NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
Time-dependent phase error correction using digital waveform synthesis
Doerry, Armin W.; Buskirk, Stephen
2017-10-10
The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.
Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Hunter, Michael D; Tsoi, Daniel T; Lankappa, Sudheer; Wilkinson, Iain D; Barker, Anthony T; Woodruff, Peter W R
2011-05-01
Our ability to interact physically with objects in the external world critically depends on temporal coupling between perception and movement (sensorimotor timing) and swift behavioral adjustment to changes in the environment (error correction). In this study, we investigated the neural correlates of the correction of subliminal and supraliminal phase shifts during a sensorimotor synchronization task. In particular, we focused on the role of the cerebellum because this structure has been shown to play a role in both motor timing and error correction. Experiment 1 used fMRI to show that the right cerebellar dentate nucleus and primary motor and sensory cortices were activated during regular timing and during the correction of subliminal errors. The correction of supraliminal phase shifts led to additional activations in the left cerebellum and right inferior parietal and frontal areas. Furthermore, a psychophysiological interaction analysis revealed that supraliminal error correction was associated with enhanced connectivity of the left cerebellum with frontal, auditory, and sensory cortices and with the right cerebellum. Experiment 2 showed that suppression of the left but not the right cerebellum with theta burst TMS significantly affected supraliminal error correction. These findings provide evidence that the left lateral cerebellum is essential for supraliminal error correction during sensorimotor synchronization.
Contingent negative variation (CNV) associated with sensorimotor timing error correction.
Jang, Joonyong; Jones, Myles; Milne, Elizabeth; Wilson, Daniel; Lee, Kwang-Hyuk
2016-02-15
Detection and subsequent correction of sensorimotor timing errors are fundamental to adaptive behavior. Using scalp-recorded event-related potentials (ERPs), we sought to find ERP components that are predictive of error correction performance during rhythmic movements. Healthy right-handed participants were asked to synchronize their finger taps to a regular tone sequence (every 600 ms), while EEG data were continuously recorded. Data from 15 participants were analyzed. Occasional irregularities were built into stimulus presentation timing: 90 ms before (advances: negative shift) or after (delays: positive shift) the expected time point. A tapping condition alternated with a listening condition in which identical stimulus sequence was presented but participants did not tap. Behavioral error correction was observed immediately following a shift, with a degree of over-correction with positive shifts. Our stimulus-locked ERP data analysis revealed, 1) increased auditory N1 amplitude for the positive shift condition and decreased auditory N1 modulation for the negative shift condition; and 2) a second enhanced negativity (N2) in the tapping positive condition, compared with the tapping negative condition. In response-locked epochs, we observed a CNV (contingent negative variation)-like negativity with earlier latency in the tapping negative condition compared with the tapping positive condition. This CNV-like negativity peaked at around the onset of subsequent tapping, with the earlier the peak, the better the error correction performance with the negative shifts while the later the peak, the better the error correction performance with the positive shifts. This study showed that the CNV-like negativity was associated with the error correction performance during our sensorimotor synchronization study. Auditory N1 and N2 were differentially involved in negative vs. positive error correction. However, we did not find evidence for their involvement in behavioral error correction. Overall, our study provides the basis from which further research on the role of the CNV in perceptual and motor timing can be developed. Copyright © 2015 Elsevier Inc. All rights reserved.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, C. C.; Chen, P. P.; Fuchs, W. K.
1987-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent
1989-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.
Peeling Away Timing Error in NetFlow Data
NASA Astrophysics Data System (ADS)
Trammell, Brian; Tellenbach, Bernhard; Schatzmann, Dominik; Burkhart, Martin
In this paper, we characterize, quantify, and correct timing errors introduced into network flow data by collection and export via Cisco NetFlow version 9. We find that while some of these sources of error (clock skew, export delay) are generally implementation-dependent and known in the literature, there is an additional cyclic error of up to one second that is inherent to the design of the export protocol. We present a method for correcting this cyclic error in the presence of clock skew and export delay. In an evaluation using traffic with known timing collected from a national-scale network, we show that this method can successfully correct the cyclic error. However, there can also be other implementation-specific errors for which insufficient information remains for correction. On the routers we have deployed in our network, this limits the accuracy to about 70ms, reinforcing the point that implementation matters when conducting research on network measurement data.
Local concurrent error detection and correction in data structures using virtual backpointers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.C.J.; Chen, P.P.; Fuchs, W.K.
1989-11-01
A new technique, based on virtual backpointers, is presented in this paper for local concurrent error detection and correction in linked data structures. Two new data structures utilizing virtual backpointers, the Virtual Double-Linked List and the B-Tree and Virtual Backpointers, are described. For these structures, double errors within a fixed-size checking window can be detected in constant time and single errors detected during forward moves can be corrected in constant time.
5 CFR 1605.22 - Claims for correction of Board or TSP record keeper errors; time limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... record keeper errors; time limitations. 1605.22 Section 1605.22 Administrative Personnel FEDERAL... § 1605.22 Claims for correction of Board or TSP record keeper errors; time limitations. (a) Filing claims... after that time, the Board or TSP record keeper may use its sound discretion in deciding whether to...
Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors.
Cohen, Michael X; van Gaal, Simon
2014-02-01
We investigated the neural systems underlying conflict detection and error monitoring during rapid online error correction/monitoring mechanisms. We combined data from four separate cognitive tasks and 64 subjects in which EEG and EMG (muscle activity from the thumb used to respond) were recorded. In typical neuroscience experiments, behavioral responses are classified as "error" or "correct"; however, closer inspection of our data revealed that correct responses were often accompanied by "partial errors" - a muscle twitch of the incorrect hand ("mixed correct trials," ~13% of the trials). We found that these muscle twitches dissociated conflicts from errors in time-frequency domain analyses of EEG data. In particular, both mixed-correct trials and full error trials were associated with enhanced theta-band power (4-9Hz) compared to correct trials. However, full errors were additionally associated with power and frontal-parietal synchrony in the delta band. Single-trial robust multiple regression analyses revealed a significant modulation of theta power as a function of partial error correction time, thus linking trial-to-trial fluctuations in power to conflict. Furthermore, single-trial correlation analyses revealed a qualitative dissociation between conflict and error processing, such that mixed correct trials were associated with positive theta-RT correlations whereas full error trials were associated with negative delta-RT correlations. These findings shed new light on the local and global network mechanisms of conflict monitoring and error detection, and their relationship to online action adjustment. © 2013.
Dissipative quantum error correction and application to quantum sensing with trapped ions.
Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A
2017-11-28
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-08-17
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
New class of photonic quantum error correction codes
NASA Astrophysics Data System (ADS)
Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.
We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.
Kasuga, Shoko; Kurata, Makiko; Liu, Meigen; Ushiba, Junichi
2015-05-01
Human's sophisticated motor learning system paradoxically interferes with motor performance when visual information is mirror-reversed (MR), because normal movement error correction further aggravates the error. This error-increasing mechanism makes performing even a simple reaching task difficult, but is overcome by alterations in the error correction rule during the trials. To isolate factors that trigger learners to change the error correction rule, we manipulated the gain of visual angular errors when participants made arm-reaching movements with mirror-reversed visual feedback, and compared the rule alteration timing between groups with normal or reduced gain. Trial-by-trial changes in the visual angular error was tracked to explain the timing of the change in the error correction rule. Under both gain conditions, visual angular errors increased under the MR transformation, and suddenly decreased after 3-5 trials with increase. The increase became degressive at different amplitude between the two groups, nearly proportional to the visual gain. The findings suggest that the alteration of the error-correction rule is not dependent on the amplitude of visual angular errors, and possibly determined by the number of trials over which the errors increased or statistical property of the environment. The current results encourage future intensive studies focusing on the exact rule-change mechanism. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Counteracting structural errors in ensemble forecast of influenza outbreaks.
Pei, Sen; Shaman, Jeffrey
2017-10-13
For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.
Autonomous Quantum Error Correction with Application to Quantum Metrology
NASA Astrophysics Data System (ADS)
Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.
2017-04-01
We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno
2016-01-01
Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor behaviours. PMID:26963919
Arrighi, Pieranna; Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno; Andre, Paolo
2016-01-01
Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor behaviours.
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
NASA Astrophysics Data System (ADS)
Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo
2017-01-01
We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.
NASA Technical Reports Server (NTRS)
Jaeger, R. J.; Agarwal, G. C.; Gottlieb, G. L.
1978-01-01
Subjects can correct their own errors of movement more quickly than they can react to external stimuli by using three general categories of feedback: (1) knowledge of results, primarily visually mediated; (2) proprioceptive or kinaesthetic such as from muscle spindles and joint receptors, and (3) corollary discharge or efference copy within the central nervous system. The effects of these feedbacks on simple reaction time, choice reaction time, and error correction time were studied in four normal human subjects. The movement used was plantarflexion and dorsiflexion of the ankle joint. The feedback loops were modified, by changing the sign of the visual display to alter the subject's perception of results, and by applying vibration at 100 Hz simultaneously to both the agonist and antagonist muscles of the ankle joint. The central processing was interfered with when the subjects were given moderate doses of alcohol (blood alcohol concentration levels of up to 0.07%). Vibration and alcohol increase both the simple and choice reaction times but not the error correction time.
Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar
Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM
2008-06-24
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
The use of propagation path corrections to improve regional seismic event location in western China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steck, L.K.; Cogbill, A.H.; Velasco, A.A.
1999-03-01
In an effort to improve the ability to locate seismic events in western China using only regional data, the authors have developed empirical propagation path corrections (PPCs) and applied such corrections using both traditional location routines as well as a nonlinear grid search method. Thus far, the authors have concentrated on corrections to observed P arrival times for shallow events using travel-time observations available from the USGS EDRs, the ISC catalogs, their own travel-tim picks from regional data, and data from other catalogs. They relocate events with the algorithm of Bratt and Bache (1988) from a region encompassing China. Formore » individual stations having sufficient data, they produce a map of the regional travel-time residuals from all well-located teleseismic events. From these maps, interpolated PPC surfaces have been constructed using both surface fitting under tension and modified Bayesian kriging. The latter method offers the advantage of providing well-behaved interpolants, but requires that the authors have adequate error estimates associated with the travel-time residuals. To improve error estimates for kriging and event location, they separate measurement error from modeling error. The modeling error is defined as the travel-time variance of a particular model as a function of distance, while the measurement error is defined as the picking error associated with each phase. They estimate measurement errors for arrivals from the EDRs based on roundoff or truncation, and use signal-to-noise for the travel-time picks from the waveform data set.« less
Multichannel error correction code decoder
NASA Technical Reports Server (NTRS)
Wagner, Paul K.; Ivancic, William D.
1993-01-01
A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.
Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C
2017-09-01
To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-07-20
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Augmented burst-error correction for UNICON laser memory. [digital memory
NASA Technical Reports Server (NTRS)
Lim, R. S.
1974-01-01
A single-burst-error correction system is described for data stored in the UNICON laser memory. In the proposed system, a long fire code with code length n greater than 16,768 bits was used as an outer code to augment an existing inner shorter fire code for burst error corrections. The inner fire code is a (80,64) code shortened from the (630,614) code, and it is used to correct a single-burst-error on a per-word basis with burst length b less than or equal to 6. The outer code, with b less than or equal to 12, would be used to correct a single-burst-error on a per-page basis, where a page consists of 512 32-bit words. In the proposed system, the encoding and error detection processes are implemented by hardware. A minicomputer, currently used as a UNICON memory management processor, is used on a time-demanding basis for error correction. Based upon existing error statistics, this combination of an inner code and an outer code would enable the UNICON system to obtain a very low error rate in spite of flaws affecting the recorded data.
Ichikawa, Tamaki; Kitanosono, Takashi; Koizumi, Jun; Ogushi, Yoichi; Tanaka, Osamu; Endo, Jun; Hashimoto, Takeshi; Kawada, Shuichi; Saito, Midori; Kobayashi, Makiko; Imai, Yutaka
2007-12-20
We evaluated the usefulness of radiological reporting that combines continuous speech recognition (CSR) and error correction by transcriptionists. Four transcriptionists (two with more than 10 years' and two with less than 3 months' transcription experience) listened to the same 100 dictation files and created radiological reports using conventional transcription and a method that combined CSR with manual error correction by the transcriptionists. We compared the 2 groups using the 2 methods for accuracy and report creation time and evaluated the transcriptionists' inter-personal dependence on accuracy rate and report creation time. We used a CSR system that did not require the training of the system to recognize the user's voice. We observed no significant difference in accuracy between the 2 groups and 2 methods that we tested, though transcriptionists with greater experience transcribed faster than those with less experience using conventional transcription. Using the combined method, error correction speed was not significantly different between two groups of transcriptionists with different levels of experience. Combining CSR and manual error correction by transcriptionists enabled convenient and accurate radiological reporting.
Entanglement renormalization, quantum error correction, and bulk causality
NASA Astrophysics Data System (ADS)
Kim, Isaac H.; Kastoryano, Michael J.
2017-04-01
Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progres-sively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
Error correction in short time steps during the application of quantum gates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, L.A. de, E-mail: leonardo.castro@usp.br; Napolitano, R.D.J.
2016-04-15
We propose a modification of the standard quantum error-correction method to enable the correction of errors that occur due to the interaction with a noisy environment during quantum gates without modifying the codification used for memory qubits. Using a perturbation treatment of the noise that allows us to separate it from the ideal evolution of the quantum gate, we demonstrate that in certain cases it is necessary to divide the logical operation in short time steps intercalated by correction procedures. A prescription of how these gates can be constructed is provided, as well as a proof that, even for themore » cases when the division of the quantum gate in short time steps is not necessary, this method may be advantageous for reducing the total duration of the computation.« less
On-board error correction improves IR earth sensor accuracy
NASA Astrophysics Data System (ADS)
Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.
1989-10-01
Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.
Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel
2014-01-01
Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish
A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.
Parallel Processing of Broad-Band PPM Signals
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne
Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less
ERIC Educational Resources Information Center
Sherwood, David E.
2010-01-01
According to closed-loop accounts of motor control, movement errors are detected by comparing sensory feedback to an acquired reference state. Differences between the reference state and the movement-produced feedback results in an error signal that serves as a basis for a correction. The main question addressed in the current study was how…
Position Error Covariance Matrix Validation and Correction
NASA Technical Reports Server (NTRS)
Frisbee, Joe, Jr.
2016-01-01
In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.
Continuous quantum error correction for non-Markovian decoherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089
2007-08-15
We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less
NASA Technical Reports Server (NTRS)
Crozier, Stewart N.
1990-01-01
Random access signaling, which allows slotted packets to spill over into adjacent slots, is investigated. It is shown that sloppy-slotted ALOHA can always provide higher throughput than conventional slotted ALOHA. The degree of improvement depends on the timing error distribution. Throughput performance is presented for Gaussian timing error distributions, modified to include timing error corrections. A general channel capacity lower bound, independent of the specific timing error distribution, is also presented.
MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard
2016-01-01
Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600
NASA Astrophysics Data System (ADS)
Lidar, Daniel A.; Brun, Todd A.
2013-09-01
Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.
The hypercorrection effect in younger and older adults.
Eich, Teal S; Stern, Yaakov; Metcalfe, Janet
2013-01-01
ABSTRACT The hypercorrection effect, which refers to the finding that errors committed with high confidence are more likely to be corrected than are low confidence errors, has been replicated many times, and with both young adults and children. In the present study, we contrasted older with younger adults. Participants answered general-information questions, made confidence ratings about their answers, were given corrective feedback, and then were retested on questions that they had gotten wrong. While younger adults showed the hypercorrection effect, older adults, despite higher overall accuracy on the general-information questions and excellent basic metacognitive ability, showed a diminished hypercorrection effect. Indeed, the correspondence between their confidence in their errors and the probability of correction was not significantly greater than zero, showing, for the first time, that a particular participant population is selectively impaired on this error correction task. These results potentially offer leverage both on the mechanisms underlying the hypercorrection effect and on reasons for older adults' memory impairments, as well as on memory functions that are spared.
Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Data
Zhao, Shanshan
2014-01-01
Summary Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This paper focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error and error associated with temporal variation. The underlying model with the ‘true’ mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling design. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. PMID:25139469
Covariate measurement error correction methods in mediation analysis with failure time data.
Zhao, Shanshan; Prentice, Ross L
2014-12-01
Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.
Detecting and correcting hard errors in a memory array
Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.
2015-11-19
Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.
Ho, Wei-Chin; Zhang, Jianzhi
2018-02-21
The originally published HTML version of this Article contained errors in the three equations in the Methods sub-section 'Metabolic network analysis', whereby the Greek letter eta (η) was inadvertently used in place of beta (β) during the production process. These errors have now been corrected in the HTML version of the Article; the PDF was correct at the time of publication.
Lock-in amplifier error prediction and correction in frequency sweep measurements.
Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose
2007-01-01
This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.
Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
Kyle, Ryan P; Moodie, Erica E M; Klein, Marina B; Abrahamowicz, Michał
2016-08-01
Unbiased estimation of causal parameters from marginal structural models (MSMs) requires a fundamental assumption of no unmeasured confounding. Unfortunately, the time-varying covariates used to obtain inverse probability weights are often error-prone. Although substantial measurement error in important confounders is known to undermine control of confounders in conventional unweighted regression models, this issue has received comparatively limited attention in the MSM literature. Here we propose a novel application of the simulation-extrapolation (SIMEX) procedure to address measurement error in time-varying covariates, and we compare 2 approaches. The direct approach to SIMEX-based correction targets outcome model parameters, while the indirect approach corrects the weights estimated using the exposure model. We assess the performance of the proposed methods in simulations under different clinically plausible assumptions. The simulations demonstrate that measurement errors in time-dependent covariates may induce substantial bias in MSM estimators of causal effects of time-varying exposures, and that both proposed SIMEX approaches yield practically unbiased estimates in scenarios featuring low-to-moderate degrees of error. We illustrate the proposed approach in a simple analysis of the relationship between sustained virological response and liver fibrosis progression among persons infected with hepatitis C virus, while accounting for measurement error in γ-glutamyltransferase, using data collected in the Canadian Co-infection Cohort Study from 2003 to 2014. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.
1987-01-01
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.
Post-processing through linear regression
NASA Astrophysics Data System (ADS)
van Schaeybroeck, B.; Vannitsem, S.
2011-03-01
Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
NASA Astrophysics Data System (ADS)
Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan
2017-10-01
An optimized method to calculate error correction capability of tool influence function (TIF) in certain polishing conditions will be proposed based on smoothing spectral function. The basic mathematical model for this method will be established in theory. A set of polishing experimental data with rigid conformal tool is used to validate the optimized method. The calculated results can quantitatively indicate error correction capability of TIF for different spatial frequency errors in certain polishing conditions. The comparative analysis with previous method shows that the optimized method is simpler in form and can get the same accuracy results with less calculating time in contrast to previous method.
Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging
NASA Astrophysics Data System (ADS)
Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ
2015-01-01
Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)
Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.
Mehranian, Abolfazl; Zaidi, Habib
2015-04-01
Time-of-flight (TOF) PET/MR imaging is an emerging imaging technology with great capabilities offered by TOF to improve image quality and lesion detectability. We assessed, for the first time, the impact of TOF image reconstruction on PET quantification errors induced by MR imaging-based attenuation correction (MRAC) using simulation and clinical PET/CT studies. Standard 4-class attenuation maps were derived by segmentation of CT images of 27 patients undergoing PET/CT examinations into background air, lung, soft-tissue, and fat tissue classes, followed by the assignment of predefined attenuation coefficients to each class. For each patient, 4 PET images were reconstructed: non-TOF and TOF both corrected for attenuation using reference CT-based attenuation correction and the resulting 4-class MRAC maps. The relative errors between non-TOF and TOF MRAC reconstructions were compared with their reference CT-based attenuation correction reconstructions. The bias was locally and globally evaluated using volumes of interest (VOIs) defined on lesions and normal tissues and CT-derived tissue classes containing all voxels in a given tissue, respectively. The impact of TOF on reducing the errors induced by metal-susceptibility and respiratory-phase mismatch artifacts was also evaluated using clinical and simulation studies. Our results show that TOF PET can remarkably reduce attenuation correction artifacts and quantification errors in the lungs and bone tissues. Using classwise analysis, it was found that the non-TOF MRAC method results in an error of -3.4% ± 11.5% in the lungs and -21.8% ± 2.9% in bones, whereas its TOF counterpart reduced the errors to -2.9% ± 7.1% and -15.3% ± 2.3%, respectively. The VOI-based analysis revealed that the non-TOF and TOF methods resulted in an average overestimation of 7.5% and 3.9% in or near lung lesions (n = 23) and underestimation of less than 5% for soft tissue and in or near bone lesions (n = 91). Simulation results showed that as TOF resolution improves, artifacts and quantification errors are substantially reduced. TOF PET substantially reduces artifacts and improves significantly the quantitative accuracy of standard MRAC methods. Therefore, MRAC should be less of a concern on future TOF PET/MR scanners with improved timing resolution. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Error control for reliable digital data transmission and storage systems
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, R. H.
1985-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.
State Comments on Frozen Data - 2008 | ECHO | US EPA
website. Several states indicated that errors existed at the time the data were frozen. States that identified problems with the data were asked to send either a data file with corrected information, or a link to a state website that explained data errors or corrections. This page provides comments on 2008 frozen data.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... Electric Company, California; Notice Correcting Times for Public Draft Environmental Impact Statement... time for the morning meeting as 9 a.m.-11 p.m.. This notice corrects that error to indicate the meeting is from 9 a.m.- 11 a.m. The time and location of the meetings are as follows: Morning Meeting: Date...
On the development of voluntary and reflexive components in human saccade generation.
Fischer, B; Biscaldi, M; Gezeck, S
1997-04-18
The saccadic performance of a large number (n = 281) of subjects of different ages (8-70 years) was studied applying two saccade tasks: the prosaccade overlap (PO) task and the antisaccade gap (AG) task. From the PO task, the mean reaction times and the percentage of express saccades were determined for each subject. From the AG task, the mean reaction time of the correct antisaccades and of the erratic prosaccades were measured. In addition, we determined the error rate and the mean correction time, i.e. the time between the end of the first erratic prosaccade and the following corrective antisaccade. These variables were measured separately for stimuli presented (in random order) at the right or left side. While strong correlations were seen between variables for the right and left sides, considerable side asymmetries were obtained from many subjects. A factor analysis revealed that the seven variables (six eye movement variables plus age) were mainly determined by only two factors, V and F. The V factor was dominated by the variables from the AG task (reaction time, correction time, error rate) the F factor by variables from the PO task (reaction time, percentage express saccades) and the reaction time of the errors (prosaccades!) from the AG task. The relationship between the percentage number of express saccades and the percentage number of errors was completely asymmetric: high numbers of express saccades were accompanied by high numbers of errors but not vice versa. Only the variables in the V factor covaried with age. A fast decrease of the antisaccade reaction time (by 50 ms), of the correction times (by 70 ms) and of the error rate (from 60 to 22%) was observed between age 9 and 15 years, followed by a further period of slower decrease until age 25 years. The mean time a subject needed to reach the side opposite to the stimulus as required by the antisaccade task decreased from approximately 350 to 250 ms until age 15 years and decreased further by 20 ms before it increased again to approximately 280 ms. At higher ages, there was a slight indication for a return development. Subjects with high error rates had long antisaccade latencies and needed a long time to reach the opposite side on error trials. The variables obtained from the PO task varied also significantly with age but by smaller amounts. The results are discussed in relation to the subsystems controlling saccade generation: a voluntary and a reflex component the latter being suppressed by active fixation. Both systems seem to develop differentially. The data offer a detailed baseline for clinical studies using the pro- and antisaccade tasks as an indication of functional impairments, circumscribed brain lesions, neurological and psychiatric diseases and cognitive deficits.
Investigation of Backprojection Uncertainties With M6 Earthquakes
NASA Astrophysics Data System (ADS)
Fan, Wenyuan; Shearer, Peter M.
2017-10-01
We investigate possible biasing effects of inaccurate timing corrections on teleseismic P wave backprojection imaging of large earthquake ruptures. These errors occur because empirically estimated time shifts based on aligning P wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-M7 earthquakes over a 10 year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross correlation of their initial P wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare backprojection images for each earthquake using its own timing corrections with those obtained using the time corrections from other earthquakes. This provides a measure of how well subevents can be resolved with backprojection of a large rupture as a function of distance from the hypocenter. Our results show that backprojection is generally very robust and that the median subevent location error is about 25 km across the entire study region (˜700 km). The backprojection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3-D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine backprojection images using aftershock calibration, at least in this region.
NASA Astrophysics Data System (ADS)
Liu, Xing-fa; Cen, Ming
2007-12-01
Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.
Augmenting intracortical brain-machine interface with neurally driven error detectors
NASA Astrophysics Data System (ADS)
Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.
2017-12-01
Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.
Target Uncertainty Mediates Sensorimotor Error Correction
Vijayakumar, Sethu; Wolpert, Daniel M.
2017-01-01
Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323
Target Uncertainty Mediates Sensorimotor Error Correction.
Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M
2017-01-01
Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.
An investigation of error correcting techniques for OMV and AXAF
NASA Technical Reports Server (NTRS)
Ingels, Frank; Fryer, John
1991-01-01
The original objectives of this project were to build a test system for the NASA 255/223 Reed/Solomon encoding/decoding chip set and circuit board. This test system was then to be interfaced with a convolutional system at MSFC to examine the performance of the concantinated codes. After considerable work, it was discovered that the convolutional system could not function as needed. This report documents the design, construction, and testing of the test apparatus for the R/S chip set. The approach taken was to verify the error correcting behavior of the chip set by injecting known error patterns onto data and observing the results. Error sequences were generated using pseudo-random number generator programs, with Poisson time distribution between errors and Gaussian burst lengths. Sample means, variances, and number of un-correctable errors were calculated for each data set before testing.
A Proposed Time Transfer Experiment Between the USA and the South Pacific
1991-12-01
1 nanosecond, The corrected position will be traris~nitted by both the time transfer modem and the existing TV line sync dissemination process...communications satellite (AUSSAT K1) (Figure 5), With after-the- fact ephemeris correction , this is useful to the 20 nanosecond level. The second...spheric corrections will ultimately reduce ephemeris related time transfer errors to the 1 nanosecond level. The corrected position will be transmitted
Resolution of the COBE Earth sensor anomaly
NASA Technical Reports Server (NTRS)
Sedler, J.
1993-01-01
Since its launch on November 18, 1989, the Earth sensors on the Cosmic Background Explorer (COBE) have shown much greater noise than expected. The problem was traced to an error in Earth horizon acquisition-of-signal (AOS) times. Due to this error, the AOS timing correction was ignored, causing Earth sensor split-to-index (SI) angles to be incorrectly time-tagged to minor frame synchronization times. Resulting Earth sensor residuals, based on gyro-propagated fine attitude solutions, were as large as plus or minus 0.45 deg (much greater than plus or minus 0.10 deg from scanner specifications (Reference 1)). Also, discontinuities in single-frame coarse attitude pitch and roll angles (as large as 0.80 and 0.30 deg, respectively) were noted several times during each orbit. However, over the course of the mission, each Earth sensor was observed to independently and unexpectedly reset and then reactivate into a new configuration. Although the telemetered AOS timing corrections are still in error, a procedure has been developed to approximate and apply these corrections. This paper describes the approach, analysis, and results of approximating and applying AOS timing adjustments to correct Earth scanner data. Furthermore, due to the continuing degradation of COBE's gyroscopes, gyro-propagated fine attitude solutions may soon become unavailable, requiring an alternative method for attitude determination. By correcting Earth scanner AOS telemetry, as described in this paper, more accurate single-frame attitude solutions are obtained. All aforementioned pitch and roll discontinuities are removed. When proper AOS corrections are applied, the standard deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude solutions decrease by a factor of 3. Also, the overall standard deviation of SI residuals from fine attitude solutions decrease by a factor of 4 (meeting sensor specifications) when AOS corrections are applied.
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization
NASA Astrophysics Data System (ADS)
Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro
2016-09-01
This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.;
2012-01-01
Due to an error at the publisher, the times given for the major tick marks in the X-axis in Figure 1 of the published article are incorrect. The correctly labeled times should be 00:52:00, 00:54:00,..., and 01:04:00. The correct version of Figure 1 and its caption is shown below. IOP Publishing sincerely regrets this error.25.
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Burgess, J. M.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; Dennis, B. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grillo, L.; Grove, J. E.; Gruber, D.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Iafrate, G.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Kippen, R. M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Meegan, C.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Murphy, R.; Naumann-Godo, M.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Paciesas, W. S.; Panetta, J. H.; Parent, D.; Pesce-Rollins, M.; Petrosian, V.; Pierbattista, M.; Piron, F.; Pivato, G.; Poon, H.; Porter, T. A.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Sbarra, C.; Schwartz, R. A.; Sgrò, C.; Share, G. H.; Siskind, E. J.; Spinelli, P.; Takahashi, H.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tolbert, A. K.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wilson-Hodge, C.; Wood, D. L.; Wood, K. S.; Yang, Z.
2012-04-01
Due to an error at the publisher, the times given for the major tick marks in the X-axis in Figure 1 of the published article are incorrect. The correctly labeled times should be "00:52:00," "00:54:00," ... , and "01:04:00." The correct version of Figure 1 and its caption is shown below. IOP Publishing sincerely regrets this error.
NASA Astrophysics Data System (ADS)
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
Brain State Before Error Making in Young Patients With Mild Spastic Cerebral Palsy.
Hakkarainen, Elina; Pirilä, Silja; Kaartinen, Jukka; van der Meere, Jaap J
2015-10-01
In the present experiment, children with mild spastic cerebral palsy and a control group carried out a memory recognition task. The key question was if errors of the patient group are foreshadowed by attention lapses, by weak motor preparation, or by both. Reaction times together with event-related potentials associated with motor preparation (frontal late contingent negative variation), attention (parietal P300), and response evaluation (parietal error-preceding positivity) were investigated in instances where 3 subsequent correct trials preceded an error. The findings indicated that error responses of the patient group are foreshadowed by weak motor preparation in correct trials directly preceding an error. © The Author(s) 2015.
Open quantum systems and error correction
NASA Astrophysics Data System (ADS)
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.
A Case for Soft Error Detection and Correction in Computational Chemistry.
van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A
2013-09-10
High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, H.; Lin, S.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.
Diagnostic Error in Correctional Mental Health: Prevalence, Causes, and Consequences.
Martin, Michael S; Hynes, Katie; Hatcher, Simon; Colman, Ian
2016-04-01
While they have important implications for inmates and resourcing of correctional institutions, diagnostic errors are rarely discussed in correctional mental health research. This review seeks to estimate the prevalence of diagnostic errors in prisons and jails and explores potential causes and consequences. Diagnostic errors are defined as discrepancies in an inmate's diagnostic status depending on who is responsible for conducting the assessment and/or the methods used. It is estimated that at least 10% to 15% of all inmates may be incorrectly classified in terms of the presence or absence of a mental illness. Inmate characteristics, relationships with staff, and cognitive errors stemming from the use of heuristics when faced with time constraints are discussed as possible sources of error. A policy example of screening for mental illness at intake to prison is used to illustrate when the risk of diagnostic error might be increased and to explore strategies to mitigate this risk. © The Author(s) 2016.
On Choosing a Rational Flight Trajectory to the Moon
NASA Astrophysics Data System (ADS)
Gordienko, E. S.; Khudorozhkov, P. A.
2017-12-01
The algorithm for choosing a trajectory of spacecraft flight to the Moon is discussed. The characteristic velocity values needed for correcting the flight trajectory and a braking maneuver are estimated using the Monte Carlo method. The profile of insertion and flight to a near-circular polar orbit with an altitude of 100 km of an artificial lunar satellite (ALS) is given. The case of two corrections applied during the flight and braking phases is considered. The flight to an ALS orbit is modeled in the geocentric geoequatorial nonrotating coordinate system with the influence of perturbations from the Earth, the Sun, and the Moon factored in. The characteristic correction costs corresponding to corrections performed at different time points are examined. Insertion phase errors, the errors of performing the needed corrections, and the errors of determining the flight trajectory parameters are taken into account.
Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.
