Sample records for time estimation methods

  1. Methods for determining time of death.

    PubMed

    Madea, Burkhard

    2016-12-01

    Medicolegal death time estimation must estimate the time since death reliably. Reliability can only be provided empirically by statistical analysis of errors in field studies. Determining the time since death requires the calculation of measurable data along a time-dependent curve back to the starting point. Various methods are used to estimate the time since death. The current gold standard for death time estimation is a previously established nomogram method based on the two-exponential model of body cooling. Great experimental and practical achievements have been realized using this nomogram method. To reduce the margin of error of the nomogram method, a compound method was developed based on electrical and mechanical excitability of skeletal muscle, pharmacological excitability of the iris, rigor mortis, and postmortem lividity. Further increasing the accuracy of death time estimation involves the development of conditional probability distributions for death time estimation based on the compound method. Although many studies have evaluated chemical methods of death time estimation, such methods play a marginal role in daily forensic practice. However, increased precision of death time estimation has recently been achieved by considering various influencing factors (i.e., preexisting diseases, duration of terminal episode, and ambient temperature). Putrefactive changes may be used for death time estimation in water-immersed bodies. Furthermore, recently developed technologies, such as H magnetic resonance spectroscopy, can be used to quantitatively study decompositional changes. This review addresses the gold standard method of death time estimation in forensic practice and promising technological and scientific developments in the field.

  2. A comparison of estimators from self-controlled case series, case-crossover design, and sequence symmetry analysis for pharmacoepidemiological studies.

    PubMed

    Takeuchi, Yoshinori; Shinozaki, Tomohiro; Matsuyama, Yutaka

    2018-01-08

    Despite the frequent use of self-controlled methods in pharmacoepidemiological studies, the factors that may bias the estimates from these methods have not been adequately compared in real-world settings. Here, we comparatively examined the impact of a time-varying confounder and its interactions with time-invariant confounders, time trends in exposures and events, restrictions, and misspecification of risk period durations on the estimators from three self-controlled methods. This study analyzed self-controlled case series (SCCS), case-crossover (CCO) design, and sequence symmetry analysis (SSA) using simulated and actual electronic medical records datasets. We evaluated the performance of the three self-controlled methods in simulated cohorts for the following scenarios: 1) time-invariant confounding with interactions between the confounders, 2) time-invariant and time-varying confounding without interactions, 3) time-invariant and time-varying confounding with interactions among the confounders, 4) time trends in exposures and events, 5) restricted follow-up time based on event occurrence, and 6) patient restriction based on event history. The sensitivity of the estimators to misspecified risk period durations was also evaluated. As a case study, we applied these methods to evaluate the risk of macrolides on liver injury using electronic medical records. In the simulation analysis, time-varying confounding produced bias in the SCCS and CCO design estimates, which aggravated in the presence of interactions between the time-invariant and time-varying confounders. The SCCS estimates were biased by time trends in both exposures and events. Erroneously short risk periods introduced bias to the CCO design estimate, whereas erroneously long risk periods introduced bias to the estimates of all three methods. Restricting the follow-up time led to severe bias in the SSA estimates. The SCCS estimates were sensitive to patient restriction. The case study showed that although macrolide use was significantly associated with increased liver injury occurrence in all methods, the value of the estimates varied. The estimations of the three self-controlled methods depended on various underlying assumptions, and the violation of these assumptions may cause non-negligible bias in the resulting estimates. Pharmacoepidemiologists should select the appropriate self-controlled method based on how well the relevant key assumptions are satisfied with respect to the available data.

  3. A time-frequency analysis method to obtain stable estimates of magnetotelluric response function based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Cai, Jianhua

    2017-05-01

    The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.

  4. Estimation of Time-Varying Pilot Model Parameters

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2011-01-01

    Human control behavior is rarely completely stationary over time due to fatigue or loss of attention. In addition, there are many control tasks for which human operators need to adapt their control strategy to vehicle dynamics that vary in time. In previous studies on the identification of time-varying pilot control behavior wavelets were used to estimate the time-varying frequency response functions. However, the estimation of time-varying pilot model parameters was not considered. Estimating these parameters can be a valuable tool for the quantification of different aspects of human time-varying manual control. This paper presents two methods for the estimation of time-varying pilot model parameters, a two-step method using wavelets and a windowed maximum likelihood estimation method. The methods are evaluated using simulations of a closed-loop control task with time-varying pilot equalization and vehicle dynamics. Simulations are performed with and without remnant. Both methods give accurate results when no pilot remnant is present. The wavelet transform is very sensitive to measurement noise, resulting in inaccurate parameter estimates when considerable pilot remnant is present. Maximum likelihood estimation is less sensitive to pilot remnant, but cannot detect fast changes in pilot control behavior.

  5. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    PubMed

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.

  6. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data

    PubMed Central

    Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654

  7. Parameters estimation using the first passage times method in a jump-diffusion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaldi, K., E-mail: kkhaldi@umbb.dz; LIMOSE Laboratory, Boumerdes University, 35000; Meddahi, S., E-mail: samia.meddahi@gmail.com

    2016-06-02

    The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time (FPT method) generalized for all passage times (GPT method), in order to estimate the parameters of stochastic Jump-Diffusion process. (2) it compares in a time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the GPT method and those obtained by the moments method and the FPT method applied to the Merton Jump-Diffusion (MJD) model.

  8. Real-Time Parameter Estimation Method Applied to a MIMO Process and its Comparison with an Offline Identification Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplanoglu, Erkan; Safak, Koray K.; Varol, H. Selcuk

    2009-01-12

    An experiment based method is proposed for parameter estimation of a class of linear multivariable systems. The method was applied to a pressure-level control process. Experimental time domain input/output data was utilized in a gray-box modeling approach. Prior knowledge of the form of the system transfer function matrix elements is assumed to be known. Continuous-time system transfer function matrix parameters were estimated in real-time by the least-squares method. Simulation results of experimentally determined system transfer function matrix compare very well with the experimental results. For comparison and as an alternative to the proposed real-time estimation method, we also implemented anmore » offline identification method using artificial neural networks and obtained fairly good results. The proposed methods can be implemented conveniently on a desktop PC equipped with a data acquisition board for parameter estimation of moderately complex linear multivariable systems.« less

  9. iGLASS: An Improvement to the GLASS Method for Estimating Species Trees from Gene Trees

    PubMed Central

    Rosenberg, Noah A.

    2012-01-01

    Abstract Several methods have been designed to infer species trees from gene trees while taking into account gene tree/species tree discordance. Although some of these methods provide consistent species tree topology estimates under a standard model, most either do not estimate branch lengths or are computationally slow. An exception, the GLASS method of Mossel and Roch, is consistent for the species tree topology, estimates branch lengths, and is computationally fast. However, GLASS systematically overestimates divergence times, leading to biased estimates of species tree branch lengths. By assuming a multispecies coalescent model in which multiple lineages are sampled from each of two taxa at L independent loci, we derive the distribution of the waiting time until the first interspecific coalescence occurs between the two taxa, considering all loci and measuring from the divergence time. We then use the mean of this distribution to derive a correction to the GLASS estimator of pairwise divergence times. We show that our improved estimator, which we call iGLASS, consistently estimates the divergence time between a pair of taxa as the number of loci approaches infinity, and that it is an unbiased estimator of divergence times when one lineage is sampled per taxon. We also show that many commonly used clustering methods can be combined with the iGLASS estimator of pairwise divergence times to produce a consistent estimator of the species tree topology. Through simulations, we show that iGLASS can greatly reduce the bias and mean squared error in obtaining estimates of divergence times in a species tree. PMID:22216756

  10. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  11. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  12. An Estimation Method of Waiting Time for Health Service at Hospital by Using a Portable RFID and Robust Estimation

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tsukasa; Yamamoto, Yoshinobu; Nakamura, Yoshiyuki; Akamatsu, Motoyuki

    Patients that have an health service by doctor have to wait long time at many hospitals. The long waiting time is the worst factor of patient's dissatisfaction for hospital service according to questionnaire for patients. The present paper describes an estimation method of the waiting time for each patient without an electronic medical chart system. The method applies a portable RFID system to data acquisition and robust estimation of probability distribution of the health service and test time by doctor for high-accurate waiting time estimation. We carried out an health service of data acquisition at a real hospital and verified the efficiency of the proposed method. The proposed system widely can be used as data acquisition system in various fields such as marketing service, entertainment or human behavior measurement.

  13. Method for estimating air-drying times of lumber

    Treesearch

    William T. Simpson; C. Arthur Hart

    2001-01-01

    Published information on estimated air-drying times of lumber is of limited usefulness because it is restricted to a specific location or to the time of year the lumber is stacked for drying. At best, these estimates give a wide range of possible times over a broad range of possible locations and stacking dates. In this paper, we describe a method for estimating air-...

  14. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  15. Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods.

    PubMed

    Berke, Ethan M; Shi, Xun

    2009-04-29

    Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.

  16. Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers

    USGS Publications Warehouse

    Runkel, Robert L.; Crawford, Charles G.; Cohn, Timothy A.

    2004-01-01

    LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads. This report describes the development and application of LOADEST. Sections of the report describe estimation theory, input/output specifications, sample applications, and installation instructions.

  17. Estimating times of extinction in the fossil record

    PubMed Central

    Marshall, Charles R.

    2016-01-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. PMID:27122005

  18. Estimating times of extinction in the fossil record.

    PubMed

    Wang, Steve C; Marshall, Charles R

    2016-04-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. © 2016 The Author(s).

  19. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  20. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  1. Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks

    PubMed Central

    Lam, William H. K.; Li, Qingquan

    2017-01-01

    Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978

  2. Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.

    PubMed

    Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan

    2017-12-06

    Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.

  3. Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra

    NASA Astrophysics Data System (ADS)

    Rezakhah, Saeid; Maleki, Yasaman

    2016-07-01

    Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.

  4. Dynamic Modeling from Flight Data with Unknown Time Skews

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    A method for estimating dynamic model parameters from flight data with unknown time skews is described and demonstrated. The method combines data reconstruction, nonlinear optimization, and equation-error parameter estimation in the frequency domain to accurately estimate both dynamic model parameters and the relative time skews in the data. Data from a nonlinear F-16 aircraft simulation with realistic noise, instrumentation errors, and arbitrary time skews were used to demonstrate the approach. The approach was further evaluated using flight data from a subscale jet transport aircraft, where the measured data were known to have relative time skews. Comparison of modeling results obtained from time-skewed and time-synchronized data showed that the method accurately estimates both dynamic model parameters and relative time skew parameters from flight data with unknown time skews.

  5. A comparison of selection at list time and time-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1993-01-01

    Time-stratified sampling of sediment for estimating suspended load is introduced and compared to selection at list time (SALT) sampling. Both methods provide unbiased estimates of load and variance. The magnitude of the variance of the two methods is compared using five storm populations of suspended sediment flux derived from turbidity data. Under like conditions,...

  6. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots

    NASA Astrophysics Data System (ADS)

    Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun

    2018-05-01

    For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.

  7. Estimating evolutionary rates using time-structured data: a general comparison of phylogenetic methods.

    PubMed

    Duchêne, Sebastián; Geoghegan, Jemma L; Holmes, Edward C; Ho, Simon Y W

    2016-11-15

    In rapidly evolving pathogens, including viruses and some bacteria, genetic change can accumulate over short time-frames. Accordingly, their sampling times can be used to calibrate molecular clocks, allowing estimation of evolutionary rates. Methods for estimating rates from time-structured data vary in how they treat phylogenetic uncertainty and rate variation among lineages. We compiled 81 virus data sets and estimated nucleotide substitution rates using root-to-tip regression, least-squares dating and Bayesian inference. Although estimates from these three methods were often congruent, this largely relied on the choice of clock model. In particular, relaxed-clock models tended to produce higher rate estimates than methods that assume constant rates. Discrepancies in rate estimates were also associated with high among-lineage rate variation, and phylogenetic and temporal clustering. These results provide insights into the factors that affect the reliability of rate estimates from time-structured sequence data, emphasizing the importance of clock-model testing. sduchene@unimelb.edu.au or garzonsebastian@hotmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A; Heeg, Jennifer; Morelli, Eugene A

    2012-01-01

    A new method is presented for estimating frequency responses and their uncertainties from wind-tunnel data in real time. The method uses orthogonal phase-optimized multi- sine excitation inputs and a recursive Fourier transform with a least-squares estimator. The method was first demonstrated with an F-16 nonlinear flight simulation and results showed that accurate short period frequency responses were obtained within 10 seconds. The method was then applied to wind-tunnel data from a previous aeroelastic test of the Joined- Wing SensorCraft. Frequency responses describing bending strains from simultaneous control surface excitations were estimated in a time-efficient manner.

  9. A Comparison of Height-Accumulation and Volume-Equation Methods for Estimating Tree and Stand Volumes

    Treesearch

    R.B. Ferguson; V. Clark Baldwin

    1995-01-01

    Estimating tree and stand volume in mature plantations is time consuming, involving much manpower and equipment; however, several sampling and volume-prediction techniques are available. This study showed that a well-constructed, volume-equation method yields estimates comparable to those of the often more time-consuming, height-accumulation method, even though the...

  10. Novel non-parametric models to estimate evolutionary rates and divergence times from heterochronous sequence data.

    PubMed

    Fourment, Mathieu; Holmes, Edward C

    2014-07-24

    Early methods for estimating divergence times from gene sequence data relied on the assumption of a molecular clock. More sophisticated methods were created to model rate variation and used auto-correlation of rates, local clocks, or the so called "uncorrelated relaxed clock" where substitution rates are assumed to be drawn from a parametric distribution. In the case of Bayesian inference methods the impact of the prior on branching times is not clearly understood, and if the amount of data is limited the posterior could be strongly influenced by the prior. We develop a maximum likelihood method--Physher--that uses local or discrete clocks to estimate evolutionary rates and divergence times from heterochronous sequence data. Using two empirical data sets we show that our discrete clock estimates are similar to those obtained by other methods, and that Physher outperformed some methods in the estimation of the root age of an influenza virus data set. A simulation analysis suggests that Physher can outperform a Bayesian method when the real topology contains two long branches below the root node, even when evolution is strongly clock-like. These results suggest it is advisable to use a variety of methods to estimate evolutionary rates and divergence times from heterochronous sequence data. Physher and the associated data sets used here are available online at http://code.google.com/p/physher/.

  11. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars

    NASA Astrophysics Data System (ADS)

    Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G.

    2015-12-01

    Thermal time models have been used to predict the development of many different species, including grapevine ( Vitis vinifera L.). These models normally assume that there is a linear relationship between temperature and plant development. The goal of this study was to estimate the base temperature and duration in terms of thermal time for predicting veraison for four grapevine cultivars. Historical phenological data for four cultivars that were collected in the Pacific Northwest were used to develop the thermal time model. Base temperatures ( T b) of 0 and 10 °C and the best estimated T b using three different methods were evaluated for predicting veraison in grapevine. Thermal time requirements for each individual cultivar were evaluated through analysis of variance, and means were compared using the Fisher's test. The methods that were applied to estimate T b for the development of wine grapes included the least standard deviation in heat units, the regression coefficient, and the development rate method. The estimated T b varied among methods and cultivars. The development rate method provided the lowest T b values for all cultivars. For the three methods, Chardonnay had the lowest T b ranging from 8.7 to 10.7 °C, while the highest T b values were obtained for Riesling and Cabernet Sauvignon with 11.8 and 12.8 °C, respectively. Thermal time also differed among cultivars, when either the fixed or estimated T b was used. Predictions of the beginning of ripening with the estimated temperature resulted in the lowest variation in real days when compared with predictions using T b = 0 or 10 °C, regardless of the method that was used to estimate the T b.

  12. Adaptive multitaper time-frequency spectrum estimation

    NASA Astrophysics Data System (ADS)

    Pitton, James W.

    1999-11-01

    In earlier work, Thomson's adaptive multitaper spectrum estimation method was extended to the nonstationary case. This paper reviews the time-frequency multitaper method and the adaptive procedure, and explores some properties of the eigenvalues and eigenvectors. The variance of the adaptive estimator is used to construct an adaptive smoother, which is used to form a high resolution estimate. An F-test for detecting and removing sinusoidal components in the time-frequency spectrum is also given.

  13. Characterization of turbulence stability through the identification of multifractional Brownian motions

    NASA Astrophysics Data System (ADS)

    Lee, K. C.

    2013-02-01

    Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.

  14. An evaluation of flow-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1995-01-01

    Abstract - Flow-stratified sampling is a new method for sampling water quality constituents such as suspended sediment to estimate loads. As with selection-at-list-time (SALT) and time-stratified sampling, flow-stratified sampling is a statistical method requiring random sampling, and yielding unbiased estimates of load and variance. It can be used to estimate event...

  15. Effects of time-shifted data on flight determined stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Steers, S. T.; Iliff, K. W.

    1975-01-01

    Flight data were shifted in time by various increments to assess the effects of time shifts on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there was a considerable time shift in the data. Time shifts degraded the estimates of the derivatives, but the degradation was in a consistent rather than a random pattern. Time shifts in the control variables caused the most degradation, and the lateral-directional rotary derivatives were affected the most by time shifts in any variable.

  16. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation.

    PubMed

    Lee, Joonnyong; Sohn, JangJay; Park, Jonghyun; Yang, SeungMan; Lee, Saram; Kim, Hee Chan

    2018-06-18

    Non-invasive continuous blood pressure monitors are of great interest to the medical community due to their value in hypertension management. Recently, studies have shown the potential of pulse pressure as a therapeutic target for hypertension, but not enough attention has been given to non-invasive continuous monitoring of pulse pressure. Although accurate pulse pressure estimation can be of direct value to hypertension management and indirectly to the estimation of systolic blood pressure, as it is the sum of pulse pressure and diastolic blood pressure, only a few inadequate methods of pulse pressure estimation have been proposed. We present a novel, non-invasive blood pressure and pulse pressure estimation method based on pulse transit time and pre-ejection period. Pre-ejection period and pulse transit time were measured non-invasively using electrocardiogram, seismocardiogram, and photoplethysmogram measured from the torso. The proposed method used the 2-element Windkessel model to model pulse pressure with the ratio of stroke volume, approximated by pre-ejection period, and arterial compliance, estimated by pulse transit time. Diastolic blood pressure was estimated using pulse transit time, and systolic blood pressure was estimated as the sum of the two estimates. The estimation method was verified in 11 subjects in two separate conditions with induced cardiovascular response and the results were compared against a reference measurement and values obtained from a previously proposed method. The proposed method yielded high agreement with the reference (pulse pressure correlation with reference R ≥ 0.927, diastolic blood pressure correlation with reference R ≥ 0.854, systolic blood pressure correlation with reference R ≥ 0.914) and high estimation accuracy in pulse pressure (mean root-mean-squared error ≤ 3.46 mmHg) and blood pressure (mean root-mean-squared error ≤ 6.31 mmHg for diastolic blood pressure and ≤ 8.41 mmHg for systolic blood pressure) over a wide range of hemodynamic changes. The proposed pulse pressure estimation method provides accurate estimates in situations with and without significant changes in stroke volume. The proposed method improves upon the currently available systolic blood pressure estimation methods by providing accurate pulse pressure estimates.

  17. Methods for estimating confidence intervals in interrupted time series analyses of health interventions.

    PubMed

    Zhang, Fang; Wagner, Anita K; Soumerai, Stephen B; Ross-Degnan, Dennis

    2009-02-01

    Interrupted time series (ITS) is a strong quasi-experimental research design, which is increasingly applied to estimate the effects of health services and policy interventions. We describe and illustrate two methods for estimating confidence intervals (CIs) around absolute and relative changes in outcomes calculated from segmented regression parameter estimates. We used multivariate delta and bootstrapping methods (BMs) to construct CIs around relative changes in level and trend, and around absolute changes in outcome based on segmented linear regression analyses of time series data corrected for autocorrelated errors. Using previously published time series data, we estimated CIs around the effect of prescription alerts for interacting medications with warfarin on the rate of prescriptions per 10,000 warfarin users per month. Both the multivariate delta method (MDM) and the BM produced similar results. BM is preferred for calculating CIs of relative changes in outcomes of time series studies, because it does not require large sample sizes when parameter estimates are obtained correctly from the model. Caution is needed when sample size is small.

  18. A comparison of methods to estimate seismic phase delays--Numerical examples for coda wave interferometry

    USGS Publications Warehouse

    Mikesell, T. Dylan; Malcolm, Alison E.; Yang, Di; Haney, Matthew M.

    2015-01-01

    Time-shift estimation between arrivals in two seismic traces before and after a velocity perturbation is a crucial step in many seismic methods. The accuracy of the estimated velocity perturbation location and amplitude depend on this time shift. Windowed cross correlation and trace stretching are two techniques commonly used to estimate local time shifts in seismic signals. In the work presented here, we implement Dynamic Time Warping (DTW) to estimate the warping function – a vector of local time shifts that globally minimizes the misfit between two seismic traces. We illustrate the differences of all three methods compared to one another using acoustic numerical experiments. We show that DTW is comparable to or better than the other two methods when the velocity perturbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio is low, we find that DTW and windowed cross correlation are more accurate than the stretching method. Finally, we show that the DTW algorithm has better time resolution when identifying small differences in the seismic traces for a model with an isolated velocity perturbation. These results impact current methods that utilize not only time shifts between (multiply) scattered waves, but also amplitude and decoherence measurements. DTW is a new tool that may find new applications in seismology and other geophysical methods (e.g., as a waveform inversion misfit function).

  19. 24 h Accelerometry: impact of sleep-screening methods on estimates of sedentary behaviour and physical activity while awake.

    PubMed

    Meredith-Jones, Kim; Williams, Sheila; Galland, Barbara; Kennedy, Gavin; Taylor, Rachael

    2016-01-01

    Although accelerometers can assess sleep and activity over 24 h, sleep data must be removed before physical activity and sedentary time can be examined appropriately. We compared the effect of 6 different sleep-scoring rules on physical activity and sedentary time. Activity and sleep were obtained by accelerometry (ActiGraph GT3X) over 7 days in 291 children (51.3% overweight or obese) aged 4-8.9 years. Three methods removed sleep using individualised time filters and two methods applied standard time filters to remove sleep each day (9 pm-6 am, 12 am-6 am). The final method did not remove sleep but simply defined non-wear as at least 60 min of consecutive zeros over the 24-h period. Different methods of removing sleep from 24-h data markedly affect estimates of sedentary time, yielding values ranging from 556 to 1145 min/day. Estimates of non-wear time (33-193 min), wear time (736-1337 min) and counts per minute (384-658) also showed considerable variation. By contrast, estimates of moderate-to-vigorous activity (MVPA) were similar, varying by less than 1 min/day. Different scoring methods to remove sleep from 24-h accelerometry data do not affect measures of MVPA, whereas estimates of counts per minute and sedentary time depend considerably on which technique is used.

  20. Timely disclosure of progress in long-term cancer survival: the boomerang method substantially improved estimates in a comparative study.

    PubMed

    Brenner, Hermann; Jansen, Lina

    2016-02-01

    Monitoring cancer survival is a key task of cancer registries, but timely disclosure of progress in long-term survival remains a challenge. We introduce and evaluate a novel method, denoted "boomerang method," for deriving more up-to-date estimates of long-term survival. We applied three established methods (cohort, complete, and period analysis) and the boomerang method to derive up-to-date 10-year relative survival of patients diagnosed with common solid cancers and hematological malignancies in the United States. Using the Surveillance, Epidemiology and End Results 9 database, we compared the most up-to-date age-specific estimates that might have been obtained with the database including patients diagnosed up to 2001 with 10-year survival later observed for patients diagnosed in 1997-2001. For cancers with little or no increase in survival over time, the various estimates of 10-year relative survival potentially available by the end of 2001 were generally rather similar. For malignancies with strongly increasing survival over time, including breast and prostate cancer and all hematological malignancies, the boomerang method provided estimates that were closest to later observed 10-year relative survival in 23 of the 34 groups assessed. The boomerang method can substantially improve up-to-dateness of long-term cancer survival estimates in times of ongoing improvement in prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

    NASA Technical Reports Server (NTRS)

    Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus

    2013-01-01

    Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.

  2. Innovative methods for calculation of freeway travel time using limited data : final report.

    DOT National Transportation Integrated Search

    2008-01-01

    Description: Travel time estimations created by processing of simulated freeway loop detector data using proposed method have been compared with travel times reported from VISSIM model. An improved methodology was proposed to estimate freeway corrido...

  3. A method for estimating peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area

    USGS Publications Warehouse

    Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.

    2011-01-01

    Estimates of peak and time of peak streamflow for small watersheds (less than about 640 acres) in a suburban to urban, low-slope setting are needed for drainage design that is cost-effective and risk-mitigated. During 2007-10, the U.S. Geological Survey (USGS), in cooperation with the Harris County Flood Control District and the Texas Department of Transportation, developed a method to estimate peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area. To develop the method, 24 watersheds in the study area with drainage areas less than about 3.5 square miles (2,240 acres) and with concomitant rainfall and runoff data were selected. The method is based on conjunctive analysis of rainfall and runoff data in the context of the unit hydrograph method and the rational method. For the unit hydrograph analysis, a gamma distribution model of unit hydrograph shape (a gamma unit hydrograph) was chosen and parameters estimated through matching of modeled peak and time of peak streamflow to observed values on a storm-by-storm basis. Watershed mean or watershed-specific values of peak and time to peak ("time to peak" is a parameter of the gamma unit hydrograph and is distinct from "time of peak") of the gamma unit hydrograph were computed. Two regression equations to estimate peak and time to peak of the gamma unit hydrograph that are based on watershed characteristics of drainage area and basin-development factor (BDF) were developed. For the rational method analysis, a lag time (time-R), volumetric runoff coefficient, and runoff coefficient were computed on a storm-by-storm basis. Watershed-specific values of these three metrics were computed. A regression equation to estimate time-R based on drainage area and BDF was developed. Overall arithmetic means of volumetric runoff coefficient (0.41 dimensionless) and runoff coefficient (0.25 dimensionless) for the 24 watersheds were used to express the rational method in terms of excess rainfall (the excess rational method). Both the unit hydrograph method and excess rational method are shown to provide similar estimates of peak and time of peak streamflow. The results from the two methods can be combined by using arithmetic means. A nomograph is provided that shows the respective relations between the arithmetic-mean peak and time of peak streamflow to drainage areas ranging from 10 to 640 acres. The nomograph also shows the respective relations for selected BDF ranging from undeveloped to fully developed conditions. The nomograph represents the peak streamflow for 1 inch of excess rainfall based on drainage area and BDF; the peak streamflow for design storms from the nomograph can be multiplied by the excess rainfall to estimate peak streamflow. Time of peak streamflow is readily obtained from the nomograph. Therefore, given excess rainfall values derived from watershed-loss models, which are beyond the scope of this report, the nomograph represents a method for estimating peak and time of peak streamflow for applicable watersheds in the Houston metropolitan area. Lastly, analysis of the relative influence of BDF on peak streamflow is provided, and the results indicate a 0:04log10 cubic feet per second change of peak streamflow per positive unit of change in BDF. This relative change can be used to adjust peak streamflow from the method or other hydrologic methods for a given BDF to other BDF values; example computations are provided.

  4. Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.

    PubMed

    Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke

    2016-09-01

    Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.

  5. BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales

    PubMed Central

    Yu, Hwa-Lung; Chen, Jiu-Chiuan; Christakos, George; Jerrett, Michael

    2009-01-01

    Background Long-term human exposure to ambient pollutants can be an important contributing or etiologic factor of many chronic diseases. Spatiotemporal estimation (mapping) of long-term exposure at residential areas based on field observations recorded in the U.S. Environmental Protection Agency’s Air Quality System often suffer from missing data issues due to the scarce monitoring network across space and the inconsistent recording periods at different monitors. Objective We developed and compared two upscaling methods: UM1 (data aggregation followed by exposure estimation) and UM2 (exposure estimation followed by data aggregation) for the long-term PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ozone exposure estimations and applied them in multiple time scales to estimate PM and ozone exposures for the residential areas of the Health Effects of Air Pollution on Lupus (HEAPL) study. Method We used Bayesian maximum entropy (BME) analysis for the two upscaling methods. We performed spatiotemporal cross-validations at multiple time scales by UM1 and UM2 to assess the estimation accuracy across space and time. Results Compared with the kriging method, the integration of soft information by the BME method can effectively increase the estimation accuracy for both pollutants. The spatiotemporal distributions of estimation errors from UM1 and UM2 were similar. The cross-validation results indicated that UM2 is generally better than UM1 in exposure estimations at multiple time scales in terms of predictive accuracy and lack of bias. For yearly PM10 estimations, both approaches have comparable performance, but the implementation of UM1 is associated with much lower computation burden. Conclusion BME-based upscaling methods UM1 and UM2 can assimilate core and site-specific knowledge bases of different formats for long-term exposure estimation. This study shows that UM1 can perform reasonably well when the aggregation process does not alter the spatiotemporal structure of the original data set; otherwise, UM2 is preferable. PMID:19440491

  6. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  7. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    PubMed

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  8. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  9. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  10. Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method.

    PubMed

    Jia, Gengjie; Stephanopoulos, Gregory N; Gunawan, Rudiyanto

    2011-07-15

    Time-series measurements of metabolite concentration have become increasingly more common, providing data for building kinetic models of metabolic networks using ordinary differential equations (ODEs). In practice, however, such time-course data are usually incomplete and noisy, and the estimation of kinetic parameters from these data is challenging. Practical limitations due to data and computational aspects, such as solving stiff ODEs and finding global optimal solution to the estimation problem, give motivations to develop a new estimation procedure that can circumvent some of these constraints. In this work, an incremental and iterative parameter estimation method is proposed that combines and iterates between two estimation phases. One phase involves a decoupling method, in which a subset of model parameters that are associated with measured metabolites, are estimated using the minimization of slope errors. Another phase follows, in which the ODE model is solved one equation at a time and the remaining model parameters are obtained by minimizing concentration errors. The performance of this two-phase method was tested on a generic branched metabolic pathway and the glycolytic pathway of Lactococcus lactis. The results showed that the method is efficient in getting accurate parameter estimates, even when some information is missing.

  11. New instantaneous frequency estimation method based on the use of image processing techniques

    NASA Astrophysics Data System (ADS)

    Borda, Monica; Nafornita, Ioan; Isar, Alexandru

    2003-05-01

    The aim of this paper is to present a new method for the estimation of the instantaneous frequency of a frequency modulated signal, corrupted by additive noise. This method represents an example of fusion of two theories: the time-frequency representations and the mathematical morphology. Any time-frequency representation of a useful signal is concentrated around its instantaneous frequency law and realizes the diffusion of the noise that perturbs the useful signal in the time - frequency plane. In this paper a new time-frequency representation, useful for the estimation of the instantaneous frequency, is proposed. This time-frequency representation is the product of two others time-frequency representations: the Wigner - Ville time-frequency representation and a new one obtained by filtering with a hard thresholding filter the Gabor representation of the signal to be processed. Using the image of this new time-frequency representation the instantaneous frequency of the useful signal can be extracted with the aid of some mathematical morphology operators: the conversion in binary form, the dilation and the skeleton. The simulations of the proposed method have proved its qualities. It is better than other estimation methods, like those based on the use of adaptive notch filters.

  12. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  13. A new linear least squares method for T1 estimation from SPGR signals with multiple TRs

    NASA Astrophysics Data System (ADS)

    Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo

    2009-02-01

    The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.

  14. Pseudorange error analysis for precise indoor positioning system

    NASA Astrophysics Data System (ADS)

    Pola, Marek; Bezoušek, Pavel

    2017-05-01

    There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.

  15. Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods.

    PubMed

    Keogh, Ruth H; Daniel, Rhian M; VanderWeele, Tyler J; Vansteelandt, Stijn

    2018-05-01

    Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of marginal structural models have been developed to address this problem. However, in this paper we show how standard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models (SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how including propensity score adjustment is advantageous. We compare the causal effects being estimated using SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable more precise inferences, with greater robustness against model misspecification via propensity score adjustment, and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on a subsequent outcome is described.

  16. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  17. Can real time location system technology (RTLS) provide useful estimates of time use by nursing personnel?

    PubMed

    Jones, Terry L; Schlegel, Cara

    2014-02-01

    Accurate, precise, unbiased, reliable, and cost-effective estimates of nursing time use are needed to insure safe staffing levels. Direct observation of nurses is costly, and conventional surrogate measures have limitations. To test the potential of electronic capture of time and motion through real time location systems (RTLS), a pilot study was conducted to assess efficacy (method agreement) of RTLS time use; inter-rater reliability of RTLS time-use estimates; and associated costs. Method agreement was high (mean absolute difference = 28 seconds); inter-rater reliability was high (ICC = 0.81-0.95; mean absolute difference = 2 seconds); and costs for obtaining RTLS time-use estimates on a single nursing unit exceeded $25,000. Continued experimentation with RTLS to obtain time-use estimates for nursing staff is warranted. © 2013 Wiley Periodicals, Inc.

  18. Nonparametric methods for analyzing recurrent gap time data with application to infections after hematopoietic cell transplant.

    PubMed

    Lee, Chi Hyun; Luo, Xianghua; Huang, Chiung-Yu; DeFor, Todd E; Brunstein, Claudio G; Weisdorf, Daniel J

    2016-06-01

    Infection is one of the most common complications after hematopoietic cell transplantation. Many patients experience infectious complications repeatedly after transplant. Existing statistical methods for recurrent gap time data typically assume that patients are enrolled due to the occurrence of an event of interest, and subsequently experience recurrent events of the same type; moreover, for one-sample estimation, the gap times between consecutive events are usually assumed to be identically distributed. Applying these methods to analyze the post-transplant infection data will inevitably lead to incorrect inferential results because the time from transplant to the first infection has a different biological meaning than the gap times between consecutive recurrent infections. Some unbiased yet inefficient methods include univariate survival analysis methods based on data from the first infection or bivariate serial event data methods based on the first and second infections. In this article, we propose a nonparametric estimator of the joint distribution of time from transplant to the first infection and the gap times between consecutive infections. The proposed estimator takes into account the potentially different distributions of the two types of gap times and better uses the recurrent infection data. Asymptotic properties of the proposed estimators are established. © 2015, The International Biometric Society.

  19. Nonparametric methods for analyzing recurrent gap time data with application to infections after hematopoietic cell transplant

    PubMed Central

    Lee, Chi Hyun; Huang, Chiung-Yu; DeFor, Todd E.; Brunstein, Claudio G.; Weisdorf, Daniel J.

    2015-01-01

    Summary Infection is one of the most common complications after hematopoietic cell transplantation. Many patients experience infectious complications repeatedly after transplant. Existing statistical methods for recurrent gap time data typically assume that patients are enrolled due to the occurrence of an event of interest, and subsequently experience recurrent events of the same type; moreover, for one-sample estimation, the gap times between consecutive events are usually assumed to be identically distributed. Applying these methods to analyze the post-transplant infection data will inevitably lead to incorrect inferential results because the time from transplant to the first infection has a different biological meaning than the gap times between consecutive recurrent infections. Some unbiased yet inefficient methods include univariate survival analysis methods based on data from the first infection or bivariate serial event data methods based on the first and second infections. In this paper, we propose a nonparametric estimator of the joint distribution of time from transplant to the first infection and the gap times between consecutive infections. The proposed estimator takes into account the potentially different distributions of the two types of gap times and better uses the recurrent infection data. Asymptotic properties of the proposed estimators are established. PMID:26575402

  20. Survival curve estimation with dependent left truncated data using Cox's model.

    PubMed

    Mackenzie, Todd

    2012-10-19

    The Kaplan-Meier and closely related Lynden-Bell estimators are used to provide nonparametric estimation of the distribution of a left-truncated random variable. These estimators assume that the left-truncation variable is independent of the time-to-event. This paper proposes a semiparametric method for estimating the marginal distribution of the time-to-event that does not require independence. It models the conditional distribution of the time-to-event given the truncation variable using Cox's model for left truncated data, and uses inverse probability weighting. We report the results of simulations and illustrate the method using a survival study.

  1. Multi-point estimation of total energy expenditure: a comparison between zinc-reduction and platinum-equilibration methodologies.

    PubMed

    Sonko, Bakary J; Miller, Leland V; Jones, Richard H; Donnelly, Joseph E; Jacobsen, Dennis J; Hill, James O; Fennessey, Paul V

    2003-12-15

    Reducing water to hydrogen gas by zinc or uranium metal for determining D/H ratio is both tedious and time consuming. This has forced most energy metabolism investigators to use the "two-point" technique instead of the "Multi-point" technique for estimating total energy expenditure (TEE). Recently, we purchased a new platinum (Pt)-equilibration system that significantly reduces both time and labor required for D/H ratio determination. In this study, we compared TEE obtained from nine overweight but healthy subjects, estimated using the traditional Zn-reduction method to that obtained from the new Pt-equilibration system. Rate constants, pool spaces, and CO2 production rates obtained from use of the two methodologies were not significantly different. Correlation analysis demonstrated that TEEs estimated using the two methods were significantly correlated (r=0.925, p=0.0001). Sample equilibration time was reduced by 66% compared to those of similar methods. The data demonstrated that the Zn-reduction method could be replaced by the Pt-equilibration method when TEE was estimated using the "Multi-Point" technique. Furthermore, D equilibration time was significantly reduced.

  2. Demographic estimation methods for plants with unobservable life-states

    USGS Publications Warehouse

    Kery, M.; Gregg, K.B.; Schaub, M.

    2005-01-01

    Demographic estimation of vital parameters in plants with an unobservable dormant state is complicated, because time of death is not known. Conventional methods assume that death occurs at a particular time after a plant has last been seen aboveground but the consequences of assuming a particular duration of dormancy have never been tested. Capture-recapture methods do not make assumptions about time of death; however, problems with parameter estimability have not yet been resolved. To date, a critical comparative assessment of these methods is lacking. We analysed data from a 10 year study of Cleistes bifaria, a terrestrial orchid with frequent dormancy, and compared demographic estimates obtained by five varieties of the conventional methods, and two capture-recapture methods. All conventional methods produced spurious unity survival estimates for some years or for some states, and estimates of demographic rates sensitive to the time of death assumption. In contrast, capture-recapture methods are more parsimonious in terms of assumptions, are based on well founded theory and did not produce spurious estimates. In Cleistes, dormant episodes lasted for 1-4 years (mean 1.4, SD 0.74). The capture-recapture models estimated ramet survival rate at 0.86 (SE~ 0.01), ranging from 0.77-0.94 (SEs # 0.1) in anyone year. The average fraction dormant was estimated at 30% (SE 1.5), ranging 16 -47% (SEs # 5.1) in anyone year. Multistate capture-recapture models showed that survival rates were positively related to precipitation in the current year, but transition rates were more strongly related to precipitation in the previous than in the current year, with more ramets going dormant following dry years. Not all capture-recapture models of interest have estimable parameters; for instance, without excavating plants in years when they do not appear aboveground, it is not possible to obtain independent timespecific survival estimates for dormant plants. We introduce rigorous computer algebra methods to identify the parameters that are estimable in principle. As life-states are a prominent feature in plant life cycles, multi state capture-recapture models are a natural framework for analysing population dynamics of plants with dormancy.

  3. Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSilva, Upul P.; Claussen, Heiko; Ragunathan, Karthik

    A method for determining waveguide temperature for at least one waveguide of a transceiver utilized for generating a temperature map. The transceiver generates an acoustic signal that travels through a measurement space in a hot gas flow path defined by a wall such as in a combustor. The method includes calculating a total time of flight for the acoustic signal and subtracting a waveguide travel time from the total time of flight to obtain a measurement space travel time. A temperature map is calculated based on the measurement space travel time. An estimated wall temperature is obtained from the temperaturemore » map. An estimated waveguide temperature is then calculated based on the estimated wall temperature wherein the estimated waveguide temperature is determined without the use of a temperature sensing device.« less

  4. Improvement of Vehicle Positioning Using Car-to-Car Communications in Consideration of Communication Delay

    NASA Astrophysics Data System (ADS)

    Hontani, Hidekata; Higuchi, Yuya

    In this article, we propose a vehicle positioning method that can estimate positions of cars even in areas where the GPS is not available. For the estimation, each car measures the relative distance to a car running in front, communicates the measurements with other cars, and uses the received measurements for estimating its position. In order to estimate the position even if the measurements are received with time-delay, we employed the time-delay tolerant Kalman filtering. For sharing the measurements, it is assumed that a car-to-car communication system is used. Then, the measurements sent from farther cars are received with larger time-delay. It follows that the accuracy of the estimates of farther cars become worse. Hence, the proposed method manages only the states of nearby cars to reduce computing effort. The authors simulated the proposed filtering method and found that the proposed method estimates the positions of nearby cars as accurate as the distributed Kalman filtering.

  5. Application of Bayesian Maximum Entropy Filter in parameter calibration of groundwater flow model in PingTung Plain

    NASA Astrophysics Data System (ADS)

    Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung

    2017-04-01

    Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.

