solution with considering the phase lags has very good fit to the field data, especially at early pumping time. In addition, the phase lags seem to have a scale effect as indicated in the results. In other words, the lagging behavior is positively correlated with the observed distance in the Madison aquifer.

  5. The generalized pole assignment problem. [dynamic output feedback problems

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Two dynamic output feedback problems for a linear, strictly proper system are considered, along with their interrelationships. The problems are formulated in the frequency domain and investigated in terms of linear equations over rings of polynomials. Necessary and sufficient conditions are expressed using genericity.

  6. A non-local computational boundary condition for duct acoustics

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.

    1994-01-01

    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  7. On using the Hilbert transform for blind identification of complex modes: A practical approach

    NASA Astrophysics Data System (ADS)

    Antunes, Jose; Debut, Vincent; Piteau, Pilippe; Delaune, Xavier; Borsoi, Laurent

    2018-01-01

    The modal identification of dynamical systems under operational conditions, when subjected to wide-band unmeasured excitations, is today a viable alternative to more traditional modal identification approaches based on processing sets of measured FRFs or impulse responses. Among current techniques for performing operational modal identification, the so-called blind identification methods are the subject of considerable investigation. In particular, the SOBI (Second-Order Blind Identification) method was found to be quite efficient. SOBI was originally developed for systems with normal modes. To address systems with complex modes, various extension approaches have been proposed, in particular: (a) Using a first-order state-space formulation for the system dynamics; (b) Building complex analytic signals from the measured responses using the Hilbert transform. In this paper we further explore the latter option, which is conceptually interesting while preserving the model order and size. Focus is on applicability of the SOBI technique for extracting the modal responses from analytic signals built from a set of vibratory responses. The novelty of this work is to propose a straightforward computational procedure for obtaining the complex cross-correlation response matrix to be used for the modal identification procedure. After clarifying subtle aspects of the general theoretical framework, we demonstrate that the correlation matrix of the analytic responses can be computed through a Hilbert transform of the real correlation matrix, so that the actual time-domain responses are no longer required for modal identification purposes. The numerical validation of the proposed technique is presented based on time-domain simulations of a conceptual physical multi-modal system, designed to display modes ranging from normal to highly complex, while keeping modal damping low and nearly independent of the modal complexity, and which can prove very interesting in test bench applications. Numerical results for complex modal identifications are presented, and the quality of the identified modal matrix and modal responses, extracted using the complex SOBI technique and implementing the proposed formulation, is assessed.

  8. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.

    2008-01-01

    Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.

  9. A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Xu, Kun; Shyy, Wei

    2016-07-01

    This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.

  10. Wind-driving protostellar accretion discs - I. Formulation and parameter constraints

    NASA Astrophysics Data System (ADS)

    Königl, Arieh; Salmeron, Raquel; Wardle, Mark

    2010-01-01

    We study a model of weakly ionized, protostellar accretion discs that are threaded by a large-scale, ordered magnetic field and power a centrifugally driven wind. We consider the limiting case where the wind is the main repository of the excess disc angular momentum and generalize the radially localized disc model of Wardle & Königl, which focused on the ambipolar diffusion regime, to other field diffusivity regimes, notably Hall and Ohm. We present a general formulation of the problem for nearly Keplerian, vertically isothermal discs using both the conductivity-tensor and the multifluid approaches and simplify it to a normalized system of ordinary differential equations in the vertical space coordinate. We determine the relevant parameters of the problem and investigate, using the vertical-hydrostatic-equilibrium approximation and other simplifications, the parameter constraints on physically viable solutions for discs in which the neutral particles are dynamically well coupled to the field already at the mid-plane. When the charged particles constitute a two-component ion-electron plasma, one can identify four distinct sub-regimes in the parameter domain where the Hall diffusivity dominates and three sub-regimes in the Ohm-dominated domain. Two of the Hall sub-regimes can be characterized as being ambipolar diffusion-like and two as being Ohm-like: the properties of one member of the first pair of sub-regimes are identical to those of the ambipolar diffusion regime, whereas one member of the second pair has the same characteristics as one of the Ohm sub-regimes. All the Hall sub-regimes have Brb/|Bφb| (ratio of radial-to-azimuthal magnetic field amplitudes at the disc surface) >1, whereas in two Ohm sub-regimes this ratio is <1. When the two-component plasma consists, instead, of positively and negatively charged grains of equal mass, the entire Hall domain and one of the Ohm sub-regimes with Brb/|Bφb| < 1 disappear. All viable solutions require the mid-plane neutral-ion momentum exchange time to be shorter than the local orbital time. We also infer that vertical magnetic squeezing always dominates over gravitational tidal compression in this model. In a follow-up paper we will present exact solutions that test the results of this analysis in the Hall regime.

  11. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    PubMed

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Deformation of angle profiles in forward kinematics for nullifying end-point offset while preserving movement properties.

    PubMed

    Zhang, Xudong

    2002-10-01

    This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.

  13. Bi-criteria travelling salesman subtour problem with time threshold

    NASA Astrophysics Data System (ADS)

    Kumar Thenepalle, Jayanth; Singamsetty, Purusotham

    2018-03-01

    This paper deals with the bi-criteria travelling salesman subtour problem with time threshold (BTSSP-T), which comes from the family of the travelling salesman problem (TSP) and is NP-hard in the strong sense. The problem arises in several application domains, mainly in routing and scheduling contexts. Here, the model focuses on two criteria: total travel distance and gains attained. The BTSSP-T aims to determine a subtour that starts and ends at the same city and visits a subset of cities at a minimum travel distance with maximum gains, such that the time spent on the tour does not exceed the predefined time threshold. A zero-one integer-programming problem is adopted to formulate this model with all practical constraints, and it includes a finite set of feasible solutions (one for each tour). Two algorithms, namely, the Lexi-Search Algorithm (LSA) and the Tabu Search (TS) algorithm have been developed to solve the BTSSP-T problem. The proposed LSA implicitly enumerates the feasible patterns and provides an efficient solution with backtracking, whereas the TS, which is metaheuristic, will give the better approximate solution. A numerical example is demonstrated in order to understand the search mechanism of the LSA. Numerical experiments are carried out in the MATLAB environment, on the different benchmark instances available in the TSPLIB domain as well as on randomly generated test instances. The experimental results show that the proposed LSA works better than the TS algorithm in terms of solution quality and, computationally, both LSA and TS are competitive.

  14. Local spectrum analysis of field propagation in an anisotropic medium. Part I. Time-harmonic fields.

    PubMed

    Tinkelman, Igor; Melamed, Timor

    2005-06-01

    The phase-space beam summation is a general analytical framework for local analysis and modeling of radiation from extended source distributions. In this formulation, the field is expressed as a superposition of beam propagators that emanate from all points in the source domain and in all directions. In this Part I of a two-part investigation, the theory is extended to include propagation in anisotropic medium characterized by a generic wave-number profile for time-harmonic fields; in a companion paper [J. Opt. Soc. Am. A 22, 1208 (2005)], the theory is extended to time-dependent fields. The propagation characteristics of the beam propagators in a homogeneous anisotropic medium are considered. With use of Gaussian windows for the local processing of either ordinary or extraordinary electromagnetic field distributions, the field is represented by a phase-space spectral distribution in which the propagating elements are Gaussian beams that are formulated by using Gaussian plane-wave spectral distributions over the extended source plane. By applying saddle-point asymptotics, we extract the Gaussian beam phenomenology in the anisotropic environment. The resulting field is parameterized in terms of the spatial evolution of the beam curvature, beam width, etc., which are mapped to local geometrical properties of the generic wave-number profile. The general results are applied to the special case of uniaxial crystal, and it is found that the asymptotics for the Gaussian beam propagators, as well as the physical phenomenology attached, perform remarkably well.

  15. A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Didari, Azadeh; Pinar Mengüç, M.

    2017-08-01

    Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).

  16. Ebolavirus Nucleoprotein C-Termini Potently Attract Single Domain Antibodies Enabling Monoclonal Affinity Reagent Sandwich Assay (MARSA) Formulation

    PubMed Central

    Sherwood, Laura J.; Hayhurst, Andrew

    2013-01-01

    Background Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. Methods and Findings In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. Conclusions The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus. PMID:23577211

  17. 75 FR 10312 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of Registration By Notice dated October 20, 2009, and published in the Federal Register on October 28, 2009 (74 FR 55583), Formulation Technologies LLC., 11501 Domain Drive, Suite 130, Austin, Texas 78758, made...

  18. Derivation of Formulations 1 and 1A of Farassat

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    2007-01-01

    Formulations 1 and 1A are the solutions of the Ffowcs Williams-Hawkings (FW-H) equation with surface sources only when the surface moves at subsonic speed. Both formulations have been successfully used for helicopter rotor and propeller noise prediction for many years although we now recommend using Formulation 1A for this purpose. Formulation 1 has an observer time derivative that is taken numerically, and thus, increasing execution time on a computer and reducing the accuracy of the results. After some discussion of the Green's function of the wave equation, we derive Formulation 1 which is the basis of deriving Formulation 1A. We will then show how to take this observer time derivative analytically to get Formulation 1A. We give here the most detailed derivation of these formulations. Once you see the whole derivation, you will ask yourself why you did not do it yourself!

  19. A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems

    NASA Astrophysics Data System (ADS)

    Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain

    2016-08-01

    In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.

  20. Fast algorithms for chiral fermions in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Hyka (Xhako), Dafina; Osmanaj (Zeqirllari), Rudina

    2018-03-01

    In lattice QCD simulations the formulation of the theory in lattice should be chiral in order that symmetry breaking happens dynamically from interactions. In order to guarantee this symmetry on the lattice one uses overlap and domain wall fermions. On the other hand high computational cost of lattice QCD simulations with overlap or domain wall fermions remains a major obstacle of research in the field of elementary particles. We have developed the preconditioned GMRESR algorithm as fast inverting algorithm for chiral fermions in U(1) lattice gauge theory. In this algorithm we used the geometric multigrid idea along the extra dimension.The main result of this work is that the preconditioned GMRESR is capable to accelerate the convergence 2 to 12 times faster than the other optimal algorithms (SHUMR) for different coupling constant and lattice 32x32. Also, in this paper we tested it for larger lattice size 64x64. From the results of simulations we can see that our algorithm is faster than SHUMR. This is a very promising result that this algorithm can be adapted also in 4 dimension.

  1. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  2. A mathematical model of the heat and fluid flows in direct-chill casting of aluminum sheet ingots and billets

    NASA Astrophysics Data System (ADS)

    Mortensen, Dag

    1999-02-01

    A finite-element method model for the time-dependent heat and fluid flows that develop during direct-chill (DC) semicontinuous casting of aluminium ingots is presented. Thermal convection and turbulence are included in the model formulation and, in the mushy zone, the momentum equations are modified with a Darcy-type source term dependent on the liquid fraction. The boundary conditions involve calculations of the air gap along the mold wall as well as the heat transfer to the falling water film with forced convection, nucleate boiling, and film boiling. The mold wall and the starting block are included in the computational domain. In the start-up period of the casting, the ingot domain expands over the starting-block level. The numerical method applies a fractional-step method for the dynamic Navier-Stokes equations and the “streamline upwind Petrov-Galerkin” (SUPG) method for mixed diffusion and convection in the momentum and energy equations. The modeling of the start-up period of the casting is demonstrated and compared to temperature measurements in an AA1050 200×600 mm sheet ingot.

  3. Evaluation of general non-reflecting boundary conditions for industrial CFD applications

    NASA Astrophysics Data System (ADS)

    Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir

    2007-11-01

    The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.