2014-01-01
Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532
Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A
2018-04-15
For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.
APOLLO clock performance and normal point corrections
NASA Astrophysics Data System (ADS)
Liang, Y.; Murphy, T. W., Jr.; Colmenares, N. R.; Battat, J. B. R.
2017-12-01
The Apache point observatory lunar laser-ranging operation (APOLLO) has produced a large volume of high-quality lunar laser ranging (LLR) data since it began operating in 2006. For most of this period, APOLLO has relied on a GPS-disciplined, high-stability quartz oscillator as its frequency and time standard. The recent addition of a cesium clock as part of a timing calibration system initiated a comparison campaign between the two clocks. This has allowed correction of APOLLO range measurements—called normal points—during the overlap period, but also revealed a mechanism to correct for systematic range offsets due to clock errors in historical APOLLO data. Drift of the GPS clock on ∼1000 s timescales contributed typically 2.5 mm of range error to APOLLO measurements, and we find that this may be reduced to ∼1.6 mm on average. We present here a characterization of APOLLO clock errors, the method by which we correct historical data, and the resulting statistics.
NASA Astrophysics Data System (ADS)
Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.
2017-12-01
Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.
Investigation of Back-Projection Uncertainties with M6 Earthquakes
NASA Astrophysics Data System (ADS)
Fan, W.; Shearer, P. M.
2017-12-01
We investigate possible biasing effects of inaccurate timing corrections on teleseismic P-wave back-projection imaging of large earthquake ruptures. These errors occur because empirically-estimated time shifts based on aligning P-wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-7 earthquakes over a ten-year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross-correlation of their initial P-wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare back-projection images for each earthquake using its own timing corrections with those obtained using the time corrections for other earthquakes. This provides a measure of how well sub-events can be resolved with back-projection of a large rupture as a function of distance from the hypocenter. Our results show that back-projection is generally very robust and that sub-event location errors average about 20 km across the entire study region ( 700 km). The back-projection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine back-projection images using aftershock calibration, at least in this region.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
Improve homology search sensitivity of PacBio data by correcting frameshifts.
Du, Nan; Sun, Yanni
2016-09-01
Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Long Term Mean Local Time of the Ascending Node Prediction
NASA Technical Reports Server (NTRS)
McKinley, David P.
2007-01-01
Significant error has been observed in the long term prediction of the Mean Local Time of the Ascending Node on the Aqua spacecraft. This error of approximately 90 seconds over a two year prediction is a complication in planning and timing of maneuvers for all members of the Earth Observing System Afternoon Constellation, which use Aqua's MLTAN as the reference for their inclination maneuvers. It was determined that the source of the prediction error was the lack of a solid Earth tide model in the operational force models. The Love Model of the solid Earth tide potential was used to derive analytic corrections to the inclination and right ascension of the ascending node of Aqua's Sun-synchronous orbit. Additionally, it was determined that the resonance between the Sun and orbit plane of the Sun-synchronous orbit is the primary driver of this error. The analytic corrections have been added to the operational force models for the Aqua spacecraft reducing the two-year 90-second error to less than 7 seconds.
Fault-tolerant, high-level quantum circuits: form, compilation and description
NASA Astrophysics Data System (ADS)
Paler, Alexandru; Polian, Ilia; Nemoto, Kae; Devitt, Simon J.
2017-06-01
Fault-tolerant quantum error correction is a necessity for any quantum architecture destined to tackle interesting, large-scale problems. Its theoretical formalism has been well founded for nearly two decades. However, we still do not have an appropriate compiler to produce a fault-tolerant, error-corrected description from a higher-level quantum circuit for state-of the-art hardware models. There are many technical hurdles, including dynamic circuit constructions that occur when constructing fault-tolerant circuits with commonly used error correcting codes. We introduce a package that converts high-level quantum circuits consisting of commonly used gates into a form employing all decompositions and ancillary protocols needed for fault-tolerant error correction. We call this form the (I)initialisation, (C)NOT, (M)measurement form (ICM) and consists of an initialisation layer of qubits into one of four distinct states, a massive, deterministic array of CNOT operations and a series of time-ordered X- or Z-basis measurements. The form allows a more flexible approach towards circuit optimisation. At the same time, the package outputs a standard circuit or a canonical geometric description which is a necessity for operating current state-of-the-art hardware architectures using topological quantum codes.
Rosman, Mohamad; Wong, Tien Y; Tay, Wan-Ting; Tong, Louis; Saw, Seang-Mei
2009-08-01
To describe the prevalence and the risk factors of undercorrected refractive error in an adult urban Malay population. This population-based, cross-sectional study was conducted in Singapore in 3280 Malay adults, aged 40 to 80 years. All individuals were examined at a centralized clinic and underwent standardized interviews and assessment of refractive errors and presenting and best corrected visual acuities. Distance presenting visual acuity was monocularly measured by using a logarithm of the minimum angle of resolution (logMAR) number chart at a distance of 4 m, with the participants wearing their "walk-in" optical corrections (spectacles or contact lenses), if any. Refraction was determined by subjective refraction by trained, certified study optometrists. Best corrected visual acuity was monocularly assessed and recorded in logMAR scores using the same test protocol as was used for presenting visual acuity. Undercorrected refractive error was defined as an improvement of at least 0.2 logMAR (2 lines equivalent) in the best corrected visual acuity compared with the presenting visual acuity in the better eye. The mean age of the subjects included in our study was 58 +/- 11 years, and 52% of the subjects were women. The prevalence rate of undercorrected refractive error among Singaporean Malay adults in our study (n = 3115) was 20.4% (age-standardized prevalence rate, 18.3%). More of the women had undercorrected refractive error than the men (21.8% vs. 18.8%, P = 0.04). Undercorrected refractive error was also more common in subjects older than 50 years than in subjects aged 40 to 49 years (22.6% vs. 14.3%, P < 0.001). Non-spectacle wearers were more likely to have undercorrected refractive errors than were spectacle wearers (24.4% vs. 14.4%, P < 0.001). Persons with primary school education or less were 1.89 times (P = 0.03) more likely to have undercorrected refractive errors than those with post-secondary school education or higher. In contrast, persons with a history of eye disease were 0.74 times (P = 0.003) less likely to have undercorrected refractive errors. The proportion of undercorrected refractive error among the Singaporean Malay adults with refractive errors was higher than that of the Singaporean Chinese adults with refractive errors. Undercorrected refractive error is a significant cause of correctable visual impairment among Singaporean Malay adults, affecting one in five persons.
Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East
NASA Astrophysics Data System (ADS)
Aleksanin, A. I.; Kachur, V. A.
2017-12-01
Calculation errors in ocean-brightness coefficients in the Far Eastern are analyzed for two atmospheric correction algorithms (NIR and MUMM). The daylight measurements in different water types show that the main error component is systematic and has a simple dependence on the magnitudes of the coefficients. The causes of the error behavior are considered. The most probable explanation for the large errors in ocean-color parameters in the Far East is a high concentration of continental aerosol absorbing light. A comparison between satellite and in situ measurements at AERONET stations in the United States and South Korea has been made. It is shown the errors in these two regions differ by up to 10 times upon close water turbidity and relatively high aerosol optical-depth computation precision in the case of using the NIR correction of the atmospheric effect.
Monitoring robot actions for error detection and recovery
NASA Technical Reports Server (NTRS)
Gini, M.; Smith, R.
1987-01-01
Reliability is a serious problem in computer controlled robot systems. Although robots serve successfully in relatively simple applications such as painting and spot welding, their potential in areas such as automated assembly is hampered by programming problems. A program for assembling parts may be logically correct, execute correctly on a simulator, and even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real world uncertainties. Recovery from such errors is far more complicated than recovery from simple controller errors, since even expected errors can often manifest themselves in unexpected ways. Here, a novel approach is presented for improving robot reliability. Instead of anticipating errors, researchers use knowledge-based programming techniques so that the robot can autonomously exploit knowledge about its task and environment to detect and recover from failures. They describe preliminary experiment of a system that they designed and constructed.
Correcting systematic errors in high-sensitivity deuteron polarization measurements
NASA Astrophysics Data System (ADS)
Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.
2012-02-01
This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.
Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im
2017-02-01
The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.
Identifying and Correcting Timing Errors at Seismic Stations in and around Iran
Syracuse, Ellen Marie; Phillips, William Scott; Maceira, Monica; ...
2017-09-06
A fundamental component of seismic research is the use of phase arrival times, which are central to event location, Earth model development, and phase identification, as well as derived products. Hence, the accuracy of arrival times is crucial. However, errors in the timing of seismic waveforms and the arrival times based on them may go unidentified by the end user, particularly when seismic data are shared between different organizations. Here, we present a method used to analyze travel-time residuals for stations in and around Iran to identify time periods that are likely to contain station timing problems. For the 14more » stations with the strongest evidence of timing errors lasting one month or longer, timing corrections are proposed to address the problematic time periods. Finally, two additional stations are identified with incorrect locations in the International Registry of Seismograph Stations, and one is found to have erroneously reported arrival times in 2011.« less
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.
Tzetzis, George; Votsis, Evandros; Kourtessis, Thomas
2008-01-01
This experiment investigated the effects of three corrective feedback methods, using different combinations of correction, or error cues and positive feedback for learning two badminton skills with different difficulty (forehand clear - low difficulty, backhand clear - high difficulty). Outcome and self-confidence scores were used as dependent variables. The 48 participants were randomly assigned into four groups. Group A received correction cues and positive feedback. Group B received cues on errors of execution. Group C received positive feedback, correction cues and error cues. Group D was the control group. A pre, post and a retention test was conducted. A three way analysis of variance ANOVA (4 groups X 2 task difficulty X 3 measures) with repeated measures on the last factor revealed significant interactions for each depended variable. All the corrective feedback methods groups, increased their outcome scores over time for the easy skill, but only groups A and C for the difficult skill. Groups A and B had significantly better outcome scores than group C and the control group for the easy skill on the retention test. However, for the difficult skill, group C was better than groups A, B and D. The self confidence scores of groups A and C improved over time for the easy skill but not for group B and D. Again, for the difficult skill, only group C improved over time. Finally a regression analysis depicted that the improvement in performance predicted a proportion of the improvement in self confidence for both the easy and the difficult skill. It was concluded that when young athletes are taught skills of different difficulty, different type of instruction, might be more appropriate in order to improve outcome and self confidence. A more integrated approach on teaching will assist coaches or physical education teachers to be more efficient and effective. Key pointsThe type of the skill is a critical factor in determining the effectiveness of the feedback types.Different instructional methods of corrective feedback could have beneficial effects in the outcome and self-confidence of young athletesInstructions focusing on the correct cues or errors increase performance of easy skills.Positive feedback or correction cues increase self-confidence of easy skills but only the combination of error and correction cues increase self confidence and outcome scores of difficult skills. PMID:24149905
Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.
Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P
2013-08-01
Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized. © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bezan, Scott; Shirani, Shahram
2006-12-01
To reliably transmit video over error-prone channels, the data should be both source and channel coded. When multiple channels are available for transmission, the problem extends to that of partitioning the data across these channels. The condition of transmission channels, however, varies with time. Therefore, the error protection added to the data at one instant of time may not be optimal at the next. In this paper, we propose a method for adaptively adding error correction code in a rate-distortion (RD) optimized manner using rate-compatible punctured convolutional codes to an MJPEG2000 constant rate-coded frame of video. We perform an analysis on the rate-distortion tradeoff of each of the coding units (tiles and packets) in each frame and adapt the error correction code assigned to the unit taking into account the bandwidth and error characteristics of the channels. This method is applied to both single and multiple time-varying channel environments. We compare our method with a basic protection method in which data is either not transmitted, transmitted with no protection, or transmitted with a fixed amount of protection. Simulation results show promising performance for our proposed method.
Shabbott, Britne A; Sainburg, Robert L
2010-05-01
Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.
Improving Global Net Surface Heat Flux with Ocean Reanalysis
NASA Astrophysics Data System (ADS)
Carton, J.; Chepurin, G. A.; Chen, L.; Grodsky, S.
2017-12-01
This project addresses the current level of uncertainty in surface heat flux estimates. Time mean surface heat flux estimates provided by atmospheric reanalyses differ by 10-30W/m2. They are generally unbalanced globally, and have been shown by ocean simulation studies to be incompatible with ocean temperature and velocity measurements. Here a method is presented 1) to identify the spatial and temporal structure of the underlying errors and 2) to reduce them by exploiting hydrographic observations and the analysis increments produced by an ocean reanalysis using sequential data assimilation. The method is applied to fluxes computed from daily state variables obtained from three widely used reanalyses: MERRA2, ERA-Interim, and JRA-55, during an eight year period 2007-2014. For each of these seasonal heat flux errors/corrections are obtained. In a second set of experiments the heat fluxes are corrected and the ocean reanalysis experiments are repeated. This second round of experiments shows that the time mean error in the corrected fluxes is reduced to within ±5W/m2 over the interior subtropical and midlatitude oceans, with the most significant changes occuring over the Southern Ocean. The global heat flux imbalance of each reanalysis is reduced to within a few W/m2 with this single correction. Encouragingly, the corrected forms of the three sets of fluxes are also shown to converge. In the final discussion we present experiments beginning with a modified form of the ERA-Int reanalysis, produced by the DAKKAR program, in which state variables have been individually corrected based on independent measurements. Finally, we discuss the separation of flux error from model error.
Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1987-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Truong, T. K.; Deutsch, L. J.; Satorius, E. H.; Reed, I. S.
1988-01-01
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation.
Sokolenko, Stanislav; Aucoin, Marc G
2015-09-04
The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small as 2.5 % under a wide range of conditions. Both the simulation framework and error correction method represent examples of time-course analysis that can be applied to further developments in (1)H-NMR methodology and the more general application of quantitative metabolomics.
ECHO: A reference-free short-read error correction algorithm
Kao, Wei-Chun; Chan, Andrew H.; Song, Yun S.
2011-01-01
Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth. PMID:21482625
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... section 110(c)(1)(B), to promulgate a FIP within 2 years, and, as part of this rulemaking, EPA is... must promulgate a FIP at any time within 2 years after the disapproval, unless the state corrects the... any time within 2 years after the [finding] * * * unless the State corrects the deficiency, and [EPA...
NASA Astrophysics Data System (ADS)
Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken
2018-04-01
A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.
Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.
Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian
2014-03-01
Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.
Taylor, C; Parker, J; Stratford, J; Warren, M
2018-05-01
Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.
Erratum: "Discovery of a Second Millisecond Accreting Pulsar: XTE J1751-305"
NASA Technical Reports Server (NTRS)
Markwardt, Craig; Swank, J. H.; Strohmayer, T. E.; in 'tZand, J. J. M.; Marshall, F. E.
2007-01-01
The original Table 1 ("Timing Parameters of XTE J1751-305") contains one error. The epoch of pulsar mean longitude 90deg is incorrect due to a numerical conversion error in the preparation of the original table text. A corrected version of Table 1 is shown. For reference, the epoch of the ascending node is also included. The correct value was used in all of the analysis leading up to the paper. As T(sub 90) is a purely fiducial reference time, the scientific conclusions of the paper are unchanged.
NASA Astrophysics Data System (ADS)
Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto
2017-12-01
Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.
Publisher Correction: Anderson light localization in biological nanostructures of native silk.
Choi, Seung Ho; Kim, Seong-Wan; Ku, Zahyun; Visbal-Onufrak, Michelle A; Kim, Seong-Ryul; Choi, Kwang-Ho; Ko, Hakseok; Choi, Wonshik; Urbas, Augustine M; Goo, Tae-Won; Kim, Young L
2018-03-19
The original PDF version of this Article contained errors in Equations 1 and 2. Both equations omitted all Γ terms. This has been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.
Beyond hypercorrection: remembering corrective feedback for low-confidence errors.
Griffiths, Lauren; Higham, Philip A
2018-02-01
Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.
Network Adjustment of Orbit Errors in SAR Interferometry
NASA Astrophysics Data System (ADS)
Bahr, Hermann; Hanssen, Ramon
2010-03-01
Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.
A toolkit for measurement error correction, with a focus on nutritional epidemiology
Keogh, Ruth H; White, Ian R
2014-01-01
Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset. © 2014 The Authors. PMID:24497385
Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)
NASA Astrophysics Data System (ADS)
Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.
2018-04-01
Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.
NASA Technical Reports Server (NTRS)
Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine; Weiss, Marc A.
1990-01-01
Over intercontinental distances, the accuracy of The Global Positioning System (GPS) time transfers ranges from 10 to 20 ns. The principal error sources are the broadcast ionospheric model, the broadcast ephemerides and the local antenna coordinates. For the first time, the three major error sources for GPS time transfer can be reduced simultaneously for a particular time link. Ionospheric measurement systems of the National Institute of Standards and Technology (NIST) type are now operating on a regular basis at the National Institute of Standards and Technology in Boulder and at the Paris Observatory in Paris. Broadcast ephemerides are currently recorded for time-transfer tracks between these sites, this being necessary for using precise ephemerides. At last, corrected local GPS antenna coordinates are now introduced in GPS receivers at both sites. Shown here is the improvement in precision for this long-distance time comparison resulting from the reduction of these three error sources.
Hasni, Nesrine; Ben Hamida, Emira; Ben Jeddou, Khouloud; Ben Hamida, Sarra; Ayadi, Imene; Ouahchi, Zeineb; Marrakchi, Zahra
2016-12-01
The medication iatrogenic risk is quite unevaluated in neonatology Objective: Assessment of errors that occurred during the preparation and administration of injectable medicines in a neonatal unit in order to implement corrective actions to reduce the occurrence of these errors. A prospective, observational study was performed in a neonatal unit over a period of one month. The practice of preparing and administering injectable medications were identified through a standardized data collection form. These practices were compared with summaries of the characteristics of each product (RCP) and the bibliography. One hundred preparations were observed of 13 different drugs. 85 errors during preparations and administration steps were detected. These errors were divided into preparation errors in 59% of cases such as changing the dilution protocol (32%), the use of bad solvent (11%) and administration errors in 41% of cases as errors timing of administration (18%) or omission of administration (9%). This study showed a high rate of errors during stages of preparation and administration of injectable drugs. In order to optimize the care of newborns and reduce the risk of medication errors, corrective actions have been implemented through the establishment of a quality assurance system which consisted of the development of injectable drugs preparation procedures, the introduction of a labeling system and staff training.
Analysis of quantum error correction with symmetric hypergraph states
NASA Astrophysics Data System (ADS)
Wagner, T.; Kampermann, H.; Bruß, D.
2018-03-01
Graph states have been used to construct quantum error correction codes for independent errors. Hypergraph states generalize graph states, and symmetric hypergraph states have been shown to allow for the correction of correlated errors. In this paper, it is shown that symmetric hypergraph states are not useful for the correction of independent errors, at least for up to 30 qubits. Furthermore, error correction for error models with protected qubits is explored. A class of known graph codes for this scenario is generalized to hypergraph codes.
Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning.
Shi, Junbo; Wang, Gaojing; Han, Xianquan; Guo, Jiming
2017-06-12
Satellite orbit and clock corrections are always treated as known quantities in GPS positioning models. Therefore, any error in the satellite orbit and clock products will probably cause significant consequences for GPS positioning, especially for real-time applications. Currently three types of satellite products have been made available for real-time positioning, including the broadcast ephemeris, the International GNSS Service (IGS) predicted ultra-rapid product, and the real-time product. In this study, these three predicted/real-time satellite orbit and clock products are first evaluated with respect to the post-mission IGS final product, which demonstrates cm to m level orbit accuracies and sub-ns to ns level clock accuracies. Impacts of real-time satellite orbit and clock products on GPS point and relative positioning are then investigated using the P3 and GAMIT software packages, respectively. Numerical results show that the real-time satellite clock corrections affect the point positioning more significantly than the orbit corrections. On the contrary, only the real-time orbit corrections impact the relative positioning. Compared with the positioning solution using the IGS final product with the nominal orbit accuracy of ~2.5 cm, the real-time broadcast ephemeris with ~2 m orbit accuracy provided <2 cm relative positioning error for baselines no longer than 216 km. As for the baselines ranging from 574 to 2982 km, the cm-dm level positioning error was identified for the relative positioning solution using the broadcast ephemeris. The real-time product could result in <5 mm relative positioning accuracy for baselines within 2982 km, slightly better than the predicted ultra-rapid product.
Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A
2016-04-01
Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the magnitude of MBF errors resulting from motion in the superior/inferior and anterior/posterior directions was similar (up to 250%). Body motion effects were more detrimental for higher resolution PET imaging (2 vs 10 mm full-width at half-maximum), and for motion occurring during the mid-to-late time-frames. Motion correction of the reconstructed dynamic image series resulted in significant reduction in MBF errors, but did not account for the residual PET-CTAC misalignment artifacts. MBF bias was reduced further using global partial-volume correction, and using dynamic alignment of the PET projection data to the CT scan for accurate attenuation correction during image reconstruction. Patient body motion can produce MBF estimation errors up to 500%. To reduce these errors, new motion correction algorithms must be effective in identifying motion in the left/right direction, and in the mid-to-late time-frames, since these conditions produce the largest errors in MBF, particularly for high resolution PET imaging. Ideally, motion correction should be done before or during image reconstruction to eliminate PET-CTAC misalignment artifacts.
Correction of mid-spatial-frequency errors by smoothing in spin motion for CCOS
NASA Astrophysics Data System (ADS)
Zhang, Yizhong; Wei, Chaoyang; Shao, Jianda; Xu, Xueke; Liu, Shijie; Hu, Chen; Zhang, Haichao; Gu, Haojin
2015-08-01
Smoothing is a convenient and efficient way to correct mid-spatial-frequency errors. Quantifying the smoothing effect allows improvements in efficiency for finishing precision optics. A series experiments in spin motion are performed to study the smoothing effects about correcting mid-spatial-frequency errors. Some of them use a same pitch tool at different spinning speed, and others at a same spinning speed with different tools. Introduced and improved Shu's model to describe and compare the smoothing efficiency with different spinning speed and different tools. From the experimental results, the mid-spatial-frequency errors on the initial surface were nearly smoothed out after the process in spin motion and the number of smoothing times can be estimated by the model before the process. Meanwhile this method was also applied to smooth the aspherical component, which has an obvious mid-spatial-frequency error after Magnetorheological Finishing processing. As a result, a high precision aspheric optical component was obtained with PV=0.1λ and RMS=0.01λ.
Sampling command generator corrects for noise and dropouts in recorded data
NASA Technical Reports Server (NTRS)
Anderson, T. O.
1973-01-01
Generator measures period between zero crossings of reference signal and accepts as correct timing points only those zero crossings which occur acceptably close to nominal time predicted from last accepted command. Unidirectional crossover points are used exclusively so errors from analog nonsymmetry of crossover detector are avoided.
Building a kinetic Monte Carlo model with a chosen accuracy.
Bhute, Vijesh J; Chatterjee, Abhijit
2013-06-28
The kinetic Monte Carlo (KMC) method is a popular modeling approach for reaching large materials length and time scales. The KMC dynamics is erroneous when atomic processes that are relevant to the dynamics are missing from the KMC model. Recently, we had developed for the first time an error measure for KMC in Bhute and Chatterjee [J. Chem. Phys. 138, 084103 (2013)]. The error measure, which is given in terms of the probability that a missing process will be selected in the correct dynamics, requires estimation of the missing rate. In this work, we present an improved procedure for estimating the missing rate. The estimate found using the new procedure is within an order of magnitude of the correct missing rate, unlike our previous approach where the estimate was larger by orders of magnitude. This enables one to find the error in the KMC model more accurately. In addition, we find the time for which the KMC model can be used before a maximum error in the dynamics has been reached.
Error Pattern Analysis Applied to Technical Writing: An Editor's Guide for Writers.
ERIC Educational Resources Information Center
Monagle, E. Brette
The use of error pattern analysis can reduce the time and money spent on editing and correcting manuscripts. What is required is noting, classifying, and keeping a frequency count of errors. First an editor should take a typical page of writing and circle each error. After the editor has done a sufficiently large number of pages to identify an…
Real-time correction of beamforming time delay errors in abdominal ultrasound imaging
NASA Astrophysics Data System (ADS)
Rigby, K. W.
2000-04-01
The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.
Impact of Feedback on Three Phases of Performance Monitoring
Appelgren, Alva; Penny, William; Bengtsson, Sara L
2013-01-01
We investigated if certain phases of performance monitoring show differential sensitivity to external feedback and thus rely on distinct mechanisms. The phases of interest were: the error phase (FE), the phase of the correct response after errors (FEC), and the phase of correct responses following corrects (FCC). We tested accuracy and reaction time (RT) on 12 conditions of a continuous-choice-response task; the 2-back task. External feedback was either presented or not in FE and FEC, and delivered on 0%, 20%, or 100% of FCC trials. The FCC20 was matched to FE and FEC in the number of sounds received so that we could investigate when external feedback was most valuable to the participants. We found that external feedback led to a reduction in accuracy when presented on all the correct responses. Moreover, RT was significantly reduced for FCC100, which in turn correlated with the accuracy reduction. Interestingly, the correct response after an error was particularly sensitive to external feedback since accuracy was reduced when external feedback was presented during this phase but not for FCC20. Notably, error-monitoring was not influenced by feedback-type. The results are in line with models suggesting that the internal error-monitoring system is sufficient in cognitively demanding tasks where performance is ∼ 80%, as well as theories stipulating that external feedback directs attention away from the task. Our data highlight the first correct response after an error as particularly sensitive to external feedback, suggesting that important consolidation of response strategy takes place here. PMID:24217138
Differential transfer processes in incremental visuomotor adaptation.
Seidler, Rachel D
2005-01-01
Visuomotor adaptive processes were examined by testing transfer of adaptation between similar conditions. Participants made manual aiming movements with a joystick to hit targets on a computer screen, with real-time feedback display of their movement. They adapted to three different rotations of the display in a sequential fashion, with a return to baseline display conditions between rotations. Adaptation was better when participants had prior adaptive experiences. When performance was assessed using direction error (calculated at the time of peak velocity) and initial endpoint error (error before any overt corrective actions), transfer was greater when the final rotation reflected an addition of previously experienced rotations (adaptation order 30 degrees rotation, 15 degrees, 45 degrees) than when it was a subtraction of previously experienced conditions (adaptation order 45 degrees rotation, 15 degrees, 30 degrees). Transfer was equal regardless of adaptation order when performance was assessed with final endpoint error (error following any discrete, corrective actions). These results imply the existence of multiple independent processes in visuomotor adaptation.
Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors
NASA Astrophysics Data System (ADS)
Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.
2018-04-01
The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.
New double-byte error-correcting codes for memory systems
NASA Technical Reports Server (NTRS)
Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.
1996-01-01
Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.
Errors in imaging patients in the emergency setting
Reginelli, Alfonso; Lo Re, Giuseppe; Midiri, Federico; Muzj, Carlo; Romano, Luigia; Brunese, Luca
2016-01-01
Emergency and trauma care produces a “perfect storm” for radiological errors: uncooperative patients, inadequate histories, time-critical decisions, concurrent tasks and often junior personnel working after hours in busy emergency departments. The main cause of diagnostic errors in the emergency department is the failure to correctly interpret radiographs, and the majority of diagnoses missed on radiographs are fractures. Missed diagnoses potentially have important consequences for patients, clinicians and radiologists. Radiologists play a pivotal role in the diagnostic assessment of polytrauma patients and of patients with non-traumatic craniothoracoabdominal emergencies, and key elements to reduce errors in the emergency setting are knowledge, experience and the correct application of imaging protocols. This article aims to highlight the definition and classification of errors in radiology, the causes of errors in emergency radiology and the spectrum of diagnostic errors in radiography, ultrasonography and CT in the emergency setting. PMID:26838955
Errors in imaging patients in the emergency setting.
Pinto, Antonio; Reginelli, Alfonso; Pinto, Fabio; Lo Re, Giuseppe; Midiri, Federico; Muzj, Carlo; Romano, Luigia; Brunese, Luca
2016-01-01
Emergency and trauma care produces a "perfect storm" for radiological errors: uncooperative patients, inadequate histories, time-critical decisions, concurrent tasks and often junior personnel working after hours in busy emergency departments. The main cause of diagnostic errors in the emergency department is the failure to correctly interpret radiographs, and the majority of diagnoses missed on radiographs are fractures. Missed diagnoses potentially have important consequences for patients, clinicians and radiologists. Radiologists play a pivotal role in the diagnostic assessment of polytrauma patients and of patients with non-traumatic craniothoracoabdominal emergencies, and key elements to reduce errors in the emergency setting are knowledge, experience and the correct application of imaging protocols. This article aims to highlight the definition and classification of errors in radiology, the causes of errors in emergency radiology and the spectrum of diagnostic errors in radiography, ultrasonography and CT in the emergency setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Although using standard Taylor series coefficients for finite-difference operators is optimal in the sense that in the limit of infinitesimal space and time discretization, the solution approaches the correct analytic solution to the acousto-dynamic system of differential equations, other finite-difference operators may provide optimal computational run time given certain error bounds or source bandwidth constraints. This report describes the results of investigation of alternative optimal finite-difference coefficients based on several optimization/accuracy scenarios and provides recommendations for minimizing run time while retaining error within given error bounds.
Applying the intention-to-treat principle in practice: Guidance on handling randomisation errors
Sullivan, Thomas R; Voysey, Merryn; Lee, Katherine J; Cook, Jonathan A; Forbes, Andrew B
2015-01-01
Background: The intention-to-treat principle states that all randomised participants should be analysed in their randomised group. The implications of this principle are widely discussed in relation to the analysis, but have received limited attention in the context of handling errors that occur during the randomisation process. The aims of this article are to (1) demonstrate the potential pitfalls of attempting to correct randomisation errors and (2) provide guidance on handling common randomisation errors when they are discovered that maintains the goals of the intention-to-treat principle. Methods: The potential pitfalls of attempting to correct randomisation errors are demonstrated and guidance on handling common errors is provided, using examples from our own experiences. Results: We illustrate the problems that can occur when attempts are made to correct randomisation errors and argue that documenting, rather than correcting these errors, is most consistent with the intention-to-treat principle. When a participant is randomised using incorrect baseline information, we recommend accepting the randomisation but recording the correct baseline data. If ineligible participants are inadvertently randomised, we advocate keeping them in the trial and collecting all relevant data but seeking clinical input to determine their appropriate course of management, unless they can be excluded in an objective and unbiased manner. When multiple randomisations are performed in error for the same participant, we suggest retaining the initial randomisation and either disregarding the second randomisation if only one set of data will be obtained for the participant, or retaining the second randomisation otherwise. When participants are issued the incorrect treatment at the time of randomisation, we propose documenting the treatment received and seeking clinical input regarding the ongoing treatment of the participant. Conclusion: Randomisation errors are almost inevitable and should be reported in trial publications. The intention-to-treat principle is useful for guiding responses to randomisation errors when they are discovered. PMID:26033877
Applying the intention-to-treat principle in practice: Guidance on handling randomisation errors.
Yelland, Lisa N; Sullivan, Thomas R; Voysey, Merryn; Lee, Katherine J; Cook, Jonathan A; Forbes, Andrew B
2015-08-01
The intention-to-treat principle states that all randomised participants should be analysed in their randomised group. The implications of this principle are widely discussed in relation to the analysis, but have received limited attention in the context of handling errors that occur during the randomisation process. The aims of this article are to (1) demonstrate the potential pitfalls of attempting to correct randomisation errors and (2) provide guidance on handling common randomisation errors when they are discovered that maintains the goals of the intention-to-treat principle. The potential pitfalls of attempting to correct randomisation errors are demonstrated and guidance on handling common errors is provided, using examples from our own experiences. We illustrate the problems that can occur when attempts are made to correct randomisation errors and argue that documenting, rather than correcting these errors, is most consistent with the intention-to-treat principle. When a participant is randomised using incorrect baseline information, we recommend accepting the randomisation but recording the correct baseline data. If ineligible participants are inadvertently randomised, we advocate keeping them in the trial and collecting all relevant data but seeking clinical input to determine their appropriate course of management, unless they can be excluded in an objective and unbiased manner. When multiple randomisations are performed in error for the same participant, we suggest retaining the initial randomisation and either disregarding the second randomisation if only one set of data will be obtained for the participant, or retaining the second randomisation otherwise. When participants are issued the incorrect treatment at the time of randomisation, we propose documenting the treatment received and seeking clinical input regarding the ongoing treatment of the participant. Randomisation errors are almost inevitable and should be reported in trial publications. The intention-to-treat principle is useful for guiding responses to randomisation errors when they are discovered. © The Author(s) 2015.