  6. A novel joint timing/frequency synchronization scheme based on Radon-Wigner transform of LFM signals in CO-OFDM systems

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Wei, Ying; Zeng, Xiangye; Lu, Jia; Zhang, Shuangxi; Wang, Mengjun

    2018-03-01

    A joint timing and frequency synchronization method has been proposed for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system in this paper. The timing offset (TO), integer frequency offset (FO) and the fractional FO can be realized by only one training symbol, which consists of two linear frequency modulation (LFM) signals with opposite chirp rates. By detecting the peak of LFM signals after Radon-Wigner transform (RWT), the TO and the integer FO can be estimated at the same time, moreover, the fractional FO can be acquired correspondingly through the self-correlation characteristic of the same training symbol. Simulation results show that the proposed method can give a more accurate TO estimation than the existing methods, especially at poor OSNR conditions; for the FO estimation, both the fractional and the integer FO can be estimated through the proposed training symbol with no extra overhead, a more accurate estimation and a large FO estimation range of [ - 5 GHz, 5GHz] can be acquired.

  7. Estimating dietary costs of low-income women in California: a comparison of 2 approaches.

    PubMed

    Aaron, Grant J; Keim, Nancy L; Drewnowski, Adam; Townsend, Marilyn S

    2013-04-01

    Currently, no simplified approach to estimating food costs exists for a large, nationally representative sample. The objective was to compare 2 approaches for estimating individual daily diet costs in a population of low-income women in California. Cost estimates based on time-intensive method 1 (three 24-h recalls and associated food prices on receipts) were compared with estimates made by using less intensive method 2 [a food-frequency questionnaire (FFQ) and store prices]. Low-income participants (n = 121) of USDA nutrition programs were recruited. Mean daily diet costs, both unadjusted and adjusted for energy, were compared by using Pearson correlation coefficients and the Bland-Altman 95% limits of agreement between methods. Energy and nutrient intakes derived by the 2 methods were comparable; where differences occurred, the FFQ (method 2) provided higher nutrient values than did the 24-h recall (method 1). The crude daily diet cost was $6.32 by the 24-h recall method and $5.93 by the FFQ method (P = 0.221). The energy-adjusted diet cost was $6.65 by the 24-h recall method and $5.98 by the FFQ method (P < 0.001). Although the agreement between methods was weaker than expected, both approaches may be useful. Additional research is needed to further refine a large national survey approach (method 2) to estimate daily dietary costs with the use of this minimal time-intensive method for the participant and moderate time-intensive method for the researcher.

  8. The current duration design for estimating the time to pregnancy distribution: a nonparametric Bayesian perspective.

    PubMed

    Gasbarra, Dario; Arjas, Elja; Vehtari, Aki; Slama, Rémy; Keiding, Niels

    2015-10-01

    This paper was inspired by the studies of Niels Keiding and co-authors on estimating the waiting time-to-pregnancy (TTP) distribution, and in particular on using the current duration design in that context. In this design, a cross-sectional sample of women is collected from those who are currently attempting to become pregnant, and then by recording from each the time she has been attempting. Our aim here is to study the identifiability and the estimation of the waiting time distribution on the basis of current duration data. The main difficulty in this stems from the fact that very short waiting times are only rarely selected into the sample of current durations, and this renders their estimation unstable. We introduce here a Bayesian method for this estimation problem, prove its asymptotic consistency, and compare the method to some variants of the non-parametric maximum likelihood estimators, which have been used previously in this context. The properties of the Bayesian estimation method are studied also empirically, using both simulated data and TTP data on current durations collected by Slama et al. (Hum Reprod 27(5):1489-1498, 2012).

  9. Efficient multidimensional regularization for Volterra series estimation

    NASA Astrophysics Data System (ADS)

    Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan

    2018-05-01

    This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.

  10. Estimating survival rates with time series of standing age‐structure data

    USGS Publications Warehouse

    Udevitz, Mark S.; Gogan, Peter J.

    2012-01-01

    It has long been recognized that age‐structure data contain useful information for assessing the status and dynamics of wildlife populations. For example, age‐specific survival rates can be estimated with just a single sample from the age distribution of a stable, stationary population. For a population that is not stable, age‐specific survival rates can be estimated using techniques such as inverse methods that combine time series of age‐structure data with other demographic data. However, estimation of survival rates using these methods typically requires numerical optimization, a relatively long time series of data, and smoothing or other constraints to provide useful estimates. We developed general models for possibly unstable populations that combine time series of age‐structure data with other demographic data to provide explicit maximum likelihood estimators of age‐specific survival rates with as few as two years of data. As an example, we applied these methods to estimate survival rates for female bison (Bison bison) in Yellowstone National Park, USA. This approach provides a simple tool for monitoring survival rates based on age‐structure data.

  11. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    ERIC Educational Resources Information Center

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  12. Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.

    PubMed

    Kis, Maria

    2005-01-01

    In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.

  13. Indirect rotor position sensing in real time for brushless permanent magnet motor drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertugrul, N.; Acarnley, P.P.

    1998-07-01

    This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PMmore » motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.« less

  14. A Computationally Efficient Method for Polyphonic Pitch Estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Ruohua; Reiss, Joshua D.; Mattavelli, Marco; Zoia, Giorgio

    2009-12-01

    This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI) as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.

  15. Pricing Secrets Revealed: An Insider's Perspective on How Custom Courses Are Priced.

    ERIC Educational Resources Information Center

    Hartnett, John

    2002-01-01

    Describes one vendor's methods for pricing the development of online learning courses. Highlights include estimating the time needed; estimating the size of the course by counting the number of potential screens; estimating time spent by learners; comparing similar projects; and estimating time needed by each member of the project team. (LRW)

  16. A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.

    2014-11-01

    We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.

  17. Improving cluster-based missing value estimation of DNA microarray data.

    PubMed

    Brás, Lígia P; Menezes, José C

    2007-06-01

    We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is performed iteratively using the recently estimated values. The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation. The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.

  18. Bio-inspired vision based robot control using featureless estimations of time-to-contact.

    PubMed

    Zhang, Haijie; Zhao, Jianguo

    2017-01-31

    Marvelous vision based dynamic behaviors of insects and birds such as perching, landing, and obstacle avoidance have inspired scientists to propose the idea of time-to-contact, which is defined as the time for a moving observer to contact an object or surface if the current velocity is maintained. Since with only a vision sensor, time-to-contact can be directly estimated from consecutive images, it is widely used for a variety of robots to fulfill various tasks such as obstacle avoidance, docking, chasing, perching and landing. However, most of existing methods to estimate the time-to-contact need to extract and track features during the control process, which is time-consuming and cannot be applied to robots with limited computation power. In this paper, we adopt a featureless estimation method, extend this method to more general settings with angular velocities, and improve the estimation results using Kalman filtering. Further, we design an error based controller with gain scheduling strategy to control the motion of mobile robots. Experiments for both estimation and control are conducted using a customized mobile robot platform with low-cost embedded systems. Onboard experimental results demonstrate the effectiveness of the proposed approach, with the robot being controlled to successfully dock in front of a vertical wall. The estimation and control methods presented in this paper can be applied to computation-constrained miniature robots for agile locomotion such as landing, docking, or navigation.

  19. Fractal analysis of the short time series in a visibility graph method

    NASA Astrophysics Data System (ADS)

    Li, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2016-05-01

    The aim of this study is to evaluate the performance of the visibility graph (VG) method on short fractal time series. In this paper, the time series of Fractional Brownian motions (fBm), characterized by different Hurst exponent H, are simulated and then mapped into a scale-free visibility graph, of which the degree distributions show the power-law form. The maximum likelihood estimation (MLE) is applied to estimate power-law indexes of degree distribution, and in this progress, the Kolmogorov-Smirnov (KS) statistic is used to test the performance of estimation of power-law index, aiming to avoid the influence of droop head and heavy tail in degree distribution. As a result, we find that the MLE gives an optimal estimation of power-law index when KS statistic reaches its first local minimum. Based on the results from KS statistic, the relationship between the power-law index and the Hurst exponent is reexamined and then amended to meet short time series. Thus, a method combining VG, MLE and KS statistics is proposed to estimate Hurst exponents from short time series. Lastly, this paper also offers an exemplification to verify the effectiveness of the combined method. In addition, the corresponding results show that the VG can provide a reliable estimation of Hurst exponents.

  20. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry.

    PubMed

    Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie

    2016-04-04

    We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.

  1. Time-frequency domain SNR estimation and its application in seismic data processing

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Yang; Li, Xuxuan; Jiang, Nansen

    2014-08-01

    Based on an approach estimating frequency domain signal-to-noise ratio (FSNR), we propose a method to evaluate time-frequency domain signal-to-noise ratio (TFSNR). This method adopts short-time Fourier transform (STFT) to estimate instantaneous power spectrum of signal and noise, and thus uses their ratio to compute TFSNR. Unlike FSNR describing the variation of SNR with frequency only, TFSNR depicts the variation of SNR with time and frequency, and thus better handles non-stationary seismic data. By considering TFSNR, we develop methods to improve the effects of inverse Q filtering and high frequency noise attenuation in seismic data processing. Inverse Q filtering considering TFSNR can better solve the problem of amplitude amplification of noise. The high frequency noise attenuation method considering TFSNR, different from other de-noising methods, distinguishes and suppresses noise using an explicit criterion. Examples of synthetic and real seismic data illustrate the correctness and effectiveness of the proposed methods.

  2. Efficacy of time-lapse photography and repeated counts abundance estimation for white-tailed deer populations

    USGS Publications Warehouse

    Keever, Allison; McGowan, Conor P.; Ditchkoff, Stephen S.; Acker, S.A.; Grand, James B.; Newbolt, Chad H.

    2017-01-01

    Automated cameras have become increasingly common for monitoring wildlife populations and estimating abundance. Most analytical methods, however, fail to account for incomplete and variable detection probabilities, which biases abundance estimates. Methods which do account for detection have not been thoroughly tested, and those that have been tested were compared to other methods of abundance estimation. The goal of this study was to evaluate the accuracy and effectiveness of the N-mixture method, which explicitly incorporates detection probability, to monitor white-tailed deer (Odocoileus virginianus) by using camera surveys and a known, marked population to collect data and estimate abundance. Motion-triggered camera surveys were conducted at Auburn University’s deer research facility in 2010. Abundance estimates were generated using N-mixture models and compared to the known number of marked deer in the population. We compared abundance estimates generated from a decreasing number of survey days used in analysis and by time periods (DAY, NIGHT, SUNRISE, SUNSET, CREPUSCULAR, ALL TIMES). Accurate abundance estimates were generated using 24 h of data and nighttime only data. Accuracy of abundance estimates increased with increasing number of survey days until day 5, and there was no improvement with additional data. This suggests that, for our system, 5-day camera surveys conducted at night were adequate for abundance estimation and population monitoring. Further, our study demonstrates that camera surveys and N-mixture models may be a highly effective method for estimation and monitoring of ungulate populations.

  3. The method of trend analysis of parameters time series of gas-turbine engine state

    NASA Astrophysics Data System (ADS)

    Hvozdeva, I.; Myrhorod, V.; Derenh, Y.

    2017-10-01

    This research substantiates an approach to interval estimation of time series trend component. The well-known methods of spectral and trend analysis are used for multidimensional data arrays. The interval estimation of trend component is proposed for the time series whose autocorrelation matrix possesses a prevailing eigenvalue. The properties of time series autocorrelation matrix are identified.

  4. Estimating the time evolution of NMR systems via a quantum-speed-limit-like expression

    NASA Astrophysics Data System (ADS)

    Villamizar, D. V.; Duzzioni, E. I.; Leal, A. C. S.; Auccaise, R.

    2018-05-01

    Finding the solutions of the equations that describe the dynamics of a given physical system is crucial in order to obtain important information about its evolution. However, by using estimation theory, it is possible to obtain, under certain limitations, some information on its dynamics. The quantum-speed-limit (QSL) theory was originally used to estimate the shortest time in which a Hamiltonian drives an initial state to a final one for a given fidelity. Using the QSL theory in a slightly different way, we are able to estimate the running time of a given quantum process. For that purpose, we impose the saturation of the Anandan-Aharonov bound in a rotating frame of reference where the state of the system travels slower than in the original frame (laboratory frame). Through this procedure it is possible to estimate the actual evolution time in the laboratory frame of reference with good accuracy when compared to previous methods. Our method is tested successfully to predict the time spent in the evolution of nuclear spins 1/2 and 3/2 in NMR systems. We find that the estimated time according to our method is better than previous approaches by up to four orders of magnitude. One disadvantage of our method is that we need to solve a number of transcendental equations, which increases with the system dimension and parameter discretization used to solve such equations numerically.

  5. Calculation of the time resolution of the J-PET tomograph using kernel density estimation

    NASA Astrophysics Data System (ADS)

    Raczyński, L.; Wiślicki, W.; Krzemień, W.; Kowalski, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2017-06-01

    In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.

  6. Estimation of the absorption coefficients of two-layered media by a simple method using spatially and time-resolved reflectances

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.

    2009-08-01

    Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.

  7. The Beta-Geometric Model Applied to Fecundability in a Sample of Married Women

    NASA Astrophysics Data System (ADS)

    Adekanmbi, D. B.; Bamiduro, T. A.

    2006-10-01

    The time required to achieve pregnancy among married couples termed fecundability has been proposed to follow a beta-geometric distribution. The accuracy of the method used in estimating the parameters of the model has an implication on the goodness of fit of the model. In this study, the parameters of the model are estimated using the Method of Moments and Newton-Raphson estimation procedure. The goodness of fit of the model was considered, using estimates from the two methods of estimation, as well as the asymptotic relative efficiency of the estimates. A noticeable improvement in the fit of the model to the data on time to conception was observed, when the parameters are estimated by Newton-Raphson procedure, and thereby estimating reasonable expectations of fecundability for married female population in the country.

  8. Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions

    PubMed Central

    Park, Yongseok; Taylor, Jeremy M. G.; Kalbfleisch, John D.

    2012-01-01

    In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method. PMID:23843661

  9. Estimates of air drying times for several hardwoods and softwoods

    Treesearch

    W.T. Simpson; C.A. Hart

    2000-01-01

    Published data on estimated air drying times of lumber are of limited usefulness because they are restricted to a specific location or to the time of year the lumber is stacked for drying. At best, these estimates give a wide range of possible times over a broad range of possible locations and stacking dates. This report describes a method for estimating air drying...

  10. Time delay estimation using new spectral and adaptive filtering methods with applications to underwater target detection

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed A.

    1997-11-01

    In this dissertation, we present several novel approaches for detection and identification of targets of arbitrary shapes from the acoustic backscattered data and using the incident waveform. This problem is formulated as time- delay estimation and sinusoidal frequency estimation problems which both have applications in many other important areas in signal processing. Solving time-delay estimation problem allows the identification of the specular components in the backscattered signal from elastic and non-elastic targets. Thus, accurate estimation of these time delays would help in determining the existence of certain clues for detecting targets. Several new methods for solving these two problems in the time, frequency and wavelet domains are developed. In the time domain, a new block fast transversal filter (BFTF) is proposed for a fast implementation of the least squares (LS) method. This BFTF algorithm is derived by using data-related constrained block-LS cost function to guarantee global optimality. The new soft-constrained algorithm provides an efficient way of transferring weight information between blocks of data and thus it is computationally very efficient compared with other LS- based schemes. Additionally, the tracking ability of the algorithm can be controlled by varying the block length and/or a soft constrained parameter. The effectiveness of this algorithm is tested on several underwater acoustic backscattered data for elastic targets and non-elastic (cement chunk) objects. In the frequency domain, the time-delay estimation problem is converted to a sinusoidal frequency estimation problem by using the discrete Fourier transform. Then, the lagged sample covariance matrices of the resulting signal are computed and studied in terms of their eigen- structure. These matrices are shown to be robust and effective in extracting bases for the signal and noise subspaces. New MUSIC and matrix pencil-based methods are derived these subspaces. The effectiveness of the method is demonstrated on the problem of detection of multiple specular components in the acoustic backscattered data. Finally, a method for the estimation of time delays using wavelet decomposition is derived. The sub-band adaptive filtering uses discrete wavelet transform for multi- resolution or sub-band decomposition. Joint time delay estimation for identifying multi-specular components and subsequent adaptive filtering processes are performed on the signal in each sub-band. This would provide multiple 'look' of the signal at different resolution scale which results in more accurate estimates for delays associated with the specular components. Simulation results on the simulated and real shallow water data are provided which show the promise of this new scheme for target detection in a heavy cluttered environment.

  11. Artifacts in Digital Coincidence Timing

    PubMed Central

    Moses, W. W.; Peng, Q.

    2014-01-01

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator. All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e., the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the “optimal” method. The purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization. PMID:25321885

  12. Artifacts in digital coincidence timing

    DOE PAGES

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  13. Artifacts in digital coincidence timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, W. W.; Peng, Q.

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  14. Estimating dietary costs of low-income women in California: a comparison of 2 approaches123

    PubMed Central

    Aaron, Grant J; Keim, Nancy L; Drewnowski, Adam

    2013-01-01

    Background: Currently, no simplified approach to estimating food costs exists for a large, nationally representative sample. Objective: The objective was to compare 2 approaches for estimating individual daily diet costs in a population of low-income women in California. Design: Cost estimates based on time-intensive method 1 (three 24-h recalls and associated food prices on receipts) were compared with estimates made by using less intensive method 2 [a food-frequency questionnaire (FFQ) and store prices]. Low-income participants (n = 121) of USDA nutrition programs were recruited. Mean daily diet costs, both unadjusted and adjusted for energy, were compared by using Pearson correlation coefficients and the Bland-Altman 95% limits of agreement between methods. Results: Energy and nutrient intakes derived by the 2 methods were comparable; where differences occurred, the FFQ (method 2) provided higher nutrient values than did the 24-h recall (method 1). The crude daily diet cost was $6.32 by the 24-h recall method and $5.93 by the FFQ method (P = 0.221). The energy-adjusted diet cost was $6.65 by the 24-h recall method and $5.98 by the FFQ method (P < 0.001). Conclusions: Although the agreement between methods was weaker than expected, both approaches may be useful. Additional research is needed to further refine a large national survey approach (method 2) to estimate daily dietary costs with the use of this minimal time-intensive method for the participant and moderate time-intensive method for the researcher. PMID:23388658

  15. Radar modulation classification using time-frequency representation and nonlinear regression

    NASA Astrophysics Data System (ADS)

    De Luigi, Christophe; Arques, Pierre-Yves; Lopez, Jean-Marc; Moreau, Eric

    1999-09-01

    In naval electronic environment, pulses emitted by radars are collected by ESM receivers. For most of them the intrapulse signal is modulated by a particular law. To help the classical identification process, a classification and estimation of this modulation law is applied on the intrapulse signal measurements. To estimate with a good accuracy the time-varying frequency of a signal corrupted by an additive noise, one method has been chosen. This method consists on the Wigner distribution calculation, the instantaneous frequency is then estimated by the peak location of the distribution. Bias and variance of the estimator are performed by computed simulations. In a estimated sequence of frequencies, we assume the presence of false and good estimated ones, the hypothesis of Gaussian distribution is made on the errors. A robust non linear regression method, based on the Levenberg-Marquardt algorithm, is thus applied on these estimated frequencies using a Maximum Likelihood Estimator. The performances of the method are tested by using varied modulation laws and different signal to noise ratios.

  16. Estimating the number of people in crowded scenes

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Kim, Wonjun; Kim, Changick

    2011-01-01

    This paper presents a method to estimate the number of people in crowded scenes without using explicit object segmentation or tracking. The proposed method consists of three steps as follows: (1) extracting space-time interest points using eigenvalues of the local spatio-temporal gradient matrix, (2) generating crowd regions based on space-time interest points, and (3) estimating the crowd density based on the multiple regression. In experimental results, the efficiency and robustness of our proposed method are demonstrated by using PETS 2009 dataset.

  17. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    PubMed Central

    Albers, D. J.; Hripcsak, George

    2012-01-01

    A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009

  18. Estimation of time averages from irregularly spaced observations - With application to coastal zone color scanner estimates of chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Schlax, Michael G.

    1991-01-01

    The sampling error of an arbitrary linear estimate of a time-averaged quantity constructed from a time series of irregularly spaced observations at a fixed located is quantified through a formalism. The method is applied to satellite observations of chlorophyll from the coastal zone color scanner. The two specific linear estimates under consideration are the composite average formed from the simple average of all observations within the averaging period and the optimal estimate formed by minimizing the mean squared error of the temporal average based on all the observations in the time series. The resulting suboptimal estimates are shown to be more accurate than composite averages. Suboptimal estimates are also found to be nearly as accurate as optimal estimates using the correct signal and measurement error variances and correlation functions for realistic ranges of these parameters, which makes it a viable practical alternative to the composite average method generally employed at present.

  19. A Novel Residual Frequency Estimation Method for GNSS Receivers.

    PubMed

    Nguyen, Tu Thi-Thanh; La, Vinh The; Ta, Tung Hai

    2018-01-04

    In Global Navigation Satellite System (GNSS) receivers, residual frequency estimation methods are traditionally applied in the synchronization block to reduce the transient time from acquisition to tracking, or they are used within the frequency estimator to improve its accuracy in open-loop architectures. There are several disadvantages in the current estimation methods, including sensitivity to noise and wide search space size. This paper proposes a new residual frequency estimation method depending on differential processing. Although the complexity of the proposed method is higher than the one of traditional methods, it can lead to more accurate estimates, without increasing the size of the search space.

  20. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    PubMed

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Monaural room acoustic parameters from music and speech.

    PubMed

    Kendrick, Paul; Cox, Trevor J; Li, Francis F; Zhang, Yonggang; Chambers, Jonathon A

    2008-07-01

    This paper compares two methods for extracting room acoustic parameters from reverberated speech and music. An approach which uses statistical machine learning, previously developed for speech, is extended to work with music. For speech, reverberation time estimations are within a perceptual difference limen of the true value. For music, virtually all early decay time estimations are within a difference limen of the true value. The estimation accuracy is not good enough in other cases due to differences between the simulated data set used to develop the empirical model and real rooms. The second method carries out a maximum likelihood estimation on decay phases at the end of notes or speech utterances. This paper extends the method to estimate parameters relating to the balance of early and late energies in the impulse response. For reverberation time and speech, the method provides estimations which are within the perceptual difference limen of the true value. For other parameters such as clarity, the estimations are not sufficiently accurate due to the natural reverberance of the excitation signals. Speech is a better test signal than music because of the greater periods of silence in the signal, although music is needed for low frequency measurement.

  2. Time concurrency/phase-time synchronization in digital communications networks

    NASA Technical Reports Server (NTRS)

    Kihara, Masami; Imaoka, Atsushi

    1990-01-01

    Digital communications networks have the intrinsic capability of time synchronization which makes it possible for networks to supply time signals to some applications and services. A practical estimation method for the time concurrency on terrestrial networks is presented. By using this method, time concurrency capability of the Nippon Telegraph and Telephone Corporation (NTT) digital communications network is estimated to be better than 300 ns rms at an advanced level, and 20 ns rms at final level.

  3. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations

    PubMed Central

    Cao, Jiguo; Huang, Jianhua Z.; Wu, Hulin

    2012-01-01

    Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online. PMID:23155351

  4. Bruise chromophore concentrations over time

    NASA Astrophysics Data System (ADS)

    Duckworth, Mark G.; Caspall, Jayme J.; Mappus, Rudolph L., IV; Kong, Linghua; Yi, Dingrong; Sprigle, Stephen H.

    2008-03-01

    During investigations of potential child and elder abuse, clinicians and forensic practitioners are often asked to offer opinions about the age of a bruise. A commonality between existing methods of bruise aging is analysis of bruise color or estimation of chromophore concentration. Relative chromophore concentration is an underlying factor that determines bruise color. We investigate a method of chromophore concentration estimation that can be employed in a handheld imaging spectrometer with a small number of wavelengths. The method, based on absorbance properties defined by Beer-Lambert's law, allows estimation of differential chromophore concentration between bruised and normal skin. Absorption coefficient data for each chromophore are required to make the estimation. Two different sources of this data are used in the analysis- generated using Independent Component Analysis and taken from published values. Differential concentration values over time, generated using both sources, show correlation to published models of bruise color change over time and total chromophore concentration over time.

  5. On protecting the planet against cosmic attack: Ultrafast real-time estimate of the asteroid's radial velocity

    NASA Astrophysics Data System (ADS)

    Zakharchenko, V. D.; Kovalenko, I. G.

    2014-05-01

    A new method for the line-of-sight velocity estimation of a high-speed near-Earth object (asteroid, meteorite) is suggested. The method is based on the use of fractional, one-half order derivative of a Doppler signal. The algorithm suggested is much simpler and more economical than the classical one, and it appears preferable for use in orbital weapon systems of threat response. Application of fractional differentiation to quick evaluation of mean frequency location of the reflected Doppler signal is justified. The method allows an assessment of the mean frequency in the time domain without spectral analysis. An algorithm structure for the real-time estimation is presented. The velocity resolution estimates are made for typical asteroids in the X-band. It is shown that the wait time can be shortened by orders of magnitude compared with similar value in the case of a standard spectral processing.

  6. A channel estimation scheme for MIMO-OFDM systems

    NASA Astrophysics Data System (ADS)

    He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen

    2017-08-01

    In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.

  7. Regression analysis of sparse asynchronous longitudinal data.

    PubMed

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  8. Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time

    PubMed Central

    Austen, Emily J.; Weis, Arthur E.

    2016-01-01

    Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957

  9. Rectal temperature-based death time estimation in infants.

    PubMed

    Igari, Yui; Hosokai, Yoshiyuki; Funayama, Masato

    2016-03-01

    In determining the time of death in infants based on rectal temperature, the same methods used in adults are generally used. However, whether the methods for adults are suitable for infants is unclear. In this study, we examined the following 3 methods in 20 infant death cases: computer simulation of rectal temperature based on the infinite cylinder model (Ohno's method), computer-based double exponential approximation based on Marshall and Hoare's double exponential model with Henssge's parameter determination (Henssge's method), and computer-based collinear approximation based on extrapolation of the rectal temperature curve (collinear approximation). The interval between the last time the infant was seen alive and the time that he/she was found dead was defined as the death time interval and compared with the estimated time of death. In Ohno's method, 7 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80 min. The results of both Henssge's method and collinear approximation were apparently inferior to the results of Ohno's method. The corrective factor was set within the range of 0.7-1.3 in Henssge's method, and a modified program was newly developed to make it possible to change the corrective factors. Modification A, in which the upper limit of the corrective factor range was set as the maximum value in each body weight, produced the best results: 8 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80min. There was a possibility that the influence of thermal isolation on the actual infants was stronger than that previously shown by Henssge. We conclude that Ohno's method and Modification A are useful for death time estimation in infants. However, it is important to accept the estimated time of death with certain latitude considering other circumstances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  11. Quantile Regression for Recurrent Gap Time Data

    PubMed Central

    Luo, Xianghua; Huang, Chiung-Yu; Wang, Lan

    2014-01-01

    Summary Evaluating covariate effects on gap times between successive recurrent events is of interest in many medical and public health studies. While most existing methods for recurrent gap time analysis focus on modeling the hazard function of gap times, a direct interpretation of the covariate effects on the gap times is not available through these methods. In this article, we consider quantile regression that can provide direct assessment of covariate effects on the quantiles of the gap time distribution. Following the spirit of the weighted risk-set method by Luo and Huang (2011, Statistics in Medicine 30, 301–311), we extend the martingale-based estimating equation method considered by Peng and Huang (2008, Journal of the American Statistical Association 103, 637–649) for univariate survival data to analyze recurrent gap time data. The proposed estimation procedure can be easily implemented in existing software for univariate censored quantile regression. Uniform consistency and weak convergence of the proposed estimators are established. Monte Carlo studies demonstrate the effectiveness of the proposed method. An application to data from the Danish Psychiatric Central Register is presented to illustrate the methods developed in this article. PMID:23489055

  12. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006

    USGS Publications Warehouse

    White, M.A.; de Beurs, K. M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O'Keefe, J.; Zhang, G.; Nemani, R.R.; van, Leeuwen; Brown, Jesslyn F.; de Wit, A.; Schaepman, M.; Lin, X.; Dettinger, M.; Bailey, A.S.; Kimball, J.; Schwartz, M.D.; Baldocchi, D.D.; Lee, J.T.; Lauenroth, W.K.

    2009-01-01

    Shifts in the timing of spring phenology are a central feature of global change research. Long-term observations of plant phenology have been used to track vegetation responses to climate variability but are often limited to particular species and locations and may not represent synoptic patterns. Satellite remote sensing is instead used for continental to global monitoring. Although numerous methods exist to extract phenological timing, in particular start-of-spring (SOS), from time series of reflectance data, a comprehensive intercomparison and interpretation of SOS methods has not been conducted. Here, we assess 10 SOS methods for North America between 1982 and 2006. The techniques include consistent inputs from the 8 km Global Inventory Modeling and Mapping Studies Advanced Very High Resolution Radiometer NDVIg dataset, independent data for snow cover, soil thaw, lake ice dynamics, spring streamflow timing, over 16 000 individual measurements of ground-based phenology, and two temperature-driven models of spring phenology. Compared with an ensemble of the 10 SOS methods, we found that individual methods differed in average day-of-year estimates by ±60 days and in standard deviation by ±20 days. The ability of the satellite methods to retrieve SOS estimates was highest in northern latitudes and lowest in arid, tropical, and Mediterranean ecoregions. The ordinal rank of SOS methods varied geographically, as did the relationships between SOS estimates and the cryospheric/hydrologic metrics. Compared with ground observations, SOS estimates were more related to the first leaf and first flowers expanding phenological stages. We found no evidence for time trends in spring arrival from ground- or model-based data; using an ensemble estimate from two methods that were more closely related to ground observations than other methods, SOS trends could be detected for only 12% of North America and were divided between trends towards both earlier and later spring.

  13. Comparison of methods for estimating the attributable risk in the context of survival analysis.

    PubMed

    Gassama, Malamine; Bénichou, Jacques; Dartois, Laureen; Thiébaut, Anne C M

    2017-01-23

    The attributable risk (AR) measures the proportion of disease cases that can be attributed to an exposure in the population. Several definitions and estimation methods have been proposed for survival data. Using simulations, we compared four methods for estimating AR defined in terms of survival functions: two nonparametric methods based on Kaplan-Meier's estimator, one semiparametric based on Cox's model, and one parametric based on the piecewise constant hazards model, as well as one simpler method based on estimated exposure prevalence at baseline and Cox's model hazard ratio. We considered a fixed binary exposure with varying exposure probabilities and strengths of association, and generated event times from a proportional hazards model with constant or monotonic (decreasing or increasing) Weibull baseline hazard, as well as from a nonproportional hazards model. We simulated 1,000 independent samples of size 1,000 or 10,000. The methods were compared in terms of mean bias, mean estimated standard error, empirical standard deviation and 95% confidence interval coverage probability at four equally spaced time points. Under proportional hazards, all five methods yielded unbiased results regardless of sample size. Nonparametric methods displayed greater variability than other approaches. All methods showed satisfactory coverage except for nonparametric methods at the end of follow-up for a sample size of 1,000 especially. With nonproportional hazards, nonparametric methods yielded similar results to those under proportional hazards, whereas semiparametric and parametric approaches that both relied on the proportional hazards assumption performed poorly. These methods were applied to estimate the AR of breast cancer due to menopausal hormone therapy in 38,359 women of the E3N cohort. In practice, our study suggests to use the semiparametric or parametric approaches to estimate AR as a function of time in cohort studies if the proportional hazards assumption appears appropriate.

  14. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    PubMed

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  15. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments.

    PubMed

    Austin, Peter C

    2014-03-30

    Propensity score methods are increasingly being used to estimate causal treatment effects in observational studies. In medical and epidemiological studies, outcomes are frequently time-to-event in nature. Propensity-score methods are often applied incorrectly when estimating the effect of treatment on time-to-event outcomes. This article describes how two different propensity score methods (matching and inverse probability of treatment weighting) can be used to estimate the measures of effect that are frequently reported in randomized controlled trials: (i) marginal survival curves, which describe survival in the population if all subjects were treated or if all subjects were untreated; and (ii) marginal hazard ratios. The use of these propensity score methods allows one to replicate the measures of effect that are commonly reported in randomized controlled trials with time-to-event outcomes: both absolute and relative reductions in the probability of an event occurring can be determined. We also provide guidance on variable selection for the propensity score model, highlight methods for assessing the balance of baseline covariates between treated and untreated subjects, and describe the implementation of a sensitivity analysis to assess the effect of unmeasured confounding variables on the estimated treatment effect when outcomes are time-to-event in nature. The methods in the paper are illustrated by estimating the effect of discharge statin prescribing on the risk of death in a sample of patients hospitalized with acute myocardial infarction. In this tutorial article, we describe and illustrate all the steps necessary to conduct a comprehensive analysis of the effect of treatment on time-to-event outcomes. © 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  16. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study.

    PubMed

    Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin

    2015-11-01

    Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. A study on industrial accident rate forecasting and program development of estimated zero accident time in Korea.

    PubMed

    Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won

    2011-01-01

    To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments.

  18. Optimal methods for fitting probability distributions to propagule retention time in studies of zoochorous dispersal.

    PubMed

    Viana, Duarte S; Santamaría, Luis; Figuerola, Jordi

    2016-02-01

    Propagule retention time is a key factor in determining propagule dispersal distance and the shape of "seed shadows". Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals). Fittings to the cumulative distribution performed better for all types of parametric distributions (lognormal, gamma and Weibull distributions) and were more robust to variations in sample size and sampling time-intervals. These estimated distributions had negligible deviations of up to 0.045 in cumulative probability of retention times (according to the Kolmogorov-Smirnov statistic) in relation to original distributions from which propagule retention time was simulated, supporting the overall accuracy of this fitting method. In contrast, fitting the sampling-interval bounds resulted in greater deviations that ranged from 0.058 to 0.273 in cumulative probability of retention times, which may introduce considerable biases in parameter estimates. We recommend the use of cumulative probability to fit parametric probability distributions to propagule retention time, specifically using maximum likelihood for parameter estimation. Furthermore, the experimental design for an optimal characterization of unimodal propagule retention time should contemplate at least 500 recovered propagules and sampling time-intervals not larger than the time peak of propagule retrieval, except in the tail of the distribution where broader sampling time-intervals may also produce accurate fits.

  19. Comparison of mode estimation methods and application in molecular clock analysis

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Shah, Prachi

    2003-01-01

    BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.

  20. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  1. Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares

    NASA Astrophysics Data System (ADS)

    Fu, Wenju; Yang, Yuanxi; Zhang, Qin; Huang, Guanwen

    2018-07-01

    The real-time precise satellite clock product is one of key prerequisites for real-time Precise Point Positioning (PPP). The accuracy of the 24-hour predicted satellite clock product with 15 min sampling interval and an update of 6 h provided by the International GNSS Service (IGS) is only 3 ns, which could not meet the needs of all real-time PPP applications. The real-time estimation of high-rate satellite clock offsets is an efficient method for improving the accuracy. In this paper, the sequential least squares method to estimate real-time satellite clock offsets with high sample rate is proposed to improve the computational speed by applying an optimized sparse matrix operation to compute the normal equation and using special measures to take full advantage of modern computer power. The method is first applied to BeiDou Navigation Satellite System (BDS) and provides real-time estimation with a 1 s sample rate. The results show that the amount of time taken to process a single epoch is about 0.12 s using 28 stations. The Standard Deviation (STD) and Root Mean Square (RMS) of the real-time estimated BDS satellite clock offsets are 0.17 ns and 0.44 ns respectively when compared to German Research Center for Geosciences (GFZ) final clock products. The positioning performance of the real-time estimated satellite clock offsets is evaluated. The RMSs of the real-time BDS kinematic PPP in east, north, and vertical components are 7.6 cm, 6.4 cm and 19.6 cm respectively. The method is also applied to Global Positioning System (GPS) with a 10 s sample rate and the computational time of most epochs is less than 1.5 s with 75 stations. The STD and RMS of the real-time estimated GPS satellite clocks are 0.11 ns and 0.27 ns, respectively. The accuracies of 5.6 cm, 2.6 cm and 7.9 cm in east, north, and vertical components are achieved for the real-time GPS kinematic PPP.

  2. PolyWaTT: A polynomial water travel time estimator based on Derivative Dynamic Time Warping and Perceptually Important Points

    NASA Astrophysics Data System (ADS)

    Claure, Yuri Navarro; Matsubara, Edson Takashi; Padovani, Carlos; Prati, Ronaldo Cristiano

    2018-03-01

    Traditional methods for estimating timing parameters in hydrological science require a rigorous study of the relations of flow resistance, slope, flow regime, watershed size, water velocity, and other local variables. These studies are mostly based on empirical observations, where the timing parameter is estimated using empirically derived formulas. The application of these studies to other locations is not always direct. The locations in which equations are used should have comparable characteristics to the locations from which such equations have been derived. To overcome this barrier, in this work, we developed a data-driven approach to estimate timing parameters such as travel time. Our proposal estimates timing parameters using historical data of the location without the need of adapting or using empirical formulas from other locations. The proposal only uses one variable measured at two different locations on the same river (for instance, two river-level measurements, one upstream and the other downstream on the same river). The recorded data from each location generates two time series. Our method aligns these two time series using derivative dynamic time warping (DDTW) and perceptually important points (PIP). Using data from timing parameters, a polynomial function generalizes the data by inducing a polynomial water travel time estimator, called PolyWaTT. To evaluate the potential of our proposal, we applied PolyWaTT to three different watersheds: a floodplain ecosystem located in the part of Brazil known as Pantanal, the world's largest tropical wetland area; and the Missouri River and the Pearl River, in United States of America. We compared our proposal with empirical formulas and a data-driven state-of-the-art method. The experimental results demonstrate that PolyWaTT showed a lower mean absolute error than all other methods tested in this study, and for longer distances the mean absolute error achieved by PolyWaTT is three times smaller than empirical formulas.

  3. Method and apparatus for measurement of orientation in an anisotropic medium

    DOEpatents

    Gilmore, Robert Snee; Kline, Ronald Alan; Deaton, Jr., John Broddus

    1999-01-01

    A method and apparatus are provided for simultaneously measuring the anisotropic orientation and the thickness of an article. The apparatus comprises a transducer assembly which propagates longitudinal and transverse waves through the article and which receives reflections of the waves. A processor is provided to measure respective transit times of the longitudinal and shear waves propagated through the article and to calculate respective predicted transit times of the longitudinal and shear waves based on an estimated thickness, an estimated anisotropic orientation, and an elasticity of the article. The processor adjusts the estimated thickness and the estimated anisotropic orientation to reduce the difference between the measured transit times and the respective predicted transit times of the longitudinal and shear waves.

  4. Estimating costs and performance of systems for machine processing of remotely sensed data

    NASA Technical Reports Server (NTRS)

    Ballard, R. J.; Eastwood, L. F., Jr.

    1977-01-01

    This paper outlines a method for estimating computer processing times and costs incurred in producing information products from digital remotely sensed data. The method accounts for both computation and overhead, and may be applied to any serial computer. The method is applied to estimate the cost and computer time involved in producing Level II Land Use and Vegetative Cover Maps for a five-state midwestern region. The results show that the amount of data to be processed overloads some example computer systems, but that the processing is feasible on others.

  5. Inferring epidemiological dynamics of infectious diseases using Tajima's D statistic on nucleotide sequences of pathogens.

    PubMed

    Kim, Kiyeon; Omori, Ryosuke; Ito, Kimihito

    2017-12-01

    The estimation of the basic reproduction number is essential to understand epidemic dynamics, and time series data of infected individuals are usually used for the estimation. However, such data are not always available. Methods to estimate the basic reproduction number using genealogy constructed from nucleotide sequences of pathogens have been proposed so far. Here, we propose a new method to estimate epidemiological parameters of outbreaks using the time series change of Tajima's D statistic on the nucleotide sequences of pathogens. To relate the time evolution of Tajima's D to the number of infected individuals, we constructed a parsimonious mathematical model describing both the transmission process of pathogens among hosts and the evolutionary process of the pathogens. As a case study we applied this method to the field data of nucleotide sequences of pandemic influenza A (H1N1) 2009 viruses collected in Argentina. The Tajima's D-based method estimated basic reproduction number to be 1.55 with 95% highest posterior density (HPD) between 1.31 and 2.05, and the date of epidemic peak to be 10th July with 95% HPD between 22nd June and 9th August. The estimated basic reproduction number was consistent with estimation by birth-death skyline plot and estimation using the time series of the number of infected individuals. These results suggested that Tajima's D statistic on nucleotide sequences of pathogens could be useful to estimate epidemiological parameters of outbreaks. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.

    2015-05-01

    The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.