  4. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  5. Direct comparison of two different mesalamine formulations for the maintenance of remission in patients with ulcerative colitis: A double-blind, randomized study

    PubMed Central

    Ito, Hiroaki; Iida, Mitsuo; Matsumoto, Takayuki; Suzuki, Yasuo; Aida, Yoshiyuki; Yoshida, Toyomitsu; Takano, Yuichi; Hibi, Toshifumi

    2010-01-01

    Background: Mesalamine has been used as the first-line medication for the treatment of ulcerative colitis (UC). We directly compared the efficacy and safety of two different mesalamine formulations in the maintenance of remission in patients with UC. Methods: In a multicenter, double-blind, randomized study, 131 patients with quiescent UC were assigned to two groups: 65 to receive a pH-dependent release formulation of mesalamine at 2.4 g/day (pH-2.4 g) and 66 to receive a time-dependent release formulation of mesalamine at 2.25 g/day (Time-2.25 g). Both formulations were administered three times daily for 48 weeks. The primary endpoint was the proportion of patients without bloody stools. Results: In the full analysis set (n = 130), the proportion of patients without bloody stools was 76.9% in the pH-2.4 g and 69.2% in the Time-2.25 g, demonstrating the noninferiority of pH-2.4 g to Time-2.25 g. No statistically significant difference in time to bloody stools was found between the two formulations (P = 0.27, log-rank test), but the time to bloody stools tended to be longer in pH-2.4 g compared to Time-2.25 g, and a similar trend was observed with regard to the time to relapse. No differences were observed between the safety profiles of the two formulations. Conclusions: The pH- and time-dependent release of mesalamine formulations were similarly safe and effective. Interestingly, the remission phase tended to be longer in the group that received the pH-dependent formulation compared to the group that received the time-dependent formulation (UMIN Clinical Trials Registry, no. C000000289). (Inflamm Bowel Dis 2010) PMID:20049949

  6. Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2016-01-01

    A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.

  7. Lagrangian Assimilation of Satellite Data for Climate Studies in the Arctic

    NASA Technical Reports Server (NTRS)

    Lindsay, Ronald W.; Zhang, Jin-Lun; Stern, Harry

    2004-01-01

    Under this grant we have developed and tested a new Lagrangian model of sea ice. A Lagrangian model keeps track of material parcels as they drift in the model domain. Besides providing a natural framework for the assimilation of Lagrangian data, it has other advantages: 1) a model that follows material elements is well suited for a medium such as sea ice in which an element retains its identity for a long period of time; 2) model cells can be added or dropped as needed, allowing the spatial resolution to be increased in areas of high variability or dense observations; 3) ice from particular regions, such as the marginal seas, can be marked and traced for a long time; and 4) slip lines in the ice motion are accommodated more naturally because there is no internal grid. Our work makes use of these strengths of the Lagrangian formulation.

  8. Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD project. Proceedings of RIKEN BNL Research Center workshop: Volume 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for somemore » time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD.« less

  9. Pharmaceutical and pharmacokinetic characterization of a novel sublingual buprenorphine/naloxone tablet formulation in healthy volunteers.

    PubMed

    Fischer, Andreas; Jönsson, Martin; Hjelmström, Peter

    2015-01-01

    Bitter taste, as well as dissolve time, presents a significant challenge for the acceptability of formulations for oral transmucosal drug delivery. To characterize a novel sublingual tablet formulation of buprenorphine/naloxone with regards to pharmacokinetics, dissolve time and formulation acceptability. Dry mixing techniques were employed to produce a small and fast dissolving buprenorphine/naloxone sublingual tablet formulation, OX219 (Zubsolv®), using sucralose and menthol as sweetener and flavor to mask the bitter taste of the active ingredients. Two cross-over studies were performed in healthy volunteers to evaluate pharmacokinetics, dissolve time and acceptability of OX219 5.7/1.4 mg tablets compared to the commercially available buprenorphine/naloxone formulations Suboxone® tablets and films (8/2 mg). Buprenorphine exposure was equivalent in OX219 and Suboxone tablets. Sublingual dissolve times were significantly shorter for OX219 than for Suboxone tablets and were similar to Suboxone films. The OX219 formulation received significantly higher subjective ratings for taste and overall acceptability than both Suboxone formulations. OX219 was preferred over Suboxone tablet and film formulations by 77.4% and 88.9% of subjects, respectively. A sublingual tablet formulation with an improved acceptability has been successfully developed.

  10. Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Petrov, Petr V.; Newman, Gregory A.

    2014-09-01

    3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is also possible to launch a successful inversion experiment without laddering the damping constants. With this type of acquisition geometry, the solver is still quite effective using a small fixed damping constant. To avoid cycle skipping, we also employ a multiscale imaging approach, in which frequency content of the data is also laddered (with the data now including both reflection and cross-well data acquisition geometries). Thus the inversion process is launched using low frequency data to first recover the long spatial wavelength of the image. With this image as a new starting model, adding higher frequency data refines and enhances the resolution of the image. FWI using laddered frequencies with an efficient damping schemed enables reconstructing elastic attributes of the subsurface at a resolution that approaches half the smallest wavelength utilized to image the subsurface. We show the possibility of effectively carrying out such reconstructions using two to six frequencies, depending upon the application. Using the proposed FWI scheme, massively parallel computing resources are essential for reasonable execution times.

  11. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    PubMed Central

    Defarge, Nicolas; Takács, Eszter; Lozano, Verónica Laura; Mesnage, Robin; Spiroux de Vendômois, Joël; Séralini, Gilles-Eric; Székács, András

    2016-01-01

    Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH), the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations), and not the declared active ingredient glyphosate (G) alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG) and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI) value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone. PMID:26927151

  12. Electromagnetic ray tracing model for line structures.

    PubMed

    Tan, C B; Khoh, A; Yeo, S H

    2008-03-17

    In this paper, a model for electromagnetic scattering of line structures is established based on high frequency approximation approach - ray tracing. This electromagnetic ray tracing (ERT) model gives the advantage of identifying each physical field that contributes to the total solution of the scattering phenomenon. Besides the geometrical optics field, different diffracted fields associated with the line structures are also discussed and formulated. A step by step addition of each electromagnetic field is given to elucidate the causes of a disturbance in the amplitude profile. The accuracy of the ERT model is also discussed by comparing with the reference finite difference time domain (FDTD) solution, which shows a promising result for a single polysilicon line structure with width of as narrow as 0.4 wavelength.

  13. Fourier transform-based scattering-rate method for self-consistent simulations of carrier transport in semiconductor heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Grahn, H. T.

    We present a self-consistent model for carrier transport in periodic semiconductor heterostructures completely formulated in the Fourier domain. In addition to the Hamiltonian for the layer system, all expressions for the scattering rates, the applied electric field, and the carrier distribution are treated in reciprocal space. In particular, for slowly converging cases of the self-consistent solution of the Schrödinger and Poisson equations, numerous transformations between real and reciprocal space during the iterations can be avoided by using the presented method, which results in a significant reduction of computation time. Therefore, it is a promising tool for the simulation and efficientmore » design of complex heterostructures such as terahertz quantum-cascade lasers.« less

  14. Problems encountered with conventional fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Landel, R. F.

    1981-01-01

    Preparational, computational, and operational problems associated with fiber-reinforced composites (FRC) are reviewed. Initial preparation of FRCs is shown to involve consideration of the type of prepreg, the setting time, cure conditions and cycles, and cure temperatures. The effects of the choice of bonding agents, the fiber transfer length, and individual fiber responses to bonding agents are noted to have an impact on fiber strength, moisture uptake, and fatigue resistance. The deformation prior to failure and the failure region are modeled through models of mini-, micro- and macro mechanics formulations employing a stiffness matrix, failure criterion, or fracture mechanics. The detection, evaluation, and repair of defects comprises the operational domain, and it is stressed that no good repair techniques exist for FRCs.

  15. The acoustic response of rooms with open windows to airborne sounds.

    NASA Technical Reports Server (NTRS)

    Vaidya, P. G.

    1972-01-01

    The objective of the work described in this and the companion paper was to establish a theory for predicting the sound field generated in a room by a sonic boom incident on an open window. In this paper, some basic theoretical results are presented. First, the case of a normally incident harmonic wave was considered. Expressions for the pressure field were obtained by viewing the room as a terminated duct and by using a Green function method. The concept of mode excitation distribution functions was formulated and used to match the boundary conditions. This concept has been extended for oblique incidence. A modified form of Laplace transform technique was used to obtain expressions in the time domain for transient signals.

  16. On the role of second number-conserving functional derivatives

    NASA Astrophysics Data System (ADS)

    Gál, Tamás

    2006-06-01

    It is found that number-conserving second derivatives, of functional differentiation constrained to the domain of functional variables ρ(x) of a given norm ∫ρ(x)dx, are not obtained via two successive number-conserving differentiations, contrary to the case of unrestricted second derivatives. Investigating the role of second number-conserving derivatives, with the density-functional formulation of time-dependent quantum mechanics in focus, it is shown how number-conserving differentiation handles the dual nature of the Kohn Sham potential arising in the practical use of the theory. On the other hand, it is pointed out that number-conserving derivatives cannot resolve the causality paradox connected with the second derivative of the exchange-correlation part of the action density functional.

  17. An Extended Model of Knowledge Governance

    NASA Astrophysics Data System (ADS)

    Karvalics, Laszlo Z.; Dalal, Nikunj

    In current times, we are seeing the emergence of a new paradigm to describe, understand, and analyze the expanding "knowledge domain". This overarching framework - called knowledge governance - draws from and builds upon knowledge management and may be seen as a kind of meta-layer of knowledge management. The emerging knowledge governance approach deals with issues that lie at the intersection of organization and knowledge processes. Knowledge governance has two main interpretation levels in the literature: the company- (micro-) and the national (macro-) level. We propose a three-layer model instead of the previous two-layer version, adding a layer of "global" knowledge governance. Analyzing and separating the main issues in this way, we can re-formulate the focus of knowledge governance research and practice in all layers.

  18. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  19. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  20. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED - DOMAIN WALL FERMIONS AT TEN YEARS (VOLUME 84)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLUM,T.; SONI,A.

    The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkablemore » that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.« less

  1. An Analysis of Aims and the Educational "Event"

    ERIC Educational Resources Information Center

    den Heyer, Kent

    2015-01-01

    In this article, the author explores key distinctions relevant to aims talk in education. He argues that present formulations of aims fail to adequately capture or speak to several overlapping domains involved in schooling: qualification, socialization, and the educational in the form of subjectification (Biesta, 2010). Drawing off Egan and Biesta…

  2. Joint Sequence Analysis: Association and Clustering

    ERIC Educational Resources Information Center

    Piccarreta, Raffaella

    2017-01-01

    In its standard formulation, sequence analysis aims at finding typical patterns in a set of life courses represented as sequences. Recently, some proposals have been introduced to jointly analyze sequences defined on different domains (e.g., work career, partnership, and parental histories). We introduce measures to evaluate whether a set of…

  3. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole-Cole parameters. In the second case, we perform a laboratory sandbox experiment in which we mix a volume of burning coal and sand. The algorithm is able to localize the burning coal both in terms of electrical conductivity and chargeability.

  4. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  5. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    NASA Astrophysics Data System (ADS)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  6. Open quantum systems and error correction

    NASA Astrophysics Data System (ADS)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.