Quantum Error Correction with Biased Noise
NASA Astrophysics Data System (ADS)
Brooks, Peter
Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.
Real-Time Parameter Estimation Using Output Error
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2014-01-01
Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.
FMLRC: Hybrid long read error correction using an FM-index.
Wang, Jeremy R; Holt, James; McMillan, Leonard; Jones, Corbin D
2018-02-09
Long read sequencing is changing the landscape of genomic research, especially de novo assembly. Despite the high error rate inherent to long read technologies, increased read lengths dramatically improve the continuity and accuracy of genome assemblies. However, the cost and throughput of these technologies limits their application to complex genomes. One solution is to decrease the cost and time to assemble novel genomes by leveraging "hybrid" assemblies that use long reads for scaffolding and short reads for accuracy. We describe a novel method leveraging a multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read sequences using a set of complementary short reads. We demonstrate that our method efficiently produces significantly more high quality corrected sequence than existing hybrid error-correction methods. We also show that our method produces more contiguous assemblies, in many cases, than existing state-of-the-art hybrid and long-read only de novo assembly methods. Our method accurately corrects long read sequence data using complementary short reads. We demonstrate higher total throughput of corrected long reads and a corresponding increase in contiguity of the resulting de novo assemblies. Improved throughput and computational efficiency than existing methods will help better economically utilize emerging long read sequencing technologies.
Decroos, Francis Char; Stinnett, Sandra S; Heydary, Cynthia S; Burns, Russell E; Jaffe, Glenn J
2013-11-01
To determine the impact of segmentation error correction and precision of standardized grading of time domain optical coherence tomography (OCT) scans obtained during an interventional study for macular edema secondary to central retinal vein occlusion (CRVO). A reading center team of two readers and a senior reader evaluated 1199 OCT scans. Manual segmentation error correction (SEC) was performed. The frequency of SEC, resulting change in central retinal thickness after SEC, and reproducibility of SEC were quantified. Optical coherence tomography characteristics associated with the need for SECs were determined. Reading center teams graded all scans, and the reproducibility of this evaluation for scan quality at the fovea and cystoid macular edema was determined on 97 scans. Segmentation errors were observed in 360 (30.0%) scans, of which 312 were interpretable. On these 312 scans, the mean machine-generated central subfield thickness (CST) was 507.4 ± 208.5 μm compared to 583.0 ± 266.2 μm after SEC. Segmentation error correction resulted in a mean absolute CST correction of 81.3 ± 162.0 μm from baseline uncorrected CST. Segmentation error correction was highly reproducible (intraclass correlation coefficient [ICC] = 0.99-1.00). Epiretinal membrane (odds ratio [OR] = 2.3, P < 0.0001), subretinal fluid (OR = 2.1, P = 0.0005), and increasing CST (OR = 1.6 per 100-μm increase, P < 0.001) were associated with need for SEC. Reading center teams reproducibly graded scan quality at the fovea (87% agreement, kappa = 0.64, 95% confidence interval [CI] 0.45-0.82) and cystoid macular edema (92% agreement, kappa = 0.84, 95% CI 0.74-0.94). Optical coherence tomography images obtained during an interventional CRVO treatment trial can be reproducibly graded. Segmentation errors can cause clinically meaningful deviation in central retinal thickness measurements; however, these errors can be corrected reproducibly in a reading center setting. Segmentation errors are common on these images, can cause clinically meaningful errors in central retinal thickness measurement, and can be corrected reproducibly in a reading center setting.
Solar adaptive optics with the DKIST: status report
NASA Astrophysics Data System (ADS)
Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich
2014-08-01
The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.
Developing a Corrective Action Simulator to Support Decision Making Research and Training
2008-05-01
positions, and any time-based simulation injects (e.g., JSTARS reporting tracks, the Engineer reporting a new aircraft bingo time, a threat being active...future instantiations would benefit from migrating to the IMPRINT Pro version. During the course of this development effort the Army Research...initiating corrective action when a subordinate is observed to make an error (of omission or commission) 58 • Benefits of a Corrective
Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography
Birk, Udo Jochen; Rieckher, Matthias; Konstantinides, Nikos; Darrell, Alex; Sarasa-Renedo, Ana; Meyer, Heiko; Tavernarakis, Nektarios; Ripoll, Jorge
2010-01-01
The application of optical projection tomography to in-vivo experiments is limited by specimen movement during the acquisition. We present a set of mathematical correction methods applied to the acquired data stacks to correct for movement in both directions of the image plane. These methods have been applied to correct experimental data taken from in-vivo optical projection tomography experiments in Caenorhabditis elegans. Successful reconstructions for both fluorescence and white light (absorption) measurements are shown. Since no difference between movement of the animal and movement of the rotation axis is made, this approach at the same time removes artifacts due to mechanical drifts and errors in the assumed center of rotation. PMID:21258448
Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs
NASA Astrophysics Data System (ADS)
Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken
2015-09-01
To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.
New decoding methods of interleaved burst error-correcting codes
NASA Astrophysics Data System (ADS)
Nakano, Y.; Kasahara, M.; Namekawa, T.
1983-04-01
A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.
Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System
NASA Astrophysics Data System (ADS)
Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi
2016-12-01
A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.
Phase correction and error estimation in InSAR time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fattahi, H.; Amelung, F.
2017-12-01
During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.
Quantum error-correction failure distributions: Comparison of coherent and stochastic error models
NASA Astrophysics Data System (ADS)
Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.
2017-06-01
We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.
The Relevance of Second Language Acquisition Theory to the Written Error Correction Debate
ERIC Educational Resources Information Center
Polio, Charlene
2012-01-01
The controversies surrounding written error correction can be traced to Truscott (1996) in his polemic against written error correction. He claimed that empirical studies showed that error correction was ineffective and that this was to be expected "given the nature of the correction process and "the nature of language learning" (p. 328, emphasis…
Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals
NASA Astrophysics Data System (ADS)
Huerta, E. A.; Gair, Jonathan R.
2009-04-01
We present an improved numerical kludge waveform model for circular, equatorial extreme-mass-ratio inspirals (EMRIs). The model is based on true Kerr geodesics, augmented by radiative self-force corrections derived from perturbative calculations, and in this paper for the first time we include conservative self-force corrections that we derive by comparison to post-Newtonian results. We present results of a Monte Carlo simulation of parameter estimation errors computed using the Fisher matrix and also assess the theoretical errors that would arise from omitting the conservative correction terms we include here. We present results for three different types of system, namely, the inspirals of black holes, neutron stars, or white dwarfs into a supermassive black hole (SMBH). The analysis shows that for a typical source (a 10M⊙ compact object captured by a 106M⊙ SMBH at a signal to noise ratio of 30) we expect to determine the two masses to within a fractional error of ˜10-4, measure the spin parameter q to ˜10-4.5, and determine the location of the source on the sky and the spin orientation to within 10-3 steradians. We show that, for this kludge model, omitting the conservative corrections leads to a small error over much of the parameter space, i.e., the ratio R of the theoretical model error to the Fisher matrix error is R<1 for all ten parameters in the model. For the few systems with larger errors typically R<3 and hence the conservative corrections can be marginally ignored. In addition, we use our model and first-order self-force results for Schwarzschild black holes to estimate the error that arises from omitting the second-order radiative piece of the self-force. This indicates that it may not be necessary to go beyond first order to recover accurate parameter estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Large-Area Visually Augmented Navigation for Autonomous Underwater Vehicles
2005-06-01
constrain position drift . Correction of errors in position and orientation are made each time the mosaic is updated, which occurs every Lth video frame. They...are the greatest strength of a VAN methodology. It is these measurements which help to correct dead-reckoned drift error and enforce recovery of a...systems. [INSTRUMENT [VARIABLE I INTENAL? I UPDATE RATE PRECISION FRANGE J DRIFT Acoustic Altimeter Z - Altitude yes varies: 0.1-10 Hz 0.01-1.0 m varies
Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)
NASA Astrophysics Data System (ADS)
Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia
2016-04-01
Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.
Analysis of Prostate Patient Setup and Tracking Data: Potential Intervention Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Zhong, E-mail: zsu@floridaproton.org; Zhang Lisha; Murphy, Martin
Purpose: To evaluate the setup, interfraction, and intrafraction organ motion error distributions and simulate intrafraction intervention strategies for prostate radiotherapy. Methods and Materials: A total of 17 patients underwent treatment setup and were monitored using the Calypso system during radiotherapy. On average, the prostate tracking measurements were performed for 8 min/fraction for 28 fractions for each patient. For both patient couch shift data and intrafraction organ motion data, the systematic and random errors were obtained from the patient population. The planning target volume margins were calculated using the van Herk formula. Two intervention strategies were simulated using the tracking data:more » the deviation threshold and period. The related planning target volume margins, time costs, and prostate position 'fluctuation' were presented. Results: The required treatment margin for the left-right, superoinferior, and anteroposterior axes was 8.4, 10.8, and 14.7 mm for skin mark-only setup and 1.3, 2.3, and 2.8 mm using the on-line setup correction, respectively. Prostate motion significantly correlated among the superoinferior and anteroposterior directions. Of the 17 patients, 14 had prostate motion within 5 mm of the initial setup position for {>=}91.6% of the total tracking time. The treatment margin decreased to 1.1, 1.8, and 2.3 mm with a 3-mm threshold correction and to 0.5, 1.0, and 1.5 mm with an every-2-min correction in the left-right, superoinferior, and anteroposterior directions, respectively. The periodic corrections significantly increase the treatment time and increased the number of instances when the setup correction was made during transient excursions. Conclusions: The residual systematic and random error due to intrafraction prostate motion is small after on-line setup correction. Threshold-based and time-based intervention strategies both reduced the planning target volume margins. The time-based strategies increased the treatment time and the in-fraction position fluctuation.« less
Correcting for sequencing error in maximum likelihood phylogeny inference.
Kuhner, Mary K; McGill, James
2014-11-04
Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.
Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography
Liu, J.; Xia, J.; Chen, C.; Zhang, G.
2005-01-01
The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.
NASA Technical Reports Server (NTRS)
Challa, M. S.; Natanson, G. A.; Baker, D. F.; Deutschmann, J. K.
1994-01-01
This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec.
Survey of Radar Refraction Error Corrections
2016-11-01
ELECTRONIC TRAJECTORY MEASUREMENTS GROUP RCC 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS DISTRIBUTION A: Approved for...DOCUMENT 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS November 2016 Prepared by Electronic...This page intentionally left blank. Survey of Radar Refraction Error Corrections, RCC 266-16 iii Table of Contents Preface
On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation
NASA Astrophysics Data System (ADS)
Ouwerkerk, Ronald; Bottomley, Paul A.
2001-02-01
Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where metabolite concentrations change, accurate saturation corrections are possible without much loss in SNR.
Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons
NASA Astrophysics Data System (ADS)
Gilpin, Shay; Rieckh, Therese; Anthes, Richard
2018-05-01
Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant reduction in RMS differences, such that RMS differences are nearly identical to the sampling correction regardless of the geometric constraints. We conclude that implementing the spatial-temporal sampling correction using a reliable model will most effectively reduce sampling errors during RO-RS comparisons; however, if a reliable model is not available, restricting spatial comparisons to within an ellipse parallel to the wind flow will reduce sampling errors caused by horizontal atmospheric variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Chad R. R. N.; Kemp, Robert A. de, E-mail: RAdeKemp@ottawaheart.ca; Klein, Ran
Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers wasmore » resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the magnitude of MBF errors resulting from motion in the superior/inferior and anterior/posterior directions was similar (up to 250%). Body motion effects were more detrimental for higher resolution PET imaging (2 vs 10 mm full-width at half-maximum), and for motion occurring during the mid-to-late time-frames. Motion correction of the reconstructed dynamic image series resulted in significant reduction in MBF errors, but did not account for the residual PET–CTAC misalignment artifacts. MBF bias was reduced further using global partial-volume correction, and using dynamic alignment of the PET projection data to the CT scan for accurate attenuation correction during image reconstruction. Conclusions: Patient body motion can produce MBF estimation errors up to 500%. To reduce these errors, new motion correction algorithms must be effective in identifying motion in the left/right direction, and in the mid-to-late time-frames, since these conditions produce the largest errors in MBF, particularly for high resolution PET imaging. Ideally, motion correction should be done before or during image reconstruction to eliminate PET-CTAC misalignment artifacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk
Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less
Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes
NASA Astrophysics Data System (ADS)
Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme
2017-04-01
In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM, considered better altimetric surfaces when compared to the ECMWF orography, can be used. When using the model orography, systematic errors up to 3-5 cm are found in the DTC for most of the selected regions, which can induce significant errors in e.g. the determination of mean river profiles or lake level time series. For the Danube River, larger DTC errors up to 10 cm, due to terrain characteristics, can appear. For the WTC, with higher spatial variability, model errors of magnitude 1-3 cm are expected over inland waters. In the Danube region, the comparison of GNSS- and ECMWF-derived WTC has shown that the error in the WTC computed at orography level can be up to 3 cm. WTC errors with this magnitude have been found for all ROI. Although globally small, these errors are systematic and must be corrected prior to the generation of CS-2 Level 2 products. Once computed at the mean profile and mean lake level, the results show that tropospheric corrections have accuracy better than 1 cm. This analysis is currently being extended to S3 data and the first results are shown.
A Slowed Cell Cycle Stabilizes the Budding Yeast Genome.
Vinton, Peter J; Weinert, Ted
2017-06-01
During cell division, aberrant DNA structures are detected by regulators called checkpoints that slow division to allow error correction. In addition to checkpoint-induced delay, it is widely assumed, though rarely shown, that merely slowing the cell cycle might allow more time for error detection and correction, thus resulting in a more stable genome. Fidelity by a slowed cell cycle might be independent of checkpoints. Here we tested the hypothesis that a slowed cell cycle stabilizes the genome, independent of checkpoints, in the budding yeast Saccharomyces cerevisiae We were led to this hypothesis when we identified a gene ( ERV14 , an ER cargo membrane protein) that when mutated, unexpectedly stabilized the genome, as measured by three different chromosome assays. After extensive studies of pathways rendered dysfunctional in erv14 mutant cells, we are led to the inference that no particular pathway is involved in stabilization, but rather the slowed cell cycle induced by erv14 stabilized the genome. We then demonstrated that, in genetic mutations and chemical treatments unrelated to ERV14 , a slowed cell cycle indeed correlates with a more stable genome, even in checkpoint-proficient cells. Data suggest a delay in G2/M may commonly stabilize the genome. We conclude that chromosome errors are more rarely made or are more readily corrected when the cell cycle is slowed (even ∼15 min longer in an ∼100-min cell cycle). And, some chromosome errors may not signal checkpoint-mediated responses, or do not sufficiently signal to allow correction, and their correction benefits from this "time checkpoint." Copyright © 2017 by the Genetics Society of America.
Arndt, Stefan K; Irawan, Andi; Sanders, Gregor J
2015-12-01
Relative water content (RWC) and the osmotic potential (π) of plant leaves are important plant traits that can be used to assess drought tolerance or adaptation of plants. We estimated the magnitude of errors that are introduced by dilution of π from apoplastic water in osmometry methods and the errors that occur during rehydration of leaves for RWC and π in 14 different plant species from trees, grasses and herbs. Our data indicate that rehydration technique and length of rehydration can introduce significant errors in both RWC and π. Leaves from all species were fully turgid after 1-3 h of rehydration and increasing the rehydration time resulted in a significant underprediction of RWC. Standing rehydration via the petiole introduced the least errors while rehydration via floating disks and submerging leaves for rehydration led to a greater underprediction of RWC. The same effect was also observed for π. The π values following standing rehydration could be corrected by applying a dilution factor from apoplastic water dilution using an osmometric method but not by using apoplastic water fraction (AWF) from pressure volume (PV) curves. The apoplastic water dilution error was between 5 and 18%, while the two other rehydration methods introduced much greater errors. We recommend the use of the standing rehydration method because (1) the correct rehydration time can be evaluated by measuring water potential, (2) overhydration effects were smallest, and (3) π can be accurately corrected by using osmometric methods to estimate apoplastic water dilution. © 2015 Scandinavian Plant Physiology Society.
Kodak, Tiffany; Campbell, Vincent; Bergmann, Samantha; LeBlanc, Brittany; Kurtz-Nelson, Eva; Cariveau, Tom; Haq, Shaji; Zemantic, Patricia; Mahon, Jacob
2016-09-01
Prior research shows that learners have idiosyncratic responses to error-correction procedures during instruction. Thus, assessments that identify error-correction strategies to include in instruction can aid practitioners in selecting individualized, efficacious, and efficient interventions. The current investigation conducted an assessment to compare 5 error-correction procedures that have been evaluated in the extant literature and are common in instructional practice for children with autism spectrum disorder (ASD). Results showed that the assessment identified efficacious and efficient error-correction procedures for all participants, and 1 procedure was efficient for 4 of the 5 participants. To examine the social validity of error-correction procedures, participants selected among efficacious and efficient interventions in a concurrent-chains assessment. We discuss the results in relation to prior research on error-correction procedures and current instructional practices for learners with ASD. © 2016 Society for the Experimental Analysis of Behavior.
Wong, Aaron L; Shelhamer, Mark
2014-05-01
Adaptive processes are crucial in maintaining the accuracy of body movements and rely on error storage and processing mechanisms. Although classically studied with adaptation paradigms, evidence of these ongoing error-correction mechanisms should also be detectable in other movements. Despite this connection, current adaptation models are challenged when forecasting adaptation ability with measures of baseline behavior. On the other hand, we have previously identified an error-correction process present in a particular form of baseline behavior, the generation of predictive saccades. This process exhibits long-term intertrial correlations that decay gradually (as a power law) and are best characterized with the tools of fractal time series analysis. Since this baseline task and adaptation both involve error storage and processing, we sought to find a link between the intertrial correlations of the error-correction process in predictive saccades and the ability of subjects to alter their saccade amplitudes during an adaptation task. Here we find just such a relationship: the stronger the intertrial correlations during prediction, the more rapid the acquisition of adaptation. This reinforces the links found previously between prediction and adaptation in motor control and suggests that current adaptation models are inadequate to capture the complete dynamics of these error-correction processes. A better understanding of the similarities in error processing between prediction and adaptation might provide the means to forecast adaptation ability with a baseline task. This would have many potential uses in physical therapy and the general design of paradigms of motor adaptation. Copyright © 2014 the American Physiological Society.
Automated documentation error detection and notification improves anesthesia billing performance.
Spring, Stephen F; Sandberg, Warren S; Anupama, Shaji; Walsh, John L; Driscoll, William D; Raines, Douglas E
2007-01-01
Documentation of key times and events is required to obtain reimbursement for anesthesia services. The authors installed an information management system to improve record keeping and billing performance but found that a significant number of their records still could not be billed in a timely manner, and some records were never billed at all because they contained documentation errors. Computer software was developed that automatically examines electronic anesthetic records and alerts clinicians to documentation errors by alphanumeric page and e-mail. The software's efficacy was determined retrospectively by comparing billing performance before and after its implementation. Staff satisfaction with the software was assessed by survey. After implementation of this software, the percentage of anesthetic records that could never be billed declined from 1.31% to 0.04%, and the median time to correct documentation errors decreased from 33 days to 3 days. The average time to release an anesthetic record to the billing service decreased from 3.0+/-0.1 days to 1.1+/-0.2 days. More than 90% of staff found the system to be helpful and easier to use than the previous manual process for error detection and notification. This system allowed the authors to reduce the median time to correct documentation errors and the number of anesthetic records that were never billed by at least an order of magnitude. The authors estimate that these improvements increased their department's revenue by approximately $400,000 per year.
Comparing the Effectiveness of Error-Correction Strategies in Discrete Trial Training
ERIC Educational Resources Information Center
Turan, Michelle K.; Moroz, Lianne; Croteau, Natalie Paquet
2012-01-01
Error-correction strategies are essential considerations for behavior analysts implementing discrete trial training with children with autism. The research literature, however, is still lacking in the number of studies that compare and evaluate error-correction procedures. The purpose of this study was to compare two error-correction strategies:…
Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging
NASA Astrophysics Data System (ADS)
Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.
2015-06-01
The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.
NASA Astrophysics Data System (ADS)
Próchniewicz, Dominik
2014-03-01
The reliability of precision GNSS positioning primarily depends on correct carrier-phase ambiguity resolution. An optimal estimation and correct validation of ambiguities necessitates a proper definition of mathematical positioning model. Of particular importance in the model definition is the taking into account of the atmospheric errors (ionospheric and tropospheric refraction) as well as orbital errors. The use of the network of reference stations in kinematic positioning, known as Network-based Real-Time Kinematic (Network RTK) solution, facilitates the modeling of such errors and their incorporation, in the form of correction terms, into the functional description of positioning model. Lowered accuracy of corrections, especially during atmospheric disturbances, results in the occurrence of unaccounted biases, the so-called residual errors. The taking into account of such errors in Network RTK positioning model is possible by incorporating the accuracy characteristics of the correction terms into the stochastic model of observations. In this paper we investigate the impact of the expansion of the stochastic model to include correction term variances on the reliability of the model solution. In particular the results of instantaneous solution that only utilizes a single epoch of GPS observations, is analyzed. Such a solution mode due to the low number of degrees of freedom is very sensitive to an inappropriate mathematical model definition. Thus the high level of the solution reliability is very difficult to achieve. Numerical tests performed for a test network located in mountain area during ionospheric disturbances allows to verify the described method for the poor measurement conditions. The results of the ambiguity resolution as well as the rover positioning accuracy shows that the proposed method of stochastic modeling can increase the reliability of instantaneous Network RTK performance.
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2017-08-01
Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.
A method to compute SEU fault probabilities in memory arrays with error correction
NASA Technical Reports Server (NTRS)
Gercek, Gokhan
1994-01-01
With the increasing packing densities in VLSI technology, Single Event Upsets (SEU) due to cosmic radiations are becoming more of a critical issue in the design of space avionics systems. In this paper, a method is introduced to compute the fault (mishap) probability for a computer memory of size M words. It is assumed that a Hamming code is used for each word to provide single error correction. It is also assumed that every time a memory location is read, single errors are corrected. Memory is read randomly whose distribution is assumed to be known. In such a scenario, a mishap is defined as two SEU's corrupting the same memory location prior to a read. The paper introduces a method to compute the overall mishap probability for the entire memory for a mission duration of T hours.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-01-01
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-10
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
Sowan, Azizeh K.; Vaidya, Vinay U.; Soeken, Karen L.; Hilmas, Elora
2010-01-01
OBJECTIVES The use of continuous infusion medications with individualized concentrations may increase the risk for errors in pediatric patients. The objective of this study was to evaluate the effect of computerized prescriber order entry (CPOE) for continuous infusions with standardized concentrations on frequency of pharmacy processing errors. In addition, time to process handwritten versus computerized infusion orders was evaluated and user satisfaction with CPOE as compared to handwritten orders was measured. METHODS Using a crossover design, 10 pharmacists in the pediatric satellite within a university teaching hospital were given test scenarios of handwritten and CPOE order sheets and asked to process infusion orders using the pharmacy system in order to generate infusion labels. Participants were given three groups of orders: five correct handwritten orders, four handwritten orders written with deliberate errors, and five correct CPOE orders. Label errors were analyzed and time to complete the task was recorded. RESULTS Using CPOE orders, participants required less processing time per infusion order (2 min, 5 sec ± 58 sec) compared with time per infusion order in the first handwritten order sheet group (3 min, 7 sec ± 1 min, 20 sec) and the second handwritten order sheet group (3 min, 26 sec ± 1 min, 8 sec), (p<0.01). CPOE eliminated all error types except wrong concentration. With CPOE, 4% of infusions processed contained errors, compared with 26% of the first group of handwritten orders and 45% of the second group of handwritten orders (p<0.03). Pharmacists were more satisfied with CPOE orders when compared with the handwritten method (p=0.0001). CONCLUSIONS CPOE orders saved pharmacists' time and greatly improved the safety of processing continuous infusions, although not all errors were eliminated. pharmacists were overwhelmingly satisfied with the CPOE orders PMID:22477811
Correction of clock errors in seismic data using noise cross-correlations
NASA Astrophysics Data System (ADS)
Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline
2017-04-01
Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock drifts (1 ms/day) as well as large clock jumps (6 min) are identified. The same method is applied to records of five OBS stations deployed within a radius of 150 km around La Réunion. The assumption of a linear clock drift is verified by correlating OBS for which GPS-based skew corrections were available with land stations. For two OBS stations without skew estimates, we find clock drifts of 0.9 ms/day and 0.4 ms/day. This study salvages expensive seismic records from remote regions that would be otherwise lost for seismicity or tomography studies.
Calibration and temperature correction of heat dissipation matric potential sensors
Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.
2002-01-01
This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.
High performance interconnection between high data rate networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.
1992-01-01
The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... liable for the excise tax for failure to meet the community health needs assessment requirements for any... Revenue Code. Need for Correction As published, the notice of proposed rulemaking (REG-115300-13) contains errors that are misleading and are in need of clarification. Correction to Publication Accordingly...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... impact of eliminating the correction window from the electronic grant application submission process on... process a temporary error correction window to ensure a smooth and successful transition for applicants. This window provides applicants a period of time beyond the grant application due date to correct any...
Correction of Measured Taxicab Exhaust Emission Data Based on Cmem Modle
NASA Astrophysics Data System (ADS)
Li, Q.; Jia, T.
2017-09-01
Carbon dioxide emissions from urban road traffic mainly come from automobile exhaust. However, the carbon dioxide emissions obtained by the instruments are unreliable due to time delay error. In order to improve the reliability of data, we propose a method to correct the measured vehicles' carbon dioxide emissions from instrument based on the CMEM model. Firstly, the synthetic time series of carbon dioxide emissions are simulated by CMEM model and GPS velocity data. Then, taking the simulation data as the control group, the time delay error of the measured carbon dioxide emissions can be estimated by the asynchronous correlation analysis, and the outliers can be automatically identified and corrected using the principle of DTW algorithm. Taking the taxi trajectory data of Wuhan as an example, the results show that (1) the correlation coefficient between the measured data and the control group data can be improved from 0.52 to 0.59 by mitigating the systematic time delay error. Furthermore, by adjusting the outliers which account for 4.73 % of the total data, the correlation coefficient can raise to 0.63, which suggests strong correlation. The construction of low carbon traffic has become the focus of the local government. In order to respond to the slogan of energy saving and emission reduction, the distribution of carbon emissions from motor vehicle exhaust emission was studied. So our corrected data can be used to make further air quality analysis.
Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C
2010-01-01
Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.
Predictive error detection in pianists: a combined ERP and motion capture study
Maidhof, Clemens; Pitkäniemi, Anni; Tervaniemi, Mari
2013-01-01
Performing a piece of music involves the interplay of several cognitive and motor processes and requires extensive training to achieve a high skill level. However, even professional musicians commit errors occasionally. Previous event-related potential (ERP) studies have investigated the neurophysiological correlates of pitch errors during piano performance, and reported pre-error negativity already occurring approximately 70–100 ms before the error had been committed and audible. It was assumed that this pre-error negativity reflects predictive control processes that compare predicted consequences with actual consequences of one's own actions. However, in previous investigations, correct and incorrect pitch events were confounded by their different tempi. In addition, no data about the underlying movements were available. In the present study, we exploratively recorded the ERPs and 3D movement data of pianists' fingers simultaneously while they performed fingering exercises from memory. Results showed a pre-error negativity for incorrect keystrokes when both correct and incorrect keystrokes were performed with comparable tempi. Interestingly, even correct notes immediately preceding erroneous keystrokes elicited a very similar negativity. In addition, we explored the possibility of computing ERPs time-locked to a kinematic landmark in the finger motion trajectories defined by when a finger makes initial contact with the key surface, that is, at the onset of tactile feedback. Results suggest that incorrect notes elicited a small difference after the onset of tactile feedback, whereas correct notes preceding incorrect ones elicited negativity before the onset of tactile feedback. The results tentatively suggest that tactile feedback plays an important role in error-monitoring during piano performance, because the comparison between predicted and actual sensory (tactile) feedback may provide the information necessary for the detection of an upcoming error. PMID:24133428
A simulation of GPS and differential GPS sensors
NASA Technical Reports Server (NTRS)
Rankin, James M.
1993-01-01
The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.
Global Erratum for Kepler Q0-Q17 and K2 C0-C5 Short Cadence Data
NASA Technical Reports Server (NTRS)
Caldwell, Douglas; Van Cleve, Jeffrey E.
2016-01-01
An accounting error has scrambled much of the short-cadence collateral smear data used to correct for the effects of Keplers shutterless readout. This error has been present since launch and affects approximately half of all short-cadence targets observed by Kepler and K2 to date. The resulting calibration errors are present in both the short-cadence target pixel files and the short-cadence light curves for Kepler Data Releases 1-24 and K2 Data Releases 1-7. This error does not affect long-cadence data. Since it will take some time to correct this error and reprocess all Kepler and K2 data, a list of affected targets is provided. Even though the affected targets are readily identified, the science impact for any particular target may be difficult to assess. Since the smear signal is often small compared to the target signal, the effect is negligible for many targets. However, the smear signal is scene-dependent, so time varying signals can be introduced into any target by the other stars falling on the same CCD column. Some tips on how to assess the severity of the calibration error are provided in this document.
Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators
NASA Astrophysics Data System (ADS)
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-03-01
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.
1993-01-01
We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.
Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements
NASA Technical Reports Server (NTRS)
Buehrle, R. D.; Young, C. P., Jr.
1995-01-01
This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1985-01-01
The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.
NASA Astrophysics Data System (ADS)
Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.
2015-12-01
The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.
The Measurement and Correction of the Periodic Error of the LX200-16 Telescope Driving System
NASA Astrophysics Data System (ADS)
Jeong, Jang Hae; Lee, Young Sam; Lee, Chung Uk
2000-06-01
We examined and corrected the periodic error of the LX200-16 Telescope driving system of Chungbuk National University Campus Observatory. Before correcting, the standard deviation of the periodic error in the direction of East-West was = 7.''2. After correcting,we found that the periodic error was reduced to = 1.''2.
Hochman, Eldad Yitzhak; Orr, Joseph M; Gehring, William J
2014-02-01
Cognitive control in the posterior medial frontal cortex (pMFC) is formulated in models that emphasize adaptive behavior driven by a computation evaluating the degree of difference between 2 conflicting responses. These functions are manifested by an event-related brain potential component coined the error-related negativity (ERN). We hypothesized that the ERN represents a regulative rather than evaluative pMFC process, exerted over the error motor representation, expediting the execution of a corrective response. We manipulated the motor representations of the error and the correct response to varying degrees. The ERN was greater when 1) the error response was more potent than when the correct response was more potent, 2) more errors were committed, 3) fewer and slower corrections were observed, and 4) the error response shared fewer motor features with the correct response. In their current forms, several prominent models of the pMFC cannot be reconciled with these findings. We suggest that a prepotent, unintended error is prone to reach the manual motor processor responsible for response execution before a nonpotent, intended correct response. In this case, the correct response is a correction and its execution must wait until the error is aborted. The ERN may reflect pMFC activity that aimed to suppress the error.