  7. Estimating time-varying exposure-outcome associations using case-control data: logistic and case-cohort analyses.

    PubMed

    Keogh, Ruth H; Mangtani, Punam; Rodrigues, Laura; Nguipdop Djomo, Patrick

    2016-01-05

    Traditional analyses of standard case-control studies using logistic regression do not allow estimation of time-varying associations between exposures and the outcome. We present two approaches which allow this. The motivation is a study of vaccine efficacy as a function of time since vaccination. Our first approach is to estimate time-varying exposure-outcome associations by fitting a series of logistic regressions within successive time periods, reusing controls across periods. Our second approach treats the case-control sample as a case-cohort study, with the controls forming the subcohort. In the case-cohort analysis, controls contribute information at all times they are at risk. Extensions allow left truncation, frequency matching and, using the case-cohort analysis, time-varying exposures. Simulations are used to investigate the methods. The simulation results show that both methods give correct estimates of time-varying effects of exposures using standard case-control data. Using the logistic approach there are efficiency gains by reusing controls over time and care should be taken over the definition of controls within time periods. However, using the case-cohort analysis there is no ambiguity over the definition of controls. The performance of the two analyses is very similar when controls are used most efficiently under the logistic approach. Using our methods, case-control studies can be used to estimate time-varying exposure-outcome associations where they may not previously have been considered. The case-cohort analysis has several advantages, including that it allows estimation of time-varying associations as a continuous function of time, while the logistic regression approach is restricted to assuming a step function form for the time-varying association.

  8. Determining when a fracture occurred: Does the method matter? Analysis of the similarity of three different methods for estimating time since fracture of juvenile long bones.

    PubMed

    Drury, Anne; Cunningham, Craig

    2018-01-01

    Radiographic fracture date estimation is a critical component of skeletal trauma analysis in the living. Several timetables have been proposed for how the appearance of radiographic features can be interpreted to provide a likely time frame for fracture occurrence. This study compares three such timetables for pediatric fractures, by Islam et al. (2000), Malone et al. (2011), and Prosser et al. (2012), in order to determine whether the fracture date ranges produced by using these methods are in agreement with one another. Fracture date ranges were estimated for 112 long bone fractures in 96 children aged 1-17 years, using the three different timetables. The extent of similarity of the intervals was tested by statistically comparing the overlap between the ranges. Results showed that none of the methods were in perfect agreement with one another. Differences seen included the size of the estimated date range for when a fracture occurred, and the specific dates given for both the upper and lower ends of the fracture date range. There was greater similarity between the ranges produced by Malone et al. (2011) and both the other two studies than there was between Islam et al. (2000) and Prosser et al. (2012). The greatest similarity existed between Malone et al. (2011) and Islam et al. (2000). The extent of differences between methods can vary widely, depending on the fracture analysed. Using one timetable gives an average earliest possible fracture date of less than 2 days before another, but the range was extreme, with one method estimating minimum time since fracture as 25 days before another method for a given fracture. In most cases, one method gave maximum time since fracture as a week less than the other two methods, but range was extreme and some estimates were nearly two months different. The variability in fracture date estimates given by these timetables indicates that caution should be exercised when estimating the timing of a juvenile fracture if relying solely on one of the published guides. Future research should be undertaken to compare these methods on a population of known fracture timing, and to better understand the relationship between age of the individual, skeletal health, fracture healing rates, and radiographic characteristics of fracture healing. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Using Empirical Mode Decomposition to process Marine Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jegen, M. D.; Heincke, B. H.; Moorkamp, M.

    2014-12-01

    The magnetotelluric (MT) data always exhibits nonstationarities due to variations of source mechanisms causing MT variations on different time and spatial scales. An additional non-stationary component is introduced through noise, which is particularly pronounced in marine MT data through motion induced noise caused by time-varying wave motion and currents. We present a new heuristic method for dealing with the non-stationarity of MT time series based on Empirical Mode Decomposition (EMD). The EMD method is used in combination with the derived instantaneous spectra to determine impedance estimates. The procedure is tested on synthetic and field MT data. In synthetic tests the reliability of impedance estimates from EMD-based method is compared to the synthetic responses of a 1D layered model. To examine how estimates are affected by noise, stochastic stationary and non-stationary noise are added on the time series. Comparisons reveal that estimates by the EMD-based method are generally more stable than those by simple Fourier analysis. Furthermore, the results are compared to those derived by a commonly used Fourier-based MT data processing software (BIRRP), which incorporates additional sophisticated robust estimations to deal with noise issues. It is revealed that the results from both methods are already comparable, even though no robust estimate procedures are implemented in the EMD approach at present stage. The processing scheme is then applied to marine MT field data. Testing is performed on short, relatively quiet segments of several data sets, as well as on long segments of data with many non-stationary noise packages. Compared to BIRRP, the new method gives comparable or better impedance estimates, furthermore, the estimates are extended to lower frequencies and less noise biased estimates with smaller error bars are obtained at high frequencies. The new processing methodology represents an important step towards deriving a better resolved Earth model to greater depth underneath the seafloor.

  10. Stochastic differential equation (SDE) model of opening gold share price of bursa saham malaysia

    NASA Astrophysics Data System (ADS)

    Hussin, F. N.; Rahman, H. A.; Bahar, A.

    2017-09-01

    Black and Scholes option pricing model is one of the most recognized stochastic differential equation model in mathematical finance. Two parameter estimation methods have been utilized for the Geometric Brownian model (GBM); historical and discrete method. The historical method is a statistical method which uses the property of independence and normality logarithmic return, giving out the simplest parameter estimation. Meanwhile, discrete method considers the function of density of transition from the process of diffusion normal log which has been derived from maximum likelihood method. These two methods are used to find the parameter estimates samples of Malaysians Gold Share Price data such as: Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas, and Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas Shariah. Modelling of gold share price is essential since fluctuation of gold affects worldwide economy nowadays, including Malaysia. It is found that discrete method gives the best parameter estimates than historical method due to the smallest Root Mean Square Error (RMSE) value.

  11. Use of the landmark method to address immortal person-time bias in comparative effectiveness research: a simulation study.

    PubMed

    Mi, Xiaojuan; Hammill, Bradley G; Curtis, Lesley H; Lai, Edward Chia-Cheng; Setoguchi, Soko

    2016-11-20

    Observational comparative effectiveness and safety studies are often subject to immortal person-time, a period of follow-up during which outcomes cannot occur because of the treatment definition. Common approaches, like excluding immortal time from the analysis or naïvely including immortal time in the analysis, are known to result in biased estimates of treatment effect. Other approaches, such as the Mantel-Byar and landmark methods, have been proposed to handle immortal time. Little is known about the performance of the landmark method in different scenarios. We conducted extensive Monte Carlo simulations to assess the performance of the landmark method compared with other methods in settings that reflect realistic scenarios. We considered four landmark times for the landmark method. We found that the Mantel-Byar method provided unbiased estimates in all scenarios, whereas the exclusion and naïve methods resulted in substantial bias when the hazard of the event was constant or decreased over time. The landmark method performed well in correcting immortal person-time bias in all scenarios when the treatment effect was small, and provided unbiased estimates when there was no treatment effect. The bias associated with the landmark method tended to be small when the treatment rate was higher in the early follow-up period than it was later. These findings were confirmed in a case study of chronic obstructive pulmonary disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Estimation of Parameters from Discrete Random Nonstationary Time Series

    NASA Astrophysics Data System (ADS)

    Takayasu, H.; Nakamura, T.

    For the analysis of nonstationary stochastic time series we introduce a formulation to estimate the underlying time-dependent parameters. This method is designed for random events with small numbers that are out of the applicability range of the normal distribution. The method is demonstrated for numerical data generated by a known system, and applied to time series of traffic accidents, batting average of a baseball player and sales volume of home electronics.

  13. Arrival Time Tracking of Partially Resolved Acoustic Rays with Application to Ocean Acoustic Tomography

    DTIC Science & Technology

    1991-03-01

    ocean acoustic tomography. A straightforward method of arrival time estimation, based on locating the maximum value of an interpolated arrival, was...used with limited success for analysis of data from the December 1988 Monterey Bay Tomography Experiment. Close examination of the data revealed multiple...estimation of arrival times along an ocean acoustic ray path is an important component of ocean acoustic tomography. A straightforward method of arrival time

  14. Method for interconverting drying and heating times between round and square cross sections of ponderosa pine

    Treesearch

    William T. Simpson

    2005-01-01

    To use small-diameter trees effectively as square timbers, we need to be able to estimate the amount of time it takes for these timbers to air-dry. Since experimental data on estimating air-drying time for small-diameter logs have been developed, this study looked at a way to relate that method to square timbers. Drying times were determined for a group of round cross-...

  15. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

    PubMed Central

    2014-01-01

    Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937

  16. The fossilized birth–death process for coherent calibration of divergence-time estimates

    PubMed Central

    Heath, Tracy A.; Huelsenbeck, John P.; Stadler, Tanja

    2014-01-01

    Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene. PMID:25009181

  17. A new approach to estimate time-to-cure from cancer registries data.

    PubMed

    Boussari, Olayidé; Romain, Gaëlle; Remontet, Laurent; Bossard, Nadine; Mounier, Morgane; Bouvier, Anne-Marie; Binquet, Christine; Colonna, Marc; Jooste, Valérie

    2018-04-01

    Cure models have been adapted to net survival context to provide important indicators from population-based cancer data, such as the cure fraction and the time-to-cure. However existing methods for computing time-to-cure suffer from some limitations. Cure models in net survival framework were briefly overviewed and a new definition of time-to-cure was introduced as the time TTC at which P(t), the estimated covariate-specific probability of being cured at a given time t after diagnosis, reaches 0.95. We applied flexible parametric cure models to data of four cancer sites provided by the French network of cancer registries (FRANCIM). Then estimates of the time-to-cure by TTC and by two existing methods were derived and compared. Cure fractions and probabilities P(t) were also computed. Depending on the age group, TTC ranged from to 8 to 10 years for colorectal and pancreatic cancer and was nearly 12 years for breast cancer. In thyroid cancer patients under 55 years at diagnosis, TTC was strikingly 0: the probability of being cured was >0.95 just after diagnosis. This is an interesting result regarding the health insurance premiums of these patients. The estimated values of time-to-cure from the three approaches were close for colorectal cancer only. We propose a new approach, based on estimated covariate-specific probability of being cured, to estimate time-to-cure. Compared to two existing methods, the new approach seems to be more intuitive and natural and less sensitive to the survival time distribution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The hockey-stick method to estimate evening dim light melatonin onset (DLMO) in humans.

    PubMed

    Danilenko, Konstantin V; Verevkin, Evgeniy G; Antyufeev, Viktor S; Wirz-Justice, Anna; Cajochen, Christian

    2014-04-01

    The onset of melatonin secretion in the evening is the most reliable and most widely used index of circadian timing in humans. Saliva (or plasma) is usually sampled every 0.5-1 hours under dim-light conditions in the evening 5-6 hours before usual bedtime to assess the dim-light melatonin onset (DLMO). For many years, attempts have been made to find a reliable objective determination of melatonin onset time either by fixed or dynamic threshold approaches. The here-developed hockey-stick algorithm, used as an interactive computer-based approach, fits the evening melatonin profile by a piecewise linear-parabolic function represented as a straight line switching to the branch of a parabola. The switch point is considered to reliably estimate melatonin rise time. We applied the hockey-stick method to 109 half-hourly melatonin profiles to assess the DLMOs and compared these estimates to visual ratings from three experts in the field. The DLMOs of 103 profiles were considered to be clearly quantifiable. The hockey-stick DLMO estimates were on average 4 minutes earlier than the experts' estimates, with a range of -27 to +13 minutes; in 47% of the cases the difference fell within ±5 minutes, in 98% within -20 to +13 minutes. The raters' and hockey-stick estimates showed poor accordance with DLMOs defined by threshold methods. Thus, the hockey-stick algorithm is a reliable objective method to estimate melatonin rise time, which does not depend on a threshold value and is free from errors arising from differences in subjective circadian phase estimates. The method is available as a computerized program that can be easily used in research settings and clinical practice either for salivary or plasma melatonin values.

  19. Challenges in risk estimation using routinely collected clinical data: The example of estimating cervical cancer risks from electronic health-records.

    PubMed

    Landy, Rebecca; Cheung, Li C; Schiffman, Mark; Gage, Julia C; Hyun, Noorie; Wentzensen, Nicolas; Kinney, Walter K; Castle, Philip E; Fetterman, Barbara; Poitras, Nancy E; Lorey, Thomas; Sasieni, Peter D; Katki, Hormuzd A

    2018-06-01

    Electronic health-records (EHR) are increasingly used by epidemiologists studying disease following surveillance testing to provide evidence for screening intervals and referral guidelines. Although cost-effective, undiagnosed prevalent disease and interval censoring (in which asymptomatic disease is only observed at the time of testing) raise substantial analytic issues when estimating risk that cannot be addressed using Kaplan-Meier methods. Based on our experience analysing EHR from cervical cancer screening, we previously proposed the logistic-Weibull model to address these issues. Here we demonstrate how the choice of statistical method can impact risk estimates. We use observed data on 41,067 women in the cervical cancer screening program at Kaiser Permanente Northern California, 2003-2013, as well as simulations to evaluate the ability of different methods (Kaplan-Meier, Turnbull, Weibull and logistic-Weibull) to accurately estimate risk within a screening program. Cumulative risk estimates from the statistical methods varied considerably, with the largest differences occurring for prevalent disease risk when baseline disease ascertainment was random but incomplete. Kaplan-Meier underestimated risk at earlier times and overestimated risk at later times in the presence of interval censoring or undiagnosed prevalent disease. Turnbull performed well, though was inefficient and not smooth. The logistic-Weibull model performed well, except when event times didn't follow a Weibull distribution. We have demonstrated that methods for right-censored data, such as Kaplan-Meier, result in biased estimates of disease risks when applied to interval-censored data, such as screening programs using EHR data. The logistic-Weibull model is attractive, but the model fit must be checked against Turnbull non-parametric risk estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The performance of different propensity score methods for estimating marginal hazard ratios.

    PubMed

    Austin, Peter C

    2013-07-20

    Propensity score methods are increasingly being used to reduce or minimize the effects of confounding when estimating the effects of treatments, exposures, or interventions when using observational or non-randomized data. Under the assumption of no unmeasured confounders, previous research has shown that propensity score methods allow for unbiased estimation of linear treatment effects (e.g., differences in means or proportions). However, in biomedical research, time-to-event outcomes occur frequently. There is a paucity of research into the performance of different propensity score methods for estimating the effect of treatment on time-to-event outcomes. Furthermore, propensity score methods allow for the estimation of marginal or population-average treatment effects. We conducted an extensive series of Monte Carlo simulations to examine the performance of propensity score matching (1:1 greedy nearest-neighbor matching within propensity score calipers), stratification on the propensity score, inverse probability of treatment weighting (IPTW) using the propensity score, and covariate adjustment using the propensity score to estimate marginal hazard ratios. We found that both propensity score matching and IPTW using the propensity score allow for the estimation of marginal hazard ratios with minimal bias. Of these two approaches, IPTW using the propensity score resulted in estimates with lower mean squared error when estimating the effect of treatment in the treated. Stratification on the propensity score and covariate adjustment using the propensity score result in biased estimation of both marginal and conditional hazard ratios. Applied researchers are encouraged to use propensity score matching and IPTW using the propensity score when estimating the relative effect of treatment on time-to-event outcomes. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability.

    PubMed

    Beda, Alessandro; Simpson, David M; Faes, Luca

    2017-01-01

    The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings.

  2. Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability

    PubMed Central

    2017-01-01

    The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings. PMID:28968394

  3. Using effort information with change-in-ratio data for population estimation

    USGS Publications Warehouse

    Udevitz, Mark S.; Pollock, Kenneth H.

    1995-01-01

    Most change-in-ratio (CIR) methods for estimating fish and wildlife population sizes have been based only on assumptions about how encounter probabilities vary among population subclasses. When information on sampling effort is available, it is also possible to derive CIR estimators based on assumptions about how encounter probabilities vary over time. This paper presents a generalization of previous CIR models that allows explicit consideration of a range of assumptions about the variation of encounter probabilities among subclasses and over time. Explicit estimators are derived under this model for specific sets of assumptions about the encounter probabilities. Numerical methods are presented for obtaining estimators under the full range of possible assumptions. Likelihood ratio tests for these assumptions are described. Emphasis is on obtaining estimators based on assumptions about variation of encounter probabilities over time.

  4. The magnitude of variability produced by methods used to estimate annual stormwater contaminant loads for highly urbanised catchments.

    PubMed

    Beck, H J; Birch, G F

    2013-06-01

    Stormwater contaminant loading estimates using event mean concentration (EMC), rainfall/runoff relationship calculations and computer modelling (Model of Urban Stormwater Infrastructure Conceptualisation--MUSIC) demonstrated high variability in common methods of water quality assessment. Predictions of metal, nutrient and total suspended solid loadings for three highly urbanised catchments in Sydney estuary, Australia, varied greatly within and amongst methods tested. EMC and rainfall/runoff relationship calculations produced similar estimates (within 1 SD) in a statistically significant number of trials; however, considerable variability within estimates (∼50 and ∼25 % relative standard deviation, respectively) questions the reliability of these methods. Likewise, upper and lower default inputs in a commonly used loading model (MUSIC) produced an extensive range of loading estimates (3.8-8.3 times above and 2.6-4.1 times below typical default inputs, respectively). Default and calibrated MUSIC simulations produced loading estimates that agreed with EMC and rainfall/runoff calculations in some trials (4-10 from 18); however, they were not frequent enough to statistically infer that these methods produced the same results. Great variance within and amongst mean annual loads estimated by common methods of water quality assessment has important ramifications for water quality managers requiring accurate estimates of the quantities and nature of contaminants requiring treatment.

  5. Comparison of Fatigue Life Estimation Using Equivalent Linearization and Time Domain Simulation Methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Dhainaut, Jean-Michel

    2000-01-01

    The Monte Carlo simulation method in conjunction with the finite element large deflection modal formulation are used to estimate fatigue life of aircraft panels subjected to stationary Gaussian band-limited white-noise excitations. Ten loading cases varying from 106 dB to 160 dB OASPL with bandwidth 1024 Hz are considered. For each load case, response statistics are obtained from an ensemble of 10 response time histories. The finite element nonlinear modal procedure yields time histories, probability density functions (PDF), power spectral densities and higher statistical moments of the maximum deflection and stress/strain. The method of moments of PSD with Dirlik's approach is employed to estimate the panel fatigue life.

  6. Estimating rainfall time series and model parameter distributions using model data reduction and inversion techniques

    NASA Astrophysics Data System (ADS)

    Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.

    2017-08-01

    Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  7. A Particle Smoother with Sequential Importance Resampling for soil hydraulic parameter estimation: A lysimeter experiment

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry

    2013-04-01

    An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.

  8. Estimating Arrhenius parameters using temperature programmed molecular dynamics.

    PubMed

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  9. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  10. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  11. Autoregressive-model-based missing value estimation for DNA microarray time series data.

    PubMed

    Choong, Miew Keen; Charbit, Maurice; Yan, Hong

    2009-01-01

    Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.

  12. An evaluation of methods for estimating decadal stream loads

    NASA Astrophysics Data System (ADS)

    Lee, Casey J.; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-11-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen - lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale's ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  13. An evaluation of methods for estimating decadal stream loads

    USGS Publications Warehouse

    Lee, Casey; Hirsch, Robert M.; Schwarz, Gregory E.; Holtschlag, David J.; Preston, Stephen D.; Crawford, Charles G.; Vecchia, Aldo V.

    2016-01-01

    Effective management of water resources requires accurate information on the mass, or load of water-quality constituents transported from upstream watersheds to downstream receiving waters. Despite this need, no single method has been shown to consistently provide accurate load estimates among different water-quality constituents, sampling sites, and sampling regimes. We evaluate the accuracy of several load estimation methods across a broad range of sampling and environmental conditions. This analysis uses random sub-samples drawn from temporally-dense data sets of total nitrogen, total phosphorus, nitrate, and suspended-sediment concentration, and includes measurements of specific conductance which was used as a surrogate for dissolved solids concentration. Methods considered include linear interpolation and ratio estimators, regression-based methods historically employed by the U.S. Geological Survey, and newer flexible techniques including Weighted Regressions on Time, Season, and Discharge (WRTDS) and a generalized non-linear additive model. No single method is identified to have the greatest accuracy across all constituents, sites, and sampling scenarios. Most methods provide accurate estimates of specific conductance (used as a surrogate for total dissolved solids or specific major ions) and total nitrogen – lower accuracy is observed for the estimation of nitrate, total phosphorus and suspended sediment loads. Methods that allow for flexibility in the relation between concentration and flow conditions, specifically Beale’s ratio estimator and WRTDS, exhibit greater estimation accuracy and lower bias. Evaluation of methods across simulated sampling scenarios indicate that (1) high-flow sampling is necessary to produce accurate load estimates, (2) extrapolation of sample data through time or across more extreme flow conditions reduces load estimate accuracy, and (3) WRTDS and methods that use a Kalman filter or smoothing to correct for departures between individual modeled and observed values benefit most from more frequent water-quality sampling.

  14. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on survival or time-to-event outcomes.

    PubMed

    Austin, Peter C

    2018-01-01

    Propensity score methods are frequently used to estimate the effects of interventions using observational data. The propensity score was originally developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (e.g. pack-years of cigarettes smoked, dose of medication, or years of education). We describe how the GPS can be used to estimate the effect of continuous exposures on survival or time-to-event outcomes. To do so we modified the concept of the dose-response function for use with time-to-event outcomes. We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of quantitative exposures on survival or time-to-event outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. The use of methods based on the GPS was compared with the use of conventional G-computation and weighted G-computation. Conventional G-computation resulted in estimates of the dose-response function that displayed the lowest bias and the lowest variability. Amongst the two GPS-based methods, covariate adjustment using the GPS tended to have the better performance. We illustrate the application of these methods by estimating the effect of average neighbourhood income on the probability of survival following hospitalization for an acute myocardial infarction.

  15. Time-Varying Delay Estimation Applied to the Surface Electromyography Signals Using the Parametric Approach

    NASA Astrophysics Data System (ADS)

    Luu, Gia Thien; Boualem, Abdelbassit; Duy, Tran Trung; Ravier, Philippe; Butteli, Olivier

    Muscle Fiber Conduction Velocity (MFCV) can be calculated from the time delay between the surface electromyographic (sEMG) signals recorded by electrodes aligned with the fiber direction. In order to take into account the non-stationarity during the dynamic contraction (the most daily life situation) of the data, the developed methods have to consider that the MFCV changes over time, which induces time-varying delays and the data is non-stationary (change of Power Spectral Density (PSD)). In this paper, the problem of TVD estimation is considered using a parametric method. First, the polynomial model of TVD has been proposed. Then, the TVD model parameters are estimated by using a maximum likelihood estimation (MLE) strategy solved by a deterministic optimization technique (Newton) and stochastic optimization technique, called simulated annealing (SA). The performance of the two techniques is also compared. We also derive two appropriate Cramer-Rao Lower Bounds (CRLB) for the estimated TVD model parameters and for the TVD waveforms. Monte-Carlo simulation results show that the estimation of both the model parameters and the TVD function is unbiased and that the variance obtained is close to the derived CRBs. A comparison with non-parametric approaches of the TVD estimation is also presented and shows the superiority of the method proposed.

  16. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.

    PubMed

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-Ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-03-05

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.

  17. Method paper--distance and travel time to casualty clinics in Norway based on crowdsourced postcode coordinates: a comparison with other methods.

    PubMed

    Raknes, Guttorm; Hunskaar, Steinar

    2014-01-01

    We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.

  18. Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.

    PubMed

    Iwata, Michio; Miyawaki-Kuwakado, Atsuko; Yoshida, Erika; Komori, Soichiro; Shiraishi, Fumihide

    2018-02-02

    In a mathematical model, estimation of parameters from time-series data of metabolic concentrations in cells is a challenging task. However, it seems that a promising approach for such estimation has not yet been established. Biochemical Systems Theory (BST) is a powerful methodology to construct a power-law type model for a given metabolic reaction system and to then characterize it efficiently. In this paper, we discuss the use of an S-system root-finding method (S-system method) to estimate parameters from time-series data of metabolite concentrations. We demonstrate that the S-system method is superior to the Newton-Raphson method in terms of the convergence region and iteration number. We also investigate the usefulness of a translocation technique and a complex-step differentiation method toward the practical application of the S-system method. The results indicate that the S-system method is useful to construct mathematical models for a variety of metabolic reaction networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Time Series Decomposition into Oscillation Components and Phase Estimation.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  20. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series

    PubMed Central

    2011-01-01

    Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598

  1. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp

    2011-08-18

    Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.

  2. Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods.

    PubMed

    Lindqvist, R

    2006-07-01

    Turbidity methods offer possibilities for generating data required for addressing microorganism variability in risk modeling given that the results of these methods correspond to those of viable count methods. The objectives of this study were to identify the best approach for determining growth parameters based on turbidity data and use of a Bioscreen instrument and to characterize variability in growth parameters of 34 Staphylococcus aureus strains of different biotypes isolated from broiler carcasses. Growth parameters were estimated by fitting primary growth models to turbidity growth curves or to detection times of serially diluted cultures either directly or by using an analysis of variance (ANOVA) approach. The maximum specific growth rates in chicken broth at 17 degrees C estimated by time to detection methods were in good agreement with viable count estimates, whereas growth models (exponential and Richards) underestimated growth rates. Time to detection methods were selected for strain characterization. The variation of growth parameters among strains was best described by either the logistic or lognormal distribution, but definitive conclusions require a larger data set. The distribution of the physiological state parameter ranged from 0.01 to 0.92 and was not significantly different from a normal distribution. Strain variability was important, and the coefficient of variation of growth parameters was up to six times larger among strains than within strains. It is suggested to apply a time to detection (ANOVA) approach using turbidity measurements for convenient and accurate estimation of growth parameters. The results emphasize the need to consider implications of strain variability for predictive modeling and risk assessment.

  3. Double inverse-weighted estimation of cumulative treatment effects under nonproportional hazards and dependent censoring.

    PubMed

    Schaubel, Douglas E; Wei, Guanghui

    2011-03-01

    In medical studies of time-to-event data, nonproportional hazards and dependent censoring are very common issues when estimating the treatment effect. A traditional method for dealing with time-dependent treatment effects is to model the time-dependence parametrically. Limitations of this approach include the difficulty to verify the correctness of the specified functional form and the fact that, in the presence of a treatment effect that varies over time, investigators are usually interested in the cumulative as opposed to instantaneous treatment effect. In many applications, censoring time is not independent of event time. Therefore, we propose methods for estimating the cumulative treatment effect in the presence of nonproportional hazards and dependent censoring. Three measures are proposed, including the ratio of cumulative hazards, relative risk, and difference in restricted mean lifetime. For each measure, we propose a double inverse-weighted estimator, constructed by first using inverse probability of treatment weighting (IPTW) to balance the treatment-specific covariate distributions, then using inverse probability of censoring weighting (IPCW) to overcome the dependent censoring. The proposed estimators are shown to be consistent and asymptotically normal. We study their finite-sample properties through simulation. The proposed methods are used to compare kidney wait-list mortality by race. © 2010, The International Biometric Society.

  4. Application of Statistical Methods of Rain Rate Estimation to Data From The TRMM Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Jones, J. A.; Iguchi, T.; Okamoto, K.; Liao, L.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The TRMM Precipitation Radar is well suited to statistical methods in that the measurements over any given region are sparsely sampled in time. Moreover, the instantaneous rain rate estimates are often of limited accuracy at high rain rates because of attenuation effects and at light rain rates because of receiver sensitivity. For the estimation of the time-averaged rain characteristics over an area both errors are relevant. By enlarging the space-time region over which the data are collected, the sampling error can be reduced. However. the bias and distortion of the estimated rain distribution generally will remain if estimates at the high and low rain rates are not corrected. In this paper we use the TRMM PR data to investigate the behavior of 2 statistical methods the purpose of which is to estimate the rain rate over large space-time domains. Examination of large-scale rain characteristics provides a useful starting point. The high correlation between the mean and standard deviation of rain rate implies that the conditional distribution of this quantity can be approximated by a one-parameter distribution. This property is used to explore the behavior of the area-time-integral (ATI) methods where fractional area above a threshold is related to the mean rain rate. In the usual application of the ATI method a correlation is established between these quantities. However, if a particular form of the rain rate distribution is assumed and if the ratio of the mean to standard deviation is known, then not only the mean but the full distribution can be extracted from a measurement of fractional area above a threshold. The second method is an extension of this idea where the distribution is estimated from data over a range of rain rates chosen in an intermediate range where the effects of attenuation and poor sensitivity can be neglected. The advantage of estimating the distribution itself rather than the mean value is that it yields the fraction of rain contributed by the light and heavy rain rates. This is useful in estimating the fraction of rainfall contributed by the rain rates that go undetected by the radar. The results at high rain rates provide a cross-check on the usual attenuation correction methods that are applied at the highest resolution of the instrument.

  5. Estimating Dynamical Systems: Derivative Estimation Hints From Sir Ronald A. Fisher.

    PubMed

    Deboeck, Pascal R

    2010-08-06

    The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common approach for estimating derivatives, Local Linear Approximation (LLA), produces estimates with correlated errors. Depending on the specific differential equation model used, such correlated errors can lead to severely biased estimates of differential equation model parameters. This article shows that the fitting of dynamical systems can be improved by estimating derivatives in a manner similar to that used to fit orthogonal polynomials. Two applications using simulated data compare the proposed method and a generalized form of LLA when used to estimate derivatives and when used to estimate differential equation model parameters. A third application estimates the frequency of oscillation in observations of the monthly deaths from bronchitis, emphysema, and asthma in the United Kingdom. These data are publicly available in the statistical program R, and functions in R for the method presented are provided.

  6. Proposal for a standardised identification of the mono-exponential terminal phase for orally administered drugs.

    PubMed

    Scheerans, Christian; Derendorf, Hartmut; Kloft, Charlotte

    2008-04-01

    The area under the plasma concentration-time curve from time zero to infinity (AUC(0-inf)) is generally considered to be the most appropriate measure of total drug exposure for bioavailability/bioequivalence studies of orally administered drugs. However, the lack of a standardised method for identifying the mono-exponential terminal phase of the concentration-time curve causes variability for the estimated AUC(0-inf). The present investigation introduces a simple method, called the two times t(max) method (TTT method) to reliably identify the mono-exponential terminal phase in the case of oral administration. The new method was tested by Monte Carlo simulation in Excel and compared with the adjusted r squared algorithm (ARS algorithm) frequently used in pharmacokinetic software programs. Statistical diagnostics of three different scenarios, each with 10,000 hypothetical patients showed that the new method provided unbiased average AUC(0-inf) estimates for orally administered drugs with a monophasic concentration-time curve post maximum concentration. In addition, the TTT method generally provided more precise estimates for AUC(0-inf) compared with the ARS algorithm. It was concluded that the TTT method is a most reasonable tool to be used as a standardised method in pharmacokinetic analysis especially bioequivalence studies to reliably identify the mono-exponential terminal phase for orally administered drugs showing a monophasic concentration-time profile.

  7. Time and temperature dependent modulus of pyrrone and polyimide moldings

    NASA Technical Reports Server (NTRS)

    Lander, L. L.

    1972-01-01

    A method is presented by which the modulus obtained from a stress relaxation test can be used to estimate the modulus which would be obtained from a sonic vibration test. The method was applied to stress relaxation, sonic vibration, and high speed stress-strain data which was obtained on a flexible epoxy. The modulus as measured by the three test methods was identical for identical test times, and a change of test temperature was equivalent to a shift in the logarithmic time scale. An estimate was then made of the dynamic modulus of moldings of two Pyrrones and two polyimides, using stress relaxation data and the method of analysis which was developed for the epoxy. Over the common temperature range (350 to 500 K) in which data from both types of tests were available, the estimated dynamic modulus value differed by only a few percent from the measured value. As a result, it is concluded that, over the 500 to 700 K temperature range, the estimated dynamic modulus values are accurate.

  8. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  10. Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time

    Treesearch

    Patrick C. Tobin

    2004-01-01

    The estimation of spatial autocorrelation in spatially- and temporally-referenced data is fundamental to understanding an organism's population biology. I used four sets of census field data, and developed an idealized space-time dynamic system, to study the behavior of spatial autocorrelation estimates when a practical method of sampling is employed. Estimates...

  11. Bounded influence function based inference in joint modelling of ordinal partial linear model and accelerated failure time model.

    PubMed

    Chakraborty, Arindom

    2016-12-01

    A common objective in longitudinal studies is to characterize the relationship between a longitudinal response process and a time-to-event data. Ordinal nature of the response and possible missing information on covariates add complications to the joint model. In such circumstances, some influential observations often present in the data may upset the analysis. In this paper, a joint model based on ordinal partial mixed model and an accelerated failure time model is used, to account for the repeated ordered response and time-to-event data, respectively. Here, we propose an influence function-based robust estimation method. Monte Carlo expectation maximization method-based algorithm is used for parameter estimation. A detailed simulation study has been done to evaluate the performance of the proposed method. As an application, a data on muscular dystrophy among children is used. Robust estimates are then compared with classical maximum likelihood estimates. © The Author(s) 2014.

  12. Quantifying the uncertainty introduced by discretization and time-averaging in two-fluid model predictions

    DOE PAGES

    Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane

    2017-07-12

    The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less

  13. Time Domain Estimation of Arterial Parameters using the Windkessel Model and the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Gostuski, Vladimir; Pastore, Ignacio; Rodriguez Palacios, Gaspar; Vaca Diez, Gustavo; Moscoso-Vasquez, H. Marcela; Risk, Marcelo

    2016-04-01

    Numerous parameter estimation techniques exist for characterizing the arterial system using electrical circuit analogs. However, they are often limited by their requirements and usually high computational burdain. Therefore, a new method for estimating arterial parameters based on Monte Carlo simulation is proposed. A three element Windkessel model was used to represent the arterial system. The approach was to reduce the error between the calculated and physiological aortic pressure by randomly generating arterial parameter values, while keeping constant the arterial resistance. This last value was obtained for each subject using the arterial flow, and was a necessary consideration in order to obtain a unique set of values for the arterial compliance and peripheral resistance. The estimation technique was applied to in vivo data containing steady beats in mongrel dogs, and it reliably estimated Windkessel arterial parameters. Further, this method appears to be computationally efficient for on-line time-domain estimation of these parameters.

  14. Methods for estimating population density in data-limited areas: evaluating regression and tree-based models in Peru.

    PubMed

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.

  15. Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru

    PubMed Central

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657

  16. Competing approaches to analysis of failure times with competing risks.

    PubMed

    Farley, T M; Ali, M M; Slaymaker, E

    2001-12-15

    For the analysis of time to event data in contraceptive studies when individuals are subject to competing causes for discontinuation, some authors have recently advocated the use of the cumulative incidence rate as a more appropriate measure to summarize data than the complement of the Kaplan-Meier estimate of discontinuation. The former method estimates the rate of discontinuation in the presence of competing causes, while the latter is a hypothetical rate that would be observed if discontinuations for the other reasons could not occur. The difference between the two methods of analysis is the continuous time equivalent of a debate that took place in the contraceptive literature in the 1960s, when several authors advocated the use of net (adjusted or single decrement life table rates) rates in preference to crude rates (multiple decrement life table rates). A small simulation study illustrates the interpretation of the two types of estimate - the complement of the Kaplan-Meier estimate corresponds to a hypothetical rate where discontinuations for other reasons did not occur, while the cumulative incidence gives systematically lower estimates. The Kaplan-Meier estimates are more appropriate when estimating the effectiveness of a contraceptive method, but the cumulative incidence estimates are more appropriate when making programmatic decisions regarding contraceptive methods. Other areas of application, such as cancer studies, may prefer to use the cumulative incidence estimates, but their use should be determined according to the application. Copyright 2001 John Wiley & Sons, Ltd.

  17. Regression analysis of sparse asynchronous longitudinal data

    PubMed Central

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P.

    2015-01-01

    Summary We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus. PMID:26568699

  18. Quantile Regression Models for Current Status Data

    PubMed Central

    Ou, Fang-Shu; Zeng, Donglin; Cai, Jianwen

    2016-01-01

    Current status data arise frequently in demography, epidemiology, and econometrics where the exact failure time cannot be determined but is only known to have occurred before or after a known observation time. We propose a quantile regression model to analyze current status data, because it does not require distributional assumptions and the coefficients can be interpreted as direct regression effects on the distribution of failure time in the original time scale. Our model assumes that the conditional quantile of failure time is a linear function of covariates. We assume conditional independence between the failure time and observation time. An M-estimator is developed for parameter estimation which is computed using the concave-convex procedure and its confidence intervals are constructed using a subsampling method. Asymptotic properties for the estimator are derived and proven using modern empirical process theory. The small sample performance of the proposed method is demonstrated via simulation studies. Finally, we apply the proposed method to analyze data from the Mayo Clinic Study of Aging. PMID:27994307

  19. An improvement of the measurement of time series irreversibility with visibility graph approach

    NASA Astrophysics Data System (ADS)

    Wu, Zhenyu; Shang, Pengjian; Xiong, Hui

    2018-07-01

    We propose a method to improve the measure of real-valued time series irreversibility which contains two tools: the directed horizontal visibility graph and the Kullback-Leibler divergence. The degree of time irreversibility is estimated by the Kullback-Leibler divergence between the in and out degree distributions presented in the associated visibility graph. In our work, we reframe the in and out degree distributions by encoding them with different embedded dimensions used in calculating permutation entropy(PE). With this improved method, we can not only estimate time series irreversibility efficiently, but also detect time series irreversibility from multiple dimensions. We verify the validity of our method and then estimate the amount of time irreversibility of series generated by chaotic maps as well as global stock markets over the period 2005-2015. The result shows that the amount of time irreversibility reaches the peak with embedded dimension d = 3 under circumstances of experiment and financial markets.

  20. An Assessment of Common Approaches to Estimating Peak Skin Dose Resulting From Fluoroscopically Guided Interventions

    NASA Astrophysics Data System (ADS)

    Smith, Caleb Martin

    Fluoroscopy guided procedures are increasing in complexity, and with that, Peak Skin Doses (PSD) that produce cutaneous radiation injury are a growing concern. Direct measurement of PSD is possible, but the decision to do so must be made in advance. PSD estimates and correctly monitoring their possible deterministic skin injuries are important to patient care. Three methods of indirect PSD estimation are examined for nine cases at MedStar Georgetown University Hospital. The aim of the study is to determine the magnitude of variation between these three methods for estimating the PSD. Method 1 (Fluoroscopy Time and Maximum Entrance Skin Exposure) was used at MedStar Georgetown University Hospital up until 2016. Methods 2 and 3 incorporate procedure information (Reference Point Air Kerma, Source-to-Patent distance, and Backscatter Factor) from DICOM (Digital Imaging and Communications in Medicine) tags into PSD estimates. Method 1 PSD estimates are vastly different, by as much as 136%, than those from Methods 2 and 3. Method 2 and 3 PSD estimates differ very little, 7.3% or less. Governing bodies have discounted Method 1 as a reliable dose metric because of its poor correlation with PSD. The accuracy of Method 2 is suitable to determine PSD and which dose band a patient fits so their injuries can be accurately monitored. Method 3, the most time intensive approach, should only be used in the case of a sentinel event where a full investigation is warranted.

  1. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami simulation. By assuming that this computed tsunami is a real tsunami and observed at ocean bottom sensors, new tsunami simulation is carried out using the above method. The station distribution (each station is separated by 15 min., about 30 km) observed tsunami waveforms which were actually computed from the source model. Tsunami height distributions are estimated from the above method at 40, 80, and 120 seconds after the origin time of the earthquake. The Near-field Tsunami Inundation forecast method (Gusman et al. 2014) was used to estimate the tsunami inundation along the Sanriku coast. The result shows that the observed tsunami inundation was well explained by those estimated inundation. This also shows that it takes about 10 minutes to estimate the tsunami inundation from the origin time of the earthquake. This new method developed in this paper is very effective for a real-time tsunami forecast.

  2. Methods for Estimating Kidney Disease Stage Transition Probabilities Using Electronic Medical Records

    PubMed Central

    Luo, Lola; Small, Dylan; Stewart, Walter F.; Roy, Jason A.

    2013-01-01

    Chronic diseases are often described by stages of severity. Clinical decisions about what to do are influenced by the stage, whether a patient is progressing, and the rate of progression. For chronic kidney disease (CKD), relatively little is known about the transition rates between stages. To address this, we used electronic health records (EHR) data on a large primary care population, which should have the advantage of having both sufficient follow-up time and sample size to reliably estimate transition rates for CKD. However, EHR data have some features that threaten the validity of any analysis. In particular, the timing and frequency of laboratory values and clinical measurements are not determined a priori by research investigators, but rather, depend on many factors, including the current health of the patient. We developed an approach for estimating CKD stage transition rates using hidden Markov models (HMMs), when the level of information and observation time vary among individuals. To estimate the HMMs in a computationally manageable way, we used a “discretization” method to transform daily data into intervals of 30 days, 90 days, or 180 days. We assessed the accuracy and computation time of this method via simulation studies. We also used simulations to study the effect of informative observation times on the estimated transition rates. Our simulation results showed good performance of the method, even when missing data are non-ignorable. We applied the methods to EHR data from over 60,000 primary care patients who have chronic kidney disease (stage 2 and above). We estimated transition rates between six underlying disease states. The results were similar for men and women. PMID:25848580

  3. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    NASA Astrophysics Data System (ADS)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  4. Blind estimation of reverberation time

    NASA Astrophysics Data System (ADS)

    Ratnam, Rama; Jones, Douglas L.; Wheeler, Bruce C.; O'Brien, William D.; Lansing, Charissa R.; Feng, Albert S.