  7. An Optimization-Based Approach to Determine Requirements and Aircraft Design under Multi-domain Uncertainties

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    Determining the optimal requirements for and design variable values of new systems, which operate along with existing systems to provide a set of overarching capabilities, as a single task is challenging due to the highly interconnected effects that setting requirements on a new system's design can have on how an operator uses this newly designed system. This task of determining the requirements and the design variable values becomes even more difficult because of the presence of uncertainties in the new system design and in the operational environment. This research proposed and investigated aspects of a framework that generates optimum design requirements of new, yet-to-be-designed systems that, when operating alongside other systems, will optimize fleet-level objectives while considering the effects of various uncertainties. Specifically, this research effort addresses the issues of uncertainty in the design of the new system through reliability-based design optimization methods, and uncertainty in the operations of the fleet through descriptive sampling methods and robust optimization formulations. In this context, fleet-level performance metrics result from using the new system alongside other systems to accomplish an overarching objective or mission. This approach treats the design requirements of a new system as decision variables in an optimization problem formulation that a user in the position of making an acquisition decision could solve. This solution would indicate the best new system requirements-and an associated description of the best possible design variable variables for that new system-to optimize the fleet level performance metric(s). Using a problem motivated by recorded operations of the United States Air Force Air Mobility Command for illustration, the approach is demonstrated first for a simplified problem that only considers demand uncertainties in the service network and the proposed methodology is used to identify the optimal design requirements and optimal aircraft sizing variables of new, yet-to-be-introduced aircraft. With this new aircraft serving alongside other existing aircraft, the fleet of aircraft satisfy the desired demand for cargo transportation, while maximizing fleet productivity and minimizing fuel consumption via a multi-objective problem formulation. The approach is then extended to handle uncertainties in both the design of the new system and in the operations of the fleet. The propagation of uncertainties associated with the conceptual design of the new aircraft to the uncertainties associated with the subsequent operations of the new and existing aircraft in the fleet presents some unique challenges. A computationally tractable hybrid robust counterpart formulation efficiently handles the confluence of the two types of domain-specific uncertainties. This hybrid formulation is tested on a larger route network problem to demonstrate the scalability of the approach. Following the presentation of the results obtained, a summary discussion indicates how decision-makers might use these results to set requirements for new aircraft that meet operational needs while balancing the environmental impact of the fleet with fleet-level performance. Comparing the solutions from the uncertainty-based and deterministic formulations via a posteriori analysis demonstrates the efficacy of the robust and reliability-based optimization formulations in addressing the different domain-specific uncertainties. Results suggest that the aircraft design requirements and design description determined through the hybrid robust counterpart formulation approach differ from solutions obtained from the simplistic deterministic approach, and leads to greater fleet-level fuel savings, when subjected to real-world uncertain scenarios (more robust to uncertainty). The research, though applied to a specific air cargo application, is technically agnostic in nature and can be applied to other facets of policy and acquisition management, to explore capability trade spaces for different vehicle systems, mitigate risks, define policy and potentially generate better returns on investment. Other domains relevant to policy and acquisition decisions could utilize the problem formulation and solution approach proposed in this dissertation provided that the problem can be split into a non-linear programming problem to describe the new system sizing and the fleet operations problem can be posed as a linear/integer programming problem.

  8. The domain interface method: a general-purpose non-intrusive technique for non-conforming domain decomposition problems

    NASA Astrophysics Data System (ADS)

    Cafiero, M.; Lloberas-Valls, O.; Cante, J.; Oliver, J.

    2016-04-01

    A domain decomposition technique is proposed which is capable of properly connecting arbitrary non-conforming interfaces. The strategy essentially consists in considering a fictitious zero-width interface between the non-matching meshes which is discretized using a Delaunay triangulation. Continuity is satisfied across domains through normal and tangential stresses provided by the discretized interface and inserted in the formulation in the form of Lagrange multipliers. The final structure of the global system of equations resembles the dual assembly of substructures where the Lagrange multipliers are employed to nullify the gap between domains. A new approach to handle floating subdomains is outlined which can be implemented without significantly altering the structure of standard industrial finite element codes. The effectiveness of the developed algorithm is demonstrated through a patch test example and a number of tests that highlight the accuracy of the methodology and independence of the results with respect to the framework parameters. Considering its high degree of flexibility and non-intrusive character, the proposed domain decomposition framework is regarded as an attractive alternative to other established techniques such as the mortar approach.

  9. A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity

    NASA Astrophysics Data System (ADS)

    Xie, Xiang; Zheng, Hui; Qu, Yegao

    2016-07-01

    A weak form variational based method is developed to study the vibro-acoustic responses of coupled structural-acoustic system consisting of an irregular acoustic cavity with general wall impedance and a flexible panel subjected to arbitrary edge-supporting conditions. The structural and acoustical models of the coupled system are formulated on the basis of a modified variational method combined with multi-segment partitioning strategy. Meanwhile, the continuity constraints on the sub-segment interfaces are further incorporated into the system stiffness matrix by means of least-squares weighted residual method. Orthogonal polynomials, such as Chebyshev polynomials of the first kind, are employed as the wholly admissible unknown displacement and sound pressure field variables functions for separate components without meshing, and hence mapping the irregular physical domain into a square spectral domain is necessary. The effects of weighted parameter together with the number of truncated polynomial terms and divided partitions on the accuracy of present theoretical solutions are investigated. It is observed that applying this methodology, accurate and efficient predictions can be obtained for various types of coupled panel-cavity problems; and in weak or strong coupling cases for a panel surrounded by a light or heavy fluid, the inherent principle of velocity continuity on the panel-cavity contacting interface can all be handled satisfactorily. Key parametric studies concerning the influences of the geometrical properties as well as impedance boundary are performed. Finally, by performing the vibro-acoustic analyses of 3D car-like coupled miniature, we demonstrate that the present method seems to be an excellent way to obtain accurate mid-frequency solution with an acceptable CPU time.

  10. Reproducibility of Spectral Domain Optical Coherence Tomography Retinal Thickness Measurements and Conversion to Equivalent Time Domain Metrics in Diabetic Macular Edema

    PubMed Central

    Bressler, Susan B.; Edwards, Allison R.; Chalam, Kakarla V.; Bressler, Neil M.; Glassman, Adam R.; Jaffe, Glenn J.; Melia, Michele; Saggau, David D.; Plous, Oren Z.

    2014-01-01

    Importance Advances in retinal imaging have led to the development of optical coherence tomography (OCT) instruments that incorporate spectral domain (SD) technology. Understanding measurement variability and relationships between retinal thickness measurements obtained on different machines is critical for proper use in clinical trials and clinical settings. Objectives Evaluate reproducibility of retinal thickness measurements from OCT images obtained by time domain (TD) (Zeiss Stratus) and SD (Zeiss Cirrus and Heidelberg Spectralis) instruments and formulate equations to convert retinal thickness measurements from SD-OCT to equivalent values on TD-OCT. Design Cross-sectional observational study. Each study eye underwent two replicate Stratus scans followed by two replicate Cirrus or Spectralis (real time image registration utilized) scans centered on the fovea. Setting Private and institutional practices Participants Diabetic persons with at least one eye with central-involved diabetic macular edema (DME), defined as Stratus central subfield thickness (CST)≥250μm. An additional normative cohort, individuals with diabetes but without DME, was enrolled. Main Outcome Measure(s) OCT CST and macular volume Results The Bland-Altman coefficient of repeatability for relative change in CST (the degree of change that could be expected from measurement variability) was lower on Spectralis compared with Stratus and Cirrus scans (7%, 12–15%, and 14%, respectively). For each cohort, the initial Stratus CST was within 10% of the replicate Stratus measurement 92% of the time; the conversion equations predicted a Stratus CST within 10% of the observed thickness 86% and 89% of the time for Stratus/Cirrus and Stratus/Spectralis groups, respectively. The Bland-Altman limits of agreement for relative change in CST between machines (the degree of change that could be expected from measurement variability, combined within and between instrument variability) were 21% for Cirrus and 19% for Spectralis, comparing predicted versus actual Stratus measurement. Conclusions and Relevance Reproducibility appears better on Spectralis than Cirrus and Stratus. Conversion equations to transform Cirrus or Spectralis measurements to Stratus-equivalent values, within 10% of the observed Stratus thickness values, appear feasible. CST changes beyond 10% when using the same machine or 20% when switching machines, after conversion to Stratus equivalents, are likely due to a change in retinal thickness and not measurement error. PMID:25058482

  11. Pharmaceutical and pharmacokinetic characterization of a novel sublingual buprenorphine/naloxone tablet formulation in healthy volunteers

    PubMed Central

    Fischer, Andreas; Hjelmström, Peter

    2015-01-01

    Abstract Context Bitter taste, as well as dissolve time, presents a significant challenge for the acceptability of formulations for oral transmucosal drug delivery. Objective To characterize a novel sublingual tablet formulation of buprenorphine/naloxone with regards to pharmacokinetics, dissolve time and formulation acceptability. Methods Dry mixing techniques were employed to produce a small and fast dissolving buprenorphine/naloxone sublingual tablet formulation, OX219 (Zubsolv®), using sucralose and menthol as sweetener and flavor to mask the bitter taste of the active ingredients. Two cross-over studies were performed in healthy volunteers to evaluate pharmacokinetics, dissolve time and acceptability of OX219 5.7/1.4 mg tablets compared to the commercially available buprenorphine/naloxone formulations Suboxone® tablets and films (8/2 mg). Results Buprenorphine exposure was equivalent in OX219 and Suboxone tablets. Sublingual dissolve times were significantly shorter for OX219 than for Suboxone tablets and were similar to Suboxone films. The OX219 formulation received significantly higher subjective ratings for taste and overall acceptability than both Suboxone formulations. OX219 was preferred over Suboxone tablet and film formulations by 77.4% and 88.9% of subjects, respectively. Conclusions A sublingual tablet formulation with an improved acceptability has been successfully developed. PMID:24099551

  12. A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media

    NASA Astrophysics Data System (ADS)

    Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.

    2018-06-01

    A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.

  13. Efficient computation of optimal actions.

    PubMed

    Todorov, Emanuel

    2009-07-14

    Optimal choice of actions is a fundamental problem relevant to fields as diverse as neuroscience, psychology, economics, computer science, and control engineering. Despite this broad relevance the abstract setting is similar: we have an agent choosing actions over time, an uncertain dynamical system whose state is affected by those actions, and a performance criterion that the agent seeks to optimize. Solving problems of this kind remains hard, in part, because of overly generic formulations. Here, we propose a more structured formulation that greatly simplifies the construction of optimal control laws in both discrete and continuous domains. An exhaustive search over actions is avoided and the problem becomes linear. This yields algorithms that outperform Dynamic Programming and Reinforcement Learning, and thereby solve traditional problems more efficiently. Our framework also enables computations that were not possible before: composing optimal control laws by mixing primitives, applying deterministic methods to stochastic systems, quantifying the benefits of error tolerance, and inferring goals from behavioral data via convex optimization. Development of a general class of easily solvable problems tends to accelerate progress--as linear systems theory has done, for example. Our framework may have similar impact in fields where optimal choice of actions is relevant.

  14. Output-only modal dynamic identification of frames by a refined FDD algorithm at seismic input and high damping

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Ferrari, Rosalba; Rizzi, Egidio

    2016-02-01

    The present paper deals with the seismic modal dynamic identification of frame structures by a refined Frequency Domain Decomposition (rFDD) algorithm, autonomously formulated and implemented within MATLAB. First, the output-only identification technique is outlined analytically and then employed to characterize all modal properties. Synthetic response signals generated prior to the dynamic identification are adopted as input channels, in view of assessing a necessary condition for the procedure's efficiency. Initially, the algorithm is verified on canonical input from random excitation. Then, modal identification has been attempted successfully at given seismic input, taken as base excitation, including both strong motion data and single and multiple input ground motions. Rather than different attempts investigating the role of seismic response signals in the Time Domain, this paper considers the identification analysis in the Frequency Domain. Results turn-out very much consistent with the target values, with quite limited errors in the modal estimates, including for the damping ratios, ranging from values in the order of 1% to 10%. Either seismic excitation and high values of damping, resulting critical also in case of well-spaced modes, shall not fulfill traditional FFD assumptions: this shows the consistency of the developed algorithm. Through original strategies and arrangements, the paper shows that a comprehensive rFDD modal dynamic identification of frames at seismic input is feasible, also at concomitant high damping.