Horvath, Gabor; Farkas, Etelka; Boncz, Ildiko; Blaho, Miklos; Kriska, Gyorgy
2012-01-01
The experts of animal locomotion well know the characteristics of quadruped walking since the pioneering work of Eadweard Muybridge in the 1880s. Most of the quadrupeds advance their legs in the same lateral sequence when walking, and only the timing of their supporting feet differ more or less. How did this scientific knowledge influence the correctness of quadruped walking depictions in the fine arts? Did the proportion of erroneous quadruped walking illustrations relative to their total number (i.e. error rate) decrease after Muybridge? How correctly have cavemen (upper palaeolithic Homo sapiens) illustrated the walking of their quadruped prey in prehistoric times? The aim of this work is to answer these questions. We have analyzed 1000 prehistoric and modern artistic quadruped walking depictions and determined whether they are correct or not in respect of the limb attitudes presented, assuming that the other aspects of depictions used to determine the animals gait are illustrated correctly. The error rate of modern pre-Muybridgean quadruped walking illustrations was 83.5%, much more than the error rate of 73.3% of mere chance. It decreased to 57.9% after 1887, that is in the post-Muybridgean period. Most surprisingly, the prehistoric quadruped walking depictions had the lowest error rate of 46.2%. All these differences were statistically significant. Thus, cavemen were more keenly aware of the slower motion of their prey animals and illustrated quadruped walking more precisely than later artists. PMID:23227149
Horvath, Gabor; Farkas, Etelka; Boncz, Ildiko; Blaho, Miklos; Kriska, Gyorgy
2012-01-01
The experts of animal locomotion well know the characteristics of quadruped walking since the pioneering work of Eadweard Muybridge in the 1880s. Most of the quadrupeds advance their legs in the same lateral sequence when walking, and only the timing of their supporting feet differ more or less. How did this scientific knowledge influence the correctness of quadruped walking depictions in the fine arts? Did the proportion of erroneous quadruped walking illustrations relative to their total number (i.e. error rate) decrease after Muybridge? How correctly have cavemen (upper palaeolithic Homo sapiens) illustrated the walking of their quadruped prey in prehistoric times? The aim of this work is to answer these questions. We have analyzed 1000 prehistoric and modern artistic quadruped walking depictions and determined whether they are correct or not in respect of the limb attitudes presented, assuming that the other aspects of depictions used to determine the animals gait are illustrated correctly. The error rate of modern pre-Muybridgean quadruped walking illustrations was 83.5%, much more than the error rate of 73.3% of mere chance. It decreased to 57.9% after 1887, that is in the post-Muybridgean period. Most surprisingly, the prehistoric quadruped walking depictions had the lowest error rate of 46.2%. All these differences were statistically significant. Thus, cavemen were more keenly aware of the slower motion of their prey animals and illustrated quadruped walking more precisely than later artists.
NASA Astrophysics Data System (ADS)
Lu, Aiming; Atkinson, Ian C.; Vaughn, J. Thomas; Thulborn, Keith R.
2011-12-01
The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ˜16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.
Wavefront error budget and optical manufacturing tolerance analysis for 1.8m telescope system
NASA Astrophysics Data System (ADS)
Wei, Kai; Zhang, Xuejun; Xian, Hao; Rao, Changhui; Zhang, Yudong
2010-05-01
We present the wavefront error budget and optical manufacturing tolerance analysis for 1.8m telescope. The error budget accounts for aberrations induced by optical design residual, manufacturing error, mounting effects, and misalignments. The initial error budget has been generated from the top-down. There will also be an ongoing effort to track the errors from the bottom-up. This will aid in identifying critical areas of concern. The resolution of conflicts will involve a continual process of review and comparison of the top-down and bottom-up approaches, modifying both as needed to meet the top level requirements in the end. As we all know, the adaptive optical system will correct for some of the telescope system imperfections but it cannot be assumed that all errors will be corrected. Therefore, two kinds of error budgets will be presented, one is non-AO top-down error budget and the other is with-AO system error budget. The main advantage of the method is that at the same time it describes the final performance of the telescope, and gives to the optical manufacturer the maximum freedom to define and possibly modify its own manufacturing error budget.
Correcting false memories: Errors must be noticed and replaced.
Mullet, Hillary G; Marsh, Elizabeth J
2016-04-01
Memory can be unreliable. For example, after reading The new baby stayed awake all night, people often misremember that the new baby cried all night (Brewer, 1977); similarly, after hearing bed, rest, and tired, people often falsely remember that sleep was on the list (Roediger & McDermott, 1995). In general, such false memories are difficult to correct, persisting despite warnings and additional study opportunities. We argue that errors must first be detected to be corrected; consistent with this argument, two experiments showed that false memories were nearly eliminated when conditions facilitated comparisons between participants' errors and corrective feedback (e.g., immediate trial-by-trial feedback that allowed direct comparisons between their responses and the correct information). However, knowledge that they had made an error was insufficient; unless the feedback message also contained the correct answer, the rate of false memories remained relatively constant. On the one hand, there is nothing special about correcting false memories: simply labeling an error as "wrong" is also insufficient for correcting other memory errors, including misremembered facts or mistranslations. However, unlike these other types of errors--which often benefit from the spacing afforded by delayed feedback--false memories require a special consideration: Learners may fail to notice their errors unless the correction conditions specifically highlight them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina
Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less
Jurgens, Anneke; Anderson, Angelika; Moore, Dennis W
2012-01-01
To investigate the integrity with which parents and carers implement PECS in naturalistic settings, utilizing a sample of videos obtained from YouTube. Twenty-one YouTube videos meeting selection criteria were identified. The videos were reviewed for instances of seven implementer errors and, where appropriate, presence of a physical prompter. Forty-three per cent of videos and 61% of PECS exchanges contained errors in parent implementation of specific teaching strategies of the PECS training protocol. Vocal prompts, incorrect error correction and the absence of timely reinforcement occurred most frequently, while gestural prompts, insistence on speech, incorrect use of the open hand prompt and not waiting for the learner to initiate occurred less frequently. Results suggest that parents engage in vocal prompting and incorrect use of the 4-step error correction strategy when using PECS with their children, errors likely to result in prompt dependence.
5 CFR 1601.34 - Error correction.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Error correction. 1601.34 Section 1601.34 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS... in the wrong investment fund, will be corrected in accordance with the error correction regulations...
5 CFR 1601.34 - Error correction.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Error correction. 1601.34 Section 1601.34 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS... in the wrong investment fund, will be corrected in accordance with the error correction regulations...
Estimate of higher order ionospheric errors in GNSS positioning
NASA Astrophysics Data System (ADS)
Hoque, M. Mainul; Jakowski, N.
2008-10-01
Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altube, Patricia; Bech, Joan; Argemí, Oriol
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
Altube, Patricia; Bech, Joan; Argemí, Oriol; ...
2017-07-18
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Automated error correction in IBM quantum computer and explicit generalization
NASA Astrophysics Data System (ADS)
Ghosh, Debjit; Agarwal, Pratik; Pandey, Pratyush; Behera, Bikash K.; Panigrahi, Prasanta K.
2018-06-01
Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
Grout, Ray; Kolla, Hemanth; Minion, Michael; ...
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. Here, we demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher- order accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited tomore » recovering from soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual on the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehen- sive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Karabulut, Nevzat
2017-03-01
The aim of this study is to investigate the frequency of incorrect citations and its effects on the impact factor of a specific biomedical journal: the American Journal of Roentgenology. The Cited Reference Search function of Thomson Reuters' Web of Science database (formerly the Institute for Scientific Information's Web of Knowledge database) was used to identify erroneous citations. This was done by entering the journal name into the Cited Work field and entering "2011-2012" into the Cited Year(s) field. The errors in any part of the inaccurately cited references (e.g., author names, title, year, volume, issue, and page numbers) were recorded, and the types of errors (i.e., absent, deficient, or mistyped) were analyzed. Erroneous citations were corrected using the Suggest a Correction function of the Web of Science database. The effect of inaccurate citations on the impact factor of the AJR was calculated. Overall, 183 of 1055 citable articles published in 2011-2012 were inaccurately cited 423 times (mean [± SD], 2.31 ± 4.67 times; range, 1-44 times). Of these 183 articles, 110 (60.1%) were web-only articles and 44 (24.0%) were print articles. The most commonly identified errors were page number errors (44.8%) and misspelling of an author's name (20.2%). Incorrect citations adversely affected the impact factor of the AJR by 0.065 in 2012 and by 0.123 in 2013. Inaccurate citations are not infrequent in biomedical journals, yet they can be detected and corrected using the Web of Science database. Although the accuracy of references is primarily the responsibility of authors, the journal editorial office should also define a periodic inaccurate citation check task and correct erroneous citations to reclaim unnecessarily lost credit.
Error Correcting Optical Mapping Data.
Mukherjee, Kingshuk; Washimkar, Darshan; Muggli, Martin D; Salmela, Leena; Boucher, Christina
2018-05-26
Optical mapping is a unique system that is capable of producing high-resolution, high-throughput genomic map data that gives information about the structure of a genome [21]. Recently it has been used for scaffolding contigs and assembly validation for large-scale sequencing projects, including the maize [32], goat [6], and amborella [4] genomes. However, a major impediment in the use of this data is the variety and quantity of errors in the raw optical mapping data, which are called Rmaps. The challenges associated with using Rmap data are analogous to dealing with insertions and deletions in the alignment of long reads. Moreover, they are arguably harder to tackle since the data is numerical and susceptible to inaccuracy. We develop cOMET to error correct Rmap data, which to the best of our knowledge is the only optical mapping error correction method. Our experimental results demonstrate that cOMET has high prevision and corrects 82.49% of insertion errors and 77.38% of deletion errors in Rmap data generated from the E. coli K-12 reference genome. Out of the deletion errors corrected, 98.26% are true errors. Similarly, out of the insertion errors corrected, 82.19% are true errors. It also successfully scales to large genomes, improving the quality of 78% and 99% of the Rmaps in the plum and goat genomes, respectively. Lastly, we show the utility of error correction by demonstrating how it improves the assembly of Rmap data. Error corrected Rmap data results in an assembly that is more contiguous, and covers a larger fraction of the genome.
Theoretical and experimental errors for in situ measurements of plant water potential.
Shackel, K A
1984-07-01
Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (-0.6 to -1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design.
Theoretical and Experimental Errors for In Situ Measurements of Plant Water Potential 1
Shackel, Kenneth A.
1984-01-01
Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (−0.6 to −1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design. PMID:16663701
The spectral basis of optimal error field correction on DIII-D
Paz-Soldan, Carlos A.; Buttery, Richard J.; Garofalo, Andrea M.; ...
2014-04-28
Here, experimental optimum error field correction (EFC) currents found in a wide breadth of dedicated experiments on DIII-D are shown to be consistent with the currents required to null the poloidal harmonics of the vacuum field which drive the kink mode near the plasma edge. This allows the identification of empirical metrics which predict optimal EFC currents with accuracy comparable to that of first- principles modeling which includes the ideal plasma response. While further metric refinements are desirable, this work suggests optimal EFC currents can be effectively fed-forward based purely on knowledge of the vacuum error field and basic equilibriummore » properties which are routinely calculated in real-time.« less
Method for detection and correction of errors in speech pitch period estimates
NASA Technical Reports Server (NTRS)
Bhaskar, Udaya (Inventor)
1989-01-01
A method of detecting and correcting received values of a pitch period estimate of a speech signal for use in a speech coder or the like. An average is calculated of the nonzero values of received pitch period estimate since the previous reset. If a current pitch period estimate is within a range of 0.75 to 1.25 times the average, it is assumed correct, while if not, a correction process is carried out. If correction is required successively for more than a preset number of times, which will most likely occur when the speaker changes, the average is discarded and a new average calculated.
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-01-01
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-02-03
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.
Gamma model and its analysis for phase measuring profilometry.
Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G
2010-03-01
Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.
ecco: An error correcting comparator theory.
Ghirlanda, Stefano
2018-03-08
Building on the work of Ralph Miller and coworkers (Miller and Matzel, 1988; Denniston et al., 2001; Stout and Miller, 2007), I propose a new formalization of the comparator hypothesis that seeks to overcome some shortcomings of existing formalizations. The new model, dubbed ecco for "Error-Correcting COmparisons," retains the comparator process and the learning of CS-CS associations based on contingency. ecco assumes, however, that learning of CS-US associations is driven by total error correction, as first introduced by Rescorla and Wagner (1972). I explore ecco's behavior in acquisition, compound conditioning, blocking, backward blocking, and unovershadowing. In these paradigms, ecco appears capable of avoiding the problems of current comparator models, such as the inability to solve some discriminations and some paradoxical effects of stimulus salience. At the same time, ecco exhibits the retrospective revaluation phenomena that are characteristic of comparator theory. Copyright © 2018 Elsevier B.V. All rights reserved.
Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L
2014-03-01
Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.
Analysis and correction of gradient nonlinearity bias in ADC measurements
Malyarenko, Dariya I.; Ross, Brian D.; Chenevert, Thomas L.
2013-01-01
Purpose Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. Methods All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Results Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. Conclusions The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. PMID:23794533
Wang, Lingling; Fu, Li
2018-01-01
In order to decrease the velocity sculling error under vibration environments, a new sculling error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate and specific force measurements as inputs is proposed in this paper. First, the sculling error formula in incremental velocity update is analytically derived in terms of the angular rate and specific force. Next, two-time scale perturbation models of the angular rate and specific force are constructed. The new sculling correction term is derived and a gravitational search optimization method is used to determine the parameters in the two-time scale perturbation models. Finally, the performance of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different from the conventional algorithms simulated in a pure sculling circumstance. A series of test results demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling correction performance during velocity update with the advantage of less computation load compared with conventional algorithms. PMID:29346323
Pierson, T.C.
2007-01-01
Dating of dynamic, young (<500 years) geomorphic landforms, particularly volcanofluvial features, requires higher precision than is possible with radiocarbon dating. Minimum ages of recently created landforms have long been obtained from tree-ring ages of the oldest trees growing on new surfaces. But to estimate the year of landform creation requires that two time corrections be added to tree ages obtained from increment cores: (1) the time interval between stabilization of the new landform surface and germination of the sampled trees (germination lag time or GLT); and (2) the interval between seedling germination and growth to sampling height, if the trees are not cored at ground level. The sum of these two time intervals is the colonization time gap (CTG). Such time corrections have been needed for more precise dating of terraces and floodplains in lowland river valleys in the Cascade Range, where significant eruption-induced lateral shifting and vertical aggradation of channels can occur over years to decades, and where timing of such geomorphic changes can be critical to emergency planning. Earliest colonizing Douglas fir (Pseudotsuga menziesii) were sampled for tree-ring dating at eight sites on lowland (<750 m a.s.l.), recently formed surfaces of known age near three Cascade volcanoes - Mount Rainier, Mount St. Helens and Mount Hood - in southwestern Washington and northwestern Oregon. Increment cores or stem sections were taken at breast height and, where possible, at ground level from the largest, oldest-looking trees at each study site. At least ten trees were sampled at each site unless the total of early colonizers was less. Results indicate that a correction of four years should be used for GLT and 10 years for CTG if the single largest (and presumed oldest) Douglas fir growing on a surface of unknown age is sampled. This approach would have a potential error of up to 20 years. Error can be reduced by sampling the five largest Douglas fir instead of the single largest. A GLT correction of 5 years should be added to the mean ring-count age of the five largest trees growing on the surface being dated, if the trees are cored at ground level. This correction would have an approximate error of ??5 years. If the trees are cored at about 1.4 m above the round surface (breast height), a CTG correction of 11 years should be added to the mean age of the five sampled trees (with an error of about ??7 years).
Survival analysis with error-prone time-varying covariates: a risk set calibration approach
Liao, Xiaomei; Zucker, David M.; Li, Yi; Spiegelman, Donna
2010-01-01
Summary Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time-independent point exposures when the disease is rare, it is not adaptable for use with time-varying exposures. By re-calibrating the measurement error model within each risk set, a risk set regression calibration method is proposed for this setting. An algorithm for a bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard’s Health Professionals Follow-up Study (HPFS). PMID:20486928
Rocketdyne automated dynamics data analysis and management system
NASA Technical Reports Server (NTRS)
Tarn, Robert B.
1988-01-01
An automated dynamics data analysis and management systems implemented on a DEC VAX minicomputer cluster is described. Multichannel acquisition, Fast Fourier Transformation analysis, and an online database have significantly improved the analysis of wideband transducer responses from Space Shuttle Main Engine testing. Leakage error correction to recover sinusoid amplitudes and correct for frequency slewing is described. The phase errors caused by FM recorder/playback head misalignment are automatically measured and used to correct the data. Data compression methods are described and compared. The system hardware is described. Applications using the data base are introduced, including software for power spectral density, instantaneous time history, amplitude histogram, fatigue analysis, and rotordynamics expert system analysis.
Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.
Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J
2014-08-25
The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.
ERIC Educational Resources Information Center
Waugh, Rebecca E.
2010-01-01
Simultaneous prompting is an errorless learning strategy designed to reduce the number of errors students make; however, research has shown a disparity in the number of errors students make during instructional versus probe trials. This study directly examined the effects of error correction versus no error correction during probe trials on the…
ERIC Educational Resources Information Center
Waugh, Rebecca E.; Alberto, Paul A.; Fredrick, Laura D.
2011-01-01
Simultaneous prompting is an errorless learning strategy designed to reduce the number of errors students make; however, research has shown a disparity in the number of errors students make during instructional versus probe trials. This study directly examined the effects of error correction versus no error correction during probe trials on the…
Real-Time Implementation of Nonlinear Optical Processing Functions.
1986-09-30
information capacity) with the nonlinear error correction properties of associative neural nets such as the Hopfield model. Analogies between holography...symnolic ma.Ip’:ation Th.e error correcting -apart" :ty of non" ;n-ar associative merTtnies is necessary for s’uch structu-res Experimerta. results... geometrica snapes in contact ’A,.n a c-:’:ser ’Figure 51a’ ., and a spher:cal 4:verg.ng reference -eam Upion :"um’latlon of t -" c-’gram by the object beam
NASA Technical Reports Server (NTRS)
Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.
1979-01-01
Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.
Correction of Microplate Data from High-Throughput Screening.
Wang, Yuhong; Huang, Ruili
2016-01-01
High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.
Processor register error correction management
Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.
2016-12-27
Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.
NASA Astrophysics Data System (ADS)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
Kim, Miso; Park, Kwan-Dong
2017-01-01
We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403
Hoogkamer, Wouter; Potocanac, Zrinka; Van Calenbergh, Frank; Duysens, Jacques
2017-10-01
Online gait corrections are frequently used to restore gait stability and prevent falling. They require shorter response times than voluntary movements which suggests that subcortical pathways contribute to the execution of online gait corrections. To evaluate the potential role of the cerebellum in these pathways we tested the hypotheses that online gait corrections would be less accurate in individuals with focal cerebellar damage than in neurologically intact controls and that this difference would be more pronounced for shorter available response times and for short step gait corrections. We projected virtual stepping stones on an instrumented treadmill while some of the approaching stepping stones were shifted forward or backward, requiring participants to adjust their foot placement. Varying the timing of those shifts allowed us to address the effect of available response time on foot placement error. In agreement with our hypothesis, individuals with focal cerebellar lesions were less accurate in adjusting their foot placement in reaction to suddenly shifted stepping stones than neurologically intact controls. However, the cerebellar lesion group's foot placement error did not increase more with decreasing available response distance or for short step versus long step adjustments compared to the control group. Furthermore, foot placement error for the non-shifting stepping stones was also larger in the cerebellar lesion group as compared to the control group. Consequently, the reduced ability to accurately adjust foot placement during walking in individuals with focal cerebellar lesions appears to be a general movement control deficit, which could contribute to increased fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dohe, S.; Sherlock, V.; Hase, F.; Gisi, M.; Robinson, J.; Sepúlveda, E.; Schneider, M.; Blumenstock, T.
2013-08-01
The Total Carbon Column Observing Network (TCCON) has been established to provide ground-based remote sensing measurements of the column-averaged dry air mole fractions (DMF) of key greenhouse gases. To ensure network-wide consistency, biases between Fourier transform spectrometers at different sites have to be well controlled. Errors in interferogram sampling can introduce significant biases in retrievals. In this study we investigate a two-step scheme to correct these errors. In the first step the laser sampling error (LSE) is estimated by determining the sampling shift which minimises the magnitude of the signal intensity in selected, fully absorbed regions of the solar spectrum. The LSE is estimated for every day with measurements which meet certain selection criteria to derive the site-specific time series of the LSEs. In the second step, this sequence of LSEs is used to resample all the interferograms acquired at the site, and hence correct the sampling errors. Measurements acquired at the Izaña and Lauder TCCON sites are used to demonstrate the method. At both sites the sampling error histories show changes in LSE due to instrument interventions (e.g. realignment). Estimated LSEs are in good agreement with sampling errors inferred from the ratio of primary and ghost spectral signatures in optically bandpass-limited tungsten lamp spectra acquired at Lauder. The original time series of Xair and XCO2 (XY: column-averaged DMF of the target gas Y) at both sites show discrepancies of 0.2-0.5% due to changes in the LSE associated with instrument interventions or changes in the measurement sample rate. After resampling, discrepancies are reduced to 0.1% or less at Lauder and 0.2% at Izaña. In the latter case, coincident changes in interferometer alignment may also have contributed to the residual difference. In the future the proposed method will be used to correct historical spectra at all TCCON sites.
Context-Sensitive Spelling Correction of Consumer-Generated Content on Health Care
Chen, Rudan; Zhao, Xianyang; Xu, Wei; Cheng, Wenqing; Lin, Simon
2015-01-01
Background Consumer-generated content, such as postings on social media websites, can serve as an ideal source of information for studying health care from a consumer’s perspective. However, consumer-generated content on health care topics often contains spelling errors, which, if not corrected, will be obstacles for downstream computer-based text analysis. Objective In this study, we proposed a framework with a spelling correction system designed for consumer-generated content and a novel ontology-based evaluation system which was used to efficiently assess the correction quality. Additionally, we emphasized the importance of context sensitivity in the correction process, and demonstrated why correction methods designed for electronic medical records (EMRs) failed to perform well with consumer-generated content. Methods First, we developed our spelling correction system based on Google Spell Checker. The system processed postings acquired from MedHelp, a biomedical bulletin board system (BBS), and saved misspelled words (eg, sertaline) and corresponding corrected words (eg, sertraline) into two separate sets. Second, to reduce the number of words needing manual examination in the evaluation process, we respectively matched the words in the two sets with terms in two biomedical ontologies: RxNorm and Systematized Nomenclature of Medicine -- Clinical Terms (SNOMED CT). The ratio of words which could be matched and appropriately corrected was used to evaluate the correction system’s overall performance. Third, we categorized the misspelled words according to the types of spelling errors. Finally, we calculated the ratio of abbreviations in the postings, which remarkably differed between EMRs and consumer-generated content and could largely influence the overall performance of spelling checkers. Results An uncorrected word and the corresponding corrected word was called a spelling pair, and the two words in the spelling pair were its members. In our study, there were 271 spelling pairs detected, among which 58 (21.4%) pairs had one or two members matched in the selected ontologies. The ratio of appropriate correction in the 271 overall spelling errors was 85.2% (231/271). The ratio of that in the 58 spelling pairs was 86% (50/58), close to the overall ratio. We also found that linguistic errors took up 31.4% (85/271) of all errors detected, and only 0.98% (210/21,358) of words in the postings were abbreviations, which was much lower than the ratio in the EMRs (33.6%). Conclusions We conclude that our system can accurately correct spelling errors in consumer-generated content. Context sensitivity is indispensable in the correction process. Additionally, it can be confirmed that consumer-generated content differs from EMRs in that consumers seldom use abbreviations. Also, the evaluation method, taking advantage of biomedical ontology, can effectively estimate the accuracy of the correction system and reduce manual examination time. PMID:26232246
Context-Sensitive Spelling Correction of Consumer-Generated Content on Health Care.
Zhou, Xiaofang; Zheng, An; Yin, Jiaheng; Chen, Rudan; Zhao, Xianyang; Xu, Wei; Cheng, Wenqing; Xia, Tian; Lin, Simon
2015-07-31
Consumer-generated content, such as postings on social media websites, can serve as an ideal source of information for studying health care from a consumer's perspective. However, consumer-generated content on health care topics often contains spelling errors, which, if not corrected, will be obstacles for downstream computer-based text analysis. In this study, we proposed a framework with a spelling correction system designed for consumer-generated content and a novel ontology-based evaluation system which was used to efficiently assess the correction quality. Additionally, we emphasized the importance of context sensitivity in the correction process, and demonstrated why correction methods designed for electronic medical records (EMRs) failed to perform well with consumer-generated content. First, we developed our spelling correction system based on Google Spell Checker. The system processed postings acquired from MedHelp, a biomedical bulletin board system (BBS), and saved misspelled words (eg, sertaline) and corresponding corrected words (eg, sertraline) into two separate sets. Second, to reduce the number of words needing manual examination in the evaluation process, we respectively matched the words in the two sets with terms in two biomedical ontologies: RxNorm and Systematized Nomenclature of Medicine -- Clinical Terms (SNOMED CT). The ratio of words which could be matched and appropriately corrected was used to evaluate the correction system's overall performance. Third, we categorized the misspelled words according to the types of spelling errors. Finally, we calculated the ratio of abbreviations in the postings, which remarkably differed between EMRs and consumer-generated content and could largely influence the overall performance of spelling checkers. An uncorrected word and the corresponding corrected word was called a spelling pair, and the two words in the spelling pair were its members. In our study, there were 271 spelling pairs detected, among which 58 (21.4%) pairs had one or two members matched in the selected ontologies. The ratio of appropriate correction in the 271 overall spelling errors was 85.2% (231/271). The ratio of that in the 58 spelling pairs was 86% (50/58), close to the overall ratio. We also found that linguistic errors took up 31.4% (85/271) of all errors detected, and only 0.98% (210/21,358) of words in the postings were abbreviations, which was much lower than the ratio in the EMRs (33.6%). We conclude that our system can accurately correct spelling errors in consumer-generated content. Context sensitivity is indispensable in the correction process. Additionally, it can be confirmed that consumer-generated content differs from EMRs in that consumers seldom use abbreviations. Also, the evaluation method, taking advantage of biomedical ontology, can effectively estimate the accuracy of the correction system and reduce manual examination time.
Learning from Feedback: Spacing and the Delay-Retention Effect
ERIC Educational Resources Information Center
Smith, Troy A.; Kimball, Daniel R.
2010-01-01
Most modern research on the effects of feedback during learning has assumed that feedback is an error correction mechanism. Recent studies of feedback-timing effects have suggested that feedback might also strengthen initially correct responses. In an experiment involving cued recall of trivia facts, we directly tested several theories of…
Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.
2008-04-01
Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.
Error Detection/Correction in Collaborative Writing
ERIC Educational Resources Information Center
Pilotti, Maura; Chodorow, Martin
2009-01-01
In the present study, we examined error detection/correction during collaborative writing. Subjects were asked to identify and correct errors in two contexts: a passage written by the subject (familiar text) and a passage written by a person other than the subject (unfamiliar text). A computer program inserted errors in function words prior to the…
Joint Schemes for Physical Layer Security and Error Correction
ERIC Educational Resources Information Center
Adamo, Oluwayomi
2011-01-01
The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…
Error correcting coding-theory for structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-06-01
Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.
Reed-Solomon error-correction as a software patch mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendley, Kevin D.
This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.
NASA Astrophysics Data System (ADS)
Housen, B. A.
2015-12-01
Kent and Irving, 2010; and Kent et al, 2015 propose a monster shift in the position of Jurassic (160 to 145 Ma) paleopoles for North America- defined by results from igneous rocks. This monster shift is likely an unrecognized true polar wander occurrence. Although subject to inclination error, results from sedimentary rocks from North America, if corrected for these effects, can be used to supplement the available data for this time period. Steiner (2003) reported results from 48 stratigraphic horizons sampled from the Callovian Summerville Fm, from NE New Mexico. A recalculated mean of these results yields a mean direction of D = 332, I = 39, n=48, k = 15, α95 = 5.4°. These data were analyzed for possible inclination error-although the dataset is small, the E-I results yielded a corrected I = 53. This yields a corrected paleopole for NA at ~165 Ma located at 67° N and 168° E.Paleomagnetic results from the Black Hills- Kilanowski (2002) for the Callovian Hulett Mbr of the Sundance Fm, and Gregiore (2001) the Oxfordian-Tithonian Morrison Fm (Gregiore, 2001) have previously been interpreted to represent Eocene-aged remagnetizations- due to the nearly exact coincidence between the in-situ pole positions of these Jurassic units with the Eocene pole for NA. Both of the tilt-corrected results for these units have high latitude poles (Sundance Fm: 79° N, 146° E; Morrison Fm: 89° N, 165° E). An E-I analysis of these data will be presented- using a provisional inclination error of 10°, corrected paleopoles are: (Sundance Fm: 76° N, 220° E; Morrison Fm: 77° N, 266° E). The Black Hills 165 Ma (Sundance Fm) and 145 Ma (Morrison Fm) poles, provisionally corrected for 10° inclination error- occur fairly close to the NA APWP proposed by Kent et al, 2015- using an updated set of results from kimberlites- the agreement between the Sundance Fm and the Triple-B (158 Ma) pole would be nearly exact with a slightly lesser inclination error. The Summerville Fm- which is thought to be ~ coeval with the Sundance Fm- is significantly offset from this newer NA path, but a larger inclination error for this unit would produce a better agreement. Thus, pending more precise estimates of inclination error from these units, middle-late Jurassic sedimentary rocks from NA do support the existence of a MUTO (Monster Unknown True polar wander Occurrence) during Jurassic time.
Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R
2016-03-01
This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.
An active co-phasing imaging testbed with segmented mirrors
NASA Astrophysics Data System (ADS)
Zhao, Weirui; Cao, Genrui
2011-06-01
An active co-phasing imaging testbed with high accurate optical adjustment and control in nanometer scale was set up to validate the algorithms of piston and tip-tilt error sensing and real-time adjusting. Modularization design was adopted. The primary mirror was spherical and divided into three sub-mirrors. One of them was fixed and worked as reference segment, the others were adjustable respectively related to the fixed segment in three freedoms (piston, tip and tilt) by using sensitive micro-displacement actuators in the range of 15mm with a resolution of 3nm. The method of twodimension dispersed fringe analysis was used to sense the piston error between the adjacent segments in the range of 200μm with a repeatability of 2nm. And the tip-tilt error was gained with the method of centroid sensing. Co-phasing image could be realized by correcting the errors measured above with the sensitive micro-displacement actuators driven by a computer. The process of co-phasing error sensing and correcting could be monitored in real time by a scrutiny module set in this testbed. A FISBA interferometer was introduced to evaluate the co-phasing performance, and finally a total residual surface error of about 50nm rms was achieved.
76 FR 44010 - Medicare Program; Hospice Wage Index for Fiscal Year 2012; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
.... 93.774, Medicare-- Supplementary Medical Insurance Program) Dated: July 15, 2011. Dawn L. Smalls... corrects technical errors that appeared in the notice of CMS ruling published in the Federal Register on... FR 26731), there were technical errors that are identified and corrected in the Correction of Errors...
Frequency of under-corrected refractive errors in elderly Chinese in Beijing.
Xu, Liang; Li, Jianjun; Cui, Tongtong; Tong, Zhongbiao; Fan, Guizhi; Yang, Hua; Sun, Baochen; Zheng, Yuanyuan; Jonas, Jost B
2006-07-01
The aim of the study was to evaluate the prevalence of under-corrected refractive error among elderly Chinese in the Beijing area. The population-based, cross-sectional, cohort study comprised 4,439 subjects out of 5,324 subjects asked to participate (response rate 83.4%) with an age of 40+ years. It was divided into a rural part [1,973 (44.4%) subjects] and an urban part [2,466 (55.6%) subjects]. Habitual and best-corrected visual acuity was measured. Under-corrected refractive error was defined as an improvement in visual acuity of the better eye of at least two lines with best possible refractive correction. The rate of under-corrected refractive error was 19.4% (95% confidence interval, 18.2, 20.6). In a multiple regression analysis, prevalence and size of under-corrected refractive error in the better eye was significantly associated with lower level of education (P<0.001), female gender (P<0.001), and age (P=0.001). Under-correction of refractive error is relatively common among elderly Chinese in the Beijing area when compared with data from other populations.
NASA Astrophysics Data System (ADS)
Yılmaz, Umit C.; Cavdar, Ismail H.