    2003-11-01

    The reverberation time (RT) is an important parameter for characterizing the quality of an auditory space. Sounds in reverberant environments are subject to coloration. This affects speech intelligibility and sound localization. Many state-of-the-art audio signal processing algorithms, for example in hearing-aids and telephony, are expected to have the ability to characterize the listening environment, and turn on an appropriate processing strategy accordingly. Thus, a method for characterization of room RT based on passively received microphone signals represents an important enabling technology. Current RT estimators, such as Schroeder's method, depend on a controlled sound source, and thus cannot produce an online, blind RT estimate. Here, a method for estimating RT without prior knowledge of sound sources or room geometry is presented. The diffusive tail of reverberation was modeled as an exponentially damped Gaussian white noise process. The time-constant of the decay, which provided a measure of the RT, was estimated using a maximum-likelihood procedure. The estimates were obtained continuously, and an order-statistics filter was used to extract the most likely RT from the accumulated estimates. The procedure was illustrated for connected speech. Results obtained for simulated and real room data are in good agreement with the real RT values.

  5. Online estimation of room reverberation time

    NASA Astrophysics Data System (ADS)

    Ratnam, Rama; Jones, Douglas L.; Wheeler, Bruce C.; Feng, Albert S.

    2003-04-01

    The reverberation time (RT) is an important parameter for characterizing the quality of an auditory space. Sounds in reverberant environments are subject to coloration. This affects speech intelligibility and sound localization. State-of-the-art signal processing algorithms for hearing aids are expected to have the ability to evaluate the characteristics of the listening environment and turn on an appropriate processing strategy accordingly. Thus, a method for the characterization of room RT based on passively received microphone signals represents an important enabling technology. Current RT estimators, such as Schroeder's method or regression, depend on a controlled sound source, and thus cannot produce an online, blind RT estimate. Here, we describe a method for estimating RT without prior knowledge of sound sources or room geometry. The diffusive tail of reverberation was modeled as an exponentially damped Gaussian white noise process. The time constant of the decay, which provided a measure of the RT, was estimated using a maximum-likelihood procedure. The estimates were obtained continuously, and an order-statistics filter was used to extract the most likely RT from the accumulated estimates. The procedure was illustrated for connected speech. Results obtained for simulated and real room data are in good agreement with the real RT values.

  6. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    PubMed

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  7. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  8. Optimal distribution of integration time for intensity measurements in Stokes polarimetry.

    PubMed

    Li, Xiaobo; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie; Hu, Haofeng

    2015-10-19

    We consider the typical Stokes polarimetry system, which performs four intensity measurements to estimate a Stokes vector. We show that if the total integration time of intensity measurements is fixed, the variance of the Stokes vector estimator depends on the distribution of the integration time at four intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the Stokes vector estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time by employing Lagrange multiplier method. According to the theoretical analysis and real-world experiment, it is shown that the total variance of the Stokes vector estimator can be significantly decreased about 40% in the case discussed in this paper. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improves the measurement accuracy of the polarimetric system.

  9. Score Estimating Equations from Embedded Likelihood Functions under Accelerated Failure Time Model

    PubMed Central

    NING, JING; QIN, JING; SHEN, YU

    2014-01-01

    SUMMARY The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples. PMID:25663727

  10. Methods of Reverberation Mapping. I. Time-lag Determination by Measures of Randomness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelouche, Doron; Pozo-Nuñez, Francisco; Zucker, Shay, E-mail: doron@sci.haifa.ac.il, E-mail: francisco.pozon@gmail.com, E-mail: shayz@post.tau.ac.il

    A class of methods for measuring time delays between astronomical time series is introduced in the context of quasar reverberation mapping, which is based on measures of randomness or complexity of the data. Several distinct statistical estimators are considered that do not rely on polynomial interpolations of the light curves nor on their stochastic modeling, and do not require binning in correlation space. Methods based on von Neumann’s mean-square successive-difference estimator are found to be superior to those using other estimators. An optimized von Neumann scheme is formulated, which better handles sparsely sampled data and outperforms current implementations of discretemore » correlation function methods. This scheme is applied to existing reverberation data of varying quality, and consistency with previously reported time delays is found. In particular, the size–luminosity relation of the broad-line region in quasars is recovered with a scatter comparable to that obtained by other works, yet with fewer assumptions made concerning the process underlying the variability. The proposed method for time-lag determination is particularly relevant for irregularly sampled time series, and in cases where the process underlying the variability cannot be adequately modeled.« less

  11. Comparing floral and isotopic paleoelevation estimates: Examples from the western United States

    NASA Astrophysics Data System (ADS)

    Hyland, E. G.; Huntington, K. W.; Sheldon, N. D.; Smith, S. Y.; Strömberg, C. A. E.

    2016-12-01

    Describing paleoelevations is crucial to understanding tectonic processes and deconvolving the effects of uplift and climate on environmental change in the past. Decades of work has gone into estimating past elevation from various proxy archives, particularly using modern relationships between elevation and temperature, floral assemblage compositions, or oxygen isotope values. While these methods have been used widely and refined through time, they are rarely applied in tandem; here we provide two examples from the western United States using new multiproxy methods: 1) combining clumped isotopes and macrofloral assemblages to estimate paleoelevations along the Colorado Plateau, and 2) combining oxygen isotopes and phytolith methods to estimate paleoelevations within the greater Yellowstone region. Clumped isotope measurements and refined floral coexistence methods from sites on the northern Colorado Plateau like Florissant and Creede (CO) consistently estimate low (< 2km) elevations through the Eocene/Oligocene, suggesting slower uplift and a south-north propagation of the plateau. Oxygen isotope measurements and C4 phytolith estimates from sites surrounding the Yellowstone hotspot consistently estimate moderate uplift (0.2-0.7km) propagating along the hotspot track, suggesting migrating dynamic topography associated with the region. These examples provide support for the emerging practice of using multiproxy methods to estimate paleoelevations for important time periods, and can help integrate environmental and tectonic records of the past.

  12. A time-lapse photography method for monitoring salmon (Oncorhynchus spp.) passage and abundance in streams

    PubMed Central

    Leacock, William B.; Eby, Lisa A.; Stanford, Jack A.

    2016-01-01

    Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn. PMID:27326378

  13. A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses

    PubMed Central

    Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.

    2013-01-01

    Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303

  14. Measuring survival time: a probability-based approach useful in healthcare decision-making.

    PubMed

    2011-01-01

    In some clinical situations, the choice between treatment options takes into account their impact on patient survival time. Due to practical constraints (such as loss to follow-up), survival time is usually estimated using a probability calculation based on data obtained in clinical studies or trials. The two techniques most commonly used to estimate survival times are the Kaplan-Meier method and the actuarial method. Despite their limitations, they provide useful information when choosing between treatment options.

  15. Mixed-Poisson Point Process with Partially-Observed Covariates: Ecological Momentary Assessment of Smoking.

    PubMed

    Neustifter, Benjamin; Rathbun, Stephen L; Shiffman, Saul

    2012-01-01

    Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.

  16. Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators.

    PubMed

    Astolfi, L; Cincotti, F; Mattia, D; De Vico Fallani, F; Tocci, A; Colosimo, A; Salinari, S; Marciani, M G; Hesse, W; Witte, H; Ursino, M; Zavaglia, M; Babiloni, F

    2008-03-01

    The directed transfer function (DTF) and the partial directed coherence (PDC) are frequency-domain estimators that are able to describe interactions between cortical areas in terms of the concept of Granger causality. However, the classical estimation of these methods is based on the multivariate autoregressive modelling (MVAR) of time series, which requires the stationarity of the signals. In this way, transient pathways of information transfer remains hidden. The objective of this study is to test a time-varying multivariate method for the estimation of rapidly changing connectivity relationships between cortical areas of the human brain, based on DTF/PDC and on the use of adaptive MVAR modelling (AMVAR) and to apply it to a set of real high resolution EEG data. This approach will allow the observation of rapidly changing influences between the cortical areas during the execution of a task. The simulation results indicated that time-varying DTF and PDC are able to estimate correctly the imposed connectivity patterns under reasonable operative conditions of signal-to-noise ratio (SNR) ad number of trials. An SNR of five and a number of trials of at least 20 provide a good accuracy in the estimation. After testing the method by the simulation study, we provide an application to the cortical estimations obtained from high resolution EEG data recorded from a group of healthy subject during a combined foot-lips movement and present the time-varying connectivity patterns resulting from the application of both DTF and PDC. Two different cortical networks were detected with the proposed methods, one constant across the task and the other evolving during the preparation of the joint movement.

  17. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    USGS Publications Warehouse

    Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  18. Continuous Shape Estimation of Continuum Robots Using X-ray Images

    PubMed Central

    Lobaton, Edgar J.; Fu, Jinghua; Torres, Luis G.; Alterovitz, Ron

    2015-01-01

    We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot’s shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints. PMID:26279960

  19. Continuous Shape Estimation of Continuum Robots Using X-ray Images.

    PubMed

    Lobaton, Edgar J; Fu, Jinghua; Torres, Luis G; Alterovitz, Ron

    2013-05-06

    We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.

  20. Efficient high-rate satellite clock estimation for PPP ambiguity resolution using carrier-ranges.

    PubMed

    Chen, Hua; Jiang, Weiping; Ge, Maorong; Wickert, Jens; Schuh, Harald

    2014-11-25

    In order to catch up the short-term clock variation of GNSS satellites, clock corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). This estimation is already very time-consuming for the GPS constellation only as a great number of ambiguities need to be simultaneously estimated. However, on the one hand better estimates are expected by including more stations, and on the other hand satellites from different GNSS systems must be processed integratively for a reliable multi-GNSS positioning service. To alleviate the heavy computational burden, epoch-differenced observations are always employed where ambiguities are eliminated. As the epoch-differenced method can only derive temporal clock changes which have to be aligned to the absolute clocks but always in a rather complicated way, in this paper, an efficient method for high-rate clock estimation is proposed using the concept of "carrier-range" realized by means of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time processing are developed, respectively. The experimental validation shows that the computation time could be reduced to about one sixth of that of the existing methods for post-processing and less than 1 s for processing a single epoch of a network with about 200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed processing strategy will enable the high-rate clock estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode.

  1. Real-time hydraulic interval state estimation for water transport networks: a case study

    NASA Astrophysics Data System (ADS)

    Vrachimis, Stelios G.; Eliades, Demetrios G.; Polycarpou, Marios M.

    2018-03-01

    Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.

  2. Using the entire history in the analysis of nested case cohort samples.

    PubMed

    Rivera, C L; Lumley, T

    2016-08-15

    Countermatching designs can provide more efficient estimates than simple matching or case-cohort designs in certain situations such as when good surrogate variables for an exposure of interest are available. We extend pseudolikelihood estimation for the Cox model under countermatching designs to models where time-varying covariates are considered. We also implement pseudolikelihood with calibrated weights to improve efficiency in nested case-control designs in the presence of time-varying variables. A simulation study is carried out, which considers four different scenarios including a binary time-dependent variable, a continuous time-dependent variable, and the case including interactions in each. Simulation results show that pseudolikelihood with calibrated weights under countermatching offers large gains in efficiency if compared to case-cohort. Pseudolikelihood with calibrated weights yielded more efficient estimators than pseudolikelihood estimators. Additionally, estimators were more efficient under countermatching than under case-cohort for the situations considered. The methods are illustrated using the Colorado Plateau uranium miners cohort. Furthermore, we present a general method to generate survival times with time-varying covariates. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Online frequency estimation with applications to engine and generator sets

    NASA Astrophysics Data System (ADS)

    Manngård, Mikael; Böling, Jari M.

    2017-07-01

    Frequency and spectral analysis based on the discrete Fourier transform is a fundamental task in signal processing and machine diagnostics. This paper aims at presenting computationally efficient methods for real-time estimation of stationary and time-varying frequency components in signals. A brief survey of the sliding time window discrete Fourier transform and Goertzel filter is presented, and two filter banks consisting of: (i) sliding time window Goertzel filters (ii) infinite impulse response narrow bandpass filters are proposed for estimating instantaneous frequencies. The proposed methods show excellent results on both simulation studies and on a case study using angular speed data measurements of the crankshaft of a marine diesel engine-generator set.

  4. Estimating the effect of a rare time-dependent treatment on the recurrent event rate.

    PubMed

    Smith, Abigail R; Zhu, Danting; Goodrich, Nathan P; Merion, Robert M; Schaubel, Douglas E

    2018-05-30

    In many observational studies, the objective is to estimate the effect of treatment or state-change on the recurrent event rate. If treatment is assigned after the start of follow-up, traditional methods (eg, adjustment for baseline-only covariates or fully conditional adjustment for time-dependent covariates) may give biased results. We propose a two-stage modeling approach using the method of sequential stratification to accurately estimate the effect of a time-dependent treatment on the recurrent event rate. At the first stage, we estimate the pretreatment recurrent event trajectory using a proportional rates model censored at the time of treatment. Prognostic scores are estimated from the linear predictor of this model and used to match treated patients to as yet untreated controls based on prognostic score at the time of treatment for the index patient. The final model is stratified on matched sets and compares the posttreatment recurrent event rate to the recurrent event rate of the matched controls. We demonstrate through simulation that bias due to dependent censoring is negligible, provided the treatment frequency is low, and we investigate a threshold at which correction for dependent censoring is needed. The method is applied to liver transplant (LT), where we estimate the effect of development of post-LT End Stage Renal Disease (ESRD) on rate of days hospitalized. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Estimating phase synchronization in dynamical systems using cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Sowa, Robert; Chernihovskyi, Anton; Mormann, Florian; Lehnertz, Klaus

    2005-06-01

    We propose a method for estimating phase synchronization between time series using the parallel computing architecture of cellular nonlinear networks (CNN’s). Applying this method to time series of coupled nonlinear model systems and to electroencephalographic time series from epilepsy patients, we show that an accurate approximation of the mean phase coherence R —a bivariate measure for phase synchronization—can be achieved with CNN’s using polynomial-type templates.

  6. An improved method for nonlinear parameter estimation: a case study of the Rössler model

    NASA Astrophysics Data System (ADS)

    He, Wen-Ping; Wang, Liu; Jiang, Yun-Di; Wan, Shi-Quan

    2016-08-01

    Parameter estimation is an important research topic in nonlinear dynamics. Based on the evolutionary algorithm (EA), Wang et al. (2014) present a new scheme for nonlinear parameter estimation and numerical tests indicate that the estimation precision is satisfactory. However, the convergence rate of the EA is relatively slow when multiple unknown parameters in a multidimensional dynamical system are estimated simultaneously. To solve this problem, an improved method for parameter estimation of nonlinear dynamical equations is provided in the present paper. The main idea of the improved scheme is to use all of the known time series for all of the components in some dynamical equations to estimate the parameters in single component one by one, instead of estimating all of the parameters in all of the components simultaneously. Thus, we can estimate all of the parameters stage by stage. The performance of the improved method was tested using a classic chaotic system—Rössler model. The numerical tests show that the amended parameter estimation scheme can greatly improve the searching efficiency and that there is a significant increase in the convergence rate of the EA, particularly for multiparameter estimation in multidimensional dynamical equations. Moreover, the results indicate that the accuracy of parameter estimation and the CPU time consumed by the presented method have no obvious dependence on the sample size.

  7. Estimating trends in atmospheric water vapor and temperature time series over Germany

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Balidakis, Kyriakos; Dick, Galina; Heise, Stefan; Wickert, Jens

    2017-08-01

    Ground-based GNSS (Global Navigation Satellite System) has efficiently been used since the 1990s as a meteorological observing system. Recently scientists have used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data and meteorological measurements. We aim to evaluate climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: (1) estimated from ground-based GNSS observations using the method of precise point positioning, (2) inferred from ERA-Interim reanalysis data, and (3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods: the first applies least squares to deseasonalized time series and the second uses the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 to 19 years temporal coverage, vary between -1.5 and 2.3 mm decade-1 with standard deviations below 0.25 mm decade-1. These results were validated by estimating the trends from ERA-Interim data over the same time windows, which show similar values. These values of the trend depend on the length and the variations of the time series. Therefore, to give a mean value of the PWV trend over Germany, we estimated the trends using ERA-Interim spanning from 1991 to 2016 (26 years) at 227 synoptic stations over Germany. The ERA-Interim data show positive PWV trends of 0.33 ± 0.06 mm decade-1 with standard errors below 0.03 mm decade-1. The increment in PWV varies between 4.5 and 6.5 % per degree Celsius rise in temperature, which is comparable to the theoretical rate of the Clausius-Clapeyron equation.

  8. Estimation of time-varying growth, uptake and excretion rates from dynamic metabolomics data.

    PubMed

    Cinquemani, Eugenio; Laroute, Valérie; Cocaign-Bousquet, Muriel; de Jong, Hidde; Ropers, Delphine

    2017-07-15

    Technological advances in metabolomics have made it possible to monitor the concentration of extracellular metabolites over time. From these data, it is possible to compute the rates of uptake and excretion of the metabolites by a growing cell population, providing precious information on the functioning of intracellular metabolism. The computation of the rate of these exchange reactions, however, is difficult to achieve in practice for a number of reasons, notably noisy measurements, correlations between the concentration profiles of the different extracellular metabolites, and discontinuties in the profiles due to sudden changes in metabolic regime. We present a method for precisely estimating time-varying uptake and excretion rates from time-series measurements of extracellular metabolite concentrations, specifically addressing all of the above issues. The estimation problem is formulated in a regularized Bayesian framework and solved by a combination of extended Kalman filtering and smoothing. The method is shown to improve upon methods based on spline smoothing of the data. Moreover, when applied to two actual datasets, the method recovers known features of overflow metabolism in Escherichia coli and Lactococcus lactis , and provides evidence for acetate uptake by L. lactis after glucose exhaustion. The results raise interesting perspectives for further work on rate estimation from measurements of intracellular metabolites. The Matlab code for the estimation method is available for download at https://team.inria.fr/ibis/rate-estimation-software/ , together with the datasets. eugenio.cinquemani@inria.fr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. A comparative simulation study of AR(1) estimators in short time series.

    PubMed

    Krone, Tanja; Albers, Casper J; Timmerman, Marieke E

    2017-01-01

    Various estimators of the autoregressive model exist. We compare their performance in estimating the autocorrelation in short time series. In Study 1, under correct model specification, we compare the frequentist r 1 estimator, C-statistic, ordinary least squares estimator (OLS) and maximum likelihood estimator (MLE), and a Bayesian method, considering flat (B f ) and symmetrized reference (B sr ) priors. In a completely crossed experimental design we vary lengths of time series (i.e., T = 10, 25, 40, 50 and 100) and autocorrelation (from -0.90 to 0.90 with steps of 0.10). The results show a lowest bias for the B sr , and a lowest variability for r 1 . The power in different conditions is highest for B sr and OLS. For T = 10, the absolute performance of all measurements is poor, as expected. In Study 2, we study robustness of the methods through misspecification by generating the data according to an ARMA(1,1) model, but still analysing the data with an AR(1) model. We use the two methods with the lowest bias for this study, i.e., B sr and MLE. The bias gets larger when the non-modelled moving average parameter becomes larger. Both the variability and power show dependency on the non-modelled parameter. The differences between the two estimation methods are negligible for all measurements.

  10. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  11. Cross-bispectrum computation and variance estimation

    NASA Technical Reports Server (NTRS)

    Lii, K. S.; Helland, K. N.

    1981-01-01

    A method for the estimation of cross-bispectra of discrete real time series is developed. The asymptotic variance properties of the bispectrum are reviewed, and a method for the direct estimation of bispectral variance is given. The symmetry properties are described which minimize the computations necessary to obtain a complete estimate of the cross-bispectrum in the right-half-plane. A procedure is given for computing the cross-bispectrum by subdividing the domain into rectangular averaging regions which help reduce the variance of the estimates and allow easy application of the symmetry relationships to minimize the computational effort. As an example of the procedure, the cross-bispectrum of a numerically generated, exponentially distributed time series is computed and compared with theory.

  12. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  13. Estimating time-based instantaneous total mortality rate based on the age-structured abundance index

    NASA Astrophysics Data System (ADS)

    Wang, Yingbin; Jiao, Yan

    2015-05-01

    The instantaneous total mortality rate ( Z) of a fish population is one of the important parameters in fisheries stock assessment. The estimation of Z is crucial to fish population dynamics analysis, abundance and catch forecast, and fisheries management. A catch curve-based method for estimating time-based Z and its change trend from catch per unit effort (CPUE) data of multiple cohorts is developed. Unlike the traditional catch-curve method, the method developed here does not need the assumption of constant Z throughout the time, but the Z values in n continuous years are assumed constant, and then the Z values in different n continuous years are estimated using the age-based CPUE data within these years. The results of the simulation analyses show that the trends of the estimated time-based Z are consistent with the trends of the true Z, and the estimated rates of change from this approach are close to the true change rates (the relative differences between the change rates of the estimated Z and the true Z are smaller than 10%). Variations of both Z and recruitment can affect the estimates of Z value and the trend of Z. The most appropriate value of n can be different given the effects of different factors. Therefore, the appropriate value of n for different fisheries should be determined through a simulation analysis as we demonstrated in this study. Further analyses suggested that selectivity and age estimation are also two factors that can affect the estimated Z values if there is error in either of them, but the estimated change rates of Z are still close to the true change rates. We also applied this approach to the Atlantic cod ( Gadus morhua) fishery of eastern Newfoundland and Labrador from 1983 to 1997, and obtained reasonable estimates of time-based Z.

  14. The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study.

    PubMed

    Austin, Peter C; Schuster, Tibor

    2016-10-01

    Observational studies are increasingly being used to estimate the effect of treatments, interventions and exposures on outcomes that can occur over time. Historically, the hazard ratio, which is a relative measure of effect, has been reported. However, medical decision making is best informed when both relative and absolute measures of effect are reported. When outcomes are time-to-event in nature, the effect of treatment can also be quantified as the change in mean or median survival time due to treatment and the absolute reduction in the probability of the occurrence of an event within a specified duration of follow-up. We describe how three different propensity score methods, propensity score matching, stratification on the propensity score and inverse probability of treatment weighting using the propensity score, can be used to estimate absolute measures of treatment effect on survival outcomes. These methods are all based on estimating marginal survival functions under treatment and lack of treatment. We then conducted an extensive series of Monte Carlo simulations to compare the relative performance of these methods for estimating the absolute effects of treatment on survival outcomes. We found that stratification on the propensity score resulted in the greatest bias. Caliper matching on the propensity score and a method based on earlier work by Cole and Hernán tended to have the best performance for estimating absolute effects of treatment on survival outcomes. When the prevalence of treatment was less extreme, then inverse probability of treatment weighting-based methods tended to perform better than matching-based methods. © The Author(s) 2014.

  15. Comparison of methods for estimating density of forest songbirds from point counts

    Treesearch

    Jennifer L. Reidy; Frank R. Thompson; J. Wesley. Bailey

    2011-01-01

    New analytical methods have been promoted for estimating the probability of detection and density of birds from count data but few studies have compared these methods using real data. We compared estimates of detection probability and density from distance and time-removal models and survey protocols based on 5- or 10-min counts and outer radii of 50 or 100 m. We...

  16. An approach to checking case-crossover analyses based on equivalence with time-series methods.

    PubMed

    Lu, Yun; Symons, James Morel; Geyh, Alison S; Zeger, Scott L

    2008-03-01

    The case-crossover design has been increasingly applied to epidemiologic investigations of acute adverse health effects associated with ambient air pollution. The correspondence of the design to that of matched case-control studies makes it inferentially appealing for epidemiologic studies. Case-crossover analyses generally use conditional logistic regression modeling. This technique is equivalent to time-series log-linear regression models when there is a common exposure across individuals, as in air pollution studies. Previous methods for obtaining unbiased estimates for case-crossover analyses have assumed that time-varying risk factors are constant within reference windows. In this paper, we rely on the connection between case-crossover and time-series methods to illustrate model-checking procedures from log-linear model diagnostics for time-stratified case-crossover analyses. Additionally, we compare the relative performance of the time-stratified case-crossover approach to time-series methods under 3 simulated scenarios representing different temporal patterns of daily mortality associated with air pollution in Chicago, Illinois, during 1995 and 1996. Whenever a model-be it time-series or case-crossover-fails to account appropriately for fluctuations in time that confound the exposure, the effect estimate will be biased. It is therefore important to perform model-checking in time-stratified case-crossover analyses rather than assume the estimator is unbiased.

  17. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  18. Determination of differential arrival times by cross-correlating worldwide seismological data

    NASA Astrophysics Data System (ADS)

    Godano, M.; Nolet, G.; Zaroli, C.

    2012-12-01

    Cross-correlation delays are the preferred body wave observables in global tomography. Heterogeneity is the main factor influencing delay times found by cross-correlation. Not only the waveform, but also the arrival time itself is affected by differences in seismic velocity encountered along the way. An accurate method for estimating differential times of seismic arrivals across a regional array by cross-correlation was developed by VanDecar and Crosson [1990]. For the estimation of global travel time delays in different frequency bands, Sigloch and Nolet [2006] developed a method for the estimation of body wave delays using a matched filter, which requires the separate estimation of the source time function. Sigloch et al. [2008] found that waveforms often cluster in and opposite the direction of rupture propagation on the fault, confirming that the directivity effect is a major factor in shaping the waveform of large events. We propose a generalization of the VanDecar-Crosson method to which we add a correction for the directivity effect in the seismological data. The new method allows large events to be treated without the need to estimate the source time function for the computation of a matched synthetic waveform. The procedure consists in (1) the detection of the directivity effect in the data and the determination of a rupture model (unilateral or bilateral) explaining the differences in pulse duration among the stations, (2) the determination of an apparent fault rupture length explaining the pulse durations, (3) the removal of the delay due to the directivity effect in the pulse duration , by stretching or contracting the seismograms for directive and anti-directive stations respectively and (4) the application of a generalized VanDecar and Crosson method using only delays between pairs of stations that have an acceptable correlation coefficient. We validate our method by performing tests on synthetic data. Results show that the error between theoretical and measured differential arrival time are significantly reduced for the corrected data. We illustrate our method on data from several real earthquakes.

  19. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor †

    PubMed Central

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes. PMID:29510599

  20. Estimating time-varying drug adherence using electronic records: extending the proportion of days covered (PDC) method.

    PubMed

    Bijlsma, Maarten J; Janssen, Fanny; Hak, Eelko

    2016-03-01

    Accurate measurement of drug adherence is essential for valid risk-benefit assessments of pharmacologic interventions. To date, measures of drug adherence have almost exclusively been applied for a fixed-time interval and without considering changes over time. However, patients with irregular dosing behaviour commonly have a different prognosis than patients with stable dosing behaviour. We propose a method, based on the proportion of days covered (PDC) method, to measure time-varying drug adherence and drug dosage using electronic records. We compare a time-fixed PDC method with the time-varying PDC method through detailed examples and through summary statistics of 100 randomly selected patients on statin therapy. We demonstrate that time-varying PDC method better distinguishes an irregularly dosing patient from a stably dosing patient and demonstrate how the time-fixed method can result in a biassed estimate of drug adherence. Furthermore, the time-varying PDC method may be better used to reduce certain types of confounding and misclassification of exposure. The time-varying PDC method may improve longitudinal and time-to-event studies that associate adherence with a clinical outcome or (intervention) studies that seek to describe changes in adherence over time. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  2. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  3. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight variousmore » aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.« less

  4. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  5. The problem of estimating recent genetic connectivity in a changing world.

    PubMed

    Samarasin, Pasan; Shuter, Brian J; Wright, Stephen I; Rodd, F Helen

    2017-02-01

    Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent-based method (Migrate-n) and a disequilibrium-based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over-estimated recent migration rates; (ii) the coalescent-based method (Migrate-n) provided better estimates of recent migration rate than the disequilibrium-based method (BayesAss); (iii) the coalescent-based method did not accurately reflect long-term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic-connectivity changes over time could lead to inaccurate conclusions. © 2016 Society for Conservation Biology.

  6. Quantifying Accurate Calorie Estimation Using the "Think Aloud" Method

    ERIC Educational Resources Information Center

    Holmstrup, Michael E.; Stearns-Bruening, Kay; Rozelle, Jeffrey

    2013-01-01

    Objective: Clients often have limited time in a nutrition education setting. An improved understanding of the strategies used to accurately estimate calories may help to identify areas of focused instruction to improve nutrition knowledge. Methods: A "Think Aloud" exercise was recorded during the estimation of calories in a standard dinner meal…

  7. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  8. Influence of outliers on accuracy estimation in genomic prediction in plant breeding.

    PubMed

    Estaghvirou, Sidi Boubacar Ould; Ogutu, Joseph O; Piepho, Hans-Peter

    2014-10-01

    Outliers often pose problems in analyses of data in plant breeding, but their influence on the performance of methods for estimating predictive accuracy in genomic prediction studies has not yet been evaluated. Here, we evaluate the influence of outliers on the performance of methods for accuracy estimation in genomic prediction studies using simulation. We simulated 1000 datasets for each of 10 scenarios to evaluate the influence of outliers on the performance of seven methods for estimating accuracy. These scenarios are defined by the number of genotypes, marker effect variance, and magnitude of outliers. To mimic outliers, we added to one observation in each simulated dataset, in turn, 5-, 8-, and 10-times the error SD used to simulate small and large phenotypic datasets. The effect of outliers on accuracy estimation was evaluated by comparing deviations in the estimated and true accuracies for datasets with and without outliers. Outliers adversely influenced accuracy estimation, more so at small values of genetic variance or number of genotypes. A method for estimating heritability and predictive accuracy in plant breeding and another used to estimate accuracy in animal breeding were the most accurate and resistant to outliers across all scenarios and are therefore preferable for accuracy estimation in genomic prediction studies. The performances of the other five methods that use cross-validation were less consistent and varied widely across scenarios. The computing time for the methods increased as the size of outliers and sample size increased and the genetic variance decreased. Copyright © 2014 Ould Estaghvirou et al.

  9. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  10. Investigation of safety analysis methods using computer vision techniques

    NASA Astrophysics Data System (ADS)

    Shirazi, Mohammad Shokrolah; Morris, Brendan Tran

    2017-09-01

    This work investigates safety analysis methods using computer vision techniques. The vision-based tracking system is developed to provide the trajectory of road users including vehicles and pedestrians. Safety analysis methods are developed to estimate time to collision (TTC) and postencroachment time (PET) that are two important safety measurements. Corresponding algorithms are presented and their advantages and drawbacks are shown through their success in capturing the conflict events in real time. The performance of the tracking system is evaluated first, and probability density estimation of TTC and PET are shown for 1-h monitoring of a Las Vegas intersection. Finally, an idea of an intersection safety map is introduced, and TTC values of two different intersections are estimated for 1 day from 8:00 a.m. to 6:00 p.m.

  11. Towards real-time diffuse optical tomography for imaging brain functions cooperated with Kalman estimator

    NASA Astrophysics Data System (ADS)

    Wang, Bingyuan; Zhang, Yao; Liu, Dongyuan; Ding, Xuemei; Dan, Mai; Pan, Tiantian; Wang, Yihan; Li, Jiao; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method to monitor the cerebral hemodynamic through the optical changes measured at the scalp surface. It has played a more and more important role in psychology and medical imaging communities. Real-time imaging of brain function using NIRS makes it possible to explore some sophisticated human brain functions unexplored before. Kalman estimator has been frequently used in combination with modified Beer-Lamber Law (MBLL) based optical topology (OT), for real-time brain function imaging. However, the spatial resolution of the OT is low, hampering the application of OT in exploring some complicated brain functions. In this paper, we develop a real-time imaging method combining diffuse optical tomography (DOT) and Kalman estimator, much improving the spatial resolution. Instead of only presenting one spatially distributed image indicating the changes of the absorption coefficients at each time point during the recording process, one real-time updated image using the Kalman estimator is provided. Its each voxel represents the amplitude of the hemodynamic response function (HRF) associated with this voxel. We evaluate this method using some simulation experiments, demonstrating that this method can obtain more reliable spatial resolution images. Furthermore, a statistical analysis is also conducted to help to decide whether a voxel in the field of view is activated or not.

  12. Estimating the average treatment effect on survival based on observational data and using partly conditional modeling.

    PubMed

    Gong, Qi; Schaubel, Douglas E

    2017-03-01

    Treatments are frequently evaluated in terms of their effect on patient survival. In settings where randomization of treatment is not feasible, observational data are employed, necessitating correction for covariate imbalances. Treatments are usually compared using a hazard ratio. Most existing methods which quantify the treatment effect through the survival function are applicable to treatments assigned at time 0. In the data structure of our interest, subjects typically begin follow-up untreated; time-until-treatment, and the pretreatment death hazard are both heavily influenced by longitudinal covariates; and subjects may experience periods of treatment ineligibility. We propose semiparametric methods for estimating the average difference in restricted mean survival time attributable to a time-dependent treatment, the average effect of treatment among the treated, under current treatment assignment patterns. The pre- and posttreatment models are partly conditional, in that they use the covariate history up to the time of treatment. The pre-treatment model is estimated through recently developed landmark analysis methods. For each treated patient, fitted pre- and posttreatment survival curves are projected out, then averaged in a manner which accounts for the censoring of treatment times. Asymptotic properties are derived and evaluated through simulation. The proposed methods are applied to liver transplant data in order to estimate the effect of liver transplantation on survival among transplant recipients under current practice patterns. © 2016, The International Biometric Society.

  13. Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.

    PubMed

    Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru

    2017-01-01

    In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.

  14. Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis

    PubMed Central

    Chiba, Tomoaki; Akaho, Shotaro; Murata, Noboru

    2017-01-01

    In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group’s sales beat GM’s sales, which is a reasonable scenario. PMID:28076383

  15. Innovative methods for calculation of freeway travel time using limited data : executive summary report.

    DOT National Transportation Integrated Search

    2008-08-01

    ODOTs policy for Dynamic Message Sign : utilization requires travel time(s) to be displayed as : a default message. The current method of : calculating travel time involves a workstation : operator estimating the travel time based upon : observati...

  16. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series

    EPA Science Inventory

    In aquatic systems, time series of dissolved oxygen (DO) have been used to compute estimates of ecosystem metabolism. Central to this open-water method is the assumption that the DO time series is a Lagrangian specification of the flow field. However, most DO time series are coll...

  17. Estimating Dynamical Systems: Derivative Estimation Hints from Sir Ronald A. Fisher

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.

    2010-01-01

    The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common…

  18. Getting It Right Matters: Climate Spectra and Their Estimation

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor; Yushkov, Vladislav

    2018-06-01

    In many recent publications, climate spectra estimated with different methods from observed, GCM-simulated, and reconstructed time series contain many peaks at time scales from a few years to many decades and even centuries. However, respective spectral estimates obtained with the autoregressive (AR) and multitapering (MTM) methods showed that spectra of climate time series are smooth and contain no evidence of periodic or quasi-periodic behavior. Four order selection criteria for the autoregressive models were studied and proven sufficiently reliable for 25 time series of climate observations at individual locations or spatially averaged at local-to-global scales. As time series of climate observations are short, an alternative reliable nonparametric approach is Thomson's MTM. These results agree with both the earlier climate spectral analyses and the Markovian stochastic model of climate.

  19. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  20. Measuring food intake with digital photography

    PubMed Central

    Martin, Corby K.; Nicklas, Theresa; Gunturk, Bahadir; Correa, John B.; Allen, H. Raymond; Champagne, Catherine

    2014-01-01

    The Digital Photography of Foods Method accurately estimates the food intake of adults and children in cafeterias. When using this method, imags of food selection and leftovers are quickly captured in the cafeteria. These images are later compared to images of “standard” portions of food using a computer application. The amount of food selected and discarded is estimated based upon this comparison, and the application automatically calculates energy and nutrient intake. Herein, we describe this method, as well as a related method called the Remote Food Photography Method (RFPM), which relies on Smartphones to estimate food intake in near real-time in free-living conditions. When using the RFPM, participants capture images of food selection and leftovers using a Smartphone and these images are wirelessly transmitted in near real-time to a server for analysis. Because data are transferred and analyzed in near real-time, the RFPM provides a platform for participants to quickly receive feedback about their food intake behavior and to receive dietary recommendations to achieve weight loss and health promotion goals. The reliability and validity of measuring food intake with the RFPM in adults and children will also be reviewed. The body of research reviewed herein demonstrates that digital imaging accurately estimates food intake in many environments and it has many advantages over other methods, including reduced participant burden, elimination of the need for participants to estimate portion size, and incorporation of computer automation to improve the accuracy, efficiency, and the cost-effectiveness of the method. PMID:23848588

  1. Improved shear wave group velocity estimation method based on spatiotemporal peak and thresholding motion search

    PubMed Central

    Amador, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F.; Urban, Matthew W.

    2017-01-01

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared to conventional TTP. PMID:28092532

  2. Improved Shear Wave Group Velocity Estimation Method Based on Spatiotemporal Peak and Thresholding Motion Search.

    PubMed

    Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew W

    2017-04-01

    Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocity values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index, ultrasound scanners, scanning protocols, and ultrasound image quality. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this paper, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time [spatiotemporal peak (STP)]; the second method applies an amplitude filter [spatiotemporal thresholding (STTH)] to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared with TTP in phantom. Moreover, in a cohort of 14 healthy subjects, STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared with conventional TTP.

  3. Method for detection and correction of errors in speech pitch period estimates

    NASA Technical Reports Server (NTRS)

    Bhaskar, Udaya (Inventor)

    1989-01-01

    A method of detecting and correcting received values of a pitch period estimate of a speech signal for use in a speech coder or the like. An average is calculated of the nonzero values of received pitch period estimate since the previous reset. If a current pitch period estimate is within a range of 0.75 to 1.25 times the average, it is assumed correct, while if not, a correction process is carried out. If correction is required successively for more than a preset number of times, which will most likely occur when the speaker changes, the average is discarded and a new average calculated.

  4. Adjusting for treatment switching in randomised controlled trials - A simulation study and a simplified two-stage method.

    PubMed

    Latimer, Nicholas R; Abrams, K R; Lambert, P C; Crowther, M J; Wailoo, A J; Morden, J P; Akehurst, R L; Campbell, M J

    2017-04-01

    Estimates of the overall survival benefit of new cancer treatments are often confounded by treatment switching in randomised controlled trials (RCTs) - whereby patients randomised to the control group are permitted to switch onto the experimental treatment upon disease progression. In health technology assessment, estimates of the unconfounded overall survival benefit associated with the new treatment are needed. Several switching adjustment methods have been advocated in the literature, some of which have been used in health technology assessment. However, it is unclear which methods are likely to produce least bias in realistic RCT-based scenarios. We simulated RCTs in which switching, associated with patient prognosis, was permitted. Treatment effect size and time dependency, switching proportions and disease severity were varied across scenarios. We assessed the performance of alternative adjustment methods based upon bias, coverage and mean squared error, related to the estimation of true restricted mean survival in the absence of switching in the control group. We found that when the treatment effect was not time-dependent, rank preserving structural failure time models (RPSFTM) and iterative parameter estimation methods produced low levels of bias. However, in the presence of a time-dependent treatment effect, these methods produced higher levels of bias, similar to those produced by an inverse probability of censoring weights method. The inverse probability of censoring weights and structural nested models produced high levels of bias when switching proportions exceeded 85%. A simplified two-stage Weibull method produced low bias across all scenarios and provided the treatment switching mechanism is suitable, represents an appropriate adjustment method.

  5. On the modeling of breath-by-breath oxygen uptake kinetics at the onset of high-intensity exercises: simulated annealing vs. GRG2 method.

    PubMed

    Bernard, Olivier; Alata, Olivier; Francaux, Marc

    2006-03-01

    Modeling in the time domain, the non-steady-state O2 uptake on-kinetics of high-intensity exercises with empirical models is commonly performed with gradient-descent-based methods. However, these procedures may impair the confidence of the parameter estimation when the modeling functions are not continuously differentiable and when the estimation corresponds to an ill-posed problem. To cope with these problems, an implementation of simulated annealing (SA) methods was compared with the GRG2 algorithm (a gradient-descent method known for its robustness). Forty simulated Vo2 on-responses were generated to mimic the real time course for transitions from light- to high-intensity exercises, with a signal-to-noise ratio equal to 20 dB. They were modeled twice with a discontinuous double-exponential function using both estimation methods. GRG2 significantly biased two estimated kinetic parameters of the first exponential (the time delay td1 and the time constant tau1) and impaired the precision (i.e., standard deviation) of the baseline A0, td1, and tau1 compared with SA. SA significantly improved the precision of the three parameters of the second exponential (the asymptotic increment A2, the time delay td2, and the time constant tau2). Nevertheless, td2 was significantly biased by both procedures, and the large confidence intervals of the whole second component parameters limit their interpretation. To compare both algorithms on experimental data, 26 subjects each performed two transitions from 80 W to 80% maximal O2 uptake on a cycle ergometer and O2 uptake was measured breath by breath. More than 88% of the kinetic parameter estimations done with the SA algorithm produced the lowest residual sum of squares between the experimental data points and the model. Repeatability coefficients were better with GRG2 for A1 although better with SA for A2 and tau2. Our results demonstrate that the implementation of SA improves significantly the estimation of most of these kinetic parameters, but a large inaccuracy remains in estimating the parameter values of the second exponential.