  15. High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions

    NASA Astrophysics Data System (ADS)

    Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake

    2017-03-01

    We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.

  16. Varying efficacy of superdisintegrants in orally disintegrating tablets among different manufacturers.

    PubMed

    Mittapalli, R K; Qhattal, H S Sha; Lockman, P R; Yamsani, M R

    2010-11-01

    The main objective of the present study was to develop an orally disintegrating tablet formulation of domperidone and to study the functionality differences of superdisintegrants each obtained from two different sources on the tablet properties. Domperidone tablets were formulated with different superdisintegrants by direct compression. The effect of the type of superdisintegrant, its concentration and source was studied by measuring the in-vitro disintegration time, wetting time, water absorption ratios, drug release by dissolution and in-vivo oral disintegration time. Tablets prepared with crospovidone had lower disintegration times than tablets prepared from sodium starchglycolate and croscarmellose sodium. Formulations prepared with Polyplasdone XL, Ac-Di-Sol, and Explotab (D series) were better than formulations prepared with superdisintegrants obtained from other sources (DL series) which had longer disintegration times and lower water uptake ratios. The in-vivo disintegration time of formulation D-106 containing polyplasdone XL was significantly lower than that of the marketed formulation Domel-MT. The results from this study suggest that disintegration of orally disintegrating tablets is dependent on the nature of superdisintegrant, concentration in the formulation and its source. Even though a superdisintegrant meets USP standards there can be a variance among manufacturers in terms of performance. This is not only limited to in-vitro studies but carries over to disintegration times in the human population.

  17. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  18. A boundary element method for steady incompressible thermoviscous flow

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    A boundary element formulation is presented for moderate Reynolds number, steady, incompressible, thermoviscous flows. The governing integral equations are written exclusively in terms of velocities and temperatures, thus eliminating the need for the computation of any gradients. Furthermore, with the introduction of reference velocities and temperatures, volume modeling can often be confined to only a small portion of the problem domain, typically near obstacles or walls. The numerical implementation includes higher order elements, adaptive integration and multiregion capability. Both the integral formulation and implementation are discussed in detail. Several examples illustrate the high level of accuracy that is obtainable with the current method.

  19. A computational method for the Helmholtz equation in unbounded domains based on the minimization of an integral functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciraolo, Giulio, E-mail: g.ciraolo@math.unipa.it; Gargano, Francesco, E-mail: gargano@math.unipa.it; Sciacca, Vincenzo, E-mail: sciacca@math.unipa.it

    2013-08-01

    We study a new approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains. Our approach is based on the minimization of an integral functional arising from a volume integral formulation of the radiation condition. The index of refraction does not need to be constant at infinity and may have some angular dependency as well as perturbations. We prove analytical results on the convergence of the approximate solution. Numerical examples for different shapes of the artificial boundary and for non-constant indexes of refraction will be presented.

  20. Reforming Teacher Education through a Professionally Applied Study of Teaching

    ERIC Educational Resources Information Center

    Ure, Christine Leslie

    2010-01-01

    This paper presents a review of research of teacher education and the formulation of a model of teacher development that encompasses five domains of knowledge. The model provides a curriculum and pedagogical framework for initial teacher education that links together the theoretical, practical and professional elements of teaching and learning.…

  1. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.

    PubMed

    Nennig, Benoit; Tahar, Mabrouk Ben; Perrey-Debain, Emmanuel

    2011-07-01

    In the present work, the propagation of sound in a lined duct containing sheared mean flow is studied. Walls of the duct are acoustically treated with absorbent poroelastic foams. The propagation of elasto-acoustic waves in the liner is described by Biot's model. In the fluid domain, the propagation of sound in a sheared mean flow is governed by the Galbrun's equation. The problem is solved using a mixed displacement-pressure finite element formulation in both domains. A 3D implementation of the model has been performed and is illustrated on axisymmetric examples. Convergence and accuracy of the numerical model are shown for the particular case of the modal propagation in a infinite duct containing a uniform flow. Practical examples concerning the sound attenuation through dissipative silencers are discussed. In particular, effects of the refraction effects in the shear layer as well as the mounting conditions of the foam on the transmission loss are shown. The presence of a perforate screen at the air-porous interface is also considered and included in the model. © 2011 Acoustical Society of America

  2. Interferometric redatuming by sparse inversion

    NASA Astrophysics Data System (ADS)

    van der Neut, Joost; Herrmann, Felix J.

    2013-02-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional deconvolution of the upgoing constituents with the downgoing constituents. While this method works in theory, sensitivity to noise and artefacts due to incomplete acquisition require a different formulation. In this letter, we demonstrate the benefits of formulating the two steps that undergird interferometric redatuming in terms of a transform-domain sparsity-promoting program. By exploiting compressibility of seismic wavefields in the curvelet domain, the method not only becomes robust with respect to noise but we are also able to remove certain artefacts while preserving the frequency content. Although we observe improvements when we promote sparsity in the redatumed data space, we expect better results when interferometric redatuming would be combined or integrated with least-squares migration with sparsity promotion in the image space.

  3. The 3D dynamics of the Cosserat rod as applied to continuum robotics

    NASA Astrophysics Data System (ADS)

    Jones, Charles Rees

    2011-12-01

    In the effort to simulate the biologically inspired continuum robot's dynamic capabilities, researchers have been faced with the daunting task of simulating---in real-time---the complete three dimensional dynamics of the "beam-like" structure which includes the three "stiff" degrees-of-freedom transverse and dilational shear. Therefore, researchers have traditionally limited the difficulty of the problem with simplifying assumptions. This study, however, puts forward a solution which makes no simplifying assumptions and trades off only the real-time requirement of the desired solution. The solution is a Finite Difference Time Domain method employing an explicit single step method with cheap right hands sides. The cheap right hand sides are the result of a rather ingenious formulation of the classical beam called the Cosserat rod by, first, the Cosserat brothers and, later, Stuart S. Antman which results in five nonlinear but uncoupled equations that require only multiplication and addition. The method is therefore suitable for hardware implementation thus moving the real-time requirement from a software solution to a hardware solution.

  4. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  5. Formulation/preparation of functionalized nanoparticles for in vivo targeted drug delivery.

    PubMed

    Gu, Frank; Langer, Robert; Farokhzad, Omid C

    2009-01-01

    Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D: ,L: -lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

  6. Heat transfer model and finite element formulation for simulation of selective laser melting

    NASA Astrophysics Data System (ADS)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  7. Formulation Effects and the Off-target Transport of Pyrethroid Insecticides from Urban Hard Surfaces

    PubMed Central

    Jorgenson, Brant C.; Young, Thomas M.

    2010-01-01

    Controlled rainfall experiments utilizing drop forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product formulation, and to a lesser extent on product set time. Resulting wash-off profiles during one-hour storm simulations could be categorized based on formulation, with formulations utilizing emulsifying surfactants rather than organic solvents resulting in unique wash-off profiles with overall higher wash-off efficiency. These higher wash-off efficiency profiles were qualitatively replicated by applying formulation-free neat pyrethroid in the presence of independently applied linear alkyl benzene sulfonate (LAS) surfactant, suggesting that the surfactant component of some formulated products may be influential in pyrethroid wash-off from urban hard surfaces. PMID:20524665

  8. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    PubMed

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  9. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun

    2007-01-01

    The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.

  10. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation

    PubMed Central

    Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick

    2016-01-01

    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations’ outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results. PMID:27128798

  11. Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation

    NASA Technical Reports Server (NTRS)

    Ryabenkii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special non-deteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of 'non-reflecting kernels,' nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The non-deteriorating algorithm, which is the core of the new ABCs is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals, and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimension spaces, It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the non-modified scheme. In the paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABCs' algorithm.

  12. Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation

    NASA Astrophysics Data System (ADS)

    Ryaben'kii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.

    2001-12-01

    We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special nondeteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of “nonreflecting kernels” nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The nondeteriorating algorithm, which is the core of the new ABCs, is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimensional spaces. It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the unmodified scheme. In this paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABC algorithm.

  13. What is Quantum Mechanics? A Minimal Formulation

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2018-03-01

    This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.

  14. Quantum mechanics without potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhaidari, A. D., E-mail: haidari@sctp.org.sa; Ismail, M. E. H.

    2015-07-15

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which ismore » written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.« less

  15. Label-free measurement of microbicidal gel thickness using low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Braun, Kelly E.; Boyer, Jeffrey D.; Henderson, Marcus H.; Katz, David F.; Wax, Adam

    2006-03-01

    Spectral-domain low-coherence interferometry (LCI) was used to measure the thickness of microbicidal gels applied to a cylindrical calibration test socket. Microbicides are topical formulations containing active ingredients targeted to inhibit specific pathogens that are currently under development for application to the epithelial lining of the lower female reproductive tract to combat sexually transmitted infections such as HIV. Understanding the deployment and drug delivery of these formulations is vital to maximizing their effectiveness. Previously, in vivo measurements of microbicidal formulation thickness were assessed using fluorescence measurements of fluorescein-labeled gels via an optical endoscope-based device. Here we present an LCI-based device that measures the thickness of a formulation without the use of any exogenous agents by analyzing the interference pattern generated between the reflections from the front and back surface of the sample. Results are presented that validate the effectiveness and performance of the LCI measurement in a clinically relevant system as compared to an existing fluorescence-based method. The impact of the new LCI-based design on in vivo measurements is discussed.

  16. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1990-01-01

    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity.

  17. Numerical method to compute acoustic scattering effect of a moving source.

    PubMed

    Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei

    2016-01-01

    In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.

  18. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  19. Aircraft Engine Noise Scattering By Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  20. Extension of On-Surface Radiation Condition (OSRC) theory to full-vector electromagnetic wave scattering by three-dimensional conducting, dielectric, and coated targets

    NASA Astrophysics Data System (ADS)

    Taflove, Allen; Umashankar, Korada R.

    1993-08-01

    This project introduced radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory to the engineering electromagnetics community. An approximate method for obtaining the scattering of 2-D and 3-D bodies, the on-surface radiation condition (OSRC) method, was formulated and validated. RBC's and ABC's were shown to work well at points closer to scatterers than anyone had expected. Finite-difference time domain (FD-TD) methods exploiting these ABC's were pursued for applications in scattering, radiation, penetration, biomedical studies, and nonlinear optics. Multiprocessing supercomputer software was developed for FD-TD, leading to the largest scale detailed electromagnetic wave interaction models ever conducted, including entire jet fighter aircraft modeled for radar cross section (RCS) at UHF frequencies up to 500 MHz.

  1. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  2. Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents: FDTD simulation of light-cell interaction.

    PubMed

    Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V; Zharov, Vladimir P

    2009-09-01

    The formulation of the finite-difference time-domain (FDTD) approach is presented in the framework of its potential applications to in-vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive-index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in-vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open up a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  3. How to Attain an Ultralow Interfacial Tension and a Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 2. Performance Improvement Trends from Winsor's Premise to Currently Proposed Inter- and Intra-Molecular Mixtures.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana M; Márquez, Laura; Manchego, Lisbeth; Bullón, Johnny

    2013-01-01

    The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.

  4. Frequency-domain optical tomographic image reconstruction algorithm with the simplified spherical harmonics (SP3) light propagation model.

    PubMed

    Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H

    2017-06-01

    We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .

  5. Consumer satisfaction with tertiary healthcare in China: findings from the 2015 China National Patient Survey.

    PubMed

    Sun, Jing; Hu, Guangyu; Ma, Jing; Chen, Yin; Wu, Laiyang; Liu, Qiannan; Hu, Jia; Livoti, Christine; Jiang, Yu; Liu, Yuanli

    2017-04-01

    This study aims to develop understanding of Chinese patient satisfaction with tertiary hospitals. The study draws on data collected from the 2015 China National Patient Survey. A Likert five-point scale was used to formulate the questionnaires. Descriptive analysis and logistic regression analysis were conducted. A structured questionnaire was used by 1432 interviewers to interview 27 475 outpatients and 19 938 inpatients in 136 tertiary hospitals from 31 provinces. Outpatients in the dispensing area and inpatients in the discharging area were randomly interviewed. Key domains of the questionnaire include the layout of service functions, environment maintenance, process management, quality of care, humane care and the patient-doctor relationship. Within each domain, several indicators were set, and each indicator was given a statement. The overall satisfaction scores are 4.42 ± 0.68 and 4.67 ± 0.62 for outpatient and inpatient, respectively. The domains with highest satisfaction are 'diagnosis and treatment' for outpatient and 'nursing care' for inpatient. Outpatients were least satisfied with long waiting time, while inpatients were least satisfied with the food. The strongest predictor of overall satisfaction appears to be 'patient-doctor relationship' for both outpatients (OR = 3.53, 95% CI: 3.17-3.92) and inpatients (OR = 7.34, 95% CI: 5.55-9.70). Chinese hospitals need to pay more attention to offering more humane care to patients, hospital environment and process management improvement, reducing waiting times for seeing doctors and outpatient testing, and improving amenity services such as better food in the wards. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. LateBiclustering: Efficient Heuristic Algorithm for Time-Lagged Bicluster Identification.

    PubMed

    Gonçalves, Joana P; Madeira, Sara C

    2014-01-01

    Identifying patterns in temporal data is key to uncover meaningful relationships in diverse domains, from stock trading to social interactions. Also of great interest are clinical and biological applications, namely monitoring patient response to treatment or characterizing activity at the molecular level. In biology, researchers seek to gain insight into gene functions and dynamics of biological processes, as well as potential perturbations of these leading to disease, through the study of patterns emerging from gene expression time series. Clustering can group genes exhibiting similar expression profiles, but focuses on global patterns denoting rather broad, unspecific responses. Biclustering reveals local patterns, which more naturally capture the intricate collaboration between biological players, particularly under a temporal setting. Despite the general biclustering formulation being NP-hard, considering specific properties of time series has led to efficient solutions for the discovery of temporally aligned patterns. Notably, the identification of biclusters with time-lagged patterns, suggestive of transcriptional cascades, remains a challenge due to the combinatorial explosion of delayed occurrences. Herein, we propose LateBiclustering, a sensible heuristic algorithm enabling a polynomial rather than exponential time solution for the problem. We show that it identifies meaningful time-lagged biclusters relevant to the response of Saccharomyces cerevisiae to heat stress.

  7. An Approach To Using All Location Tagged Numerical Data Sets As Continuous Fields With User-Assigned Continuity As A Basis For User-Driven Data Assimilation

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Arrott, M.; Orcutt, J. A.; Mueller, C.; Case, J.; De Wardener, G.; Kerfoot, J.; Schofield, O.

    2013-12-01

    Any approach sophisticated enough to handle a variety of data sources and scale, yet easy enough to promote wide use and mainstream adoption is required to address the following mappings: - From the authored domain of observation to the requested domain of interest; - From the authored spatiotemporal resolution to the requested resolution; and - From the representation of data placed on wide variety of discrete mesh types to the use of that data as a continuos field with a selectable continuity. The Open Geospatial Consortium's (OGC) Reference Model[1] with its direct association with the ISO 19000 series standards provides a comprehensive foundation to represent all data on any type of mesh structure, aka "Discrete Coverages". The Reference Model also provides the specification for the core operations required to utilize any Discrete Coverage. The FEniCS Project[2] provides a comprehensive model for how to represent the Basis Functions on mesh structures as "Degrees of Freedom" to present discrete data as continuous fields with variable continuity. In this talk, we will present the research and development the OOI Cyberinfrastructure Project is pursuing to integrate these approaches into a comprehensive Application Programming Interface (API) to author, acquire and operate on the broad range of data formulation from time series, trajectories and tables through to time variant finite difference grids and finite element meshes.

  8. Synthesizing Virtual Oscillators to Control Islanded Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Sinha, Mohit; Ainsworth, Nathan G.

    Virtual oscillator control (VOC) is a decentralized control strategy for islanded microgrids where inverters are regulated to emulate the dynamics of weakly nonlinear oscillators. Compared to droop control, which is only well defined in sinusoidal steady state, VOC is a time-domain controller that enables interconnected inverters to stabilize arbitrary initial conditions to a synchronized sinusoidal limit cycle. However, the nonlinear oscillators that are elemental to VOC cannot be designed with conventional linear-control design methods. We address this challenge by applying averaging- and perturbation-based nonlinear analysis methods to extract the sinusoidal steady-state and harmonic behavior of such oscillators. The averaged modelsmore » reveal conclusive links between real- and reactive-power outputs and the terminal-voltage dynamics. Similarly, the perturbation methods aid in quantifying higher order harmonics. The resultant models are then leveraged to formulate a design procedure for VOC such that the inverter satisfies standard ac performance specifications related to voltage regulation, frequency regulation, dynamic response, and harmonic content. Experimental results for a single-phase 750 VA, 120 V laboratory prototype demonstrate the validity of the design approach. They also demonstrate that droop laws are, in fact, embedded within the equilibria of the nonlinear-oscillator dynamics. This establishes the backward compatibility of VOC in that, while acting on time-domain waveforms, it subsumes droop control in sinusoidal steady state.« less

  9. Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-β-cyclodextrin complex.

    PubMed

    Dos Santos, Andreia G; Bayiha, Jules César; Dufour, Gilles; Cataldo, Didier; Evrard, Brigitte; Silva, Liana C; Deleu, Magali; Mingeot-Leclercq, Marie-Paule

    2017-10-01

    Budesonide (BUD), a poorly soluble anti-inflammatory drug, is used to treat patients suffering from asthma and COPD (Chronic Obstructive Pulmonary Disease). Hydroxypropyl-β-cyclodextrin (HPβCD), a biocompatible cyclodextrin known to interact with cholesterol, is used as a drug-solubilizing agent in pharmaceutical formulations. Budesonide administered as an inclusion complex within HPβCD (BUD:HPβCD) required a quarter of the nominal dose of the suspension formulation and significantly reduced neutrophil-induced inflammation in a COPD mouse model exceeding the effect of each molecule administered individually. This suggests the role of lipid domains enriched in cholesterol for inflammatory signaling activation. In this context, we investigated the effect of BUD:HPβCD on the biophysical properties of membrane lipids. On cellular models (A549, lung epithelial cells), BUD:HPβCD extracted cholesterol similarly to HPβCD. On large unilamellar vesicles (LUVs), by using the fluorescent probes diphenylhexatriene (DPH) and calcein, we demonstrated an increase in membrane fluidity and permeability induced by BUD:HPβCD in vesicles containing cholesterol. On giant unilamellar vesicles (GUVs) and lipid monolayers, BUD:HPβCD induced the disruption of cholesterol-enriched raft-like liquid ordered domains as well as changes in lipid packing and lipid desorption from the cholesterol monolayers, respectively. Except for membrane fluidity, all these effects were enhanced when HPβCD was complexed with budesonide as compared with HPβCD. Since cholesterol-enriched domains have been linked to membrane signaling including pathways involved in inflammation processes, we hypothesized the effects of BUD:HPβCD could be partly mediated by changes in the biophysical properties of cholesterol-enriched domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Impact of the Formulation Pathway on the Colloidal State and Crystallinity of Poly-ε-caprolactone Particles Prepared by Solvent Displacement.

    PubMed

    Pucci, Carlotta; Cousin, Fabrice; Dole, François; Chapel, Jean-Paul; Schatz, Christophe

    2018-02-20

    The formulation pathway and/or the mixing method are known to be relevant in many out-of-equilibrium processes. In this work, we studied the effect of the mixing conditions on the physicochemical properties of poly-ε-caprolactone (PCL) particles prepared by solvent displacement. More specifically, water was added in one shot (fast addition) or drop by drop to PCL solution in tetrahydrofuran (THF) to study the impact of the mixing process on particle properties including size, stability, and crystallinity. Two distinct composition maps representing the Ouzo domain characteristic of the presence of metastable nanoparticles have been established for each mixing method. Polymer nanoparticles are formed in the Ouzo domain according to a nucleation and growth (or aggregation) mechanism. The fast addition promotes a larger nucleation rate, thus favoring the formation of small and uniform particles. For the drop-by-drop addition, for which the polymer solubility gradually decreases, the composition trajectories systematically cross an intermediate unstable region between the solubility limit of the polymer and the Ouzo domain. This leads to heterogeneous nucleation as shown by the formation of larger and less stable particles. Particles formed in the Ouzo domain have semi-crystalline properties. The PCL melting point is decreased with the THF fraction trapped in particles in accordance with Flory's theory for melt crystallization. On the other hand, the degree of crystallinity is constant, around 20% regardless of the THF fraction. No difference between fast and slow addition could be detected on the semi-crystalline properties of the particles which emphasize that thermodynamic rather than kinetic factors drive the polymer crystallization in particles. The recovery of bulk PCL crystallinity after the removal of THF from particles tends to confirm this hypothesis.

  11. Reducing the worst case running times of a family of RNA and CFG problems, using Valiant's approach.

    PubMed

    Zakov, Shay; Tsur, Dekel; Ziv-Ukelson, Michal

    2011-08-18

    RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining different variants of RNA structure prediction problems, and to developing techniques for improving prediction quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that presented by Nussinov and Jacobson in the late 70's, which typically yields cubic worst case running time algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms, motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of accumulated genome-wide data. We study Valiant's classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant's approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant's technique and can be applied to all problems which abide by these templates, including many problems within the world of RNA Secondary Structures and Context Free Grammars. The algorithms presented in this paper improve the theoretical asymptotic worst case running time bounds for a large family of important problems. It is also possible that the suggested techniques could be applied to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition function and base-pair binding probabilities), the presented techniques are the only ones which are currently known for reducing the asymptotic running time bounds of the standard algorithms.

  12. Reducing the worst case running times of a family of RNA and CFG problems, using Valiant's approach

    PubMed Central

    2011-01-01

    Background RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining different variants of RNA structure prediction problems, and to developing techniques for improving prediction quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that presented by Nussinov and Jacobson in the late 70's, which typically yields cubic worst case running time algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms, motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of accumulated genome-wide data. Results We study Valiant's classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant's approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant's technique and can be applied to all problems which abide by these templates, including many problems within the world of RNA Secondary Structures and Context Free Grammars. Conclusions The algorithms presented in this paper improve the theoretical asymptotic worst case running time bounds for a large family of important problems. It is also possible that the suggested techniques could be applied to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition function and base-pair binding probabilities), the presented techniques are the only ones which are currently known for reducing the asymptotic running time bounds of the standard algorithms. PMID:21851589

  13. Development of In Vitro-In Vivo Correlation for Potassium Chloride Extended Release Tablet Formulation Using Urinary Pharmacokinetic Data.