2015-04-01
In intersatellite optical communication, the Pointing, Acquisition and Tracking (PAT) phase is one of the important phases that needs to be completed successfully before initiating communication. In this paper, we focused on correcting the possible errors on the Geostationary Earth Orbit (GEO) by using azimuth and elevation errors between Low Earth Orbit (LEO) to GEO optical link during the PAT phase. To minimise the PAT duration, a simplified correction of longitude and inclination errors of the GEO satellite's osculating Keplerian parameters has been suggested. A simulation has been done considering the beaconless tracking and spiral-scanning technique. As a result, starting from the second day, we are able to reduce the uncertainty cone of the GEO satellite by about 200 μrad, if the values are larger than that quantity. The first day of the LEO-GEO links have been used to determine the parameters. Thanks to the corrections, the locking time onto the GEO satellite has been reduced, and more data are able to transmit to the GEO satellite.
Spatially coupled low-density parity-check error correction for holographic data storage
NASA Astrophysics Data System (ADS)
Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro
2017-09-01
The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.
Adaptive control for accelerators
Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.
1991-01-01
An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.
Transient Faults in Computer Systems
NASA Technical Reports Server (NTRS)
Masson, Gerald M.
1993-01-01
A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.
A systematic comparison of error correction enzymes by next-generation sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.
Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less
A systematic comparison of error correction enzymes by next-generation sequencing
Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.; ...
2017-08-01
Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less
Truong, Trong-Kha; Guidon, Arnaud
2014-01-01
Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457
Error detection and correction unit with built-in self-test capability for spacecraft applications
NASA Technical Reports Server (NTRS)
Timoc, Constantin
1990-01-01
The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.
Method and apparatus for correcting eddy current signal voltage for temperature effects
Kustra, Thomas A.; Caffarel, Alfred J.
1990-01-01
An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of eddy-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an eddy-current probe which allows the probe to be selectively connected between an eddy current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of eddy current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the eddy current measurement. The true error can consequently be converted into an equivalent eddy current measurement correction.
Intended actions and unexpected outcomes: automatic and controlled processing in a rapid motor task
Cheyne, Douglas O.; Ferrari, Paul; Cheyne, James A.
2012-01-01
Human action involves a combination of controlled and automatic behavior. These processes may interact in tasks requiring rapid response selection or inhibition, where temporal constraints preclude timely intervention by conscious, controlled processes over automatized prepotent responses. Such contexts tend to produce frequent errors, but also rapidly executed correct responses, both of which may sometimes be perceived as surprising, unintended, or “automatic”. In order to identify neural processes underlying these two aspects of cognitive control, we measured neuromagnetic brain activity in 12 right-handed subjects during manual responses to rapidly presented digits, with an infrequent target digit that required switching response hand (bimanual task) or response finger (unimanual task). Automaticity of responding was evidenced by response speeding (shorter response times) prior to both failed and fast correct switches. Consistent with this automaticity interpretation of fast correct switches, we observed bilateral motor preparation, as indexed by suppression of beta band (15–30 Hz) oscillations in motor cortex, prior to processing of the switch cue in the bimanual task. In contrast, right frontal theta activity (4–8 Hz) accompanying correct switch responses began after cue onset, suggesting that it reflected controlled inhibition of the default response. Further, this activity was reduced on fast correct switch trials suggesting a more automatic mode of inhibitory control. We also observed post-movement (event-related negativity) ERN-like responses and theta band increases in medial and anterior frontal regions that were significantly larger on error trials, and may reflect a combination of error and delayed inhibitory signals. We conclude that both automatic and controlled processes are engaged in parallel during rapid motor tasks, and that the relative strength and timing of these processes may underlie both optimal task performance and subjective experiences of automaticity or control. PMID:22912612
How EFL Students Can Use Google to Correct Their "Untreatable" Written Errors
ERIC Educational Resources Information Center
Geiller, Luc
2014-01-01
This paper presents the findings of an experiment in which a group of 17 French post-secondary EFL learners used Google to self-correct several "untreatable" written errors. Whether or not error correction leads to improved writing has been much debated, some researchers dismissing it is as useless and others arguing that error feedback…
Critical Neural Substrates for Correcting Unexpected Trajectory Errors and Learning from Them
ERIC Educational Resources Information Center
Mutha, Pratik K.; Sainburg, Robert L.; Haaland, Kathleen Y.
2011-01-01
Our proficiency at any skill is critically dependent on the ability to monitor our performance, correct errors and adapt subsequent movements so that errors are avoided in the future. In this study, we aimed to dissociate the neural substrates critical for correcting unexpected trajectory errors and learning to adapt future movements based on…
ERIC Educational Resources Information Center
Nicewander, W. Alan
2018-01-01
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction
NASA Technical Reports Server (NTRS)
Kolodzijczak, Jeffrey J.; Smith, Jeffrey C.; Jenkins, Jon M.
2013-01-01
The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moiré pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moiré pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities.
Improving Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less
Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank
2015-01-01
Quantification of the setup errors is vital to define appropriate setup margins preventing geographical misses. The no‐action–level (NAL) correction protocol reduces the systematic setup errors and, hence, the setup margins. The manual entry of the setup corrections in the record‐and‐verify software, however, increases the susceptibility of the NAL protocol to human errors. Moreover, the impact of the skin mobility on the anteroposterior patient setup reproducibility in whole‐breast radiotherapy (WBRT) is unknown. In this study, we therefore investigated the potential of fixed vertical couch position‐based patient setup in WBRT. The possibility to introduce a threshold for correction of the systematic setup errors was also explored. We measured the anteroposterior, mediolateral, and superior–inferior setup errors during fractions 1–12 and weekly thereafter with tangential angled single modality paired imaging. These setup data were used to simulate the residual setup errors of the NAL protocol, the fixed vertical couch position protocol, and the fixed‐action–level protocol with different correction thresholds. Population statistics of the setup errors of 20 breast cancer patients and 20 breast cancer patients with additional regional lymph node (LN) irradiation were calculated to determine the setup margins of each off‐line correction protocol. Our data showed the potential of the fixed vertical couch position protocol to restrict the systematic and random anteroposterior residual setup errors to 1.8 mm and 2.2 mm, respectively. Compared to the NAL protocol, a correction threshold of 2.5 mm reduced the frequency of mediolateral and superior–inferior setup corrections with 40% and 63%, respectively. The implementation of the correction threshold did not deteriorate the accuracy of the off‐line setup correction compared to the NAL protocol. The combination of the fixed vertical couch position protocol, for correction of the anteroposterior setup error, and the fixed‐action–level protocol with 2.5 mm correction threshold, for correction of the mediolateral and the superior–inferior setup errors, was proved to provide adequate and comparable patient setup accuracy in WBRT and WBRT with additional LN irradiation. PACS numbers: 87.53.Kn, 87.57.‐s
Bruza, Petr; Gollub, Sarah L; Andreozzi, Jacqueline M; Tendler, Irwin I; Williams, Benjamin B; Jarvis, Lesley A; Gladstone, David J; Pogue, Brian W
2018-05-02
The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR ≈ 470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.
NASA Astrophysics Data System (ADS)
Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.
2018-05-01
The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR ≈ 470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.
A modified adjoint-based grid adaptation and error correction method for unstructured grid
NASA Astrophysics Data System (ADS)
Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi
2018-05-01
Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.
Kuwabara, Masaru; Mansouri, Farshad A.; Buckley, Mark J.
2014-01-01
Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys' error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys' speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys' target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood. PMID:24872558
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
INDEPENDENT EVALUATION OF THE GAM EX5ALN MINIATURE LINE-NARROWED KRF EXCIMER LASER
2017-06-01
software included the disabled tabs and buttons that clutter the panels. Information on these panels was not updated correctly (e.g., shots per fill and...total shots are not stored correctly and appear to contain random data, the lock function on the fill page does not update correctly, the time to...fill level after 7 M shots . .............................................................................. Error! Bookmark not defined. 7: Shelf-life
Presearch Data Conditioning in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.
2010-01-01
We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.
Correcting AUC for Measurement Error.
Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang
2015-12-01
Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.
DNA assembly with error correction on a droplet digital microfluidics platform.
Khilko, Yuliya; Weyman, Philip D; Glass, John I; Adams, Mark D; McNeil, Melanie A; Griffin, Peter B
2018-06-01
Custom synthesized DNA is in high demand for synthetic biology applications. However, current technologies to produce these sequences using assembly from DNA oligonucleotides are costly and labor-intensive. The automation and reduced sample volumes afforded by microfluidic technologies could significantly decrease materials and labor costs associated with DNA synthesis. The purpose of this study was to develop a gene assembly protocol utilizing a digital microfluidic device. Toward this goal, we adapted bench-scale oligonucleotide assembly methods followed by enzymatic error correction to the Mondrian™ digital microfluidic platform. We optimized Gibson assembly, polymerase chain reaction (PCR), and enzymatic error correction reactions in a single protocol to assemble 12 oligonucleotides into a 339-bp double- stranded DNA sequence encoding part of the human influenza virus hemagglutinin (HA) gene. The reactions were scaled down to 0.6-1.2 μL. Initial microfluidic assembly methods were successful and had an error frequency of approximately 4 errors/kb with errors originating from the original oligonucleotide synthesis. Relative to conventional benchtop procedures, PCR optimization required additional amounts of MgCl 2 , Phusion polymerase, and PEG 8000 to achieve amplification of the assembly and error correction products. After one round of error correction, error frequency was reduced to an average of 1.8 errors kb - 1 . We demonstrated that DNA assembly from oligonucleotides and error correction could be completely automated on a digital microfluidic (DMF) platform. The results demonstrate that enzymatic reactions in droplets show a strong dependence on surface interactions, and successful on-chip implementation required supplementation with surfactants, molecular crowding agents, and an excess of enzyme. Enzymatic error correction of assembled fragments improved sequence fidelity by 2-fold, which was a significant improvement but somewhat lower than expected compared to bench-top assays, suggesting an additional capacity for optimization.
NASA Astrophysics Data System (ADS)
Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying
2010-04-01
In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.
Laser Measurements Based for Volumetric Accuracy Improvement of Multi-axis Systems
NASA Astrophysics Data System (ADS)
Vladimir, Sokolov; Konstantin, Basalaev
The paper describes a new developed approach to CNC-controlled multi-axis systems geometric errors compensation based on optimal error correction strategy. Multi-axis CNC-controlled systems - machine-tools and CMM's are the basis of modern engineering industry. Similar design principles of both technological and measurement equipment allow usage of similar approaches to precision management. The approach based on geometric errors compensation are widely used at present time. The paper describes a system for compensation of geometric errors of multi-axis equipment based on the new approach. The hardware basis of the developed system is a multi-function laser interferometer. The principles of system's implementation, results of measurements and system's functioning simulation are described. The effectiveness of application of described principles to multi-axis equipment of different sizes and purposes for different machining directions and zones within workspace is presented. The concepts of optimal correction strategy is introduced and dynamic accuracy control is proposed.
Distance error correction for time-of-flight cameras
NASA Astrophysics Data System (ADS)
Fuersattel, Peter; Schaller, Christian; Maier, Andreas; Riess, Christian
2017-06-01
The measurement accuracy of time-of-flight cameras is limited due to properties of the scene and systematic errors. These errors can accumulate to multiple centimeters which may limit the applicability of these range sensors. In the past, different approaches have been proposed for improving the accuracy of these cameras. In this work, we propose a new method that improves two important aspects of the range calibration. First, we propose a new checkerboard which is augmented by a gray-level gradient. With this addition it becomes possible to capture the calibration features for intrinsic and distance calibration at the same time. The gradient strip allows to acquire a large amount of distance measurements for different surface reflectivities, which results in more meaningful training data. Second, we present multiple new features which are used as input to a random forest regressor. By using random regression forests, we circumvent the problem of finding an accurate model for the measurement error. During application, a correction value for each individual pixel is estimated with the trained forest based on a specifically tailored feature vector. With our approach the measurement error can be reduced by more than 40% for the Mesa SR4000 and by more than 30% for the Microsoft Kinect V2. In our evaluation we also investigate the impact of the individual forest parameters and illustrate the importance of the individual features.
Fixing Stellarator Magnetic Surfaces
NASA Astrophysics Data System (ADS)
Hanson, James D.
1999-11-01
Magnetic surfaces are a perennial issue for stellarators. The design heuristic of finding a magnetic field with zero perpendicular component on a specified outer surface often yields inner magnetic surfaces with very small resonant islands. However, magnetic fields in the laboratory are not design fields. Island-causing errors can arise from coil placement errors, stray external fields, and design inadequacies such as ignoring coil leads and incomplete characterization of current distributions within the coil pack. The problem addressed is how to eliminate such error-caused islands. I take a perturbation approach, where the zero order field is assumed to have good magnetic surfaces, and comes from a VMEC equilibrium. The perturbation field consists of error and correction pieces. The error correction method is to determine the correction field so that the sum of the error and correction fields gives zero island size at specified rational surfaces. It is particularly important to correctly calculate the island size for a given perturbation field. The method works well with many correction knobs, and a Singular Value Decomposition (SVD) technique is used to determine minimal corrections necessary to eliminate islands.
Muralikrishnan, B.; Blackburn, C.; Sawyer, D.; Phillips, S.; Bridges, R.
2010-01-01
We describe a method to estimate the scale errors in the horizontal angle encoder of a laser tracker in this paper. The method does not require expensive instrumentation such as a rotary stage or even a calibrated artifact. An uncalibrated but stable length is realized between two targets mounted on stands that are at tracker height. The tracker measures the distance between these two targets from different azimuthal positions (say, in intervals of 20° over 360°). Each target is measured in both front face and back face. Low order harmonic scale errors can be estimated from this data and may then be used to correct the encoder’s error map to improve the tracker’s angle measurement accuracy. We have demonstrated this for the second order harmonic in this paper. It is important to compensate for even order harmonics as their influence cannot be removed by averaging front face and back face measurements whereas odd orders can be removed by averaging. We tested six trackers from three different manufacturers. Two of those trackers are newer models introduced at the time of writing of this paper. For older trackers from two manufacturers, the length errors in a 7.75 m horizontal length placed 7 m away from a tracker were of the order of ± 65 μm before correcting the error map. They reduced to less than ± 25 μm after correcting the error map for second order scale errors. Newer trackers from the same manufacturers did not show this error. An older tracker from a third manufacturer also did not show this error. PMID:27134789
Quantum Cryptography in Existing Telecommunications Infrastructure
NASA Astrophysics Data System (ADS)
Rogers, Daniel; Bienfang, Joshua; Mink, Alan; Hershman, Barry; Nakassis, Anastase; Tang, Xiao; Ma, Lijun; Su, David; Williams, Carl; Clark, Charles
2006-03-01
Quantum cryptography has shown the potential for ultra-secure communications. However, all systems demonstrated to date operate at speeds that make them impractical for performing continuous one-time-pad encryption of today's broadband communications. By adapting clock and data recovery techniques from modern telecommunications engineering practice, and by designing and implementing expeditious error correction and privacy amplification algorithms, we have demonstrated error-corrected and privacy-amplified key rates up to 1.0 Mbps over a free-space link with a 1.25 Gbps clock. Using new detectors with improved timing resolution, careful wavelength selection and an increased clock speed, we expect to quadruple the transmission rate over a 1.5 km free-space link. We have identified scalable solutions for delivering sustained one-time-pad encryption at 10 Mbps, thus making it possible to integrate quantum cryptography with first-generation Ethernet protocols.
ERIC Educational Resources Information Center
Sampson, Andrew
2012-01-01
This paper reports on a small-scale study into the effects of uncoded correction (writing the correct forms above each error) and coded annotations (writing symbols that encourage learners to self-correct) on Colombian university-level EFL learners' written work. The study finds that while both coded annotations and uncoded correction appear to…
Specificity of Atmosphere Correction of Satellite Ocean Color Data in Far-Eastern Region
NASA Astrophysics Data System (ADS)
Trusenkova, O.; Kachur, V.; Aleksanin, A. I.
2016-02-01
It was carried out an error analysis of satellite reflectance coefficients (Rrs) of MODIS/AQUA colour data for two atmospheric correction algorithms (NIR, MUMM) in the Far-Eastern region. Some sets of unique data of in situ and satellite measurements have been analysed. A set has some measurements with ASD spectroradiometer for each satellite pass. The measurement allocations were selected so the Chlorophyll-a concentration has high variability. Analysis of arbitrary set demonstrated that the main error component is systematic error, and it has simple relations on Rrs values. The reasons of such error behavior are considered. The most probable explanation of the large errors of oceanic color parameters in the Far-Eastern region is the ability of high concentrations of continental aerosol. A comparison of satellite and in situ measurements at AERONET stations of USA and South Korea regions has been made. It was shown that for NIR-correction of the atmosphere influence the error values in these two regions have differences up to 10 times for almost the same water turbidity and relatively good accuracy of computation of aerosol optical thickness. The study was supported by grant Russian Scientific Foundation No. 14-50-00034, by grant of Russian Foundation of Basic Research No.15-35-21032-mol-a-ved, and by Program of Basic Research "Far East" of Far Eastern Branch of Russian Academy of Sciences.
Bulk locality and quantum error correction in AdS/CFT
NASA Astrophysics Data System (ADS)
Almheiri, Ahmed; Dong, Xi; Harlow, Daniel
2015-04-01
We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.
Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping
NASA Astrophysics Data System (ADS)
Piedrafita, Álvaro; Renes, Joseph M.
2017-12-01
We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.
Refractive errors and corrections for OCT images in an inflated lung phantom
Golabchi, Ali; Faust, J.; Golabchi, F. N.; Brooks, D. H.; Gouldstone, A.; DiMarzio, C. A.
2012-01-01
Visualization and correct assessment of alveolar volume via intact lung imaging is important to study and assess respiratory mechanics. Optical Coherence Tomography (OCT), a real-time imaging technique based on near-infrared interferometry, can image several layers of distal alveoli in intact, ex vivo lung tissue. However optical effects associated with heterogeneity of lung tissue, including the refraction caused by air-tissue interfaces along alveoli and duct walls, and changes in speed of light as it travels through the tissue, result in inaccurate measurement of alveolar volume. Experimentally such errors have been difficult to analyze because of lack of ’ground truth,’ as the lung has a unique microstructure of liquid-coated thin walls surrounding relatively large airspaces, which is difficult to model with cellular foams. In addition, both lung and foams contain airspaces of highly irregular shape, further complicating quantitative measurement of optical artifacts and correction. To address this we have adapted the Bragg-Nye bubble raft, a crystalline two-dimensional arrangement of elements similar in geometry to alveoli (up to several hundred μm in diameter with thin walls) as an inflated lung phantom in order to understand, analyze and correct these errors. By applying exact optical ray tracing on OCT images of the bubble raft, the errors are predicted and corrected. The results are validated by imaging the bubble raft with OCT from one edge and with a charged coupled device (CCD) camera in transillumination from top, providing ground truth for the OCT. PMID:22567599
Modeling coherent errors in quantum error correction
NASA Astrophysics Data System (ADS)
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
NASA Astrophysics Data System (ADS)
Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon
2016-03-01
In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.
Lüdtke, Oliver; Marsh, Herbert W; Robitzsch, Alexander; Trautwein, Ulrich
2011-12-01
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data when estimating contextual effects are distinguished: unreliability that is due to measurement error and unreliability that is due to sampling error. The fact that studies may or may not correct for these 2 types of error can be translated into a 2 × 2 taxonomy of multilevel latent contextual models comprising 4 approaches: an uncorrected approach, partial correction approaches correcting for either measurement or sampling error (but not both), and a full correction approach that adjusts for both sources of error. It is shown mathematically and with simulated data that the uncorrected and partial correction approaches can result in substantially biased estimates of contextual effects, depending on the number of L1 individuals per group, the number of groups, the intraclass correlation, the number of indicators, and the size of the factor loadings. However, the simulation study also shows that partial correction approaches can outperform full correction approaches when the data provide only limited information in terms of the L2 construct (i.e., small number of groups, low intraclass correlation). A real-data application from educational psychology is used to illustrate the different approaches.
InSAR time series analysis of ALOS-2 ScanSAR data and its implications for NISAR
NASA Astrophysics Data System (ADS)
Liang, C.; Liu, Z.; Fielding, E. J.; Huang, M. H.; Burgmann, R.
2017-12-01
The JAXA's ALOS-2 mission was launched on May 24, 2014. It operates at L-band and can acquire data in multiple modes. ScanSAR is the main operational mode and has a 350 km swath, somewhat larger than the 250 km swath of the SweepSAR mode planned for the NASA-ISRO SAR (NISAR) mission. ALOS-2 has been acquiring a wealth of L-band InSAR data. These data are of particular value in areas of dense vegetation and high relief. The InSAR technical development for ALOS-2 also enables the preparation for the upcoming NISAR mission. We have been developing advanced InSAR processing techniques for ALOS-2 over the past two years. Here, we report the important issues for doing InSAR time series analysis using ALOS-2 ScanSAR data. First, we present ionospheric correction techniques for both regular ScanSAR InSAR and MAI (multiple aperture InSAR) ScanSAR InSAR. We demonstrate the large-scale ionospheric signals in the ScanSAR interferograms. They can be well mitigated by the correction techniques. Second, based on our technical development of burst-by-burst InSAR processing for ALOS-2 ScanSAR data, we find that the azimuth Frequency Modulation (FM) rate error is an important issue not only for MAI, but also for regular InSAR time series analysis. We identify phase errors caused by azimuth FM rate errors during the focusing process of ALOS-2 product. The consequence is mostly a range ramp in the InSAR time series result. This error exists in all of the time series results we have processed. We present the correction techniques for this error following a theoretical analysis. After corrections, we present high quality ALOS-2 ScanSAR InSAR time series results in a number of areas. The development for ALOS-2 can provide important implications for NISAR mission. For example, we find that in most cases the relative azimuth shift caused by ionosphere can be as large as 4 m in a large area imaged by ScanSAR. This azimuth shift is half of the 8 m azimuth resolution of the SweepSAR mode planned for NISAR, which implies that a good coregistration strategy for NISAR's SweepSAR mode is geometrical coregistration followed by MAI or spectral diversity analysis. Besides, our development also provides implications for the processing and system parameter requirements of NISAR, such as the accuracy requirement of azimuth FM rate and range timing.
a Climatology of Global Precipitation.
NASA Astrophysics Data System (ADS)
Legates, David Russell
A global climatology of mean monthly precipitation has been developed using traditional land-based gage measurements as well as derived oceanic data. These data have been screened for coding errors and redundant entries have been removed. Oceanic precipitation estimates are most often extrapolated from coastal and island observations because few gage estimates of oceanic precipitation exist. One such procedure, developed by Dorman and Bourke and used here, employs a derived relationship between observed rainfall totals and the "current weather" at coastal stations. The combined data base contains 24,635 independent terrestial station records and 2223 oceanic grid-point records. Raingage catches are known to underestimate actual precipitation. Errors in the gage catch result from wind -field deformation, wetting losses, and evaporation from the gage and can amount to nearly 8, 2, and 1 percent of the global catch, respectively. A procedure has been developed to correct many of these errors and has been used to adjust the gage estimates of global precipitation. Space-time variations in gage type, air temperature, wind speed, and natural vegetation were incorporated into the correction procedure. Corrected data were then interpolated to the nodes of a 0.5^circ of latitude by 0.5^circ of longitude lattice using a spherically-based interpolation algorithm. Interpolation errors are largest in areas of low station density, rugged topography, and heavy precipitation. Interpolated estimates also were compared with a digital filtering technique to access the aliasing of high-frequency "noise" into the lower frequency signals. Isohyetal maps displaying the mean annual, seasonal, and monthly precipitation are presented. Gage corrections and the standard error of the corrected estimates also are mapped. Results indicate that mean annual global precipitation is 1123 mm with 1251 mm falling over the oceans and 820 mm over land. Spatial distributions of monthly precipitation generally are consistent with existing precipitation climatologies.
Williams, Camille K.; Tremblay, Luc; Carnahan, Heather
2016-01-01
Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937
NASA Astrophysics Data System (ADS)
Rotenberg, David J.
Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.
Design Specification Issues in Time-Series Intervention Models.
ERIC Educational Resources Information Center
Huitema, Bradley E.; McKean, Joseph W.
2000-01-01
Presents examples of egregious errors of interpretation in time-series intervention models and makes recommendations regarding the correct specification of the design matrix. Discusses the profound effects of variants of the slope change variable in the design matrix. (SLD)
Asymmetric soft-error resistant memory
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)
1991-01-01
A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.
46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of... § 531.5 and Appendix A to this part. (i) Where feasible, NSAs should be amended by amending only the affected specific term(s) or subterms. (ii) Each time any part of an NSA is amended, the filer shall assign...
46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of... § 531.5 and Appendix A to this part. (i) Where feasible, NSAs should be amended by amending only the affected specific term(s) or subterms. (ii) Each time any part of an NSA is amended, the filer shall assign...
46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of... § 531.5 and Appendix A to this part. (i) Where feasible, NSAs should be amended by amending only the affected specific term(s) or subterms. (ii) Each time any part of an NSA is amended, the filer shall assign...
46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of... § 531.5 and Appendix A to this part. (i) Where feasible, NSAs should be amended by amending only the affected specific term(s) or subterms. (ii) Each time any part of an NSA is amended, the filer shall assign...
46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of... § 531.5 and Appendix A to this part. (i) Where feasible, NSAs should be amended by amending only the affected specific term(s) or subterms. (ii) Each time any part of an NSA is amended, the filer shall assign...
Evaluate error correction ability of magnetorheological finishing by smoothing spectral function
NASA Astrophysics Data System (ADS)
Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin
2014-08-01
Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.
ERIC Educational Resources Information Center
Munoz, Carlos A.
2011-01-01
Very often, second language (L2) writers commit the same type of errors repeatedly, despite being corrected directly or indirectly by teachers or peers (Semke, 1984; Truscott, 1996). Apart from discouraging teachers from providing error correction feedback, this also makes them hesitant as to what form of corrective feedback to adopt. Ferris…
LANDSAT-4 MSS Geometric Correction: Methods and Results
NASA Technical Reports Server (NTRS)
Brooks, J.; Kimmer, E.; Su, J.
1984-01-01
An automated image registration system such as that developed for LANDSAT-4 can produce all of the information needed to verify and calibrate the software and to evaluate system performance. The on-line MSS archive generation process which upgrades systematic correction data to geodetic correction data is described as well as the control point library build subsystem which generates control point chips and support data for on-line upgrade of correction data. The system performance was evaluated for both temporal and geodetic registration. For temporal registration, 90% errors were computed to be .36 IFOV (instantaneous field of view) = 82.7 meters) cross track, and .29 IFOV along track. Also, for actual production runs monitored, the 90% errors were .29 IFOV cross track and .25 IFOV along track. The system specification is .3 IFOV, 90% of the time, both cross and along track. For geodetic registration performance, the model bias was measured by designating control points in the geodetically corrected imagery.
NASA Astrophysics Data System (ADS)
Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji
2017-03-01
An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.
NASA Astrophysics Data System (ADS)
Balbarani, S.; Euillades, P. A.; Euillades, L. D.; Casu, F.; Riveros, N. C.
2013-09-01
Differential interferometry is a remote sensing technique that allows studying crustal deformation produced by several phenomena like earthquakes, landslides, land subsidence and volcanic eruptions. Advanced techniques, like small baseline subsets (SBAS), exploit series of images acquired by synthetic aperture radar (SAR) sensors during a given time span. Phase propagation delay in the atmosphere is the main systematic error of interferometric SAR measurements. It affects differently images acquired at different days or even at different hours of the same day. So, datasets acquired during the same time span from different sensors (or sensor configuration) often give diverging results. Here we processed two datasets acquired from June 2010 to December 2011 by COSMO-SkyMed satellites. One of them is HH-polarized, and the other one is VV-polarized and acquired on different days. As expected, time series computed from these datasets show differences. We attributed them to non-compensated atmospheric artifacts and tried to correct them by using ERA-Interim global atmospheric model (GAM) data. With this method, we were able to correct less than 50% of the scenes, considering an area where no phase unwrapping errors were detected. We conclude that GAM-based corrections are not enough for explaining differences in computed time series, at least in the processed area of interest. We remark that no direct meteorological data for the GAM-based corrections were employed. Further research is needed in order to understand under what conditions this kind of data can be used.
The effect of monitor raster latency on VEPs, ERPs and Brain-Computer Interface performance.
Nagel, Sebastian; Dreher, Werner; Rosenstiel, Wolfgang; Spüler, Martin
2018-02-01
Visual neuroscience experiments and Brain-Computer Interface (BCI) control often require strict timings in a millisecond scale. As most experiments are performed using a personal computer (PC), the latencies that are introduced by the setup should be taken into account and be corrected. As a standard computer monitor uses a rastering to update each line of the image sequentially, this causes a monitor raster latency which depends on the position, on the monitor and the refresh rate. We technically measured the raster latencies of different monitors and present the effects on visual evoked potentials (VEPs) and event-related potentials (ERPs). Additionally we present a method for correcting the monitor raster latency and analyzed the performance difference of a code-modulated VEP BCI speller by correcting the latency. There are currently no other methods validating the effects of monitor raster latency on VEPs and ERPs. The timings of VEPs and ERPs are directly affected by the raster latency. Furthermore, correcting the raster latency resulted in a significant reduction of the target prediction error from 7.98% to 4.61% and also in a more reliable classification of targets by significantly increasing the distance between the most probable and the second most probable target by 18.23%. The monitor raster latency affects the timings of VEPs and ERPs, and correcting resulted in a significant error reduction of 42.23%. It is recommend to correct the raster latency for an increased BCI performance and methodical correctness. Copyright © 2017 Elsevier B.V. All rights reserved.
Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction
Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J.
2014-01-01
The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546
Adaptive Packet Combining Scheme in Three State Channel Model
NASA Astrophysics Data System (ADS)
Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak
2018-01-01
The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.
Kletting, P; Schimmel, S; Kestler, H A; Hänscheid, H; Luster, M; Fernández, M; Bröer, J H; Nosske, D; Lassmann, M; Glatting, G
2013-10-01
Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error. The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB. To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit parameters and their standard error estimated by using SAAM numerical and NUKFIT showed differences of <1%. The differences for the time-integrated activity coefficients were also <1% (standard error between 0.4% and 3%). In general, the application of the software is user-friendly and the results are mathematically correct and reproducible. An application of NUKFIT is presented for three different clinical examples. The software tool with its underlying methodology can be employed to objectively and reproducibly estimate the time integrated activity coefficient and its standard error for most time activity data in molecular radiotherapy.
NASA Astrophysics Data System (ADS)
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Fan, Bin; Wu, Fan
2017-08-01
The corrective calibration of the removal function plays an important role in the magnetorheological finishing (MRF) high-accuracy process. This paper mainly investigates the asymmetrical characteristic of the MRF removal function shape and further analyzes its influence on the surface residual error by means of an iteration algorithm and simulations. By comparing the ripple errors and convergence ratios based on the ideal MRF tool function and the deflected tool function, the mathematical models for calibrating the deviation of horizontal and flowing directions are presented. Meanwhile, revised mathematical models for the coordinate transformation of an MRF machine is also established. Furthermore, a Ø140-mm fused silica plane and a Ø196 mm, f/1∶1, fused silica concave sphere samples are taken as the experiments. After two runs, the plane mirror final surface error reaches PV 17.7 nm, RMS 1.75 nm, and the polishing time is 16 min in total; after three runs, the sphere mirror final surfer error reaches RMS 2.7 nm and the polishing time is 70 min in total. The convergence ratios are 96.2% and 93.5%, respectively. The spherical simulation error and the polishing result are almost consistent, which fully validate the efficiency and feasibility of the calibration method of MRF removal function error using for the high-accuracy subaperture optical manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangsaas, Anne, E-mail: a.gangsaas@erasmusmc.nl; Astreinidou, Eleftheria; Quint, Sandra
2013-10-01
Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4more » mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.« less
2012-01-01
Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins. PMID:22531060
Bouchard, Amy E; Corriveau, Hélène; Milot, Marie-Hélène
2015-01-01
With age, a decline in the temporal aspect of movement is observed such as a longer movement execution time and a decreased timing accuracy. Robotic training can represent an interesting approach to help improve movement timing among the elderly. Two types of robotic training-haptic guidance (HG; demonstrating the correct movement for a better movement planning and improved execution of movement) and error amplification (EA; exaggerating movement errors to have a more rapid and complete learning) have been positively used in young healthy subjects to boost timing accuracy. For healthy seniors, only HG training has been used so far where significant and positive timing gains have been obtained. The goal of the study was to evaluate and compare the impact of both HG and EA robotic trainings on the improvement of seniors' movement timing. Thirty-two healthy seniors (mean age 68 ± 4 years) learned to play a pinball-like game by triggering a one-degree-of-freedom hand robot at the proper time to make a flipper move and direct a falling ball toward a randomly positioned target. During HG and EA robotic trainings, the subjects' timing errors were decreased and increased, respectively, based on the subjects' timing errors in initiating a movement. Results showed that only HG training benefited learning, but the improvement did not generalize to untrained targets. Also, age had no influence on the efficacy of HG robotic training, meaning that the oldest subjects did not benefit more from HG training than the younger senior subjects. Using HG to teach the correct timing of movement seems to be a good strategy to improve motor learning for the elderly as for younger people. However, more studies are needed to assess the long-term impact of HG robotic training on improvement in movement timing.