  6. Survival analysis with error-prone time-varying covariates: a risk set calibration approach

    PubMed Central

    Liao, Xiaomei; Zucker, David M.; Li, Yi; Spiegelman, Donna

    2010-01-01

    Summary Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time-independent point exposures when the disease is rare, it is not adaptable for use with time-varying exposures. By re-calibrating the measurement error model within each risk set, a risk set regression calibration method is proposed for this setting. An algorithm for a bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard’s Health Professionals Follow-up Study (HPFS). PMID:20486928

  7. Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series

    PubMed Central

    Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael

    2014-01-01

    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and artificial systems. PMID:25068489

  8. Temporal variations of potential fecundity of southern blue whiting (Micromesistius australis australis) in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Flores, Andrés; Wiff, Rodrigo; Díaz, Eduardo; Carvajal, Bernardita

    2017-08-01

    Fecundity is a key aspect of fish species reproductive biology because it relates directly to total egg production. Yet, despite such importance, fecundity estimates are lacking or scarce for several fish species. The gravimetric method is the most-used one to estimate fecundity by essentially scaling up the oocyte density to the ovary weight. It is a relatively simple and precise technique, but also time consuming because it requires counting all oocytes in an ovary subsample. The auto-diametric method, on the other hand, is relatively new for estimating fecundity, representing a rapid alternative, because it requires only an estimation of mean oocyte density from mean oocyte diameter. Using the extensive database available from commercial fishery and design surveys for southern blue whiting Micromesistius australis australis in the Southeast Pacific, we compared estimates of fecundity using both gravimetric and auto-diametric methods. Temporal variations in potential fecundity from the auto-diametric method were evaluated using generalised linear models considering predictors from maternal characteristics such as female size, condition factor, oocyte size, and gonadosomatic index. A global and time-invariant auto-diametric equation was evaluated using a simulation procedure based on non-parametric bootstrap. Results indicated there were not significant differences regarding fecundity estimates between the gravimetric and auto-diametric method (p > 0.05). Simulation showed the application of a global equation is unbiased and sufficiently precise to estimate time-invariant fecundity of this species. Temporal variations on fecundity were explained by maternal characteristic, revealing signals of fecundity down-regulation. We discuss how oocyte size and nutritional condition (measured as condition factor) are one of the important factors determining fecundity. We highlighted also the relevance of choosing the appropriate sampling period to conduct maturity studies and ensure precise estimates of fecundity of this species.

  9. Improved analysis of ground vibrations produced by man-made sources.

    PubMed

    Ainalis, Daniel; Ducarne, Loïc; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2018-03-01

    Man-made sources of ground vibration must be carefully monitored in urban areas in order to ensure that structural damage and discomfort to residents is prevented or minimised. The research presented in this paper provides a comparative evaluation of various methods used to analyse a series of tri-axial ground vibration measurements generated by rail, road, and explosive blasting. The first part of the study is focused on comparing various techniques to estimate the dominant frequency, including time-frequency analysis. The comparative evaluation of the various methods to estimate the dominant frequency revealed that, depending on the method used, there can be significant variation in the estimates obtained. A new and improved analysis approach using the continuous wavelet transform was also presented, using the time-frequency distribution to estimate the localised dominant frequency and peak particle velocity. The technique can be used to accurately identify the level and frequency content of a ground vibration signal as it varies with time, and identify the number of times the threshold limits of damage are exceeded. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification.

    PubMed

    Saladin, Bianca; Leslie, Andrew B; Wüest, Rafael O; Litsios, Glenn; Conti, Elena; Salamin, Nicolas; Zimmermann, Niklaus E

    2017-04-04

    The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.

  11. Learning-based subject-specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies.

    PubMed

    Meng, Yu; Li, Gang; Gao, Yaozong; Lin, Weili; Shen, Dinggang

    2016-11-01

    Longitudinal neuroimaging analysis of the dynamic brain development in infants has received increasing attention recently. Many studies expect a complete longitudinal dataset in order to accurately chart the brain developmental trajectories. However, in practice, a large portion of subjects in longitudinal studies often have missing data at certain time points, due to various reasons such as the absence of scan or poor image quality. To make better use of these incomplete longitudinal data, in this paper, we propose a novel machine learning-based method to estimate the subject-specific, vertex-wise cortical morphological attributes at the missing time points in longitudinal infant studies. Specifically, we develop a customized regression forest, named dynamically assembled regression forest (DARF), as the core regression tool. DARF ensures the spatial smoothness of the estimated maps for vertex-wise cortical morphological attributes and also greatly reduces the computational cost. By employing a pairwise estimation followed by a joint refinement, our method is able to fully exploit the available information from both subjects with complete scans and subjects with missing scans for estimation of the missing cortical attribute maps. The proposed method has been applied to estimating the dynamic cortical thickness maps at missing time points in an incomplete longitudinal infant dataset, which includes 31 healthy infant subjects, each having up to five time points in the first postnatal year. The experimental results indicate that our proposed framework can accurately estimate the subject-specific vertex-wise cortical thickness maps at missing time points, with the average error less than 0.23 mm. Hum Brain Mapp 37:4129-4147, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Combining statistics from two national complex surveys to estimate injury rates per hour exposed and variance by activity in the USA.

    PubMed

    Lin, Tin-Chi; Marucci-Wellman, Helen R; Willetts, Joanna L; Brennan, Melanye J; Verma, Santosh K

    2016-12-01

    A common issue in descriptive injury epidemiology is that in order to calculate injury rates that account for the time spent in an activity, both injury cases and exposure time of specific activities need to be collected. In reality, few national surveys have this capacity. To address this issue, we combined statistics from two different national complex surveys as inputs for the numerator and denominator to estimate injury rate, accounting for the time spent in specific activities and included a procedure to estimate variance using the combined surveys. The 2010 National Health Interview Survey (NHIS) was used to quantify injuries, and the 2010 American Time Use Survey (ATUS) was used to quantify time of exposure to specific activities. The injury rate was estimated by dividing the average number of injuries (from NHIS) by average exposure hours (from ATUS), both measured for specific activities. The variance was calculated using the 'delta method', a general method for variance estimation with complex surveys. Among the five types of injuries examined, 'sport and exercise' had the highest rate (12.64 injuries per 100 000 h), followed by 'working around house/yard' (6.14), driving/riding a motor vehicle (2.98), working (1.45) and sleeping/resting/eating/drinking (0.23). The results show a ranking of injury rate by activity quite different from estimates using population as the denominator. Our approach produces an estimate of injury risk which includes activity exposure time and may more reliably reflect the underlying injury risks, offering an alternative method for injury surveillance and research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. A new radial strain and strain rate estimation method using autocorrelation for carotid artery

    NASA Astrophysics Data System (ADS)

    Ye, Jihui; Kim, Hoonmin; Park, Jongho; Yeo, Sunmi; Shim, Hwan; Lim, Hyungjoon; Yoo, Yangmo

    2014-03-01

    Atherosclerosis is a leading cause of cardiovascular disease. The early diagnosis of atherosclerosis is of clinical interest since it can prevent any adverse effects of atherosclerotic vascular diseases. In this paper, a new carotid artery radial strain estimation method based on autocorrelation is presented. In the proposed method, the strain is first estimated by the autocorrelation of two complex signals from the consecutive frames. Then, the angular phase from autocorrelation is converted to strain and strain rate and they are analyzed over time. In addition, a 2D strain image over region of interest in a carotid artery can be displayed. To evaluate the feasibility of the proposed radial strain estimation method, radiofrequency (RF) data of 408 frames in the carotid artery of a volunteer were acquired by a commercial ultrasound system equipped with a research package (V10, Samsung Medison, Korea) by using a L5-13IS linear array transducer. From in vivo carotid artery data, the mean strain estimate was -0.1372 while its minimum and maximum values were -2.961 and 0.909, respectively. Moreover, the overall strain estimates are highly correlated with the reconstructed M-mode trace. Similar results were obtained from the estimation of the strain rate change over time. These results indicate that the proposed carotid artery radial strain estimation method is useful for assessing the arterial wall's stiffness noninvasively without increasing the computational complexity.

  14. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  15. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation.

    PubMed

    Karasawa, N; Mitsutake, A; Takano, H

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  16. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation

    NASA Astrophysics Data System (ADS)

    Karasawa, N.; Mitsutake, A.; Takano, H.

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  17. Generalized Ordinary Differential Equation Models 1

    PubMed Central

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-01-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787

  18. Generalized Ordinary Differential Equation Models.

    PubMed

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  19. Latent Subgroup Analysis of a Randomized Clinical Trial Through a Semiparametric Accelerated Failure Time Mixture Model

    PubMed Central

    Altstein, L.; Li, G.

    2012-01-01

    Summary This paper studies a semiparametric accelerated failure time mixture model for estimation of a biological treatment effect on a latent subgroup of interest with a time-to-event outcome in randomized clinical trials. Latency is induced because membership is observable in one arm of the trial and unidentified in the other. This method is useful in randomized clinical trials with all-or-none noncompliance when patients in the control arm have no access to active treatment and in, for example, oncology trials when a biopsy used to identify the latent subgroup is performed only on subjects randomized to active treatment. We derive a computational method to estimate model parameters by iterating between an expectation step and a weighted Buckley-James optimization step. The bootstrap method is used for variance estimation, and the performance of our method is corroborated in simulation. We illustrate our method through an analysis of a multicenter selective lymphadenectomy trial for melanoma. PMID:23383608

  20. Time-Domain Receiver Function Deconvolution using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moreira, L. P.

    2017-12-01

    Receiver Functions (RF) are well know method for crust modelling using passive seismological signals. Many different techniques were developed to calculate the RF traces, applying the deconvolution calculation to radial and vertical seismogram components. A popular method used a spectral division of both components, which requires human intervention to apply the Water Level procedure to avoid instabilities from division by small numbers. One of most used method is an iterative procedure to estimate the RF peaks and applying the convolution with vertical component seismogram, comparing the result with the radial component. This method is suitable for automatic processing, however several RF traces are invalid due to peak estimation failure.In this work it is proposed a deconvolution algorithm using Genetic Algorithm (GA) to estimate the RF peaks. This method is entirely processed in the time domain, avoiding the time-to-frequency calculations (and vice-versa), and totally suitable for automatic processing. Estimated peaks can be used to generate RF traces in a seismogram format for visualization. The RF trace quality is similar for high magnitude events, although there are less failures for RF calculation of smaller events, increasing the overall performance for high number of events per station.

  1. High-resolution correlation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.

    2007-09-01

    In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.

  2. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    Treesearch

    Charles H. Luce; Daniele Tonina; Frank Gariglio; Ralph Applebee

    2013-01-01

    Work over the last decade has documented methods for estimating fluxes between streams and streambeds from time series of temperature at two depths in the streambed. We present substantial extension to the existing theory and practice of using temperature time series to estimate streambed water fluxes and thermal properties, including (1) a new explicit analytical...

  3. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.

  4. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.

    PubMed

    Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang

    2015-11-13

    Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.

  5. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  6. Assessing network scale-up estimates for groups most at risk of HIV/AIDS: evidence from a multiple-method study of heavy drug users in Curitiba, Brazil.

    PubMed

    Salganik, Matthew J; Fazito, Dimitri; Bertoni, Neilane; Abdo, Alexandre H; Mello, Maeve B; Bastos, Francisco I

    2011-11-15

    One of the many challenges hindering the global response to the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) epidemic is the difficulty of collecting reliable information about the populations most at risk for the disease. Thus, the authors empirically assessed a promising new method for estimating the sizes of most at-risk populations: the network scale-up method. Using 4 different data sources, 2 of which were from other researchers, the authors produced 5 estimates of the number of heavy drug users in Curitiba, Brazil. The authors found that the network scale-up and generalized network scale-up estimators produced estimates 5-10 times higher than estimates made using standard methods (the multiplier method and the direct estimation method using data from 2004 and 2010). Given that equally plausible methods produced such a wide range of results, the authors recommend that additional studies be undertaken to compare estimates based on the scale-up method with those made using other methods. If scale-up-based methods routinely produce higher estimates, this would suggest that scale-up-based methods are inappropriate for populations most at risk of HIV/AIDS or that standard methods may tend to underestimate the sizes of these populations.

  7. Simultaneous auto-calibration and gradient delays estimation (SAGE) in non-Cartesian parallel MRI using low-rank constraints.

    PubMed

    Jiang, Wenwen; Larson, Peder E Z; Lustig, Michael

    2018-03-09

    To correct gradient timing delays in non-Cartesian MRI while simultaneously recovering corruption-free auto-calibration data for parallel imaging, without additional calibration scans. The calibration matrix constructed from multi-channel k-space data should be inherently low-rank. This property is used to construct reconstruction kernels or sensitivity maps. Delays between the gradient hardware across different axes and RF receive chain, which are relatively benign in Cartesian MRI (excluding EPI), lead to trajectory deviations and hence data inconsistencies for non-Cartesian trajectories. These in turn lead to higher rank and corrupted calibration information which hampers the reconstruction. Here, a method named Simultaneous Auto-calibration and Gradient delays Estimation (SAGE) is proposed that estimates the actual k-space trajectory while simultaneously recovering the uncorrupted auto-calibration data. This is done by estimating the gradient delays that result in the lowest rank of the calibration matrix. The Gauss-Newton method is used to solve the non-linear problem. The method is validated in simulations using center-out radial, projection reconstruction and spiral trajectories. Feasibility is demonstrated on phantom and in vivo scans with center-out radial and projection reconstruction trajectories. SAGE is able to estimate gradient timing delays with high accuracy at a signal to noise ratio level as low as 5. The method is able to effectively remove artifacts resulting from gradient timing delays and restore image quality in center-out radial, projection reconstruction, and spiral trajectories. The low-rank based method introduced simultaneously estimates gradient timing delays and provides accurate auto-calibration data for improved image quality, without any additional calibration scans. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Estimation of modal parameters using bilinear joint time frequency distributions

    NASA Astrophysics Data System (ADS)

    Roshan-Ghias, A.; Shamsollahi, M. B.; Mobed, M.; Behzad, M.

    2007-07-01

    In this paper, a new method is proposed for modal parameter estimation using time-frequency representations. Smoothed Pseudo Wigner-Ville distribution which is a member of the Cohen's class distributions is used to decouple vibration modes completely in order to study each mode separately. This distribution reduces cross-terms which are troublesome in Wigner-Ville distribution and retains the resolution as well. The method was applied to highly damped systems, and results were superior to those obtained via other conventional methods.

  9. Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2013-01-01

    A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.

  10. A data driven method for estimation of B(avail) and appK(D) using a single injection protocol with [¹¹C]raclopride in the mouse.

    PubMed

    Wimberley, Catriona J; Fischer, Kristina; Reilhac, Anthonin; Pichler, Bernd J; Gregoire, Marie Claude

    2014-10-01

    The partial saturation approach (PSA) is a simple, single injection experimental protocol that will estimate both B(avail) and appK(D) without the use of blood sampling. This makes it ideal for use in longitudinal studies of neurodegenerative diseases in the rodent. The aim of this study was to increase the range and applicability of the PSA by developing a data driven strategy for determining reliable regional estimates of receptor density (B(avail)) and in vivo affinity (1/appK(D)), and validate the strategy using a simulation model. The data driven method uses a time window guided by the dynamic equilibrium state of the system as opposed to using a static time window. To test the method, simulations of partial saturation experiments were generated and validated against experimental data. The experimental conditions simulated included a range of receptor occupancy levels and three different B(avail) and appK(D) values to mimic diseases states. Also the effect of using a reference region and typical PET noise on the stability and accuracy of the estimates was investigated. The investigations showed that the parameter estimates in a simulated healthy mouse, using the data driven method were within 10±30% of the simulated input for the range of occupancy levels simulated. Throughout all experimental conditions simulated, the accuracy and robustness of the estimates using the data driven method were much improved upon the typical method of using a static time window, especially at low receptor occupancy levels. Introducing a reference region caused a bias of approximately 10% over the range of occupancy levels. Based on extensive simulated experimental conditions, it was shown the data driven method provides accurate and precise estimates of B(avail) and appK(D) for a broader range of conditions compared to the original method. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  12. Alternative Strategies for Pricing Home Work Time.

    ERIC Educational Resources Information Center

    Zick, Cathleen D.; Bryant, W. Keith

    1983-01-01

    Discusses techniques for measuring the value of home work time. Estimates obtained using the reservation wage technique are contrasted with market alternative estimates derived with the same data set. Findings suggest that the market alternative cost method understates the true value of a woman's home time to the household. (JOW)

  13. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  14. Investigation of 2-stage meta-analysis methods for joint longitudinal and time-to-event data through simulation and real data application.

    PubMed

    Sudell, Maria; Tudur Smith, Catrin; Gueyffier, François; Kolamunnage-Dona, Ruwanthi

    2018-04-15

    Joint modelling of longitudinal and time-to-event data is often preferred over separate longitudinal or time-to-event analyses as it can account for study dropout, error in longitudinally measured covariates, and correlation between longitudinal and time-to-event outcomes. The joint modelling literature focuses mainly on the analysis of single studies with no methods currently available for the meta-analysis of joint model estimates from multiple studies. We propose a 2-stage method for meta-analysis of joint model estimates. These methods are applied to the INDANA dataset to combine joint model estimates of systolic blood pressure with time to death, time to myocardial infarction, and time to stroke. Results are compared to meta-analyses of separate longitudinal or time-to-event models. A simulation study is conducted to contrast separate versus joint analyses over a range of scenarios. Using the real dataset, similar results were obtained by using the separate and joint analyses. However, the simulation study indicated a benefit of use of joint rather than separate methods in a meta-analytic setting where association exists between the longitudinal and time-to-event outcomes. Where evidence of association between longitudinal and time-to-event outcomes exists, results from joint models over standalone analyses should be pooled in 2-stage meta-analyses. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  15. Piecewise SALT sampling for estimating suspended sediment yields

    Treesearch

    Robert B. Thomas

    1989-01-01

    A probability sampling method called SALT (Selection At List Time) has been developed for collecting and summarizing data on delivery of suspended sediment in rivers. It is based on sampling and estimating yield using a suspended-sediment rating curve for high discharges and simple random sampling for low flows. The method gives unbiased estimates of total yield and...

  16. Using Grain-Size Distribution Methods for Estimation of Air Permeability.

    PubMed

    Wang, Tiejun; Huang, Yuanyang; Chen, Xunhong; Chen, Xi

    2016-01-01

    Knowledge of air permeability (ka ) at dry conditions is critical for the use of air flow models in porous media; however, it is usually difficult and time consuming to measure ka at dry conditions. It is thus desirable to estimate ka at dry conditions from other readily obtainable properties. In this study, the feasibility of using information derived from grain-size distributions (GSDs) for estimating ka at dry conditions was examined. Fourteen GSD-based equations originally developed for estimating saturated hydraulic conductivity were tested using ka measured at dry conditions in both undisturbed and disturbed river sediment samples. On average, the estimated ka from all the equations, except for the method of Slichter, differed by less than ± 4 times from the measured ka for both undisturbed and disturbed groups. In particular, for the two sediment groups, the results given by the methods of Terzaghi and Hazen-modified were comparable to the measured ka . In addition, two methods (e.g., Barr and Beyer) for the undisturbed samples and one method (e.g., Hazen-original) for the undisturbed samples were also able to produce comparable ka estimates. Moreover, after adjusting the values of the coefficient C in the GSD-based equations, the estimation of ka was significantly improved with the differences between the measured and estimated ka less than ±4% on average (except for the method of Barr). As demonstrated by this study, GSD-based equations may provide a promising and efficient way to estimate ka at dry conditions. © 2015, National Ground Water Association.

  17. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses.

    PubMed

    Irigoyen, Alejo J; Rojo, Irene; Calò, Antonio; Trobbiani, Gastón; Sánchez-Carnero, Noela; García-Charton, José A

    2018-01-01

    Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1-31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC.

  18. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses

    PubMed Central

    2018-01-01

    Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer’s experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1–31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC. PMID:29324887

  19. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals.

    PubMed

    Latorre, Jorge; Llorens, Roberto; Colomer, Carolina; Alcañiz, Mariano

    2018-04-27

    Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6-5.5 cm/s), stride length (2.5-5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60-90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. How Accurate Are German Work-Time Data? A Comparison of Time-Diary Reports and Stylized Estimates

    ERIC Educational Resources Information Center

    Otterbach, Steffen; Sousa-Poza, Alfonso

    2010-01-01

    This study compares work time data collected by the German Time Use Survey (GTUS) using the diary method with stylized work time estimates from the GTUS, the German Socio-Economic Panel, and the German Microcensus. Although on average the differences between the time-diary data and the interview data is not large, our results show that significant…

  1. A computational approach to estimate postmortem interval using opacity development of eye for human subjects.

    PubMed

    Cantürk, İsmail; Özyılmaz, Lale

    2018-07-01

    This paper presents an approach to postmortem interval (PMI) estimation, which is a very debated and complicated area of forensic science. Most of the reported methods to determine PMI in the literature are not practical because of the need for skilled persons and significant amounts of time, and give unsatisfactory results. Additionally, the error margin of PMI estimation increases proportionally with elapsed time after death. It is crucial to develop practical PMI estimation methods for forensic science. In this study, a computational system is developed to determine the PMI of human subjects by investigating postmortem opacity development of the eye. Relevant features from the eye images were extracted using image processing techniques to reflect gradual opacity development. The features were then investigated to predict the time after death using machine learning methods. The experimental results prove that the development of opacity can be utilized as a practical computational tool to determine PMI for human subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Adaptive compressed sensing of multi-view videos based on the sparsity estimation

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Li, Xilong; Chong, Xin

    2017-11-01

    The conventional compressive sensing for videos based on the non-adaptive linear projections, and the measurement times is usually set empirically. As a result, the quality of videos reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was described. Then an estimation method for the sparsity of multi-view videos was proposed based on the two dimensional discrete wavelet transform (2D DWT). With an energy threshold given beforehand, the DWT coefficients were processed with both energy normalization and sorting by descending order, and the sparsity of the multi-view video can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of video frame effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparsity estimated with the energy threshold provided, the proposed method can ensure the reconstruction quality of multi-view videos.

  3. Fitting a function to time-dependent ensemble averaged data.

    PubMed

    Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias

    2018-05-03

    Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.

  4. Estimating serial correlation and self-similarity in financial time series-A diversification approach with applications to high frequency data

    NASA Astrophysics Data System (ADS)

    Gerlich, Nikolas; Rostek, Stefan

    2015-09-01

    We derive a heuristic method to estimate the degree of self-similarity and serial correlation in financial time series. Especially, we propagate the use of a tailor-made selection of different estimation techniques that are used in various fields of time series analysis but until now have not consequently found their way into the finance literature. Following the idea of portfolio diversification, we show that considerable improvements with respect to robustness and unbiasedness can be achieved by using a basket of estimation methods. With this methodological toolbox at hand, we investigate real market data to show that noticeable deviations from the assumptions of constant self-similarity and absence of serial correlation occur during certain periods. On the one hand, this may shed a new light on seemingly ambiguous scientific findings concerning serial correlation of financial time series. On the other hand, a proven time-changing degree of self-similarity may help to explain high-volatility clusters of stock price indices.

  5. Alteration of Box-Jenkins methodology by implementing genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad

    2015-02-01

    A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.

  6. Estimating long-term multivariate progression from short-term data.

    PubMed

    Donohue, Michael C; Jacqmin-Gadda, Hélène; Le Goff, Mélanie; Thomas, Ronald G; Raman, Rema; Gamst, Anthony C; Beckett, Laurel A; Jack, Clifford R; Weiner, Michael W; Dartigues, Jean-François; Aisen, Paul S

    2014-10-01

    Diseases that progress slowly are often studied by observing cohorts at different stages of disease for short periods of time. The Alzheimer's Disease Neuroimaging Initiative (ADNI) follows elders with various degrees of cognitive impairment, from normal to impaired. The study includes a rich panel of novel cognitive tests, biomarkers, and brain images collected every 6 months for as long as 6 years. The relative timing of the observations with respect to disease pathology is unknown. We propose a general semiparametric model and iterative estimation procedure to estimate simultaneously the pathological timing and long-term growth curves. The resulting estimates of long-term progression are fine-tuned using cognitive trajectories derived from the long-term "Personnes Agées Quid" study. We demonstrate with simulations that the method can recover long-term disease trends from short-term observations. The method also estimates temporal ordering of individuals with respect to disease pathology, providing subject-specific prognostic estimates of the time until onset of symptoms. When the method is applied to ADNI data, the estimated growth curves are in general agreement with prevailing theories of the Alzheimer's disease cascade. Other data sets with common outcome measures can be combined using the proposed algorithm. Software to fit the model and reproduce results with the statistical software R is available as the grace package. ADNI data can be downloaded from the Laboratory of NeuroImaging. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  7. Estimation of effective connectivity using multi-layer perceptron artificial neural network.

    PubMed

    Talebi, Nasibeh; Nasrabadi, Ali Motie; Mohammad-Rezazadeh, Iman

    2018-02-01

    Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN's ability to generate appropriate input-output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of " Causality coefficient " is defined based on the network structure, the connecting weights and the parameters of hidden layer activation function. Simulation analysis demonstrates that the method, called "CREANN" (Causal Relationship Estimation by Artificial Neural Network), can estimate time-invariant and time-varying effective connectivity in terms of MVAR coefficients. The method shows robustness with respect to noise level of data. Furthermore, the estimations are not significantly influenced by the model order (considered time-lag), and the different initial conditions (initial random weights and parameters of the network). CREANN is also applied to EEG data collected during a memory recognition task. The results implicate that it can show changes in the information flow between brain regions, involving in the episodic memory retrieval process. These convincing results emphasize that CREANN can be used as an appropriate method to estimate the causal relationship among brain signals.

  8. "A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models"

    NASA Astrophysics Data System (ADS)

    Briseño, Jessica; Herrera, Graciela S.

    2010-05-01

    Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one of the variables is used as the prior space-time estimate for the Kalman filter, and the space-time cross-covariance matrix of h-ln K-C as the prior estimate-error covariance-matrix. The synthetic example has a modeling area of 700 x 700 square meters; a triangular mesh model with 702 nodes and 1306 elements is used. A pumping well located in the central part of the study area is considered. For the contaminant transport model, a contaminant source area is present in the western part of the study area. The estimation points for hydraulic conductivity, hydraulic head and contaminant concentrations are located on a submesh of the model mesh (same location for h, ln K and c), composed by 48 nodes spread throughout the study area, with an approximately separation of 90 meters between nodes. The results analysis was done through the mean error, root mean square error, initial and final estimation maps of h, ln K and C at each time, and the initial and final variance maps of h, ln K and C. To obtain model convergence, 3000 realizations of ln K were required using SGSim, and only 1000 with LHC. The results show that for both alternatives, the Kalman filter estimates for h, ln K and C using h and C data, have errors which magnitudes decrease as data is added. HERRERA, G. S.(1998), Cost Effective Groundwater Quality Sampling Network Design. Ph. D. thesis, University of Vermont, Burlington, Vermont, 172 pp. HERRERA G., GUARNACCIA J., PINDER G. Y SIMUTA R.(2001),"Diseño de redes de monitoreo de la calidad del agua subterránea eficientes", Proceedings of the 2001 International Symposium on Environmental Hydraulics, Arizona, U.S.A. HERRERA G. S. and PINDER G.F. (2005), Space-time optimization of groundwater quality sampling networks Water Resour. Res., Vol. 41, No. 12, W12407, 10.1029/2004WR003626.

  9. Soil hydraulic properties estimate based on numerical analysis of disc infiltrometer three-dimensional infiltration curve

    NASA Astrophysics Data System (ADS)

    Latorre, Borja; Peña-Sancho, Carolina; Angulo-Jaramillo, Rafaël; Moret-Fernández, David

    2015-04-01

    Measurement of soil hydraulic properties is of paramount importance in fields such as agronomy, hydrology or soil science. Fundamented on the analysis of the Haverkamp et al. (1994) model, the aim of this paper is to explain a technique to estimate the soil hydraulic properties (sorptivity, S, and hydraulic conductivity, K) from the full-time cumulative infiltration curves. The method (NSH) was validated by means of 12 synthetic infiltration curves generated with HYDRUS-3D from known soil hydraulic properties. The K values used to simulate the synthetic curves were compared to those estimated with the proposed method. A procedure to identify and remove the effect of the contact sand layer on the cumulative infiltration curve was also developed. A sensitivity analysis was performed using the water level measurement as uncertainty source. Finally, the procedure was evaluated using different infiltration times and data noise. Since a good correlation between the K used in HYDRUS-3D to model the infiltration curves and those estimated by the NSH method was obtained, (R2 =0.98), it can be concluded that this technique is robust enough to estimate the soil hydraulic conductivity from complete infiltration curves. The numerical procedure to detect and remove the influence of the contact sand layer on the K and S estimates seemed to be robust and efficient. An effect of the curve infiltration noise on the K estimate was observed, which uncertainty increased with increasing noise. Finally, the results showed that infiltration time was an important factor to estimate K. Lower values of K or smaller uncertainty needed longer infiltration times.

  10. Empirical Bayes Estimation of Coalescence Times from Nucleotide Sequence Data.

    PubMed

    King, Leandra; Wakeley, John

    2016-09-01

    We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate. Copyright © 2016 by the Genetics Society of America.

  11. Water Residence Time estimation by 1D deconvolution in the form of a l2 -regularized inverse problem with smoothness, positivity and causality constraints

    NASA Astrophysics Data System (ADS)

    Meresescu, Alina G.; Kowalski, Matthieu; Schmidt, Frédéric; Landais, François

    2018-06-01

    The Water Residence Time distribution is the equivalent of the impulse response of a linear system allowing the propagation of water through a medium, e.g. the propagation of rain water from the top of the mountain towards the aquifers. We consider the output aquifer levels as the convolution between the input rain levels and the Water Residence Time, starting with an initial aquifer base level. The estimation of Water Residence Time is important for a better understanding of hydro-bio-geochemical processes and mixing properties of wetlands used as filters in ecological applications, as well as protecting fresh water sources for wells from pollutants. Common methods of estimating the Water Residence Time focus on cross-correlation, parameter fitting and non-parametric deconvolution methods. Here we propose a 1D full-deconvolution, regularized, non-parametric inverse problem algorithm that enforces smoothness and uses constraints of causality and positivity to estimate the Water Residence Time curve. Compared to Bayesian non-parametric deconvolution approaches, it has a fast runtime per test case; compared to the popular and fast cross-correlation method, it produces a more precise Water Residence Time curve even in the case of noisy measurements. The algorithm needs only one regularization parameter to balance between smoothness of the Water Residence Time and accuracy of the reconstruction. We propose an approach on how to automatically find a suitable value of the regularization parameter from the input data only. Tests on real data illustrate the potential of this method to analyze hydrological datasets.

  12. Developing accurate survey methods for estimating population sizes and trends of the critically endangered Nihoa Millerbird and Nihoa Finch.

    USGS Publications Warehouse

    Gorresen, P. Marcos; Camp, Richard J.; Brinck, Kevin W.; Farmer, Chris

    2012-01-01

    Point-transect surveys indicated that millerbirds were more abundant than shown by the striptransect method, and were estimated at 802 birds in 2010 (95%CI = 652 – 964) and 704 birds in 2011 (95%CI = 579 – 837). Point-transect surveys yielded population estimates with improved precision which will permit trends to be detected in shorter time periods and with greater statistical power than is available from strip-transect survey methods. Mean finch population estimates and associated uncertainty were not markedly different among the three survey methods, but the performance of models used to estimate density and population size are expected to improve as the data from additional surveys are incorporated. Using the pointtransect survey, the mean finch population size was estimated at 2,917 birds in 2010 (95%CI = 2,037 – 3,965) and 2,461 birds in 2011 (95%CI = 1,682 – 3,348). Preliminary testing of the line-transect method in 2011 showed that it would not generate sufficient detections to effectively model bird density, and consequently, relatively precise population size estimates. Both species were fairly evenly distributed across Nihoa and appear to occur in all or nearly all available habitat. The time expended and area traversed by observers was similar among survey methods; however, point-transect surveys do not require that observers walk a straight transect line, thereby allowing them to avoid culturally or biologically sensitive areas and minimize the adverse effects of recurrent travel to any particular area. In general, pointtransect surveys detect more birds than strip-survey methods, thereby improving precision and resulting population size and trend estimation. The method is also better suited for the steep and uneven terrain of Nihoa

  13. Corrected score estimation in the proportional hazards model with misclassified discrete covariates

    PubMed Central

    Zucker, David M.; Spiegelman, Donna

    2013-01-01

    SUMMARY We consider Cox proportional hazards regression when the covariate vector includes error-prone discrete covariates along with error-free covariates, which may be discrete or continuous. The misclassification in the discrete error-prone covariates is allowed to be of any specified form. Building on the work of Nakamura and his colleagues, we present a corrected score method for this setting. The method can handle all three major study designs (internal validation design, external validation design, and replicate measures design), both functional and structural error models, and time-dependent covariates satisfying a certain ‘localized error’ condition. We derive the asymptotic properties of the method and indicate how to adjust the covariance matrix of the regression coefficient estimates to account for estimation of the misclassification matrix. We present the results of a finite-sample simulation study under Weibull survival with a single binary covariate having known misclassification rates. The performance of the method described here was similar to that of related methods we have examined in previous works. Specifically, our new estimator performed as well as or, in a few cases, better than the full Weibull maximum likelihood estimator. We also present simulation results for our method for the case where the misclassification probabilities are estimated from an external replicate measures study. Our method generally performed well in these simulations. The new estimator has a broader range of applicability than many other estimators proposed in the literature, including those described in our own earlier work, in that it can handle time-dependent covariates with an arbitrary misclassification structure. We illustrate the method on data from a study of the relationship between dietary calcium intake and distal colon cancer. PMID:18219700

  14. Practical considerations for estimating clinical trial accrual periods: application to a multi-center effectiveness study

    PubMed Central

    Carter, Rickey E; Sonne, Susan C; Brady, Kathleen T

    2005-01-01

    Background Adequate participant recruitment is vital to the conduct of a clinical trial. Projected recruitment rates are often over-estimated, and the time to recruit the target population (accrual period) is often under-estimated. Methods This report illustrates three approaches to estimating the accrual period and applies the methods to a multi-center, randomized, placebo controlled trial undergoing development. Results Incorporating known sources of accrual variation can yield a more justified estimate of the accrual period. Simulation studies can be incorporated into a clinical trial's planning phase to provide estimates for key accrual summaries including the mean and standard deviation of the accrual period. Conclusion The accrual period of a clinical trial should be carefully considered, and the allocation of sufficient time for participant recruitment is a fundamental aspect of planning a clinical trial. PMID:15796782

  15. Mutual information estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    For the automated, objective and joint analysis of time series, similarity measures are crucial. Used in the analysis of climate records, they allow for a complimentary, unbiased view onto sparse datasets. The irregular sampling of many of these time series, however, makes it necessary to either perform signal reconstruction (e.g. interpolation) or to develop and use adapted measures. Standard linear interpolation comes with an inevitable loss of information and bias effects. We have recently developed a Gaussian kernel-based correlation algorithm with which the interpolation error can be substantially lowered, but this would not work should the functional relationship in a bivariate setting be non-linear. We therefore propose an algorithm to estimate lagged auto and cross mutual information from irregularly sampled time series. We have extended the standard and adaptive binning histogram estimators and use Gaussian distributed weights in the estimation of the (joint) probabilities. To test our method we have simulated linear and nonlinear auto-regressive processes with Gamma-distributed inter-sampling intervals. We have then performed a sensitivity analysis for the estimation of actual coupling length, the lag of coupling and the decorrelation time in the synthetic time series and contrast our results to the performance of a signal reconstruction scheme. Finally we applied our estimator to speleothem records. We compare the estimated memory (or decorrelation time) to that from a least-squares estimator based on fitting an auto-regressive process of order 1. The calculated (cross) mutual information results are compared for the different estimators (standard or adaptive binning) and contrasted with results from signal reconstruction. We find that the kernel-based estimator has a significantly lower root mean square error and less systematic sampling bias than the interpolation-based method. It is possible that these encouraging results could be further improved by using non-histogram mutual information estimators, like k-Nearest Neighbor or Kernel-Density estimators, but for short (<1000 points) and irregularly sampled datasets the proposed algorithm is already a great improvement.

  16. Regression analysis of clustered failure time data with informative cluster size under the additive transformation models.

    PubMed

    Chen, Ling; Feng, Yanqin; Sun, Jianguo

    2017-10-01

    This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.

  17. A new approach for continuous estimation of baseflow using discrete water quality data: Method description and comparison with baseflow estimates from two existing approaches

    USGS Publications Warehouse

    Miller, Matthew P.; Johnson, Henry M.; Susong, David D.; Wolock, David M.

    2015-01-01

    Understanding how watershed characteristics and climate influence the baseflow component of stream discharge is a topic of interest to both the scientific and water management communities. Therefore, the development of baseflow estimation methods is a topic of active research. Previous studies have demonstrated that graphical hydrograph separation (GHS) and conductivity mass balance (CMB) methods can be applied to stream discharge data to estimate daily baseflow. While CMB is generally considered to be a more objective approach than GHS, its application across broad spatial scales is limited by a lack of high frequency specific conductance (SC) data. We propose a new method that uses discrete SC data, which are widely available, to estimate baseflow at a daily time step using the CMB method. The proposed approach involves the development of regression models that relate discrete SC concentrations to stream discharge and time. Regression-derived CMB baseflow estimates were more similar to baseflow estimates obtained using a CMB approach with measured high frequency SC data than were the GHS baseflow estimates at twelve snowmelt dominated streams and rivers. There was a near perfect fit between the regression-derived and measured CMB baseflow estimates at sites where the regression models were able to accurately predict daily SC concentrations. We propose that the regression-derived approach could be applied to estimate baseflow at large numbers of sites, thereby enabling future investigations of watershed and climatic characteristics that influence the baseflow component of stream discharge across large spatial scales.

  18. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.

    PubMed

    Frick, Eric; Rahmatalla, Salam

    2018-04-04

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.

  19. On Correlated-noise Analyses Applied to Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Loredo, Thomas J.; Lust, Nate B.; Blecic, Jasmina; Stemm, Madison

    2017-01-01

    Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here, we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging’s rms-versus-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect when retrieving the eclipse depth from Spitzer data sets, these methods covered the true (injected) depth within the 68% credible region in only ˜45%-65% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo (MC3). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. MC3 is a Python/C code, available at https://github.com/pcubillos/MCcubed.

  20. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  1. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    PubMed Central

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  2. Incorporating availability for detection in estimates of bird abundance

    USGS Publications Warehouse

    Diefenbach, D.R.; Marshall, M.R.; Mattice, J.A.; Brauning, D.W.

    2007-01-01

    Several bird-survey methods have been proposed that provide an estimated detection probability so that bird-count statistics can be used to estimate bird abundance. However, some of these estimators adjust counts of birds observed by the probability that a bird is detected and assume that all birds are available to be detected at the time of the survey. We marked male Henslow's Sparrows (Ammodramus henslowii) and Grasshopper Sparrows (A. savannarum) and monitored their behavior during May-July 2002 and 2003 to estimate the proportion of time they were available for detection. We found that the availability of Henslow's Sparrows declined in late June to <10% for 5- or 10-min point counts when a male had to sing and be visible to the observer; but during 20 May-19 June, males were available for detection 39.1% (SD = 27.3) of the time for 5-min point counts and 43.9% (SD = 28.9) of the time for 10-min point counts (n = 54). We detected no temporal changes in availability for Grasshopper Sparrows, but estimated availability to be much lower for 5-min point counts (10.3%, SD = 12.2) than for 10-min point counts (19.2%, SD = 22.3) when males had to be visible and sing during the sampling period (n = 80). For distance sampling, we estimated the availability of Henslow's Sparrows to be 44.2% (SD = 29.0) and the availability of Grasshopper Sparrows to be 20.6% (SD = 23.5). We show how our estimates of availability can be incorporated in the abundance and variance estimators for distance sampling and modify the abundance and variance estimators for the double-observer method. Methods that directly estimate availability from bird counts but also incorporate detection probabilities need further development and will be important for obtaining unbiased estimates of abundance for these species.

  3. On-Board Real-Time State and Fault Identification for Rovers

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    2000-01-01

    For extended autonomous operation, rovers must identify potential faults to determine whether its execution needs to be halted or not. At the same time, rovers present particular challenges for state estimation techniques: they are subject to environmental influences that affect senior readings during normal and anomalous operation, and the sensors fluctuate rapidly both because of noise and because of the dynamics of the rover's interaction with its environment. This paper presents MAKSI, an on-board method for state estimation and fault diagnosis that is particularly appropriate for rovers. The method is based on a combination of continuous state estimation, wing Kalman filters, and discrete state estimation, wing a Markov-model representation.