    PubMed

    Mittapalli, Rajendar K; Marroum, Patrick; Qiu, Yihong; Apfelbaum, Kathleen; Xiong, Hao

    2017-07-01

    To develop and validate a Level A in vitro-in vivo correlation (IVIVC) for potassium chloride extended-release (ER) formulations. Three prototype ER formulations of potassium chloride with different in vitro release rates were developed and their urinary pharmacokinetic profiles were evaluated in healthy subjects. A mathematical model between in vitro dissolution and in vivo urinary excretion, a surrogate for measuring in vivo absorption, was developed using time-scale and time-shift parameters. The IVIVC model was then validated based on internal and external predictability. With the established IVIVC model, there was a good correlation between the observed fraction of dose excreted in urine and the time-scaled and time-shifted fraction of the drug dissolved, and between the in vitro dissolution time and the in vivo urinary excretion time for the ER formulations. The percent prediction error (%PE) on cumulative urinary excretion over the 24 h interval (A e0-24h ) and maximum urinary excretion rate (R max ) was less than 15% for the individual formulations and less than 10% for the average of the two formulations used to develop the model. Further, the %PE values using external predictability were below 10%. A novel Level A IVIVC was successfully developed and validated for the new potassium chloride ER formulations using urinary pharmacokinetic data. This successful IVIVC may facilitate future development or manufacturing changes to the potassium chloride ER formulation.

  14. Autonomous learning by simple dynamical systems with a discrete-time formulation

    NASA Astrophysics Data System (ADS)

    Bilen, Agustín M.; Kaluza, Pablo

    2017-05-01

    We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.

  15. A new method for solving reachable domain of spacecraft with a single impulse

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Qiao, Dong; Shang, Haibin; Liu, Xinfu

    2018-04-01

    This paper develops a new approach to solve the reachable domain of a spacecraft with a single maximum available impulse. First, the distance in a chosen direction, started from a given position on the initial orbit, is formulated. Then, its extreme value is solved to obtain the maximum reachable distance in this direction. The envelop of the reachable domain in three-dimensional space is determined by solving the maximum reachable distance in all directions. Four scenarios are analyzed, including three typical scenarios (either the maneuver position or impulse direction is fixed, or both are arbitrary) and a new extended scenario (the maneuver position is restricted to an interval and the impulse direction is arbitrary). Moreover, the symmetry and the boundedness of the reachable domain are discussed in detail. The former is helpful to reduce the numerical computation, while the latter decides the maximum eccentricity of the initial orbit for a maximum available impulse. The numerical simulations verify the effectiveness of the proposed method for solving the reachable domain in all four scenarios. Especially, the reachable domain with a highly elliptical initial orbit can be determined successfully, which remains unsolved in the existing papers.

  16. Query Enhancement with Topic Detection and Disambiguation for Robust Retrieval

    ERIC Educational Resources Information Center

    Zhang, Hui

    2013-01-01

    With the rapid increase in the amount of available information, people nowadays rely heavily on information retrieval (IR) systems such as web search engine to fulfill their information needs. However, due to the lack of domain knowledge and the limitation of natural language such as synonyms and polysemes, many system users cannot formulate their…

  17. GOES-R active vibration damping controller design, implementation, and on-orbit performance

    NASA Astrophysics Data System (ADS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2018-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.

  18. GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2017-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.

  19. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    PubMed

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane

    USGS Publications Warehouse

    Lee, Jonathan K.; Froehlich, David C.

    1987-01-01

    Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.

  1. Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.

    PubMed

    de Barros, Louis; Dietrich, Michel

    2008-03-01

    Analytical formulas are derived to compute the first-order effects produced by plane inhomogeneities on the point source seismic response of a fluid-filled stratified porous medium. The derivation is achieved by a perturbation analysis of the poroelastic wave equations in the plane-wave domain using the Born approximation. This approach yields the Frechet derivatives of the P-SV- and SH-wave responses in terms of the Green's functions of the unperturbed medium. The accuracy and stability of the derived operators are checked by comparing, in the time-distance domain, differential seismograms computed from these analytical expressions with complete solutions obtained by introducing discrete perturbations into the model properties. For vertical and horizontal point forces, it is found that the Frechet derivative approach is remarkably accurate for small and localized perturbations of the medium properties which are consistent with the Born approximation requirements. Furthermore, the first-order formulation appears to be stable at all source-receiver offsets. The porosity, consolidation parameter, solid density, and mineral shear modulus emerge as the most sensitive parameters in forward and inverse modeling problems. Finally, the amplitude-versus-angle response of a thin layer shows strong coupling effects between several model parameters.

  2. An analytical model of a curved beam with a T shaped cross section

    NASA Astrophysics Data System (ADS)

    Hull, Andrew J.; Perez, Daniel; Cox, Donald L.

    2018-03-01

    This paper derives a comprehensive analytical dynamic model of a closed circular beam that has a T shaped cross section. The new model includes in-plane and out-of-plane vibrations derived using continuous media expressions which produces results that have a valid frequency range above those available from traditional lumped parameter models. The web is modeled using two-dimensional elasticity equations for in-plane motion and the classical flexural plate equation for out-of-plane motion. The flange is modeled using two sets of Donnell shell equations: one for the left side of the flange and one for the right side of the flange. The governing differential equations are solved with unknown wave propagation coefficients multiplied by spatial domain and time domain functions which are inserted into equilibrium and continuity equations at the intersection of the web and flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all three dimensions. An example problem is formulated and compared to results from finite element analysis.

  3. Multiscale Simulation Platform Linking Lithium Ion Battery Electrode Fabrication Process with Performance at the Cell Level.

    PubMed

    Ngandjong, Alain C; Rucci, Alexis; Maiza, Mariem; Shukla, Garima; Vazquez-Arenas, Jorge; Franco, Alejandro A

    2017-12-07

    A novel multiscale modeling platform is proposed to demonstrate the importance of particle assembly during battery electrode fabrication by showing its effect on battery performance. For the first time, a discretized three-dimensional (3D) electrode resulting from the simulation of its fabrication has been incorporated within a 3D continuum performance model. The study used LiNi 0.5 Co 0.2 Mn 0.3 O 2 as active material, and the effect of changes of electrode formulation is explored for three cases, namely 85:15, 90:10, and 95:5 ratios between active material and carbon-binder domains. Coarse-grained molecular dynamics is used to simulate the electrode fabrication. The resulting electrode mesostructure is characterized in terms of active material surface coverage by the carbon-binder domains and porosity. The trends observed are nonintuitive, indicating a high degree of complexity of the system. These structures are subsequently implemented into a 3D continuum model which displays distinct discharge behaviors for the three cases. The study offers a method for developing a coherent theoretical understanding of electrode fabrication that can help optimize battery performance.

  4. Guanidine hydrochloride denaturation of human serum albumin originates by local unfolding of some stable loops in domain III.

    PubMed

    Ahmad, Basir; Ahmed, Md Zulfazal; Haq, Soghra Khatun; Khan, Rizwan Hasan

    2005-06-15

    The effect of guanidine hydrochloride (GnHCl) on the global stability of human serum albumin (HSA) has been studied by fluorescence and circular dichroism spectroscopic measurements. The differential stability of native conformation of three HSA domains were explored by using domain-specific ligands, hemin (domain I), chloroform (domain II), bilirubin (at domain I/domain II interface) and diazepam (domain III). GnHCl induced unfolding transition curves as monitored by probes for secondary and tertiary structures were cooperative but noncoincidental. A strong ANS binding to the protein was observed around 1.8 M GnHCl, suggesting existence of intermediate states in the unfolding pathway of HSA. A gradual decrease (in the GnHCl concentration range 0.0-1.8 M) in the binding of diazepam indicates that domain III is the most labile to GnHCl denaturation. A significant increase in the binding of bilirubin up to 1.4 M GnHCl and decrease thereafter leading to complete abolishment of bilirubin binding at around 2.0 M GnHCl suggest favorable rearrangement and separation of domains I and II at 1.4 and 2.0 M GnHCl concentration, respectively. Above 1.6 M GnHCl, decrease of the binding of hemin, a ligand for domain I, chloroform, which binds in domain II and lone tryptophanyl fluorescence (Trp-214 located in domain II) indicate that at higher concentration of GnHCl domains I and II start unfolding simultaneously but the stability of domain I (7.4 Kcal/mol) is much more than domain II (4.3 Kcal/mol). A pictorial model for the unfolding of HSA domains, consistent with all these results, has been formulated, suggesting that domain III is the most labile followed by domain II while domain I is the most stable. A molten globule like state of domain III around 1.8 M GnHCl has also been identified and characterized.

  5. Scattering from finite bodies of translation - Plates, curved surfaces, and noncircular cylinders

    NASA Astrophysics Data System (ADS)

    Medgyesi-Mitschang, L. N.; Putnam, J. M.

    1983-11-01

    Electromagnetic scattering from finite, conducting bodies of translation (BOT) is examined using a formulation based on the electric field integral equation (EFIE) and solved by the method of moments (MM). The present approach provides a systematic, unified treatment for a wide class of finite, thin scatterers at all angles of illumination and polarization. Both concave and convex surfaces are considered. An entire-domain Galerkin expansion along one dimension of the body and a piecewise continuous one along the other are used to represent the unknown current variations. The scattering cross sections, obtained with this formulation, are compared with published results using more specialized methods and further confirmed by experimental measurements.

  6. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through a Z-transform technique derived from the constitutive relations for bi-anisotropic media. This is the first FDTD formulation to be able to simulate dispersive chiral media on a single FDTD grid. This tool was also used to perform the first simulations of dispersive chiral frequency selective surfaces.

  7. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  8. A non-invasive implementation of a mixed domain decomposition method for frictional contact problems

    NASA Astrophysics Data System (ADS)

    Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane

    2017-11-01

    A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.

  9. Structural and Immunological Analysis of Anthrax Recombinant Protective Antigen Adsorbed to Aluminum Hydroxide Adjuvant

    PubMed Central

    Wagner, Leslie; Verma, Anita; Meade, Bruce D.; Reiter, Karine; Narum, David L.; Brady, Rebecca A.; Little, Stephen F.

    2012-01-01

    New anthrax vaccines currently under development are based on recombinant protective antigen (rPA) and formulated with aluminum adjuvant. Because long-term stability is a desired characteristic of these vaccines, an understanding of the effects of adsorption to aluminum adjuvants on the structure of rPA is important. Using both biophysical and immunological techniques, we compared the structure and immunogenicity of freshly prepared rPA-Alhydrogel formulations to that of formulations stored for 3 weeks at either room temperature or 37°C in order to assess the changes in rPA structure that might occur upon long-term storage on aluminum adjuvant. Intrinsic fluorescence emission spectra of tryptophan residues indicated that some tertiary structure alterations of rPA occurred during storage on Alhydrogel. Using anti-PA monoclonal antibodies to probe specific regions of the adsorbed rPA molecule, we found that two monoclonal antibodies that recognize epitopes located in domain 1 of PA exhibited greater reactivity to the stored formulations than to freshly prepared formulations. Immunogenicity of rPA-Alhydrogel formulations in mice was assessed by measuring the induction of toxin-neutralizing antibodies, as well as antibodies reactive to 12-mer peptides spanning the length of PA. Mice immunized with freshly prepared formulations developed significantly higher toxin-neutralizing antibody titers than mice immunized with the stored preparations. In contrast, sera from mice immunized with stored preparations exhibited increased reactivity to nine 12-mer peptides corresponding to sequences located throughout the rPA molecule. These results demonstrate that storage of rPA-Alhydrogel formulations can lead to structural alteration of the protein and loss of the ability to elicit toxin-neutralizing antibodies. PMID:22815152

  10. Acoustic streaming: an arbitrary Lagrangian–Eulerian perspective

    PubMed Central

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-01-01

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid–structure interaction problems in microacoustofluidic devices. After the formulation’s exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches. PMID:29051631

  11. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, M.; Wieseman, C. D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few a priori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  12. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  13. Formulation and Evaluation of Mouth Dissolving Tablets of Cinnarizine

    PubMed Central

    Patel, B. P.; Patel, J. K.; Rajput, G. C.; Thakor, R. S.