Improving NGDC Track-line Data Quality Control
NASA Astrophysics Data System (ADS)
Chandler, M. T.; Wessel, P.
2004-12-01
Ship-board gravity, magnetic and bathymetry data archived at the National Geophysical Data Center (NGDC) represent decades of seagoing research, containing over 4,500 cruises. Cruise data remain relevent despite the prominence of satellite altimetry-derived global grids because many geologic processes remain resolvable by oceanographic research alone. Due to the tremendous investment put forth by scientists and taxpayers to compile this vast archive and the significant errors found within it, additional quality assessment and corrections are warranted. These can best be accomplished by adding to existing quality control measures at NGDC. We are currently developing open source software to provide additional quality control. Along with NGDC's current sanity checking, new data at NGDC will also be subjected to an along-track ``sniffer'' which will detect and flag suspicious data for later graphical inspection using a visual editor. If new data pass these tests, they will undergo further scrutinization using a crossover error (COE) calculator which will compare new data values to existing values at points of intersection within the archive. Data passing these tests will be deemed ``quality data`` and suitable for permanent addition to the archive, while data that fail will be returned to the source institution for correction. Crossover errors will be stored and an online COE database will be available. The COE database will allow users to apply corrections to the NGDC track-line database to produce corrected data files. At no time will the archived data itself be modified. An attempt will also be made to reduce navigational errors for pre-GPS navigated cruises. Upon completion these programs will be used to explore and model systematic errors within the archive, generate correction tables for all cruises, and to quantify the error budget in marine geophysical observations. Software will be released and these procedures will be implemented in cooperation with NGDC staff.
NASA Technical Reports Server (NTRS)
Lee, Michael
1995-01-01
Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.
NASA Technical Reports Server (NTRS)
Cooper, F. D.
1965-01-01
A method of implementing Saturn V lunar missions from an earth parking orbit is presented. The ground launch window is assumed continuous over a four and one-half hour period. The iterative guidance scheme combined with a set of auxiliary equations that define suitable S-IVB cutoff conditions, is the approach taken. The four inputs to the equations that define cutoff conditions are represented as simple third-degree polynomials as a function of ignition time. Errors at lunar arrival caused by the separate and combined effects of the guidance equations, cutoff conditions, hypersurface errors, and input representations are shown. Vehicle performance variations and parking orbit injection errors are included as perturbations. Appendix I explains how aim vectors were computed for the cutoff equations. Appendix II presents all guidance equations and related implementation procedures. Appendix III gives the derivation of the auxiliary cutoff equations. No error at lunar arrival was large enough to require a midcourse correction greater than one meter per second assuming a transfer time of three days and the midcourse correction occurs five hours after injection. Since this result is insignificant when compared to expected hardware errors, the implementation procedures presented are adequate to define cutoff conditions for Saturn V lunar missions.
Reyes, Jeanette M; Xu, Yadong; Vizuete, William; Serre, Marc L
2017-01-01
The regulatory Community Multiscale Air Quality (CMAQ) model is a means to understanding the sources, concentrations and regulatory attainment of air pollutants within a model's domain. Substantial resources are allocated to the evaluation of model performance. The Regionalized Air quality Model Performance (RAMP) method introduced here explores novel ways of visualizing and evaluating CMAQ model performance and errors for daily Particulate Matter ≤ 2.5 micrometers (PM2.5) concentrations across the continental United States. The RAMP method performs a non-homogenous, non-linear, non-homoscedastic model performance evaluation at each CMAQ grid. This work demonstrates that CMAQ model performance, for a well-documented 2001 regulatory episode, is non-homogeneous across space/time. The RAMP correction of systematic errors outperforms other model evaluation methods as demonstrated by a 22.1% reduction in Mean Square Error compared to a constant domain wide correction. The RAMP method is able to accurately reproduce simulated performance with a correlation of r = 76.1%. Most of the error coming from CMAQ is random error with only a minority of error being systematic. Areas of high systematic error are collocated with areas of high random error, implying both error types originate from similar sources. Therefore, addressing underlying causes of systematic error will have the added benefit of also addressing underlying causes of random error.
NASA Technical Reports Server (NTRS)
Allen, C. P.; Martin, C. F.
1977-01-01
The SEAHT program is designed to process multiple passes of altimeter data with intersecting ground tracks, with the estimation of corrections for orbital errors to each pass such that the data has the best overall agreement at the crossover points. Orbit error for each pass is modeled as a polynomial in time, with optional orders of 0, 1, or 2. One or more passes may be constrained in the adjustment process, thus allowing passes with the best orbits to provide the overall level and orientation of the estimated sea surface heights. Intersections which disagree by more than an input edit level are not used in the error parameter estimation. In the program implementation, passes are grouped into South-North passes and North-South passes, with the North-South passes partitioned out for the estimation of orbit error parameters. Computer core utilization is thus dependent on the number of parameters estimated for the set of South-North arcs, but is independent on the number of North-South passes. Estimated corrections for each pass are applied to the data at its input data rate and an output tape is written which contains the corrected data.
Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads.
Song, Li; Florea, Liliana
2015-01-01
Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.
Generalized algebraic scene-based nonuniformity correction algorithm.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2005-02-01
A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.
Li, T. S.; DePoy, D. L.; Marshall, J. L.; ...
2016-06-01
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less
NASA Astrophysics Data System (ADS)
Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.
2016-04-01
The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, J. P.; McNamara, J.; Yorke, E.
2012-10-15
Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged imagesmore » for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction, seven required a single correction, one required two corrections, and one required three corrections. Mean residual GTV deviation (3D distance) following GTV-based systematic correction (mean {+-} 1 standard deviation 4.8 {+-} 1.5 mm) is significantly lower than for systematic skeletal-based (6.5 {+-} 2.9 mm, p= 0.015), and weekly skeletal-based correction (7.2 {+-} 3.0 mm, p= 0.001), but is not significantly lower than daily skeletal-based correction (5.4 {+-} 2.6 mm, p= 0.34). In two cases, first-day CBCT images reveal tumor changes-one showing tumor growth, the other showing large tumor displacement-that are not readily observed in radiographs. Differences in computed GTV deviations between respiration-correlated and respiration-averaged images are 0.2 {+-} 1.8 mm in the superior-inferior direction and are of similar magnitude in the other directions. Conclusions: An off-line protocol to correct GTV-based systematic error in locally advanced lung tumor cases can be effective at reducing tumor deviations, although the findings need confirmation with larger patient statistics. In some cases, a single cone-beam CT can be useful for assessing tumor changes early in treatment, if more than a few days elapse between simulation and the start of treatment. Tumor deviations measured with respiration-averaged CT and CBCT images are consistent with those measured with respiration-correlated images; the respiration-averaged method is more easily implemented in the clinic.« less
Zumsteg, Zachary; DeMarco, John; Lee, Steve P; Steinberg, Michael L; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy
2012-06-01
On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial-lateral, superior-inferior, and anterior-posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from alternative imaging strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Supporting Dictation Speech Recognition Error Correction: The Impact of External Information
ERIC Educational Resources Information Center
Shi, Yongmei; Zhou, Lina
2011-01-01
Although speech recognition technology has made remarkable progress, its wide adoption is still restricted by notable effort made and frustration experienced by users while correcting speech recognition errors. One of the promising ways to improve error correction is by providing user support. Although support mechanisms have been proposed for…
A Hybrid Approach for Correcting Grammatical Errors
ERIC Educational Resources Information Center
Lee, Kiyoung; Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun
2015-01-01
This paper presents a hybrid approach for correcting grammatical errors in the sentences uttered by Korean learners of English. The error correction system plays an important role in GenieTutor, which is a dialogue-based English learning system designed to teach English to Korean students. During the talk with GenieTutor, grammatical error…
A Comparison of Error-Correction Procedures on Skill Acquisition during Discrete-Trial Instruction
ERIC Educational Resources Information Center
Carroll, Regina A.; Joachim, Brad T.; St. Peter, Claire C.; Robinson, Nicole
2015-01-01
Previous research supports the use of a variety of error-correction procedures to facilitate skill acquisition during discrete-trial instruction. We used an adapted alternating treatments design to compare the effects of 4 commonly used error-correction procedures on skill acquisition for 2 children with attention deficit hyperactivity disorder…
The Effect of Error Correction Feedback on the Collocation Competence of Iranian EFL Learners
ERIC Educational Resources Information Center
Jafarpour, Ali Akbar; Sharifi, Abolghasem
2012-01-01
Collocations are one of the most important elements in language proficiency but the effect of error correction feedback of collocations has not been thoroughly examined. Some researchers report the usefulness and importance of error correction (Hyland, 1990; Bartram & Walton, 1991; Ferris, 1999; Chandler, 2003), while others showed that error…
A Support System for Error Correction Questions in Programming Education
ERIC Educational Resources Information Center
Hachisu, Yoshinari; Yoshida, Atsushi
2014-01-01
For supporting the education of debugging skills, we propose a system for generating error correction questions of programs and checking the correctness. The system generates HTML files for answering questions and CGI programs for checking answers. Learners read and answer questions on Web browsers. For management of error injection, we have…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
..., Medicare--Hospital Insurance; and Program No. 93.774, Medicare-- Supplementary Medical Insurance Program.... SUMMARY: This document corrects a typographical error that appeared in the notice published in the Federal... typographical error that is identified and corrected in the Correction of Errors section below. II. Summary of...
Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay
NASA Technical Reports Server (NTRS)
Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan
2011-01-01
To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for
NASA Astrophysics Data System (ADS)
Colins, Karen; Li, Liqian; Liu, Yu
2017-05-01
Mass production of widely used semiconductor digital integrated circuits (ICs) has lowered unit costs to the level of ordinary daily consumables of a few dollars. It is therefore reasonable to contemplate the idea of an engineered system that consumes unshielded low-cost ICs for the purpose of measuring gamma radiation dose. Underlying the idea is the premise of a measurable correlation between an observable property of ICs and radiation dose. Accumulation of radiation-damage-induced state changes or error events is such a property. If correct, the premise could make possible low-cost wide-area radiation dose measurement systems, instantiated as wireless sensor networks (WSNs) with unshielded consumable ICs as nodes, communicating error events to a remote base station. The premise has been investigated quantitatively for the first time in laboratory experiments and related analyses performed at the Canadian Nuclear Laboratories. State changes or error events were recorded in real time during irradiation of samples of ICs of different types in a 60Co gamma cell. From the error-event sequences, empirical distribution functions of dose were generated. The distribution functions were inverted and probabilities scaled by total error events, to yield plots of the relationship between dose and error tallies. Positive correlation was observed, and discrete functional dependence of dose quantiles on error tallies was measured, demonstrating the correctness of the premise. The idea of an engineered system that consumes unshielded low-cost ICs in a WSN, for the purpose of measuring gamma radiation dose over wide areas, is therefore tenable.
Automatic Recognition of Phonemes Using a Syntactic Processor for Error Correction.
1980-12-01
OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS AFIT/GE/EE/8D-45 Robert B. ’Taylor 2Lt USAF Approved for public release...distribution unlimilted. AbP AFIT/GE/EE/ 80D-45 AUTOMATIC RECOGNITION OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS Presented to the...Testing ..................... 37 Bayes Decision Rule for Minimum Error ........... 37 Bayes Decision Rule for Minimum Risk ............ 39 Mini Max Test
McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy
2007-08-01
An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1 +/- 3.1% and -0.5 +/- 2.8% relative to the maximum of the intensity profiles. For the same target motion, the error was shown to increase rapidly as (1) the maximum MLC leaf velocity was reduced below 75% of the maximum target velocity and (2) the system response time was increased.
Correcting the Errors in the Writing of University Students in the Comfortable Atmosphere
ERIC Educational Resources Information Center
Lu, Tuanhua
2010-01-01
This paper analyzed the common errors in university students' writing. At the same time, it showed some methods based on activities designed to give students practice in these problem areas. The activities are meant to be carried out in a comfortable, non-threatening atmosphere in which students can make positive steps toward reducing their errors…
Study on advanced information processing system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Liu, Jyh-Charn
1992-01-01
Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.
Study on fault-tolerant processors for advanced launch system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Liu, Jyh-Charn
1990-01-01
Issues related to the reliability of a redundant system with large main memory are addressed. The Fault-Tolerant Processor (FTP) for the Advanced Launch System (ALS) is used as a basis for the presentation. When the system is free of latent faults, the probability of system crash due to multiple channel faults is shown to be insignificant even when voting on the outputs of computing channels is infrequent. Using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing redundancy or the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by those CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs (with a very low hardware overhead) can be used to dramatically reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, two different schemes were developed to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.
Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui
2015-01-01
Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941
Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui
2015-07-24
Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.
Error correcting circuit design with carbon nanotube field effect transistors
NASA Astrophysics Data System (ADS)
Liu, Xiaoqiang; Cai, Li; Yang, Xiaokuo; Liu, Baojun; Liu, Zhongyong
2018-03-01
In this work, a parallel error correcting circuit based on (7, 4) Hamming code is designed and implemented with carbon nanotube field effect transistors, and its function is validated by simulation in HSpice with the Stanford model. A grouping method which is able to correct multiple bit errors in 16-bit and 32-bit application is proposed, and its error correction capability is analyzed. Performance of circuits implemented with CNTFETs and traditional MOSFETs respectively is also compared, and the former shows a 34.4% decrement of layout area and a 56.9% decrement of power consumption.
RighTime: A real time clock correcting program for MS-DOS-based computer systems
NASA Technical Reports Server (NTRS)
Becker, G. Thomas
1993-01-01
A computer program is described which effectively eliminates the misgivings of the DOS system clock in PC/AT-class computers. RighTime is a small, sophisticated memory-resident program that automatically corrects both the DOS system clock and the hardware 'CMOS' real time clock (RTC) in real time. RighTime learns what corrections are required without operator interaction beyond the occasional accurate time set. Both warm (power on) and cool (power off) errors are corrected, usually yielding better than one part per million accuracy in the typical desktop computer with no additional hardware, and RighTime increases the system clock resolution from approximately 0.0549 second to 0.01 second. Program tools are also available which allow visualization of RighTime's actions, verification of its performance, display of its history log, and which provide data for graphing of the system clock behavior. The program has found application in a wide variety of industries, including astronomy, satellite tracking, communications, broadcasting, transportation, public utilities, manufacturing, medicine, and the military.
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
NASA Technical Reports Server (NTRS)
Long, Junsheng
1994-01-01
This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR.
Development of a press and drag method for hyperlink selection on smartphones.
Chang, Joonho; Jung, Kihyo
2017-11-01
The present study developed a novel touch method for hyperlink selection on smartphones consisting of two sequential finger interactions: press and drag motions. The novel method requires a user to press a target hyperlink, and if a touch error occurs he/she can immediately correct the touch error by dragging the finger without releasing it in the middle. The method was compared with two existing methods in terms of completion time, error rate, and subjective rating. Forty college students participated in the experiments with different hyperlink sizes (4-pt, 6-pt, 8-pt, and 10-pt) on a touch-screen device. When hyperlink size was small (4-pt and 6-pt), the novel method (time: 826 msec; error: 0.6%) demonstrated better completion time and error rate than the current method (time: 1194 msec; error: 22%). In addition, the novel method (1.15, slightly satisfied, in 7-pt bipolar scale) had significantly higher satisfaction scores than the two existing methods (0.06, neutral). Copyright © 2017 Elsevier Ltd. All rights reserved.
Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.
Samoli, Evangelia; Butland, Barbara K
2017-12-01
Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.
On codes with multi-level error-correction capabilities
NASA Technical Reports Server (NTRS)
Lin, Shu
1987-01-01
In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.
Lewis, Matthew S; Maruff, Paul; Silbert, Brendan S; Evered, Lis A; Scott, David A
2007-02-01
The reliable change index (RCI) expresses change relative to its associated error, and is useful in the identification of postoperative cognitive dysfunction (POCD). This paper examines four common RCIs that each account for error in different ways. Three rules incorporate a constant correction for practice effects and are contrasted with the standard RCI that had no correction for practice. These rules are applied to 160 patients undergoing coronary artery bypass graft (CABG) surgery who completed neuropsychological assessments preoperatively and 1 week postoperatively using error and reliability data from a comparable healthy nonsurgical control group. The rules all identify POCD in a similar proportion of patients, but the use of the within-subject standard deviation (WSD), expressing the effects of random error, as an error estimate is a theoretically appropriate denominator when a constant error correction, removing the effects of systematic error, is deducted from the numerator in a RCI.
Research of laser echo signal simulator
NASA Astrophysics Data System (ADS)
Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou
2015-11-01
Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.
Combinatorial neural codes from a mathematical coding theory perspective.
Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L
2013-07-01
Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.
42 CFR 412.278 - Administrator's review.
Code of Federal Regulations, 2014 CFR
2014-10-01
... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...
42 CFR 412.278 - Administrator's review.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...
42 CFR 412.278 - Administrator's review.
Code of Federal Regulations, 2012 CFR
2012-10-01
... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...
42 CFR 412.278 - Administrator's review.
Code of Federal Regulations, 2013 CFR
2013-10-01
... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...
Quality of death notification forms in North West Bank/Palestine: a descriptive study.
Qaddumi, Jamal A S; Nazzal, Zaher; Yacoup, Allam R S; Mansour, Mahmoud
2017-04-11
The death notification forms (DNFs) are important documents. Thus, inability to fill it properly by physicians will affect the national mortality report and, consequently, the evidence-based decision making. The errors in filling DNFs are common all over the world and are different in types and causes. We aimed to evaluate the quality of DNFs in terms of completeness and types of errors in the cause of death section. A descriptive study was conducted to review 2707 DNFs in North West Bank/Palestine during the year 2012 using data abstraction sheets. SPSS 17.0 was used to show the frequency of major and minor errors committed in filling the DNFs. Surprisingly, only 1% of the examined DNFs had their cause of death section filled completely correct. The immediate cause of death was correctly identified in 5.9% of all DNFs and the underlying cause of death was correctly reported in 55.4% of them. The sequence was incorrect in 41.5% of the DNFs. The most frequently documented minor error was "Not writing Time intervals" error (97.0%). Almost all DNFs contained at least one minor or major error. This high percentage of errors may affect the mortality and morbidity statistics, public health research and the process of providing evidence for health policy. Training workshops on DNF completion for newly recruited employees and at the beginning of the residency program are recommended on a regular basis. As well, we recommend reviewing the national DNFs to simplify it and make it consistent with updated evidence-based guidelines and recommendation.
NASA Technical Reports Server (NTRS)
Casper, Paul W.; Bent, Rodney B.
1991-01-01
The algorithm used in previous technology time-of-arrival lightning mapping systems was based on the assumption that the earth is a perfect spheroid. These systems yield highly-accurate lightning locations, which is their major strength. However, extensive analysis of tower strike data has revealed occasionally significant (one to two kilometer) systematic offset errors which are not explained by the usual error sources. It was determined that these systematic errors reduce dramatically (in some cases) when the oblate shape of the earth is taken into account. The oblate spheroid correction algorithm and a case example is presented.
How to Correct a Task Error: Task-Switch Effects Following Different Types of Error Correction
ERIC Educational Resources Information Center
Steinhauser, Marco
2010-01-01
It has been proposed that switch costs in task switching reflect the strengthening of task-related associations and that strengthening is triggered by response execution. The present study tested the hypothesis that only task-related responses are able to trigger strengthening. Effects of task strengthening caused by error corrections were…
Aldasouqi, Saleh A; Reed, Amy J
2014-11-01
The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients' visits, and should remind their patients to always verify these settings. © 2014 Diabetes Technology Society.
Pitfalls of Insulin Pump Clocks
Reed, Amy J.
2014-01-01
The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713
Atmospheric Correction of Satellite Imagery Using Modtran 3.5 Code
NASA Technical Reports Server (NTRS)
Gonzales, Fabian O.; Velez-Reyes, Miguel
1997-01-01
When performing satellite remote sensing of the earth in the solar spectrum, atmospheric scattering and absorption effects provide the sensors corrupted information about the target's radiance characteristics. We are faced with the problem of reconstructing the signal that was reflected from the target, from the data sensed by the remote sensing instrument. This article presents a method for simulating radiance characteristic curves of satellite images using a MODTRAN 3.5 band model (BM) code to solve the radiative transfer equation (RTE), and proposes a method for the implementation of an adaptive system for automated atmospheric corrections. The simulation procedure is carried out as follows: (1) for each satellite digital image a radiance characteristic curve is obtained by performing a digital number (DN) to radiance conversion, (2) using MODTRAN 3.5 a simulation of the images characteristic curves is generated, (3) the output of the code is processed to generate radiance characteristic curves for the simulated cases. The simulation algorithm was used to simulate Landsat Thematic Mapper (TM) images for two types of locations: the ocean surface, and a forest surface. The simulation procedure was validated by computing the error between the empirical and simulated radiance curves. While results in the visible region of the spectrum where not very accurate, those for the infrared region of the spectrum were encouraging. This information can be used for correction of the atmospheric effects. For the simulation over ocean, the lowest error produced in this region was of the order of 105 and up to 14 times smaller than errors in the visible region. For the same spectral region on the forest case, the lowest error produced was of the order of 10-4, and up to 41 times smaller than errors in the visible region,
Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror
NASA Astrophysics Data System (ADS)
Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu
2017-02-01
Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.
Research on the error model of airborne celestial/inertial integrated navigation system
NASA Astrophysics Data System (ADS)
Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang
2015-02-01
Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.
Asymmetric Memory Circuit Would Resist Soft Errors
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Perlman, Marvin
1990-01-01
Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
NASA Astrophysics Data System (ADS)
Rota Kops, Elena; Herzog, Hans
2013-02-01
AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.
Detection and correction of prescription errors by an emergency department pharmacy service.
Stasiak, Philip; Afilalo, Marc; Castelino, Tanya; Xue, Xiaoqing; Colacone, Antoinette; Soucy, Nathalie; Dankoff, Jerrald
2014-05-01
Emergency departments (EDs) are recognized as a high-risk setting for prescription errors. Pharmacist involvement may be important in reviewing prescriptions to identify and correct errors. The objectives of this study were to describe the frequency and type of prescription errors detected by pharmacists in EDs, determine the proportion of errors that could be corrected, and identify factors associated with prescription errors. This prospective observational study was conducted in a tertiary care teaching ED on 25 consecutive weekdays. Pharmacists reviewed all documented prescriptions and flagged and corrected errors for patients in the ED. We collected information on patient demographics, details on prescription errors, and the pharmacists' recommendations. A total of 3,136 ED prescriptions were reviewed. The proportion of prescriptions in which a pharmacist identified an error was 3.2% (99 of 3,136; 95% confidence interval [CI] 2.5-3.8). The types of identified errors were wrong dose (28 of 99, 28.3%), incomplete prescription (27 of 99, 27.3%), wrong frequency (15 of 99, 15.2%), wrong drug (11 of 99, 11.1%), wrong route (1 of 99, 1.0%), and other (17 of 99, 17.2%). The pharmacy service intervened and corrected 78 (78 of 99, 78.8%) errors. Factors associated with prescription errors were patient age over 65 (odds ratio [OR] 2.34; 95% CI 1.32-4.13), prescriptions with more than one medication (OR 5.03; 95% CI 2.54-9.96), and those written by emergency medicine residents compared to attending emergency physicians (OR 2.21, 95% CI 1.18-4.14). Pharmacists in a tertiary ED are able to correct the majority of prescriptions in which they find errors. Errors are more likely to be identified in prescriptions written for older patients, those containing multiple medication orders, and those prescribed by emergency residents.
Analyzing the errors of DFT approximations for compressed water systems
NASA Astrophysics Data System (ADS)
Alfè, D.; Bartók, A. P.; Csányi, G.; Gillan, M. J.
2014-07-01
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm3 where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mEh ≃ 15 meV/monomer for the liquid and the clusters.
Analyzing the errors of DFT approximations for compressed water systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfè, D.; London Centre for Nanotechnology, UCL, London WC1H 0AH; Thomas Young Centre, UCL, London WC1H 0AH
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm{sup 3} where the experimental pressure is 15 kilobars; second, thermal samples of compressed watermore » clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE{sub h} ≃ 15 meV/monomer for the liquid and the clusters.« less
NASA Technical Reports Server (NTRS)
Tsaoussi, Lucia S.; Koblinsky, Chester J.
1994-01-01
In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
NASA Astrophysics Data System (ADS)
Liang, Zhi-Chao; Birch, Aaron C.; Duvall, Thomas L., Jr.; Gizon, Laurent; Schou, Jesper
2017-05-01
Context. Time-distance helioseismology is one of the primary tools for studying the solar meridional circulation, especially in the lower convection zone. However, travel-time measurements of the subsurface meridional flow suffer from a variety of systematic errors, such as a center-to-limb variation and an offset due to the position angle (P-angle) uncertainty of solar images. It has been suggested that the center-to-limb variation can be removed by subtracting east-west from south-north travel-time measurements. This ad hoc method for the removal of the center-to-limb effect has been adopted widely but not tested for travel distances corresponding to the lower convection zone. Aims: We explore the effects of two major sources of the systematic errors, the P-angle error arising from the instrumental misalignment and the center-to-limb variation, on the acoustic travel-time measurements in the south-north direction. Methods: We apply the time-distance technique to contemporaneous medium-degree Dopplergrams produced by SOHO/MDI and SDO/HMI to obtain the travel-time difference caused by meridional circulation throughout the solar convection zone. The P-angle offset in MDI images is measured by cross-correlating MDI and HMI images. The travel-time measurements in the south-north and east-west directions are averaged over the same observation period (May 2010 to Apr. 2011) for the two data sets and then compared to examine the consistency of MDI and HMI travel times after applying the above-mentioned corrections. Results: The offsets in the south-north travel-time difference from MDI data induced by the P-angle error gradually diminish with increasing travel distance. However, these offsets become noisy for travel distances corresponding to waves that reach the base of the convection zone. This suggests that a careful treatment of the P-angle problem is required when studying a deep meridional flow. After correcting the P-angle and the removal of the center-to-limb effect, the travel-time measurements from MDI and HMI are consistent within the error bars for meridional circulation covering the entire convection zone. The fluctuations observed in both data sets are highly correlated and thus indicate their solar origin rather than an instrumental origin. Although our results demonstrate that the ad hoc correction is capable of reducing the wide discrepancy in the travel-time measurements from MDI and HMI, we cannot exclude the possibility that there exist other systematic effects acting on the two data sets in the same way.
Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H
2012-09-01
On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).
An Ensemble Method for Spelling Correction in Consumer Health Questions
Kilicoglu, Halil; Fiszman, Marcelo; Roberts, Kirk; Demner-Fushman, Dina
2015-01-01
Orthographic and grammatical errors are a common feature of informal texts written by lay people. Health-related questions asked by consumers are a case in point. Automatic interpretation of consumer health questions is hampered by such errors. In this paper, we propose a method that combines techniques based on edit distance and frequency counts with a contextual similarity-based method for detecting and correcting orthographic errors, including misspellings, word breaks, and punctuation errors. We evaluate our method on a set of spell-corrected questions extracted from the NLM collection of consumer health questions. Our method achieves a F1 score of 0.61, compared to an informed baseline of 0.29, achieved using ESpell, a spelling correction system developed for biomedical queries. Our results show that orthographic similarity is most relevant in spelling error correction in consumer health questions and that frequency and contextual information are complementary to orthographic features. PMID:26958208
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.
2012-12-01
The Lost-Hills oil field located in Kern County,California ranks sixth in total remaining reserves in California. Hundreds of densely packed wells characterize the field with one well every 5000 to 20000 square meters. Subsidence due to oil extraction can be grater than 10 cm/year and is highly variable both in space and time. The RADARSAT-1 SAR satellite collected data over this area with a 24-day repeat during a 2 year period spanning 2002-2004. Relatively high interferometric correlation makes this an excellent region for development and test of deformation time-series inversion algorithms. Errors in deformation time series derived from a stack of differential interferograms are primarily due to errors in the digital terrain model, interferometric baselines, variability in tropospheric delay, thermal noise and phase unwrapping errors. Particularly challenging is separation of non-linear deformation from variations in troposphere delay and phase unwrapping errors. In our algorithm a subset of interferometric pairs is selected from a set of N radar acquisitions based on criteria of connectivity, time interval, and perpendicular baseline. When possible, the subset consists of temporally connected interferograms, otherwise the different groups of interferograms are selected to overlap in time. The maximum time interval is constrained to be less than a threshold value to minimize phase gradients due to deformation as well as minimize temporal decorrelation. Large baselines are also avoided to minimize the consequence of DEM errors on the interferometric phase. Based on an extension of the SVD based inversion described by Lee et al. ( USGS Professional Paper 1769), Schmidt and Burgmann (JGR, 2003), and the earlier work of Berardino (TGRS, 2002), our algorithm combines estimation of the DEM height error with a set of finite difference smoothing constraints. A set of linear equations are formulated for each spatial point that are functions of the deformation velocities during the time intervals spanned by the interferogram and a DEM height correction. The sensitivity of the phase to the height correction depends on the length of the perpendicular baseline of each interferogram. This design matrix is augmented with a set of additional weighted constraints on the acceleration that penalize rapid velocity variations. The weighting factor γ can be varied from 0 (no smoothing) to a large values (> 10) that yield an essentially linear time-series solution. The factor can be tuned to take into account a priori knowledge of the deformation non-linearity. The difference between the time-series solution and the unconstrained time-series can be interpreted as due to a combination of tropospheric path delay and baseline error. Spatial smoothing of the residual phase leads to an improved atmospheric model that can be fed back into the model and iterated. Our analysis shows non-linear deformation related to changes in the oil extraction as well as local height corrections improving on the low resolution 3 arc-sec SRTM DEM.
Radar error statistics for the space shuttle
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.
Effect of single vision soft contact lenses on peripheral refraction.
Kang, Pauline; Fan, Yvonne; Oh, Kelly; Trac, Kevin; Zhang, Frank; Swarbrick, Helen
2012-07-01
To investigate changes in peripheral refraction with under-, full, and over-correction of central refraction with commercially available single vision soft contact lenses (SCLs) in young myopic adults. Thirty-four myopic adult subjects were fitted with Proclear Sphere SCLs to under-correct (+0.75 DS), fully correct, and over-correct (-0.75 DS) their manifest central refractive error. Central and peripheral refraction were measured with no lens wear and subsequently with different levels of SCL central refractive error correction. The uncorrected refractive error was myopic at all locations along the horizontal meridian. Peripheral refraction was relatively hyperopic compared to center at 30 and 35° in the temporal visual field (VF) in low myopes and at 30 and 35° in the temporal VF and 10, 30, and 35° in the nasal VF in moderate myopes. All levels of SCL correction caused a hyperopic shift in refraction at all locations in the horizontal VF. The smallest hyperopic shift was demonstrated with under-correction followed by full correction and then by over-correction of central refractive error. An increase in relative peripheral hyperopia was measured with full correction SCLs compared with no correction in both low and moderate myopes. However, no difference in relative peripheral refraction profiles were found between under-, full, and over-correction. Under-, full, and over-correction of central refractive error with single vision SCLs caused a hyperopic shift in both central and peripheral refraction at all positions in the horizontal meridian. All levels of SCL correction caused the peripheral retina, which initially experienced absolute myopic defocus at baseline with no correction, to experience absolute hyperopic defocus. This peripheral hyperopia may be a possible cause of myopia progression reported with different types and levels of myopia correction.