  4. Network Reconstruction From High-Dimensional Ordinary Differential Equations.

    PubMed

    Chen, Shizhe; Shojaie, Ali; Witten, Daniela M

    2017-01-01

    We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online.

  5. A comparison of time dependent Cox regression, pooled logistic regression and cross sectional pooling with simulations and an application to the Framingham Heart Study.

    PubMed

    Ngwa, Julius S; Cabral, Howard J; Cheng, Debbie M; Pencina, Michael J; Gagnon, David R; LaValley, Michael P; Cupples, L Adrienne

    2016-11-03

    Typical survival studies follow individuals to an event and measure explanatory variables for that event, sometimes repeatedly over the course of follow up. The Cox regression model has been used widely in the analyses of time to diagnosis or death from disease. The associations between the survival outcome and time dependent measures may be biased unless they are modeled appropriately. In this paper we explore the Time Dependent Cox Regression Model (TDCM), which quantifies the effect of repeated measures of covariates in the analysis of time to event data. This model is commonly used in biomedical research but sometimes does not explicitly adjust for the times at which time dependent explanatory variables are measured. This approach can yield different estimates of association compared to a model that adjusts for these times. In order to address the question of how different these estimates are from a statistical perspective, we compare the TDCM to Pooled Logistic Regression (PLR) and Cross Sectional Pooling (CSP), considering models that adjust and do not adjust for time in PLR and CSP. In a series of simulations we found that time adjusted CSP provided identical results to the TDCM while the PLR showed larger parameter estimates compared to the time adjusted CSP and the TDCM in scenarios with high event rates. We also observed upwardly biased estimates in the unadjusted CSP and unadjusted PLR methods. The time adjusted PLR had a positive bias in the time dependent Age effect with reduced bias when the event rate is low. The PLR methods showed a negative bias in the Sex effect, a subject level covariate, when compared to the other methods. The Cox models yielded reliable estimates for the Sex effect in all scenarios considered. We conclude that survival analyses that explicitly account in the statistical model for the times at which time dependent covariates are measured provide more reliable estimates compared to unadjusted analyses. We present results from the Framingham Heart Study in which lipid measurements and myocardial infarction data events were collected over a period of 26 years.

  6. Measuring food intake with digital photography.

    PubMed

    Martin, C K; Nicklas, T; Gunturk, B; Correa, J B; Allen, H R; Champagne, C

    2014-01-01

    The digital photography of foods method accurately estimates the food intake of adults and children in cafeterias. When using this method, images of food selection and leftovers are quickly captured in the cafeteria. These images are later compared with images of 'standard' portions of food using computer software. The amount of food selected and discarded is estimated based upon this comparison, and the application automatically calculates energy and nutrient intake. In the present review, we describe this method, as well as a related method called the Remote Food Photography Method (RFPM), which relies on smartphones to estimate food intake in near real-time in free-living conditions. When using the RFPM, participants capture images of food selection and leftovers using a smartphone and these images are wirelessly transmitted in near real-time to a server for analysis. Because data are transferred and analysed in near real-time, the RFPM provides a platform for participants to quickly receive feedback about their food intake behaviour and to receive dietary recommendations for achieving weight loss and health promotion goals. The reliability and validity of measuring food intake with the RFPM in adults and children is also reviewed. In sum, the body of research reviewed demonstrates that digital imaging accurately estimates food intake in many environments and it has many advantages over other methods, including reduced participant burden, elimination of the need for participants to estimate portion size, and the incorporation of computer automation to improve the accuracy, efficiency and cost-effectiveness of the method. © 2013 The British Dietetic Association Ltd.

  7. Analysing malaria drug trials on a per-individual or per-clone basis: a comparison of methods.

    PubMed

    Jaki, Thomas; Parry, Alice; Winter, Katherine; Hastings, Ian

    2013-07-30

    There are a variety of methods used to estimate the effectiveness of antimalarial drugs in clinical trials, invariably on a per-person basis. A person, however, may have more than one malaria infection present at the time of treatment. We evaluate currently used methods for analysing malaria trials on a per-individual basis and introduce a novel method to estimate the cure rate on a per-infection (clone) basis. We used simulated and real data to highlight the differences of the various methods. We give special attention to classifying outcomes as cured, recrudescent (infections that never fully cleared) or ambiguous on the basis of genetic markers at three loci. To estimate cure rates on a per-clone basis, we used the genetic information within an individual before treatment to determine the number of clones present. We used the genetic information obtained at the time of treatment failure to classify clones as recrudescence or new infections. On the per-individual level, we find that the most accurate methods of classification label an individual as newly infected if all alleles are different at the beginning and at the time of failure and as a recrudescence if all or some alleles were the same. The most appropriate analysis method is survival analysis or alternatively for complete data/per-protocol analysis a proportion estimate that treats new infections as successes. We show that the analysis of drug effectiveness on a per-clone basis estimates the cure rate accurately and allows more detailed evaluation of the performance of the treatment. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    NASA Astrophysics Data System (ADS)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  9. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  10. Talker Localization Based on Interference between Transmitted and Reflected Audible Sound

    NASA Astrophysics Data System (ADS)

    Nakayama, Masato; Nakasako, Noboru; Shinohara, Toshihiro; Uebo, Tetsuji

    In many engineering fields, distance to targets is very important. General distance measurement method uses a time delay between transmitted and reflected waves, but it is difficult to estimate the short distance. On the other hand, the method using phase interference to measure the short distance has been known in the field of microwave radar. Therefore, we have proposed the distance estimation method based on interference between transmitted and reflected audible sound, which can measure the distance between microphone and target with one microphone and one loudspeaker. In this paper, we propose talker localization method based on distance estimation using phase interference. We expand the distance estimation method using phase interference into two microphones (microphone array) in order to estimate talker position. The proposed method can estimate talker position by measuring the distance and direction between target and microphone array. In addition, talker's speech is regarded as a noise in the proposed method. Therefore, we also propose combination of the proposed method and CSP (Cross-power Spectrum Phase analysis) method which is one of the DOA (Direction Of Arrival) estimation methods. We evaluated the performance of talker localization in real environments. The experimental result shows the effectiveness of the proposed method.

  11. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  12. Cost estimators for construction of forest roads in the central Appalachians

    Treesearch

    Deborah, A. Layton; Chris O. LeDoux; Curt C. Hassler; Curt C. Hassler

    1992-01-01

    Regression equations were developed for estimating the total cost of road construction in the central Appalachian region. Estimators include methods for predicting total costs for roads constructed using hourly rental methods and roads built on a total-job bid basis. Results show that total-job bid roads cost up to five times as much as roads built than when equipment...

  13. Simultaneous unbiased estimates of multiple downed wood attributes in perpendicular distance sampling

    Treesearch

    Mark J. Ducey; Jeffrey H. Gove; Harry T. Valentine

    2008-01-01

    Perpendicular distance sampling (PDS) is a fast probability-proportional-to-size method for inventory of downed wood. However, previous development of PDS had limited the method to estimating only one variable (such as volume per hectare, or surface area per hectare) at a time. Here, we develop a general design-unbiased estimator for PDS. We then show how that...

  14. Boosted Multivariate Trees for Longitudinal Data

    PubMed Central

    Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant

    2017-01-01

    Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866

  15. Implementation of Kalman filter algorithm on models reduced using singular pertubation approximation method and its application to measurement of water level

    NASA Astrophysics Data System (ADS)

    Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky

    2018-03-01

    The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.

  16. Estimating short-run and long-run interaction mechanisms in interictal state.

    PubMed

    Ozkaya, Ata; Korürek, Mehmet

    2010-04-01

    We address the issue of analyzing electroencephalogram (EEG) from seizure patients in order to test, model and determine the statistical properties that distinguish between EEG states (interictal, pre-ictal, ictal) by introducing a new class of time series analysis methods. In the present study: firstly, we employ statistical methods to determine the non-stationary behavior of focal interictal epileptiform series within very short time intervals; secondly, for such intervals that are deemed non-stationary we suggest the concept of Autoregressive Integrated Moving Average (ARIMA) process modelling, well known in time series analysis. We finally address the queries of causal relationships between epileptic states and between brain areas during epileptiform activity. We estimate the interaction between different EEG series (channels) in short time intervals by performing Granger-causality analysis and also estimate such interaction in long time intervals by employing Cointegration analysis, both analysis methods are well-known in econometrics. Here we find: first, that the causal relationship between neuronal assemblies can be identified according to the duration and the direction of their possible mutual influences; second, that although the estimated bidirectional causality in short time intervals yields that the neuronal ensembles positively affect each other, in long time intervals neither of them is affected (increasing amplitudes) from this relationship. Moreover, Cointegration analysis of the EEG series enables us to identify whether there is a causal link from the interictal state to ictal state.

  17. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    PubMed

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2017-11-01

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  18. Estimation of dynamic time activity curves from dynamic cardiac SPECT imaging

    NASA Astrophysics Data System (ADS)

    Hossain, J.; Du, Y.; Links, J.; Rahmim, A.; Karakatsanis, N.; Akhbardeh, A.; Lyons, J.; Frey, E. C.

    2015-04-01

    Whole-heart coronary flow reserve (CFR) may be useful as an early predictor of cardiovascular disease or heart failure. Here we propose a simple method to extract the time-activity curve, an essential component needed for estimating the CFR, for a small number of compartments in the body, such as normal myocardium, blood pool, and ischemic myocardial regions, from SPECT data acquired with conventional cameras using slow rotation. We evaluated the method using a realistic simulation of 99mTc-teboroxime imaging. Uptake of 99mTc-teboroxime based on data from the literature were modeled. Data were simulated using the anatomically-realistic 3D NCAT phantom and an analytic projection code that realistically models attenuation, scatter, and the collimator-detector response. The proposed method was then applied to estimate time activity curves (TACs) for a set of 3D volumes of interest (VOIs) directly from the projections. We evaluated the accuracy and precision of estimated TACs and studied the effects of the presence of perfusion defects that were and were not modeled in the estimation procedure. The method produced good estimates of the myocardial and blood-pool TACS organ VOIs, with average weighted absolute biases of less than 5% for the myocardium and 10% for the blood pool when the true organ boundaries were known and the activity distributions in the organs were uniform. In the presence of unknown perfusion defects, the myocardial TAC was still estimated well (average weighted absolute bias <10%) when the total reduction in myocardial uptake (product of defect extent and severity) was ≤5%. This indicates that the method was robust to modest model mismatch such as the presence of moderate perfusion defects and uptake nonuniformities. With larger defects where the defect VOI was included in the estimation procedure, the estimated normal myocardial and defect TACs were accurate (average weighted absolute bias ≈5% for a defect with 25% extent and 100% severity).

  19. Estimation of frequency offset in mobile satellite modems

    NASA Technical Reports Server (NTRS)

    Cowley, W. G.; Rice, M.; Mclean, A. N.

    1993-01-01

    In mobilesat applications, frequency offset on the received signal must be estimated and removed prior to further modem processing. A straightforward method of estimating the carrier frequency offset is to raise the received MPSK signal to the M-th power, and then estimate the location of the peak spectral component. An analysis of the lower signal to noise threshold of this method is carried out for BPSK signals. Predicted thresholds are compared to simulation results. It is shown how the method can be extended to pi/M MPSK signals. A real-time implementation of frequency offset estimation for the Australian mobile satellite system is described.

  20. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  1. Shift level analysis of cable yarder availability, utilization, and productive time

    Treesearch

    James R. Sherar; Chris B. LeDoux

    1989-01-01

    Decision makers, loggers, managers, and planners need to understand and have methods for estimating utilization and productive time of cable logging systems. In making an accurate prediction of how much area and volume a machine will log per unit time and the associated cable yarding costs, a reliable estimate of the availability, utilization, and productive time of...

  2. Estimating the timing of quantal releases during end-plate currents at the frog neuromuscular junction.

    PubMed Central

    Van der Kloot, W

    1988-01-01

    1. Following motor nerve stimulation there is a period of greatly enhanced quantal release, called the early release period or ERP (Barrett & Stevens, 1972b). Until now, measurements of the probability of quantal releases at different points in the ERP have come from experiments in which quantal output was greatly reduced, so that the time of release of individual quanta could be detected or so that the latency to the release of the first quantum could be measured. 2. A method has been developed to estimate the timing of quantal release during the ERP that can be used at much higher levels of quantal output. The assumption is made that each quantal release generates an end-plate current (EPC) that rises instantaneously and then decays exponentially. The peak amplitude of the quantal currents and the time constant for their decay are measured from miniature end-plate currents (MEPCs). Then a number of EPCs are averaged, and the times of release of the individual quanta during the ERP estimated by a simple mathematical method for deconvolution derived by Cohen, Van der Kloot & Attwell (1981). 3. The deconvolution method was tested using data from preparations in high-Mg2+ low-Ca2+ solution. One test was to reconstitute the averaged EPCs from the estimated times of quantal release and the quantal currents, by using Fourier convolution. The reconstructions fit well to the originals. 4. Reconstructions were also made from averaged MEPCs which do not rise instantaneously and the estimated times of quantal release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2466987

  3. Generation and Validation of Spatial Distribution of Hourly Wind Speed Time-Series using Machine Learning

    NASA Astrophysics Data System (ADS)

    Veronesi, F.; Grassi, S.

    2016-09-01

    Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.

  4. Using groundwater levels to estimate recharge

    USGS Publications Warehouse

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  5. A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.

    2006-06-01

    Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.

  6. Robust estimation of pulse wave transit time using group delay.

    PubMed

    Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C

    2014-03-01

    To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.

  7. Novel applications of the temporal kernel method: Historical and future radiative forcing

    NASA Astrophysics Data System (ADS)

    Portmann, R. W.; Larson, E.; Solomon, S.; Murphy, D. M.

    2017-12-01

    We present a new estimate of the historical radiative forcing derived from the observed global mean surface temperature and a model derived kernel function. Current estimates of historical radiative forcing are usually derived from climate models. Despite large variability in these models, the multi-model mean tends to do a reasonable job of representing the Earth system and climate. One method of diagnosing the transient radiative forcing in these models requires model output of top of the atmosphere radiative imbalance and global mean temperature anomaly. It is difficult to apply this method to historical observations due to the lack of TOA radiative measurements before CERES. We apply the temporal kernel method (TKM) of calculating radiative forcing to the historical global mean temperature anomaly. This novel approach is compared against the current regression based methods using model outputs and shown to produce consistent forcing estimates giving confidence in the forcing derived from the historical temperature record. The derived TKM radiative forcing provides an estimate of the forcing time series that the average climate model needs to produce the observed temperature record. This forcing time series is found to be in good overall agreement with previous estimates but includes significant differences that will be discussed. The historical anthropogenic aerosol forcing is estimated as a residual from the TKM and found to be consistent with earlier moderate forcing estimates. In addition, this method is applied to future temperature projections to estimate the radiative forcing required to achieve those temperature goals, such as those set in the Paris agreement.

  8. Integrating Eddy Covariance, Penman-Monteith and METRIC based Evapotranspiration estimates to generate high resolution space-time ET over the Brazos River Basin

    NASA Astrophysics Data System (ADS)

    Mbabazi, D.; Mohanty, B.; Gaur, N.

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy balance and accounts for 60 -70% of precipitation losses. However, accurate estimates of ET are difficult to quantify at varying spatial and temporal scales. Eddy covariance methods estimate ET at high temporal resolutions but without capturing the spatial variation in ET within its footprint. On the other hand, remote sensing methods using Landsat imagery provide ET with high spatial resolution but low temporal resolution (16 days). In this study, we used both eddy covariance and remote sensing methods to generate high space-time resolution ET. Daily, monthly and seasonal ET estimates were obtained using the eddy covariance (EC) method, Penman-Monteith (PM) and Mapping Evapotranspiration with Internalized Calibration (METRIC) models to determine cotton and native prairie ET dynamics in the Brazos river basin characterized by varying hydro-climatic and geological gradients. Daily estimates of spatially distributed ET (30 m resolution) were generated using spatial autocorrelation and temporal interpolations between the EC flux variable footprints and METRIC ET for the 2016 and 2017 growing seasons. A comparison of the 2016 and 2017 preliminary daily ET estimates showed similar ET dynamics/trends among the EC, PM and METRIC methods, and 5-20% differences in seasonal ET estimates. This study will improve the spatial estimates of EC ET and temporal resolution of satellite derived ET thus providing better ET data for water use management.

  9. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    USGS Publications Warehouse

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  10. Further development of the attitude difference method for estimating deflections of the vertical in real time

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Zhou, Zebo; Li, Yong; Rizos, Chris; Wang, Xingshu

    2016-07-01

    An improvement of the attitude difference method (ADM) to estimate deflections of the vertical (DOV) in real time is described in this paper. The ADM without offline processing estimates the DOV with a limited accuracy due to the response delay. The proposed model selection-based self-adaptive delay feedback (SDF) method takes the results of the ADM as the a priori information, then uses fitting and extrapolation to estimate the DOV at the current epoch. The active region selection factor F th is used to take full advantage of the Earth model EGM2008 and the SDF with different DOV exhibitions. The factors which affect the DOV estimation accuracy are analyzed and modeled. An external observation which is specified by the velocity difference between the global navigation satellite system (GNSS) and the inertial navigation system (INS) with DOV compensated is used to select the optimal model. The response delay induced by the weak observability of an integrated INS/GNSS to the violent DOV disturbances in the ADM is compensated. The DOV estimation accuracy of the SDF method is improved by approximately 40% and 50% respectively compared to that of the EGM2008 and the ADM. With an increase in GNSS accuracy, the DOV estimation accuracy could improve further.

  11. An M-estimator for reduced-rank system identification.

    PubMed

    Chen, Shaojie; Liu, Kai; Yang, Yuguang; Xu, Yuting; Lee, Seonjoo; Lindquist, Martin; Caffo, Brian S; Vogelstein, Joshua T

    2017-01-15

    High-dimensional time-series data from a wide variety of domains, such as neuroscience, are being generated every day. Fitting statistical models to such data, to enable parameter estimation and time-series prediction, is an important computational primitive. Existing methods, however, are unable to cope with the high-dimensional nature of these data, due to both computational and statistical reasons. We mitigate both kinds of issues by proposing an M-estimator for Reduced-rank System IDentification ( MR. SID). A combination of low-rank approximations, ℓ 1 and ℓ 2 penalties, and some numerical linear algebra tricks, yields an estimator that is computationally efficient and numerically stable. Simulations and real data examples demonstrate the usefulness of this approach in a variety of problems. In particular, we demonstrate that MR. SID can accurately estimate spatial filters, connectivity graphs, and time-courses from native resolution functional magnetic resonance imaging data. MR. SID therefore enables big time-series data to be analyzed using standard methods, readying the field for further generalizations including non-linear and non-Gaussian state-space models.

  12. An M-estimator for reduced-rank system identification

    PubMed Central

    Chen, Shaojie; Liu, Kai; Yang, Yuguang; Xu, Yuting; Lee, Seonjoo; Lindquist, Martin; Caffo, Brian S.; Vogelstein, Joshua T.

    2018-01-01

    High-dimensional time-series data from a wide variety of domains, such as neuroscience, are being generated every day. Fitting statistical models to such data, to enable parameter estimation and time-series prediction, is an important computational primitive. Existing methods, however, are unable to cope with the high-dimensional nature of these data, due to both computational and statistical reasons. We mitigate both kinds of issues by proposing an M-estimator for Reduced-rank System IDentification ( MR. SID). A combination of low-rank approximations, ℓ1 and ℓ2 penalties, and some numerical linear algebra tricks, yields an estimator that is computationally efficient and numerically stable. Simulations and real data examples demonstrate the usefulness of this approach in a variety of problems. In particular, we demonstrate that MR. SID can accurately estimate spatial filters, connectivity graphs, and time-courses from native resolution functional magnetic resonance imaging data. MR. SID therefore enables big time-series data to be analyzed using standard methods, readying the field for further generalizations including non-linear and non-Gaussian state-space models. PMID:29391659

  13. Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings

    PubMed Central

    Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan

    2017-01-01

    Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474

  14. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.

    PubMed

    Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A

    2018-04-15

    For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Decadal variations in atmospheric water vapor time series estimated using GNSS, ERA-Interim, and synoptic data

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens

    2017-04-01

    Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.

  16. Estimation of scattering object characteristics for image reconstruction using a nonzero background.

    PubMed

    Jin, Jing; Astheimer, Jeffrey; Waag, Robert

    2010-06-01

    Two methods are described to estimate the boundary of a 2-D penetrable object and the average sound speed in the object. One method is for circular objects centered in the coordinate system of the scattering observation. This method uses an orthogonal function expansion for the scattering. The other method is for noncircular, essentially convex objects. This method uses cross correlation to obtain time differences that determine a family of parabolas whose envelope is the boundary of the object. A curve-fitting method and a phase-based method are described to estimate and correct the offset of an uncentered radial or elliptical object. A method based on the extinction theorem is described to estimate absorption in the object. The methods are applied to calculated scattering from a circular object with an offset and to measured scattering from an offset noncircular object. The results show that the estimated boundaries, sound speeds, and absorption slopes agree very well with independently measured or true values when the assumptions of the methods are reasonably satisfied.

  17. Analysis of mating system parameters and population structure in Douglas-fir using single-locus and multilocus methods

    Treesearch

    D. V. Shaw; R. W. Allard

    1981-01-01

    Two methods of estimating the proportion of self-fertilization as opposed to outcrossing in plant populations are described. The first method makes use of marker loci one at a time; the second method makes use of multiple marker loci simultaneously. Comparisons of the estimates of proportions of selfing and outcrossing obtained using the two methods are shown to yield...

  18. Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography.

    PubMed

    McGinitie, Teague M; Ebrahimi-Najafabadi, Heshmatollah; Harynuk, James J

    2014-01-17

    A new method for estimating the thermodynamic parameters of ΔH(T0), ΔS(T0), and ΔCP for use in thermodynamic modeling of GC×GC separations has been developed. The method is an alternative to the traditional isothermal separations required to fit a three-parameter thermodynamic model to retention data. Herein, a non-linear optimization technique is used to estimate the parameters from a series of temperature-programmed separations using the Nelder-Mead simplex algorithm. With this method, the time required to obtain estimates of thermodynamic parameters a series of analytes is significantly reduced. This new method allows for precise predictions of retention time with the average error being only 0.2s for 1D separations. Predictions for GC×GC separations were also in agreement with experimental measurements; having an average relative error of 0.37% for (1)tr and 2.1% for (2)tr. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  20. Stochastic modeling for time series InSAR: with emphasis on atmospheric effects

    NASA Astrophysics Data System (ADS)

    Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai

    2018-02-01

    Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.

  1. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  2. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng, E-mail: fwang@unu.edu; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft; Huisman, Jaco

    2013-11-15

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lackmore » of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.« less

  3. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.

  4. Determining the multi-scale hedge ratios of stock index futures using the lower partial moments method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Zhou, Haigang; Zhao, Shaoquan

    2017-01-01

    This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.

  5. An Evaluation of the Bouwer and Rice Method of Slug Test Analysis

    NASA Astrophysics Data System (ADS)

    Brown, David L.; Narasimhan, T. N.; Demir, Z.

    1995-05-01

    The method of Bouwer and Rice (1976) for analyzing slug test data is widely used to estimate hydraulic conductivity (K). Based on steady state flow assumptions, this method is specifically intended to be applicable to unconfined aquifers. Therefore it is of practical value to investigate the limits of accuracy of the K estimates obtained with this method. Accordingly, using a numerical model for transient flow, we evaluate the method from two perspectives. First, we apply the method to synthetic slug test data and study the error in estimated values of K. Second, we analyze the logical basis of the method. Parametric studies helped assess the role of the effective radius parameter, specific storage, screen length, and well radius on the estimated values of K. The difference between unconfined and confined systems was studied via conditions on the upper boundary of the flow domain. For the cases studied, the Bouwer and Rice analysis was found to give good estimates of K, with errors ranging from 10% to 100%. We found that the estimates of K were consistently superior to those obtained with Hvorslev's (1951) basic time lag method. In general, the Bouwer and Rice method tends to underestimate K, the greatest errors occurring in the presence of a damaged zone around the well or when the top of the screen is close to the water table. When the top of the screen is far removed from the upper boundary of the system, no difference is manifest between confined and unconfined conditions. It is reasonable to infer from the simulated results that when the screen is close to the upper boundary, the results of the Bouwer and Rice method agree more closely with a "confined" idealization than an "unconfined" idealization. In effect, this method treats the aquifer system as an equivalent radial flow permeameter with an effective radius, Re, which is a function of the flow geometry. Our transient simulations suggest that Re varies with time and specific storage. Thus the effective radius may be reasonably viewed as a time-averaged mean value. The fact that the method provides reasonable estimates of hydraulic conductivity suggests that the empirical, electric analog experiments of Bouwer and Rice have yielded shape factors that are better than the shape factors implicit in the Hvorslev method.

  6. Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.

    PubMed

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R

    2012-01-01

    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.

  7. rpsftm: An R Package for Rank Preserving Structural Failure Time Models

    PubMed Central

    Allison, Annabel; White, Ian R; Bond, Simon

    2018-01-01

    Treatment switching in a randomised controlled trial occurs when participants change from their randomised treatment to the other trial treatment during the study. Failure to account for treatment switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to biased estimates of treatment efficacy. The rank preserving structural failure time model (RPSFTM) is a method used to adjust for treatment switching in trials with survival outcomes. The RPSFTM is due to Robins and Tsiatis (1991) and has been developed by White et al. (1997, 1999). The method is randomisation based and uses only the randomised treatment group, observed event times, and treatment history in order to estimate a causal treatment effect. The treatment effect, ψ, is estimated by balancing counter-factual event times (that would be observed if no treatment were received) between treatment groups. G-estimation is used to find the value of ψ such that a test statistic Z(ψ) = 0. This is usually the test statistic used in the intention-to-treat analysis, for example, the log rank test statistic. We present an R package that implements the method of rpsftm. PMID:29564164

  8. rpsftm: An R Package for Rank Preserving Structural Failure Time Models.

    PubMed

    Allison, Annabel; White, Ian R; Bond, Simon

    2017-12-04

    Treatment switching in a randomised controlled trial occurs when participants change from their randomised treatment to the other trial treatment during the study. Failure to account for treatment switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to biased estimates of treatment efficacy. The rank preserving structural failure time model (RPSFTM) is a method used to adjust for treatment switching in trials with survival outcomes. The RPSFTM is due to Robins and Tsiatis (1991) and has been developed by White et al. (1997, 1999). The method is randomisation based and uses only the randomised treatment group, observed event times, and treatment history in order to estimate a causal treatment effect. The treatment effect, ψ , is estimated by balancing counter-factual event times (that would be observed if no treatment were received) between treatment groups. G-estimation is used to find the value of ψ such that a test statistic Z ( ψ ) = 0. This is usually the test statistic used in the intention-to-treat analysis, for example, the log rank test statistic. We present an R package that implements the method of rpsftm.

  9. Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference

    PubMed Central

    Karcher, Michael D.; Palacios, Julia A.; Bedford, Trevor; Suchard, Marc A.; Minin, Vladimir N.

    2016-01-01

    Phylodynamics seeks to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. One way to accomplish this task formulates an observed sequence data likelihood exploiting a coalescent model for the sampled individuals’ genealogy and then integrating over all possible genealogies via Monte Carlo or, less efficiently, by conditioning on one genealogy estimated from the sequence data. However, when analyzing sequences sampled serially through time, current methods implicitly assume either that sampling times are fixed deterministically by the data collection protocol or that their distribution does not depend on the size of the population. Through simulation, we first show that, when sampling times do probabilistically depend on effective population size, estimation methods may be systematically biased. To correct for this deficiency, we propose a new model that explicitly accounts for preferential sampling by modeling the sampling times as an inhomogeneous Poisson process dependent on effective population size. We demonstrate that in the presence of preferential sampling our new model not only reduces bias, but also improves estimation precision. Finally, we compare the performance of the currently used phylodynamic methods with our proposed model through clinically-relevant, seasonal human influenza examples. PMID:26938243

  10. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.

    PubMed

    Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F

    2000-05-01

    Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.

  11. A straightforward frequency-estimation technique for GPS carrier-phase time transfer.

    PubMed

    Hackman, Christine; Levine, Judah; Parker, Thomas E; Piester, Dirk; Becker, Jürgen

    2006-09-01

    Although Global Positioning System (GPS) carrier-phase time transfer (GPSCPTT) offers frequency stability approaching 10-15 at averaging times of 1 d, a discontinuity occurs in the time-transfer estimates between the end of one processing batch (1-3 d in length) and the beginning of the next. The average frequency over a multiday analysis period often has been computed by first estimating and removing these discontinuities, i.e., through concatenation. We present a new frequency-estimation technique in which frequencies are computed from the individual batches then averaged to obtain the mean frequency for a multiday period. This allows the frequency to be computed without the uncertainty associated with the removal of the discontinuities and requires fewer computational resources. The new technique was tested by comparing the fractional frequency-difference values it yields to those obtained using a GPSCPTT concatenation method and those obtained using two-way satellite time-and-frequency transfer (TWSTFT). The clocks studied were located in Braunschweig, Germany, and in Boulder, CO. The frequencies obtained from the GPSCPTT measurements using either method agreed with those obtained from TWSTFT at several parts in 1016. The frequency values obtained from the GPSCPTT data by use of the new method agreed with those obtained using the concatenation technique at 1-4 x 10(-16).

  12. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  13. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  14. Establish Effective Lower Bounds of Watershed Slope for Traditional Hydrologic Methods

    DOT National Transportation Integrated Search

    2012-06-01

    Equations to estimate timing parameters for a watershed contain watershed slope as a principal parameter and : estimates are usually inversely proportional to topographic slope. Hence as slope vanishes, the estimates approach : infinity. The research...

  15. Blind source separation and localization using microphone arrays

    NASA Astrophysics Data System (ADS)

    Sun, Longji

    The blind source separation and localization problem for audio signals is studied using microphone arrays. Pure delay mixtures of source signals typically encountered in outdoor environments are considered. Our proposed approach utilizes the subspace methods, including multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms, to estimate the directions of arrival (DOAs) of the sources from the collected mixtures. Since audio signals are generally considered broadband, the DOA estimates at frequencies with the large sum of squared amplitude values are combined to obtain the final DOA estimates. Using the estimated DOAs, the corresponding mixing and demixing matrices are computed, and the source signals are recovered using the inverse short time Fourier transform. Subspace methods take advantage of the spatial covariance matrix of the collected mixtures to achieve robustness to noise. While the subspace methods have been studied for localizing radio frequency signals, audio signals have their special properties. For instance, they are nonstationary, naturally broadband and analog. All of these make the separation and localization for the audio signals more challenging. Moreover, our algorithm is essentially equivalent to the beamforming technique, which suppresses the signals in unwanted directions and only recovers the signals in the estimated DOAs. Several crucial issues related to our algorithm and their solutions have been discussed, including source number estimation, spatial aliasing, artifact filtering, different ways of mixture generation, and source coordinate estimation using multiple arrays. Additionally, comprehensive simulations and experiments have been conducted to examine various aspects of the algorithm. Unlike the existing blind source separation and localization methods, which are generally time consuming, our algorithm needs signal mixtures of only a short duration and therefore supports real-time implementation.

  16. Tumor response estimation in radar-based microwave breast cancer detection.

    PubMed

    Kurrant, Douglas J; Fear, Elise C; Westwick, David T

    2008-12-01

    Radar-based microwave imaging techniques have been proposed for early stage breast cancer detection. A considerable challenge for the successful implementation of these techniques is the reduction of clutter, or components of the signal originating from objects other than the tumor. In particular, the reduction of clutter from the late-time scattered fields is required in order to detect small (subcentimeter diameter) tumors. In this paper, a method to estimate the tumor response contained in the late-time scattered fields is presented. The method uses a parametric function to model the tumor response. A maximum a posteriori estimation approach is used to evaluate the optimal values for the estimates of the parameters. A pattern classification technique is then used to validate the estimation. The ability of the algorithm to estimate a tumor response is demonstrated by using both experimental and simulated data obtained with a tissue sensing adaptive radar system.

  17. Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2016-01-01

    A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.

  18. Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario.

    PubMed

    Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao

    2016-11-22

    Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals' average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day's WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas.

  19. Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario

    PubMed Central

    Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao

    2016-01-01

    Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals’ average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day’s WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas. PMID:27879663

  20. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  1. Similarity recognition of online data curves based on dynamic spatial time warping for the estimation of lithium-ion battery capacity

    NASA Astrophysics Data System (ADS)

    Tao, Laifa; Lu, Chen; Noktehdan, Azadeh

    2015-10-01

    Battery capacity estimation is a significant recent challenge given the complex physical and chemical processes that occur within batteries and the restrictions on the accessibility of capacity degradation data. In this study, we describe an approach called dynamic spatial time warping, which is used to determine the similarities of two arbitrary curves. Unlike classical dynamic time warping methods, this approach can maintain the invariance of curve similarity to the rotations and translations of curves, which is vital in curve similarity search. Moreover, it utilizes the online charging or discharging data that are easily collected and do not require special assumptions. The accuracy of this approach is verified using NASA battery datasets. Results suggest that the proposed approach provides a highly accurate means of estimating battery capacity at less time cost than traditional dynamic time warping methods do for different individuals and under various operating conditions.

  2. A time and frequency synchronization method for CO-OFDM based on CMA equalizers

    NASA Astrophysics Data System (ADS)

    Ren, Kaixuan; Li, Xiang; Huang, Tianye; Cheng, Zhuo; Chen, Bingwei; Wu, Xu; Fu, Songnian; Ping, Perry Shum

    2018-06-01

    In this paper, an efficient time and frequency synchronization method based on a new training symbol structure is proposed for polarization division multiplexing (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The coarse timing synchronization is achieved by exploiting the correlation property of the first training symbol, and the fine timing synchronization is accomplished by using the time-domain symmetric conjugate of the second training symbol. Furthermore, based on these training symbols, a constant modulus algorithm (CMA) is proposed for carrier frequency offset (CFO) estimation. Theoretical analysis and simulation results indicate that the algorithm has the advantages of robustness to poor optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD). The frequency offset estimation range can achieve [ -Nsc/2 ΔfN , + Nsc/2 ΔfN ] GHz with the mean normalized estimation error below 12 × 10-3 even under the condition of OSNR as low as 10 dB.

  3. Real-time reflectometry measurement validation in H-mode regimes for plasma position control.

    PubMed

    Santos, J; Guimarais, L; Manso, M

    2010-10-01

    It has been shown that in H-mode regimes, reflectometry electron density profiles and an estimate for the density at the separatrix can be jointly used to track the separatrix within the precision required for plasma position control on ITER. We present a method to automatically remove, from the position estimation procedure, measurements performed during collapse and recovery phases of edge localized modes (ELMs). Based on the rejection mechanism, the method also produces an estimate confidence value to be fed to the position feedback controller. Preliminary results show that the method improves the real-time experimental separatrix tracking capabilities and has the potential to eliminate the need for an external online source of ELM event signaling during control feedback operation.

  4. Evaluation of statistical methods for quantifying fractal scaling in water-quality time series with irregular sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Harman, Ciaran J.; Kirchner, James W.

    2018-02-01

    River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1) fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2) the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling - in the form of spectral slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) - are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β = 0) to Brown noise (β = 2) and (2) their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb-Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods for a wide range of prescribed β values and gap distributions. The aliasing method, however, does not itself account for sampling irregularity, and this introduces some bias in the result. Nonetheless, the wavelet method is recommended for estimating β in irregular time series until improved methods are developed. Finally, all methods' performances depend strongly on the sampling irregularity, highlighting that the accuracy and precision of each method are data specific. Accurately quantifying the strength of fractal scaling in irregular water-quality time series remains an unresolved challenge for the hydrologic community and for other disciplines that must grapple with irregular sampling.

  5. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development

    USGS Publications Warehouse

    Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris

    2006-01-01

    We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.

  6. Accuracy of time-domain and frequency-domain methods used to characterize catchment transit time distributions

    NASA Astrophysics Data System (ADS)

    Godsey, S. E.; Kirchner, J. W.

    2008-12-01

    The mean residence time - the average time that it takes rainfall to reach the stream - is a basic parameter used to characterize catchment processes. Heterogeneities in these processes lead to a distribution of travel times around the mean residence time. By examining this travel time distribution, we can better predict catchment response to contamination events. A catchment system with shorter residence times or narrower distributions will respond quickly to contamination events, whereas systems with longer residence times or longer-tailed distributions will respond more slowly to those same contamination events. The travel time distribution of a catchment is typically inferred from time series of passive tracers (e.g., water isotopes or chloride) in precipitation and streamflow. Variations in the tracer concentration in streamflow are usually damped compared to those in precipitation, because precipitation inputs from different storms (with different tracer signatures) are mixed within the catchment. Mathematically, this mixing process is represented by the convolution of the travel time distribution and the precipitation tracer inputs to generate the stream tracer outputs. Because convolution in the time domain is equivalent to multiplication in the frequency domain, it is relatively straightforward to estimate the parameters of the travel time distribution in either domain. In the time domain, the parameters describing the travel time distribution are typically estimated by maximizing the goodness of fit between the modeled and measured tracer outputs. In the frequency domain, the travel time distribution parameters can be estimated by fitting a power-law curve to the ratio of precipitation spectral power to stream spectral power. Differences between the methods of parameter estimation in the time and frequency domain mean that these two methods may respond differently to variations in data quality, record length and sampling frequency. Here we evaluate how well these two methods of travel time parameter estimation respond to different sources of uncertainty and compare the methods to one another. We do this by generating synthetic tracer input time series of different lengths, and convolve these with specified travel-time distributions to generate synthetic output time series. We then sample both the input and output time series at various sampling intervals and corrupt the time series with realistic error structures. Using these 'corrupted' time series, we infer the apparent travel time distribution, and compare it to the known distribution that was used to generate the synthetic data in the first place. This analysis allows us to quantify how different record lengths, sampling intervals, and error structures in the tracer measurements affect the apparent mean residence time and the apparent shape of the travel time distribution.

  7. Time-of-flight PET time calibration using data consistency

    NASA Astrophysics Data System (ADS)

    Defrise, Michel; Rezaei, Ahmadreza; Nuyts, Johan

    2018-05-01

    This paper presents new data driven methods for the time of flight (TOF) calibration of positron emission tomography (PET) scanners. These methods are derived from the consistency condition for TOF PET, they can be applied to data measured with an arbitrary tracer distribution and are numerically efficient because they do not require a preliminary image reconstruction from the non-TOF data. Two-dimensional simulations are presented for one of the methods, which only involves the two first moments of the data with respect to the TOF variable. The numerical results show that this method estimates the detector timing offsets with errors that are larger than those obtained via an initial non-TOF reconstruction, but remain smaller than of the TOF resolution and thereby have a limited impact on the quantitative accuracy of the activity image estimated with standard maximum likelihood reconstruction algorithms.

  8. Real-Time Rotational Activity Detection in Atrial Fibrillation

    PubMed Central

    Ríos-Muñoz, Gonzalo R.; Arenal, Ángel; Artés-Rodríguez, Antonio

    2018-01-01

    Rotational activations, or spiral waves, are one of the proposed mechanisms for atrial fibrillation (AF) maintenance. We present a system for assessing the presence of rotational activity from intracardiac electrograms (EGMs). Our system is able to operate in real-time with multi-electrode catheters of different topologies in contact with the atrial wall, and it is based on new local activation time (LAT) estimation and rotational activity detection methods. The EGM LAT estimation method is based on the identification of the highest sustained negative slope of unipolar signals. The method is implemented as a linear filter whose output is interpolated on a regular grid to match any catheter topology. Its operation is illustrated on selected signals and compared to the classical Hilbert-Transform-based phase analysis. After the estimation of the LAT on the regular grid, the detection of rotational activity in the atrium is done by a novel method based on the optical flow of the wavefront dynamics, and a rotation pattern match. The methods have been validated using in silico and real AF signals. PMID:29593566

  9. Comparison of Time-to-First Event and Recurrent Event Methods in Randomized Clinical Trials.

    PubMed

    Claggett, Brian; Pocock, Stuart; Wei, L J; Pfeffer, Marc A; McMurray, John J V; Solomon, Scott D

    2018-03-27

    Background -Most Phase-3 trials feature time-to-first event endpoints for their primary and/or secondary analyses. In chronic diseases where a clinical event can occur more than once, recurrent-event methods have been proposed to more fully capture disease burden and have been assumed to improve statistical precision and power compared to conventional "time-to-first" methods. Methods -To better characterize factors that influence statistical properties of recurrent-events and time-to-first methods in the evaluation of randomized therapy, we repeatedly simulated trials with 1:1 randomization of 4000 patients to active vs control therapy, with true patient-level risk reduction of 20% (i.e. RR=0.80). For patients who discontinued active therapy after a first event, we assumed their risk reverted subsequently to their original placebo-level risk. Through simulation, we varied a) the degree of between-patient heterogeneity of risk and b) the extent of treatment discontinuation. Findings were compared with those from actual randomized clinical trials. Results -As the degree of between-patient heterogeneity of risk was increased, both time-to-first and recurrent-events methods lost statistical power to detect a true risk reduction and confidence intervals widened. The recurrent-events analyses continued to estimate the true RR=0.80 as heterogeneity increased, while the Cox model produced estimates that were attenuated. The power of recurrent-events methods declined as the rate of study drug discontinuation post-event increased. Recurrent-events methods provided greater power than time-to-first methods in scenarios where drug discontinuation was ≤30% following a first event, lesser power with drug discontinuation rates of ≥60%, and comparable power otherwise. We confirmed in several actual trials in chronic heart failure that treatment effect estimates were attenuated when estimated via the Cox model and that increased statistical power from recurrent-events methods was most pronounced in trials with lower treatment discontinuation rates. Conclusions -We find that the statistical power of both recurrent-events and time-to-first methods are reduced by increasing heterogeneity of patient risk, a parameter not included in conventional power and sample size formulas. Data from real clinical trials are consistent with simulation studies, confirming that the greatest statistical gains from use of recurrent-events methods occur in the presence of high patient heterogeneity and low rates of study drug discontinuation.