    2010-01-01

    The purpose of this research was to develop mouth dissolve tablets of cinnarizine by effervescent, superdisintegrant addition and sublimation methods. All the three formulations were evaluated for disintegration time, hardness and friability, among these superdisintegrant addition method showed lowest disintegration time; hence it was selected for further studies. Further nine batches (B1-B9) were prepared by using crospovidone, croscarmellose sodium and L-HPC in different concentrations such as 5, 7.5 and 10%. All the formulations were evaluated for weight variation, hardness, friability, drug content, in vitro disintegration time, wetting time, in vitro dissolution. Formulation with 10% L-HPC showed the less disintegration time (25.3 s) and less wetting time (29.1 s). In vitro dissolution studies showed total drug release at the end of 6 min. PMID:21218071

  14. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Coirier, William John

    1994-01-01

    A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.

  15. The formulation of the essential oil of Piper aduncum Linnaeus (Piperales: Piperaceae) increases its efficacy as an insect repellent.

    PubMed

    Mamood, S N H; Hidayatulfathi, O; Budin, S B; Ahmad Rohi, G; Zulfakar, M H

    2017-02-01

    The essential oil (EO) of Piper aduncum Linnaeus, known as 'sireh lada' to locals Malaysian, has the potential to be used as an alternative to synthetic insect repellents such as N,N-diethyl-meta-toluamide. However, the EO's efficacy as a repellent decreases after application due to the high volatility of its active ingredients. A number of studies have showed that optimizing the formulation of plant-based EOs can improve their efficacy as repellents. The present study sought to evaluate the effectiveness of 10% P. aduncum EO in ethanol and in three different semisolid formulations: ointment, cream and gel. These formulations were tested on Aedes aegypti under laboratory conditions. Each formulation was applied to the subject's hands, which were then inserted into a cage containing 25 nulliparous A. aegypti. The number of mosquitoes landing on or biting each subject's hand was recorded, and the repellency percentage, landing/biting percentage and protection time for each of the formulations were compared. There were no statistically significant differences between the semisolid EO formulations with regards to the repellency percentage and the landing/biting percentage at 4 h post-application. All three semisolid EO formulations were able to repel >65% of the A. aegypti at 4 h post-application. The EO ointment formulation provided a protection time (182.5 ± 16.01 min) that was statistically significantly longer than that associated with the EO gel formulation (97.5 ± 14.93 min). Meanwhile, the EO cream formulation provided a protection time of 162.5 ± 6.29 min. As the EO cream and ointment formulations displayed better repellent properties than the EO gel formulation, they appear to be the most promising P. aduncum EO formulations to be developed and commercialized as alternatives to synthetic repellents.

  16. Jamming Attack in Wireless Sensor Network: From Time to Space

    NASA Astrophysics Data System (ADS)

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  17. Development of hybrid method for the prediction of underwater propeller noise

    NASA Astrophysics Data System (ADS)

    Seol, Hanshin; Suh, Jung-Chun; Lee, Soogab

    2005-11-01

    Noise reduction and control is an important problem in the performance of underwater acoustic systems and in the habitability of the passenger ship for crew and passenger. Furthermore, sound generated by a propeller is critical in underwater detection and it is often related to the survivability of the vessel especially for military purpose. This paper presents a numerical study on the non-cavitating and blade sheet cavitation noises of the underwater propeller. A brief summary of numerical method with verification and results are presented. The noise is predicted using time-domain acoustic analogy. The flow field is analyzed with potential-based panel method, and then the time-dependent pressure and sheet cavity volume data are used as the input for Ffowcs Williams-Hawkings formulation to predict the far-field acoustics. Noise characteristics are presented according to noise sources and conditions. Through this study, the dominant noise source of the underwater propeller is analyzed, which will provide a basis for proper noise control strategies.

  18. Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series.

    PubMed

    Bruce, Scott A; Hall, Martica H; Buysse, Daniel J; Krafty, Robert T

    2018-03-01

    Many studies of biomedical time series signals aim to measure the association between frequency-domain properties of time series and clinical and behavioral covariates. However, the time-varying dynamics of these associations are largely ignored due to a lack of methods that can assess the changing nature of the relationship through time. This article introduces a method for the simultaneous and automatic analysis of the association between the time-varying power spectrum and covariates, which we refer to as conditional adaptive Bayesian spectrum analysis (CABS). The procedure adaptively partitions the grid of time and covariate values into an unknown number of approximately stationary blocks and nonparametrically estimates local spectra within blocks through penalized splines. CABS is formulated in a fully Bayesian framework, in which the number and locations of partition points are random, and fit using reversible jump Markov chain Monte Carlo techniques. Estimation and inference averaged over the distribution of partitions allows for the accurate analysis of spectra with both smooth and abrupt changes. The proposed methodology is used to analyze the association between the time-varying spectrum of heart rate variability and self-reported sleep quality in a study of older adults serving as the primary caregiver for their ill spouse. © 2017, The International Biometric Society.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul T.; Shadid, John N.; Tsuji, Paul H.

    Here, this study explores the performance and scaling of a GMRES Krylov method employed as a smoother for an algebraic multigrid (AMG) preconditioned Newton- Krylov solution approach applied to a fully-implicit variational multiscale (VMS) nite element (FE) resistive magnetohydrodynamics (MHD) formulation. In this context a Newton iteration is used for the nonlinear system and a Krylov (GMRES) method is employed for the linear subsystems. The efficiency of this approach is critically dependent on the scalability and performance of the AMG preconditioner for the linear solutions and the performance of the smoothers play a critical role. Krylov smoothers are considered inmore » an attempt to reduce the time and memory requirements of existing robust smoothers based on additive Schwarz domain decomposition (DD) with incomplete LU factorization solves on each subdomain. Three time dependent resistive MHD test cases are considered to evaluate the method. The results demonstrate that the GMRES smoother can be faster due to a decrease in the preconditioner setup time and a reduction in outer GMRESR solver iterations, and requires less memory (typically 35% less memory for global GMRES smoother) than the DD ILU smoother.« less

  20. A spectral-finite difference solution of the Navier-Stokes equations in three dimensions

    NASA Astrophysics Data System (ADS)

    Alfonsi, Giancarlo; Passoni, Giuseppe; Pancaldo, Lea; Zampaglione, Domenico

    1998-07-01

    A new computational code for the numerical integration of the three-dimensional Navier-Stokes equations in their non-dimensional velocity-pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral-finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank-Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge-Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain.Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors.

  1. The organization of domains in proteins obeys Menzerath-Altmann's law of language.

    PubMed

    Shahzad, Khuram; Mittenthal, Jay E; Caetano-Anollés, Gustavo

    2015-08-11

    The combination of domains in multidomain proteins enhances their function and structure but lengthens the molecules and increases their cost at cellular level. The dependence of domain length on the number of domains a protein holds was surveyed for a set of 60 proteomes representing free-living organisms from all kingdoms of life. Distributions were fitted using non-linear functions and fitted parameters interpreted with a formulation of decreasing returns. We find that domain length decreases with increasing number of domains in proteins, following the Menzerath-Altmann (MA) law of language. Highly significant negative correlations exist for the set of proteomes examined. Mathematically, the MA law expresses as a power law relationship that unfolds when molecular persistence P is a function of domain accretion. P holds two terms, one reflecting the matter-energy cost of adding domains and extending their length, the other reflecting how domain length and number impinges on information and biophysics. The pattern of diminishing returns can therefore be explained as a frustrated interplay between the strategies of economy, flexibility and robustness, matching previously observed trade-offs in the domain makeup of proteomes. Proteomes of Archaea, Fungi and to a lesser degree Plants show the largest push towards molecular economy, each at their own economic stratum. Fungi increase domain size in single domain proteins while reinforcing the pattern of diminishing returns. In contrast, Metazoa, and to lesser degrees Protista and Bacteria, relax economy. Metazoa achieves maximum flexibility and robustness by harboring compact molecules and complex domain organization, offering a new functional vocabulary for molecular biology. The tendency of parts to decrease their size when systems enlarge is universal for language and music, and now for parts of macromolecules, extending the MA law to natural systems.

  2. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  3. Testing First-Order Logic Axioms in AutoCert

    NASA Technical Reports Server (NTRS)

    Ahn, Ki Yung; Denney, Ewen

    2009-01-01

    AutoCert [2] is a formal verification tool for machine generated code in safety critical domains, such as aerospace control code generated from MathWorks Real-Time Workshop. AutoCert uses Automated Theorem Provers (ATPs) [5] based on First-Order Logic (FOL) to formally verify safety and functional correctness properties of the code. These ATPs try to build proofs based on user provided domain-specific axioms, which can be arbitrary First-Order Formulas (FOFs). These axioms are the most crucial part of the trusted base, since proofs can be submitted to a proof checker removing the need to trust the prover and AutoCert itself plays the part of checking the code generator. However, formulating axioms correctly (i.e. precisely as the user had really intended) is non-trivial in practice. The challenge of axiomatization arise from several dimensions. First, the domain knowledge has its own complexity. AutoCert has been used to verify mathematical requirements on navigation software that carries out various geometric coordinate transformations involving matrices and quaternions. Axiomatic theories for such constructs are complex enough that mistakes are not uncommon. Second, adjusting axioms for ATPs can add even more complexity. The axioms frequently need to be modified in order to have them in a form suitable for use with ATPs. Such modifications tend to obscure the axioms further. Thirdly, speculating validity of the axioms from the output of existing ATPs is very hard since theorem provers typically do not give any examples or counterexamples.

  4. An integrated measure of display clutter based on feature content, user knowledge and attention allocation factors.

    PubMed

    Pankok, Carl; Kaber, David B

    2018-05-01

    Existing measures of display clutter in the literature generally exhibit weak correlations with task performance, which limits their utility in safety-critical domains. A literature review led to formulation of an integrated display data- and user knowledge-driven measure of display clutter. A driving simulation experiment was conducted in which participants were asked to search 'high' and 'low' clutter displays for navigation information. Data-driven measures and subjective perceptions of clutter were collected along with patterns of visual attention allocation and driving performance responses during time periods in which participants searched the navigation display for information. The new integrated measure was more strongly correlated with driving performance than other, previously developed measures of clutter, particularly in the case of low-clutter displays. Integrating display data and user knowledge factors with patterns of visual attention allocation shows promise for measuring display clutter and correlation with task performance, particularly for low-clutter displays. Practitioner Summary: A novel measure of display clutter was formulated, accounting for display data content, user knowledge states and patterns of visual attention allocation. The measure was evaluated in terms of correlations with driver performance in a safety-critical driving simulation study. The measure exhibited stronger correlations with task performance than previously defined measures.

  5. SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations.

    PubMed

    Liu, Dongyu; Weng, Di; Li, Yuhong; Bao, Jie; Zheng, Yu; Qu, Huamin; Wu, Yingcai

    2017-01-01

    The problem of formulating solutions immediately and comparing them rapidly for billboard placements has plagued advertising planners for a long time, owing to the lack of efficient tools for in-depth analyses to make informed decisions. In this study, we attempt to employ visual analytics that combines the state-of-the-art mining and visualization techniques to tackle this problem using large-scale GPS trajectory data. In particular, we present SmartAdP, an interactive visual analytics system that deals with the two major challenges including finding good solutions in a huge solution space and comparing the solutions in a visual and intuitive manner. An interactive framework that integrates a novel visualization-driven data mining model enables advertising planners to effectively and efficiently formulate good candidate solutions. In addition, we propose a set of coupled visualizations: a solution view with metaphor-based glyphs to visualize the correlation between different solutions; a location view to display billboard locations in a compact manner; and a ranking view to present multi-typed rankings of the solutions. This system has been demonstrated using case studies with a real-world dataset and domain-expert interviews. Our approach can be adapted for other location selection problems such as selecting locations of retail stores or restaurants using trajectory data.