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M
2015-04-29
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods
Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun
2016-01-01
This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.
Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun
2016-01-07
This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.
Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe
2014-01-01
This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378
An Analysis of College Students' Attitudes towards Error Correction in EFL Context
ERIC Educational Resources Information Center
Zhu, Honglin
2010-01-01
This article is based on a survey on the attitudes towards the error correction by their teachers in the process of teaching and learning and it is intended to improve the language teachers' understanding of the nature of error correction. Based on the analysis, the article expounds some principles and techniques that can be applied in the process…
27 CFR 46.119 - Errors disclosed by taxpayers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... that the name and address are correctly stated; if not, the taxpayer must return the stamp to the TTB officer who issued it, with a statement showing the nature of the error and the correct name or address... stamp with that of the Form 5630.5t in TTB files, correct the error if made in the TTB office, and...
ERIC Educational Resources Information Center
Alamri, Bushra; Fawzi, Hala Hassan
2016-01-01
Error correction has been one of the core areas in the field of English language teaching. It is "seen as a form of feedback given to learners on their language use" (Amara, 2015). Many studies investigated the use of different techniques to correct students' oral errors. However, only a few focused on students' preferences and attitude…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojahn, Christopher K.
2015-10-20
This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.
Pelton, Trudy A; Johannsen, Leif; Huiya Chen; Wing, Alan M
2010-06-01
Walking in time with a metronome is associated with improved spatiotemporal parameters in hemiparetic gait; however, the mechanism linking auditory and motor systems is poorly understood. Hemiparetic cadence control with metronome synchronization was examined to determine specific influences of metronome timing on treadmill walking. A within-participant experiment examined correction processes used to maintain heel strike synchrony with the beat by applying perturbations to the timing of a metronome. Eight chronic hemiparetic participants (mean age = 70 years; standard deviation = 12) were required to synchronize heel strikes with metronome pulses set according to each individual's comfortable speed (mean 0.4 m/s). During five 100-pulse trials, a fixed-phase baseline was followed by 4 unpredictable metronome phase shifts (20% of the interpulse interval), which amounted to 10 phase shifts on each foot. Infrared cameras recorded the motion of bilateral heel markers at 120 Hz. Relative asynchrony between heel strike responses and metronome pulses was used to index compensation for metronome phase shifts. Participants demonstrated compensation for phase shifts with convergence back to pre-phase shift asynchrony. This was significantly slower when the error occurred on the nonparetic side (requiring initial correction with the paretic limb) compared with when the error occurred on the paretic side (requiring initial nonparetic correction). Although phase correction of gait is slowed when the phase shift is delivered to the nonparetic side compared with the paretic side, phase correction is still present. This may underlie the utility of rhythmic auditory cueing in hemiparetic gait rehabilitation.
ERIC Educational Resources Information Center
Abedi, Razie; Latifi, Mehdi; Moinzadeh, Ahmad
2010-01-01
This study tries to answer some ever-existent questions in writing fields regarding approaching the most effective ways to give feedback to students' errors in writing by comparing the effect of error correction and error detection on the improvement of students' writing ability. In order to achieve this goal, 60 pre-intermediate English learners…
A Systematic Error Correction Method for TOVS Radiances
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)
2000-01-01
Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.
20 CFR 404.290 - Recalculations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... primary amount, we refigure it under the same method we used in the first computation by taking into... available at the time of the first computation; (3) Correction of clerical or mathematical errors; or (4...
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, M.; Bowman, B.; Branson, J.
The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.
Defense Mapping Agency (DMA) Raster-to-Vector Analysis
1984-11-30
model) to pinpoint critical deficiencies and understand trade-offs between alternative solutions. This may be exemplified by the allocation of human ...process, prone to errors (i.e., human operator eye/motor control limitations), and its time consuming nature (as a function of data density). It should...achieved through the facilities of coinputer interactive graphics. Each error or anomaly is individually identified by a human operator and corrected
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Cornwell, T. J.
2017-11-01
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measuredmore » a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.« less
Final report for CCS cross-layer reliability visioning study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather M; Dehon, Andre; Carter, Nicj
The geometric rate of improvement of transistor size and integrated circuit performance known as Moore's Law has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities ofmore » inexpensive computation have transformed our society through automation and ubiquitous communications. Looking forward, increasing unpredictability threatens our ability to continue scaling integrated circuits at Moore's Law rates. As the transistors and wires that make up integrated circuits become smaller, they display both greater differences in behavior among devices designed to be identical and greater vulnerability to transient and permanent faults. Conventional design techniques expend energy to tolerate this unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. However, the rising energy costs needed to compensate for increasing unpredictability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor on integrated circuit performance and energy efficiency is a national concern. Reliability and energy consumption are both reaching key inflection points that, together, threaten to reduce or end the benefits of feature size reduction. To continue beneficial scaling, we must use a cross-layer, Jull-system-design approach to reliability. Unlike current systems, which charge every device a substantial energy tax in order to guarantee correct operation in spite of rare events, such as one high-threshold transistor in a billion or one erroneous gate evaluation in an hour of computation, cross-layer reliability schemes make reliability management a cooperative effort across the system stack, sharing information across layers so that they only expend energy on reliability when an error actually occurs. Figure 1 illustrates an example of such a system that uses a combination of information from the application and cheap architecture-level techniques to detect errors. When an error occurs, mechanisms at higher levels in the stack correct the error, efficiently delivering correct operation to the user in spite of errors at the device or circuit levels. In the realms of memory and communication, engineers have a long history of success in tolerating unpredictable effects such as fabrication variability, transient upsets, and lifetime wear using information sharing, limited redundancy, and cross-layer approaches that anticipate, accommodate, and suppress errors. Networks use a combination of hardware and software to guarantee end-toend correctness. Error-detection and correction codes use additional information to correct the most common errors, single-bit transmission errors. When errors occur that cannot be corrected by these codes, the network protocol requests re-transmission of one or more packets until the correct data is received. Similarly, computer memory systems exploit a cross-layer division of labor to achieve high performance with modest hardware. Rather than demanding that hardware alone provide the virtual memory abstraction, software page-fault and TLB-miss handlers allow a modest piece of hardware, the TLB, to handle the common-case operations on a cyc1e-by-cycle basis while infrequent misses are handled in system software. Unfortunately, mitigating logic errors is not as simple or as well researched as memory or communication systems. This lack of understanding has led to very expensive solutions. For example, triple-modular redundancy masks errors by triplicating computations in either time or area. This mitigation methods imposes a 200% increase in energy consumption for every operation, not just the uncommon failure cases. At a time when computation is rapidly becoming part of our critical civilian and military infrastructure and decreasing costsfor computation are fueling our economy and our well being, we cannot afford increasingly unreliable electronics or a stagnation in capabilities per dollar, watt, or cubic meter. If researchers are able to develop techniques that tolerate the growing unpredictability of silicon devices, Moore's Law scaling should continue until at least 2022. During this 12-year time period, transistors, which are the building blocks of electronic devices, will scale their dimensions (feature sizes) from 45nm to 4.5nm.« less
Verma, Prakash; Bartlett, Rodney J
2016-07-21
Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.
Quantum steganography and quantum error-correction
NASA Astrophysics Data System (ADS)
Shaw, Bilal A.
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes. In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.
GPS Position Time Series @ JPL
NASA Technical Reports Server (NTRS)
Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen
2013-01-01
Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-01-01
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395
Arba-Mosquera, Samuel; Aslanides, Ioannis M.
2012-01-01
Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.
On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification
Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.
2014-01-01
Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362
Cohen, Michael X
2015-09-01
The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.
Error Correction for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei
2016-05-01
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; DePoy, D. L.; Marshall, J. L.
Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence ofmore » the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less
Initial clinical experience with a video-based patient positioning system.
Johnson, L S; Milliken, B D; Hadley, S W; Pelizzari, C A; Haraf, D J; Chen, G T
1999-08-01
To report initial clinical experience with an interactive, video-based patient positioning system that is inexpensive, quick, accurate, and easy to use. System hardware includes two black-and-white CCD cameras, zoom lenses, and a PC equipped with a frame grabber. Custom software is used to acquire and archive video images, as well as to display real-time subtraction images revealing patient misalignment in multiple views. Two studies are described. In the first study, video is used to document the daily setup histories of 5 head and neck patients. Time-lapse cine loops are generated for each patient and used to diagnose and correct common setup errors. In the second study, 6 twice-daily (BID) head and neck patients are positioned according to the following protocol: at AM setups conventional treatment room lasers are used; at PM setups lasers are used initially and then video is used for 1-2 minutes to fine-tune the patient position. Lateral video images and lateral verification films are registered off-line to compare the distribution of setup errors per patient, with and without video assistance. In the first study, video images were used to determine the accuracy of our conventional head and neck setup technique, i.e., alignment of lightcast marks and surface anatomy to treatment room lasers and the light field. For this initial cohort of patients, errors ranged from sigma = 5 to 7 mm and were patient-specific. Time-lapse cine loops of the images revealed sources of the error, and as a result, our localization techniques and immobilization device were modified to improve setup accuracy. After the improvements, conventional setup errors were reduced to sigma = 3 to 5 mm. In the second study, when a stereo pair of live subtraction images were introduced to perform daily "on-line" setup correction, errors were reduced to sigma = 1 to 3 mm. Results depended on patient health and cooperation and the length of time spent fine-tuning the position. An interactive, video-based patient positioning system was shown to reduce setup errors to within 1 to 3 mm in head and neck patients, without a significant increase in overall treatment time or labor-intensive procedures. Unlike retrospective portal image analysis, use of two live-video images provides the therapists with immediate feedback and allows for true 3-D positioning and correction of out-of-plane rotation before radiation is delivered. With significant improvement in head and neck alignment and the elimination of setup errors greater than 3 to 5 mm, margins associated with treatment volumes potentially can be reduced, thereby decreasing normal tissue irradiation.
Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope
NASA Astrophysics Data System (ADS)
Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.
2016-03-01
Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.
Refractive error and presbyopia among adults in Fiji.
Brian, Garry; Pearce, Matthew G; Ramke, Jacqueline
2011-04-01
To characterize refractive error, presbyopia and their correction among adults aged ≥ 40 years in Fiji, and contribute to a regional overview of these conditions. A population-based cross-sectional survey using multistage cluster random sampling. Presenting distance and near vision were measured and dilated slitlamp examination performed. The survey achieved 73.0% participation (n=1381). Presenting binocular distance vision ≥ 6/18 was achieved by 1223 participants. Another 79 had vision impaired by refractive error. Three of these were blind. At threshold 6/18, 204 participants had refractive error. Among these, 125 had spectacle-corrected presenting vision ≥ 6/18 ("met refractive error need"); 79 presented wearing no (n=74) or under-correcting (n=5) distance spectacles ("unmet refractive error need"). Presenting binocular near vision ≥ N8 was achieved by 833 participants. At threshold N8, 811 participants had presbyopia. Among these, 336 attained N8 with presenting near spectacles ("met presbyopia need"); 475 presented with no (n=402) or under-correcting (n=73) near spectacles ("unmet presbyopia need"). Rural residence was predictive of unmet refractive error (p=0.040) and presbyopia (p=0.016) need. Gender and household income source were not. Ethnicity-gender-age-domicile-adjusted to the Fiji population aged ≥ 40 years, "met refractive error need" was 10.3% (95% confidence interval [CI] 8.7-11.9%), "unmet refractive error need" was 4.8% (95%CI 3.6-5.9%), "refractive error correction coverage" was 68.3% (95%CI 54.4-82.2%),"met presbyopia need" was 24.6% (95%CI 22.4-26.9%), "unmet presbyopia need" was 33.8% (95%CI 31.3-36.3%), and "presbyopia correction coverage" was 42.2% (95%CI 37.6-46.8%). Fiji refraction and dispensing services should encourage uptake by rural dwellers and promote presbyopia correction. Lack of comparable data from neighbouring countries prevents a regional overview.
New Methods for Assessing and Reducing Uncertainty in Microgravity Studies
NASA Astrophysics Data System (ADS)
Giniaux, J. M.; Hooper, A. J.; Bagnardi, M.
2017-12-01
Microgravity surveying, also known as dynamic or 4D gravimetry is a time-dependent geophysical method used to detect mass fluctuations within the shallow crust, by analysing temporal changes in relative gravity measurements. We present here a detailed uncertainty analysis of temporal gravity measurements, considering for the first time all possible error sources, including tilt, error in drift estimations and timing errors. We find that some error sources that are actually ignored, can have a significant impact on the total error budget and it is therefore likely that some gravity signals may have been misinterpreted in previous studies. Our analysis leads to new methods for reducing some of the uncertainties associated with residual gravity estimation. In particular, we propose different approaches for drift estimation and free air correction depending on the survey set up. We also provide formulae to recalculate uncertainties for past studies and lay out a framework for best practice in future studies. We demonstrate our new approach on volcanic case studies, which include Kilauea in Hawaii and Askja in Iceland.
Correlated environmental corrections in TOPEX/POSEIDON, with a note on ionospheric accuracy
NASA Technical Reports Server (NTRS)
Zlotnicki, V.
1994-01-01
Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.; Iijima, Byron; Meyer, Robert; Bar-Sever, Yoaz; Accad, Elie
2004-01-01
This paper evaluates the performance of a single-frequency receiver using the 1-Hz differential corrections as provided by NASA's global differential GPS system. While the dual-frequency user has the ability to eliminate the ionosphere error by taking a linear combination of observables, the single-frequency user must remove or calibrate this error by other means. To remove the ionosphere error we take advantage of the fact that the magnitude of the group delay in range observable and the carrier phase advance have the same magnitude but are opposite in sign. A way to calibrate this error is to use a real-time database of grid points computed by JPL's RTI (Real-Time Ionosphere) software. In both cases we evaluate the positional accuracy of a kinematic carrier phase based point positioning method on a global extent.
Coherent errors in quantum error correction
NASA Astrophysics Data System (ADS)
Greenbaum, Daniel; Dutton, Zachary
Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.
Quantum Error Correction with a Globally-Coupled Array of Neutral Atom Qubits
2013-02-01
magneto - optical trap ) located at the center of the science cell. Fluorescence...Bottle beam trap GBA Gaussian beam array EMCCD electron multiplying charge coupled device microsec. microsecond MOT Magneto - optical trap QEC quantum error correction qubit quantum bit ...developed and implemented an array of neutral atom qubits in optical traps for studies of quantum error correction. At the end of the three year
ERIC Educational Resources Information Center
Teba, Sourou Corneille
2017-01-01
The aim of this paper is firstly, to make teachers correct thoroughly students' errors with effective strategies. Secondly, it is an attempt to find out if teachers are interested themselves in errors correction in Beninese secondary schools. Finally, I would like to point out the effective strategies that an EFL teacher can use for errors…
Errors, error detection, error correction and hippocampal-region damage: data and theories.
MacKay, Donald G; Johnson, Laura W
2013-11-01
This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.
Delay time correction of the gas analyzer in the calculation of anatomical dead space of the lung.
Okubo, T; Shibata, H; Takishima, T
1983-07-01
By means of a mathematical model, we have studied a way to correct the delay time of the gas analyzer in order to calculate the anatomical dead space using Fowler's graphical method. The mathematical model was constructed of ten tubes of equal diameter but unequal length, so that the amount of dead space varied from tube to tube; the tubes were emptied sequentially. The gas analyzer responds with a time lag from the input of the gas signal to the beginning of the response, followed by an exponential response output. The single breath expired volume-concentration relationship was examined with three types of expired flow patterns of which were constant, exponential and sinusoidal. The results indicate that the time correction by the lag time plus time constant of the exponential response of the gas analyzer gives an accurate estimation of anatomical dead space. Time correction less inclusive than this, e.g. lag time only or lag time plus 50% response time, gives an overestimation, and a correction larger than this results in underestimation. The magnitude of error is dependent on the flow pattern and flow rate. The time correction in this study is only for the calculation of dead space, as the corrected volume-concentration curves does not coincide with the true curve. Such correction of the output of the gas analyzer is extremely important when one needs to compare the dead spaces of different gas species at a rather faster flow rate.
Secondary adaptation of memory-guided saccades
Srimal, Riju; Curtis, Clayton E.
2011-01-01
Adaptation of saccade gains in response to errors keeps vision and action co-registered in the absence of awareness or effort. Timing is key, as the visual error must be available shortly after the saccade is generated or adaptation does not occur. Here, we tested the hypothesis that when feedback is delayed, learning still occurs, but does so through small secondary corrective saccades. Using a memory-guided saccade task, we gave feedback about the accuracy of saccades that was falsely displaced by a consistent amount, but only after long delays. Despite the delayed feedback, over time subjects improved in accuracy toward the false feedback. They did so not by adjusting their primary saccades, but via directed corrective saccades made before feedback was given. We propose that saccade learning may be driven by different types of feedback teaching signals. One teaching signal relies upon a tight temporal relation with the saccade and contributes to obligatory learning independent of awareness. When this signal is ineffective due to delayed error feedback, a second compensatory teaching signal enables flexible adjustments to the spatial goal of saccades and helps maintain sensorimotor accuracy. PMID:20803135
Impact of numerical choices on water conservation in the E3SM Atmosphere Model Version 1 (EAM V1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations for sea level rise projection. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods formore » fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model is negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in the new model results in a very thin model layer at the Earth’s surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for this model.« less
Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1)
NASA Astrophysics Data System (ADS)
Zhang, Kai; Rasch, Philip J.; Taylor, Mark A.; Wan, Hui; Leung, Ruby; Ma, Po-Lun; Golaz, Jean-Christophe; Wolfe, Jon; Lin, Wuyin; Singh, Balwinder; Burrows, Susannah; Yoon, Jin-Ho; Wang, Hailong; Qian, Yun; Tang, Qi; Caldwell, Peter; Xie, Shaocheng
2018-06-01
The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1) model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods for fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct) relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model becomes negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors in early V1 versions decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in V1 results in a very thin model layer at the Earth's surface, which amplifies the conservation error associated with the surface moisture flux correction. We note that for some of the identified error sources, the proposed fixers are remedies rather than solutions to the problems at their roots. Future improvements in time integration would be beneficial for V1.
NASA Astrophysics Data System (ADS)
Wang, Jinliang; Wu, Xuejiao
2010-11-01
Geometric correction of imagery is a basic application of remote sensing technology. Its precision will impact directly on the accuracy and reliability of applications. The accuracy of geometric correction depends on many factors, including the used model for correction and the accuracy of the reference map, the number of ground control points (GCP) and its spatial distribution, resampling methods. The ETM+ image of Kunming Dianchi Lake Basin and 1:50000 geographical maps had been used to compare different correction methods. The results showed that: (1) The correction errors were more than one pixel and some of them were several pixels when the polynomial model was used. The correction accuracy was not stable when the Delaunay model was used. The correction errors were less than one pixel when the collinearity equation was used. (2) 6, 9, 25 and 35 GCP were selected randomly for geometric correction using the polynomial correction model respectively, the best result was obtained when 25 GCPs were used. (3) The contrast ratio of image corrected by using nearest neighbor and the best resampling rate was compared to that of using the cubic convolution and bilinear model. But the continuity of pixel gravy value was not very good. The contrast of image corrected was the worst and the computation time was the longest by using the cubic convolution method. According to the above results, the result was the best by using bilinear to resample.
Office, Materials Editorial
2014-11-24
In [1], several sentences were repeated three times on pages 4062, 4063 and 4065. In addition, many references were incorrect. The errors were introduced by the editorial office during the editing process. We apologize for this mistake and any inconvenience this may have caused to authors and readers. The corrected manuscript is given below.[...].
ERIC Educational Resources Information Center
Brosvic, Gary M.; Epstein, Michael L.; Cook, Michael J.; Dihoff, Roberta E.
2005-01-01
Participants completed 5 classroom examinations during which the timing of knowledge of results (no feedback: Scantron form; delayed feedback: end-of-test, 24 hour delay; immediate feedback: educator, response form) and iterative responding (1 response, up to 4 responses) were manipulated. At the end of the semester, each participant completed a…
NASA Astrophysics Data System (ADS)
Lyu, Jiang-Tao; Zhou, Chen
2017-12-01
Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.
NASA Astrophysics Data System (ADS)
Li, Yinlin; Kundu, Bijoy K.
2018-03-01
The three-compartment model with spillover (SP) and partial volume (PV) corrections has been widely used for noninvasive kinetic parameter studies of dynamic 2-[18F] fluoro-2deoxy-D-glucose (FDG) positron emission tomography images of small animal hearts in vivo. However, the approach still suffers from estimation uncertainty or slow convergence caused by the commonly used optimization algorithms. The aim of this study was to develop an improved optimization algorithm with better estimation performance. Femoral artery blood samples, image-derived input functions from heart ventricles and myocardial time-activity curves (TACs) were derived from data on 16 C57BL/6 mice obtained from the UCLA Mouse Quantitation Program. Parametric equations of the average myocardium and the blood pool TACs with SP and PV corrections in a three-compartment tracer kinetic model were formulated. A hybrid method integrating artificial immune-system and interior-reflective Newton methods were developed to solve the equations. Two penalty functions and one late time-point tail vein blood sample were used to constrain the objective function. The estimation accuracy of the method was validated by comparing results with experimental values using the errors in the areas under curves (AUCs) of the model corrected input function (MCIF) and the 18F-FDG influx constant K i . Moreover, the elapsed time was used to measure the convergence speed. The overall AUC error of MCIF for the 16 mice averaged -1.4 ± 8.2%, with correlation coefficients of 0.9706. Similar results can be seen in the overall K i error percentage, which was 0.4 ± 5.8% with a correlation coefficient of 0.9912. The t-test P value for both showed no significant difference. The mean and standard deviation of the MCIF AUC and K i percentage errors have lower values compared to the previously published methods. The computation time of the hybrid method is also several times lower than using just a stochastic algorithm. The proposed method significantly improved the model estimation performance in terms of the accuracy of the MCIF and K i , as well as the convergence speed.
NASA Astrophysics Data System (ADS)
Hapgood, Mike
2017-04-01
Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.
Nutt, John G.; Horak, Fay B.
2011-01-01
Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431
NASA Astrophysics Data System (ADS)
Richter, Philipp; Savage, Blair D.; Tripp, Todd M.; Sembach, Kenneth R.
2004-12-01
There was a minor error in the form of equation (4) in the original paper; the first bracketed term on the right-hand side is missing a -1. The correct equation is: ΔX=0.5[(1+zmax)2-1]-[(1+zmin)2-1]. (4) Another error also occurred in the calculation of Ωb(BL) in the last paragraph of § 3.5 (p. 198). The correct limit is Ωb(BL)<=0.0035h-175 [instead of Ωb(BL)<=0.0031h-175]. Note the wrong value is cited a second time in list item 5 of the Summary (§ 5; p. 204).
24 CFR 982.517 - Utility allowance schedule.
Code of Federal Regulations, 2013 CFR
2013-04-01
... percent or more in the utility rate since the last time the utility allowance schedule was revised. The... allowance schedule to correct any errors, or as necessary to update the schedule. (d) Use of utility...
24 CFR 982.517 - Utility allowance schedule.
Code of Federal Regulations, 2012 CFR
2012-04-01
... percent or more in the utility rate since the last time the utility allowance schedule was revised. The... allowance schedule to correct any errors, or as necessary to update the schedule. (d) Use of utility...
24 CFR 982.517 - Utility allowance schedule.
Code of Federal Regulations, 2014 CFR
2014-04-01
... percent or more in the utility rate since the last time the utility allowance schedule was revised. The... allowance schedule to correct any errors, or as necessary to update the schedule. (d) Use of utility...
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per
2017-06-01
Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.
Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors
NASA Astrophysics Data System (ADS)
Tarinejad, Reza; Damadipour, Majid
2016-05-01
In this research, a combinational non-parametric method called frequency domain decomposition-wavelet transform (FDD-WT) that was recently presented by the authors, is extended for correction of the errors resulting from asynchronous sensing of sensors, in order to extend the application of the algorithm for different kinds of structures, especially for huge structures. Therefore, the analysis process is based on time-frequency domain decomposition and is performed with emphasis on correcting time delays between sensors. Time delay estimation (TDE) methods are investigated for their efficiency and accuracy for noisy environmental records and the Phase Transform - β (PHAT-β) technique was selected as an appropriate method to modify the operation of traditional FDD-WT in order to achieve the exact results. In this paper, a theoretical example (3DOF system) has been provided in order to indicate the non-synchronous sensing effects of the sensors on the modal parameters; moreover, the Pacoima dam subjected to 13 Jan 2001 earthquake excitation was selected as a case study. The modal parameters of the dam obtained from the extended FDD-WT method were compared with the output of the classical signal processing method, which is referred to as 4-Spectral method, as well as other literatures relating to the dynamic characteristics of Pacoima dam. The results comparison indicates that values are correct and reliable.
"Ser" and "Estar": Corrective Input to Children's Errors of the Spanish Copula Verbs
ERIC Educational Resources Information Center
Holtheuer, Carolina; Rendle-Short, Johanna
2013-01-01
Evidence for the role of corrective input as a facilitator of language acquisition is inconclusive. Studies show links between corrective input and grammatical use of some, but not other, language structures. The present study examined relationships between corrective parental input and children's errors in the acquisition of the Spanish copula…
Exposed and Embedded Corrections in Aphasia Therapy: Issues of Voice and Identity
ERIC Educational Resources Information Center
Simmons-Mackie, Nina; Damico, Jack S.
2008-01-01
Background: Because communication after the onset of aphasia can be fraught with errors, therapist corrections are pervasive in therapy for aphasia. Although corrections are designed to improve the accuracy of communication, some corrections can have social and emotional consequences during interactions. That is, exposure of errors can potentially…
NASA Astrophysics Data System (ADS)
Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang
2017-02-01
Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.
Error-correcting codes on scale-free networks
NASA Astrophysics Data System (ADS)
Kim, Jung-Hoon; Ko, Young-Jo
2004-06-01
We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.
Application Of Multi-grid Method On China Seas' Temperature Forecast
NASA Astrophysics Data System (ADS)
Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.
2006-12-01
Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.
The prevalence of uncorrected refractive errors in underserved rural areas.
Hashemi, Hassan; Abbastabar, Hedayat; Yekta, Abbasali; Heydarian, Samira; Khabazkhoob, Mehdi
2017-12-01
To determine the prevalence of uncorrected refractive errors, need for spectacles, and the determinants of unmet need in underserved rural areas of Iran. In a cross-sectional study, multistage cluster sampling was done in 2 underserved rural areas of Iran. Then, all subjects underwent vision testing and ophthalmic examinations including the measurement of uncorrected visual acuity (UCVA), best corrected visual acuity, visual acuity with current spectacles, auto-refraction, retinoscopy, and subjective refraction. Need for spectacles was defined as UCVA worse than 20/40 in the better eye that could be corrected to better than 20/40 with suitable spectacles. Of the 3851 selected individuals, 3314 participated in the study. Among participants, 18.94% [95% confidence intervals (CI): 13.48-24.39] needed spectacles and 11.23% (95% CI: 7.57-14.89) had an unmet need. The prevalence of need for spectacles was 46.8% and 23.8% in myopic and hyperopic participants, respectively. The prevalence of unmet need was 27% in myopic, 15.8% in hyperopic, and 25.46% in astigmatic participants. Multiple logistic regression showed that education and type of refractive errors were associated with uncorrected refractive errors; the odds of uncorrected refractive errors were highest in illiterate participants, and the odds of unmet need were 12.13, 5.1, and 4.92 times higher in myopic, hyperopic and astigmatic participants as compared with emmetropic individuals. The prevalence of uncorrected refractive errors was rather high in our study. Since rural areas have less access to health care facilities, special attention to the correction of refractive errors in these areas, especially with inexpensive methods like spectacles, can prevent a major proportion of visual impairment.
Decoding small surface codes with feedforward neural networks
NASA Astrophysics Data System (ADS)
Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen
2018-01-01
Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.
Passive quantum error correction of linear optics networks through error averaging
NASA Astrophysics Data System (ADS)
Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.
2018-02-01
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
Utilizing LANDSAT imagery to monitor land-use change - A case study in Ohio
NASA Technical Reports Server (NTRS)
Gordon, S. I.
1980-01-01
A study, performed in Ohio, of the nature and extent of interpretation errors in the application of Landsat imagery to land-use planning and modeling is reported. Potential errors associated with the misalignment of pixels after geometric correction and with misclassification of land cover or land use due to spectral similarities were identified on interpreted computer-compatible tapes of a portion of Franklin County for two adjacent days of 1975 and one day of 1973, and the extents of these errors were quantified by comparison with a ground-checked set of aerial-photograph interpretations. The open-space and agricultural categories are found to be the most consistently classified, while the more urban areas were classified correctly only from about 43 to 8% of the time. It is thus recommended that the direct application of Landsat data to land-use planning must await improvements in classification techniques and accuracy.
Li, Haitao; Ning, Xin; Li, Wenzhuo
2017-03-01
In order to improve the reliability and reduce power consumption of the high speed BLDC motor system, this paper presents a model free adaptive control (MFAC) based position sensorless drive with only a dc-link current sensor. The initial commutation points are obtained by detecting the phase of EMF zero-crossing point and then delaying 30 electrical degrees. According to the commutation error caused by the low pass filter (LPF) and other factors, the relationship between commutation error angle and dc-link current is analyzed, a corresponding MFAC based control method is proposed, and the commutation error can be corrected by the controller in real time. Both the simulation and experimental results show that the proposed correction method can achieve ideal commutation effect within the entire operating speed range. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Correction of electrode modelling errors in multi-frequency EIT imaging.
Jehl, Markus; Holder, David
2016-06-01
The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.
Dynamic changes in brain activity during prism adaptation.
Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik
2009-01-07
Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.
Sources of medical error in refractive surgery.
Moshirfar, Majid; Simpson, Rachel G; Dave, Sonal B; Christiansen, Steven M; Edmonds, Jason N; Culbertson, William W; Pascucci, Stephen E; Sher, Neal A; Cano, David B; Trattler, William B
2013-05-01
To evaluate the causes of laser programming errors in refractive surgery and outcomes in these cases. In this multicenter, retrospective chart review, 22 eyes of 18 patients who had incorrect data entered into the refractive laser computer system at the time of treatment were evaluated. Cases were analyzed to uncover the etiology of these errors, patient follow-up treatments, and final outcomes. The results were used to identify potential methods to avoid similar errors in the future. Every patient experienced compromised uncorrected visual acuity requiring additional intervention, and 7 of 22 eyes (32%) lost corrected distance visual acuity (CDVA) of at least one line. Sixteen patients were suitable candidates for additional surgical correction to address these residual visual symptoms and six were not. Thirteen of 22 eyes (59%) received surgical follow-up treatment; nine eyes were treated with contact lenses. After follow-up treatment, six patients (27%) still had a loss of one line or more of CDVA. Three significant sources of error were identified: errors of cylinder conversion, data entry, and patient identification error. Twenty-seven percent of eyes with laser programming errors ultimately lost one or more lines of CDVA. Patients who underwent surgical revision had better outcomes than those who did not. Many of the mistakes identified were likely avoidable had preventive measures been taken, such as strict adherence to patient verification protocol or rigorous rechecking of treatment parameters. Copyright 2013, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Erwin, E. H.; Coffey, H. E.; Denig, W. F.; Willis, D. M.; Henwood, R.; Wild, M. N.
2013-11-01
A new sunspot and faculae digital dataset for the interval 1874 - 1955 has been prepared under the auspices of the NOAA National Geophysical Data Center (NGDC). This digital dataset contains measurements of the positions and areas of both sunspots and faculae published initially by the Royal Observatory, Greenwich, and subsequently by the Royal Greenwich Observatory (RGO), under the title Greenwich Photo-heliographic Results ( GPR) , 1874 - 1976. Quality control (QC) procedures based on logical consistency have been used to identify the more obvious errors in the RGO publications. Typical examples of identifiable errors are North versus South errors in specifying heliographic latitude, errors in specifying heliographic (Carrington) longitude, errors in the dates and times, errors in sunspot group numbers, arithmetic errors in the summation process, and the occasional omission of solar ephemerides. Although the number of errors in the RGO publications is remarkably small, an initial table of necessary corrections is provided for the interval 1874 - 1917. Moreover, as noted in the preceding companion papers, the existence of two independently prepared digital datasets, which both contain information on sunspot positions and areas, makes it possible to outline a preliminary strategy for the development of an even more accurate digital dataset. Further work is in progress to generate an extremely reliable sunspot digital dataset, based on the long programme of solar observations supported first by the Royal Observatory, Greenwich, and then by the Royal Greenwich Observatory.
Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun
2017-09-19
In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.
Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun
2017-01-01
In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979
Precise timing correlation in telemetry recording and processing systems
NASA Technical Reports Server (NTRS)
Pickett, R. B.; Matthews, F. L.
1973-01-01
Independent PCM telemetry data signals received from missiles must be correlated to within + or - 100 microseconds for comparison with radar data. Tests have been conducted to determine RF antenna receiving system delays; delays associated with wideband analog tape recorders used in the recording, dubbing and repdocuing processes; and uncertainties associated with computer processed time tag data. Several methods used in the recording of timing are evaluated. Through the application of a special time tagging technique, the cumulative timing bias from all sources is determined and the bias removed from final data. Conclusions show that relative time differences in receiving, recording, playback and processing of two telemetry links can be accomplished with a + or - 4 microseconds accuracy. In addition, the absolute time tag error (with respect to UTC) can be reduced to less than 15 microseconds. This investigation is believed to be the first attempt to identify the individual error contributions within the telemetry system and to describe the methods of error reduction within the telemetry system and to describe the methods of error reduction and correction.
Errata report on Herbert Goldstein's Classical Mechanics: Second edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.; Hoffman, F.M.
This report describes errors in Herbert Goldstein's textbook Classical Mechanics, Second Edition (Copyright 1980, ISBN 0-201-02918-9). Some of the errors in current printings of the text were corrected in the second printing; however, after communicating with Addison Wesley, the publisher for Classical Mechanics, it was discovered that the corrected galley proofs had been lost by the printer and that no one had complained of any errors in the eleven years since the second printing. The errata sheet corrects errors from all printings of the second edition.
How does bias correction of RCM precipitation affect modelled runoff?
NASA Astrophysics Data System (ADS)
Teng, J.; Potter, N. J.; Chiew, F. H. S.; Zhang, L.; Vaze, J.; Evans, J. P.
2014-09-01
Many studies bias correct daily precipitation from climate models to match the observed precipitation statistics, and the bias corrected data are then used for various modelling applications. This paper presents a review of recent methods used to bias correct precipitation from regional climate models (RCMs). The paper then assesses four bias correction methods applied to the weather research and forecasting (WRF) model simulated precipitation, and the follow-on impact on modelled runoff for eight catchments in southeast Australia. Overall, the best results are produced by either quantile mapping or a newly proposed two-state gamma distribution mapping method. However, the difference between the tested methods is small in the modelling experiments here (and as reported in the literature), mainly because of the substantial corrections required and inconsistent errors over time (non-stationarity). The errors remaining in bias corrected precipitation are typically amplified in modelled runoff. The tested methods cannot overcome limitation of RCM in simulating precipitation sequence, which affects runoff generation. Results further show that whereas bias correction does not seem to alter change signals in precipitation means, it can introduce additional uncertainty to change signals in high precipitation amounts and, consequently, in runoff. Future climate change impact studies need to take this into account when deciding whether to use raw or bias corrected RCM results. Nevertheless, RCMs will continue to improve and will become increasingly useful for hydrological applications as the bias in RCM simulations reduces.
A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy.
Boswell, Sarah A; Jeraj, Robert; Ruchala, Kenneth J; Olivera, Gustavo H; Jaradat, Hazim A; James, Joshua A; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T Rock
2005-06-01
An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle.
NASA Astrophysics Data System (ADS)
Hajabdollahi, Farzaneh; Premnath, Kannan N.
2018-05-01
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. The GI preconditioned central-moment LB method is validated for a number of complex flow benchmark problems and its effectiveness to achieve convergence acceleration and improvement in accuracy is demonstrated.
Development of a 3-D Pen Input Device
2008-09-01
of a unistroke which can be written on any surface or in the air while correcting integration errors from the...navigation frame of a unistroke, which can be written on any surface or in the air while correcting integration errors from the measurements of the IMU... be written on any surface or in the air while correcting integration errors from the measurements of the IMU (Inertial Measurement Unit) of the
ERIC Educational Resources Information Center
Rice, Bart F.; Wilde, Carroll O.
It is noted that with the prominence of computers in today's technological society, digital communication systems have become widely used in a variety of applications. Some of the problems that arise in digital communications systems are described. This unit presents the problem of correcting errors in such systems. Error correcting codes are…
Quantum cryptography: individual eavesdropping with the knowledge of the error-correcting protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horoshko, D B
2007-12-31
The quantum key distribution protocol BB84 combined with the repetition protocol for error correction is analysed from the point of view of its security against individual eavesdropping relying on quantum memory. It is shown that the mere knowledge of the error-correcting protocol changes the optimal attack and provides the eavesdropper with additional information on the distributed key. (fifth seminar in memory of d.n. klyshko)
Productivity associated with visual status of computer users.
Daum, Kent M; Clore, Katherine A; Simms, Suzanne S; Vesely, Jon W; Wilczek, Dawn D; Spittle, Brian M; Good, Greg W
2004-01-01
The aim of this project is to examine the potential connection between the astigmatic refractive corrections of subjects using computers and their productivity and comfort. We hypothesize that improving the visual status of subjects using computers results in greater productivity, as well as improved visual comfort. Inclusion criteria required subjects 19 to 30 years of age with complete vision examinations before being enrolled. Using a double-masked, placebo-controlled, randomized design, subjects completed three experimental tasks calculated to assess the effects of refractive error on productivity (time to completion and the number of errors) at a computer. The tasks resembled those commonly undertaken by computer users and involved visual search tasks of: (1) counties and populations; (2) nonsense word search; and (3) a modified text-editing task. Estimates of productivity for time to completion varied from a minimum of 2.5% upwards to 28.7% with 2 D cylinder miscorrection. Assuming a conservative estimate of an overall 2.5% increase in productivity with appropriate astigmatic refractive correction, our data suggest a favorable cost-benefit ratio of at least 2.3 for the visual correction of an employee (total cost 268 dollars) with a salary of 25,000 dollars per year. We conclude that astigmatic refractive error affected both productivity and visual comfort under the conditions of this experiment. These data also suggest a favorable cost-benefit ratio for employers who provide computer-specific eyewear to their employees.
A comparison between MS-VECM and MS-VECMX on economic time series data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Wai; Ismail, Mohd Tahir; Sek, Siok-Kun
2014-07-01
Multivariate Markov switching models able to provide useful information on the study of structural change data since the regime switching model can analyze the time varying data and capture the mean and variance in the series of dependence structure. This paper will investigates the oil price and gold price effects on Malaysia, Singapore, Thailand and Indonesia stock market returns. Two forms of Multivariate Markov switching models are used namely the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model (MSMH-VECM) and the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model with exogenous variable (MSMH-VECMX). The reason for using these two models are to capture the transition probabilities of the data since real financial time series data always exhibit nonlinear properties such as regime switching, cointegrating relations, jumps or breaks passing the time. A comparison between these two models indicates that MSMH-VECM model able to fit the time series data better than the MSMH-VECMX model. In addition, it was found that oil price and gold price affected the stock market changes in the four selected countries.
Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H.; Lewis, Marc S.; Brautigam, Chad A.; Schuck, Peter; Zhao, Huaying
2013-01-01
Sedimentation velocity (SV) is a method based on first-principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton® temperature logger to directly measure the temperature of a spinning rotor, and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration, which were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., doi 10.1016/j.ab.2013.02.011) and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from eleven instruments displayed a significantly reduced standard deviation of ∼ 0.7 %. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. PMID:23711724
Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H; Lewis, Marc S; Brautigam, Chad A; Schuck, Peter; Zhao, Huaying
2013-09-01
Sedimentation velocity (SV) is a method based on first principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton temperature logger to directly measure the temperature of a spinning rotor and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration that were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., Anal. Biochem., 437 (2013) 104-108), and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from 11 instruments displayed a significantly reduced standard deviation of approximately 0.7%. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kakkos, I.; Gkiatis, K.; Bromis, K.; Asvestas, P. A.; Karanasiou, I. S.; Ventouras, E. M.; Matsopoulos, G. K.
2017-11-01
The detection of an error is the cognitive evaluation of an action outcome that is considered undesired or mismatches an expected response. Brain activity during monitoring of correct and incorrect responses elicits Event Related Potentials (ERPs) revealing complex cerebral responses to deviant sensory stimuli. Development of accurate error detection systems is of great importance both concerning practical applications and in investigating the complex neural mechanisms of decision making. In this study, data are used from an audio identification experiment that was implemented with two levels of complexity in order to investigate neurophysiological error processing mechanisms in actors and observers. To examine and analyse the variations of the processing of erroneous sensory information for each level of complexity we employ Support Vector Machines (SVM) classifiers with various learning methods and kernels using characteristic ERP time-windowed features. For dimensionality reduction and to remove redundant features we implement a feature selection framework based on Sequential Forward Selection (SFS). The proposed method provided high accuracy in identifying correct and incorrect responses both for actors and for observers with mean accuracy of 93% and 91% respectively. Additionally, computational time was reduced and the effects of the nesting problem usually occurring in SFS of large feature sets were alleviated.
Correction of Quenching Errors in Analytical Fluorimetry through Use of Time Resolution.
1980-05-27
QUENCHING ERRORS IN ANALYTICAL FLUORIMETRY THROUGH USE OF TIME RESOLUTION by Gary M. Hieftje and Gilbert R. Haugen Prepared for Publication in... HIEFTJE , 6 R HAUGEN NOCOIT1-6-0638 UCLASSIFIED TR-25 NL ///I//II IIIII I__I. 111122 Z .. ..12 1.~l8 .2 -4 SECuRITY CLSIIAI1 orTI PAGE MWhno. ee...in Analytical and Clinical Chemistry, vol. 3, D. M. Hercules, G. M. Hieftje , L. R. Snyder, and M4. A. Evenson, eds., Plenum Press, N.Y., 1978, ch. S
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1996-01-01
Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-01-01
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-12-25
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.
Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates
NASA Astrophysics Data System (ADS)
Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael
2018-03-01
Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.
Analyzing the effectiveness of a frame-level redundancy scrubbing technique for SRAM-based FPGAs
Tonfat, Jorge; Lima Kastensmidt, Fernanda; Rech, Paolo; ...
2015-12-17
Radiation effects such as soft errors are the major threat to the reliability of SRAM-based FPGAs. This work analyzes the effectiveness in correcting soft errors of a novel scrubbing technique using internal frame redundancy called Frame-level Redundancy Scrubbing (FLR-scrubbing). This correction technique can be implemented in a coarse grain TMR design. The FLR-scrubbing technique was implemented on a mid-size Xilinx Virtex-5 FPGA device used as a case study. The FLR-scrubbing technique was tested under neutron radiation and fault injection. Implementation results demonstrated minimum area and energy consumption overhead when compared to other techniques. The time to repair the fault ismore » also improved by using the Internal Configuration Access Port (ICAP). Lastly, neutron radiation test results demonstrated that the proposed technique is suitable for correcting accumulated SEUs and MBUs.« less
Analyzing the effectiveness of a frame-level redundancy scrubbing technique for SRAM-based FPGAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonfat, Jorge; Lima Kastensmidt, Fernanda; Rech, Paolo
Radiation effects such as soft errors are the major threat to the reliability of SRAM-based FPGAs. This work analyzes the effectiveness in correcting soft errors of a novel scrubbing technique using internal frame redundancy called Frame-level Redundancy Scrubbing (FLR-scrubbing). This correction technique can be implemented in a coarse grain TMR design. The FLR-scrubbing technique was implemented on a mid-size Xilinx Virtex-5 FPGA device used as a case study. The FLR-scrubbing technique was tested under neutron radiation and fault injection. Implementation results demonstrated minimum area and energy consumption overhead when compared to other techniques. The time to repair the fault ismore » also improved by using the Internal Configuration Access Port (ICAP). Lastly, neutron radiation test results demonstrated that the proposed technique is suitable for correcting accumulated SEUs and MBUs.« less
NASA Astrophysics Data System (ADS)
Angling, Matthew J.; Elvidge, Sean; Healy, Sean B.
2018-04-01
The standard approach to remove the effects of the ionosphere from neutral atmosphere GPS radio occultation measurements is to estimate a corrected bending angle from a combination of the L1 and L2 bending angles. This approach is known to result in systematic errors and an extension has been proposed to the standard ionospheric correction that is dependent on the squared L1 / L2 bending angle difference and a scaling term (κ). The variation of κ with height, time, season, location and solar activity (i.e. the F10.7 flux) has been investigated by applying a 1-D bending angle operator to electron density profiles provided by a monthly median ionospheric climatology model. As expected, the residual bending angle is well correlated (negatively) with the vertical total electron content (TEC). κ is more strongly dependent on the solar zenith angle, indicating that the TEC-dependent component of the residual error is effectively modelled by the squared L1 / L2 bending angle difference term in the correction. The residual error from the ionospheric correction is likely to be a major contributor to the overall error budget of neutral atmosphere retrievals between 40 and 80 km. Over this height range κ is approximately linear with height. A simple κ model has also been developed. It is independent of ionospheric measurements, but incorporates geophysical dependencies (i.e. solar zenith angle, solar flux, altitude). The global mean error (i.e. bias) and the standard deviation of the residual errors are reduced from -1.3×10-8 and 2.2×10-8 for the uncorrected case to -2.2×10-10 rad and 2.0×10-9 rad, respectively, for the corrections using the κ model. Although a fixed scalar κ also reduces bias for the global average, the selected value of κ (14 rad-1) is only appropriate for a small band of locations around the solar terminator. In the daytime, the scalar κ is consistently too high and this results in an overcorrection of the bending angles and a positive bending angle bias. Similarly, in the nighttime, the scalar κ is too low. However, in this case, the bending angles are already small and the impact of the choice of κ is less pronounced.
Hypothesis Testing Using Factor Score Regression
Devlieger, Ines; Mayer, Axel; Rosseel, Yves
2015-01-01
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886
Small refractive errors--their correction and practical importance.
Skrbek, Matej; Petrová, Sylvie
2013-04-01
Small refractive errors present a group of specifc far-sighted refractive dispositions that are compensated by enhanced accommodative exertion and aren't exhibited by loss of the visual acuity. This paper should answer a few questions about their correction, flowing from theoretical presumptions and expectations of this dilemma. The main goal of this research was to (dis)confirm the hypothesis about convenience, efficiency and frequency of the correction that do not raise the visual acuity (or if the improvement isn't noticeable). The next goal was to examine the connection between this correction and other factors (age, size of the refractive error, etc.). The last aim was to describe the subjective personal rating of the correction of these small refractive errors, and to determine the minimal improvement of the visual acuity, that is attractive enough for the client to purchase the correction (glasses, contact lenses). It was confirmed, that there's an indispensable group of subjects with good visual acuity, where the correction is applicable, although it doesn't improve the visual acuity much. The main importance is to eliminate the asthenopia. The prime reason for acceptance of the correction is typically changing during the life, so as the accommodation is declining. Young people prefer the correction on the ground of the asthenopia, caused by small refractive error or latent strabismus; elderly people acquire the correction because of improvement of the visual acuity. Generally the correction was found useful in more than 30%, if the gain of the visual acuity was at least 0,3 of the decimal row.
Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.
2012-01-01
We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".
Analyzing a stochastic time series obeying a second-order differential equation.
Lehle, B; Peinke, J
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.
Spirality: A Noval Way to Measure Spiral Arm Pitch Angle
NASA Astrophysics Data System (ADS)
Shields, Douglas W.; Boe, Benjamin; Henderson, Casey L.; Hartley, Matthew; Davis, Benjamin L.; Pour Imani, Hamed; Kennefick, Daniel; Kennefick, Julia D.
2015-01-01
We present the MATLAB code Spirality, a novel method for measuring spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. For a given pitch angle template, the mean pixel value is found along each of typically 1000 spiral axes. The fitting function, which shows a local maximum at the best-fit pitch angle, is the variance of these means. Error bars are found by varying the inner radius of the measurement annulus and finding the standard deviation of the best-fit pitches. Computation time is typically on the order of 2 minutes per galaxy, assuming at least 8 GB of working memory. We tested the code using 128 synthetic spiral images of known pitch. These spirals varied in the number of spiral arms, pitch angle, degree of logarithmicity, radius, SNR, inclination angle, bar length, and bulge radius. A correct result is defined as a result that matches the true pitch within the error bars, with error bars no greater than ±7°. For the non-logarithmic spiral sample, the correct answer is similarly defined, with the mean pitch as function of radius in place of the true pitch. For all synthetic spirals, correct results were obtained so long as SNR > 0.25, the bar length was no more than 60% of the spiral's diameter (when the bar was included in the measurement), the input center of the spiral was no more than 6% of the spiral radius away from the true center, and the inclination angle was no more than 30°. The synthetic spirals were not deprojected prior to measurement. The code produced the correct result for all barred spirals when the measurement annulus was placed outside the bar. Additionally, we compared the code's results against 2DFFT results for 203 visually selected spiral galaxies in GOODS North and South. Among the entire sample, Spirality's error bars overlapped 2DFFT's error bars 64% of the time. For those galaxies in which Source code is available by email request from the primary author.
Uncertainty of InSAR velocity fields for measuring long-wavelength displacement
NASA Astrophysics Data System (ADS)
Fattahi, H.; Amelung, F.
2014-12-01
Long-wavelength artifacts in InSAR data are the main limitation to measure long-wavelength displacement; they are traditionally attributed mainly to the inaccuracy of the satellite orbits (orbital errors). However, most satellites are precisely tracked resulting in uncertainties of orbits of 2-10 cm. Orbits of these satellites are thus precise enough to obtain precise velocity fields with uncertainties better than 1 mm/yr/100 km for older satellites (e.g. Envisat) and better than 0.2 mm/yr/100 km for modern satellites (e.g. TerraSAR-X and Sentinel-1) [Fattahi & Amelung, 2014]. Such accurate velocity fields are achievable if long-wavelength artifacts from sources other than orbital errors are identified and corrected for. We present a modified Small Baseline approach to measure long-wavelength deformation and evaluate the uncertainty of these measurements. We use a redundant network of interferograms for detection and correction of unwrapping errors to ensure the unbiased estimation of phase history. We distinguish between different sources of long-wavelength artifacts and correct those introduced by atmospheric delay, topographic residuals, timing errors, processing approximations and hardware issues. We evaluate the uncertainty of the velocity fields using a covariance matrix with the contributions from orbital errors and residual atmospheric delay. For contributions from the orbital errors we consider the standard deviation of velocity gradients in range and azimuth directions as a function of orbital uncertainty. For contributions from the residual atmospheric delay we use several approaches including the structure functions of InSAR time-series epochs, the predicted delay from numerical weather models and estimated wet delay from optical imagery. We validate this InSAR approach for measuring long-wavelength deformation by comparing InSAR velocity fields over ~500 km long swath across the southern San Andreas fault system with independent GPS velocities and examine the estimated uncertainties in several non-deforming areas. We show the efficiency of the approach to study the continental deformation across the Chaman fault system at the western Indian plate boundary. Ref: Fattahi, H., & Amelung, F., (2014), InSAR uncertainty due to orbital errors, Geophys, J. Int (in press).
Repeat-aware modeling and correction of short read errors.
Yang, Xiao; Aluru, Srinivas; Dorman, Karin S
2011-02-15
High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors for genomes with high repeat content.
Error-Transparent Quantum Gates for Small Logical Qubit Architectures
NASA Astrophysics Data System (ADS)
Kapit, Eliot
2018-02-01
One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.
Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A
2010-07-01
Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.
NASA Astrophysics Data System (ADS)
Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.
2018-02-01
Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days.
NASA Astrophysics Data System (ADS)
Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.
2017-12-01
Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days. [Figure not available: see fulltext.
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
2017-07-14
A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trehan, Sumeet; Carlberg, Kevin T.; Durlofsky, Louis J.
A machine learning–based framework for modeling the error introduced by surrogate models of parameterized dynamical systems is proposed. The framework entails the use of high-dimensional regression techniques (eg, random forests, and LASSO) to map a large set of inexpensively computed “error indicators” (ie, features) produced by the surrogate model at a given time instance to a prediction of the surrogate-model error in a quantity of interest (QoI). This eliminates the need for the user to hand-select a small number of informative features. The methodology requires a training set of parameter instances at which the time-dependent surrogate-model error is computed bymore » simulating both the high-fidelity and surrogate models. Using these training data, the method first determines regression-model locality (via classification or clustering) and subsequently constructs a “local” regression model to predict the time-instantaneous error within each identified region of feature space. We consider 2 uses for the resulting error model: (1) as a correction to the surrogate-model QoI prediction at each time instance and (2) as a way to statistically model arbitrary functions of the time-dependent surrogate-model error (eg, time-integrated errors). We then apply the proposed framework to model errors in reduced-order models of nonlinear oil-water subsurface flow simulations, with time-varying well-control (bottom-hole pressure) parameters. The reduced-order models used in this work entail application of trajectory piecewise linearization in conjunction with proper orthogonal decomposition. Moreover, when the first use of the method is considered, numerical experiments demonstrate consistent improvement in accuracy in the time-instantaneous QoI prediction relative to the original surrogate model, across a large number of test cases. When the second use is considered, results show that the proposed method provides accurate statistical predictions of the time- and well-averaged errors.« less
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J
2018-01-01
Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.
Reduced circuit implementation of encoder and syndrome generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trager, Barry M; Winograd, Shmuel
An error correction method and system includes an Encoder and Syndrome-generator that operate in parallel to reduce the amount of circuitry used to compute check symbols and syndromes for error correcting codes. The system and method computes the contributions to the syndromes and check symbols 1 bit at a time instead of 1 symbol at a time. As a result, the even syndromes can be computed as powers of the odd syndromes. Further, the system assigns symbol addresses so that there are, for an example GF(2.sup.8) which has 72 symbols, three (3) blocks of addresses which differ by a cubemore » root of unity to allow the data symbols to be combined for reducing size and complexity of odd syndrome circuits. Further, the implementation circuit for generating check symbols is derived from syndrome circuit using the inverse of the part of the syndrome matrix for check locations.« less
Your Health Care May Kill You: Medical Errors.
Anderson, James G; Abrahamson, Kathleen
2017-01-01
Recent studies of medical errors have estimated errors may account for as many as 251,000 deaths annually in the United States (U.S)., making medical errors the third leading cause of death. Error rates are significantly higher in the U.S. than in other developed countries such as Canada, Australia, New Zealand, Germany and the United Kingdom (U.K). At the same time less than 10 percent of medical errors are reported. This study describes the results of an investigation of the effectiveness of the implementation of the MEDMARX Medication Error Reporting system in 25 hospitals in Pennsylvania. Data were collected on 17,000 errors reported by participating hospitals over a 12-month period. Latent growth curve analysis revealed that reporting of errors by health care providers increased significantly over the four quarters. At the same time, the proportion of corrective actions taken by the hospitals remained relatively constant over the 12 months. A simulation model was constructed to examine the effect of potential organizational changes resulting from error reporting. Four interventions were simulated. The results suggest that improving patient safety requires more than voluntary reporting. Organizational changes need to be implemented and institutionalized as well.
Human eyes do not need monochromatic aberrations for dynamic accommodation.
Bernal-Molina, Paula; Marín-Franch, Iván; Del Águila-Carrasco, Antonio J; Esteve-Taboada, Jose J; López-Gil, Norberto; Kruger, Philip B; Montés-Micó, Robert
2017-09-01
To determine if human accommodation uses the eye's own monochromatic aberrations to track dynamic accommodative stimuli. Wavefront aberrations were measured while subjects monocularly viewed a monochromatic Maltese cross moving sinusoidally around 2D of accommodative demand with 1D amplitude at 0.2 Hz. The amplitude and phase (delay) of the accommodation response were compared to the actual vergence of the stimulus to obtain gain and temporal phase, calculated from wavefront aberrations recorded over time during experimental trials. The tested conditions were as follows: Correction of all the subject's aberrations except defocus (C); Correction of all the subject's aberrations except defocus and habitual second-order astigmatism (AS); Correction of all the subject's aberrations except defocus and odd higher-order aberrations (HOAs); Correction of all the subject's aberrations except defocus and even HOAs (E); Natural aberrations of the subject's eye, i.e., the adaptive-optics system only corrected the optical system's aberrations (N); Correction of all the subject's aberrations except defocus and fourth-order spherical aberration (SA). The correction was performed at 20 Hz and each condition was repeated six times in randomised order. Average gain (±2 standard errors of the mean) varied little across conditions; between 0.55 ± 0.06 (SA), and 0.62 ± 0.06 (AS). Average phase (±2 standard errors of the mean) also varied little; between 0.41 ± 0.02 s (E), and 0.47 ± 0.02 s (O). After Bonferroni correction, no statistically significant differences in gain or phase were found in the presence of specific monochromatic aberrations or in their absence. These results show that the eye's monochromatic aberrations are not necessary for accommodation to track dynamic accommodative stimuli. © 2017 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
Local blur analysis and phase error correction method for fringe projection profilometry systems.
Rao, Li; Da, Feipeng
2018-05-20
We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.
ERIC Educational Resources Information Center
Sun, Wei; And Others
1992-01-01
Identifies types and distributions of errors in text produced by optical character recognition (OCR) and proposes a process using machine learning techniques to recognize and correct errors in OCR texts. Results of experiments indicating that this strategy can reduce human interaction required for error correction are reported. (25 references)…
Analysis of error-correction constraints in an optical disk.
Roberts, J D; Ryley, A; Jones, D M; Burke, D
1996-07-10
The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.
Analysis of error-correction constraints in an optical disk
NASA Astrophysics Data System (ADS)
Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David
1996-07-01
The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.
Use of failure mode effect analysis (FMEA) to improve medication management process.
Jain, Khushboo
2017-03-13
Purpose Medication management is a complex process, at high risk of error with life threatening consequences. The focus should be on devising strategies to avoid errors and make the process self-reliable by ensuring prevention of errors and/or error detection at subsequent stages. The purpose of this paper is to use failure mode effect analysis (FMEA), a systematic proactive tool, to identify the likelihood and the causes for the process to fail at various steps and prioritise them to devise risk reduction strategies to improve patient safety. Design/methodology/approach The study was designed as an observational analytical study of medication management process in the inpatient area of a multi-speciality hospital in Gurgaon, Haryana, India. A team was made to study the complex process of medication management in the hospital. FMEA tool was used. Corrective actions were developed based on the prioritised failure modes which were implemented and monitored. Findings The percentage distribution of medication errors as per the observation made by the team was found to be maximum of transcription errors (37 per cent) followed by administration errors (29 per cent) indicating the need to identify the causes and effects of their occurrence. In all, 11 failure modes were identified out of which major five were prioritised based on the risk priority number (RPN). The process was repeated after corrective actions were taken which resulted in about 40 per cent (average) and around 60 per cent reduction in the RPN of prioritised failure modes. Research limitations/implications FMEA is a time consuming process and requires a multidisciplinary team which has good understanding of the process being analysed. FMEA only helps in identifying the possibilities of a process to fail, it does not eliminate them, additional efforts are required to develop action plans and implement them. Frank discussion and agreement among the team members is required not only for successfully conducing FMEA but also for implementing the corrective actions. Practical implications FMEA is an effective proactive risk-assessment tool and is a continuous process which can be continued in phases. The corrective actions taken resulted in reduction in RPN, subjected to further evaluation and usage by others depending on the facility type. Originality/value The application of the tool helped the hospital in identifying failures in medication management process, thereby prioritising and correcting them leading to improvement.
Error analysis and correction of discrete solutions from finite element codes
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.
1984-01-01
Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.
NASA Astrophysics Data System (ADS)
Welcome, Menizibeya O.; Dane, Şenol; Mastorakis, Nikos E.; Pereverzev, Vladimir A.
2017-12-01
The term "metaplasticity" is a recent one, which means plasticity of synaptic plasticity. Correspondingly, neurometaplasticity simply means plasticity of neuroplasticity, indicating that a previous plastic event determines the current plasticity of neurons. Emerging studies suggest that neurometaplasticity underlie many neural activities and neurobehavioral disorders. In our previous work, we indicated that glucoallostasis is essential for the control of plasticity of the neural network that control error commission, detection and correction. Here we review recent works, which suggest that task precision depends on the modulatory effects of neuroplasticity on the neural networks of error commission, detection, and correction. Furthermore, we discuss neurometaplasticity and its role in error commission, detection, and correction.
Song, Jong-Won; Hirao, Kimihiko
2015-10-14
Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
ERIC Educational Resources Information Center
Straalen-Sanderse, Wilma van; And Others
1986-01-01
Following an experiment which revealed that production of grammatically correct sentences and correction of grammatically problematic sentences in French are essentially different skills, a progressive training method for finding and correcting grammatical errors was developed. (MSE)
Zupanc, Christine M; Burgess-Limerick, Robin J; Wallis, Guy
2007-08-01
To investigate error and reaction time consequences of alternating compatible and incompatible steering arrangements during a simulated obstacle avoidance task. Underground coal mine shuttle cars provide an example of a vehicle in which operators are required to alternate between compatible and incompatible steering configurations. This experiment examines the performance of 48 novice participants in a virtual analogy of an underground coal mine shuttle car. Participants were randomly assigned to a compatible condition, an incompatible condition, an alternating condition in which compatibility alternated within and between hands, or an alternating condition in which compatibility alternated between hands. Participants made fewer steering direction errors and made correct steering responses more quickly in the compatible condition. Error rate decreased over time in the incompatible condition. A compatibility effect for both errors and reaction time was also found when the control-response relationship alternated; however, performance improvements over time were not consistent. Isolating compatibility to a hand resulted in reduced error rate and faster reaction time than when compatibility alternated within and between hands. The consequences of alternating control-response relationships are higher error rates and slower responses, at least in the early stages of learning. This research highlights the importance of ensuring consistently compatible human-machine directional control-response relationships.
Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun
2017-08-01
The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.
Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.
Van, Anh T; Hernando, Diego; Sutton, Bradley P
2011-11-01
A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.
Classical simulation of quantum error correction in a Fibonacci anyon code
NASA Astrophysics Data System (ADS)
Burton, Simon; Brell, Courtney G.; Flammia, Steven T.
2017-02-01
Classically simulating the dynamics of anyonic excitations in two-dimensional quantum systems is likely intractable in general because such dynamics are sufficient to implement universal quantum computation. However, processes of interest for the study of quantum error correction in anyon systems are typically drawn from a restricted class that displays significant structure over a wide range of system parameters. We exploit this structure to classically simulate, and thereby demonstrate the success of, an error-correction protocol for a quantum memory based on the universal Fibonacci anyon model. We numerically simulate a phenomenological model of the system and noise processes on lattice sizes of up to 128 ×128 sites, and find a lower bound on the error-correction threshold of approximately 0.125 errors per edge, which is comparable to those previously known for Abelian and (nonuniversal) non-Abelian anyon models.
Adaptive optics system performance approximations for atmospheric turbulence correction
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1990-10-01
Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.
Meterological correction of optical beam refraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukin, V.P.; Melamud, A.E.; Mironov, V.L.
1986-02-01
At the present time laser reference systems (LRS's) are widely used in agrotechnology and in geodesy. The demands for accuracy in LRS's constantly increase, so that a study of error sources and means of considering and correcting them is of practical importance. A theoretical algorithm is presented for correction of the regular component of atmospheric refraction for various types of hydrostatic stability of the atmospheric layer adjacent to the earth. The algorithm obtained is compared to regression equations obtained by processing an experimental data base. It is shown that within admissible accuracy limits the refraction correction algorithm obtained permits constructionmore » of correction tables and design of optical systems with programmable correction for atmospheric refraction on the basis of rapid meteorological measurements.« less