  10. TEMPORAL SIGNATURES OF AIR QUALITY OBSERVATIONS AND MODEL OUTPUTS: DO TIME SERIES DECOMPOSITION METHODS CAPTURE RELEVANT TIME SCALES?

    EPA Science Inventory

    Time series decomposition methods were applied to meteorological and air quality data and their numerical model estimates. Decomposition techniques express a time series as the sum of a small number of independent modes which hypothetically represent identifiable forcings, thereb...

  11. An at-site flood estimation method in the context of nonstationarity I. A simulation study

    NASA Astrophysics Data System (ADS)

    Gado, Tamer A.; Nguyen, Van-Thanh-Van

    2016-04-01

    The stationarity of annual flood peak records is the traditional assumption of flood frequency analysis. In some cases, however, as a result of land-use and/or climate change, this assumption is no longer valid. Therefore, new statistical models are needed to capture dynamically the change of probability density functions over time, in order to obtain reliable flood estimation. In this study, an innovative method for nonstationary flood frequency analysis was presented. Here, the new method is based on detrending the flood series and applying the L-moments along with the GEV distribution to the transformed ;stationary; series (hereafter, this is called the LM-NS). The LM-NS method was assessed through a comparative study with the maximum likelihood (ML) method for the nonstationary GEV model, as well as with the stationary (S) GEV model. The comparative study, based on Monte Carlo simulations, was carried out for three nonstationary GEV models: a linear dependence of the mean on time (GEV1), a quadratic dependence of the mean on time (GEV2), and linear dependence in both the mean and log standard deviation on time (GEV11). The simulation results indicated that the LM-NS method performs better than the ML method for most of the cases studied, whereas the stationary method provides the least accurate results. An additional advantage of the LM-NS method is to avoid the numerical problems (e.g., convergence problems) that may occur with the ML method when estimating parameters for small data samples.

  12. Hardware design and implementation of fast DOA estimation method based on multicore DSP

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-10-01

    In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.

  13. Speed of sound estimation for thermal monitoring using an active ultrasound element during liver ablation therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Audigier, Chloé; Dillow, Austin; Cheng, Alexis; Boctor, Emad M.

    2017-03-01

    Thermal monitoring for ablation therapy has high demands for preserving healthy tissues while removing malignant ones completely. Various methods have been investigated. However, exposure to radiation, cost-effectiveness, and inconvenience hinder the use of X-ray or MRI methods. Due to the non-invasiveness and real-time capabilities of ultrasound, it is widely used in intraoperative procedures. Ultrasound thermal monitoring methods have been developed for affordable monitoring in real-time. We propose a new method for thermal monitoring using an ultrasound element. By inserting a Lead-zirconate-titanate (PZT) element to generate the ultrasound signal in the liver tissues, the single travel time of flight is recorded from the PZT element to the ultrasound transducer. We detect the speed of sound change caused by the increase in temperature during ablation therapy. We performed an ex vivo experiment with liver tissues to verify the feasibility of our speed of sound estimation technique. The time of flight information is used in an optimization method to recover the speed of sound maps during the ablation, which are then converted into temperature maps. The result shows that the trend of temperature changes matches with the temperature measured at a single point. The estimation error can be decreased by using a proper curve linking the speed of sound to the temperature. The average error over time was less than 3 degrees Celsius for a bovine liver. The speed of sound estimation using a single PZT element can be used for thermal monitoring.

  14. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.

    PubMed

    Li, Zhenghan; Li, Xinyang

    2018-04-30

    Real time transverse wind estimation contributes to predictive correction which is used to compensate for the time delay error in the control systems of adaptive optics (AO) system. Many methods that apply Shack-Hartmann wave-front sensor to wind profile measurement have been proposed. One of the obvious problems is the lack of a fundamental benchmark to compare the various methods. In this work, we present the fundamental performance limits for transverse wind estimator from Shack-Hartmann wave-front sensor measurements using Cramér-Rao lower bound (CRLB). The bound provides insight into the nature of the transverse wind estimation, thereby suggesting how to design and improve the estimator in the different application scenario. We analyze the theoretical bound and find that factors such as slope measurement noise, wind velocity and atmospheric coherence length r 0 have important influence on the performance. Then, we introduced the non-iterative gradient-based transverse wind estimator. The source of the deterministic bias of the gradient-based transverse wind estimators is analyzed for the first time. Finally, we derived biased CRLB for the gradient-based transverse wind estimators from Shack-Hartmann wave-front sensor measurements and the bound can predict the performance of estimator more accurately.

  15. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    PubMed

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  16. Evaluation of Piloted Inputs for Onboard Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Martos, Borja

    2013-01-01

    Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.

  17. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises.

    PubMed

    Cannavò, Flavio; Camacho, Antonio G; González, Pablo J; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-06-09

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes.

  18. Real Time Tracking of Magmatic Intrusions by means of Ground Deformation Modeling during Volcanic Crises

    PubMed Central

    Cannavò, Flavio; Camacho, Antonio G.; González, Pablo J.; Mattia, Mario; Puglisi, Giuseppe; Fernández, José

    2015-01-01

    Volcano observatories provide near real-time information and, ultimately, forecasts about volcano activity. For this reason, multiple physical and chemical parameters are continuously monitored. Here, we present a new method to efficiently estimate the location and evolution of magmatic sources based on a stream of real-time surface deformation data, such as High-Rate GPS, and a free-geometry magmatic source model. The tool allows tracking inflation and deflation sources in time, providing estimates of where a volcano might erupt, which is important in understanding an on-going crisis. We show a successful simulated application to the pre-eruptive period of May 2008, at Mount Etna (Italy). The proposed methodology is able to track the fast dynamics of the magma migration by inverting the real-time data within seconds. This general method is suitable for integration in any volcano observatory. The method provides first order unsupervised and realistic estimates of the locations of magmatic sources and of potential eruption sites, information that is especially important for civil protection purposes. PMID:26055494

  19. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series-Abstract

    EPA Science Inventory

    Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...

  20. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria.

    PubMed

    Arora, Naveen Kumar; Verma, Maya

    2017-12-01

    In this study, siderophore production by various bacteria amongst the plant-growth-promoting rhizobacteria was quantified by a rapid and efficient method. In total, 23 siderophore-producing bacterial isolates/strains were taken to estimate their siderophore-producing ability by the standard method (chrome azurol sulphonate assay) as well as 96 well microplate method. Production of siderophore was estimated in percent siderophore unit by both the methods. It was observed that data obtained by both methods correlated positively with each other proving the correctness of microplate method. By the modified microplate method, siderophore production by several bacterial strains can be estimated both qualitatively and quantitatively at one go, saving time, chemicals, making it very less tedious, and also being cheaper in comparison with the method currently in use. The modified microtiter plate method as proposed here makes it far easier to screen the plant-growth-promoting character of plant-associated bacteria.

  1. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    PubMed

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  2. Method of Enhancing On-Board State Estimation Using Communication Signals

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)

    2015-01-01

    A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.

  3. Robust range estimation with a monocular camera for vision-based forward collision warning system.

    PubMed

    Park, Ki-Yeong; Hwang, Sun-Young

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  4. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    PubMed Central

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344

  5. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  6. [Estimation with the capture-recapture method of the number of economic immigrants in Mallorca].

    PubMed

    Ramos Monserrat, M; March Cerdá, J C

    2002-05-15

    estimate the number of irregular economic immigrants in Mallorca. We used the capture-recapture method, an indirect method based on contrasts of data from two or more sources. Data were obtained from the Delegación de Gobierno (police and immigration authority), Comisiones Obreras (labor union), and institutions that provide health-related services to immigrants. Individuals were identified by birth date and country of origin. The total number of economic immigrants estimated with this method was 39 392. According to the Delegación de Gobierno data, the number of regular immigrants on the date of our inquiry was 9000. With the capture-recapture method, the number of irregular immigrants in Mallorca was therefore estimated at 30 000. The capture-recapture method can be useful to estimate the population of irregular immigrants in a given area at a given time, if sufficiently precise information on the identity of each individual can be obtained.

  7. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  8. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  9. Healthcare resource utilization for anemia management: current practice with erythropoiesis-stimulating agents and the impact of converting to once-monthly C.E.R.A.

    PubMed

    Saueressig, Ulrich; Kwan, Jonathan T C; De Cock, Erwin; Sapède, Claudine

    2008-01-01

    Background andMethods: A prospective, observational study in 12 German and UK dialysis centers which quantified personnel time for anemia treatment using erythropoiesis-stimulating agents (ESAs). Tasks directly observable were measured through the time-and-motion method; time for non-observable tasks was estimated by healthcare staff. Using activity-based costing methods, time was converted into monetary units. Modeling was used to estimate potential time and cost savings using once-monthly C.E.R.A., a continuous erythropoietin receptor activator. For current ESAs in Germany and the UK, respectively: mean observed time was 1.67 and 2.67 min/patient/administration, corresponding to 31 and 42 days/year/center/100 patients; mean total time/center/100 patients/year was estimated at 79 and 95 days, equivalent to EUR 17,031 and GBP 18,739. Assuming 100% once-monthly C.E.R.A. uptake, the observed time/patient/year may decrease by 79 and 84% in Germany and the UK, respectively, compared with traditional ESAs. Conversion to once-monthly C.E.R.A. may offer the potential to reduce time spent on ESA administration in hemodialysis centers. Copyright 2008 S. Karger AG, Basel.

  10. Comparison of estimation methods for creating small area rates of acute myocardial infarction among Medicare beneficiaries in California.

    PubMed

    Yasaitis, Laura C; Arcaya, Mariana C; Subramanian, S V

    2015-09-01

    Creating local population health measures from administrative data would be useful for health policy and public health monitoring purposes. While a wide range of options--from simple spatial smoothers to model-based methods--for estimating such rates exists, there are relatively few side-by-side comparisons, especially not with real-world data. In this paper, we compare methods for creating local estimates of acute myocardial infarction rates from Medicare claims data. A Bayesian Monte Carlo Markov Chain estimator that incorporated spatial and local random effects performed best, followed by a method-of-moments spatial Empirical Bayes estimator. As the former is more complicated and time-consuming, spatial linear Empirical Bayes methods may represent a good alternative for non-specialist investigators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Event Detection and the Apparent Velocity Estimation Based on Computer Vision

    NASA Astrophysics Data System (ADS)

    Shimojo, M.

    2012-08-01

    The high spatial and time resolution data obtained by the telescopes aboard Hinode revealed the new interesting dynamics in solar atmosphere. In order to detect such events and estimate the velocity of dynamics automatically, we examined the estimation methods of the optical flow based on the OpenCV that is the computer vision library. We applied the methods to the prominence eruption observed by NoRH, and the polar X-ray jet observed by XRT. As a result, it is clear that the methods work well for solar images if the images are optimized for the methods. It indicates that the optical flow estimation methods in the OpenCV library are very useful to analyze the solar phenomena.

  12. Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan-Meier estimator.

    PubMed

    Prentice, Ross L; Zhao, Shanshan

    2018-01-01

    The Dabrowska (Ann Stat 16:1475-1489, 1988) product integral representation of the multivariate survivor function is extended, leading to a nonparametric survivor function estimator for an arbitrary number of failure time variates that has a simple recursive formula for its calculation. Empirical process methods are used to sketch proofs for this estimator's strong consistency and weak convergence properties. Summary measures of pairwise and higher-order dependencies are also defined and nonparametrically estimated. Simulation evaluation is given for the special case of three failure time variates.

  13. Real-time 3-D space numerical shake prediction for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Wang, Tianyun; Jin, Xing; Huang, Yandan; Wei, Yongxiang

    2017-12-01

    In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake prediction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.

  14. Computing moment to moment BOLD activation for real-time neurofeedback

    PubMed Central

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  15. A Comparative Study of Distribution System Parameter Estimation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of bothmore » methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.« less

  16. Parameter estimation using weighted total least squares in the two-compartment exchange model.

    PubMed

    Garpebring, Anders; Löfstedt, Tommy

    2018-01-01

    The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density

    NASA Astrophysics Data System (ADS)

    Pilinski, M.; Crowley, G.

    2014-12-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.

  18. Seasonal variability in global eddy diffusion and the effect on neutral density

    NASA Astrophysics Data System (ADS)

    Pilinski, M. D.; Crowley, G.

    2015-04-01

    We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.

  19. Real-Time Tracking of Knee Adduction Moment in Patients with Knee Osteoarthritis

    PubMed Central

    Kang, Sang Hoon; Lee, Song Joo; Zhang, Li-Qun

    2014-01-01

    Background The external knee adduction moment (EKAM) is closely associated with the presence, progression, and severity of knee osteoarthritis (OA). However, there is a lack of convenient and practical method to estimate and track in real-time the EKAM of patients with knee OA for clinical evaluation and gait training, especially outside of gait laboratories. New Method A real-time EKAM estimation method was developed and applied to track and investigate the EKAM and other knee moments during stepping on an elliptical trainer in both healthy subjects and a patient with knee OA. Results Substantial changes were observed in the EKAM and other knee moments during stepping in the patient with knee OA. Comparison with Existing Method(s) This is the first study to develop and test feasibility of real-time tracking method of the EKAM on patients with knee OA using 3-D inverse dynamics. Conclusions The study provides us an accurate and practical method to evaluate in real-time the critical EKAM associated with knee OA, which is expected to help us to diagnose and evaluate patients with knee OA and provide the patients with real-time EKAM feedback rehabilitation training. PMID:24361759

  20. Investigating the effects of the fixed and varying dispersion parameters of Poisson-gamma models on empirical Bayes estimates.

    PubMed

    Lord, Dominique; Park, Peter Young-Jin

    2008-07-01

    Traditionally, transportation safety analysts have used the empirical Bayes (EB) method to improve the estimate of the long-term mean of individual sites; to correct for the regression-to-the-mean (RTM) bias in before-after studies; and to identify hotspots or high risk locations. The EB method combines two different sources of information: (1) the expected number of crashes estimated via crash prediction models, and (2) the observed number of crashes at individual sites. Crash prediction models have traditionally been estimated using a negative binomial (NB) (or Poisson-gamma) modeling framework due to the over-dispersion commonly found in crash data. A weight factor is used to assign the relative influence of each source of information on the EB estimate. This factor is estimated using the mean and variance functions of the NB model. With recent trends that illustrated the dispersion parameter to be dependent upon the covariates of NB models, especially for traffic flow-only models, as well as varying as a function of different time-periods, there is a need to determine how these models may affect EB estimates. The objectives of this study are to examine how commonly used functional forms as well as fixed and time-varying dispersion parameters affect the EB estimates. To accomplish the study objectives, several traffic flow-only crash prediction models were estimated using a sample of rural three-legged intersections located in California. Two types of aggregated and time-specific models were produced: (1) the traditional NB model with a fixed dispersion parameter and (2) the generalized NB model (GNB) with a time-varying dispersion parameter, which is also dependent upon the covariates of the model. Several statistical methods were used to compare the fitting performance of the various functional forms. The results of the study show that the selection of the functional form of NB models has an important effect on EB estimates both in terms of estimated values, weight factors, and dispersion parameters. Time-specific models with a varying dispersion parameter provide better statistical performance in terms of goodness-of-fit (GOF) than aggregated multi-year models. Furthermore, the identification of hazardous sites, using the EB method, can be significantly affected when a GNB model with a time-varying dispersion parameter is used. Thus, erroneously selecting a functional form may lead to select the wrong sites for treatment. The study concludes that transportation safety analysts should not automatically use an existing functional form for modeling motor vehicle crashes without conducting rigorous analyses to estimate the most appropriate functional form linking crashes with traffic flow.

  1. Discovering graphical Granger causality using the truncating lasso penalty

    PubMed Central

    Shojaie, Ali; Michailidis, George

    2010-01-01

    Motivation: Components of biological systems interact with each other in order to carry out vital cell functions. Such information can be used to improve estimation and inference, and to obtain better insights into the underlying cellular mechanisms. Discovering regulatory interactions among genes is therefore an important problem in systems biology. Whole-genome expression data over time provides an opportunity to determine how the expression levels of genes are affected by changes in transcription levels of other genes, and can therefore be used to discover regulatory interactions among genes. Results: In this article, we propose a novel penalization method, called truncating lasso, for estimation of causal relationships from time-course gene expression data. The proposed penalty can correctly determine the order of the underlying time series, and improves the performance of the lasso-type estimators. Moreover, the resulting estimate provides information on the time lag between activation of transcription factors and their effects on regulated genes. We provide an efficient algorithm for estimation of model parameters, and show that the proposed method can consistently discover causal relationships in the large p, small n setting. The performance of the proposed model is evaluated favorably in simulated, as well as real, data examples. Availability: The proposed truncating lasso method is implemented in the R-package ‘grangerTlasso’ and is freely available at http://www.stat.lsa.umich.edu/∼shojaie/ Contact: shojaie@umich.edu PMID:20823316

  2. Advances in Time Estimation Methods for Molecular Data.

    PubMed

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data sets. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Impacts of sampling design and estimation methods on nutrient leaching of intensively monitored forest plots in the Netherlands.

    PubMed

    de Vries, W; Wieggers, H J J; Brus, D J

    2010-08-05

    Element fluxes through forest ecosystems are generally based on measurements of concentrations in soil solution at regular time intervals at plot locations sampled in a regular grid. Here we present spatially averaged annual element leaching fluxes in three Dutch forest monitoring plots using a new sampling strategy in which both sampling locations and sampling times are selected by probability sampling. Locations were selected by stratified random sampling with compact geographical blocks of equal surface area as strata. In each sampling round, six composite soil solution samples were collected, consisting of five aliquots, one per stratum. The plot-mean concentration was estimated by linear regression, so that the bias due to one or more strata being not represented in the composite samples is eliminated. The sampling times were selected in such a way that the cumulative precipitation surplus of the time interval between two consecutive sampling times was constant, using an estimated precipitation surplus averaged over the past 30 years. The spatially averaged annual leaching flux was estimated by using the modeled daily water flux as an ancillary variable. An important advantage of the new method is that the uncertainty in the estimated annual leaching fluxes due to spatial and temporal variation and resulting sampling errors can be quantified. Results of this new method were compared with the reference approach in which daily leaching fluxes were calculated by multiplying daily interpolated element concentrations with daily water fluxes and then aggregated to a year. Results show that the annual fluxes calculated with the reference method for the period 2003-2005, including all plots, elements and depths, lies only in 53% of the cases within the range of the average +/-2 times the standard error of the new method. Despite the differences in results, both methods indicate comparable N retention and strong Al mobilization in all plots, with Al leaching being nearly equal to the leaching of SO(4) and NO(3) with fluxes expressed in mol(c) ha(-1) yr(-1). This illustrates that Al release, which is the clearest signal of soil acidification, is mainly due to the external input of SO(4) and NO(3).

  4. Methods of adjusting the stable estimates of fertility for the effects of mortality decline.

    PubMed

    Abou-Gamrah, H

    1976-03-01

    Summary The paper shows how stable population methods, based on the age structure and the rate of increase, may be used to estimate the demographic measures of a quasi-stable population. After a discussion of known methods for adjusting the stable estimates to allow for the effects of mortality decline two new methods are presented, the application of which requires less information. The first method does not need any supplementary information, and the second method requires an estimate of the difference between the last two five-year intercensal rates of increase, i.e. five times the annual change of the rate of increase during the last ten years. For these new methods we do not need to know the onset year of mortality decline as in the Coale-Demeny method, or a long series of rates of increase as in Zachariah's method.

  5. Error analysis of finite element method for Poisson–Nernst–Planck equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuzhou; Sun, Pengtao; Zheng, Bin

    A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.

  6. Analytical study to define a helicopter stability derivative extraction method, volume 1

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.

    1973-01-01

    A method is developed for extracting six degree-of-freedom stability and control derivatives from helicopter flight data. Different combinations of filtering and derivative estimate are investigated and used with a Bayesian approach for derivative identification. The combination of filtering and estimate found to yield the most accurate time response match to flight test data is determined and applied to CH-53A and CH-54B flight data. The method found to be most accurate consists of (1) filtering flight test data with a digital filter, followed by an extended Kalman filter (2) identifying a derivative estimate with a least square estimator, and (3) obtaining derivatives with the Bayesian derivative extraction method.

  7. Summary of methods for calculating dynamic lateral stability and response and for estimating aerodynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O

    1952-01-01

    A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.

  8. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.

    PubMed

    Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre

    2018-03-01

    We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. How to deal with missing longitudinal data in cost of illness analysis in Alzheimer's disease-suggestions from the GERAS observational study.

    PubMed

    Belger, Mark; Haro, Josep Maria; Reed, Catherine; Happich, Michael; Kahle-Wrobleski, Kristin; Argimon, Josep Maria; Bruno, Giuseppe; Dodel, Richard; Jones, Roy W; Vellas, Bruno; Wimo, Anders

    2016-07-18

    Missing data are a common problem in prospective studies with a long follow-up, and the volume, pattern and reasons for missing data may be relevant when estimating the cost of illness. We aimed to evaluate the effects of different methods for dealing with missing longitudinal cost data and for costing caregiver time on total societal costs in Alzheimer's disease (AD). GERAS is an 18-month observational study of costs associated with AD. Total societal costs included patient health and social care costs, and caregiver health and informal care costs. Missing data were classified as missing completely at random (MCAR), missing at random (MAR) or missing not at random (MNAR). Simulation datasets were generated from baseline data with 10-40 % missing total cost data for each missing data mechanism. Datasets were also simulated to reflect the missing cost data pattern at 18 months using MAR and MNAR assumptions. Naïve and multiple imputation (MI) methods were applied to each dataset and results compared with complete GERAS 18-month cost data. Opportunity and replacement cost approaches were used for caregiver time, which was costed with and without supervision included and with time for working caregivers only being costed. Total costs were available for 99.4 % of 1497 patients at baseline. For MCAR datasets, naïve methods performed as well as MI methods. For MAR, MI methods performed better than naïve methods. All imputation approaches were poor for MNAR data. For all approaches, percentage bias increased with missing data volume. For datasets reflecting 18-month patterns, a combination of imputation methods provided more accurate cost estimates (e.g. bias: -1 % vs -6 % for single MI method), although different approaches to costing caregiver time had a greater impact on estimated costs (29-43 % increase over base case estimate). Methods used to impute missing cost data in AD will impact on accuracy of cost estimates although varying approaches to costing informal caregiver time has the greatest impact on total costs. Tailoring imputation methods to the reason for missing data will further our understanding of the best analytical approach for studies involving cost outcomes.

  10. A review of the methods available for estimating soil moisture and its implications for water resource management

    NASA Astrophysics Data System (ADS)

    Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul

    2012-08-01

    SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and maintenance of soil moisture regime.

  11. Child Mortality Estimation 2013: An Overview of Updates in Estimation Methods by the United Nations Inter-Agency Group for Child Mortality Estimation

    PubMed Central

    Alkema, Leontine; New, Jin Rou; Pedersen, Jon; You, Danzhen

    2014-01-01

    Background In September 2013, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) published an update of the estimates of the under-five mortality rate (U5MR) and under-five deaths for all countries. Compared to the UN IGME estimates published in 2012, updated data inputs and a new method for estimating the U5MR were used. Methods We summarize the new U5MR estimation method, which is a Bayesian B-spline Bias-reduction model, and highlight differences with the previously used method. Differences in UN IGME U5MR estimates as published in 2012 and those published in 2013 are presented and decomposed into differences due to the updated database and differences due to the new estimation method to explain and motivate changes in estimates. Findings Compared to the previously used method, the new UN IGME estimation method is based on a different trend fitting method that can track (recent) changes in U5MR more closely. The new method provides U5MR estimates that account for data quality issues. Resulting differences in U5MR point estimates between the UN IGME 2012 and 2013 publications are small for the majority of countries but greater than 10 deaths per 1,000 live births for 33 countries in 2011 and 19 countries in 1990. These differences can be explained by the updated database used, the curve fitting method as well as accounting for data quality issues. Changes in the number of deaths were less than 10% on the global level and for the majority of MDG regions. Conclusions The 2013 UN IGME estimates provide the most recent assessment of levels and trends in U5MR based on all available data and an improved estimation method that allows for closer-to-real-time monitoring of changes in the U5MR and takes account of data quality issues. PMID:25013954

  12. On Short-Time Estimation of Vocal Tract Length from Formant Frequencies

    PubMed Central

    Lammert, Adam C.; Narayanan, Shrikanth S.

    2015-01-01

    Vocal tract length is highly variable across speakers and determines many aspects of the acoustic speech signal, making it an essential parameter to consider for explaining behavioral variability. A method for accurate estimation of vocal tract length from formant frequencies would afford normalization of interspeaker variability and facilitate acoustic comparisons across speakers. A framework for considering estimation methods is developed from the basic principles of vocal tract acoustics, and an estimation method is proposed that follows naturally from this framework. The proposed method is evaluated using acoustic characteristics of simulated vocal tracts ranging from 14 to 19 cm in length, as well as real-time magnetic resonance imaging data with synchronous audio from five speakers whose vocal tracts range from 14.5 to 18.0 cm in length. Evaluations show improvements in accuracy over previously proposed methods, with 0.631 and 1.277 cm root mean square error on simulated and human speech data, respectively. Empirical results show that the effectiveness of the proposed method is based on emphasizing higher formant frequencies, which seem less affected by speech articulation. Theoretical predictions of formant sensitivity reinforce this empirical finding. Moreover, theoretical insights are explained regarding the reason for differences in formant sensitivity. PMID:26177102

  13. A nuclear scanning method for estimating wear level nonuniformities

    NASA Astrophysics Data System (ADS)

    Ivanov, E. A.; Pascovici, G.; Racolta, P. M.

    1993-09-01

    The residual radioactivity measuring method has been upgraded to estimate wear level nonuniformities in the circumference of a piston ring after a certain working time in the combustion engine testing bench. The piston ring was irradiated by the thin layer activation (TLA) technique and its radioactivity was continuously monitored.

  14. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    EPA Science Inventory

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  15. Methods for estimating selected flow-duration and flood-frequency characteristics at ungaged sites in Central Idaho

    USGS Publications Warehouse

    Kjelstrom, L.C.

    1998-01-01

    Methods for estimating daily mean discharges for selected flow durations and flood discharge for selected recurrence intervals at ungaged sites in central Idaho were applied using data collected at streamflow-gaging stations in the area. The areal and seasonal variability of discharge from ungaged drainage basins may be described by estimating daily mean discharges that are exceeded 20, 50, and 80 percent of the time each month. At 73 gaging stations, mean monthly discharge was regressed with discharge at three points—20, 50, and 80—from daily mean flow-duration curves for each month. Regression results were improved by dividing the study area into six regions. Previously determined estimates of mean monthly discharge from about 1,200 ungaged drainage basins provided the basis for applying the developed techniques to the ungaged basins. Estimates of daily mean discharges that are exceeded 20, 50, and 80 percent of the time each month at ungaged drainage basins can be made by multiplying mean monthly discharges estimated at ungaged sites by a regression factor for the appropriate region. In general, the flow-duration data were less accurately estimated at discharges exceeded 80 percent of the time than at discharges exceeded 20 percent of the time. Curves drawn through the three points for each of the six regions were most similar in July and most different from December through March. Coefficients of determination of the regressions indicate that differences in mean monthly discharge largely explain differences in discharge at points on the daily mean flow-duration curve. Inherent in the method are errors in the technique used to estimate mean monthly discharge. Flood discharge estimates for selected recurrence intervals at ungaged sites upstream or downstream from gaging stations can be determined by a transfer technique. A weighted ratio of drainage area times flood discharge for selected recurrence intervals at the gaging station can be used to estimate flood discharge at the ungaged site. Best results likely are obtained when the difference between gaged and ungaged drainage areas is small.

  16. Cardiac conduction velocity estimation from sequential mapping assuming known Gaussian distribution for activation time estimation error.

    PubMed

    Shariat, Mohammad Hassan; Gazor, Saeed; Redfearn, Damian

    2016-08-01

    In this paper, we study the problem of the cardiac conduction velocity (CCV) estimation for the sequential intracardiac mapping. We assume that the intracardiac electrograms of several cardiac sites are sequentially recorded, their activation times (ATs) are extracted, and the corresponding wavefronts are specified. The locations of the mapping catheter's electrodes and the ATs of the wavefronts are used here for the CCV estimation. We assume that the extracted ATs include some estimation errors, which we model with zero-mean white Gaussian noise values with known variances. Assuming stable planar wavefront propagation, we derive the maximum likelihood CCV estimator, when the synchronization times between various recording sites are unknown. We analytically evaluate the performance of the CCV estimator and provide its mean square estimation error. Our simulation results confirm the accuracy of the proposed method and the error analysis of the proposed CCV estimator.

  17. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

  18. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    PubMed

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  19. On estimation of time-dependent attributable fraction from population-based case-control studies.

    PubMed

    Zhao, Wei; Chen, Ying Qing; Hsu, Li

    2017-09-01

    Population attributable fraction (PAF) is widely used to quantify the disease burden associated with a modifiable exposure in a population. It has been extended to a time-varying measure that provides additional information on when and how the exposure's impact varies over time for cohort studies. However, there is no estimation procedure for PAF using data that are collected from population-based case-control studies, which, because of time and cost efficiency, are commonly used for studying genetic and environmental risk factors of disease incidences. In this article, we show that time-varying PAF is identifiable from a case-control study and develop a novel estimator of PAF. Our estimator combines odds ratio estimates from logistic regression models and density estimates of the risk factor distribution conditional on failure times in cases from a kernel smoother. The proposed estimator is shown to be consistent and asymptotically normal with asymptotic variance that can be estimated empirically from the data. Simulation studies demonstrate that the proposed estimator performs well in finite sample sizes. Finally, the method is illustrated by a population-based case-control study of colorectal cancer. © 2017, The International Biometric Society.

  20. Estimating seat belt effectiveness using matched-pair cohort methods.

    PubMed

    Cummings, Peter; Wells, James D; Rivara, Frederick P

    2003-01-01

    Using US data for 1986-1998 fatal crashes, we employed matched-pair analysis methods to estimate that the relative risk of death among belted compared with unbelted occupants was 0.39 (95% confidence interval (CI) 0.37-0.41). This differs from relative risk estimates of about 0.55 in studies that used crash data collected prior to 1986. Using 1975-1998 data, we examined and rejected three theories that might explain the difference between our estimate and older estimates: (1) differences in the analysis methods; (2) changes related to car model year; (3) changes in crash characteristics over time. A fourth theory, that the introduction of seat belt laws would induce some survivors to claim belt use when they were not restrained, could explain part of the difference in our estimate and older estimates; but even in states without seat belt laws, from 1986 through 1998, the relative risk estimate was 0.45 (95% CI 0.39-0.52). All of the difference between our estimate and older estimates could be explained by some misclassification of seat belt use. Relative risk estimates would move away from 1, toward their true value, if misclassification of both the belted and unbelted decreased over time, or if the degree of misclassification remained constant, as the prevalence of belt use increased. We conclude that estimates of seat belt effects based upon data prior to 1986 may be biased toward 1 by misclassification.

  1. Reconstructing the hidden states in time course data of stochastic models.

    PubMed

    Zimmer, Christoph

    2015-11-01

    Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Smoothing spline ANOVA frailty model for recurrent event data.

    PubMed

    Du, Pang; Jiang, Yihua; Wang, Yuedong

    2011-12-01

    Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. © 2011, The International Biometric Society.

  3. ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi

    This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.

  4. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.

  5. Statistical approaches to lifetime measurements with restricted observation times

    NASA Astrophysics Data System (ADS)

    Chen, X. C.; Zeng, Q.; Litvinov, Yu. A.; Tu, X. L.; Walker, P. M.; Wang, M.; Wang, Q.; Yue, K.; Zhang, Y. H.

    2017-09-01

    Two generic methods based on frequentism and Bayesianism are presented in this work aiming to adequately estimate decay lifetimes from measured data, while accounting for restricted observation times in the measurements. All the experimental scenarios that can possibly arise from the observation constraints are treated systematically and formulas are derived. The methods are then tested against the decay data of bare isomeric 44+94mRu, which were measured using isochronous mass spectrometry with a timing detector at the CSRe in Lanzhou, China. Applying both methods in three distinct scenarios yields six different but consistent lifetime estimates. The deduced values are all in good agreement with a prediction based on the neutral-atom value modified to take the absence of internal conversion into account. Potential applications of such methods are discussed.

  6. A theory of fine structure image models with an application to detection and classification of dementia.

    PubMed

    O'Neill, William; Penn, Richard; Werner, Michael; Thomas, Justin

    2015-06-01

    Estimation of stochastic process models from data is a common application of time series analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for models being described by non-homogeneous, linear, stationary, ordinary differential equations. In this paper we extend stochastic model identification to linear, stationary, partial differential equations in two independent variables (2D) and show that OLS and LMA apply equally well to these systems. The method employs an original nonparametric statistic as a test for the significance of estimated parameters. We show gray scale and color images are special cases of 2D systems satisfying a particular autoregressive partial difference equation which estimates an analogous partial differential equation. Several applications to medical image modeling and classification illustrate the method by correctly classifying demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier is at least 14 times faster than any of them and has a classification accuracy better than all but one. Our modeling method applies to any linear, stationary, partial differential equation and the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image classifier, estimated image models offer insights into which parameters carry the most diagnostic image information and thereby suggest finer divisions could be made within a class. Image models can be estimated in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time medicine and surgery modeling possible.

  7. Nonparametric estimation of median survival times with applications to multi-site or multi-center studies.

    PubMed

    Rahbar, Mohammad H; Choi, Sangbum; Hong, Chuan; Zhu, Liang; Jeon, Sangchoon; Gardiner, Joseph C

    2018-01-01

    We propose a nonparametric shrinkage estimator for the median survival times from several independent samples of right-censored data, which combines the samples and hypothesis information to improve the efficiency. We compare efficiency of the proposed shrinkage estimation procedure to unrestricted estimator and combined estimator through extensive simulation studies. Our results indicate that performance of these estimators depends on the strength of homogeneity of the medians. When homogeneity holds, the combined estimator is the most efficient estimator. However, it becomes inconsistent when homogeneity fails. On the other hand, the proposed shrinkage estimator remains efficient. Its efficiency decreases as the equality of the survival medians is deviated, but is expected to be as good as or equal to the unrestricted estimator. Our simulation studies also indicate that the proposed shrinkage estimator is robust to moderate levels of censoring. We demonstrate application of these methods to estimating median time for trauma patients to receive red blood cells in the Prospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study.

  8. Nonparametric estimation of median survival times with applications to multi-site or multi-center studies

    PubMed Central

    Choi, Sangbum; Hong, Chuan; Zhu, Liang; Jeon, Sangchoon; Gardiner, Joseph C.

    2018-01-01

    We propose a nonparametric shrinkage estimator for the median survival times from several independent samples of right-censored data, which combines the samples and hypothesis information to improve the efficiency. We compare efficiency of the proposed shrinkage estimation procedure to unrestricted estimator and combined estimator through extensive simulation studies. Our results indicate that performance of these estimators depends on the strength of homogeneity of the medians. When homogeneity holds, the combined estimator is the most efficient estimator. However, it becomes inconsistent when homogeneity fails. On the other hand, the proposed shrinkage estimator remains efficient. Its efficiency decreases as the equality of the survival medians is deviated, but is expected to be as good as or equal to the unrestricted estimator. Our simulation studies also indicate that the proposed shrinkage estimator is robust to moderate levels of censoring. We demonstrate application of these methods to estimating median time for trauma patients to receive red blood cells in the Prospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study. PMID:29772007

  9. Adaptive and Personalized Plasma Insulin Concentration Estimation for Artificial Pancreas Systems.

    PubMed

    Hajizadeh, Iman; Rashid, Mudassir; Samadi, Sediqeh; Feng, Jianyuan; Sevil, Mert; Hobbs, Nicole; Lazaro, Caterina; Maloney, Zacharie; Brandt, Rachel; Yu, Xia; Turksoy, Kamuran; Littlejohn, Elizabeth; Cengiz, Eda; Cinar, Ali

    2018-05-01

    The artificial pancreas (AP) system, a technology that automatically administers exogenous insulin in people with type 1 diabetes mellitus (T1DM) to regulate their blood glucose concentrations, necessitates the estimation of the amount of active insulin already present in the body to avoid overdosing. An adaptive and personalized plasma insulin concentration (PIC) estimator is designed in this work to accurately quantify the insulin present in the bloodstream. The proposed PIC estimation approach incorporates Hovorka's glucose-insulin model with the unscented Kalman filtering algorithm. Methods for the personalized initialization of the time-varying model parameters to individual patients for improved estimator convergence are developed. Data from 20 three-days-long closed-loop clinical experiments conducted involving subjects with T1DM are used to evaluate the proposed PIC estimation approach. The proposed methods are applied to the clinical data containing significant disturbances, such as unannounced meals and exercise, and the results demonstrate the accurate real-time estimation of the PIC with the root mean square error of 7.15 and 9.25 mU/L for the optimization-based fitted parameters and partial least squares regression-based testing parameters, respectively. The accurate real-time estimation of PIC will benefit the AP systems by preventing overdelivery of insulin when significant insulin is present in the bloodstream.

  10. Calibrated tree priors for relaxed phylogenetics and divergence time estimation.

    PubMed

    Heled, Joseph; Drummond, Alexei J

    2012-01-01

    The use of fossil evidence to calibrate divergence time estimation has a long history. More recently, Bayesian Markov chain Monte Carlo has become the dominant method of divergence time estimation, and fossil evidence has been reinterpreted as the specification of prior distributions on the divergence times of calibration nodes. These so-called "soft calibrations" have become widely used but the statistical properties of calibrated tree priors in a Bayesian setting hashave not been carefully investigated. Here, we clarify that calibration densities, such as those defined in BEAST 1.5, do not represent the marginal prior distribution of the calibration node. We illustrate this with a number of analytical results on small trees. We also describe an alternative construction for a calibrated Yule prior on trees that allows direct specification of the marginal prior distribution of the calibrated divergence time, with or without the restriction of monophyly. This method requires the computation of the Yule prior conditional on the height of the divergence being calibrated. Unfortunately, a practical solution for multiple calibrations remains elusive. Our results suggest that direct estimation of the prior induced by specifying multiple calibration densities should be a prerequisite of any divergence time dating analysis.

  11. Modeling, implementation, and validation of arterial travel time reliability.

    DOT National Transportation Integrated Search

    2013-11-01

    Previous research funded by Florida Department of Transportation (FDOT) developed a method for estimating : travel time reliability for arterials. This method was not initially implemented or validated using field data. This : project evaluated and r...

  12. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2008-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  13. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2010-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  14. A Robust Real Time Direction-of-Arrival Estimation Method for Sequential Movement Events of Vehicles.

    PubMed

    Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang

    2018-03-27

    Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.

  15. Covariance-based direction-of-arrival estimation of wideband coherent chirp signals via sparse representation.

    PubMed

    Sha, Zhichao; Liu, Zhengmeng; Huang, Zhitao; Zhou, Yiyu

    2013-08-29

    This paper addresses the problem of direction-of-arrival (DOA) estimation of multiple wideband coherent chirp signals, and a new method is proposed. The new method is based on signal component analysis of the array output covariance, instead of the complicated time-frequency analysis used in previous literatures, and thus is more compact and effectively avoids possible signal energy loss during the hyper-processes. Moreover, the a priori information of signal number is no longer a necessity for DOA estimation in the new method. Simulation results demonstrate the performance superiority of the new method over previous ones.

  16. The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.

    PubMed

    Muller, A; Pontonnier, C; Dumont, G

    2018-02-01

    The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.

  17. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  18. Rapid assessment of rice seed availability for wildlife in harvested fields

    USGS Publications Warehouse

    Halstead, B.J.; Miller, M.R.; Casazza, Michael L.; Coates, P.S.; Farinha, M.A.; Benjamin, Gustafson K.; Yee, J.L.; Fleskes, J.P.