  6. A plane wave model for direct simulation of reflection and transmission by discretely inhomogeneous plane parallel media

    NASA Astrophysics Data System (ADS)

    Mackowski, Daniel; Ramezanpour, Bahareh

    2018-07-01

    A formulation is developed for numerically solving the frequency domain Maxwell's equations in plane parallel layers of inhomogeneous media. As was done in a recent work [1], the plane parallel layer is modeled as an infinite square lattice of W × W × H unit cells, with W being a sample width of the layer and H the layer thickness. As opposed to the 3D volume integral/discrete dipole formulation, the derivation begins with a Fourier expansion of the electric field amplitude in the lateral plane, and leads to a coupled system of 1D ordinary differential equations in the depth direction of the layer. A 1D dyadic Green's function is derived for this system and used to construct a set of coupled 1D integral equations for the field expansion coefficients. The resulting mathematical formulation is considerably simpler and more compact than that derived, for the same system, using the discrete dipole approximation applied to the periodic plane lattice. Furthermore, the fundamental property variable appearing in the formulation is the Fourier transformed complex permittivity distribution in the unit cell, and the method obviates any need to define or calculate a dipole polarizability. Although designed primarily for random media calculations, the method is also capable of predicting the single scattering properties of individual particles; comparisons are presented to demonstrate that the method can accurately reproduce, at scattering angles not too close to 90°, the polarimetric scattering properties of single and multiple spheres. The derivation of the dyadic Green's function allows for an analytical preconditioning of the equations, and it is shown that this can result in significantly accelerated solution times when applied to densely-packed systems of particles. Calculation results demonstrate that the method, when applied to inhomogeneous media, can predict coherent backscattering and polarization opposition effects.

  7. Low-Resolution Structure of the Full-Length Barley (Hordeum vulgare) SGT1 Protein in Solution, Obtained Using Small-Angle X-Ray Scattering

    PubMed Central

    Taube, Michał; Pieńkowska, Joanna R.; Jarmołowski, Artur; Kozak, Maciej

    2014-01-01

    SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed. PMID:24714665

  8. [Where are we in general sociology ?].

    PubMed

    Brian, Eric

    2012-01-01

    Over the last two decades, history and social sciences have experienced a kind of merging, and a vast number of specialized domains have emerged. Yet the durkheim - ian register of "general sociology" seems somehow neglected. Firstly, this article analyzes the reasons for this neglect, and secondly, it indicates how, through a long-term reflexivity, one can formulate a new agenda for general sociology.

  9. Modelling low Reynolds number vortex-induced vibration problems with a fixed mesh fluid-solid interaction formulation

    NASA Astrophysics Data System (ADS)

    González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.

    2017-11-01

    The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.

  10. Crowdsourcing Knowledge Discovery and Innovations in Medicine

    PubMed Central

    2014-01-01

    Clinicians face difficult treatment decisions in contexts that are not well addressed by available evidence as formulated based on research. The digitization of medicine provides an opportunity for clinicians to collaborate with researchers and data scientists on solutions to previously ambiguous and seemingly insolvable questions. But these groups tend to work in isolated environments, and do not communicate or interact effectively. Clinicians are typically buried in the weeds and exigencies of daily practice such that they do not recognize or act on ways to improve knowledge discovery. Researchers may not be able to identify the gaps in clinical knowledge. For data scientists, the main challenge is discerning what is relevant in a domain that is both unfamiliar and complex. Each type of domain expert can contribute skills unavailable to the other groups. “Health hackathons” and “data marathons”, in which diverse participants work together, can leverage the current ready availability of digital data to discover new knowledge. Utilizing the complementary skills and expertise of these talented, but functionally divided groups, innovations are formulated at the systems level. As a result, the knowledge discovery process is simultaneously democratized and improved, real problems are solved, cross-disciplinary collaboration is supported, and innovations are enabled. PMID:25239002

  11. Crowdsourcing knowledge discovery and innovations in medicine.

    PubMed

    Celi, Leo Anthony; Ippolito, Andrea; Montgomery, Robert A; Moses, Christopher; Stone, David J

    2014-09-19

    Clinicians face difficult treatment decisions in contexts that are not well addressed by available evidence as formulated based on research. The digitization of medicine provides an opportunity for clinicians to collaborate with researchers and data scientists on solutions to previously ambiguous and seemingly insolvable questions. But these groups tend to work in isolated environments, and do not communicate or interact effectively. Clinicians are typically buried in the weeds and exigencies of daily practice such that they do not recognize or act on ways to improve knowledge discovery. Researchers may not be able to identify the gaps in clinical knowledge. For data scientists, the main challenge is discerning what is relevant in a domain that is both unfamiliar and complex. Each type of domain expert can contribute skills unavailable to the other groups. "Health hackathons" and "data marathons", in which diverse participants work together, can leverage the current ready availability of digital data to discover new knowledge. Utilizing the complementary skills and expertise of these talented, but functionally divided groups, innovations are formulated at the systems level. As a result, the knowledge discovery process is simultaneously democratized and improved, real problems are solved, cross-disciplinary collaboration is supported, and innovations are enabled.

  12. Determination of welding residual stresses by inverse approach with eigenstrain formulations of boundary integral equation

    NASA Astrophysics Data System (ADS)

    Ma, Hang; Wang, Ying; Qin, Qing-Hua

    2011-04-01

    Based on the concept of eigenstrain, a straightforward computational model of the inverse approach is proposed for determining the residual stress field induced by welding using the eigenstrain formulations of boundary integral equations. The eigenstrains are approximately expressed in terms of low-order polynomials in the local area around welded zones. The domain integrals with polynomial eigenstrains are transformed into the boundary integrals to preserve the favourable features of the boundary-only discretization in the process of numerical solutions. The sensitivity matrices in the inverse approach for evaluating the eigenstrain fields are constructed by either the measured deformations (displacements) on the boundary or the measured stresses in the domain after welding over a number of selected measuring points, or by both the measured information. It shows from the numerical examples that the results of residual stresses from deformation measurements are always better than those from stress measurements but they are sensitive to the noises from experiments. The results from stress measurements can be improved by introducing a few deformation measuring points while reducing the number of points for stress measuring to reduce the cost since the measurement of deformation is easier than that of stresses in practice.

  13. NASA Radiation Track Image GUI for Assessing Space Radiation Biological Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Cucinotta, Francis A.

    2006-01-01

    The high-charge high-energy (HZE) ion components of the galactic cosmic rays when compared to terrestrial forms of radiations present unique challenges to biological systems. In this paper we present a deoxyribonucleic acid (DNA) breakage model to visualize and analyze the impact of chromatin domains and DNA loops on clustering of DNA damage from X rays, protons, and HZE ions. Our model of DNA breakage is based on a stochastic process of DNA double-strand break (DSB) formulation that includes the amorphous model of the radiation track and a polymer model of DNA packed in the cell nucleus. Our model is a Monte-Carlo simulation based on a randomly located DSB cluster formulation that accomodates both high- and low-linear energy transfer radiations. We demonstrate that HZE ions have a strong impact on DSB clustering, both along the chromosome length and in the nucleus volume. The effects of chromosomal domains and DNA loops on the DSB fragment-size distribution and the spatial distribution of DSB in the nucleus were studied. We compare our model predictions with the spatial distribution of DSB obtained from experiments. The implications of our model predictions for radiation protection are discussed.

  14. Sinc-Galerkin estimation of diffusivity in parabolic problems

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Bowers, Kenneth L.

    1991-01-01

    A fully Sinc-Galerkin method for the numerical recovery of spatially varying diffusion coefficients in linear partial differential equations is presented. Because the parameter recovery problems are inherently ill-posed, an output error criterion in conjunction with Tikhonov regularization is used to formulate them as infinite-dimensional minimization problems. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which displays an exponential convergence rate and is valid on the infinite time interval. The minimization problems are then solved via a quasi-Newton/trust region algorithm. The L-curve technique for determining an approximate value of the regularization parameter is briefly discussed, and numerical examples are given which show the applicability of the method both for problems with noise-free data as well as for those whose data contains white noise.

  15. Evaporation effect on two-dimensional wicking in porous media.

    PubMed

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Three-dimensional near-field MIMO array imaging using range migration techniques.

    PubMed

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.

  17. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Stanescu, D.; Hussaini, M. Y.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far field. The effects of non-uniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing. 0 2002 Elsevier Science Ltd. All rights reserved.

  18. A hierarchical Bayesian method for vibration-based time domain force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Li, Qiaofeng; Lu, Qiuhai

    2018-05-01

    Traditional force reconstruction techniques require prior knowledge on the force nature to determine the regularization term. When such information is unavailable, the inappropriate term is easily chosen and the reconstruction result becomes unsatisfactory. In this paper, we propose a novel method to automatically determine the appropriate q as in ℓq regularization and reconstruct the force history. The method incorporates all to-be-determined variables such as the force history, precision parameters and q into a hierarchical Bayesian formulation. The posterior distributions of variables are evaluated by a Metropolis-within-Gibbs sampler. The point estimates of variables and their uncertainties are given. Simulations of a cantilever beam and a space truss under various loading conditions validate the proposed method in providing adaptive determination of q and better reconstruction performance than existing Bayesian methods.

  19. Video approach to chemiluminescence detection using a low-cost complementary metal oxide semiconductor (CMOS)-based camera: determination of paracetamol in pharmaceutical formulations.

    PubMed

    Lahuerta-Zamora, Luis; Mellado-Romero, Ana M

    2017-06-01

    A new system for continuous flow chemiluminescence detection, based on the use of a simple and low-priced lens-free digital camera (with complementary metal oxide semiconductor technology) as a detector, is proposed for the quantitative determination of paracetamol in commercial pharmaceutical formulations. Through the camera software, AVI video files of the chemiluminescence emission are captured and then, using friendly ImageJ public domain software (from National Institutes for Health), properly processed in order to extract the analytical information. The calibration graph was found to be linear over the range 0.01-0.10 mg L -1 and over the range 1.0-100.0 mg L -1 of paracetamol, the limit of detection being 10 μg L -1 . No significative interferences were found. Paracetamol was determined in three different pharmaceutical formulations: Termalgin®, Efferalgan® and Gelocatil®. The obtained results compared well with those declared on the formulation label and with those obtained through the official analytical method of British Pharmacopoeia. Graphical abstract Abbreviated scheme of the new chemiluminescence detection system proposed in this paper.

  20. Rating knowledge sharing in cross-domain collaborative filtering.

    PubMed

    Li, Bin; Zhu, Xingquan; Li, Ruijiang; Zhang, Chengqi

    2015-05-01

    Cross-domain collaborative filtering (CF) aims to share common rating knowledge across multiple related CF domains to boost the CF performance. In this paper, we view CF domains as a 2-D site-time coordinate system, on which multiple related domains, such as similar recommender sites or successive time-slices, can share group-level rating patterns. We propose a unified framework for cross-domain CF over the site-time coordinate system by sharing group-level rating patterns and imposing user/item dependence across domains. A generative model, say ratings over site-time (ROST), which can generate and predict ratings for multiple related CF domains, is developed as the basic model for the framework. We further introduce cross-domain user/item dependence into ROST and extend it to two real-world cross-domain CF scenarios: 1) ROST (sites) for alleviating rating sparsity in the target domain, where multiple similar sites are viewed as related CF domains and some items in the target domain depend on their correspondences in the related ones; and 2) ROST (time) for modeling user-interest drift over time, where a series of time-slices are viewed as related CF domains and a user at current time-slice depends on herself in the previous time-slice. All these ROST models are instances of the proposed unified framework. The experimental results show that ROST (sites) can effectively alleviate the sparsity problem to improve rating prediction performance and ROST (time) can clearly track and visualize user-interest drift over time.

Top