    2011-01-01

    Rice seed remaining in commercial fields after harvest (waste rice) is a critical food resource for wintering waterfowl in rice-growing regions of North America. Accurate and precise estimates of the seed mass density of waste rice are essential for planning waterfowl wintering habitat extents and management. In the Sacramento Valley of California, USA, the existing method for obtaining estimates of availability of waste rice in harvested fields produces relatively precise estimates, but the labor-, time-, and machineryintensive process is not practical for routine assessments needed to examine long-term trends in waste rice availability. We tested several experimental methods designed to rapidly derive estimates that would not be burdened with disadvantages of the existing method. We first conducted a simulation study of the efficiency of each method and then conducted field tests. For each approach, methods did not vary in root mean squared error, although some methods did exhibit bias for both simulations and field tests. Methods also varied substantially in the time to conduct each sample and in the number of samples required to detect a standard trend. Overall, modified line-intercept methods performed well for estimating the density of rice seeds. Waste rice in the straw, although not measured directly, can be accounted for by a positive relationship with density of rice on the ground. Rapid assessment of food availability is a useful tool to help waterfowl managers establish and implement wetland restoration and agricultural habitat-enhancement goals for wintering waterfowl. ?? 2011 The Wildlife Society.

  19. Position Estimation Method of Medical Implanted Devices Using Estimation of Propagation Velocity inside Human Body

    NASA Astrophysics Data System (ADS)

    Kawasaki, Makoto; Kohno, Ryuji

    Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.

  20. Child mortality estimation 2013: an overview of updates in estimation methods by the United Nations Inter-agency Group for Child Mortality Estimation.

    PubMed

    Alkema, Leontine; New, Jin Rou; Pedersen, Jon; You, Danzhen

    2014-01-01

    In September 2013, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) published an update of the estimates of the under-five mortality rate (U5MR) and under-five deaths for all countries. Compared to the UN IGME estimates published in 2012, updated data inputs and a new method for estimating the U5MR were used. We summarize the new U5MR estimation method, which is a Bayesian B-spline Bias-reduction model, and highlight differences with the previously used method. Differences in UN IGME U5MR estimates as published in 2012 and those published in 2013 are presented and decomposed into differences due to the updated database and differences due to the new estimation method to explain and motivate changes in estimates. Compared to the previously used method, the new UN IGME estimation method is based on a different trend fitting method that can track (recent) changes in U5MR more closely. The new method provides U5MR estimates that account for data quality issues. Resulting differences in U5MR point estimates between the UN IGME 2012 and 2013 publications are small for the majority of countries but greater than 10 deaths per 1,000 live births for 33 countries in 2011 and 19 countries in 1990. These differences can be explained by the updated database used, the curve fitting method as well as accounting for data quality issues. Changes in the number of deaths were less than 10% on the global level and for the majority of MDG regions. The 2013 UN IGME estimates provide the most recent assessment of levels and trends in U5MR based on all available data and an improved estimation method that allows for closer-to-real-time monitoring of changes in the U5MR and takes account of data quality issues.

  1. Transmission overhaul estimates for partial and full replacement at repair

    NASA Technical Reports Server (NTRS)

    Savage, M.; Lewicki, D. G.

    1991-01-01

    Timely transmission overhauls increase in-flight service reliability greater than the calculated design reliabilities of the individual aircraft transmission components. Although necessary for aircraft safety, transmission overhauls contribute significantly to aircraft expense. Predictions of a transmission's maintenance needs at the design stage should enable the development of more cost effective and reliable transmissions in the future. The frequency is estimated of overhaul along with the number of transmissions or components needed to support the overhaul schedule. Two methods based on the two parameter Weibull statistical distribution for component life are used to estimate the time between transmission overhauls. These methods predict transmission lives for maintenance schedules which repair the transmission with a complete system replacement or repair only failed components of the transmission. An example illustrates the methods.

  2. Real-time Mainshock Forecast by Statistical Discrimination of Foreshock Clusters

    NASA Astrophysics Data System (ADS)

    Nomura, S.; Ogata, Y.

    2016-12-01

    Foreshock discremination is one of the most effective ways for short-time forecast of large main shocks. Though many large earthquakes accompany their foreshocks, discreminating them from enormous small earthquakes is difficult and only probabilistic evaluation from their spatio-temporal features and magnitude evolution may be available. Logistic regression is the statistical learning method best suited to such binary pattern recognition problems where estimates of a-posteriori probability of class membership are required. Statistical learning methods can keep learning discreminating features from updating catalog and give probabilistic recognition of forecast in real time. We estimated a non-linear function of foreshock proportion by smooth spline bases and evaluate the possibility of foreshocks by the logit function. In this study, we classified foreshocks from earthquake catalog by the Japan Meteorological Agency by single-link clustering methods and learned spatial and temporal features of foreshocks by the probability density ratio estimation. We use the epicentral locations, time spans and difference in magnitudes for learning and forecasting. Magnitudes of main shocks are also predicted our method by incorporating b-values into our method. We discuss the spatial pattern of foreshocks from the classifier composed by our model. We also implement a back test to validate predictive performance of the model by this catalog.

  3. Optimal Bandwidth for Multitaper Spectrum Estimation

    DOE PAGES

    Haley, Charlotte L.; Anitescu, Mihai

    2017-07-04

    A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less

  4. Design and Implementation of Real-Time Vehicular Camera for Driver Assistance and Traffic Congestion Estimation

    PubMed Central

    Son, Sanghyun; Baek, Yunju

    2015-01-01

    As society has developed, the number of vehicles has increased and road conditions have become complicated, increasing the risk of crashes. Therefore, a service that provides safe vehicle control and various types of information to the driver is urgently needed. In this study, we designed and implemented a real-time traffic information system and a smart camera device for smart driver assistance systems. We selected a commercial device for the smart driver assistance systems, and applied a computer vision algorithm to perform image recognition. For application to the dynamic region of interest, dynamic frame skip methods were implemented to perform parallel processing in order to enable real-time operation. In addition, we designed and implemented a model to estimate congestion by analyzing traffic information. The performance of the proposed method was evaluated using images of a real road environment. We found that the processing time improved by 15.4 times when all the proposed methods were applied in the application. Further, we found experimentally that there was little or no change in the recognition accuracy when the proposed method was applied. Using the traffic congestion estimation model, we also found that the average error rate of the proposed model was 5.3%. PMID:26295230

  5. Design and Implementation of Real-Time Vehicular Camera for Driver Assistance and Traffic Congestion Estimation.

    PubMed

    Son, Sanghyun; Baek, Yunju

    2015-08-18

    As society has developed, the number of vehicles has increased and road conditions have become complicated, increasing the risk of crashes. Therefore, a service that provides safe vehicle control and various types of information to the driver is urgently needed. In this study, we designed and implemented a real-time traffic information system and a smart camera device for smart driver assistance systems. We selected a commercial device for the smart driver assistance systems, and applied a computer vision algorithm to perform image recognition. For application to the dynamic region of interest, dynamic frame skip methods were implemented to perform parallel processing in order to enable real-time operation. In addition, we designed and implemented a model to estimate congestion by analyzing traffic information. The performance of the proposed method was evaluated using images of a real road environment. We found that the processing time improved by 15.4 times when all the proposed methods were applied in the application. Further, we found experimentally that there was little or no change in the recognition accuracy when the proposed method was applied. Using the traffic congestion estimation model, we also found that the average error rate of the proposed model was 5.3%.

  6. Maximum likelihood estimation for life distributions with competing failure modes

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1979-01-01

    Systems which are placed on test at time zero, function for a period and die at some random time were studied. Failure may be due to one of several causes or modes. The parameters of the life distribution may depend upon the levels of various stress variables the item is subject to. Maximum likelihood estimation methods are discussed. Specific methods are reported for the smallest extreme-value distributions of life. Monte-Carlo results indicate the methods to be promising. Under appropriate conditions, the location parameters are nearly unbiased, the scale parameter is slight biased, and the asymptotic covariances are rapidly approached.

  7. Detecting the sampling rate through observations

    NASA Astrophysics Data System (ADS)

    Shoji, Isao

    2018-09-01

    This paper proposes a method to detect the sampling rate of discrete time series of diffusion processes. Using the maximum likelihood estimates of the parameters of a diffusion process, we establish a criterion based on the Kullback-Leibler divergence and thereby estimate the sampling rate. Simulation studies are conducted to check whether the method can detect the sampling rates from data and their results show a good performance in the detection. In addition, the method is applied to a financial time series sampled on daily basis and shows the detected sampling rate is different from the conventional rates.

  8. From Air Temperature to Lake Evaporation on a Daily Time Step: A New Empirical Approach

    NASA Astrophysics Data System (ADS)

    Welch, C.; Holmes, T. L.; Stadnyk, T. A.

    2016-12-01

    Lake evaporation is a key component of the water balance in much of Canada due to the vast surface area covered by open water. Hence, incorporating this flux effectively into hydrological simulation frameworks is essential to effective water management. Inclusion has historically been limited by the intensive data required to apply the energy budget methods previously demonstrated to most effectively capture the timing and volume of the evaporative flux. Widespread, consistent, lake water temperature and net radiation data are not available across much of Canada, particularly the sparsely populated boreal shield. We present a method to estimate lake evaporation on a daily time step that consists of a series of empirical equations applicable to lakes of widely varying morphologies. Specifically, estimation methods that require the single meteorological variable of air temperature are presented for lake water temperature, net radiation, and heat flux. The methods were developed using measured data collected at two small Boreal shield lakes, Lake Winnipeg North and South basins, and Lake Superior in 2008 and 2009. The mean average error (MAE) of the lake water temperature estimates is generally 1.5°C, and the MAE of the heat flux method is 50 W m-2. The simulated values are combined to estimate daily lake evaporation using the Priestley-Taylor method. Heat storage within the lake is tracked and limits the potential heat flux from a lake. Five-day running averages compare well to measured evaporation at the two small shield lakes (Bowen Ratio Energy Balance) and adequately to Lake Superior (eddy covariance). In addition to air temperature, the method requires a mean depth for each lake. The method demonstrably improves the timing and volume of evaporative flux in comparison to existing evaporation methods that depend only on temperature. The method will be further tested in a semi-distributed hydrological model to assess the cumulative effects across a lake-dominated catchment in the Lower Nelson River basin.

  9. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.

    2017-02-01

    This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.

  10. Estimation of the size of the female sex worker population in Rwanda using three different methods

    PubMed Central

    Kayitesi, Catherine; Gwiza, Aimé; Ruton, Hinda; Koleros, Andrew; Gupta, Neil; Balisanga, Helene; Riedel, David J; Nsanzimana, Sabin

    2014-01-01

    HIV prevalence is disproportionately high among female sex workers compared to the general population. Many African countries lack useful data on the size of female sex worker populations to inform national HIV programmes. A female sex worker size estimation exercise using three different venue-based methodologies was conducted among female sex workers in all provinces of Rwanda in August 2010. The female sex worker national population size was estimated using capture–recapture and enumeration methods, and the multiplier method was used to estimate the size of the female sex worker population in Kigali. A structured questionnaire was also used to supplement the data. The estimated number of female sex workers by the capture–recapture method was 3205 (95% confidence interval: 2998–3412). The female sex worker size was estimated at 3348 using the enumeration method. In Kigali, the female sex worker size was estimated at 2253 (95% confidence interval: 1916–2524) using the multiplier method. Nearly 80% of all female sex workers in Rwanda were found to be based in the capital, Kigali. This study provided a first-time estimate of the female sex worker population size in Rwanda using capture–recapture, enumeration, and multiplier methods. The capture–recapture and enumeration methods provided similar estimates of female sex worker in Rwanda. Combination of such size estimation methods is feasible and productive in low-resource settings and should be considered vital to inform national HIV programmes. PMID:25336306

  11. Estimation of the size of the female sex worker population in Rwanda using three different methods.

    PubMed

    Mutagoma, Mwumvaneza; Kayitesi, Catherine; Gwiza, Aimé; Ruton, Hinda; Koleros, Andrew; Gupta, Neil; Balisanga, Helene; Riedel, David J; Nsanzimana, Sabin

    2015-10-01

    HIV prevalence is disproportionately high among female sex workers compared to the general population. Many African countries lack useful data on the size of female sex worker populations to inform national HIV programmes. A female sex worker size estimation exercise using three different venue-based methodologies was conducted among female sex workers in all provinces of Rwanda in August 2010. The female sex worker national population size was estimated using capture-recapture and enumeration methods, and the multiplier method was used to estimate the size of the female sex worker population in Kigali. A structured questionnaire was also used to supplement the data. The estimated number of female sex workers by the capture-recapture method was 3205 (95% confidence interval: 2998-3412). The female sex worker size was estimated at 3348 using the enumeration method. In Kigali, the female sex worker size was estimated at 2253 (95% confidence interval: 1916-2524) using the multiplier method. Nearly 80% of all female sex workers in Rwanda were found to be based in the capital, Kigali. This study provided a first-time estimate of the female sex worker population size in Rwanda using capture-recapture, enumeration, and multiplier methods. The capture-recapture and enumeration methods provided similar estimates of female sex worker in Rwanda. Combination of such size estimation methods is feasible and productive in low-resource settings and should be considered vital to inform national HIV programmes. © The Author(s) 2015.

  12. Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume

    2013-01-01

    Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.

  13. Covariate analysis of bivariate survival data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methodsmore » have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.« less

  14. The Application of Extended Cox Proportional Hazard Method for Estimating Survival Time of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Husain, Hartina; Astuti Thamrin, Sri; Tahir, Sulaiha; Mukhlisin, Ahmad; Mirna Apriani, M.

    2018-03-01

    Breast cancer is one type of cancer that is the leading cause of death worldwide. This study aims to model the factors that affect the survival time and rate of cure of breast cancer patients. The extended cox model, which is a modification of the proportional hazard cox model in which the proportional hazard assumptions are not met, is used in this study. The maximum likelihood estimation approach is used to estimate the parameters of the model. This method is then applied to medical record data of breast cancer patient in 2011-2016, which is taken from Hasanuddin University Education Hospital. The results obtained indicate that the factors that affect the survival time of breast cancer patients are malignancy and leukocyte levels.

  15. Comparison of estimators of standard deviation for hydrologic time series

    USGS Publications Warehouse

    Tasker, Gary D.; Gilroy, Edward J.

    1982-01-01

    Unbiasing factors as a function of serial correlation, ρ, and sample size, n for the sample standard deviation of a lag one autoregressive model were generated by random number simulation. Monte Carlo experiments were used to compare the performance of several alternative methods for estimating the standard deviation σ of a lag one autoregressive model in terms of bias, root mean square error, probability of underestimation, and expected opportunity design loss. Three methods provided estimates of σ which were much less biased but had greater mean square errors than the usual estimate of σ: s = (1/(n - 1) ∑ (xi −x¯)2)½. The three methods may be briefly characterized as (1) a method using a maximum likelihood estimate of the unbiasing factor, (2) a method using an empirical Bayes estimate of the unbiasing factor, and (3) a robust nonparametric estimate of σ suggested by Quenouille. Because s tends to underestimate σ, its use as an estimate of a model parameter results in a tendency to underdesign. If underdesign losses are considered more serious than overdesign losses, then the choice of one of the less biased methods may be wise.

  16. A novel, efficient method for estimating the prevalence of acute malnutrition in resource-constrained and crisis-affected settings: A simulation study.

    PubMed

    Frison, Severine; Kerac, Marko; Checchi, Francesco; Nicholas, Jennifer

    2017-01-01

    The assessment of the prevalence of acute malnutrition in children under five is widely used for the detection of emergencies, planning interventions, advocacy, and monitoring and evaluation. This study examined PROBIT Methods which convert parameters (mean and standard deviation (SD)) of a normally distributed variable to a cumulative probability below any cut-off to estimate acute malnutrition in children under five using Middle-Upper Arm Circumference (MUAC). We assessed the performance of: PROBIT Method I, with mean MUAC from the survey sample and MUAC SD from a database of previous surveys; and PROBIT Method II, with mean and SD of MUAC observed in the survey sample. Specifically, we generated sub-samples from 852 survey datasets, simulating 100 surveys for eight sample sizes. Overall the methods were tested on 681 600 simulated surveys. PROBIT methods relying on sample sizes as small as 50 had better performance than the classic method for estimating and classifying the prevalence of acute malnutrition. They had better precision in the estimation of acute malnutrition for all sample sizes and better coverage for smaller sample sizes, while having relatively little bias. They classified situations accurately for a threshold of 5% acute malnutrition. Both PROBIT methods had similar outcomes. PROBIT Methods have a clear advantage in the assessment of acute malnutrition prevalence based on MUAC, compared to the classic method. Their use would require much lower sample sizes, thus enable great time and resource savings and permit timely and/or locally relevant prevalence estimates of acute malnutrition for a swift and well-targeted response.

  17. Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method

    PubMed Central

    2014-01-01

    Background Personal exposure studies of air pollution generally use self-reported diaries to capture individuals’ time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants’ locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Methods Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant’s position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. Results There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest ‘good’ agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time “Indoors Other” using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time “In Transit” was relatively consistent between the methods, the mean daily exposure to PM2.5 while “In Transit” was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Conclusions Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution. PMID:24885722

  18. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    PubMed

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.

  19. A bootstrap method for estimating uncertainty of water quality trends

    USGS Publications Warehouse

    Hirsch, Robert M.; Archfield, Stacey A.; DeCicco, Laura

    2015-01-01

    Estimation of the direction and magnitude of trends in surface water quality remains a problem of great scientific and practical interest. The Weighted Regressions on Time, Discharge, and Season (WRTDS) method was recently introduced as an exploratory data analysis tool to provide flexible and robust estimates of water quality trends. This paper enhances the WRTDS method through the introduction of the WRTDS Bootstrap Test (WBT), an extension of WRTDS that quantifies the uncertainty in WRTDS-estimates of water quality trends and offers various ways to visualize and communicate these uncertainties. Monte Carlo experiments are applied to estimate the Type I error probabilities for this method. WBT is compared to other water-quality trend-testing methods appropriate for data sets of one to three decades in length with sampling frequencies of 6–24 observations per year. The software to conduct the test is in the EGRETci R-package.

  20. Estimating equations estimates of trends

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.

    1994-01-01

    The North American Breeding Bird Survey monitors changes in bird populations through time using annual counts at fixed survey sites. The usual method of estimating trends has been to use the logarithm of the counts in a regression analysis. It is contended that this procedure is reasonably satisfactory for more abundant species, but produces biased estimates for less abundant species. An alternative estimation procedure based on estimating equations is presented.

  1. Estimation of Dynamic Systems for Gene Regulatory Networks from Dependent Time-Course Data.

    PubMed

    Kim, Yoonji; Kim, Jaejik

    2018-06-15

    Dynamic system consisting of ordinary differential equations (ODEs) is a well-known tool for describing dynamic nature of gene regulatory networks (GRNs), and the dynamic features of GRNs are usually captured through time-course gene expression data. Owing to high-throughput technologies, time-course gene expression data have complex structures such as heteroscedasticity, correlations between genes, and time dependence. Since gene experiments typically yield highly noisy data with small sample size, for a more accurate prediction of the dynamics, the complex structures should be taken into account in ODE models. Hence, this study proposes an ODE model considering such data structures and a fast and stable estimation method for the ODE parameters based on the generalized profiling approach with data smoothing techniques. The proposed method also provides statistical inference for the ODE estimator and it is applied to a zebrafish retina cell network.

  2. Measuring Multi-Joint Stiffness during Single Movements: Numerical Validation of a Novel Time-Frequency Approach

    PubMed Central

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R.

    2012-01-01

    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases. PMID:22448233

  3. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils

    PubMed Central

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  4. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils.

    PubMed

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-10-20

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now.

  5. Regularized Semiparametric Estimation for Ordinary Differential Equations

    PubMed Central

    Li, Yun; Zhu, Ji; Wang, Naisyin

    2015-01-01

    Ordinary differential equations (ODEs) are widely used in modeling dynamic systems and have ample applications in the fields of physics, engineering, economics and biological sciences. The ODE parameters often possess physiological meanings and can help scientists gain better understanding of the system. One key interest is thus to well estimate these parameters. Ideally, constant parameters are preferred due to their easy interpretation. In reality, however, constant parameters can be too restrictive such that even after incorporating error terms, there could still be unknown sources of disturbance that lead to poor agreement between observed data and the estimated ODE system. In this paper, we address this issue and accommodate short-term interferences by allowing parameters to vary with time. We propose a new regularized estimation procedure on the time-varying parameters of an ODE system so that these parameters could change with time during transitions but remain constants within stable stages. We found, through simulation studies, that the proposed method performs well and tends to have less variation in comparison to the non-regularized approach. On the theoretical front, we derive finite-sample estimation error bounds for the proposed method. Applications of the proposed method to modeling the hare-lynx relationship and the measles incidence dynamic in Ontario, Canada lead to satisfactory and meaningful results. PMID:26392639

  6. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  7. Using GIS to Estimate Lake Volume from Limited Data

    EPA Science Inventory

    Estimates of lake volume are necessary for estimating residence time or modeling pollutants. Modern GIS methods for calculating lake volume improve upon more dated technologies (e.g. planimeters) and do not require potentially inaccurate assumptions (e.g. volume of a frustum of ...

  8. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo

    2018-05-01

    The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

  9. GSTAR-SUR Modeling With Calendar Variations And Intervention To Forecast Outflow Of Currencies In Java Indonesia

    NASA Astrophysics Data System (ADS)

    Akbar, M. S.; Setiawan; Suhartono; Ruchjana, B. N.; Riyadi, M. A. A.

    2018-03-01

    Ordinary Least Squares (OLS) is general method to estimates Generalized Space Time Autoregressive (GSTAR) parameters. But in some cases, the residuals of GSTAR are correlated between location. If OLS is applied to this case, then the estimators are inefficient. Generalized Least Squares (GLS) is a method used in Seemingly Unrelated Regression (SUR) model. This method estimated parameters of some models with residuals between equations are correlated. Simulation study shows that GSTAR with GLS method for estimating parameters (GSTAR-SUR) is more efficient than GSTAR-OLS method. The purpose of this research is to apply GSTAR-SUR with calendar variation and intervention as exogenous variable (GSTARX-SUR) for forecast outflow of currency in Java, Indonesia. As a result, GSTARX-SUR provides better performance than GSTARX-OLS.

  10. An HMM-based algorithm for evaluating rates of receptor–ligand binding kinetics from thermal fluctuation data

    PubMed Central

    Ju, Lining; Wang, Yijie Dylan; Hung, Ying; Wu, Chien-Fu Jeff; Zhu, Cheng

    2013-01-01

    Motivation: Abrupt reduction/resumption of thermal fluctuations of a force probe has been used to identify association/dissociation events of protein–ligand bonds. We show that off-rate of molecular dissociation can be estimated by the analysis of the bond lifetime, while the on-rate of molecular association can be estimated by the analysis of the waiting time between two neighboring bond events. However, the analysis relies heavily on subjective judgments and is time-consuming. To automate the process of mapping out bond events from thermal fluctuation data, we develop a hidden Markov model (HMM)-based method. Results: The HMM method represents the bond state by a hidden variable with two values: bound and unbound. The bond association/dissociation is visualized and pinpointed. We apply the method to analyze a key receptor–ligand interaction in the early stage of hemostasis and thrombosis: the von Willebrand factor (VWF) binding to platelet glycoprotein Ibα (GPIbα). The numbers of bond lifetime and waiting time events estimated by the HMM are much more than those estimated by a descriptive statistical method from the same set of raw data. The kinetic parameters estimated by the HMM are in excellent agreement with those by a descriptive statistical analysis, but have much smaller errors for both wild-type and two mutant VWF-A1 domains. Thus, the computerized analysis allows us to speed up the analysis and improve the quality of estimates of receptor–ligand binding kinetics. Contact: jeffwu@isye.gatech.edu or cheng.zhu@bme.gatech.edu PMID:23599504

  11. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  12. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  13. Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation.

    PubMed

    Gregory, T Ryan; Nathwani, Paula; Bonnett, Tiffany R; Huber, Dezene P W

    2013-09-01

    A study was undertaken to evaluate both a pre-existing method and a newly proposed approach for the estimation of nuclear genome sizes in arthropods. First, concerns regarding the reliability of the well-established method of flow cytometry relating to impacts of rearing conditions on genome size estimates were examined. Contrary to previous reports, a more carefully controlled test found negligible environmental effects on genome size estimates in the fly Drosophila melanogaster. Second, a more recently touted method based on quantitative real-time PCR (qPCR) was examined in terms of ease of use, efficiency, and (most importantly) accuracy using four test species: the flies Drosophila melanogaster and Musca domestica and the beetles Tribolium castaneum and Dendroctonus ponderosa. The results of this analysis demonstrated that qPCR has the tendency to produce substantially different genome size estimates from other established techniques while also being far less efficient than existing methods.

  14. Estimation of Organic Vapor Breakthrough in Humidified Activated Carbon Beds: -Application of Wheeler-Jonas Equation, NIOSH MultiVapor™ and RBT (Relative Breakthrough Time)

    PubMed Central

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2016-01-01

    Objectives: In the use of activated carbon beds as adsorbents for various types of organic vapor in respirator gas filters, water adsorption of the bed and test gas humidity are expected to alter the accuracy in the estimation of breakthrough data. There is increasing interest in the effects of moisture on estimation methods, and this study has investigated the effects with actual breakthrough data. Methods: We prepared several activated carbon beds preconditioned by equilibration with moisture at different relative humidities (RH=40%-70%) and a constant temperature of 20°C. Then, we measured breakthrough curves in the early region of breakthrough time for 10 types of organic vapor, and investigated the effects of moisture on estimation using the Wheeler-Jonas equation, the simulation software NIOSH MultiVapor™ 2.2.3, and RBT (Relative Breakthrough Time) proposed by Tanaka et al. Results: The Wheeler-Jonas equation showed good accordance with breakthrough curves at all RH in this study. However, the correlation coefficient decreased gradually with increasing RH regardless of type of organic vapor. Estimation of breakthrough time by MultiVapor showed good accordance with experimental data at RH=50%. In contrast, it showed discordance at high RH (>50%). RBTs reported previously were consistent with experimental data at RH=50%. On the other hand, the values of RBT changed markedly with increasing RH. Conclusions: The results of each estimation method showed good accordance with experimental data under comparatively dry conditions (RH≤50%). However, there were discrepancies under high humidified conditions, and further studies are warranted. PMID:27725483

  15. Adaptive control of theophylline therapy: importance of blood sampling times.

    PubMed

    D'Argenio, D Z; Khakmahd, K

    1983-10-01

    A two-observation protocol for estimating theophylline clearance during a constant-rate intravenous infusion is used to examine the importance of blood sampling schedules with regard to the information content of resulting concentration data. Guided by a theory for calculating maximally informative sample times, population simulations are used to assess the effect of specific sampling times on the precision of resulting clearance estimates and subsequent predictions of theophylline plasma concentrations. The simulations incorporated noise terms for intersubject variability, dosing errors, sample collection errors, and assay error. Clearance was estimated using Chiou's method, least squares, and a Bayesian estimation procedure. The results of these simulations suggest that clinically significant estimation and prediction errors may result when using the above two-point protocol for estimating theophylline clearance if the time separating the two blood samples is less than one population mean elimination half-life.

  16. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm

    PubMed Central

    Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J

    2014-01-01

    Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations. PMID:25558365

  17. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    NASA Astrophysics Data System (ADS)

    Kulisek, J. A.; Schweppe, J. E.; Stave, S. C.; Bernacki, B. E.; Jordan, D. V.; Stewart, T. N.; Seifert, C. E.; Kernan, W. J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, 60Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  18. Data and methodological problems in establishing state gasoline-conservation targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, D.L.; Walton, G.H.

    The Emergency Energy Conservation Act of 1979 gives the President the authority to set gasoline-conservation targets for states in the event of a supply shortage. This paper examines data and methodological problems associated with setting state gasoline-conservation targets. The target-setting method currently used is examined and found to have some flaws. Ways of correcting these deficiencies through the use of Box-Jenkins time-series analysis are investigated. A successful estimation of Box-Jenkins models for all states included the estimation of the magnitude of the supply shortages of 1979 in each state and a preliminary estimation of state short-run price elasticities, which weremore » found to vary about a median value of -0.16. The time-series models identified were very simple in structure and lent support to the simple consumption growth model assumed by the current target method. The authors conclude that the flaws in the current method can be remedied either by replacing the current procedures with time-series models or by using the models in conjunction with minor modifications of the current method.« less

  19. Measurement of Postmortem Pupil Size: A New Method with Excellent Reliability and Its Application to Pupil Changes in the Early Postmortem Period.

    PubMed

    Fleischer, Luise; Sehner, Susanne; Gehl, Axel; Riemer, Martin; Raupach, Tobias; Anders, Sven

    2017-05-01

    Measurement of postmortem pupil width is a potential component of death time estimation. However, no standardized measurement method has been described. We analyzed a total of 71 digital images for pupil-iris ratio using the software ImageJ. Images were analyzed three times by four different examiners. In addition, serial images from 10 cases were taken between 2 and 50 h postmortem to detect spontaneous pupil changes. Intra- and inter-rater reliability of the method was excellent (ICC > 0.95). The method is observer independent and yields consistent results, and images can be digitally stored and re-evaluated. The method seems highly eligible for forensic and scientific purposes. While statistical analysis of spontaneous pupil changes revealed a significant polynomial of quartic degree for postmortem time (p = 0.001), an obvious pattern was not detected. These results do not indicate suitability of spontaneous pupil changes for forensic death time estimation, as formerly suggested. © 2016 American Academy of Forensic Sciences.

  20. The Efficacy of Consensus Tree Methods for Summarizing Phylogenetic Relationships from a Posterior Sample of Trees Estimated from Morphological Data.

    PubMed

    O'Reilly, Joseph E; Donoghue, Philip C J

    2018-03-01

    Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data.

  1. The Efficacy of Consensus Tree Methods for Summarizing Phylogenetic Relationships from a Posterior Sample of Trees Estimated from Morphological Data

    PubMed Central

    O’Reilly, Joseph E; Donoghue, Philip C J

    2018-01-01

    Abstract Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data. PMID:29106675

  2. Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method.

    PubMed

    Nethery, Elizabeth; Mallach, Gary; Rainham, Daniel; Goldberg, Mark S; Wheeler, Amanda J

    2014-05-08

    Personal exposure studies of air pollution generally use self-reported diaries to capture individuals' time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants' locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant's position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest 'good' agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time "Indoors Other" using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time "In Transit" was relatively consistent between the methods, the mean daily exposure to PM2.5 while "In Transit" was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution.

  3. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, M.

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that the authors' techniques allow more accurate estimation of the global system loading, resulting in fewer object migrations than local methods. The authors' method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive load-balancing methods. Results from a preliminary analysis of another system and from simulation with a synthetic load provide some evidence of more general applicability.

  4. New agreement measures based on survival processes

    PubMed Central

    Guo, Ying; Li, Ruosha; Peng, Limin; Manatunga, Amita K.

    2013-01-01

    Summary The need to assess agreement arises in many scenarios in biomedical sciences when measurements were taken by different methods on the same subjects. When the endpoints are survival outcomes, the study of agreement becomes more challenging given the special characteristics of time-to-event data. In this paper, we propose a new framework for assessing agreement based on survival processes that can be viewed as a natural representation of time-to-event outcomes. Our new agreement measure is formulated as the chance-corrected concordance between survival processes. It provides a new perspective for studying the relationship between correlated survival outcomes and offers an appealing interpretation as the agreement between survival times on the absolute distance scale. We provide a multivariate extension of the proposed agreement measure for multiple methods. Furthermore, the new framework enables a natural extension to evaluate time-dependent agreement structure. We develop nonparametric estimation of the proposed new agreement measures. Our estimators are shown to be strongly consistent and asymptotically normal. We evaluate the performance of the proposed estimators through simulation studies and then illustrate the methods using a prostate cancer data example. PMID:23844617

  5. Separation of components from a scale mixture of Gaussian white noises

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria

    2010-05-01

    The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.

  6. The investigation and implementation of real-time face pose and direction estimation on mobile computing devices

    NASA Astrophysics Data System (ADS)

    Fu, Deqian; Gao, Lisheng; Jhang, Seong Tae

    2012-04-01

    The mobile computing device has many limitations, such as relative small user interface and slow computing speed. Usually, augmented reality requires face pose estimation can be used as a HCI and entertainment tool. As far as the realtime implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to face different constraints while leaving enough face pose estimation accuracy. The proposed face pose estimation method met this objective. Experimental results running on a testing Android mobile device delivered satisfactory performing results in the real-time and accurately.

  7. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    PubMed

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  8. Closing the Gaps: competing estimates of Indigenous Australian life expectancy in the scientific literature

    PubMed Central

    Rosenstock, Amanda; Mukandi, Bryan; Zwi, Anthony B; Hill, Peter S

    2013-01-01

    Objective: Closing the gap in life expectancy between Indigenous and other Australians within a generation is central to national Indigenous reform policy (Closing the Gap). Over time, various methods of estimating Indigenous life expectancy and with that, the life expectancy gap, have been adopted with differing, albeit non-comparable results. We present data on the extent of the gap and elucidate the pattern of use and interpretations of the different estimates of the gap, between 2007 and 2012. Methods: An extensive search was conducted for all peer-reviewed health publications citing estimates of and/or discussing the life expectancy of Indigenous Australians, for the period 2007–2012. Results: Five predominant patterns of citation of the gap estimates were identified: 20 years, 17 years, 15–20 years, 13 years, and 11.5 years for males and 9.7 years for females. Some authors misinterpret the most recent estimates as reflecting improvement from the 17-year figure, rather than the result of different methods of estimation. Support for the direct methods used to calculate Indigenous life expectancy is indicated. Conclusions and Implications: A specific estimate of the life expectancy gap has not been established among stakeholders in Indigenous health. Agreement on the magnitude of the gap is arguably needed in order to evaluate strategies aimed at improving health outcomes for Indigenous Australians. Moreover, measuring progress towards ‘closing the gap’ depends on the availability of comparable estimates, using the same techniques of measurement to assess changes over time. PMID:23895479

  9. Application of Density Estimation Methods to Datasets from a Glider

    DTIC Science & Technology

    2013-09-30

    sperm whales as well as different dolphin species. OBJECTIVES The objective of this research is to extend existing methods for cetacean...Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...a cue counting approach, where a cue has been defined as a clicking event (Küsel et al., 2011), to density estimation from data recorded by single

  10. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  11. Smoothness of In vivo Spectral Baseline Determined by Mean Squared Error

    PubMed Central

    Zhang, Yan; Shen, Jun

    2013-01-01

    Purpose A nonparametric smooth line is usually added to spectral model to account for background signals in vivo magnetic resonance spectroscopy (MRS). The assumed smoothness of the baseline significantly influences quantitative spectral fitting. In this paper, a method is proposed to minimize baseline influences on estimated spectral parameters. Methods In this paper, the non-parametric baseline function with a given smoothness was treated as a function of spectral parameters. Its uncertainty was measured by root-mean-squared error (RMSE). The proposed method was demonstrated with a simulated spectrum and in vivo spectra of both short echo time (TE) and averaged echo times. The estimated in vivo baselines were compared with the metabolite-nulled spectra, and the LCModel-estimated baselines. The accuracies of estimated baseline and metabolite concentrations were further verified by cross-validation. Results An optimal smoothness condition was found that led to the minimal baseline RMSE. In this condition, the best fit was balanced against minimal baseline influences on metabolite concentration estimates. Conclusion Baseline RMSE can be used to indicate estimated baseline uncertainties and serve as the criterion for determining the baseline smoothness of in vivo MRS. PMID:24259436

  12. Time difference of arrival estimation of microseismic signals based on alpha-stable distribution

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Gong, Yue; Peng, Yan-Jun; Sun, Hong-Mei; Zhang, Xing-Li; Lu, Xin-Ming

    2018-05-01

    Microseismic signals are generally considered to follow the Gauss distribution. A comparison of the dynamic characteristics of sample variance and the symmetry of microseismic signals with the signals which follow α-stable distribution reveals that the microseismic signals have obvious pulse characteristics and that the probability density curve of the microseismic signal is approximately symmetric. Thus, the hypothesis that microseismic signals follow the symmetric α-stable distribution is proposed. On the premise of this hypothesis, the characteristic exponent α of the microseismic signals is obtained by utilizing the fractional low-order statistics, and then a new method of time difference of arrival (TDOA) estimation of microseismic signals based on fractional low-order covariance (FLOC) is proposed. Upon applying this method to the TDOA estimation of Ricker wavelet simulation signals and real microseismic signals, experimental results show that the FLOC method, which is based on the assumption of the symmetric α-stable distribution, leads to enhanced spatial resolution of the TDOA estimation relative to the generalized cross correlation (GCC) method, which is based on the assumption of the Gaussian distribution.

  13. Actual and estimated costs of disposable materials used during surgical procedures.

    PubMed

    Toyabe, Shin-Ichi; Cao, Pengyu; Kurashima, Sachiko; Nakayama, Yukiko; Ishii, Yuko; Hosoyama, Noriko; Akazawa, Kouhei

    2005-07-01

    It is difficult to estimate precisely the costs of disposable materials used during surgical operations. To evaluate the actual costs of disposable materials, we calculated the actual costs of disposable materials used in 59 operations by taking account of costs of all disposable materials used for each operation. The costs of the disposable materials varied significantly from operation to operation (US$ 38-4230 per operation), and the median [25-percentile and 75-percentile] of the sum total of disposable material costs of a single operation was found to be US$ 686 [205 and 993]. Multiple regression analysis with a stepwise regression method showed that costs of disposable materials significantly correlated only with operation time (p<0.001). Based on the results, we propose a simple method for estimating costs of disposable materials by measuring operation time, and we found that the method gives reliable results. Since costs of disposable materials used during surgical operations are considerable, precise estimation of the costs is essential for hospital cost accounting. Our method should be useful for planning hospital administration strategies.

  14. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Full Dynamic Compound Inverse Method for output-only element-level system identification and input estimation from earthquake response signals

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2016-08-01

    This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.

  16. Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Grinias, Elias; Pagonidis, Konstantin; Tziritas, George; Damilakis, John

    2010-02-01

    The purpose of this study was to develop and evaluate a semiautomatic method for left ventricular (LV) segmentation on cine MR images and subsequent estimation of cardiac parameters. The study group comprised cardiac MR examinations of 18 consecutive patients with known or suspected coronary artery disease. The new method allowed the automatic detection of the LV endocardial and epicardial boundaries on each short-axis cine MR image using a Bayesian flooding segmentation algorithm and weighted least-squares B-splines minimization. Manual editing of the automatic contours could be performed for unsatisfactory segmentation results. The end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and LV mass estimated by the new method were compared with the reference values obtained by manually tracing the LV cavity borders. The reproducibility of the new method was determined using data from two independent observers. The mean number of endocardial and epicardial outlines not requiring any manual adjustment was more than 80% and 76% of the total contour number per study, respectively. The mean segmentation time including the required manual corrections was 2.3 ± 0.7 min per patient. LV volumes estimated by the semiautomatic method were significantly lower than those by manual tracing (P < 0.05), whereas no difference was found for EF and LV mass (P > 0.05). LV indices estimated by the two methods were well correlated (r >= 0.80). The mean difference between manual and semiautomatic method for estimating EDV, ESV, EF and LV mass was 6.1 ± 7.2 ml, 3.0 ± 5.2 ml, -0.6 ± 4.3% and -6.2 ± 12.2 g, respectively. The intraobserver and interobserver variability associated with the semiautomatic determination of LV indices was 0.5-1.2% and 0.8-3.9%, respectively. The estimation of LV parameters with the new semiautomatic segmentation method is technically feasible, highly reproducible and time effective.

  17. Evaluating principal surrogate endpoints with time-to-event data accounting for time-varying treatment efficacy.

    PubMed

    Gabriel, Erin E; Gilbert, Peter B

    2014-04-01

    Principal surrogate (PS) endpoints are relatively inexpensive and easy to measure study outcomes that can be used to reliably predict treatment effects on clinical endpoints of interest. Few statistical methods for assessing the validity of potential PSs utilize time-to-event clinical endpoint information and to our knowledge none allow for the characterization of time-varying treatment effects. We introduce the time-dependent and surrogate-dependent treatment efficacy curve, ${\\mathrm {TE}}(t|s)$, and a new augmented trial design for assessing the quality of a biomarker as a PS. We propose a novel Weibull model and an estimated maximum likelihood method for estimation of the ${\\mathrm {TE}}(t|s)$ curve. We describe the operating characteristics of our methods via simulations. We analyze data from the Diabetes Control and Complications Trial, in which we find evidence of a biomarker with value as a PS.

  18. Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory

    DTIC Science & Technology

    2016-05-12

    valued times series from a sample. (A practical algorithm to compute the estimator is a work in progress.) Third, finitely-valued spatial processes...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics; time series ; Markov chains; random...proved. Second, a statistical method is developed to estimate the memory depth of discrete- time and continuously-valued times series from a sample. (A

  19. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parametermore » estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.« less

  20. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    NASA Astrophysics Data System (ADS)

    Chen, Kho Chia; Bahar, Arifah; Kane, Ibrahim Lawal; Ting, Chee-Ming; Rahman, Haliza Abd

    2015-02-01

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.

Top